Sample records for cost efficient design

  1. Implications of sampling design and sample size for national carbon accounting systems.

    PubMed

    Köhl, Michael; Lister, Andrew; Scott, Charles T; Baldauf, Thomas; Plugge, Daniel

    2011-11-08

    Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational sampling approaches utilize a combination of earth-observation data and in-situ field assessments as data sources. We compared the cost-efficiency of four different sampling design alternatives (simple random sampling, regression estimators, stratified sampling, 2-phase sampling with regression estimators) that have been proposed in the scope of REDD. Three of the design alternatives provide for a combination of in-situ and earth-observation data. Under different settings of remote sensing coverage, cost per field plot, cost of remote sensing imagery, correlation between attributes quantified in remote sensing and field data, as well as population variability and the percent standard error over total survey cost was calculated. The cost-efficiency of forest carbon stock assessments is driven by the sampling design chosen. Our results indicate that the cost of remote sensing imagery is decisive for the cost-efficiency of a sampling design. The variability of the sample population impairs cost-efficiency, but does not reverse the pattern of cost-efficiency of the individual design alternatives. Our results clearly indicate that it is important to consider cost-efficiency in the development of forest carbon stock assessments and the selection of remote sensing techniques. The development of MRV-systems for REDD need to be based on a sound optimization process that compares different data sources and sampling designs with respect to their cost-efficiency. This helps to reduce the uncertainties related with the quantification of carbon stocks and to increase the financial benefits from adopting a REDD regime.

  2. Efficient design of cluster randomized trials with treatment-dependent costs and treatment-dependent unknown variances.

    PubMed

    van Breukelen, Gerard J P; Candel, Math J J M

    2018-06-10

    Cluster randomized trials evaluate the effect of a treatment on persons nested within clusters, where treatment is randomly assigned to clusters. Current equations for the optimal sample size at the cluster and person level assume that the outcome variances and/or the study costs are known and homogeneous between treatment arms. This paper presents efficient yet robust designs for cluster randomized trials with treatment-dependent costs and treatment-dependent unknown variances, and compares these with 2 practical designs. First, the maximin design (MMD) is derived, which maximizes the minimum efficiency (minimizes the maximum sampling variance) of the treatment effect estimator over a range of treatment-to-control variance ratios. The MMD is then compared with the optimal design for homogeneous variances and costs (balanced design), and with that for homogeneous variances and treatment-dependent costs (cost-considered design). The results show that the balanced design is the MMD if the treatment-to control cost ratio is the same at both design levels (cluster, person) and within the range for the treatment-to-control variance ratio. It still is highly efficient and better than the cost-considered design if the cost ratio is within the range for the squared variance ratio. Outside that range, the cost-considered design is better and highly efficient, but it is not the MMD. An example shows sample size calculation for the MMD, and the computer code (SPSS and R) is provided as supplementary material. The MMD is recommended for trial planning if the study costs are treatment-dependent and homogeneity of variances cannot be assumed. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  3. Optimal cost design of water distribution networks using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon

    2016-12-01

    Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.

  4. Stirling heat pump external heat systems - An appliance perspective

    NASA Astrophysics Data System (ADS)

    Vasilakis, Andrew D.; Thomas, John F.

    A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.

  5. Stirling heat pump external heat systems: An appliance perspective

    NASA Astrophysics Data System (ADS)

    Vasilakis, A. D.; Thomas, J. F.

    1992-08-01

    A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS system was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.

  6. Field evaluation of alternative and cost efficient bridge approach slabs.

    DOT National Transportation Integrated Search

    2013-11-01

    Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et al. 2010) has recommended : three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace slab with sleeper slab (CIP...

  7. Bridge approach slabs for Missouri DOT field evaluation of alternative and cost efficient bridge approach slabs.

    DOT National Transportation Integrated Search

    2013-05-01

    Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et : al. 2010) has recommended three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace : slab with sleeper slab (C...

  8. Design of the storage location based on the ABC analyses

    NASA Astrophysics Data System (ADS)

    Jemelka, Milan; Chramcov, Bronislav; Kříž, Pavel

    2016-06-01

    The paper focuses on process efficiency and saving storage costs. Maintaining inventory through putaway strategy takes personnel time and costs money. The aim is to control inventory in the best way. The ABC classification based on Villefredo Pareto theory is used for a design of warehouse layout. New design of storage location reduces the distance of fork-lifters, total costs and it increases inventory process efficiency. The suggested solutions and evaluation of achieved results are described in detail. Proposed solutions were realized in real warehouse operation.

  9. Process and assembly plans for low cost commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, Stephen; Starkey, Val

    1991-01-01

    Cost and weight reduction for a composite structure is a result of selecting design concepts that can be built using efficient low cost manufacturing and assembly processes. Since design and manufacturing are inherently cost dependent, concurrent engineering in the form of a Design-Build Team (DBT) is essential for low cost designs. Detailed cost analysis from DBT designs and hardware verification must be performed to identify the cost drivers and relationships between design and manufacturing processes. Results from the global evaluation are used to quantitatively rank design, identify cost centers for higher ranking design concepts, define and prioritize a list of technical/economic issues and barriers, and identify parameters that control concept response. These results are then used for final design optimization.

  10. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, Ben

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency watermore » heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  11. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Astrophysics Data System (ADS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2016-03-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.

  12. Analyses of Blood Bank Efficiency, Cost-Effectiveness and Quality

    NASA Astrophysics Data System (ADS)

    Lam, Hwai-Tai Chen

    In view of the increasing costs of hospital care, it is essential to investigate methods to improve the labor efficiency and the cost-effectiveness of the hospital technical core in order to control costs while maintaining the quality of care. This study was conducted to develop indices to measure efficiency, cost-effectiveness, and the quality of blood banks; to identify factors associated with efficiency, cost-effectiveness, and quality; and to generate strategies to improve blood bank labor efficiency and cost-effectiveness. Indices developed in this study for labor efficiency and cost-effectiveness were not affected by patient case mix and illness severity. Factors that were associated with labor efficiency were identified as managerial styles, and organizational designs that balance workload and labor resources. Medical directors' managerial involvement was not associated with labor efficiency, but their continuing education and specialty in blood bank were found to reduce the performance of unnecessary tests. Surprisingly, performing unnecessary tests had no association with labor efficiency. This suggested the existence of labor slack in blood banks. Cost -effectiveness was associated with workers' benefits, wages, and the production of high-end transfusion products by hospital-based donor rooms. Quality indices used in this study included autologous transfusion rates, platelet transfusion rates, and the check points available in an error-control system. Because the autologous transfusion rate was related to patient case mix, severity of illness, and possible inappropriate transfusion, it was not recommended to be used for quality index. Platelet-pheresis transfusion rates were associated with the transfusion preferences of the blood bank medical directors. The total number of check points in an error -control system was negatively associated with government ownership and workers' experience. Recommendations for improving labor efficiency and cost-effectiveness were focused on an incentive system that encourages team effort, and the use of appropriate measurements for laboratory efficiency and operational system designs.

  13. Airfoil Design and Optimization by the One-Shot Method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1995-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  14. Analysis And Design Of A Water Purification System For The West African Area Of Operation

    DTIC Science & Technology

    2016-12-01

    harmful metals and in disinfecting the water prior to human consumption . Research conducted proved that the BWS is more cost effective , efficient...and test a feasible and cost- effective prototype of a purification system to the BWS for improved capability. This study uses a design-based and...design. The prototype test results showed that the water purification system performed effectively and efficiently in accordance with the

  15. 4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system

    NASA Astrophysics Data System (ADS)

    Sanaye, Sepehr; Katebi, Arash

    2014-02-01

    Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 kW-1 h-1, and payback period of about 6.3 years for the investment.

  16. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  17. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, Ben

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  18. Cost-efficiency trade-off and the design of thermoelectric power generators.

    PubMed

    Yazawa, Kazuaki; Shakouri, Ali

    2011-09-01

    The energy conversion efficiency of today's thermoelectric generators is significantly lower than that of conventional mechanical engines. Almost all of the existing research is focused on materials to improve the conversion efficiency. Here we propose a general framework to study the cost-efficiency trade-off for thermoelectric power generation. A key factor is the optimization of thermoelectric modules together with their heat source and heat sinks. Full electrical and thermal co-optimization yield a simple analytical expression for optimum design. Based on this model, power output per unit mass can be maximized. We show that the fractional area coverage of thermoelectric elements in a module could play a significant role in reducing the cost of power generation systems.

  19. Cost efficient command management

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa; Murphy, C. W.; Kuntz, Jon; Barlett, Tom

    1996-01-01

    The design and implementation of a command management system (CMS) for a NASA control center, is described. The technology innovations implemented in the CMS provide the infrastructure required for operations cost reduction and future development cost reduction through increased operational efficiency and reuse in future missions. The command management design facilitates error-free operations which enables the automation of the routine control center functions and allows for the distribution of scheduling responsibility to the instrument teams. The reusable system was developed using object oriented methodologies.

  20. Rate design, yardstick regulation, and franchise competition: An integrated approach to improving the efficiency of 21st century electric distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, H.L.; Cook, C.

    Regulators need to take a hard look at stranded cost policies that make it difficult for municipalities to replace incumbent distributors, and also reconsider whether distributors should be allowed to roll expansion costs into systemwide rates. This article focuses on the importance of efficient electric distribution in the post-restructuring era and how regulators can promote that efficiency by (1) protecting and encouraging franchise competition, (2) employing regulatory yardsticks, and (3) designing rate structures that send proper price signals about the relative costs of expanding distribution plant and substituting distributed generation, conservation services, or other alternatives.

  1. Rectenna session: Micro aspects

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of rectenna design are discussed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  2. Development of steel design details and selection criteria for cost effective and innovative steel bridges in Colorado : CDOT study no. 85-00 final report.

    DOT National Transportation Integrated Search

    2011-07-01

    This research focuses on finding a method for creating cost effective and innovative steel bridges in Colorado. The design method that was discovered to create this cost efficiency was designing the beams as simply supported for non-composite dead lo...

  3. Cost-efficient designs for three-arm trials with treatment delivered by health professionals: Sample sizes for a combination of nested and crossed designs

    PubMed Central

    Moerbeek, Mirjam

    2018-01-01

    Background This article studies the design of trials that compare three treatment conditions that are delivered by two types of health professionals. The one type of health professional delivers one treatment, and the other type delivers two treatments, hence, this design is a combination of a nested and crossed design. As each health professional treats multiple patients, the data have a nested structure. This nested structure has thus far been ignored in the design of such trials, which may result in an underestimate of the required sample size. In the design stage, the sample sizes should be determined such that a desired power is achieved for each of the three pairwise comparisons, while keeping costs or sample size at a minimum. Methods The statistical model that relates outcome to treatment condition and explicitly takes the nested data structure into account is presented. Mathematical expressions that relate sample size to power are derived for each of the three pairwise comparisons on the basis of this model. The cost-efficient design achieves sufficient power for each pairwise comparison at lowest costs. Alternatively, one may minimize the total number of patients. The sample sizes are found numerically and an Internet application is available for this purpose. The design is also compared to a nested design in which each health professional delivers just one treatment. Results Mathematical expressions show that this design is more efficient than the nested design. For each pairwise comparison, power increases with the number of health professionals and the number of patients per health professional. The methodology of finding a cost-efficient design is illustrated using a trial that compares treatments for social phobia. The optimal sample sizes reflect the costs for training and supervising psychologists and psychiatrists, and the patient-level costs in the three treatment conditions. Conclusion This article provides the methodology for designing trials that compare three treatment conditions while taking the nesting of patients within health professionals into account. As such, it helps to avoid underpowered trials. To use the methodology, a priori estimates of the total outcome variances and intraclass correlation coefficients must be obtained from experts’ opinions or findings in the literature. PMID:29316807

  4. Cost-efficiency of highway operations and maintenance of public-private partnerships.

    DOT National Transportation Integrated Search

    2014-08-01

    While the literature on public-private partnerships (PPPs) argues that the private sectors life-cycle : approach to design and construction results in operational cost efficiencies, empirical support is : missing. This study explored that issue by...

  5. Optimising cluster survey design for planning schistosomiasis preventive chemotherapy.

    PubMed

    Knowles, Sarah C L; Sturrock, Hugh J W; Turner, Hugo; Whitton, Jane M; Gower, Charlotte M; Jemu, Samuel; Phillips, Anna E; Meite, Aboulaye; Thomas, Brent; Kollie, Karsor; Thomas, Catherine; Rebollo, Maria P; Styles, Ben; Clements, Michelle; Fenwick, Alan; Harrison, Wendy E; Fleming, Fiona M

    2017-05-01

    The cornerstone of current schistosomiasis control programmes is delivery of praziquantel to at-risk populations. Such preventive chemotherapy requires accurate information on the geographic distribution of infection, yet the performance of alternative survey designs for estimating prevalence and converting this into treatment decisions has not been thoroughly evaluated. We used baseline schistosomiasis mapping surveys from three countries (Malawi, Côte d'Ivoire and Liberia) to generate spatially realistic gold standard datasets, against which we tested alternative two-stage cluster survey designs. We assessed how sampling different numbers of schools per district (2-20) and children per school (10-50) influences the accuracy of prevalence estimates and treatment class assignment, and we compared survey cost-efficiency using data from Malawi. Due to the focal nature of schistosomiasis, up to 53% simulated surveys involving 2-5 schools per district failed to detect schistosomiasis in low endemicity areas (1-10% prevalence). Increasing the number of schools surveyed per district improved treatment class assignment far more than increasing the number of children sampled per school. For Malawi, surveys of 15 schools per district and 20-30 children per school reliably detected endemic schistosomiasis and maximised cost-efficiency. In sensitivity analyses where treatment costs and the country considered were varied, optimal survey size was remarkably consistent, with cost-efficiency maximised at 15-20 schools per district. Among two-stage cluster surveys for schistosomiasis, our simulations indicated that surveying 15-20 schools per district and 20-30 children per school optimised cost-efficiency and minimised the risk of under-treatment, with surveys involving more schools of greater cost-efficiency as treatment costs rose.

  6. Rectenna session: Micro aspects. [energy conversion

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  7. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Technical Reports Server (NTRS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various thermoelectric (TE) waste heat 3 recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.

  8. Design to Cost and Life Cycle Cost.

    DTIC Science & Technology

    1980-07-01

    The data are also based on a sample of reporting squadrons. Though the VAMOSC MS offers an excellent capability to deal with design-related issues...levels as predictions in the early design phase of a program. Figure 4 presents sample FY-78 costs from the VAMOSC MS report. The costs are on a cost...equlipmlent before attachlmenlt to adjacent sectionls. Ibis allows tile work tol be performed within thC reachl of tile most1 efficient equipment and w4ithl

  9. A study of design trade (OFFS) using a computer model

    NASA Technical Reports Server (NTRS)

    Coughlin, S.

    1975-01-01

    The interaction between the efficiency of the structural design and the cost of the structure used was studied. It is shown that future effort is best directed at producing a low cost structure of medium efficiency, but with the ability to withstand normal service wear. The trade-off between aerodynamic drag and structure weight in selecting a length to diameter ratio for the hull is evaluated along with the implications of power plan type and fuel cost on the economics of the airship. The choice of lifting gas is considered.

  10. New Developments in Nickel-Hydrogen Dependent Pressure Vessel (DPV) Cell and Battery Design

    NASA Technical Reports Server (NTRS)

    Caldwell, Dwight B.; Fox, Chris L.; Miller, Lee E.

    1997-01-01

    THe Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH2) design is being developed as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced part count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risk.

  11. Bridge-in-a-Backpack(TM). Task 2 : reduction of costs through design modifications and optimization.

    DOT National Transportation Integrated Search

    2011-09-01

    The cost effective use of FRP composites in infrastructure requires the efficient use of the : composite materials in the design. Previous work during the development phase and : demonstration phase illustrated the need to refine the design methods f...

  12. Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ahrar Ahmed

    Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our best fabricated result of FSF cell achieved ˜18.40% efficiency. Characterizations on such cells provide that, cell performance can be further improved by utilizing high lifetime base wafer. We showed a step by step improvement on the device parameters to achieve ˜22% efficiency FSF cell. Finally, bifacial cells were fabricated with 13.32% front and 9.65% rear efficiency. The efficiency limitation is due to the quality of base wafer. Detail resistance breakdown was conducted on these cells to analyze parasitic resistance losses. It was found that base and gridline resistances dominated the FF loss. However, very low contact resistance of 20 mO-cm 2 at front side and 2 mO-cm2 at the rear side was observed by utilizing same Ag paste for front and rear contact formation. This might provide a pathway towards the search of an optimized Ag paste to attain high efficiency screen-printed bifacial cell. Detail investigations needs to be carried out to unveil the property of this Ag paste. In future work, more focus will be given on the metallization design to incorporate further reduction in Ag cost. Al2O3 passivation layer will be incorporated as a means to attain ˜23% screen-printed bifacial cell.

  13. Design and fabrication of wraparound contact silicon solar cells

    NASA Technical Reports Server (NTRS)

    Goodelle, G.

    1972-01-01

    Work is reported on the development and production of 1,000 N+/P wraparound solar cells of two different design configurations: Design 1, a bar configuration wraparound and Design 2, a corner pad configuration wraparound. The project goal consisted of determining which of the two designs was better with regard to production cost where the typical cost of a conventional solar cell was considered as the norm. Emphasis was also placed on obtaining the highest possible output efficiency, although a minumum efficiency of 10.5% was required. Five hundred cells of Design 1 and 500 cells of Design 2 were fabricated. Design 1 which used similar procedures to those used in the fabrication of conventional cells, was the less expensive with a cost very close to that of a conventional cell. Design 2 was more expensive mainly because the more exotic process procedures used were less developed than those used for Design 1. However, Design 2 processing technology demonstrated a feasibility that should warrant future investigation toward improvement and refinement.

  14. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  15. Optimising cluster survey design for planning schistosomiasis preventive chemotherapy

    PubMed Central

    Sturrock, Hugh J. W.; Turner, Hugo; Whitton, Jane M.; Gower, Charlotte M.; Jemu, Samuel; Phillips, Anna E.; Meite, Aboulaye; Thomas, Brent; Kollie, Karsor; Thomas, Catherine; Rebollo, Maria P.; Styles, Ben; Clements, Michelle; Fenwick, Alan; Harrison, Wendy E.; Fleming, Fiona M.

    2017-01-01

    Background The cornerstone of current schistosomiasis control programmes is delivery of praziquantel to at-risk populations. Such preventive chemotherapy requires accurate information on the geographic distribution of infection, yet the performance of alternative survey designs for estimating prevalence and converting this into treatment decisions has not been thoroughly evaluated. Methodology/Principal findings We used baseline schistosomiasis mapping surveys from three countries (Malawi, Côte d’Ivoire and Liberia) to generate spatially realistic gold standard datasets, against which we tested alternative two-stage cluster survey designs. We assessed how sampling different numbers of schools per district (2–20) and children per school (10–50) influences the accuracy of prevalence estimates and treatment class assignment, and we compared survey cost-efficiency using data from Malawi. Due to the focal nature of schistosomiasis, up to 53% simulated surveys involving 2–5 schools per district failed to detect schistosomiasis in low endemicity areas (1–10% prevalence). Increasing the number of schools surveyed per district improved treatment class assignment far more than increasing the number of children sampled per school. For Malawi, surveys of 15 schools per district and 20–30 children per school reliably detected endemic schistosomiasis and maximised cost-efficiency. In sensitivity analyses where treatment costs and the country considered were varied, optimal survey size was remarkably consistent, with cost-efficiency maximised at 15–20 schools per district. Conclusions/Significance Among two-stage cluster surveys for schistosomiasis, our simulations indicated that surveying 15–20 schools per district and 20–30 children per school optimised cost-efficiency and minimised the risk of under-treatment, with surveys involving more schools of greater cost-efficiency as treatment costs rose. PMID:28552961

  16. The design and construction of a cost-efficient confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Rajwa, Bartlomiej; Jones, James T.; Robinson, J. Paul

    2007-03-01

    The optical dissection ability of confocal microscopy makes it a powerful tool for biological materials. However, the cost and complexity of confocal scanning laser microscopy hinders its wide application in education. We describe the construction of a simplified confocal scanning laser microscope and demonstrate three-dimensional projection based on cost-efficient commercial hardware, together with available open source software.

  17. School Energy Costs: A Matter of Leadership.

    ERIC Educational Resources Information Center

    Newton, Larry; Woodbury, Darwin; Glenn, Michael L.

    This booklet offers energy savings concepts for Utah's public school districts. Topics cover energy efficient design for new buildings and additions, cost-effective energy upgrades during retrofits, maintenance and operating procedures for increasing energy efficiency, and funding options for school districts making energy upgrades. Appendices…

  18. High Efficiency Low Global Warming Potential Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogswell, Frederick; Verma, Parmesh

    During this project UTRC designed a novel compressor for use with new low Global-Warming-Potential (GWP) refrigerants. Through two design and testing iterations, UTRC advanced the compressor technology from TRL3 to TRL5. The target application was a 5 Tons of Refrigeration (TR) capacity Roof-Top Unit (RTU), although this technology may be applied to other low-capacity systems such as residential. The prototype unit met all design goals at the ARI-A rating condition and requires high efficiency motor to meet high performance targets at the ARI-B condition. This technology may be used in high efficiency units and with seasonal energy efficiency rating (SEER)more » exceeding 20. A preliminary cost analysis estimated that there would be less than $25/kbtuh cost impact to the customer.« less

  19. A white paper: Operational efficiency. New approaches to future propulsion systems

    NASA Technical Reports Server (NTRS)

    Rhodes, Russel; Wong, George

    1991-01-01

    Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.

  20. Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.

    1977-01-01

    Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.

  1. Advanced General Aviation Turbine Engine (GATE) concepts

    NASA Technical Reports Server (NTRS)

    Lays, E. J.; Murray, G. L.

    1979-01-01

    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.

  2. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimallymore » distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.« less

  3. Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs with TracePro opto-mechanical design software

    NASA Astrophysics Data System (ADS)

    Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda

    2009-02-01

    The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.

  4. Optimal nonimaging integrated evacuated solar collector

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  5. Airfoil optimization by the one-shot method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1994-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  6. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    PubMed

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  7. Caring for people efficiently.

    PubMed

    Hughes, D

    1993-09-01

    The UK government's plans and objectives for community care in the 1990s are examined. The objective of providing care in the community 'wherever possible' is unlikely to be efficient unless the costs and benefits of providing such care are accounted for. Even if it were efficient to provide more care in the community, the mechanisms aimed at ensuring the transfer of funds have been inadequate in terms of encouraging such an objective. These same principles (i.e. the need to assess costs and benefits) should be applied to the design of individual packages of care in the community, when the costs and benefits of carers' time become more important. Case management offers the opportunity to assess individual circumstances which is necessary for the design of efficient packages of care. However, case management is likely to suffer from the problems of fragmentation which makes organisation of flexible packages of care difficult.

  8. Summary and evaluation of the conceptual design study of a potential early commercial MHD power plant (CSPEC)

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.; Penko, P. F.

    1982-01-01

    The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.

  9. 76 FR 9696 - Equipment Price Forecasting in Energy Conservation Standards Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... for particular efficiency design options, an empirical experience curve fit to the available data may be used to forecast future costs of such design option technologies. If a statistical evaluation indicates a low level of confidence in estimates of the design option cost trend, this method should not be...

  10. Elements of Effective E-Learning Design

    ERIC Educational Resources Information Center

    Brown, Andrew R.; Voltz, Bradley D.

    2005-01-01

    Preparing and developing e-learning materials is a costly and time consuming enterprise. This paper highlights the elements of effective design that we consider assist in the development of high quality materials in a cost efficient way. We introduce six elements of design and discuss each in some detail. These elements focus on paying attention…

  11. An estimating rule for deep space station control room equipment energy costs

    NASA Technical Reports Server (NTRS)

    Younger, H. C.

    1980-01-01

    A rule is described which can be used to estimate power costs for new equipment under development, helping to reduce life-cycle costs and energy consumption by justifying design alternatives that are more costly, but more efficient.

  12. Methodology for the optimal design of an integrated first and second generation ethanol production plant combined with power cogeneration.

    PubMed

    Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François

    2016-08-01

    The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Aerodynamic design and optimization in one shot

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo; Kuruvila, G.; Salas, M. D.

    1992-01-01

    This paper describes an efficient numerical approach for the design and optimization of aerodynamic bodies. As in classical optimal control methods, the present approach introduces a cost function and a costate variable (Lagrange multiplier) in order to achieve a minimum. High efficiency is achieved by using a multigrid technique to solve for all the unknowns simultaneously, but restricting work on a design variable only to grids on which their changes produce nonsmooth perturbations. Thus, the effort required to evaluate design variables that have nonlocal effects on the solution is confined to the coarse grids. However, if a variable has a nonsmooth local effect on the solution in some neighborhood, it is relaxed in that neighborhood on finer grids. The cost of solving the optimal control problem is shown to be approximately two to three times the cost of the equivalent analysis problem. Examples are presented to illustrate the application of the method to aerodynamic design and constraint optimization.

  14. Design and Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with Agent-Based Modeling.

    PubMed

    Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T

    2016-04-22

    Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment.

  15. Design and Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with Agent-Based Modeling

    PubMed Central

    Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T.

    2016-01-01

    Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment. PMID:27110790

  16. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  17. The OFP-6M transport jet

    NASA Technical Reports Server (NTRS)

    Alexander, Kelly; Heneghan, Brian; Holmes, Joules; Hughes, Bret; Kettering, Mark; Wells, Jennifer; Whelan, Todd

    1994-01-01

    This report presents a preliminary design of a commercial jet transport that meets the criteria of the Request For Proposal presented by the American Institute of Aeronautics and Astronauts (AIAA). The proposal requires an innovative design of a low cost domestic commercial transport that will reduce operating costs for airline companies while still meeting present and future requirements of the Federal Aviation Regulations for this type of aircraft. Specifications for the design include a mixed class, 153 passenger aircraft, traveling a range of 3000 nm. The intent of the project is to identify factors that reduce cost and to design within the limits of these constraints. The project includes techniques or options that incorporate new technologies but do not override practicality, alternative design approaches, and a comparison between the new design and current aircraft in its class. The OFP-6M is an alternative design approach to the conventional commercial transport jet and is geared towards customer satisfaction through efficiency and reliability. The goals of the OFP-6M transport design are to provide original, sensible, and practical solutions by combining essential preliminary design factors with growing technology. The design focus of the OFP-6M reduces costs by simplifying systems where significant weight or maintenance savings can be achieved, and by integrating advanced technology for improved performance. Key aspects of the OFP-6M design are efficient use of materials like composites, and efficient advanced ducted high bypass turbofan engines. The high bypass engines lower fuel consumption and aid in reducing costs and meeting future noise emission restrictions. Composites are used for most structural components, including flooring and wing box. Although composites are an emerging technology and presently, a high maintenance material, they can be cost effective and an alternative to aluminum structures when correct manufacturing and design strategies are applied. Since, composites are lighter and require less manufacturing of complex parts, they can significantly reduce structural weight. Because of the large 17 ft. diameter, sophisticated aerodynamic considerations were implemented to significantly lower the drag. Supercritical airfoils were chosen with simple control surface design which allows for less maintenance and manufacturing costs. The interior configuration accommodates either all passenger, dual and single class flights or complete cargo. Also, a relaxed conventional stability is integrated with a stability augmentation system. As a result of these design implementations, the OFP-6M bottom line direct operating costs, compare favorably with the Boeing 737 and 757, at 3.49 cents per available seat mile and costs are expected to reduce when improved manufacturing and maintenance methods are implemented.

  18. Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Scholz, A. L.; Hart, M. T.; Lowry, D. J.

    1987-01-01

    Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.

  19. Industry survey of space system cost benefits from New Ways Of Doing Business

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1992-01-01

    The cost of designing, building and operating space system hardware has always been expensive. Small quantities of specialty parts escalate engineering design, production and operations cost. Funding cutbacks and shrinking revenues dictate aggressive cost saving programs. NASA's highest priority is providing economical transportation to and from space. Over the past three decades NASA has seen technological advances that provide grater efficiencies in designing, building, and operating of space system hardware. As future programs such as NLS, LUTE and SEI begin, these greater efficiencies and cost savings should be reflected in the cost models. There are several New Ways Of Doing Business (NWODB) which, when fully implemented will reduce space system costs. These philosophies and/or culture changes are integrated in five areas: (1) More Extensive Pre-Phase C/D & E, (2) Multi Year Funding Stability, (3) Improved Quality, Management and Procurement Processes, (4) Advanced Design Methods, and (5) Advanced Production Methods. Following is an overview of NWODB and the Cost Quantification Analysis results using an industry survey, one of the four quantification techniques used in the study. The NWODB Cost Quantification Analysis is a study performed at Marshall Space Flight Center by the Engineering Cost Group, Applied Research Incorporated and Pittsburg State University. This study took place over a period of four months in mid 1992. The purpose of the study was to identify potential NWODB which could lead to improved cost effectiveness within NASA and to quantify potential cost benefits that might accrue if these NWODB were implemented.

  20. 30% CPV Module Milestone

    NASA Astrophysics Data System (ADS)

    Gordon, Robert; Kinsey, Geoff; Nayaak, Adi; Garboushian, Vahan

    2010-10-01

    Concentrating Photovoltaics has held out the promise of low cost solar electricity for now several decades. Steady progress towards this goal in the 80's and 90's gradually produced more efficient and reliable systems. System efficiency is regarded as the largest factor in lowering the electricity cost and the relatively recent advent of the terrestrial multi-junction solar cell has pressed this race forward dramatically. CPV systems are now exhibiting impressive AC field efficiencies of 25% and more, approximately twice that of the best flat plate systems available today. Amonix inc. has just tested their latest generation multi-junction module design, achieving over 31% DC efficiency at near PVUSA test conditions. Inculcating this design into their next MegaModule is forthcoming, but the expected AC system field efficiency should be significantly higher than current 25% levels.

  1. New Buildings Design | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    over a building's lifetime, energy efficiency represents the lowest cost strategy for reducing energy (ft2*yr) to $16/ft2*yr. This means that if you are designing a new 100,000-ft2 building, it could cost as much as $1.6 million per year to operate. Given this baseline, life cycle cost calculations are

  2. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  3. Corps of Engineers’ Acquisition of Fish Hatchery Proves Costly.

    DTIC Science & Technology

    1981-09-18

    location, size, esti- mated cost, design , and construction timetables for facilities needed to meet the steelhead production requirements. To limit...hatchery "* * * is not recognized to be one of the more efficient and productive facilities in Idaho due to obvious con- straints in design , construction...agency’s decision to supply the product or service it- self because it would cost less must be supported by a comparativ , cost analysis. According to Corps

  4. Design and cost drivers in 2-D braiding

    NASA Technical Reports Server (NTRS)

    Morales, Alberto

    1993-01-01

    Fundamentally, the braiding process is a highly efficient, low cost method for combining single yarns into circumferential shapes, as evidenced by the number of applications for continuous sleeving. However, this braiding approach cannot fully demonstrate that it can drastically reduce the cost of complex shape structural preforms. Factors such as part geometry, machine design and configuration, materials used, and operating parameters are described as key cost drivers and what is needed to minimize their effect on elevating the cost of structural braided preforms.

  5. Design-Build in Public School Construction: A Post Hearing Briefing. A Report of the Joint Legislative Audit Committee.

    ERIC Educational Resources Information Center

    California State Legislature, Sacramento. Joint Legislative Audit Committee.

    The California legislature's Joint Legislative Audit Committee has issued a report on the design-build versus the design-bid-build process and offers a hybrid approach combining the two systems as a way of achieving the greatest cost efficiency at the least risk on public agencies. The cost benefits of faster delivery of the design-build method…

  6. Designing an activity-based costing model for a non-admitted prisoner healthcare setting.

    PubMed

    Cai, Xiao; Moore, Elizabeth; McNamara, Martin

    2013-09-01

    To design and deliver an activity-based costing model within a non-admitted prisoner healthcare setting. Key phases from the NSW Health clinical redesign methodology were utilised: diagnostic, solution design and implementation. The diagnostic phase utilised a range of strategies to identify issues requiring attention in the development of the costing model. The solution design phase conceptualised distinct 'building blocks' of activity and cost based on the speciality of clinicians providing care. These building blocks enabled the classification of activity and comparisons of costs between similar facilities. The implementation phase validated the model. The project generated an activity-based costing model based on actual activity performed, gained acceptability among clinicians and managers, and provided the basis for ongoing efficiency and benchmarking efforts.

  7. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie E.; Bojda, Nicholas; Ke, Jing

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programsmore » while still saving consumers money?« less

  8. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    NASA Astrophysics Data System (ADS)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell-stack sizing and operating strategy (base-load or load-following and cogeneration or electric-only) are also presented.

  9. Preliminary design study of advanced multistage axial flow core compressors

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Koch, C. C.; Smith, L. H., Jr.

    1977-01-01

    A preliminary design study was conducted to identify an advanced core compressor for use in new high-bypass-ratio turbofan engines to be introduced into commercial service in the 1980's. An evaluation of anticipated compressor and related component 1985 state-of-the-art technology was conducted. A parametric screening study covering a large number of compressor designs was conducted to determine the influence of the major compressor design features on efficiency, weight, cost, blade life, aircraft direct operating cost, and fuel usage. The trends observed in the parametric screening study were used to develop three high-efficiency, high-economic-payoff compressor designs. These three compressors were studied in greater detail to better evaluate their aerodynamic and mechanical feasibility.

  10. Are quantitative trait-dependent sampling designs cost-effective for analysis of rare and common variants?

    PubMed

    Yilmaz, Yildiz E; Bull, Shelley B

    2011-11-29

    Use of trait-dependent sampling designs in whole-genome association studies of sequence data can reduce total sequencing costs with modest losses of statistical efficiency. In a quantitative trait (QT) analysis of data from the Genetic Analysis Workshop 17 mini-exome for unrelated individuals in the Asian subpopulation, we investigate alternative designs that sequence only 50% of the entire cohort. In addition to a simple random sampling design, we consider extreme-phenotype designs that are of increasing interest in genetic association analysis of QTs, especially in studies concerned with the detection of rare genetic variants. We also evaluate a novel sampling design in which all individuals have a nonzero probability of being selected into the sample but in which individuals with extreme phenotypes have a proportionately larger probability. We take differential sampling of individuals with informative trait values into account by inverse probability weighting using standard survey methods which thus generalizes to the source population. In replicate 1 data, we applied the designs in association analysis of Q1 with both rare and common variants in the FLT1 gene, based on knowledge of the generating model. Using all 200 replicate data sets, we similarly analyzed Q1 and Q4 (which is known to be free of association with FLT1) to evaluate relative efficiency, type I error, and power. Simulation study results suggest that the QT-dependent selection designs generally yield greater than 50% relative efficiency compared to using the entire cohort, implying cost-effectiveness of 50% sample selection and worthwhile reduction of sequencing costs.

  11. A comparative cost analysis of insecticide-treated nets and indoor residual spraying in highland Kenya.

    PubMed

    Guyatt, H L; Kinnear, J; Burini, M; Snow, R W

    2002-06-01

    The relative cost of indoor residual house-spraying (IRS) versus insecticide-treated bednets (ITNs) forms part of decisions regarding selective malaria prevention. This paper presents a cost comparison of these two approaches as recently implemented by Merlin, a UK emergency relief organization funded through international donor support and working in the highland districts of Gucha and Kisii in Kenya. The financial costs (cash expenditures) and the economic costs (including the opportunity costs of using existing staff and volunteers, and an annualized cost for capital items) were assessed. The financial cost for IRS was US dollars 0.86 per person protected, compared with 4.21 dollars for ITNs (reducing to 3.42 dollars to the provider assuming cost recovery). The economic cost per person protected for IRS was 0.88 dollars, compared with 2.34 dollars for ITNs. The costs for ITNs were sensitive to the number of nets sold per community group ('efficiency'), as the delivery costs constituted upwards of 40% of the total cost. However, even marked increases in efficiency of these groups could not reduce the costs of ITNs to that comparable with IRS, except if more than one cycle of IRS was needed. The implications of predicted reductions in the cost of insecticide for both IRS and ITNs are also explored. The provision of itemized cost data allows predictions to be made on changes in the design of these programmes. Under almost all design scenarios, IRS would appear to be a more cost-efficient means of vector control in the Kenyan highlands.

  12. Thermodynamic Performance and Cost Optimization of a Novel Hybrid Thermal-Compressed Air Energy Storage System Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz

    Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less

  13. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  14. Probabilistic cost-benefit analysis of disaster risk management in a development context.

    PubMed

    Kull, Daniel; Mechler, Reinhard; Hochrainer-Stigler, Stefan

    2013-07-01

    Limited studies have shown that disaster risk management (DRM) can be cost-efficient in a development context. Cost-benefit analysis (CBA) is an evaluation tool to analyse economic efficiency. This research introduces quantitative, stochastic CBA frameworks and applies them in case studies of flood and drought risk reduction in India and Pakistan, while also incorporating projected climate change impacts. DRM interventions are shown to be economically efficient, with integrated approaches more cost-effective and robust than singular interventions. The paper highlights that CBA can be a useful tool if certain issues are considered properly, including: complexities in estimating risk; data dependency of results; negative effects of interventions; and distributional aspects. The design and process of CBA must take into account specific objectives, available information, resources, and the perceptions and needs of stakeholders as transparently as possible. Intervention design and uncertainties should be qualified through dialogue, indicating that process is as important as numerical results. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  15. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE PAGES

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...

    2017-06-06

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  16. Low cost and high performance GPON, GEPON and RFoG optical network pentaplexer module design using diffractive grating approach

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ju; Chi, Chang-Chia; Tarn, Chen-Wen

    2016-01-01

    A new architecture of a pentaplexer transceiver module which can be used in GPON/GEPON and RFoG triple play optical networks with supporting of the multiple optical wavelengths of 1310 nm, 1490 nm, 1550 nm, 1610 nm, and 1650 nm, is proposed. By using diffractive grating elements combing with market readily available GRIN (Gradient-Index) lens, grating, mirrors, beamsplitter, LDs (Laser Diodes), and PDs (Photodetectors), the proposed design have the advantages of low cost, high efficiency/performance, easy design and manufacturing, over the contemporary triplex transceivers which are made of multilayer filters or waveguides that increase the complexity of manufacturing and reduce the performance efficiency. With the proposed design, a pentaplexer system can accommodate GPON/GEPON, RFoG, and monitoring integration services, total five optical wavelength channels into a hybrid-integrated TO-CAN package platform with sufficient efficiency.

  17. Cost efficient operations for Discovery class missions

    NASA Technical Reports Server (NTRS)

    Cameron, G. E.; Landshof, J. A.; Whitworth, G. W.

    1994-01-01

    The Near Earth Asteroid Rendezvous (NEAR) program at The Johns Hopkins University Applied Physics Laboratory is scheduled to launch the first spacecraft in NASA's Discovery program. The Discovery program is to promote low cost spacecraft design, development, and mission operations for planetary space missions. The authors describe the NEAR mission and discuss the design and development of the NEAR Mission Operations System and the NEAR Ground System with an emphasis on those aspects of the design that are conducive to low-cost operations.

  18. 20 CFR 633.303 - Allowable costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR MIGRANT AND SEASONAL FARMWORKER PROGRAMS Program Design and Administrative Procedures § 633.303 Allowable costs. (a) General. To be allowable, a cost must be necessary and reasonable for proper and efficient administration of the...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This Building America Top Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance against measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.

  20. Innovative manufacturing technologies for low-cost, high efficiency PERC-based PV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelundur, Vijay

    2017-04-19

    The goal this project was to accelerate the deployment of innovative solar cell and module technologies that reduce the cost of PERC-based modules to best-in-class. New module integration technology was to be used to reduce the cost and reliance on conventional silver bus bar pastes and enhance cell efficiency. On the cell manufacturing front, the cost of PERC solar cells was to be reduced by introducing advanced metallization approaches to increase cell efficiency. These advancements will be combined with process optimization to target cell efficiencies in the range of 21 to 21.5%. This project will also explore the viability ofmore » a bifacial PERC solar cell design to enable cost savings through the use of thin silicon wafers. This project was terminated on 4/30/17 after four months of activity due financial challenges facing the recipient.« less

  1. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  2. An experimental strategy validated to design cost-effective culture media based on response surface methodology.

    PubMed

    Navarrete-Bolaños, J L; Téllez-Martínez, M G; Miranda-López, R; Jiménez-Islas, H

    2017-07-03

    For any fermentation process, the production cost depends on several factors, such as the genetics of the microorganism, the process condition, and the culture medium composition. In this work, a guideline for the design of cost-efficient culture media using a sequential approach based on response surface methodology is described. The procedure was applied to analyze and optimize a culture medium of registered trademark and a base culture medium obtained as a result of the screening analysis from different culture media used to grow the same strain according to the literature. During the experiments, the procedure quantitatively identified an appropriate array of micronutrients to obtain a significant yield and find a minimum number of culture medium ingredients without limiting the process efficiency. The resultant culture medium showed an efficiency that compares favorably with the registered trademark medium at a 95% lower cost as well as reduced the number of ingredients in the base culture medium by 60% without limiting the process efficiency. These results demonstrated that, aside from satisfying the qualitative requirements, an optimum quantity of each constituent is needed to obtain a cost-effective culture medium. Study process variables for optimized culture medium and scaling-up production for the optimal values are desirable.

  3. Efficiency Study of NLS Base-Year Design. RTI-22U-884-3.

    ERIC Educational Resources Information Center

    Moore, R. P.; And Others

    An efficiency study was conducted of the base year design used for the National Longitudinal Study of the High School Class of 1972 (NLS). Finding the optimal design involved a search for the numbers of sample schools and students that would maximize the variance at a given cost. Twenty-one variables describing students' plans, attitudes,…

  4. Preliminary engineering analysis for clothes washers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biermayer, Peter J.

    1996-10-01

    The Engineering Analysis provides information on efficiencies, manufacturer costs, and other characteristics of the appliance class being analyzed. For clothes washers, there are two classes: standard and compact. Since data were not available to analyze the compact class, only clothes washers were analyzed in this report. For this analysis, individual design options were combined and ordered in a manner that resulted in the lowest cumulative cost/savings ratio. The cost/savings ratio is the increase in manufacturer cost for a design option divided by the reduction in operating costs due to fuel and water savings.

  5. Pulsed Power Design for a Small Repetitively Pulsed Electron Beam Pumped KrF Laser

    DTIC Science & Technology

    2003-06-01

    fusion energy (IFE) requirements for rep-rate, efficiency, durability and cost. We have designed a pulsed power system for the pre-amplifier in the Electra...new advanced pulsed power topology that can meet the fusion energy requirements for durability, repetition rate, and cost. The pulsed power will first

  6. Recent developments in BWR fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, S.P.; Noble, L.D.; Wood, J.E.

    1991-11-01

    Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less

  7. Central coast designs: The Eightball Express. Taking off with convention, cruising with improvements and landing with absolute success

    NASA Technical Reports Server (NTRS)

    Davis, Ryan Edwin; Dawson, Anne Marie; Fecht, Paul Hans; Fry, Roman Zyabash; Vantriet, Robert; Macabantad, Dominique Dujale; Miller, Robert Glenn; Perez, Gustavo, Jr.; Weise, Timothy Michael

    1994-01-01

    The airline industry is very competitive, resulting in most U.S. and many international airlines being unprofitable. Because of this competition the airlines have been engaging in fare wars (which reduce revenue generated by transporting passengers) while inflation has increased. This situation of course is not developing revenue for the airlines. To revive the airlines to profitability, the difference between revenue received and airline operational cost must be improved. To solve these extreme conditions, the Eightball Express was designed with the main philosophy of developing an aircraft with a low direct operating cost and acquisition cost. Central Coast Designs' (CCD) aircraft utilizes primarily aluminum in the structure to minimize manufacturing cost, supercritical airfoil sections to minimize drag, and fuel efficient engines to minimize fuel burn. Furthermore, the aircraft was designed using Total Quality Management and Integrated Product Development to minimize development and manufacturing costs. Using these primary cost reduction techniques, the Eightball Express was designed to meet the Lockheed/AIAA Request for Proposal (RFP) requirements of a low cost, 153 passenger, 3000 nm. range transport. The Eightball Express is able to takeoff on less than a 7000 ft. runway, cruise at Mach 0.82 at an altitude of 36,000 ft. for a range of 3,000 nm., and lands on a 5,000 ft. runway. lt is able to perform this mission at a direct operating cost of 3.51 cents/available seat mile in 1992 dollars while the acquisition cost is only $28 million in 1992 dollars. By utilizing and improving on proven technologies, CCD has produced an efficient low cost commercial transport for the future.

  8. SNL/CA Facilities Management Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabb, David; Clark, Eva

    2014-12-01

    At Sandia National Laboratories in California (SNL/CA), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/CA applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safetymore » and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule.« less

  9. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  10. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  11. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  12. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  13. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO 2 Recompression Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Shaun D.; Kesseli, James; Nash, James

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO 2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 .more » Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kW th cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO 2 receiver for a sCO 2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.« less

  14. Roots Air Management System with Integrated Expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stretch, Dale; Wright, Brad; Fortini, Matt

    2016-07-06

    PEM fuel cells remain an emerging technology in the vehicle market with several cost and reliability challenges that must be overcome in order to increase market penetration and acceptance. The DOE has identified the lack of a cost effective, reliable, and efficient air supply system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of the major technological barriers that must be overcome. This project leveraged Roots positive displacement development advancements and demonstrated an efficient and low cost fuel cell air management system. Eaton built upon its P-Series Roots positive displacement design and shifted themore » peak efficiency making it ideal for use on an 80kW PEM stack. Advantages to this solution include: • Lower speed of the Roots device eliminates complex air bearings present on other systems. • Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel economy. • Core Roots technology has been developed and validated for other transportation applications. Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this application. The TVS delivers more power and better fuel economy in a smaller package as compared to other supercharger technologies. By properly matching the helix angle with the rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating range where it is most beneficial for the application. The compressor was designed to meet the 90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340. A net shape plastic expander housing with integrated motor and compressor was developed to significantly reduce the cost of the system. This integrated design reduced part count by incorporating an overhung expander and motor rotors into the design such that only four bearings and two shafts were utilized.« less

  15. Cost studies for commercial fuselage crown designs

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Smith, P. J.; Truslove, G.; Willden, K. S.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Studies were conducted to evaluate the cost and weight potential of advanced composite design concepts in the crown region of a commercial transport. Two designs from each of three design families were developed using an integrated design-build team. A range of design concepts and manufacturing processes were included to allow isolation and comparison of cost centers. Detailed manufacturing/assembly plans were developed as the basis for cost estimates. Each of the six designs was found to have advantages over the 1995 aluminum benchmark in cost and weight trade studies. Large quadrant panels and cobonded frames were found to save significant assembly labor costs. Comparisons of high- and intermediate-performance fiber systems were made for skin and stringer applications. Advanced tow placement was found to be an efficient process for skin lay up. Further analysis revealed attractive processes for stringers and frames. Optimized designs were informally developed for each design family, combining the most attractive concepts and processes within that family. A single optimized design was selected as the most promising, and the potential for further optimization was estimated. Technical issues and barriers were identified.

  16. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  17. The admissible portfolio selection problem with transaction costs and an improved PSO algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhang, Wei-Guo

    2010-05-01

    In this paper, we discuss the portfolio selection problem with transaction costs under the assumption that there exist admissible errors on expected returns and risks of assets. We propose a new admissible efficient portfolio selection model and design an improved particle swarm optimization (PSO) algorithm because traditional optimization algorithms fail to work efficiently for our proposed problem. Finally, we offer a numerical example to illustrate the proposed effective approaches and compare the admissible portfolio efficient frontiers under different constraints.

  18. High Efficiency Solar Integrated Roof Membrane Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  19. Arrow 227: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy

    1992-01-01

    The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.

  20. Design and operation of interconnectors for solid oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Winkler, W.; Koeppen, J.

    Highly efficient combined cycles with solid oxide fuel cell (SOFC) need an integrated heat exchanger in the stack to reach efficiencies of about 80%. The stack costs must be lower than 1000 DM/kW. A newly developed welded metallic (Haynes HA 230) interconnector with a free stretching planar SOFC and an integrated heat exchanger was tested in thermal cycling operation. The design allowed a cycling of the SOFC without mechanical damage of the electrolyte in several tests. However, more tests and a further design optimization will be necessary. These results could indicate that commercial high-temperature alloys can be used as interconnector material in order to fullfil the cost requirements.

  1. Performance of a low cost interdigitated flow design on a 1 kW class all vanadium mixed acid redox flow battery

    NASA Astrophysics Data System (ADS)

    Reed, David; Thomsen, Edwin; Li, Bin; Wang, Wei; Nie, Zimin; Koeppel, Brian; Sprenkle, Vincent

    2016-02-01

    Three flow designs were operated in a 3-cell 1 kW class all vanadium mixed acid redox flow battery. The influence of electrode surface area and flow rate on the coulombic, voltage, and energy efficiency and the pressure drop in the flow circuit will be discussed and correlated to the flow design. Material cost associated with each flow design will also be discussed.

  2. Air Brayton Solar Receiver, phase 1

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1979-01-01

    A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.

  3. Space Biology Initiative. Trade Studies, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The six studies which are the subjects of this report are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves as a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.

  4. Space Biology Initiative. Trade Studies, volume 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The six studies which are addressed are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves has a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.

  5. Insulated Concrete Homes Increase Durability and Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2001-05-01

    New houses designed by Mercedes Homes in Melbourne, Florida, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.

  6. Case Studies in the Field of Marketing Education: Learner Impact, Case Performance, and Cost Efficiency

    ERIC Educational Resources Information Center

    Spais, George S.

    2005-01-01

    The major objective of this study is to identify a methodology that will help educators in marketing to efficiently manage the design, impact, and cost of case studies. It is my intention is to examine the impact of case study characteristics in relation to the degree of learner involvement in the learning process. The author proposes that…

  7. Research possibilities? No! Needs for research to make PV solar energy utilization broadly competitive

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1982-01-01

    The historical progression of efficiency improvements, cost reductions, and performance improvements in modules and photovoltaic systems are described. The potential for future improvements in photovoltaic device efficiencies and cost reductions continues as device concepts, designs, processes, and automated production capabilities mature. Additional step-function improvements can be made as today's simpler devices are replaced by more sophisticated devices.

  8. Operationally Efficient Propulsion System Study (OEPSS) data book. Executive summary

    NASA Technical Reports Server (NTRS)

    Wong, George S.

    1990-01-01

    The study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. Summarized here are the salient results of the first year. A synopsis of each volume listed above is presented.

  9. Space Station - An integrated approach to operational logistics support

    NASA Technical Reports Server (NTRS)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  10. Artificial cells: prospects for biotechnology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Deamer, David

    2002-01-01

    A variety of techniques can now be used to alter the genome of a cell. Although these techniques are very powerful, they have limitations related to cost and efficiency of scale. Artificial cells designed for specific applications combine properties of biological systems such as nanoscale efficiency, self-organization and adaptability at relatively low cost. Individual components needed for such structures have already been developed, and now the main challenge is to integrate them in functional microscopic compartments. It will then become possible to design and construct communities of artificial cells that can perform different tasks related to therapeutic and diagnostic applications.

  11. Artificial Cells: Prospects for Biotechnology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Deamer, David; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A variety of techniques can now be used to alter the genome of a cell. Although these techniques are very powerful, they also have limitations related to cost and efficiency of scale. Artificial cells designed for specific applications combine properties of biological systems such as nano-scale efficiency, self-organization and adaptability at relatively low cost. Individual components needed for such structures have already been developed, and now the main challenge is to integrate them in functional microscopic compartments. It will then become possible to design and construct communities of artificial cells that can perform different tasks related to therapeutic and diagnostic applications.

  12. Design and analysis issues for economic analysis alongside clinical trials.

    PubMed

    Marshall, Deborah A; Hux, Margaret

    2009-07-01

    Clinical trials can offer a valuable and efficient opportunity to collect the health resource use and outcomes data for economic evaluation. However, economic and clinical studies differ fundamentally in the question they seek to answer. The design and analysis of trial-based cost-effectiveness studies require special consideration, which are reviewed in this article. Traditional randomized controlled trials, using an experimental design with a controlled protocol, are designed to measure safety and efficacy for product registration. Cost-effectiveness analysis seeks to measure effectiveness in the context of routine clinical practice, and requires collection of health care resources to allow estimation of cost over an equal timeframe for each treatment alternative. In assessing suitability of a trial for economic data collection, the comparator treatment and other protocol factors need to reflect current clinical practice and the trial follow-up must be sufficiently long to capture important costs and effects. The broadest available population and a measure of effectiveness reflecting important benefits for patients are preferred for economic analyses. Special analytical issues include dealing with missing and censored cost data, assessing uncertainty of the incremental cost-effectiveness ratio, and accounting for the underlying heterogeneity in patient subgroups. Careful consideration also needs to be given to data from multinational studies since practice patterns can differ across countries. Although clinical trials can be an efficient opportunity to collect data for economic evaluation, careful consideration of the suitability of the study design, and appropriate analytical methods must be applied to obtain rigorous results.

  13. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE PAGES

    Ma, Z.; Mehos, M.; Glatzmaier, G.; ...

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  14. Barriers to Building Energy Efficiency (BEE) promotion: A transaction costs perspective

    NASA Astrophysics Data System (ADS)

    Qian Kun, Queena

    Worldwide, buildings account for a surprisingly high 40% of global energy consumption, and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Large and attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This thesis analyzes the concerns of the market stakeholders, mainly real estate developers and end-users, in terms of transaction costs as they make decisions about investing in Building Energy Efficiency (BEE). It provides a detailed analysis of the current situation and future prospects for BEE adoption by the market's stakeholders. It delineates the market and lays out the economic and institutional barriers to the large-scale deployment of energy-efficient building techniques. The aim of this research is to investigate the barriers raised by transaction costs that hinder market stakeholders from investing in BEES. It explains interactions among stakeholders in general and in the specific case of Hong Kong as they consider transaction costs. It focuses on the influence of transaction costs on the decision-making of the stakeholders during the entire process of real estate development. The objectives are: 1) To establish an analytical framework for understanding the barriers to BEE investment with consideration of transaction costs; 2) To build a theoretical game model of decision making among the BEE market stakeholders; 3) To study the empirical data from questionnaire surveys of building designers and from focused interviews with real estate developers in Hong Kong; 4) To triangulate the study's empirical findings with those of the theoretical model and analytical framework. The study shows that a coherent institutional framework needs to be established to ensure that the design and implementation of BEE policies acknowledge the concerns of market stakeholders by taking transaction costs into consideration. Regulatory and incentive options should be integrated into BEE policies to minimize efficiency gaps and to realize a sizeable increase in the number of energy-efficient buildings in the next decades. Specifically, the analysis shows that a thorough understanding of the transaction costs borne by particular stakeholders could improve the energy efficiency of buildings, even without improvements in currently available technology.

  15. Development of an economic solar heating system with cost efficient flat plate collectors

    NASA Astrophysics Data System (ADS)

    Eder-Milchgeisser, W.; Burkart, R.

    1980-10-01

    Mass produced flat plate solar collectors were worked into the design of a system for heating a swimming pool and/or providing domestic hot water. The collector characteristics, including physical and mechanical data as well as theoretical energy conversion efficiency, are presented. The collector was tested and service life efficiency was determined. The mounting of the collector, depending on roof type, is explained. Both in service and laboratory test results demonstrate the cost effectiveness of the system. Further improvement of efficiency is envisaged with automatic flow control in the solar collector and hot water circuits.

  16. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  17. Performance of a small annular turbojet combustor designed for low cost

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1972-01-01

    Performance investigations were conducted on a combustor utilizing several cost-reducing innovations and designed for use in a low-cost 4448-N thrust turbojet engine for commercial light aircraft. Low-cost features included simple, air-atomizing fuel injectors; combustor liners of perforated sheet; and the use of inexpensive type 304 stainless-steel material. Combustion efficiencies at the cruise and sea-level-takeoff design points were approximately 97 and 98 percent, respectively. The combustor isothermal pressure loss was 6.3 percent at the cruise-condition diffuser inlet Mach number of 0.34. The combustor exit temperature pattern factor was less than 0.24 at both the cruise and sea-level-takeoff design points. The combustor exit average radial temperature profiles at all conditions were in very good agreement with the design profile.

  18. Resilience-based optimal design of water distribution network

    NASA Astrophysics Data System (ADS)

    Suribabu, C. R.

    2017-11-01

    Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.

  19. Efficiency Considerations in Low Pressure Turbines

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Issues & Topics Discussed: a) Aviation Week reported shortfall In LPT efficiency due to the application of "high lift airfoils". b) Progress in the design technologies in LPTs during the last 20 years: 1) Application of RANS based CFD codes. 2) Integration of recent experimental data and modeling of LPT airfoil specific flows into design methods. c) Opportunities to further enhance LPT efficiency for commercial aviation and military transport application and to impact emissions, noise, weight & cost.

  20. Sludge digestion instead of aerobic stabilisation - a cost benefit analysis based on experiences in Germany.

    PubMed

    Gretzschel, Oliver; Schmitt, Theo G; Hansen, Joachim; Siekmann, Klaus; Jakob, Jürgen

    2014-01-01

    As a consequence of a worldwide increase of energy costs, the efficient use of sewage sludge as a renewable energy resource must be considered, even for smaller wastewater treatment plants (WWTPs) with design capacities between 10,000 and 50,000 population equivalent (PE). To find the lower limit for an economical conversion of an aerobic stabilisation plant into an anaerobic stabilisation plant, we derived cost functions for specific capital costs and operating cost savings. With these tools, it is possible to evaluate if it would be promising to further investigate refitting aerobic plants into plants that produce biogas. By comparing capital costs with operation cost savings, a break-even point for process conversion could be determined. The break-even point varies depending on project specific constraints and assumptions related to future energy and operation costs and variable interest rates. A 5% increase of energy and operation costs leads to a cost efficient conversion for plants above 7,500 PE. A conversion of WWTPs results in different positive effects on energy generation and plant operations: increased efficiency, energy savings, and on-site renewable power generation by digester gas which can be used in the plant. Also, the optimisation of energy efficiency results in a reduction of primary energy consumption.

  1. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.

  2. Design, processing and testing of LSI arrays hybrid microelectronics task

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.; Stuhlbarg, S. M.; Salmassy, S.

    1978-01-01

    Those factors affecting the cost of electronic subsystems utilizing LSI microcircuits were determined and the most efficient methods for low cost packaging of LSI devices as a function of density and reliability were developed.

  3. GRIN planar waveguide concentrator used with a single axis tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

  4. GRIN planar waveguide concentrator used with a single axis tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray’s path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

  5. Near Zero Energy House (NZEH) Design Optimization to Improve Life Cycle Cost Performance Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.

    2018-03-01

    Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.

  6. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high efficiency propeller driven aircraft of non-U.S. manufacture. During the past year, an aircraft was designed with ranges of up to 1500 nautical miles and passenger loads between 50 and 90. Special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Several designs are presented which place a high premium on design innovation.

  7. Advanced Lubrication for Energy Efficiency, Durability and Lower Maintenance Costs of Advanced Naval Components and Systems

    DTIC Science & Technology

    2010-08-20

    for transmitting the required power and torque. The proper gear set has also been sized to insure life expectancy of the test rig. The shaft design ...these at minimal cost and great environmental safety. These materials specifically designed on antiwear and extreme pressure chemistries can...nanolubricant additives are designed as surface-stabilized nanomaterials that are dispersed in a hydrocarbon medium for maximum effectiveness. This

  8. Benefit design innovations: implications for consumer-directed health care.

    PubMed

    Tu, Ha T; Ginsburg, Paul B

    2007-02-01

    Current health insurance benefit designs that simply rely on higher, one-size-fits-all patient cost sharing have limited potential to curb rapidly rising costs, but innovations in benefit design can potentially make cost sharing a more effective tool, according to a new study by the Center for Studying Health System Change (HSC). Innovative benefit designs include incentives to encourage healthy behaviors; incentives that vary by service type, patient condition or enrollee income; and incentives to use efficient providers. But most applications of these innovative designs are not widespread, suggesting that any significant cost impact is many years off. Moreover, regulations governing high-deductible, consumer-directed health plans eligible for health savings accounts (HSAs) preclude some promising benefit design innovations and dilute the incentives in others. A movement away from a one-size-fits-all HSA benefit structure toward a more flexible design might broaden the appeal of HSA plans and enable them to incorporate features that promote cost-effective care.

  9. Design criteria monograph for pressurized metal cases

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Organiation and presentation of data pertaining to design of solid propellant rocket engine cases are discussed. Design criteria are presented in form of monograph based on accumulated experience and knowledge. Improvements in reliability, cost effectiveness, and engine efficiency are stressed.

  10. Energy & Cost Savings | Efficient Windows Collaborative

    Science.gov Websites

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  11. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied to any system utilizing the novel battery-ultracapacitor energy storage system and is not limited in application to only fuel cell vehicles. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter.

  12. Energy-efficient ovens for unpolluted balady bread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadalla, M.A.; Mansour, M.S.; Mahdy, E.

    A new bread oven has been developed, tested and presented in this work for local balady bread. The design has the advantage of being efficient and producing unpolluted bread. An extensive study of the conventional and available designs has been carried out in order to help developing the new design. Evaluation of the conventional design is based on numerous tests and measurements. A computer code utilizing the indirect method has been developed to evaluate the thermal performance of the tested ovens. The present design achieves higher thermal efficiency of about 50% than the conventional ones. In addition, its capital costmore » is much cheaper than other imported designs. Thus, the present design achieves higher efficiency, pollutant free products and less cost. Moreover, it may be modified for different types of bread baking systems.« less

  13. Using stated preference methods to design cost-effective subsidy programs to induce technology adoption: an application to a stove program in southern Chile.

    PubMed

    Gómez, Walter; Salgado, Hugo; Vásquez, Felipe; Chávez, Carlos

    2014-01-01

    We study the design of an economic incentive based program - a subsidy - to induce adoption of more efficient technology in a pollution reduction program in southern Chile. Stated preferences methods, contingent valuation (CV), and choice experiment (CE) are used to estimate the probability of adoption and the willingness to share the cost of a new technology by a household. The cost-effectiveness property of different subsidy schemes is explored numerically for different regulatory objectives. Our results suggest that households are willing to participate in voluntary programs and to contribute by paying a share of the cost of adopting more efficient technologies. We find that attributes of the existing and the new technology, beyond the price, are relevant determinant factors of the participation decision and payment. Limited access to credit markets for low income families can be a major barrier for an effective implementation of these types of programs. Variations in the design of the subsidy and on the regulator's objective and constraints can have significant impact on the level and the cost of reduction of aggregate emissions achieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Assessing the shelf life of cost-efficient conservation plans for species at risk across gradients of agricultural land use.

    PubMed

    Robillard, Cassandra M; Kerr, Jeremy T

    2017-08-01

    High costs of land in agricultural regions warrant spatial prioritization approaches to conservation that explicitly consider land prices to produce protected-area networks that accomplish targets efficiently. However, land-use changes in such regions and delays between plan design and implementation may render optimized plans obsolete before implementation occurs. To measure the shelf life of cost-efficient conservation plans, we simulated a land-acquisition and restoration initiative aimed at conserving species at risk in Canada's farmlands. We accounted for observed changes in land-acquisition costs and in agricultural intensity based on censuses of agriculture taken from 1986 to 2011. For each year of data, we mapped costs and areas of conservation priority designated using Marxan. We compared plans to test for changes through time in the arrangement of high-priority sites and in the total cost of each plan. For acquisition costs, we measured the savings from accounting for prices during site selection. Land-acquisition costs and land-use intensity generally rose over time independent of inflation (24-78%), although rates of change were heterogeneous through space and decreased in some areas. Accounting for spatial variation in land price lowered the cost of conservation plans by 1.73-13.9%, decreased the range of costs by 19-82%, and created unique solutions from which to choose. Despite the rise in plan costs over time, the high conservation priority of particular areas remained consistent. Delaying conservation in these critical areas may compromise what optimized conservation plans can achieve. In the case of Canadian farmland, rapid conservation action is cost-effective, even with moderate levels of uncertainty in how to implement restoration goals. © 2016 Society for Conservation Biology.

  15. Analyzing the impact of carbon regulatory mechanisms on supply chain management.

    DOT National Transportation Integrated Search

    2014-07-01

    The objective of this research is developing a toolset for designing and managing cost : efficient and environmentally friendly supply chains for perishable products. : The models we propose minimize transportation and inventory holding costs in the ...

  16. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Schirber, B. Schoenbauer

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high-performance water heaters difficult to justify economically. However, recent advancements in high-performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high-efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands.

  17. Wastewater Management Study for Cleveland-Akron and Three Rivers Watershed Areas, 1970. Appendix III. Municipal Wastewater and Stormwater Runoff.

    DTIC Science & Technology

    1973-08-01

    average to peak flows. Cost estimates include provision of diesel-electric standby power generation. Sewage pumping stations are generally designed for a...20 year design period. The pumping station power costs have been based on a pump efficiency of 75%, the appropriate pumping head, and a power cost of...considered by the project evaluators. Table E4 shows both the total power generating capacity of the station as well as that which is normally available

  18. Well-Designed Wholesale Electricity Markets Support System Flexibility |

    Science.gov Websites

    electricity markets drive efficient solutions to meet reliability needs in a least-cost manner, and they can service (which is typically provided by conventional generators as a part of interconnection through cost variable generation and load (net load) economically and reducing use of regulating reserves-cost

  19. Paying for Itself

    ERIC Educational Resources Information Center

    Wilkinson, Ron

    2009-01-01

    Many schools and universities want the U.S. Green Building Council's LEED certification for their facilities, but they are concerned about cost. This certification is tangible evidence that a facility is designed to conserve resources and use energy more efficiently. "Low-cost/no-cost" upgrades can be worked into a capital plan that provides a 3-…

  20. The Blue Emu

    NASA Technical Reports Server (NTRS)

    Descalzi, Doug; Gillett, John; Gordon, Carlton; Keener, ED; Novak, Ken; Puente, Laura

    1993-01-01

    The primary goal in designing the Blue Emu was to provide an airline with a cost efficient and profitable means of transporting passengers between the major cities in Aeroworld. The design attacks the market where a demand for inexpensive transportation exists and for this reason the Blue Emu is an attractive investment for any airline. In order to provide a profitable aircraft, special attention was paid to cost and economics. For example, in manufacturing, simplicity was stressed in structural design to reduce construction time and cost. Aerodynamic design employed a tapered wing which reduced the induced drag coefficient while also reducing the weight of the wing. Even the propulsion system was selected with cost effectiveness in mind, yet also to maintain the marketability of the aircraft. Thus, in every aspect of the design, consideration was given to economics and marketability of the final product.

  1. Green Giants.

    ERIC Educational Resources Information Center

    Wright, Michaella; Maine, Bruce

    2001-01-01

    Explains how designing and constructing sustainable, environmentally friendly school buildings does not have to be a costly venture. Provides advice for selecting building materials, developing energy efficiency, and minimizing toxins. Reviews the status of national sustainable design standards. (GR)

  2. Efficiency of U.S. Dialysis Centers: An Updated Examination of Facility Characteristics That Influence Production of Dialysis Treatments

    PubMed Central

    Shreay, Sanatan; Ma, Martin; McCluskey, Jill; Mittelhammer, Ron C; Gitlin, Matthew; Stephens, J Mark

    2014-01-01

    Objective To explore the relative efficiency of dialysis facilities in the United States and identify factors that are associated with efficiency in the production of dialysis treatments. Data Sources/Study Setting Medicare cost report data from 4,343 free-standing dialysis facilities in the United States that offered in-center hemodialysis in 2010. Study Design A cross-sectional, facility-level retrospective database analysis, utilizing data envelopment analysis (DEA) to estimate facility efficiency. Data Collection/Extraction Methods Treatment data and cost and labor inputs of dialysis treatments were obtained from 2010 Medicare Renal Cost Reports. Demographic data were obtained from the 2010 U.S. Census. Principal Findings Only 26.6 percent of facilities were technically efficient. Neither the intensity of market competition nor the profit status of the facility had a significant effect on efficiency. Facilities that were members of large chains were less likely to be efficient. Cost and labor savings due to changes in drug protocols had little effect on overall dialysis center efficiency. Conclusions The majority of free-standing dialysis facilities in the United States were functioning in a technically inefficient manner. As payment systems increasingly employ capitation and bundling provisions, these institutions will need to evaluate their efficiency to remain competitive. PMID:24237043

  3. Transitioning to High Performance Homes: Successes and Lessons Learned From Seven Builders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Kora, Angela R.; Baechler, Michael C.

    2013-03-01

    As homebuyers are becoming increasingly concerned about rising energy costs and the impact of fossil fuels as a major source of greenhouse gases, the returning new home market is beginning to demand energy-efficient and comfortable high-performance homes. In response to this, some innovative builders are gaining market share because they are able to market their homes’ comfort, better indoor air quality, and aesthetics, in addition to energy efficiency. The success and marketability of these high-performance homes is creating a builder demand for house plans and information about how to design, build, and sell their own low-energy homes. To help makemore » these and other builders more successful in the transition to high-performance construction techniques, Pacific Northwest National Laboratory (PNNL) partnered with seven interested builders in the hot humid and mixed humid climates to provide technical and design assistance through two building science firms, Florida Home Energy and Resources Organization (FL HERO) and Calcs-Plus, and a designer that offers a line of stock plans designed specifically for energy efficiency, called Energy Smart Home Plans (ESHP). This report summarizes the findings of research on cost-effective high-performance whole-house solutions, focusing on real-world implementation and challenges and identifying effective solutions. The ensuing sections provide project background, profile each of the builders who participated in the program, and describe their houses’ construction characteristics, key challenges the builders encountered during the construction and transaction process); and present primary lessons learned to be applied to future projects. As a result of this technical assistance, 17 homes have been built featuring climate-appropriate efficient envelopes, ducts in conditioned space, and correctly sized and controlled heating, ventilation, and air-conditioning systems. In addition, most builders intend to integrate high-performance features into most or all their homes in the future. As these seven builders have demonstrated, affordable, high-performance homes are possible, but require attention to detail and flexibility in design to accommodate specific regional geographic or market-driven constraints that can increase cost. With better information regarding how energy-efficiency trade-offs or design choices affect overall home performance, builders can make informed decisions regarding home design and construction to minimize cost without sacrificing performance and energy savings.« less

  4. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Moltenmore » Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler manufacturing. The cost and design goals for the project were met with this task, but the most interesting results had to do with defining the failure modes and looking at a “shakedown analysis” of the combined creep-fatigue failure. A separate task also looked at improving the absorber coatings on the receiver tubes that would improve the efficiency of the receiver. Significant progress was made on developing a novel paint with a high absorptivity that was on par with the current Pyromark, but shows additional potential to be optimized further. Although the coating did not meet the emissivity goals, preliminary testing the new paint shows potential to be much more durable, and potential to improve the receiver efficiency through a higher average absorptivity over the lifetime. Additional coatings were also designed and modeled results meet the project goals, but were not tested. Testing for low cycle fatigue of the full length receiver tubes was designed and constructed, but is still currently undergoing testing. A novel small heliostat was developed through an extensive brainstorming and down select. The concept was then detailed further with inputs from component testing and eventually a full prototype was built and tested. This task met or exceeded the accuracy and structure goals and also beat the cost goal. This provides a significant solar field costs savings for Abengoa that will be developed further to be used in future commercial plants. Ultimately the $0.09/kWhe (real 2009 $) and 6,400 hours goals of the project were met.« less

  5. APPLICATION OF THE 3D MODEL OF RAILWAY VIADUCTS TO COST ESTIMATION AND CONSTRUCTION

    NASA Astrophysics Data System (ADS)

    Fujisawa, Yasuo; Yabuki, Nobuyoshi; Igarashi, Zenichi; Yoshino, Hiroyuki

    Three dimensional models of civil engineering structures are only partially used in either design or construction but not both. Research on integration of design, cost estimation and construction by 3Dmodels has not been heard in civil engineering domain yet. Using continuously a 3D product model of a structure from design to construction through estimation should improve the efficiency and decrease the occurrence of mistakes, hence enhancing the quality. In this research, we investigated the current practices of flow from design to construction, particularly focusing on cost estimation. Then, we identified advantages and issues on utilization of 3D design models to estimation and construction by applying 3D models to an actual railway construction project.

  6. ANL/RBC: A computer code for the analysis of Rankine bottoming cycles, including system cost evaluation and off-design performance

    NASA Technical Reports Server (NTRS)

    Mclennan, G. A.

    1986-01-01

    This report describes, and is a User's Manual for, a computer code (ANL/RBC) which calculates cycle performance for Rankine bottoming cycles extracting heat from a specified source gas stream. The code calculates cycle power and efficiency and the sizes for the heat exchangers, using tabular input of the properties of the cycle working fluid. An option is provided to calculate the costs of system components from user defined input cost functions. These cost functions may be defined in equation form or by numerical tabular data. A variety of functional forms have been included for these functions and they may be combined to create very general cost functions. An optional calculation mode can be used to determine the off-design performance of a system when operated away from the design-point, using the heat exchanger areas calculated for the design-point.

  7. Design of a portable artificial heart drive system based on efficiency analysis.

    PubMed

    Kitamura, T

    1986-11-01

    This paper discusses a computer simulation of a pneumatic portable piston-type artificial heart drive system with a linear d-c-motor. The purpose of the design is to obtain an artificial heart drive system with high efficiency and small dimensions to enhance portability. The design employs two factors contributing the total efficiency of the drive system. First, the dimensions of the pneumatic actuator were optimized under a cost function of the total efficiency. Second, the motor performance was studied in terms of efficiency. More than 50 percent of the input energy of the actuator with practical loads is consumed in the armature circuit in all linear d-c-motors with brushes. An optimal design is: the piston cross-sectional area of 10.5 cm2 cylinder longitudinal length of 10 cm. The total efficiency could be up to 25 percent by improving the gasket to reduce the frictional force.

  8. Design optimization for cost and quality: The robust design approach

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  9. Permanent magnet design for magnetic heat pumps using total cost minimization

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.

    2017-11-01

    The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.

  10. Analysis and Evaluation of Processes and Equipment in Tasks 2 and 4 of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1979-01-01

    To facilitate the task of objectively comparing competing process options, a methodology was needed for the quantitative evaluation of their relative cost effectiveness. Such a methodology was developed and is described, together with three examples for its application. The criterion for the evaluation is the cost of the energy produced by the system. The method permits the evaluation of competing design options for subsystems, based on the differences in cost and efficiency of the subsystems, assuming comparable reliability and service life, or of competing manufacturing process options for such subsystems, which include solar cells or modules. This process option analysis is based on differences in cost, yield, and conversion efficiency contribution of the process steps considered.

  11. Designing for Energy Conservation.

    ERIC Educational Resources Information Center

    Estes, R. C.

    This document is a description of the energy efficient designs for new schools in the Alief Independent School District of Houston, Texas. Exhibit A shows how four major school projects differ from conventional designs. Parameters and designs for heating, ventilating, air conditioning, and lighting are given. Twenty year projected energy costs and…

  12. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    NASA Astrophysics Data System (ADS)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  13. MAN-004 Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Timothy L.

    2014-07-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire protection, mechanical, electrical, telecommunications, and security features is expected to ensure compatibility with planned functional equipment and to facilitate constructability. If portions of the design are subcontracted to specialists, delivery of the finished design documents must not be considered complete until the subcontracted portions are also submitted for review. You must, along with support consultants, perform functional analyses and programming in developing design solutions. These solutions must reflect coordination of the competing functional, budgetary, and physical requirements for the project. During design phases, meetings between you and the SNL/NM Project Team to discuss and resolve design issues are required. These meetings are a normal part of the design process. For specific design-review requirements, see the project-specific Design Criteria. In addition to the design requirements described in this manual, instructive information is provided to explain the sustainable building practice goals for design, construction, operation, and maintenance of SNL/NM facilities. Please notify SNL/NM personnel of design best practices not included in this manual, so they can be incorporated in future updates.« less

  14. Parametric study of prospective early commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    NASA Technical Reports Server (NTRS)

    Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.

    1980-01-01

    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.

  15. Influence of limited heliostat motion onto the efficiency of a solar field

    NASA Astrophysics Data System (ADS)

    Burisch, Michael; Mutuberria, Amaia; Olasolo, David; Villasante, Cristobal

    2016-05-01

    The efficiency of a central receiver solar thermal power plant depends on the ability of the heliostats to reflect the sunlight onto the receiver. Reflecting the sunlight over the course of a year requires the drive system to move the heliostat over a wide range of azimuth and elevation angles, which results to be a challenge in the development of new low cost drive system designs. Reducing this range simplifies the design and would, therefore, enable further cost savings. At the same time, reducing the range would also cause efficiency losses of the solar field, as the heliostats would not be able to reflect the sunlight under all conditions. Analyzing the range of motions required for each heliostat and the flux contribution of each position allows assessing these losses. With the aim of minimizing the losses an optimal range of heliostat motions can be chosen. It is shown that in combination with properly placing each heliostat in the solar field, the efficiency losses due to the limited motion range can be kept low as most of the receiver incident flux results from a small range of heliostat orientations. If such a heliostat design allow for sufficiently high costs saving per heliostat the potential losses can be compensated by adding more heliostats to the field, while still reducing the overall expenses.

  16. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies.

    PubMed

    Li, Dalin; Lewinger, Juan Pablo; Gauderman, William J; Murcray, Cassandra Elizabeth; Conti, David

    2011-12-01

    Variants identified in recent genome-wide association studies based on the common-disease common-variant hypothesis are far from fully explaining the hereditability of complex traits. Rare variants may, in part, explain some of the missing hereditability. Here, we explored the advantage of the extreme phenotype sampling in rare-variant analysis and refined this design framework for future large-scale association studies on quantitative traits. We first proposed a power calculation approach for a likelihood-based analysis method. We then used this approach to demonstrate the potential advantages of extreme phenotype sampling for rare variants. Next, we discussed how this design can influence future sequencing-based association studies from a cost-efficiency (with the phenotyping cost included) perspective. Moreover, we discussed the potential of a two-stage design with the extreme sample as the first stage and the remaining nonextreme subjects as the second stage. We demonstrated that this two-stage design is a cost-efficient alternative to the one-stage cross-sectional design or traditional two-stage design. We then discussed the analysis strategies for this extreme two-stage design and proposed a corresponding design optimization procedure. To address many practical concerns, for example measurement error or phenotypic heterogeneity at the very extremes, we examined an approach in which individuals with very extreme phenotypes are discarded. We demonstrated that even with a substantial proportion of these extreme individuals discarded, an extreme-based sampling can still be more efficient. Finally, we expanded the current analysis and design framework to accommodate the CMC approach where multiple rare-variants in the same gene region are analyzed jointly. © 2011 Wiley Periodicals, Inc.

  17. Using Extreme Phenotype Sampling to Identify the Rare Causal Variants of Quantitative Traits in Association Studies

    PubMed Central

    Li, Dalin; Lewinger, Juan Pablo; Gauderman, William J.; Murcray, Cassandra Elizabeth; Conti, David

    2014-01-01

    Variants identified in recent genome-wide association studies based on the common-disease common-variant hypothesis are far from fully explaining the hereditability of complex traits. Rare variants may, in part, explain some of the missing hereditability. Here, we explored the advantage of the extreme phenotype sampling in rare-variant analysis and refined this design framework for future large-scale association studies on quantitative traits. We first proposed a power calculation approach for a likelihood-based analysis method. We then used this approach to demonstrate the potential advantages of extreme phenotype sampling for rare variants. Next, we discussed how this design can influence future sequencing-based association studies from a cost-efficiency (with the phenotyping cost included) perspective. Moreover, we discussed the potential of a two-stage design with the extreme sample as the first stage and the remaining nonextreme subjects as the second stage. We demonstrated that this two-stage design is a cost-efficient alternative to the one-stage cross-sectional design or traditional two-stage design. We then discussed the analysis strategies for this extreme two-stage design and proposed a corresponding design optimization procedure. To address many practical concerns, for example measurement error or phenotypic heterogeneity at the very extremes, we examined an approach in which individuals with very extreme phenotypes are discarded. We demonstrated that even with a substantial proportion of these extreme individuals discarded, an extreme-based sampling can still be more efficient. Finally, we expanded the current analysis and design framework to accommodate the CMC approach where multiple rare-variants in the same gene region are analyzed jointly. PMID:21922541

  18. X-33/RLV System Health Management/Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Mouyos, William; Wangu, Srimal

    1998-01-01

    To reduce operations costs, Reusable Launch Vehicles (RLVS) must include highly reliable robust subsystems which are designed for simple repair access with a simplified servicing infrastructure, and which incorporate expedited decision-making about faults and anomalies. A key component for the Single Stage To Orbit (SSTO) RLV system used to meet these objectives is System Health Management (SHM). SHM incorporates Vehicle Health Management (VHM), ground processing associated with the vehicle fleet (GVHM), and Ground Infrastructure Health Management (GIHM). The primary objective of SHM is to provide an automated and paperless health decision, maintenance, and logistics system. Sanders, a Lockheed Martin Company, is leading the design, development, and integration of the SHM system for RLV and for X-33 (a sub-scale, sub-orbit Advanced Technology Demonstrator). Many critical technologies are necessary to make SHM (and more specifically VHM) practical, reliable, and cost effective. This paper will present the X-33 SHM design which forms the baseline for the RLV SHM, and it will discuss applications of advanced technologies to future RLVs. In addition, this paper will describe a Virtual Design Environment (VDE) which is being developed for RLV. This VDE will allow for system design engineering, as well as program management teams, to accurately and efficiently evaluate system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions from older technologies to newer ones. The RLV SHM design methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.

  19. Pathways toward a low cost evacuated collector system

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  20. Assessment of design parameters and construction requirements for full depth reclamation projects with cement.

    DOT National Transportation Integrated Search

    2015-02-01

    The ability to efficiently rehabilitate and maintain the State of Vermonts Highway infrastructure in a : cost-effective manner is a daunting task. Historically, pavement overlay treatments were specified : because it was a rapid low cost solution ...

  1. Energy efficient engine: Flight propulsion system preliminary analysis and design

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.

    1980-01-01

    The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.

  2. Development of an innovative solar absorber

    NASA Astrophysics Data System (ADS)

    Goodchild, Gavin

    Solar thermal systems have great potential to replace or reduce the dependence of conventional fossil fuel based heating technologies required for space and water heating. Specifically solar domestic hot water systems can contribute 50-75% of the annual thermal load. To date residential users have been slow to purchase and install systems, primarily due to the large monetary investment required to purchase and install a system. Recent innovations in materials design and manufacturing techniques, offer opportunities for the development of absorber plate designs that have the potential to reduce cost, increase efficiency and reduce payback periods. Consequently, this design study was conducted in conjunction with industrial partners to develop an improved absorber based on roll bond manufacturing that can be produced at reduced cost with comparable or greater thermal efficiency.

  3. Shuttle's 160 hour ground turnaround - A design driver

    NASA Technical Reports Server (NTRS)

    Widick, F.

    1977-01-01

    Turnaround analysis added a new dimension to the Space Program with the advent of the Space Shuttle. The requirement to turn the flight hardware around in 160 working hours from landing to launch was a significant design driver and a useful tool in forcing the integration of flight and ground systems design to permit an efficient ground operation. Although there was concern that time constraints might increase program costs, the result of the analysis was to minimize facility requirements and simplify operations with resultant cost savings.

  4. Designing efficient logging systems for northern hardwoods using equipment production capabilities and costs.

    Treesearch

    R.B. Gardner

    1966-01-01

    Describes a typical logging system used in the Lake and Northeastern States, discusses each step in the operation, and presents a simple method for designing and efficient logging system for such an operation. Points out that a system should always be built around the key piece of equipment, which is usually the skidder. Specific equipment types and their production...

  5. An Evaluation of the Consumer Costs and Benefits of Energy Efficiency Resource Standards

    NASA Astrophysics Data System (ADS)

    Lessans, Mark D.

    Of the modern-day policies designed to encourage energy efficiency, one with a significant potential for impact is that of Energy Efficiency Resource Standards (EERS). EERS policies place the responsibility for meeting an efficiency target on the electric and gas utilities, typically setting requirements for annual reductions in electricity generation or gas distribution to customers as a percentage of sales. To meet these requirements, utilities typically implement demand-side management (DSM) programs, which encourage energy efficiency at the customer level through incentives and educational initiatives. In Maryland, a statewide EERS has provided for programs which save a significant amount of energy, but is ultimately falling short in meeting the targets established by the policy. This study evaluates residential DSM programs offered by Pepco, a utility in Maryland, for cost-effectiveness. However, unlike most literature on the topic, analysis focuses on the costs-benefit from the perspective of the consumer, and not the utility. The results of this study are encouraging: the majority of programs analyzed show that the cost of electricity saved, or levelized cost of saved energy (LCSE), is less expensive than the current retail cost of electricity cost in Maryland. A key goal of this study is to establish a metric for evaluating the consumer cost-effectiveness of participation in energy efficiency programs made available by EERS. In doing so, the benefits of these programs can be effectively marketed to customers, with the hope that participation will increase. By increasing consumer awareness and buy-in, the original goals set out through EERS can be realized and the policies can continue to receive support.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey A. W.; Fu, Ran; Woodhouse, Michael

    This article examines current cost drivers and potential avenues to reduced cost for monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules by constructing a comprehensive bottom-up cost model. For a reference case where sputtering plus batch sulfurization after selenization (SAS) is employed, we compute a manufacturing cost of $69/m2 if the modules are made in the United States at a 1 GW/year production volume. At 14% module efficiency, this corresponds to a manufacturing cost of $0.49/WDC and a minimum sustainable price (MSP) of $0.67/WDC. We estimate that MSP could vary within +/-20% of this value given the range of quoted input prices, andmore » existing variations in module design, manufacturing processes, and manufacturing location. Potential for reduction in manufacturing costs to below $0.40/WDC may be possible if average production module efficiencies can be increased above 17% without increasing $/m2 costs; even lower costs could be achieved if $/m2 costs could be reduced, particularly via innovations in the CIGS deposition process or balance-of-module elements. We present the impact on cost of regional factors, CIGS deposition method, device design, and price fluctuations. One metric of competitiveness-levelized cost of energy (LCOE) -- is also assessed for several U.S. locations and compared to that of standard multi-crystalline silicon (m(c-Si)) and cadmium telluride (CdTe).« less

  7. Estimation of AUC or Partial AUC under Test-Result-Dependent Sampling.

    PubMed

    Wang, Xiaofei; Ma, Junling; George, Stephen; Zhou, Haibo

    2012-01-01

    The area under the ROC curve (AUC) and partial area under the ROC curve (pAUC) are summary measures used to assess the accuracy of a biomarker in discriminating true disease status. The standard sampling approach used in biomarker validation studies is often inefficient and costly, especially when ascertaining the true disease status is costly and invasive. To improve efficiency and reduce the cost of biomarker validation studies, we consider a test-result-dependent sampling (TDS) scheme, in which subject selection for determining the disease state is dependent on the result of a biomarker assay. We first estimate the test-result distribution using data arising from the TDS design. With the estimated empirical test-result distribution, we propose consistent nonparametric estimators for AUC and pAUC and establish the asymptotic properties of the proposed estimators. Simulation studies show that the proposed estimators have good finite sample properties and that the TDS design yields more efficient AUC and pAUC estimates than a simple random sampling (SRS) design. A data example based on an ongoing cancer clinical trial is provided to illustrate the TDS design and the proposed estimators. This work can find broad applications in design and analysis of biomarker validation studies.

  8. A simple and efficient alternative to implementing systematic random sampling in stereological designs without a motorized microscope stage.

    PubMed

    Melvin, Neal R; Poda, Daniel; Sutherland, Robert J

    2007-10-01

    When properly applied, stereology is a very robust and efficient method to quantify a variety of parameters from biological material. A common sampling strategy in stereology is systematic random sampling, which involves choosing a random sampling [corrected] start point outside the structure of interest, and sampling relevant objects at [corrected] sites that are placed at pre-determined, equidistant intervals. This has proven to be a very efficient sampling strategy, and is used widely in stereological designs. At the microscopic level, this is most often achieved through the use of a motorized stage that facilitates the systematic random stepping across the structure of interest. Here, we report a simple, precise and cost-effective software-based alternative to accomplishing systematic random sampling under the microscope. We believe that this approach will facilitate the use of stereological designs that employ systematic random sampling in laboratories that lack the resources to acquire costly, fully automated systems.

  9. Building Operations Efficiencies into NASA's Crew Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration guides NASA's challenging missions of technological innovation and scientific investigation. With the Agency's commitment to complete the International Space Station (ISS) and to retire the Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in mid 2005 to analyze options for a safer, simpler, more cost efficient launch system that could deliver timely human-rated space transportation capabilities. NASA's finite resources yield discoveries with infinite possibilities. As the Agency begins the process of replacing the Shuttle with new launch vehicles destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo systems for maximum operational efficiencies. This mandate is imperative to reduce the $4.5 billion NASA spends on space transportation each year. This paper gives top-level details of how the follow-on Crew Launch Vehicle (CLV) is being designed for reduced lifecycle costs as a primary catalyst for the expansion of future frontiers.

  10. The Langley turbo-prop commuter design: A complete project description

    NASA Technical Reports Server (NTRS)

    Buttram, Greg; Horton, Keith; Keeter, Tim; Millhouse, Paul; Newberry, Kelli; Obyrne, Brian

    1991-01-01

    The primary objective of this project was to propose and prove the possibility of a new, advanced technology commuter aircraft design. Among the specifications were short to medium range capabilities, low seat per mile cost, fuel efficiency, and passenger comfort. Based on market evaluation, we found that the optimum size for new regional aircraft is around 50 passengers; we have designed our aircraft for this capacity. Turboprop engines provide substantial reductions in operating costs due to lower fuel consumption. We have therefore chosen an advanced turboprop engine. Composite materials, while more expensive to purchase and manufacture, result in decreased costs later through weight savings and ease of replacement.

  11. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  12. Robust and Cost-Efficient Communication Based on SNMP in Mobile Networks

    NASA Astrophysics Data System (ADS)

    Ryu, Sang-Hoon; Baik, Doo-Kwon

    A main challenge in the design of this mobile network is the development of dynamic routing protocols that can efficiently find routes between two communicating nodes. Multimedia streaming services are receiving considerable interest in the mobile network business. An entire mobile network may change its point of attachment to the Internet. The mobile network is operated by a basic specification to support network mobility called Network Mobility (NEMO) Basic Support. However, NEMO basic Support mechanism has some problem in continuous communication. In this paper, we propose robust and cost-efficient algorithm. And we simulate proposed method and conclude some remarks.

  13. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    NASA Technical Reports Server (NTRS)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  14. Microbial fuel cells: recent developments in design and materials

    NASA Astrophysics Data System (ADS)

    Bhargavi, G.; Venu, V.; Renganathan, S.

    2018-03-01

    Microbial Fuel Cells (MFCs) are the promising devices which can produce electricity by anaerobic fermentation of organic / inorganic matter from easily metabolized biomass to complex wastewater using microbes as biocatalysts. MFC technology has been found as a potential technology for electricity generation and concomitant wastewater treatment. However, the high cost of the components and low efficiency are barricading the commercialization of MFC when compared with other energy generating systems. The performance of an MFC is largely relying on the reactor design and electrode materials. On the way to improve the efficiency of an MFC, tremendous exercises have been carried out to explore new electrode materials and reactor designs in recent decades. The current review is excogitated to amass the progress in design and electrode materials, which could bolster further investigations on MFCs to improve their performance, mitigate the cost and successful implementation of technology in field applications as well.

  15. Monolithically interconnected silicon-film™ module technology

    NASA Astrophysics Data System (ADS)

    DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.

    1999-03-01

    AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.

  16. View from ... JSAP Spring meeting 2014: Strive for efficiency

    NASA Astrophysics Data System (ADS)

    Horiuchi, Noriaki

    2014-06-01

    A high energy conversion efficiency and a low fabrication cost are required to make the widespread implementation of solar cells attractive. Researchers are striving to enhance cell performance by developing heterojunction techniques, introducing photonic-crystal structures and proposing new device designs.

  17. Designing a low cost bedside workstation for intensive care units.

    PubMed Central

    Michel, A.; Zörb, L.; Dudeck, J.

    1996-01-01

    The paper describes the design and implementation of a software architecture for a low cost bedside workstation for intensive care units. The development is fully integrated into the information infrastructure of the existing hospital information system (HIS) at the University Hospital of Giessen. It provides cost efficient and reliable access for data entry and review from the HIS database from within patient rooms, even in very space limited environments. The architecture further supports automatical data input from medical devices. First results from three different intensive care units are reported. PMID:8947771

  18. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel

    2006-01-01

    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration s (NASA's) challenging missions that expand humanity s boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in mid 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects Office, chartered in October 2005, has been conducting systems engineering studies and business planning over the past few months to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4.5 billion NASA typically spends on space transportation each year. This paper gives top-level information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs.

  19. Design study of a kinematic Stirling engine for dispered solar electric power systems

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The concept evaluation shows that the four cylinder double acting U type Stirling engine with annular regenerators is the most suitable engine type for the 15 kW solar application with respect to design, performance and cost. Results show that near term performance for a metallic Stirling engine is 42% efficiency. Further improved components show an impact on efficiency of the future metallic engine to 45%. Increase of heater temperature, through the introduction of ceramic components, contribute the greatest amount to achieve high efficiency goals. Future ceramic Stirling engines for solar applications show an efficiency of around 50%.

  20. Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation.

    PubMed

    Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing

    2018-01-10

    The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.

  1. Design, processing and testing of LSI arrays: Hybrid microelectronics task

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.

    1979-01-01

    Mathematical cost factors were generated for both hybrid microcircuit and printed wiring board packaging methods. A mathematical cost model was created for analysis of microcircuit fabrication costs. The costing factors were refined and reduced to formulae for computerization. Efficient methods were investigated for low cost packaging of LSI devices as a function of density and reliability. Technical problem areas such as wafer bumping, inner/outer leading bonding, testing on tape, and tape processing, were investigated.

  2. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  3. Design and construction of a cost-efficient Arduino-based mirror galvanometer system for scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng; Dhingra, Shonali; D'Urso, Brian

    2017-01-01

    Mirror galvanometer systems (galvos) are commonly employed in research and commercial applications in areas involving laser imaging, laser machining, laser-light shows, and others. Here, we present a robust, moderate-speed, and cost-efficient home-built galvo system. The mechanical part of this design consists of one mirror, which is tilted around two axes with multiple surface transducers. We demonstrate the ability of this galvo by scanning the mirror using a computer, via a custom driver circuit. The performance of the galvo, including scan range, noise, linearity, and scan speed, is characterized. As an application, we show that this galvo system can be used in a confocal scanning microscopy system.

  4. Design and operations technologies - Integrating the pieces. [for future space systems design

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.

    1979-01-01

    As major elements of life-cycle costs (LCC) having critical impacts on the initiation and utilization of future space programs, the areas of vehicle design and operations are reviewed in order to identify technology requirements. Common to both areas is the requirement for efficient integration of broad, complex systems. Operations technologies focus on the extension of space-based capabilities and cost reduction through the combination of innovative design, low-maintenance hardware, and increased manpower productivity. Design technologies focus on computer-aided techniques which increase productivity while maintaining a high degree of flexibility which enhances creativity and permits graceful design changes.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capitalmore » cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.« less

  6. Potentialities of TEC topping: A simplified view of parametric effects

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1980-01-01

    An examination of the benefits of thermionic-energy-conversion (TEC)-topped power plants and methods of increasing conversion efficiency are discussed. Reductions in the cost of TEC modules yield direct decreases in the cost of electricity (COE) from TEC-topped central station power plants. Simplified COE, overall-efficiency charts presented illustrate this trend. Additional capital-cost diminution results from designing more compact furnaces with considerably increased heat transfer rates allowable and desirable for high temperature TEC and heat pipes. Such improvements can evolve of the protection from hot corrosion and slag as well as the thermal expansion compatibilities offered by silicon-carbide clads on TEC-heating surfaces. Greater efficiencies and far fewer modules are possible with high-temperature, high-power-density TEC: This decreases capital and fuel costs much more and substantially increases electric power outputs for fixed fuel inputs. In addition to more electricity, less pollution, and lower costs, TEC topping used directly in coal-combustion products contributes balance-of-payment gains.

  7. The high intensity solar cell - Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    This paper discusses the problems associated with conventional solar cells at high intensities and presents the design considerations and performance characteristics of the 'high intensity' (HI) solar cell which appears to eliminate the major problems. Test data obtained at greater than 250 AM1 suns gave a peak output power density of 2 W per sq cm at an efficiency exceeding 6% with an unoptimized cell operating at over 100 C. It appears that operation at 1000 AM1 suns at efficiencies greater than 10% is possible. At 1000 AM1 suns and 10% efficiency, the HI cell manufacturing cost is estimated to be $0.25/watt, with multi-megawatt annual production capability already existing within the industrial sector. A high intensity solar system was also analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency.

  8. DEVELOPMENT OF AN ARMY STATIONARY AXLE TEST STAND FOR LUBRICANT EFFICIENCY EVALUATION-PART II

    DTIC Science & Technology

    2017-01-13

    value was estimated based on the engines maximum peak torque output, multiplied by the transmissions 1st gear ratio, high range transfer case ratio...efficiency test stand to allow for laboratory based investigation of Fuel Efficient Gear Oils (FEGO) and their impact on vehicle efficiency. Development...their impact on vehicle efficiency. The test stand was designed and developed with the following goals: • Provide a lower cost alternative for

  9. Advanced Structural Optimization Under Consideration of Cost Tracking

    NASA Astrophysics Data System (ADS)

    Zell, D.; Link, T.; Bickelmaier, S.; Albinger, J.; Weikert, S.; Cremaschi, F.; Wiegand, A.

    2014-06-01

    In order to improve the design process of launcher configurations in the early development phase, the software Multidisciplinary Optimization (MDO) was developed. The tool combines different efficient software tools such as Optimal Design Investigations (ODIN) for structural optimizations, Aerospace Trajectory Optimization Software (ASTOS) for trajectory and vehicle design optimization for a defined payload and mission.The present paper focuses to the integration and validation of ODIN. ODIN enables the user to optimize typical axis-symmetric structures by means of sizing the stiffening designs concerning strength and stability while minimizing the structural mass. In addition a fully automatic finite element model (FEM) generator module creates ready-to-run FEM models of a complete stage or launcher assembly.Cost tracking respectively future improvements concerning cost optimization are indicated.

  10. NASA technology utilization house

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Following systems and features, which are predicted to save approximately $20,000 in utility costs over twenty year period, are incorporated into single-level, contemporarily designed, energy efficient residential structure: solar heating and cooling; energy efficient appliances; water recycling; security, smoke, and tornado detectors; and flat conductor electrical wiring.

  11. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; hide

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  12. Data collection costs in industrial environments for three occupational posture exposure assessment methods

    PubMed Central

    2012-01-01

    Background Documentation of posture measurement costs is rare and cost models that do exist are generally naïve. This paper provides a comprehensive cost model for biomechanical exposure assessment in occupational studies, documents the monetary costs of three exposure assessment methods for different stakeholders in data collection, and uses simulations to evaluate the relative importance of cost components. Methods Trunk and shoulder posture variables were assessed for 27 aircraft baggage handlers for 3 full shifts each using three methods typical to ergonomic studies: self-report via questionnaire, observation via video film, and full-shift inclinometer registration. The cost model accounted for expenses related to meetings to plan the study, administration, recruitment, equipment, training of data collectors, travel, and onsite data collection. Sensitivity analyses were conducted using simulated study parameters and cost components to investigate the impact on total study cost. Results Inclinometry was the most expensive method (with a total study cost of € 66,657), followed by observation (€ 55,369) and then self report (€ 36,865). The majority of costs (90%) were borne by researchers. Study design parameters such as sample size, measurement scheduling and spacing, concurrent measurements, location and travel, and equipment acquisition were shown to have wide-ranging impacts on costs. Conclusions This study provided a general cost modeling approach that can facilitate decision making and planning of data collection in future studies, as well as investigation into cost efficiency and cost efficient study design. Empirical cost data from a large field study demonstrated the usefulness of the proposed models. PMID:22738341

  13. Data collection costs in industrial environments for three occupational posture exposure assessment methods.

    PubMed

    Trask, Catherine; Mathiassen, Svend Erik; Wahlström, Jens; Heiden, Marina; Rezagholi, Mahmoud

    2012-06-27

    Documentation of posture measurement costs is rare and cost models that do exist are generally naïve. This paper provides a comprehensive cost model for biomechanical exposure assessment in occupational studies, documents the monetary costs of three exposure assessment methods for different stakeholders in data collection, and uses simulations to evaluate the relative importance of cost components. Trunk and shoulder posture variables were assessed for 27 aircraft baggage handlers for 3 full shifts each using three methods typical to ergonomic studies: self-report via questionnaire, observation via video film, and full-shift inclinometer registration. The cost model accounted for expenses related to meetings to plan the study, administration, recruitment, equipment, training of data collectors, travel, and onsite data collection. Sensitivity analyses were conducted using simulated study parameters and cost components to investigate the impact on total study cost. Inclinometry was the most expensive method (with a total study cost of € 66,657), followed by observation (€ 55,369) and then self report (€ 36,865). The majority of costs (90%) were borne by researchers. Study design parameters such as sample size, measurement scheduling and spacing, concurrent measurements, location and travel, and equipment acquisition were shown to have wide-ranging impacts on costs. This study provided a general cost modeling approach that can facilitate decision making and planning of data collection in future studies, as well as investigation into cost efficiency and cost efficient study design. Empirical cost data from a large field study demonstrated the usefulness of the proposed models.

  14. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.

    1987-01-01

    A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.

  15. The Productivity and Cost-Efficiency of Models for Involving Nurse Practitioners in Primary Care: A Perspective from Queueing Analysis

    PubMed Central

    Liu, Nan; D'Aunno, Thomas

    2012-01-01

    Objective To develop simple stylized models for evaluating the productivity and cost-efficiencies of different practice models to involve nurse practitioners (NPs) in primary care, and in particular to generate insights on what affects the performance of these models and how. Data Sources and Study Design The productivity of a practice model is defined as the maximum number of patients that can be accounted for by the model under a given timeliness-to-care requirement; cost-efficiency is measured by the corresponding annual cost per patient in that model. Appropriate queueing analysis is conducted to generate formulas and values for these two performance measures. Model parameters for the analysis are extracted from the previous literature and survey reports. Sensitivity analysis is conducted to investigate the model performance under different scenarios and to verify the robustness of findings. Principal Findings Employing an NP, whose salary is usually lower than a primary care physician, may not be cost-efficient, in particular when the NP's capacity is underutilized. Besides provider service rates, workload allocation among providers is one of the most important determinants for the cost-efficiency of a practice model involving NPs. Capacity pooling among providers could be a helpful strategy to improve efficiency in care delivery. Conclusions The productivity and cost-efficiency of a practice model depend heavily on how providers organize their work and a variety of other factors related to the practice environment. Queueing theory provides useful tools to take into account these factors in making strategic decisions on staffing and panel size selection for a practice model. PMID:22092009

  16. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  17. Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.; Etchberger, F. R.; Ferrill, R. S.; Meade, L. E.

    1976-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified.

  18. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. Themore » IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.« less

  19. Investigation of a family of power conditioners integrated into a utility grid: Category 1

    NASA Astrophysics Data System (ADS)

    Wood, P.; Putkovich, R. P.

    1981-07-01

    Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation in residential solar photovoltaic systems. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, and the three best candidate technologies--the current sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible.

  20. Transforming Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors & Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Philip

    The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products willmore » have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.« less

  1. Optical designs for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Kosten, Emily Dell

    The solar resource is the most abundant renewable resource on earth, yet it is currently exploited with relatively low efficiencies. To make solar energy more affordable, we can either reduce the cost of the cell or increase the efficiency with a similar cost cell. In this thesis, we consider several different optical approaches to achieve these goals. First, we consider a ray optical model for light trapping in silicon microwires. With this approach, much less material can be used, allowing for a cost savings. We next focus on reducing the escape of radiatively emitted and scattered light from the solar cell. With this angle restriction approach, light can only enter and escape the cell near normal incidence, allowing for thinner cells and higher efficiencies. In Auger-limited GaAs, we find that efficiencies greater than 38% may be achievable, a significant improvement over the current world record. To experimentally validate these results, we use a Bragg stack to restrict the angles of emitted light. Our measurements show an increase in voltage and a decrease in dark current, as less radiatively emitted light escapes. While the results in GaAs are interesting as a proof of concept, GaAs solar cells are not currently made on the production scale for terrestrial photovoltaic applications. We therefore explore the application of angle restriction to silicon solar cells. While our calculations show that Auger-limited cells give efficiency increases of up to 3% absolute, we also find that current amorphous silicion-crystalline silicon heterojunction with intrinsic thin layer (HIT) cells give significant efficiency gains with angle restriction of up to 1% absolute. Thus, angle restriction has the potential for unprecedented one sun efficiencies in GaAs, but also may be applicable to current silicon solar cell technology. Finally, we consider spectrum splitting, where optics direct light in different wavelength bands to solar cells with band gaps tuned to those wavelengths. This approach has the potential for very high efficiencies, and excellent annual power production. Using a light-trapping filtered concentrator approach, we design filter elements and find an optimal design. Thus, this thesis explores silicon microwires, angle restriction, and spectral splitting as different optical approaches for improving the cost and efficiency of solar cells.

  2. Energy efficient engine: Flight propulsion system, preliminary analysis and design update

    NASA Technical Reports Server (NTRS)

    Stearns, E. M.

    1982-01-01

    The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.

  3. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  4. Instructor Considerations in the Design of Optimal Training Devices

    DTIC Science & Technology

    1988-08-18

    the training device development project, both in terms of cost and impact on training effectiveness. Simulation-based training devices have had a long... impact on training efficiency, the 1OS should be well designed. Taxonomy of Training Terms The architecture for this expert system includes the following...Here the impact of cost and benefit factors are evaluated and displayed in such a manner as to assist the analyst in selecting one configuration. An

  5. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  6. Optimal auxiliary-covariate-based two-phase sampling design for semiparametric efficient estimation of a mean or mean difference, with application to clinical trials.

    PubMed

    Gilbert, Peter B; Yu, Xuesong; Rotnitzky, Andrea

    2014-03-15

    To address the objective in a clinical trial to estimate the mean or mean difference of an expensive endpoint Y, one approach employs a two-phase sampling design, wherein inexpensive auxiliary variables W predictive of Y are measured in everyone, Y is measured in a random sample, and the semiparametric efficient estimator is applied. This approach is made efficient by specifying the phase two selection probabilities as optimal functions of the auxiliary variables and measurement costs. While this approach is familiar to survey samplers, it apparently has seldom been used in clinical trials, and several novel results practicable for clinical trials are developed. We perform simulations to identify settings where the optimal approach significantly improves efficiency compared to approaches in current practice. We provide proofs and R code. The optimality results are developed to design an HIV vaccine trial, with objective to compare the mean 'importance-weighted' breadth (Y) of the T-cell response between randomized vaccine groups. The trial collects an auxiliary response (W) highly predictive of Y and measures Y in the optimal subset. We show that the optimal design-estimation approach can confer anywhere between absent and large efficiency gain (up to 24 % in the examples) compared to the approach with the same efficient estimator but simple random sampling, where greater variability in the cost-standardized conditional variance of Y given W yields greater efficiency gains. Accurate estimation of E[Y | W] is important for realizing the efficiency gain, which is aided by an ample phase two sample and by using a robust fitting method. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Optimal Auxiliary-Covariate Based Two-Phase Sampling Design for Semiparametric Efficient Estimation of a Mean or Mean Difference, with Application to Clinical Trials

    PubMed Central

    Gilbert, Peter B.; Yu, Xuesong; Rotnitzky, Andrea

    2014-01-01

    To address the objective in a clinical trial to estimate the mean or mean difference of an expensive endpoint Y, one approach employs a two-phase sampling design, wherein inexpensive auxiliary variables W predictive of Y are measured in everyone, Y is measured in a random sample, and the semi-parametric efficient estimator is applied. This approach is made efficient by specifying the phase-two selection probabilities as optimal functions of the auxiliary variables and measurement costs. While this approach is familiar to survey samplers, it apparently has seldom been used in clinical trials, and several novel results practicable for clinical trials are developed. Simulations are performed to identify settings where the optimal approach significantly improves efficiency compared to approaches in current practice. Proofs and R code are provided. The optimality results are developed to design an HIV vaccine trial, with objective to compare the mean “importance-weighted” breadth (Y) of the T cell response between randomized vaccine groups. The trial collects an auxiliary response (W) highly predictive of Y, and measures Y in the optimal subset. We show that the optimal design-estimation approach can confer anywhere between absent and large efficiency gain (up to 24% in the examples) compared to the approach with the same efficient estimator but simple random sampling, where greater variability in the cost-standardized conditional variance of Y given W yields greater efficiency gains. Accurate estimation of E[Y∣W] is important for realizing the efficiency gain, which is aided by an ample phase-two sample and by using a robust fitting method. PMID:24123289

  8. Comparative analysis of the conceptual design studies of potential early commercial MHD power plants (CSPEC)

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.

    1982-01-01

    A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.

  9. Summary of 1989 - 1990 aeronautics design projects

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Four design projects were completed at Auburn University this year under the sponsorship of the NASA/Universities Space Research Association Advanced Design Program. The topics discussed are the design of a high speed civil transport; the design of a 79 passenger, high efficiency, commercial transport; the design of a low cost short takeof vertical landing export fighter; and the design of an ozone monitoring vehicle.

  10. Selection within households in health surveys

    PubMed Central

    Alves, Maria Cecilia Goi Porto; Escuder, Maria Mercedes Loureiro; Claro, Rafael Moreira; da Silva, Nilza Nunes

    2014-01-01

    OBJECTIVE To compare the efficiency and accuracy of sampling designs including and excluding the sampling of individuals within sampled households in health surveys. METHODS From a population survey conducted in Baixada Santista Metropolitan Area, SP, Southeastern Brazil, lowlands between 2006 and 2007, 1,000 samples were drawn for each design and estimates for people aged 18 to 59 and 18 and over were calculated for each sample. In the first design, 40 census tracts, 12 households per sector, and one person per household were sampled. In the second, no sampling within the household was performed and 40 census sectors and 6 households for the 18 to 59-year old group and 5 or 6 for the 18 and over age group or more were sampled. Precision and bias of proportion estimates for 11 indicators were assessed in the two final sets of the 1000 selected samples with the two types of design. They were compared by means of relative measurements: coefficient of variation, bias/mean ratio, bias/standard error ratio, and relative mean square error. Comparison of costs contrasted basic cost per person, household cost, number of people, and households. RESULTS Bias was found to be negligible for both designs. A lower precision was found in the design including individuals sampling within households, and the costs were higher. CONCLUSIONS The design excluding individual sampling achieved higher levels of efficiency and accuracy and, accordingly, should be first choice for investigators. Sampling of household dwellers should be adopted when there are reasons related to the study subject that may lead to bias in individual responses if multiple dwellers answer the proposed questionnaire. PMID:24789641

  11. Efficient experimental design for uncertainty reduction in gene regulatory networks.

    PubMed

    Dehghannasiri, Roozbeh; Yoon, Byung-Jun; Dougherty, Edward R

    2015-01-01

    An accurate understanding of interactions among genes plays a major role in developing therapeutic intervention methods. Gene regulatory networks often contain a significant amount of uncertainty. The process of prioritizing biological experiments to reduce the uncertainty of gene regulatory networks is called experimental design. Under such a strategy, the experiments with high priority are suggested to be conducted first. The authors have already proposed an optimal experimental design method based upon the objective for modeling gene regulatory networks, such as deriving therapeutic interventions. The experimental design method utilizes the concept of mean objective cost of uncertainty (MOCU). MOCU quantifies the expected increase of cost resulting from uncertainty. The optimal experiment to be conducted first is the one which leads to the minimum expected remaining MOCU subsequent to the experiment. In the process, one must find the optimal intervention for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive when the size of the network is large. In this paper, we propose a computationally efficient experimental design method. This method incorporates a network reduction scheme by introducing a novel cost function that takes into account the disruption in the ranking of potential experiments. We then estimate the approximate expected remaining MOCU at a lower computational cost using the reduced networks. Simulation results based on synthetic and real gene regulatory networks show that the proposed approximate method has close performance to that of the optimal method but at lower computational cost. The proposed approximate method also outperforms the random selection policy significantly. A MATLAB software implementing the proposed experimental design method is available at http://gsp.tamu.edu/Publications/supplementary/roozbeh15a/.

  12. Efficient experimental design for uncertainty reduction in gene regulatory networks

    PubMed Central

    2015-01-01

    Background An accurate understanding of interactions among genes plays a major role in developing therapeutic intervention methods. Gene regulatory networks often contain a significant amount of uncertainty. The process of prioritizing biological experiments to reduce the uncertainty of gene regulatory networks is called experimental design. Under such a strategy, the experiments with high priority are suggested to be conducted first. Results The authors have already proposed an optimal experimental design method based upon the objective for modeling gene regulatory networks, such as deriving therapeutic interventions. The experimental design method utilizes the concept of mean objective cost of uncertainty (MOCU). MOCU quantifies the expected increase of cost resulting from uncertainty. The optimal experiment to be conducted first is the one which leads to the minimum expected remaining MOCU subsequent to the experiment. In the process, one must find the optimal intervention for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive when the size of the network is large. In this paper, we propose a computationally efficient experimental design method. This method incorporates a network reduction scheme by introducing a novel cost function that takes into account the disruption in the ranking of potential experiments. We then estimate the approximate expected remaining MOCU at a lower computational cost using the reduced networks. Conclusions Simulation results based on synthetic and real gene regulatory networks show that the proposed approximate method has close performance to that of the optimal method but at lower computational cost. The proposed approximate method also outperforms the random selection policy significantly. A MATLAB software implementing the proposed experimental design method is available at http://gsp.tamu.edu/Publications/supplementary/roozbeh15a/. PMID:26423515

  13. Design and analysis of electricity markets

    NASA Astrophysics Data System (ADS)

    Sioshansi, Ramteen Mehr

    Restructured competitive electricity markets rely on designing market-based mechanisms which can efficiently coordinate the power system and minimize the exercise of market power. This dissertation is a series of essays which develop and analyze models of restructured electricity markets. Chapter 2 studies the incentive properties of a co-optimized market for energy and reserves that pays reserved generators their implied opportunity cost---which is the difference between their stated energy cost and the market-clearing price for energy. By analyzing the market as a competitive direct revelation mechanism we examine the properties of efficient equilibria and demonstrate that generators have incentives to shade their stated costs below actual costs. We further demonstrate that the expected energy payments of our mechanism is less than that in a disjoint market for energy only. Chapter 3 is an empirical validation of a supply function equilibrium (SFE) model. By comparing theoretically optimal supply functions and actual generation offers into the Texas spot balancing market, we show the SFE to fit the actual behavior of the largest generators in market. This not only serves to validate the model, but also demonstrates the extent to which firms exercise market power. Chapters 4 and 5 examine equity, incentive, and efficiency issues in the design of non-convex commitment auctions. We demonstrate that different near-optimal solutions to a central unit commitment problem which have similar-sized optimality gaps will generally yield vastly different energy prices and payoffs to individual generators. Although solving the mixed integer program to optimality will overcome such issues, we show that this relies on achieving optimality of the commitment---which may not be tractable for large-scale problems within the allotted timeframe. We then simulate and compare a competitive benchmark for a market with centralized and self commitment in order to bound the efficiency losses stemming from coordination losses (cost of anarchy) in a decentralized market.

  14. Study of Montmorillonite Clay for the Removal of Copper (II) by Adsorption: Full Factorial Design Approach and Cascade Forward Neural Network

    PubMed Central

    Turan, Nurdan Gamze; Ozgonenel, Okan

    2013-01-01

    An intensive study has been made of the removal efficiency of Cu(II) from industrial leachate by biosorption of montmorillonite. A 24 factorial design and cascade forward neural network (CFNN) were used to display the significant levels of the analyzed factors on the removal efficiency. The obtained model based on 24 factorial design was statistically tested using the well-known methods. The statistical analysis proves that the main effects of analyzed parameters were significant by an obtained linear model within a 95% confidence interval. The proposed CFNN model requires less experimental data and minimum calculations. Moreover, it is found to be cost-effective due to inherent advantages of its network structure. Optimization of the levels of the analyzed factors was achieved by minimizing adsorbent dosage and contact time, which were costly, and maximizing Cu(II) removal efficiency. The suggested optimum conditions are initial pH at 6, adsorbent dosage at 10 mg/L, and contact time at 10 min using raw montmorillonite with the Cu(II) removal of 80.7%. At the optimum values, removal efficiency was increased to 88.91% if the modified montmorillonite was used. PMID:24453833

  15. The costs and cost-efficiency of providing food through schools in areas of high food insecurity.

    PubMed

    Gelli, Aulo; Al-Shaiba, Najeeb; Espejo, Francisco

    2009-03-01

    The provision of food in and through schools has been used to support the education, health, and nutrition of school-aged children. The monitoring of financial inputs into school health and nutrition programs is critical for a number of reasons, including accountability, transparency, and equity. Furthermore, there is a gap in the evidence on the costs, cost-efficiency, and cost-effectiveness of providing food through schools, particularly in areas of high food insecurity. To estimate the programmatic costs and cost-efficiency associated with providing food through schools in food-insecure, developing-country contexts, by analyzing global project data from the World Food Programme (WFP). Project data, including expenditures and number of schoolchildren covered, were collected through project reports and validated through WFP Country Office records. Yearly project costs per schoolchild were standardized over a set number of feeding days and the amount of energy provided by the average ration. Output metrics, such as tonnage, calories, and micronutrient content, were used to assess the cost-efficiency of the different delivery mechanisms. The average yearly expenditure per child, standardized over a 200-day on-site feeding period and an average ration, excluding school-level costs, was US$21.59. The costs varied substantially according to choice of food modality, with fortified biscuits providing the least costly option of about US$11 per year and take-home rations providing the most expensive option at approximately US$52 per year. Comparisons across the different food modalities suggested that fortified biscuits provide the most cost-efficient option in terms of micronutrient delivery (particularly vitamin A and iodine), whereas on-site meals appear to be more efficient in terms of calories delivered. Transportation and logistics costs were the main drivers for the high costs. The choice of program objectives will to a large degree dictate the food modality (biscuits, cooked meals, or take-home rations) and associated implementation costs. Fortified biscuits can provide substantial nutritional inputs at a fraction of the cost of school meals, making them an appealing option for service delivery in food-insecure contexts. Both costs and effects should be considered carefully when designing the appropriate school-based intervention. The costs estimates in this analysis do not include all school-level costs and are therefore lower-bound estimates of full implementation costs.

  16. A fast new cadioptric design for fiber-fed spectrographs

    NASA Astrophysics Data System (ADS)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.

  17. Development of High Efficiency (14%) Solar Cell Array Module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1979-01-01

    High efficiency solar cells required for the low cost modules was developed. The production tooling for the manufacture of the cells and modules was designed. The tooling consisted of: (1) back contact soldering machine; (2) vacuum pickup; (3) antireflective coating tooling; and (4) test fixture.

  18. Budgeting for Efficiency and Effectiveness

    ERIC Educational Resources Information Center

    Pereus, Steven C.

    2012-01-01

    For most districts, budgeting has become a cost-cutting exercise designed to close the gap between revenues and expenses. During this process, decision makers inherently assume that existing operations are efficient and effective--an assumption that is rarely validated by facts. Cutting programs and services balances budgets but does not…

  19. Insulated Concrete Homes Increase Durability and Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building America; Hendron, B.; Poole, L.

    2001-06-05

    New houses designed by Mercedes Homes in Melbourne, Florida, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.

  20. Motor efficiency: compare apples to apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keinz, J.R.

    1982-08-01

    The efficiency differences between electric motors are now a significant cost consideration for many companies, but evaluating motor efficiency is not as straightforward as it should be. The buyer must look beyond the manufacturer's designated efficiency, which is too generalized, and the results of independent tests, which vary because of the difficulty in establishing standard conditions. Manufacturers may be following established testing procedures, but not labeling in accordance with the standards. Manufacturers should also supply efficiency versus load-curve data. (DCK)

  1. Lowering the barriers to consumer-directed health care: responding to concerns.

    PubMed

    Baicker, Katherine; Dow, William H; Wolfson, Jonathan

    2007-01-01

    Consumer-directed health care is a potentially promising tool for moving toward more efficient use of health care resources. Tax policy has long been biased against health plans with significant patient cost sharing. Tax advantages created by health savings accounts (HSAs) began to change that, and proposed tax reforms could go even further. We assess various critiques of these plans, focusing on why they benefit not just the healthy and wealthy. Lower costs and more efficient health spending would help all patients and reduce uninsurance. Potential negative distributional effects are important but can be remedied more efficiently without distorting insurance design.

  2. MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Nazari, Pariya; Abdollahi Nejand, Bahram; Eskandari, Mehdi

    2018-05-01

    In this work MoS2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.

  3. MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells.

    PubMed

    Kohnehpoushi, Saman; Nazari, Pariya; Nejand, Bahram Abdollahi; Eskandari, Mehdi

    2018-05-18

    In this work MoS 2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS 2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS 2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS 2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO 2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.

  4. Production technology for high efficiency ion implanted solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

    1978-01-01

    Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desroches, Louis-Benoit; Garbesi, Karina

    It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standardsmore » program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.« less

  6. A novel minimum cost maximum power algorithm for future smart home energy management.

    PubMed

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  7. Taguchi Approach to Design Optimization for Quality and Cost: An Overview

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Dean, Edwin B.

    1990-01-01

    Calibrations to existing cost of doing business in space indicate that to establish human presence on the Moon and Mars with the Space Exploration Initiative (SEI) will require resources, felt by many, to be more than the national budget can afford. In order for SEI to succeed, we must actually design and build space systems at lower cost this time, even with tremendous increases in quality and performance requirements, such as extremely high reliability. This implies that both government and industry must change the way they do business. Therefore, new philosophy and technology must be employed to design and produce reliable, high quality space systems at low cost. In recognizing the need to reduce cost and improve quality and productivity, Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) have initiated Total Quality Management (TQM). TQM is a revolutionary management strategy in quality assurance and cost reduction. TQM requires complete management commitment, employee involvement, and use of statistical tools. The quality engineering methods of Dr. Taguchi, employing design of experiments (DOE), is one of the most important statistical tools of TQM for designing high quality systems at reduced cost. Taguchi methods provide an efficient and systematic way to optimize designs for performance, quality, and cost. Taguchi methods have been used successfully in Japan and the United States in designing reliable, high quality products at low cost in such areas as automobiles and consumer electronics. However, these methods are just beginning to see application in the aerospace industry. The purpose of this paper is to present an overview of the Taguchi methods for improving quality and reducing cost, describe the current state of applications and its role in identifying cost sensitive design parameters.

  8. Cost and performance model for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vilayanur; Crawford, Alasdair; Stephenson, David; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg; Thomsen, Ed; Graff, Gordon; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent

    2014-02-01

    A cost model is developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling is done to estimate stack performance at various power densities as a function of state of charge and operating conditions. This is supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio and flow frame channel dimensions are adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates are obtained from various vendors to calculate cost estimates for present, near-term and optimistic scenarios. The most cost-effective chemistries with optimum operating conditions for power or energy intensive applications are determined, providing a roadmap for battery management systems development for redox flow batteries. The main drivers for cost reduction for various chemistries are identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guide suitability of various chemistries for different applications.

  9. Saving Energy in Industrial Companies: Case Studies of Energy Efficiency Programs in Large U.S. Industrial Corporations and the Role of Ratepayer-Funded Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This paper is designed for companies looking to cut costs through energy savings, ratepayer-funded program administrators interested in increasing large industrial company participation in energy efficiency program offerings, and state utility commissions.

  10. Oil-free centrifugal hydrogen compression technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heshmat, Hooshang

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technologymore » is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale performance testing of a single stage with helium similitude gas at full speed in accordance with ASME PTC-10. The experimental results indicated that aerodynamic performance, with respect to compressor discharge pressure, flow, power and efficiency exceeded theoretical prediction. Dynamic testing of a simulated multistage centrifugal compressor was also completed under a parallel program to validate the integrity and viability of the system concept. The results give strong confidence in the feasibility of the multi-stage design for use in hydrogen gas transportation and delivery from production locations to point of use.« less

  11. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  12. Reliability, Risk and Cost Trade-Offs for Composite Designs

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.

    1996-01-01

    Risk and cost trade-offs have been simulated using a probabilistic method. The probabilistic method accounts for all naturally-occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry and loading conditions. The probability density function of first buckling load for a set of uncertain variables is computed. The probabilistic sensitivity factors of uncertain variables to the first buckling load is calculated. The reliability-based cost for a composite fuselage panel is defined and minimized with respect to requisite design parameters. The optimization is achieved by solving a system of nonlinear algebraic equations whose coefficients are functions of probabilistic sensitivity factors. With optimum design parameters such as the mean and coefficient of variation (representing range of scatter) of uncertain variables, the most efficient and economical manufacturing procedure can be selected. In this paper, optimum values of the requisite design parameters for a predetermined cost due to failure occurrence are computationally determined. The results for the fuselage panel analysis show that the higher the cost due to failure occurrence, the smaller the optimum coefficient of variation of fiber modulus (design parameter) in longitudinal direction.

  13. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  14. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  15. Tolerance assignment in optical design

    NASA Astrophysics Data System (ADS)

    Youngworth, Richard Neil

    2002-09-01

    Tolerance assignment is necessary in any engineering endeavor because fabricated systems---due to the stochastic nature of manufacturing and assembly processes---necessarily deviate from the nominal design. This thesis addresses the problem of optical tolerancing. The work can logically be split into three different components that all play an essential role. The first part addresses the modeling of manufacturing errors in contemporary fabrication and assembly methods. The second component is derived from the design aspect---the development of a cost-based tolerancing procedure. The third part addresses the modeling of image quality in an efficient manner that is conducive to the tolerance assignment process. The purpose of the first component, modeling manufacturing errors, is twofold---to determine the most critical tolerancing parameters and to understand better the effects of fabrication errors. Specifically, mid-spatial-frequency errors, typically introduced in sub-aperture grinding and polishing fabrication processes, are modeled. The implication is that improving process control and understanding better the effects of the errors makes the task of tolerance assignment more manageable. Conventional tolerancing methods do not directly incorporate cost. Consequently, tolerancing approaches tend to focus more on image quality. The goal of the second part of the thesis is to develop cost-based tolerancing procedures that facilitate optimum system fabrication by generating the loosest acceptable tolerances. This work has the potential to impact a wide range of optical designs. The third element, efficient modeling of image quality, is directly related to the cost-based optical tolerancing method. Cost-based tolerancing requires efficient and accurate modeling of the effects of errors on the performance of optical systems. Thus it is important to be able to compute the gradient and the Hessian, with respect to the parameters that need to be toleranced, of the figure of merit that measures the image quality of a system. An algebraic method for computing the gradient and the Hessian is developed using perturbation theory.

  16. Energy-efficient building design in cold climates: Schools as a case study

    NASA Astrophysics Data System (ADS)

    Rangel Ruiz, Rocio

    Buildings account for great amounts of greenhouse gas emissions. In terms of energy, buildings account for one third of the total amount of energy used in the country every year! Schools account for 14 percent of the energy used annually in commercial and institutional buildings. Further, schools are one of the most commonly constructed building types in Canada and spaces such as classrooms are often duplicated. This makes them preferred candidates for the research that was undertaken where energy-efficient solutions that can be transferred to different school designs were derived. Throughout the study, the Commercial Building Incentive Program (CBIP) was used as a benchmark. The objectives of the study were to demonstrate energy-efficient concepts, provide a case study to evaluate solutions, develop typological models and provide an understanding of the innovation process. The technological and societal aspects of the energy-efficient design were addressed. With respect to the technological aspects, the first step was the analysis of conventional design using a school in Calgary as a case study. The optimization of conventional design was undertaken using computer modeling to identify best practice solutions. Aspects that were included in the studies were lighting design, envelope characteristics, HVAC systems and building plant systems. The inclusion of passive design included the analysis of daylighting and natural ventilation. Computer modeling was used to assess daylighting in classrooms with unilateral and bilateral daylighting. Illuminance levels, glare and light distribution were evaluated. The study of natural ventilation was undertaken using literature review. Airflow and outdoor temperatures were the focus to identify solutions that could be incorporated into the design of classrooms. It was concluded that achieving excellence in energy efficiency in schools could be achieved using readily available technologies. Energy savings of up to 63 percent better than Canada's Model National Energy Code for Buildings (MNECB) reference case and utility cost savings of 30,000 (on a 50,000 annual cost) were achieved through conventional design optimization. Additional energy savings of three percent and utility cost savings of $7,000 were seen when passive strategies were included in the design. With respect to the societal aspects, an exploratory research study was undertaken to examine innovation. Architects and energy consultants were interviewed. All design professionals included in the study had participated in projects approved for a grant under CBIP. The purpose of the study was to identify drivers and barriers to energy efficiency. The study demonstrated that external and internal innovation pressures have a significant effect on whether or not the technology is adopted. Suggestions for reducing barriers and further promoting energy efficiency are discussed in this thesis. It is expected that the research will not only aid designers in assessing projects with regard to local priorities, but will also provide building guidelines that serve as tools for the development of the Canadian energy compliance for CO2 emissions.

  17. Energy efficient engine. Volume 1: Component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.

  18. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  19. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  20. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  1. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  2. 32 CFR Appendix A to Part 169a - Codes and Definitions of Functional Areas

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) intermediate/direct/general maintenance performed by fixed activities that are not designed for deployment to combat areas and that provide direct support of organizations performing or designed to perform combat... commercial activities that are especially designed and constructed for the low-cost and efficient storage and...

  3. Two-Method Planned Missing Designs for Longitudinal Research

    ERIC Educational Resources Information Center

    Garnier-Villarreal, Mauricio; Rhemtulla, Mijke; Little, Todd D.

    2014-01-01

    We examine longitudinal extensions of the two-method measurement design, which uses planned missingness to optimize cost-efficiency and validity of hard-to-measure constructs. These designs use a combination of two measures: a "gold standard" that is highly valid but expensive to administer, and an inexpensive (e.g., survey-based)…

  4. Hermes CX-7: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Amer, Brian; Barter, John; Colucci, Jay; Foley, Caryn; Kockler, James; Rapp, David; Zeiger, Matthew

    1992-01-01

    The Hermes CX-7 has been designed to service the overnight parcel package delivery needs of the cities of Aeroworld as determined in the G-Dome Enterprises market survey. The design optimization centers on the prime goal of servicing the needs of these cities as efficiently and profitably as possible. The greatest factors which affect the design of an aircraft for the mission outlined in the Request for Proposal are cost, construction feasibility and effectiveness of the design. Other influencing factors are given by the constraints of the market, including a maximum takeoff and landing distance of 60 feet, storage capability in a container of size 5 ft. x 3 ft. x 2 ft., cargo packages of 2 inch and 4 inch cubes, and ability to turn with a radius no larger than 60 feet. Safety considerations such as flying at or below Mach one (30 ft/s) and controllability and maintainability of the aircraft must also be designed into the aircraft. Another influential factor is the efficiency of the aircraft which involves optimizations and tradeoffs of such factors as weight, lifting surface sizing, structural redundancy, and material costs.

  5. On the Asymptotic Relative Efficiency of Planned Missingness Designs.

    PubMed

    Rhemtulla, Mijke; Savalei, Victoria; Little, Todd D

    2016-03-01

    In planned missingness (PM) designs, certain data are set a priori to be missing. PM designs can increase validity and reduce cost; however, little is known about the loss of efficiency that accompanies these designs. The present paper compares PM designs to reduced sample (RN) designs that have the same total number of data points concentrated in fewer participants. In 4 studies, we consider models for both observed and latent variables, designs that do or do not include an "X set" of variables with complete data, and a full range of between- and within-set correlation values. All results are obtained using asymptotic relative efficiency formulas, and thus no data are generated; this novel approach allows us to examine whether PM designs have theoretical advantages over RN designs removing the impact of sampling error. Our primary findings are that (a) in manifest variable regression models, estimates of regression coefficients have much lower relative efficiency in PM designs as compared to RN designs, (b) relative efficiency of factor correlation or latent regression coefficient estimates is maximized when the indicators of each latent variable come from different sets, and (c) the addition of an X set improves efficiency in manifest variable regression models only for the parameters that directly involve the X-set variables, but it substantially improves efficiency of most parameters in latent variable models. We conclude that PM designs can be beneficial when the model of interest is a latent variable model; recommendations are made for how to optimize such a design.

  6. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Davis, Stephan R.

    2007-01-01

    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.

  7. Bantam System Technology Project

    NASA Technical Reports Server (NTRS)

    Moon, J. M.; Beveridge, J. R.

    1998-01-01

    This report focuses on determining a best value, low risk, low cost and highly reliable Data and Command System for support of the launch of low cost vehicles which are to carry small payloads into low earth orbit. The ground-based DCS is considered as a component of the overall ground and flight support system which includes the DCS, flight computer, mission planning system and simulator. Interfaces between the DCS and these other component systems are considered. Consideration is also given to the operational aspects of the mission and of the DCS selected. This project involved: defining requirements, defining an efficient operations concept, defining a DCS architecture which satisfies the requirements and concept, conducting a market survey of commercial and government off-the-shelf DCS candidate systems and rating the candidate systems against the requirements/concept. The primary conclusions are that several low cost, off-the-shelf DCS solutions exist and these can be employed to provide for very low cost operations and low recurring maintenance cost. The primary recommendation is that the DCS design/specification should be integrated within the ground and flight support system design as early as possible to ensure ease of interoperability and efficient allocation of automation functions among the component systems.

  8. Small space station electrical power system design concepts

    NASA Technical Reports Server (NTRS)

    Jones, G. M.; Mercer, L. N.

    1976-01-01

    A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.

  9. A novel reversible logic gate and its systematic approach to implement cost-efficient arithmetic logic circuits using QCA.

    PubMed

    Ahmad, Peer Zahoor; Quadri, S M K; Ahmad, Firdous; Bahar, Ali Newaz; Wani, Ghulam Mohammad; Tantary, Shafiq Maqbool

    2017-12-01

    Quantum-dot cellular automata, is an extremely small size and a powerless nanotechnology. It is the possible alternative to current CMOS technology. Reversible QCA logic is the most important issue at present time to reduce power losses. This paper presents a novel reversible logic gate called the F-Gate. It is simplest in design and a powerful technique to implement reversible logic. A systematic approach has been used to implement a novel single layer reversible Full-Adder, Full-Subtractor and a Full Adder-Subtractor using the F-Gate. The proposed Full Adder-Subtractor has achieved significant improvements in terms of overall circuit parameters among the most previously cost-efficient designs that exploit the inevitable nano-level issues to perform arithmetic computing. The proposed designs have been authenticated and simulated using QCADesigner tool ver. 2.0.3.

  10. Cost-Effectiveness of Ready for Recess to Promote Physical Activity in Children

    ERIC Educational Resources Information Center

    Wang, Hongmei; Li, Tao; Siahpush, Mohammad; Chen, Li-Wu; Huberty, Jennifer

    2017-01-01

    Background: Many school-based recess interventions have been shown to be effective in increasing physical activity but their relative efficiency compared to other school-based programs are unknown. This study examined the cost-effectiveness of Ready for Recess, a program designed to increase students' physical activity in 2 elementary schools.…

  11. Cost Accounting and Accountability: One Approach.

    ERIC Educational Resources Information Center

    Gingold, William

    This paper outlines an approach designed to provide an accurate and efficient cost accounting system for use in schools and other social service organizations. In his discussion, the author presents a detailed step-by-step description of how to establish, plan, and operate the system. The basic element of the system is the Daily Event Record…

  12. Analyzing the impact of intermodal-related risk to the design and management of biofuel supply chain.

    DOT National Transportation Integrated Search

    2014-12-01

    The objective of this project is to design decision-support tools for identifying : biorefinery locations that ensure a cost-efficient and reliable supply chain. We built : mathematical models which take into consideration the benefits (such as acces...

  13. What Determines HIV Prevention Costs at Scale? Evidence from the Avahan Programme in India.

    PubMed

    Lépine, Aurélia; Chandrashekar, Sudhashree; Shetty, Govindraj; Vickerman, Peter; Bradley, Janet; Alary, Michel; Moses, Stephen; Vassall, Anna

    2016-02-01

    Expanding essential health services through non-government organisations (NGOs) is a central strategy for achieving universal health coverage in many low-income and middle-income countries. Human immunodeficiency virus (HIV) prevention services for key populations are commonly delivered through NGOs and have been demonstrated to be cost-effective and of substantial global public health importance. However, funding for HIV prevention remains scarce, and there are growing calls internationally to improve the efficiency of HIV prevention programmes as a key strategy to reach global HIV targets. To date, there is limited evidence on the determinants of costs of HIV prevention delivered through NGOs; and thus, policymakers have little guidance in how best to design programmes that are both effective and efficient. We collected economic costs from the Indian Avahan initiative, the largest HIV prevention project conducted globally, during the first 4 years of its implementation. We use a fixed-effect panel estimator and a random-intercept model to investigate the determinants of average cost. We find that programme design choices such as NGO scale, the extent of community involvement, the way in which support is offered to NGOs and how clinical services are organised substantially impact average cost in a grant-based payment setting. © 2016 The Authors. Health Economics published by John Wiley & Sons Ltd.

  14. How to design a horizontal patient-focused hospital.

    PubMed

    Murphy, E C; Ruflin, P

    1993-05-01

    Work Imaging is an executive information system for analyzing the cost effectiveness and efficiency of work processes and structures in health care. Advanced Work Imaging relational database technology allows managers and employees to take a sample work activities profile organization-wide. This is married to financial and organizational data to produce images of work within and across all functions, departments, and levels. The images are benchmarked against best practice data to provide insight on the quality and cost efficiency of work practice patterns, from individual roles to departmental skill mix to organization-wide service processes.

  15. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  16. Compact sieve-tray distillation column for ammonia-water absorption heat pump: Part 1 -- Design methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, G.; Erickson, D.C.

    1999-07-01

    The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less

  17. CAD of control systems: Application of nonlinear programming to a linear quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1983-01-01

    The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.

  18. Experimental design for three-color and four-color gene expression microarrays.

    PubMed

    Woo, Yong; Krueger, Winfried; Kaur, Anupinder; Churchill, Gary

    2005-06-01

    Three-color microarrays, compared with two-color microarrays, can increase design efficiency and power to detect differential expression without additional samples and arrays. Furthermore, three-color microarray technology is currently available at a reasonable cost. Despite the potential advantages, clear guidelines for designing and analyzing three-color experiments do not exist. We propose a three- and a four-color cyclic design (loop) and a complementary graphical representation to help design experiments that are balanced, efficient and robust to hybridization failures. In theory, three-color loop designs are more efficient than two-color loop designs. Experiments using both two- and three-color platforms were performed in parallel and their outputs were analyzed using linear mixed model analysis in R/MAANOVA. These results demonstrate that three-color experiments using the same number of samples (and fewer arrays) will perform as efficiently as two-color experiments. The improved efficiency of the design is somewhat offset by a reduced dynamic range and increased variability in the three-color experimental system. This result suggests that, with minor technological improvements, three-color microarrays using loop designs could detect differential expression more efficiently than two-color loop designs. http://www.jax.org/staff/churchill/labsite/software Multicolor cyclic design construction methods and examples along with additional results of the experiment are provided at http://www.jax.org/staff/churchill/labsite/pubs/yong.

  19. Cost efficient environmental survey paths for detecting continuous tracer discharges

    NASA Astrophysics Data System (ADS)

    Alendal, G.

    2017-07-01

    Designing monitoring programs for detecting potential tracer discharges from unknown locations is challenging. The high variability of the environment may camouflage the anticipated anisotropic signal from a discharge, and there are a number of discharge scenarios. Monitoring operations may also be costly, constraining the number of measurements taken. By assuming that a discharge is active, and a prior belief on the most likely seep location, a method that uses Bayes' theorem combined with discharge footprint predictions is used to update the probability map. Measurement locations with highest reduction in the overall probability of a discharge to be active can be identified. The relative cost between reallocating and measurements can be taken into account. Three different strategies are suggested to enable cost efficient paths for autonomous vessels.

  20. Spacecraft design project multipurpose satellite bus MPS

    NASA Technical Reports Server (NTRS)

    Kellman, Lyle; Riley, John; Szostak, Michael; Watkins, Joseph; Willhelm, Joseph; Yale, Gary

    1990-01-01

    The thrust of this project was to design not a single spacecraft, but to design a multimission bus capable of supporting several current payloads and unnamed, unspecified future payloads. Spiraling costs of spacecraft and shrinking defense budgets necessitated a fresh look at the feasibility of a multimission spacecraft bus. The design team chose two very diverse and different payloads, and along with them two vastly different orbits, to show that multimission spacecraft buses are an area where indeed more research and effort needs to be made. Tradeoffs, of course, were made throughout the design, but optimization of subsystem components limited weight and volume penalties, performance degradation, and reliability concerns. Simplicity was chosen over more complex, sophisticated and usually more efficient designs. Cost of individual subsystem components was not a primary concern in the design phase, but every effort was made to chose flight tested and flight proven hardware. Significant cost savings could be realized if a standard spacecraft bus was indeed designed and purchased in finite quantities.

  1. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less

  2. Cost-effective solutions for sewage treatment in developing countries--the case of Brazil.

    PubMed

    Jordão, E P; Volschan, I

    2004-01-01

    Cost-effective solutions are a must in developing countries, not only regarding investment costs, but also in respect to technology and operating practices. With these two goals in mind, in Brazil a particular effort has been directed for the development and application of the Chemical Enhanced Primary Treatment (CEPT) process and of the Upflow Anaerobic Sludge Blanket (UASB) process, both followed by complementary secondary treatment. Both technologies are under current expansion in Brazil. Large CEPT plants have been designed and built, up to 3.7 m3/s average design flow, as well as large UASB reactors, up to 3.0 m3/s average design flow. The applied technologies are cost-effective: they present low investment and efficiencies of BOD removal of up to 50% to 70%. They allow the plant construction in steps, an initial phase with efficiency over the usual primary treatment, and in order to achieve best effluent quality and meet legal water quality standards, a logic upgrade post-treatment can later on be implemented. The higher initial reduction of BOD and TSS also permits savings in construction and operational costs of secondary treatment, due to lower organic load and lower energy consumption. Sludge represents a particular point of attention: in the cases when the CEPT was used, Chemical Stabilisation of the Sludge (CSS) has also been practiced, eliminating the high construction costs of the digesters, all the plant staying chemically operated. In the cases when the UASB is used preceding secondary treatment, sludge can easily return to the anaerobic vessel, the costly sludge digestion unit being avoided. UASB reactors have practically no equipment in the anaerobic vessel, no energy consumption, low sludge production, and when applied in hot climates as in Brazil, heating devices are not required. The Brazilian experience, some particular cases, special comments on design and different secondary treatment processes are presented in this paper, as a contribution to the discussion of cost and benefits, a prime point to be considered.

  3. Reliability based design optimization: Formulations and methodologies

    NASA Astrophysics Data System (ADS)

    Agarwal, Harish

    Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.

  4. Material selection and assembly method of battery pack for compact electric vehicle

    NASA Astrophysics Data System (ADS)

    Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.

    2018-01-01

    Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.

  5. The design of photovoltaic plants - An optimization procedure

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Cuomo, V.; Fontana, F.; Serio, C.; Silvestrini, V.

    An analytical model is developed to match the components and overall size of a solar power facility (comprising photovoltaic array), maximum-power tracker, battery storage system, and inverter) to the load requirements and climatic conditions of a proposed site at the smallest possible cost. Input parameters are the efficiencies and unit costs of the components, the load fraction to be covered (for stand-alone systems), the statistically analyzed meteorological data, and the cost and efficiency data of the support system (for fuel-generator-assisted plants). Numerical results are presented in graphs and tables for sites in Italy, and it is found that the explicit form of the model equation is independent of locality, at least for this region.

  6. Reliability, Availability, and Maintainability of the Heat Recovery Incinerator at Naval Station Mayport.

    DTIC Science & Technology

    1984-10-01

    appears to have cost $6.54 to produce 1,000,000 Btu’s of heat. This equation took into account the cost of repair and replacement parts, consumable...waste incineration rate, thermal efficiency, and steam cost . Actual results for incinerating waste to produce steam were: reliability 58% (75% of design...87% of goal); incineration rate 1.75 tons/hr (105% of goal); and cost of steam $6.05/MBtu. The HRI was expected to save $26,600/yr from landfill

  7. Multiple mini-interviews: same concept, different approaches.

    PubMed

    Knorr, Mirjana; Hissbach, Johanna

    2014-12-01

    Increasing numbers of educational institutions in the medical field choose to replace their conventional admissions interviews with a multiple mini-interview (MMI) format because the latter has superior reliability values and reduces interviewer bias. As the MMI format can be adapted to the conditions of each institution, the question of under which circumstances an MMI is most expedient remains unresolved. This article systematically reviews the existing MMI literature to identify the aspects of MMI design that have impact on the reliability, validity and cost-efficiency of the format. Three electronic databases (OVID, PubMed, Web of Science) were searched for any publications in which MMIs and related approaches were discussed. Sixty-six publications were included in the analysis. Forty studies reported reliability values. Generally, raising the number of stations has more impact on reliability than raising the number of raters per station. Other factors with positive influence include the exclusion of stations that are too easy, and the use of normative anchored rating scales or skills-based rater training. Data on criterion-related validities and analyses of dimensionality were found in 31 studies. Irrespective of design differences, the relationship between MMI results and academic measures is small to zero. The McMaster University MMI predicts in-programme and licensing examination performance. Construct validity analyses are mostly exploratory and their results are inconclusive. Seven publications gave information on required resources or provided suggestions on how to save costs. The most relevant cost factors that are additional to those of conventional interviews are the costs of station development and actor payments. The MMI literature provides useful recommendations for reliable and cost-efficient MMI designs, but some important aspects have not yet been fully explored. More theory-driven research is needed concerning dimensionality and construct validity, the predictive validity of MMIs other than those of McMaster University, the comparison of station types, and a cost-efficient station development process. © 2014 John Wiley & Sons Ltd.

  8. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  9. Simulative design and process optimization of the two-stage stretch-blow molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopmann, Ch.; Rasche, S.; Windeck, C.

    2015-05-22

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development timemore » and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.« less

  10. Simulative design and process optimization of the two-stage stretch-blow molding process

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Rasche, S.; Windeck, C.

    2015-05-01

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.

  11. Toward large-scale solar energy systems with peak concentrations of 20,000 suns

    NASA Astrophysics Data System (ADS)

    Kribus, Abraham

    1997-10-01

    The heliostat field plays a crucial role in defining the achievable limits for central receiver system efficiency and cost. Increasing system efficiency, thus reducing the reflective area and system cost, can be achieved by increasing the concentration and the receiver temperature. The concentration achievable in central receiver plants, however, is constrained by current heliostat technology and design practices. The factors affecting field performance are surface and tracking errors, astigmatism, shadowing, blocking and dilution. These are geometric factors that can be systematically treated and reduced. We present improvements in collection optics and technology that may boost concentration (up to 20,000 peak), achievable temperature (2,000 K), and efficiency in solar central receiver plants. The increased performance may significantly reduce the cost of solar energy in existing applications, and enable solar access to new ultra-high-temperature applications, such as: future gas turbines approaching 60% combined cycle efficiency; high-temperature thermo-chemical processes; and gas-dynamic processes.

  12. CFD Analysis and Design Optimization Using Parallel Computers

    NASA Technical Reports Server (NTRS)

    Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James

    1997-01-01

    A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.

  13. Solving wood chip transport problems with computer simulation.

    Treesearch

    Dennis P. Bradley; Sharon A. Winsauer

    1976-01-01

    Efficient chip transport operations are difficult to achieve due to frequent and often unpredictable changes in distance to market, chipping rate, time spent at the mill, and equipment costs. This paper describes a computer simulation model that allows a logger to design an efficient transport system in response to these changing factors.

  14. Chiller plant design rules...Have they changed?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppelheimer, D.

    1995-09-01

    Chilled water plants are often viewed as energy consumers, actually they are only energy movers. In just the simple process of chilling water, there are four discrete energy moving functions. The chilled water pumps, condenser water pumps, and cooling tower fans are all forms of transport energy. The chiller is a heat pump where energy is consumed to raise the temperature of the heat stream. Insight into improved chiller plant performance can be obtained by tracking the power consumption of these four functions. The performance of centrifugal chillers has improved dramatically in the past 25 years. Certainly some of thismore » improvement is due to technology improvements in heat transfer and compressor efficiency. However, the lion`s share of gain in chiller efficiency is a result of chiller owners budgeting more funds to energy conservation and purchasing more efficient chillers. Since 1970, the efficiency of electric water chillers has improved by nearly 4 percent! The intent of this presentation is to review the energy cost associated with central chilled water plants and identify opportunities in design that may reduce energy costs.« less

  15. Low Cost Design of an Advanced Encryption Standard (AES) Processor Using a New Common-Subexpression-Elimination Algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chih; Hsiao, Shen-Fu

    In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.

  16. Explaining the heterogeneity in average costs per HIV/AIDS patient in Nigeria: The role of supply-side and service delivery characteristics

    PubMed Central

    Amanze, Ogbonna O.; La Hera-Fuentes, Gina; Silverman-Retana, Omar; Contreras-Loya, David; Ashefor, Gregory A.; Ogungbemi, Kayode M.

    2018-01-01

    Objective We estimated the average annual cost per patient of ART per facility (unit cost) in Nigeria, described the variation in costs across facilities, and identified factors associated with this variation. Methods We used facility-level data of 80 facilities in Nigeria, collected between December 2014 and May 2015. We estimated unit costs at each facility as the ratio of total costs (the sum of costs of staff, recurrent inputs and services, capital, training, laboratory tests, and antiretroviral and TB treatment drugs) divided by the annual number of patients. We applied linear regressions to estimate factors associated with ART cost per patient. Results The unit ART cost in Nigeria was $157 USD nationally and the facility-level mean was $231 USD. The study found a wide variability in unit costs across facilities. Variations in costs were explained by number of patients, level of care, task shifting (shifting tasks from doctors to less specialized staff, mainly nurses, to provide ART) and provider´s competence. The study illuminated the potentially important role that management practices can play in improving the efficiency of ART services. Conclusions Our study identifies characteristics of services associated with the most efficient implementation of ART services in Nigeria. These results will help design efficient program scale-up to deliver comprehensive HIV services in Nigeria by distinguishing features linked to lower unit costs. PMID:29718906

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazawa, Kazuaki; Shakouri, Ali

    The energy conversion efficiency of today’s thermoelectric generators is significantly lower than that of conventional mechanical engines. Almost all of the existing research is focused on materials to improve the conversion efficiency. Here we propose a general framework to study the cost-efficiency trade-off for thermoelectric power generation. A key factor is the optimization of thermoelectric modules together with their heat source and heat sinks. Full electrical and thermal co-optimization yield a simple analytical expression for optimum design. Based on this model, power output per unit mass can be maximized. We show that the fractional area coverage of thermoelectric elements inmore » a module could play a significant role in reducing the cost of power generation systems.« less

  18. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 3: Operations technology

    NASA Technical Reports Server (NTRS)

    Vilja, John O.

    1990-01-01

    The study was initiated to identify operational problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume describes operations technologies that will enhance operational efficiency of propulsion systems. A total of 15 operations technologies were identified that will eliminate or mitigate operations problems described in Volume 2. A recommended development plan is presented for eight promising technologies that will simplify the propulsion system and reduce operational requirements.

  19. Smart Energy Choices Free Up Dollars for Capital Improvements.

    ERIC Educational Resources Information Center

    Ritchey, David

    2003-01-01

    Describes several ways to design or renovate school building to save thousand of dollars of energy costs. Considers site design, energy-efficient building envelope, renewable energy systems, lighting and electrical systems, mechanical and ventilation systems, water conservation, and transportation. Describes how to obtain information about the…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, David; Thomsen, Edwin; Li, Bin

    Three flow designs were operated in a 3-cell 1 kW class all vanadium mixed acid redox flow battery. The influence of electrode surface area and flow rate on the coulombic, voltage, and energy efficiency and the pressure drop in the flow circuit will be discussed and correlated to the flow design. Material cost associated with each flow design will also be discussed.

  1. Bidding cost evaluation with fuzzy methods on building project in Jakarta

    NASA Astrophysics Data System (ADS)

    Susetyo, Budi; Utami, Tin Budi

    2017-11-01

    National construction companies today demanded to become more competitive to face increasingly competition. Every construction company especially the contractor must work better than ever. Ability to prepare cost of the work that represents the efficiency and effectiveness of the implementation of the work necessary to produce cost - competitive. The project is considered successful if the target meets the quality, cost and time. From the aspect of cost, the project has been designed in accordance with certain technical criteria to be taken into account based on standard costs. To ensure the cost efficiency of the bidding process carried out meet the rules of a fairly and competitive. The research objective is to formulate the proper way to compare several deals with the standard cost of the work. The fuzzy technique is used as a evaluation methods to decision making. The evaluation not merely based on the lowest prices. The methods is looking for the most valuable and reasonable prices. The comparison is conducted to determine the most cost-competitive and reasonable as the winner of the bidding.

  2. Cost of enlarged operating zone for an existing Francis runner

    NASA Astrophysics Data System (ADS)

    Monette, Christine; Marmont, Hugues; Chamberland-Lauzon, Joël; Skagerstrand, Anders; Coutu, André; Carlevi, Jens

    2016-11-01

    Traditionally, hydro power plants have been operated close to best efficiency point, the more stable operating condition for which they have been designed. However, because of changes in the electricity market, many hydro power plants operators wish to operate their machines differently to fulfil those new market needs. New operating conditions can include whole range operation, many start/stops, extensive low load operation, synchronous condenser mode and power/frequency regulation. Many of these new operating conditions may impose more severe fatigue damage than the traditional base load operation close to best efficiency point. Under these conditions, the fatigue life of the runner may be significantly reduced and reparation or replacement cost might occur sooner than expected. In order to design reliable Francis runners for those new challenging operating scenarios, Andritz Hydro has developed various proprietary tools and design rules. These are used within Andritz Hydro to design mechanically robust Francis runners for the operating scenarios fulfilling customer's specifications. To estimate residual life under different operating scenarios of an existing runner designed years ago for best efficiency base load operation, Andritz Hydro's design rules and tools would necessarily lead to conservative results. While the geometry of a new runner can be modified to fulfil all conservative mechanical design rules, the predicted fatigue life of an existing runner under off-design operating conditions may appear rather short because of the conservative safety factor included in the calculations. The most precise and reliable way to calculate residual life of an existing runner under different operating scenarios is to perform a strain gauge measurement campaign on the runner. This paper presents the runner strain gage measurement campaign of a mid-head Francis turbine over all the operating conditions available during the test, the analysis of the measurement signals and the runner residual life assessment under different operating scenarios. With these results, the maintenance cost of the change in operating mode can then be calculated and foreseen by the power plant owner.

  3. Policy design and performance of emissions trading markets: an adaptive agent-based analysis.

    PubMed

    Bing, Zhang; Qinqin, Yu; Jun, Bi

    2010-08-01

    Emissions trading is considered to be a cost-effective environmental economic instrument for pollution control. However, the pilot emissions trading programs in China have failed to bring remarkable success in the campaign for pollution control. The policy design of an emissions trading program is found to have a decisive impact on its performance. In this study, an artificial market for sulfur dioxide (SO2) emissions trading applying the agent-based model was constructed. The performance of the Jiangsu SO2 emissions trading market under different policy design scenario was also examined. Results show that the market efficiency of emissions trading is significantly affected by policy design and existing policies. China's coal-electricity price system is the principal factor influencing the performance of the SO2 emissions trading market. Transaction costs would also reduce market efficiency. In addition, current-level emissions discharge fee/tax and banking mechanisms do not distinctly affect policy performance. Thus, applying emissions trading in emission control in China should consider policy design and interaction with other existing policies.

  4. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Timothy L.

    2014-09-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire protection, mechanical, electrical, telecommunications, and security features is expected to ensure compatibility with planned functional equipment and to facilitate constructability. If portions of the design are subcontracted to specialists, delivery of the finished design documents must not be considered complete until the subcontracted portions are also submitted for review. You must, along with support consultants, perform functional analyses and programming in developing design solutions. These solutions must reflect coordination of the competing functional, budgetary, and physical requirements for the project. During design phases, meetings between you and the SNL/NM Project Team to discuss and resolve design issues are required. These meetings are a normal part of the design process. For specific design-review requirements, see the project-specific Design Criteria. In addition to the design requirements described in this manual, instructive information is provided to explain the sustainable building practice goals for design, construction, operation, and maintenance of SNL/NM facilities. Please notify SNL/NM personnel of design best practices not included in this manual, so they can be incorporated in future updates. You must convey all documents describing work to the SNL/NM Project Manager in both hard copy and in an electronic format compatible with the SNL/NM-prescribed CADD and other software packages, and in accordance with a SNL/NM approved standard format. Print all hard copy versions of submitted documents (excluding drawings and renderings) double-sided when practical.« less

  5. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  6. Cryogenic ultra-high power infrared diode laser bars

    NASA Astrophysics Data System (ADS)

    Crump, Paul; Frevert, C.; Hösler, H.; Bugge, F.; Knigge, S.; Pittroff, W.; Erbert, G.; Tränkle, G.

    2014-02-01

    GaAs-based high power diode lasers are the most efficient source of optical energy, and are in wide use in industrial applications, either directly or as pump sources for other laser media. Increased output power per laser is required to enable new applications (increased optical power density) and to reduce cost (more output per component leads to lower cost in $/W). For example, laser bars in the 9xx nm wavelength range with the very highest power and efficiency are needed as pump sources for many high-energy-class solid-state laser systems. We here present latest performance progress using a novel design approach that leverages operation at temperatures below 0°C for increases in bar power and efficiency. We show experimentally that operation at -55°C increases conversion efficiency and suppresses thermal rollover, enabling peak quasi-continuous wave bar powers of Pout > 1.6 kW to be achieved (1.2 ms, 10 Hz), limited by the available current. The conversion efficiency at 1.6 kW is 53%. Following on from this demonstration work, the key open challenge is to develop designs that deliver higher efficiencies, targeting > 80% at 1.6 kW. We present an analysis of the limiting factors and show that low electrical resistance is crucial, meaning that long resonators and high fill factor are needed. We review also progress in epitaxial design developments that leverage low temperatures to enable both low resistance and high optical performance. Latest results will be presented, summarizing the impact on bar performance and options for further improvements to efficiency will also be reviewed.

  7. Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2016-01-01

    An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.

  8. Attitude Determination Algorithm based on Relative Quaternion Geometry of Velocity Incremental Vectors for Cost Efficient AHRS Design

    NASA Astrophysics Data System (ADS)

    Lee, Byungjin; Lee, Young Jae; Sung, Sangkyung

    2018-05-01

    A novel attitude determination method is investigated that is computationally efficient and implementable in low cost sensor and embedded platform. Recent result on attitude reference system design is adapted to further develop a three-dimensional attitude determination algorithm through the relative velocity incremental measurements. For this, velocity incremental vectors, computed respectively from INS and GPS with different update rate, are compared to generate filter measurement for attitude estimation. In the quaternion-based Kalman filter configuration, an Euler-like attitude perturbation angle is uniquely introduced for reducing filter states and simplifying propagation processes. Furthermore, assuming a small angle approximation between attitude update periods, it is shown that the reduced order filter greatly simplifies the propagation processes. For performance verification, both simulation and experimental studies are completed. A low cost MEMS IMU and GPS receiver are employed for system integration, and comparison with the true trajectory or a high-grade navigation system demonstrates the performance of the proposed algorithm.

  9. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles.more » The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts between the point of evaporation and the baffle plates. Second, the slots in the baffle plates create jets that force the mercury particles to impinge and adhere on downstream surfaces. The baffle plates should closely follow the designs developed for this system to be most effective.« less

  10. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient ( ηT * ˜ 33%) solar cell

    NASA Astrophysics Data System (ADS)

    Asadpour, Reza; Chavali, Raghu V. K.; Ryyan Khan, M.; Alam, Muhammad A.

    2015-06-01

    As single junction photovoltaic (PV) technologies, both Si heterojunction (HIT) and perovskite based solar cells promise high efficiencies at low cost. Intuitively, a traditional tandem cell design with these cells connected in series is expected to improve the efficiency further. Using a self-consistent numerical modeling of optical and transport characteristics, however, we find that a traditional series connected tandem design suffers from low J S C due to band-gap mismatch and current matching constraints. Specifically, a traditional tandem cell with state-of-the-art HIT ( η = 24 % ) and perovskite ( η = 20 % ) sub-cells provides only a modest tandem efficiency of η T ˜ 25%. Instead, we demonstrate that a bifacial HIT/perovskite tandem design decouples the optoelectronic constraints and provides an innovative path for extraordinary efficiencies. In the bifacial configuration, the same state-of-the-art sub-cells achieve a normalized output of ηT * = 33%, exceeding the bifacial HIT performance at practical albedo reflections. Unlike the traditional design, this bifacial design is relatively insensitive to perovskite thickness variations, which may translate to simpler manufacture and higher yield.

  11. Automated optimization techniques for aircraft synthesis

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1976-01-01

    Application of numerical optimization techniques to automated conceptual aircraft design is examined. These methods are shown to be a general and efficient way to obtain quantitative information for evaluating alternative new vehicle projects. Fully automated design is compared with traditional point design methods and time and resource requirements for automated design are given. The NASA Ames Research Center aircraft synthesis program (ACSYNT) is described with special attention to calculation of the weight of a vehicle to fly a specified mission. The ACSYNT procedures for automatically obtaining sensitivity of the design (aircraft weight, performance and cost) to various vehicle, mission, and material technology parameters are presented. Examples are used to demonstrate the efficient application of these techniques.

  12. Design of Ablation Test Device for Brick Coating of Gun

    NASA Astrophysics Data System (ADS)

    shirui, YAO; yongcai, CHEN; fei, WANG; jianxin, ZHAO

    2018-03-01

    As a result of the live ammunition test conditions, the barrel resistance of the barrel coating has high cost, time consuming, low efficiency and high test site requirements. This article designed a simple, convenient and efficient test device. Through the internal trajectory calculation by Matlab, the ablation environment produced by the ablation test device has achieved the expected effect, which is consistent with the working condition of the tube in the launching state, which can better reflect the ablation of the coating.

  13. New Solar Cell Is More Efficient, Less Costly | News | NREL

    Science.gov Websites

    rules for solar cells. Credit: Dennis Schroeder American innovators still have some cards to play when significant cost advantage when it comes to high-volume manufacturing. "It's a potentially disruptive . solar manufacturing when the approach hits the assembly line next year. The innovative design, simple

  14. Building a Low-Cost Gross Anatomy Laboratory: A Big Step for a Small University

    ERIC Educational Resources Information Center

    Goldman, Evan

    2010-01-01

    This article illustrates details of the planning, building, and improvement phases of a cost-efficient, full-dissection gross anatomy laboratory on a campus of an historically design-centric university. Special considerations were given throughout the project to the nature of hosting cadavers in a building shared amongst all undergraduate majors.…

  15. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells.

    PubMed

    Tai, Qidong; Chen, Bolei; Guo, Feng; Xu, Sheng; Hu, Hao; Sebo, Bobby; Zhao, Xing-Zhong

    2011-05-24

    Highly uniform and transparent polyaniline (PANI) electrodes that can be used as counter electrodes in dye-sensitized solar cells (DSSCs) were prepared by a facile in situ polymerization method. They were used to fabricate a novel bifacially active transparent DSSC, which showed conversion efficiencies of 6.54 and 4.26% corresponding to front- and rear-side illumination, respectively. Meanwhile, the efficiency of the same photoanode employing a Pt counter electrode was 6.69%. Compared to conventional Pt-based DSSCs, the design of the bifacial DSSC fabricated in this work would help to bring down the cost of energy production due to the lower cost of the materials and the higher power-generating efficiency of such devices for their capabilities of utilizing the light from both sides. These promising results highlight the potential application of PANI in cost-effective, transparent DSSCs.

  16. Staged Catalytic Partial Oxidation (SCPO) System - The State of Art Integrated Short Contact Time Hydrogen Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke Liu; Jin Ki Hong; Wei Wei

    Research and development on hydrogen and syngas production have great potential in addressing the following challenges in energy arena: (1) produce more clean fuels to meet the increasing demands for clean liquid and gaseous fuels for transportation and electricity generation, (2) increase the efficiency of energy utilization for fuels and electricity production, and (3) eliminate the pollutants and decouple the link between energy utilization and greenhouse gas emissions in end-use systems [Song, 2006, Liu, Song & Subramani 2009]. In this project, GE Global Research (GEGR) collaborated with Argonne National Laboratory (ANL) and the University of Minnesota (UoMn), developed and demonstratedmore » a low cost, compact staged catalytic partial oxidation (SCPO) technology for distributed hydrogen generation. GEGR analyzed different reforming system designs, and developed the SCPO reforming system which is a unique technology staging and integrating 3 different short contact time catalysts in a single, compact reactor: catalytic partial oxidation (CPO), steam methane reforming (SMR) and water-gas shift (WGS). This integration is demonstrated via the fabrication of a prototype scale unit of each key technology. Approaches for key technical challenges of the program includes: · Analyzed different system designs · Designed the SCPO hydrogen production system · Developed highly active and sulfur tolerant CPO catalysts · Designed and built different pilot-scale reactors to demonstrate each key technology · Evaluated different operating conditions · Quantified the efficiency and cost of the system · Developed process design package (PDP) for 1500 kg H2/day distributed H2 production unit. SCPO met the Department of Energy (DOE) and GE’s cost and efficiency targets for distributed hydrogen production.« less

  17. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaics

    NASA Astrophysics Data System (ADS)

    Ristow, Alan H.

    2008-10-01

    Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.

  19. Evaluation of resource impact factors versus social cost estimates in determining building energy performance standard levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieves, L.A.; Nesse, R.J.; Adams, R.C.

    1979-12-01

    In order to increase the welfare of society through the implementation of a building energy-performance standard, a method is required by which the least-cost means of obtaining the desired space conditioning of a building can be estimated. In other words, a life-cycle cost model must be developed to simulate the energy-related building-design decisions that would take place if resources were being allocated efficiently. The cost-minimizing model must incorporate technically efficient conservation strategies and fuel-conversion equipment, and the prices used must reflect the social value of the fuels and capital equipment used. This report explores the feasibility of developing a factormore » that could be used to adjust a design energy budget to account for the external costs associated with that energy consumption. One such factor, RIF (resource impact factor) has been proposed by ASHRAE. Though ASHRAE suggested the RIF x RUF (resource utilization factor) multiplier concept, RIF's were not explicitly defined. Weber (1978) suggested that RIF be defined as a ratio of social costs to effective market price. The basis for a RIF used in conjunction with a RUF is evaluated here and is found lacking. To fill the gap, a social-cost approach is developed that addresses the goals of both RIF's and RUF's. The rationale for using such an approach stems from the existence of differences between retail prices and the actual social costs of fuels.« less

  20. Low cost miniature data collection platform

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development of the RF elements of a telecommunications package involved detailed study and analysis of concepts and techniques followed by laboratory testing and evaluation of designs. The design goals for a complete telecommunications package excluding antenna were a total weight of 300 grams, in a total volume of 400 cu cm with a capability of unattended operation for a period of six months. Of utmost importance is extremely low cost when produced in lots of 10,000. Early in the program it became apparent that a single Miniature Data Collection Platform would not satisfy all users. A single high efficiency system would not satisfy a user who had available a large battery capacity but required a low cost system. Conversely, the low cost system would not satisfy the end user who had a very limited battery capacity. A system design to satisfy these varied requirements was implemented by designing several versions of the system building blocks and then constructing three systems from these building blocks.

  1. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    ERIC Educational Resources Information Center

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  2. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  3. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  4. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  5. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  6. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  7. 41 CFR 102-76.10 - What basic design and construction policy governs Federal agencies?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What basic design and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL... must be timely, efficient, and cost effective. (b) Use a distinguished architectural style and form in...

  8. Three types of solid state remote power controllers

    NASA Technical Reports Server (NTRS)

    Baker, D. E.

    1975-01-01

    Three types of solid state Remote Power Controller (RPC) circuits for 120 Vdc spacecraft distribution systems have been developed and evaluated. Both current limiting and noncurrent limiting modes of overload protection were developed and were demonstrated to be feasible. A second generation of circuits was developed which offers comparable performance with substantially less cost and complexity. Electrical efficiency for both generations is 98.5 to 99%. This paper describes various aspects of the circuit design, trade-off studies, and experimental test results. Comparisons of design parameters, component requirements, and engineering model evaluations will emphasize the high efficiency and reliability of the designs.

  9. Automation of On-Board Flightpath Management

    NASA Technical Reports Server (NTRS)

    Erzberger, H.

    1981-01-01

    The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.

  10. The International Database of Efficient Appliances (IDEA): A New Resource for Global Efficiency Policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F; McNeil, Michael A; Tu, Thomas

    A major barrier to effective appliance efficiency program design and evaluation is a lack of data for determination of market baselines and cost-effective energy savings potential. The data gap is particularly acute in developing countries, which may have the greatest savings potential per unit GDP. To address this need, we are developing the International Database of Efficient Appliances (IDEA), which automatically compiles data from a wide variety of online sources to create a unified repository of information on efficiency, price, and features for a wide range of energy-consuming products across global markets. This paper summarizes the database framework and demonstratesmore » the power of IDEA as a resource for appliance efficiency research and policy development. Using IDEA data for refrigerators in China and India, we develop robust cost-effectiveness indicators that allow rapid determination of savings potential within each market, as well as comparison of that potential across markets and appliance types. We discuss implications for future energy efficiency policy development.« less

  11. Low-Cost III-V Photovoltaic Materials by Chloride Vapor Transport Deposition Using Safe Solid Precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, Shannon; Aloni, Shaul; Weiss, Robert

    Si-based photovoltaic devices dominate the market. As photovoltaic (PV) manufacturing costs have plummeted, technologies which increase efficiency have become critical. Si cell efficiencies are nearing theoretical limits and Si-based PV modules are unlikely to reach the 25-30% efficiency range. The use of III-V semiconductors is an obvious technical solution to improve efficiency, especially if they can be integrated directly with existing Si technology as tandems. High coefficients of light absorption along with tunable bandgaps and lattice constants have resulted in record conversion efficiencies for both one-sun and concentrator PV applications. GaAs, for example, has been used to manufacture single-junction photovoltaicsmore » with world-record efficiencies of 28.8% at one sun.2 However, costs for III-Vs must be dramatically reduced to produce cost-effective, high-efficiency PV solutions. III-V costs are controlled by two factors: semiconductor growth and the substrate. III-V growth is dominated today by metal-organic vapor phase epitaxy (MOVPE) with a lesser role played by molecular beam epitaxy (MBE). MOVPE costs are high due to the expense and low utilization (~30%) of precursors, modest growth rates (~100 nm min-1), equipment complexity, and safety infrastructure needed to handle toxic, pyrophoric gases.3 MBE costs are high due to slow growth rates and limitations of scalability. Details comparing plausible low-cost III-V growth methods are available in a review article published as a result of this project. The primary goal of this project was to demonstrate that close-spaced vapor transport (CSVT) using chloride (from HCl) as a transport agent can be used for the rapid growth of device-ready III-V layers from safe, solid-source precursors. In pursuit of this goal, we designed, built, and installed a new Cl-CSVT reactor based on insights from our previous H2O-CSVT growth system and in collaboration with equipment professionals at Malachite Technologies. This system was successfully used to grow epitaxial GaAs with controlled n-type doping, having mobilities similar to MOVPE. Detailed technical information and results can also be found in the primary publication resulting from this project. This work sets the stage for tackling the development of high-performance III-V single junctions and tandem devices directly on Si substrates, which was beyond the capabilities of our H2O-CSVT system. The design of the reactor’s source and substrate transfer system should allow for direct deposition of device structures. The collective innovations of our Cl-CSVT system might ultimately serve as an enabling process for commercialization of the technology through a collaboration with appropriate industrial partners.« less

  12. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  13. Results of in-situ biofouling control, and corrosion test at Punta Tuna, Puerto Rico and its significance on OTEC heater exchanger design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasscer, D.S.; Morgan, T.O.; Tosteson, T.R.

    1983-06-01

    Because Ocean Thermal Energy Conversion (OTEC) operates at a low thermodynamic efficiency, heat exchangers represent a major portion of the overall cost of an OTEC power plant. For this reason, the commercial viability of OTEC depends on the design of efficient and inexpensive heat exchangers which have an operational life expectancy of 20 to 30 years and which can be maintained at a high level of efficiency by the use of effective biofouling control. Summarized here are the results of experiments conducted by the Center for Energy and Environment Research of the University of Puerto Rico to: determine the naturemore » of the biofilm which develops on heat exchanger surfaces exposed to running seawater, test the effectiveness of brush cleaning and chlorination in controlling biofouling on these surfaces and study the corrosion behavior of zinc protected aluminum alloys under OTEC conditions in an attempt to qualify them for use in low cost OTEC heat exchangers.« less

  14. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 1: Generic ground operations data

    NASA Technical Reports Server (NTRS)

    Byrd, Raymond J.

    1990-01-01

    This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advance Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. This volume presents ground processing data for a generic LOX/LH2 booster and core propulsion system based on current STS experience. The data presented includes: top logic diagram, process flow, activities bar-chart, loaded timelines, manpower requirements in terms of duration, headcount and skill mix per operations and maintenance instruction (OMI), and critical path tasks and durations.

  15. Urban Land Cover Mapping Accuracy Assessment - A Cost-benefit Analysis Approach

    NASA Astrophysics Data System (ADS)

    Xiao, T.

    2012-12-01

    One of the most important components in urban land cover mapping is mapping accuracy assessment. Many statistical models have been developed to help design simple schemes based on both accuracy and confidence levels. It is intuitive that an increased number of samples increases the accuracy as well as the cost of an assessment. Understanding cost and sampling size is crucial in implementing efficient and effective of field data collection. Few studies have included a cost calculation component as part of the assessment. In this study, a cost-benefit sampling analysis model was created by combining sample size design and sampling cost calculation. The sampling cost included transportation cost, field data collection cost, and laboratory data analysis cost. Simple Random Sampling (SRS) and Modified Systematic Sampling (MSS) methods were used to design sample locations and to extract land cover data in ArcGIS. High resolution land cover data layers of Denver, CO and Sacramento, CA, street networks, and parcel GIS data layers were used in this study to test and verify the model. The relationship between the cost and accuracy was used to determine the effectiveness of each sample method. The results of this study can be applied to other environmental studies that require spatial sampling.

  16. Outreach at Washington State University: a case study in costs and attendance

    NASA Astrophysics Data System (ADS)

    Bernhardt, Elizabeth A.; Bollen, Viktor; Bersano, Thomas M.; Mossman, Sean M.

    2016-09-01

    Making effective and efficient use of outreach resources can be difficult for student groups in smaller rural communities. Washington State University's OSA/SPIE student chapter desires well attended yet cost-effective ways to educate and inform the public. We designed outreach activities focused on three different funding levels: low upfront cost, moderate continuing costs, and high upfront cost with low continuing costs. By featuring our activities at well attended events, such as a pre-football game event, or by advertising a headlining activity, such as a laser maze, we take advantage of large crowds to create a relaxed learning atmosphere. Moreover, participants enjoy casual learning while waiting for a main event. Choosing a particular funding level and associating with well-attended events makes outreach easier. While there are still many challenges to outreach, such as motivating volunteers or designing outreach programs, we hope overcoming two large obstacles will lead to future outreach success.

  17. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, J.; VanGeet, O.; Simkus, S.

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or withinmore » a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.« less

  18. Permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Richter, E.

    1984-09-01

    The work deals with the design and analysis study for the conceptual design of an economical high efficiency ac motor based on permanent magnets. The design and trade off studies have covered the material considerations, the design tradeoff options as well as transient and steady state performance considerations, and other options. The baseline comparison is the high efficiency induction motor. The permanent magnet (PM) motor must fit into the same frame size and surpass the induction motor on a life cost basis that includes 2.5 years of operation at a 50% duty cycle. It is shown that a motor based upon ferrite magnets does meet the objectives of the program in ratings of up to 25 hp. A 7.5 motor design is carried through the conceptual design stage.

  19. Robust design of microchannel cooler

    NASA Astrophysics Data System (ADS)

    He, Ye; Yang, Tao; Hu, Li; Li, Leimin

    2005-12-01

    Microchannel cooler has offered a new method for the cooling of high power diode lasers, with the advantages of small volume, high efficiency of thermal dissipation and low cost when mass-produced. In order to reduce the sensitivity of design to manufacture errors or other disturbances, Taguchi method that is one of robust design method was chosen to optimize three parameters important to the cooling performance of roof-like microchannel cooler. The hydromechanical and thermal mathematical model of varying section microchannel was calculated using finite volume method by FLUENT. A special program was written to realize the automation of the design process for improving efficiency. The optimal design is presented which compromises between optimal cooling performance and its robustness. This design method proves to be available.

  20. Scoping the parameter space for demo and the engineering test facility (ETF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Wayne R.

    1999-01-19

    In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell' s presentation at Madison, we included a viewgraph with an example Demo that had 80 to 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to definemore » R&D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R&D programs must seek to meet.« less

  1. Optimal cost-effective designs of Phase II proof of concept trials and associated go-no go decisions.

    PubMed

    Chen, Cong; Beckman, Robert A

    2009-01-01

    This manuscript discusses optimal cost-effective designs for Phase II proof of concept (PoC) trials. Unlike a confirmatory registration trial, a PoC trial is exploratory in nature, and sponsors of such trials have the liberty to choose the type I error rate and the power. The decision is largely driven by the perceived probability of having a truly active treatment per patient exposure (a surrogate measure to development cost), which is naturally captured in an efficiency score to be defined in this manuscript. Optimization of the score function leads to type I error rate and power (and therefore sample size) for the trial that is most cost-effective. This in turn leads to cost-effective go-no go criteria for development decisions. The idea is applied to derive optimal trial-level, program-level, and franchise-level design strategies. The study is not meant to provide any general conclusion because the settings used are largely simplified for illustrative purposes. However, through the examples provided herein, a reader should be able to gain useful insight into these design problems and apply them to the design of their own PoC trials.

  2. NASA advanced aeronautics design solar powered remotely piloted vehicle

    NASA Technical Reports Server (NTRS)

    Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.

  3. Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory

    NASA Astrophysics Data System (ADS)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velazquez, Manuel

    2016-10-01

    The adaptation of water resource systems to the potential impacts of climate change requires mixed portfolios of supply and demand adaptation measures. The issue is not only to select efficient, robust, and flexible adaptation portfolios but also to find equitable strategies of cost allocation among the stakeholders. Our work addresses such cost allocation problems by applying two different theoretical approaches: social justice and cooperative game theory in a real case study. First of all, a cost-effective portfolio of adaptation measures at the basin scale is selected using a least-cost optimization model. Cost allocation solutions are then defined based on economic rationality concepts from cooperative game theory (the Core). Second, interviews are conducted to characterize stakeholders' perceptions of social justice principles associated with the definition of alternatives cost allocation rules. The comparison of the cost allocation scenarios leads to contrasted insights in order to inform the decision-making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of river basin adaptation portfolios.

  4. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commerciallymore » viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.« less

  5. Optimal PGU operation strategy in CHP systems

    NASA Astrophysics Data System (ADS)

    Yun, Kyungtae

    Traditional power plants only utilize about 30 percent of the primary energy that they consume, and the rest of the energy is usually wasted in the process of generating or transmitting electricity. On-site and near-site power generation has been considered by business, labor, and environmental groups to improve the efficiency and the reliability of power generation. Combined heat and power (CHP) systems are a promising alternative to traditional power plants because of the high efficiency and low CO2 emission achieved by recovering waste thermal energy produced during power generation. A CHP operational algorithm designed to optimize operational costs must be relatively simple to implement in practice such as to minimize the computational requirements from the hardware to be installed. This dissertation focuses on the following aspects pertaining the design of a practical CHP operational algorithm designed to minimize the operational costs: (a) real-time CHP operational strategy using a hierarchical optimization algorithm; (b) analytic solutions for cost-optimal power generation unit operation in CHP Systems; (c) modeling of reciprocating internal combustion engines for power generation and heat recovery; (d) an easy to implement, effective, and reliable hourly building load prediction algorithm.

  6. Comparison of Home Retrofit Programs in Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Kerrie; Hannigan, Eileen

    2013-03-01

    To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patternsmore » of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results-program cost and energy savings-to help understand the overall strengths and weaknesses or challenges of each model.« less

  7. Comparison of Home Retrofit Programs in Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, K.; Hannigan, E.

    2013-03-01

    To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patternsmore » of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.« less

  8. Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.; Howe, D. C.

    1983-01-01

    The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.

  9. Something Special for Teachers. A Schoolhouse Energy Teaching Program. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Anderson, Calvin E.; Bottinelli, Charles A.

    The Schoolhouse Energy Efficiency Demonstration (SEED) program was developed to assist schools in reducing the impact of rising energy costs. Developed as part of the SEED program, this publication was designed to provide background information on the energy issue and to briefly describe what future energy sources may be. It includes: (1)…

  10. Positioning Your Library for Solar (and Financial) Gain. Improving Energy Efficiency, Lighting, and Ventilation with Primarily Passive Techniques

    ERIC Educational Resources Information Center

    Shane, Jackie

    2012-01-01

    This article stresses the importance of building design above technology as a relatively inexpensive way to reduce energy costs for a library. Emphasis is placed on passive solar design for heat and daylighting, but also examines passive ventilation and cooling, green roofs, and building materials. Passive design is weighed against technologies…

  11. Cost estimation and analysis using the Sherpa Automated Mine Cost Engineering System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stebbins, P.E.

    1993-09-01

    The Sherpa Automated Mine Cost Engineering System is a menu-driven software package designed to estimate capital and operating costs for proposed surface mining operations. The program is engineering (as opposed to statistically) based, meaning that all equipment, manpower, and supply requirements are determined from deposit geology, project design and mine production information using standard engineering techniques. These requirements are used in conjunction with equipment, supply, and labor cost databases internal to the program to estimate all associated costs. Because virtually all on-site cost parameters are interrelated within the program, Sherpa provides an efficient means of examining the impact of changesmore » in the equipment mix on total capital and operating costs. If any aspect of the operation is changed, Sherpa immediately adjusts all related aspects as necessary. For instance, if the user wishes to examine the cost ramifications of selecting larger trucks, the program not only considers truck purchase and operation costs, it also automatically and immediately adjusts excavator requirements, operator and mechanic needs, repair facility size, haul road construction and maintenance costs, and ancillary equipment specifications.« less

  12. Marginal Structural Models for Case-Cohort Study Designs to Estimate the Association of Antiretroviral Therapy Initiation With Incident AIDS or Death

    PubMed Central

    Cole, Stephen R.; Hudgens, Michael G.; Tien, Phyllis C.; Anastos, Kathryn; Kingsley, Lawrence; Chmiel, Joan S.; Jacobson, Lisa P.

    2012-01-01

    To estimate the association of antiretroviral therapy initiation with incident acquired immunodeficiency syndrome (AIDS) or death while accounting for time-varying confounding in a cost-efficient manner, the authors combined a case-cohort study design with inverse probability-weighted estimation of a marginal structural Cox proportional hazards model. A total of 950 adults who were positive for human immunodeficiency virus type 1 were followed in 2 US cohort studies between 1995 and 2007. In the full cohort, 211 AIDS cases or deaths occurred during 4,456 person-years. In an illustrative 20% random subcohort of 190 participants, 41 AIDS cases or deaths occurred during 861 person-years. Accounting for measured confounders and determinants of dropout by inverse probability weighting, the full cohort hazard ratio was 0.41 (95% confidence interval: 0.26, 0.65) and the case-cohort hazard ratio was 0.47 (95% confidence interval: 0.26, 0.83). Standard multivariable-adjusted hazard ratios were closer to the null, regardless of study design. The precision lost with the case-cohort design was modest given the cost savings. Results from Monte Carlo simulations demonstrated that the proposed approach yields approximately unbiased estimates of the hazard ratio with appropriate confidence interval coverage. Marginal structural model analysis of case-cohort study designs provides a cost-efficient design coupled with an accurate analytic method for research settings in which there is time-varying confounding. PMID:22302074

  13. New benchmarks for costs and cost-efficiency of school-based feeding programs in food-insecure areas.

    PubMed

    Gelli, Aulo; Cavallero, Andrea; Minervini, Licia; Mirabile, Mariana; Molinas, Luca; de la Mothe, Marc Regnault

    2011-12-01

    School feeding is a popular intervention that has been used to support the education, health and nutrition of school children. Although the benefits of school feeding are well documented, the evidence on the costs of such programs is remarkably thin. Address the need for systematic estimates of the cost of different school feeding modalities, and of the determinants of the considerable cost variation among countries. WFP project data, including expenditures and number of schoolchildren covered, were collected for 78 projects in 62 countries through project reports and validated through WFP Country Office records. Yearly project costs per schoolchild were standardized over a set number of feeding days and the amount of energy provided by the average ration. Output metrics, such as tonnage, calories, and micronutrient content, were used to assess the cost-efficiency of the different delivery mechanisms. The standardized yearly average school feeding cost per child, not including school-level costs, was US$48. The yearly costs per child were lowest at US$23 for biscuit programs reaching school-going children and highest at US$75 for take-home rations programs reaching families of schoolgoing children. The average cost of programs combining on-site meals with extra take-home rations for children from vulnerable households was US$61. Commodity costs were on average 58% of total costs and were highest for biscuit and take-home rations programs (71% and 68%, respectively). Fortified biscuits provided the most cost-efficient option in terms of micronutrient delivery, whereas take-home rations were more cost-efficient in terms of food quantities delivered. Both costs and effects should be considered carefully when designing school feeding interventions. The average costs of school feeding estimated here are higher than those found in earlier studies but fall within the range of costs previously reported. Because this analysis does not include school-level costs, these findings highlight the higher nontransfer costs for programs delivering cooked meals in schools than for other school feeding modalities. The benchmarks presented here reflect the centralized WFP implementation model, which is not always relevant in terms of government school feeding programs, particularly those procuring within national boundaries using "home-grown" approaches.

  14. Optimal design study of high efficiency indium phosphide space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.

  15. Solar powered multipurpose remotely powered aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar-powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is, therefore, beneficial to society. The design and construction of a Multipurpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of using solar propulsion as a primary fuel source. This task has been a year-long effort by a group of eight students, divided into four teams, each dealing with different aspects of the design. The aircraft was designed to take off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design to achieve flight in this regime. Optimal performance requires a lightweight configuration with both structural integrity and maximum power availability. The structural design and choice of solar cells for the propulsion were governed by weight, efficiency, and cost considerations. The final design is an MPRPV weighing 35 N that cruises at 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 12.5 percent-efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were researched and tested during the design process.

  16. Efficient dynamic scarcity pricing in urban water supply

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR) tariff is designed, including a variable charge related to the scarcity value of water in the basin. The new tariff would encourage water conservation, providing more incentives with great water scarcity. The approach is applied to the supply to the city of Valencia with water resources from the Jucar river basin, a drought-prone Mediterranean basin in Eastern Spain that constitutes a good case for testing this policy. Our results demonstrate the potential of integrating the marginal value of water in the urban water tariffs, with water savings reaching up to 30% during scarcity conditions with respect to the baseline urban water tariffs.

  17. The Automated Array Assembly Task of the Low-cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Grenon, L.; Pastirik, E. M.; Pryor, R. A.; Sparks, T. G.

    1978-01-01

    An advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner is discussed. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are given. A detailed cost analysis was performed to indicate future areas of fruitful cost reduction effort. Recommendations for advanced investigations are included.

  18. Improved mine blast algorithm for optimal cost design of water distribution systems

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Guen Yoo, Do; Kim, Joong Hoon

    2015-12-01

    The design of water distribution systems is a large class of combinatorial, nonlinear optimization problems with complex constraints such as conservation of mass and energy equations. Since feasible solutions are often extremely complex, traditional optimization techniques are insufficient. Recently, metaheuristic algorithms have been applied to this class of problems because they are highly efficient. In this article, a recently developed optimizer called the mine blast algorithm (MBA) is considered. The MBA is improved and coupled with the hydraulic simulator EPANET to find the optimal cost design for water distribution systems. The performance of the improved mine blast algorithm (IMBA) is demonstrated using the well-known Hanoi, New York tunnels and Balerma benchmark networks. Optimization results obtained using IMBA are compared to those using MBA and other optimizers in terms of their minimum construction costs and convergence rates. For the complex Balerma network, IMBA offers the cheapest network design compared to other optimization algorithms.

  19. Topology design and performance analysis of an integrated communication network

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  20. Exploration of the horizontally staggered light guides for high concentration CPV applications.

    PubMed

    Selimoglu, Ozgur; Turan, Rasit

    2012-08-13

    The material and processing costs are still the major drawbacks of the c-Si based photovoltaic (PV) technology. The wafer cost comprises up to 35-40% of the total module cost. New approaches and system designs are needed in order to reduce the share of the wafer cost in photovoltaic energy systems. Here we explore the horizontally staggered light guide solar optics for use in Concentrated Photovoltaic (CPV) applications. This optical system comprises a lens array system coupled to a horizontal light guide which directs the incoming light beam to its edge. We have designed and simulated this system using a commercial ray tracing software (Zemax). The system is more compact, thinner and more robust compared to the conventional CPV systems. Concentration levels as high as 1000x can easily be reached when the system is properly designed. With such a high concentration level, a good acceptance angle of + -1 degree is still be conserved. The analysis of the system reveals that the total optical efficiency of the system could be as high as %94.4 without any anti-reflection (AR) coating. Optical losses can be reduced by just accommodating a single layer AR coating on the initial lens array leading to a %96.5 optical efficiency. Thermal behavior of high concentration linear concentrator is also discussed and compared with a conventional point focus CPV system.

  1. The magic of solar adobe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, B.M.

    1996-01-01

    This article describes the energy efficient features of a house in Santa Fe. It is a modern version of ancient adobe house of the area. The homes solar features added no net cost to its construction and save more than 80% on conventional energy use. Topic areas covered are as follows: art of adobe; solar design; back-up heat; energy and cost performance.

  2. Efficiently enforcing artisanal fisheries to protect estuarine biodiversity.

    PubMed

    Duarte de Paula Costa, Micheli; Mills, Morena; Richardson, Anthony J; Fuller, Richard A; Muelbert, José H; Possingham, Hugh P

    2018-06-26

    Artisanal fisheries support millions of livelihoods worldwide, yet ineffective enforcement can allow for continued environmental degradation due to overexploitation. Here, we use spatial planning to design an enforcement strategy for a pre-existing spatial closure for artisanal fisheries considering climate variability, existing seasonal fishing closures, representative conservation targets and enforcement costs. We calculated enforcement cost in three ways, based on different assumptions about who could be responsible for monitoring the fishery. We applied this approach in the Patos Lagoon estuary (Brazil), where we found three important results. First, spatial priorities for enforcement were similar under different climate scenarios. Second, we found that the cost and percentage of area enforced varied among scenarios tested by the conservation planning analysis, with only a modest increase in budget needed to incorporate climate variability. Third, we found that spatial priorities for enforcement depend on whether enforcement is carried out by a central authority or by the community itself. Here, we demonstrated a method that can be used to efficiently design enforcement plans, resulting in the conservation of biodiversity and estuarine resources. Also, cost of enforcement can be potentially reduced when fishers are empowered to enforce management within their fishing grounds. © 2018 by the Ecological Society of America.

  3. Escalator design features evaluation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Deshpande, G. K.

    1982-01-01

    Escalators are available with design features such as dual speed (90 and 120 fpm), mat operation and flat steps. These design features were evaluated based on the impact of each on capital and operating costs, traffic flow, and safety. A human factors engineering model was developed to analyze the need for flat steps at various speeds. Mat operation of escalators was found to be cost effective in terms of energy savings. Dual speed operation of escalators with the higher speed used during peak hours allows for efficient operation. A minimum number of flat steps required as a function of escalator speed was developed to ensure safety for the elderly.

  4. OLEDs for lighting: new approaches

    NASA Astrophysics Data System (ADS)

    Duggal, Anil R.; Foust, Donald F.; Nealon, William F.; Heller, Christian M.

    2004-02-01

    OLED technology has improved to the point where it is now possible to envision developing OLEDs as a low cost solid state light source. In order to realize this, significant advances have to be made in device efficiency, lifetime at high brightness, high throughput fabrication, and the generation of illumination quality white light. In this talk, the requirements for general lighting will be reviewed and various approaches to meeting them will be outlined. Emphasis will be placed on a new monolithic series-connected OLED design architecture that promises scalability without high fabrication cost or design complexity.

  5. Extending Beowulf Clusters

    USGS Publications Warehouse

    Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Hamer, George

    2003-01-01

    Beowulf clusters can provide a cost-effective way to compute numerical models and process large amounts of remote sensing image data. Usually a Beowulf cluster is designed to accomplish a specific set of processing goals, and processing is very efficient when the problem remains inside the constraints of the original design. There are cases, however, when one might wish to compute a problem that is beyond the capacity of the local Beowulf system. In these cases, spreading the problem to multiple clusters or to other machines on the network may provide a cost-effective solution.

  6. Solar power satellite system definition study. Part 1 and part 2, volume 2: Technical summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Practical designs for power transmission were developed to meet requirements and constraints. Microwave link error was analyzed to confirm attainability of acceptable link efficiency. Silicon photovoltaic was determined to be the best overall choice for energy conversion, with a potassium Rankine cycle as the backup choice. Space transportation operations provide low cost because of traffic level, and the payload volume is the launch vehicle design driver. The power cost is 4 to 5 /kwh, which will be competitive with fossil fuel sources by the year 2000.

  7. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  8. Lightweight High Efficiency Electric Motors for Space Applications

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  9. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  10. The minimal cost of life in space.

    PubMed

    Drysdale, A E; Rutkze, C J; Albright, L D; LaDue, R L

    2004-01-01

    The cost of keeping people alive in space is assessed from a theoretical viewpoint and using two actual designs for plant growth systems. While life support is theoretically not very demanding, our ability to implement life support is well below theoretical limits. A theoretical limit has been calculated from requirements and the state of the art for plant growth has been calculated using data from the BIO-Plex PDR and from the Cornell CEA prototype system. The very low efficiency of our current approaches results in a high mission impact, though we can still see how to get a significant reduction in cost of food when compared to supplying it from Earth. Seeing the distribution of costs should allow us to improve our current designs. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. The minimal cost of life in space

    NASA Technical Reports Server (NTRS)

    Drysdale, A. E.; Rutkze, C. J.; Albright, L. D.; LaDue, R. L.

    2004-01-01

    The cost of keeping people alive in space is assessed from a theoretical viewpoint and using two actual designs for plant growth systems. While life support is theoretically not very demanding, our ability to implement life support is well below theoretical limits. A theoretical limit has been calculated from requirements and the state of the art for plant growth has been calculated using data from the BIO-Plex PDR and from the Cornell CEA prototype system. The very low efficiency of our current approaches results in a high mission impact, though we can still see how to get a significant reduction in cost of food when compared to supplying it from Earth. Seeing the distribution of costs should allow us to improve our current designs. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  13. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    PubMed

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  14. Merging National Forest and National Forest Health Inventories to Obtain an Integrated Forest Resource Inventory – Experiences from Bavaria, Slovenia and Sweden

    PubMed Central

    Kovač, Marko; Bauer, Arthur; Ståhl, Göran

    2014-01-01

    Backgrounds, Material and Methods To meet the demands of sustainable forest management and international commitments, European nations have designed a variety of forest-monitoring systems for specific needs. While the majority of countries are committed to independent, single-purpose inventorying, a minority of countries have merged their single-purpose forest inventory systems into integrated forest resource inventories. The statistical efficiencies of the Bavarian, Slovene and Swedish integrated forest resource inventory designs are investigated with the various statistical parameters of the variables of growing stock volume, shares of damaged trees, and deadwood volume. The parameters are derived by using the estimators for the given inventory designs. The required sample sizes are derived via the general formula for non-stratified independent samples and via statistical power analyses. The cost effectiveness of the designs is compared via two simple cost effectiveness ratios. Results In terms of precision, the most illustrative parameters of the variables are relative standard errors; their values range between 1% and 3% if the variables’ variations are low (s%<80%) and are higher in the case of higher variations. A comparison of the actual and required sample sizes shows that the actual sample sizes were deliberately set high to provide precise estimates for the majority of variables and strata. In turn, the successive inventories are statistically efficient, because they allow detecting the mean changes of variables with powers higher than 90%; the highest precision is attained for the changes of growing stock volume and the lowest for the changes of the shares of damaged trees. Two indicators of cost effectiveness also show that the time input spent for measuring one variable decreases with the complexity of inventories. Conclusion There is an increasing need for credible information on forest resources to be used for decision making and national and international policy making. Such information can be cost-efficiently provided through integrated forest resource inventories. PMID:24941120

  15. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Martinek, Janna G

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles andmore » s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.« less

  16. Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered

    PubMed Central

    2011-01-01

    Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. Conclusions The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios. PMID:21600023

  17. Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.

    PubMed

    Mathiassen, Svend Erik; Bolin, Kristian

    2011-05-21

    Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios.

  18. On-board fault diagnostics for fly-by-light flight control systems using neural network flight processors

    NASA Astrophysics Data System (ADS)

    Urnes, James M., Sr.; Cushing, John; Bond, William E.; Nunes, Steve

    1996-10-01

    Fly-by-Light control systems offer higher performance for fighter and transport aircraft, with efficient fiber optic data transmission, electric control surface actuation, and multi-channel high capacity centralized processing combining to provide maximum aircraft flight control system handling qualities and safety. The key to efficient support for these vehicles is timely and accurate fault diagnostics of all control system components. These diagnostic tests are best conducted during flight when all facts relating to the failure are present. The resulting data can be used by the ground crew for efficient repair and turnaround of the aircraft, saving time and money in support costs. These difficult to diagnose (Cannot Duplicate) fault indications average 40 - 50% of maintenance activities on today's fighter and transport aircraft, adding significantly to fleet support cost. Fiber optic data transmission can support a wealth of data for fault monitoring; the most efficient method of fault diagnostics is accurate modeling of the component response under normal and failed conditions for use in comparison with the actual component flight data. Neural Network hardware processors offer an efficient and cost-effective method to install fault diagnostics in flight systems, permitting on-board diagnostic modeling of very complex subsystems. Task 2C of the ARPA FLASH program is a design demonstration of this diagnostics approach, using the very high speed computation of the Adaptive Solutions Neural Network processor to monitor an advanced Electrohydrostatic control surface actuator linked through a AS-1773A fiber optic bus. This paper describes the design approach and projected performance of this on-line diagnostics system.

  19. DESIGN OF AN ENGINE GENERATOR FOR THE RURAL POOR: A SUSTAINABLE SYSTEMS APPROACH

    EPA Science Inventory

    The system consists of a fuel source (a biodiesel system), a combustion/boiler system, and a steam engine/generator. The biodiesel system proved to be simplistic in its design and low cost; it successfully made high-quality biodiesel in an efficient manner. The main issues to ...

  20. Product Development and its Comparative Analysis by SLA, SLS and FDM Rapid Prototyping Processes

    NASA Astrophysics Data System (ADS)

    Choudhari, C. M.; Patil, V. D.

    2016-09-01

    To grab market and meeting deadlines has increased the scope of new methods in product design and development. Industries continuously strive to optimize the development cycles with high quality and cost efficient products to maintain market competitiveness. Thus the need of Rapid Prototyping Techniques (RPT) has started to play pivotal role in rapid product development cycle for complex product. Dimensional accuracy and surface finish are the corner stone of Rapid Prototyping (RP) especially if they are used for mould development. The paper deals with the development of part made with the help of Selective Laser Sintering (SLS), Stereo-lithography (SLA) and Fused Deposition Modelling (FDM) processes to benchmark and investigate on various parameters like material shrinkage rate, dimensional accuracy, time, cost and surface finish. This helps to conclude which processes can be proved to be effective and efficient in mould development. In this research work the emphasis was also given to the design stage of a product development to obtain an optimum design solution for an existing product.

  1. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts

    NASA Technical Reports Server (NTRS)

    Wong, George S.; Ziese, James M.; Farhangi, Shahram

    1990-01-01

    This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.

  2. Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen-Rich Graphene-Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst.

    PubMed

    Zhu, Yanping; Chen, Gao; Zhong, Yijun; Zhou, Wei; Shao, Zongping

    2018-02-01

    Practical application of hydrogen production from water splitting relies strongly on the development of low-cost and high-performance electrocatalysts for hydrogen evolution reaction (HER). The previous researches mainly focused on transition metal nitrides as HER catalysts due to their electrical conductivity and corrosion stability under acidic electrolyte, while tungsten nitrides have reported poorer activity for HER. Here the activity of tungsten nitride is optimized through rational design of a tungsten nitride-carbon composite. More specifically, tungsten nitride (WN x ) coupled with nitrogen-rich porous graphene-like carbon is prepared through a low-cost ion-exchange/molten-salt strategy. Benefiting from the nanostructured WN x , the highly porous structure and rich nitrogen dopant (9.5 at%) of the carbon phase with high percentage of pyridinic-N (54.3%), and more importantly, their synergistic effect, the composite catalyst displays remarkably high catalytic activity while maintaining good stability. This work highlights a powerful way to design more efficient metal-carbon composites catalysts for HER.

  3. Shifted Transversal Design smart-pooling for high coverage interactome mapping

    PubMed Central

    Xin, Xiaofeng; Rual, Jean-François; Hirozane-Kishikawa, Tomoko; Hill, David E.; Vidal, Marc; Boone, Charles; Thierry-Mieg, Nicolas

    2009-01-01

    “Smart-pooling,” in which test reagents are multiplexed in a highly redundant manner, is a promising strategy for achieving high efficiency, sensitivity, and specificity in systems-level projects. However, previous applications relied on low redundancy designs that do not leverage the full potential of smart-pooling, and more powerful theoretical constructions, such as the Shifted Transversal Design (STD), lack experimental validation. Here we evaluate STD smart-pooling in yeast two-hybrid (Y2H) interactome mapping. We employed two STD designs and two established methods to perform ORFeome-wide Y2H screens with 12 baits. We found that STD pooling achieves similar levels of sensitivity and specificity as one-on-one array-based Y2H, while the costs and workloads are divided by three. The screening-sequencing approach is the most cost- and labor-efficient, yet STD identifies about twofold more interactions. Screening-sequencing remains an appropriate method for quickly producing low-coverage interactomes, while STD pooling appears as the method of choice for obtaining maps with higher coverage. PMID:19447967

  4. Thin-film module circuit design: Practical and reliability aspects

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Twesme, E. N.

    1985-01-01

    This paper will address several aspects of the design and construction of submodules based on thin film amorphous silicon (a-Si) p i n solar cells. Starting from presently attainable single cell characteristics, and a realistic set of specifications, practical module designs are discussed from the viewpoints of efficient designs, the fabrication requirements, and reliability concerns. The examples center mostly on series interconnected modules of the superstrate type with detailed discussions of each portion of the structure in relation to its influence on module efficiency. Emphasis is placed on engineering topics such as: area coverage, optimal geometries, and cost and reliability. Practical constraints on achieving optimal designs, along with some examples of potential pitfalls in the manufacture and subsequent performance of a-Si modules are discussed.

  5. Tradeoffs between costs and greenhouse gas emissions in the design of urban transit systems

    NASA Astrophysics Data System (ADS)

    Griswold, Julia B.; Madanat, Samer; Horvath, Arpad

    2013-12-01

    Recent investments in the transit sector to address greenhouse gas emissions have concentrated on purchasing efficient replacement vehicles and inducing mode shift from the private automobile. There has been little focus on the potential of network and operational improvements, such as changes in headways, route spacing, and stop spacing, to reduce transit emissions. Most models of transit system design consider user and agency cost while ignoring emissions and the potential environmental benefit of operational improvements. We use a model to evaluate the user and agency costs as well as greenhouse gas benefit of design and operational improvements to transit systems. We examine how the operational characteristics of urban transit systems affect both costs and greenhouse gas emissions. The research identifies the Pareto frontier for designing an idealized transit network. Modes considered include bus, bus rapid transit (BRT), light rail transit (LRT), and metro (heavy) rail, with cost and emissions parameters appropriate for the United States. Passenger demand follows a many-to-many travel pattern with uniformly distributed origins and destinations. The approaches described could be used to optimize the network design of existing bus service or help to select a mode and design attributes for a new transit system. The results show that BRT provides the lowest cost but not the lowest emissions for our large city scenarios. Bus and LRT systems have low costs and the lowest emissions for our small city scenarios. Relatively large reductions in emissions from the cost-optimal system can be achieved with only minor increases in user travel time.

  6. Principles of light harvesting from single photosynthetic complexes.

    PubMed

    Schlau-Cohen, G S

    2015-06-06

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate.

  7. Single Grain Boundary Modeling and Design of Microcrystalline Si Solar Cells.

    PubMed

    Lin, Chu-Hsuan; Hsu, Wen-Tzu; Tai, Cheng-Hung

    2013-01-21

    For photovoltaic applications, microcrystalline silicon has a lot of advantages, such as the ability to absorb the near-infrared part of the solar spectrum. However, there are many dangling bonds at the grain boundary in microcrystalline Si. These dangling bonds would lead to the recombination of photo-generated carriers and decrease the conversion efficiency. Therefore, we included the grain boundary in the numerical study in order to simulate a microcrystalline Si solar cell accurately, designing new three-terminal microcrystalline Si solar cells. The 3-μm-thick three-terminal cell achieved a conversion efficiency of 10.8%, while the efficiency of a typical two-terminal cell is 9.7%. The three-terminal structure increased the J SC but decreased the V OC , and such phenomena are discussed. High-efficiency and low-cost Si-based thin film solar cells can now be designed based on the information provided in this paper.

  8. Single Grain Boundary Modeling and Design of Microcrystalline Si Solar Cells

    PubMed Central

    Lin, Chu-Hsuan; Hsu, Wen-Tzu; Tai, Cheng-Hung

    2013-01-01

    For photovoltaic applications, microcrystalline silicon has a lot of advantages, such as the ability to absorb the near-infrared part of the solar spectrum. However, there are many dangling bonds at the grain boundary in microcrystalline Si. These dangling bonds would lead to the recombination of photo-generated carriers and decrease the conversion efficiency. Therefore, we included the grain boundary in the numerical study in order to simulate a microcrystalline Si solar cell accurately, designing new three-terminal microcrystalline Si solar cells. The 3-μm-thick three-terminal cell achieved a conversion efficiency of 10.8%, while the efficiency of a typical two-terminal cell is 9.7%. The three-terminal structure increased the JSC but decreased the VOC, and such phenomena are discussed. High-efficiency and low-cost Si-based thin film solar cells can now be designed based on the information provided in this paper. PMID:28809309

  9. Energy, cost and design aspects of coarse- and fine-bubble aeration systems in the MBBR IFAS process.

    PubMed

    Sander, S; Behnisch, J; Wagner, M

    2017-02-01

    With the MBBR IFAS (moving bed biofilm reactor integrated fixed-film activated sludge) process, the biomass required for biological wastewater treatment is either suspended or fixed on free-moving plastic carriers in the reactor. Coarse- or fine-bubble aeration systems are used in the MBBR IFAS process. In this study, the oxygen transfer efficiency (OTE) of a coarse-bubble aeration system was improved significantly by the addition of the investigated carriers, even in-process (∼1% per vol-% of added carrier material). In a fine-bubble aeration system, the carriers had little or no effect on OTE. The effect of carriers on OTE strongly depends on the properties of the aeration system, the volumetric filling rate of the carriers, the properties of the carrier media, and the reactor geometry. This study shows that the effect of carriers on OTE is less pronounced in-process compared to clean water conditions. When designing new carriers in order to improve their effect on OTE further, suppliers should take this into account. Although the energy efficiency and cost effectiveness of coarse-bubble aeration systems can be improved significantly by the addition of carriers, fine-bubble aeration systems remain the more efficient and cost-effective alternative for aeration when applying the investigated MBBR IFAS process.

  10. Commercial Discount Rate Estimation for Efficiency Standards Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, K. Sydny

    2016-04-13

    Underlying each of the Department of Energy's (DOE's) federal appliance and equipment standards are a set of complex analyses of the projected costs and benefits of regulation. Any new or amended standard must be designed to achieve significant additional energy conservation, provided that it is technologically feasible and economically justified (42 U.S.C. 6295(o)(2)(A)). A proposed standard is considered economically justified when its benefits exceed its burdens, as represented by the projected net present value of costs and benefits. DOE performs multiple analyses to evaluate the balance of costs and benefits of commercial appliance and equipment e efficiency standards, at themore » national and individual building or business level, each framed to capture different nuances of the complex impact of standards on the commercial end user population. The Life-Cycle Cost (LCC) analysis models the combined impact of appliance first cost and operating cost changes on a representative commercial building sample in order to identify the fraction of customers achieving LCC savings or incurring net cost at the considered efficiency levels.1 Thus, the choice of commercial discount rate value(s) used to calculate the present value of energy cost savings within the Life-Cycle Cost model implicitly plays a key role in estimating the economic impact of potential standard levels.2 This report is intended to provide a more in-depth discussion of the commercial discount rate estimation process than can be readily included in standard rulemaking Technical Support Documents (TSDs).« less

  11. SEE Action Guide for States: Energy Efficiency as a Least-Cost Strategy to Reduce Greenhouse Gases and Air Pollution and Meet Energy Needs in the Power Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Lisa; Leventis, Greg; Schiller, Steven R.

    This guide is designed to provide information to state decision makers and staff on options to advance energy efficiency through strategies designed or implemented at the state and local levels of government and in the private sector.1 The information in this guide is intended to be useful to a wide variety of partners and stakeholders involved in energy-related discussions and decision-making at state and local levels. These energy efficiency options, or “pathways” as they are identified in this guide, can assist states in using energy efficiency to meet air pollution reduction and other policy objectives such as energy affordability andmore » reliability. A pathway is a set of interdependent actions that results in measurable energy savings streams and associated avoided air emissions and other benefits over a period of time. These activities can include state, local, or private sector regulations, policies, programs and other activities. For each of five broad pathways that offer sizable cost-effective energy savings, the guide addresses likely questions policy makers and regulators face when screening for the best opportunities to advance energy efficiency in their state.« less

  12. A retrospective investigation of energy efficiency standards: Policies may have accelerated long term declines in appliance costs

    DOE PAGES

    Van Buskirk, R. D.; Kantner, C. L. S.; Gerke, B. F.; ...

    2014-11-14

    We perform a retrospective investigation of multi-decade trends in price and life-cycle cost (LCC) for home appliances in periods with and without energy efficiency (EE) standards and labeling polices. In contrast to the classical picture of the impact of efficiency standards, the introduction and updating of appliance standards is not associated with a long-term increase in purchase price; rather, quality-adjusted prices undergo a continued or accelerated long-term decline. In addition, long term trends in appliance LCCs—which include operating costs—consistently show an accelerated long term decline with EE policies. We also show that the incremental price of efficiency improvements has declinedmore » faster than the baseline product price for selected products. These observations are inconsistent with a view of EE standards that supposes a perfectly competitive market with static supply costs. These results suggest that EE policies may be associated with other forces at play, such as innovation and learning-by-doing in appliance production and design, that can affect long term trends in quality-adjusted prices and LCCs.« less

  13. AGT100 turbomachinery. [for automobiles

    NASA Technical Reports Server (NTRS)

    Tipton, D. L.; Mckain, T. F.

    1982-01-01

    High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.

  14. The cost risk implementation on design-build project of integrated public spaces child friendly in capital of Jakarta

    NASA Astrophysics Data System (ADS)

    Mardiaman, Mubarok, Abdul

    2017-11-01

    Jakarta area of 662.33 km2 with a population of 10,075,030 inhabitants and green open spaces 9.98%. The Jakarta government built a child-friendly integrated open space as facilities for playing. Providing of facilities was hoped suitable with time, cost, quality, accountability and proper financial governance. Based on the PU ministerial regulation number 19/PRT/M/2015 on the standards and guidelines for procurement the design and construction work on the integrated build and the PU ministerial regulation No. 07/PRT/M/2011 on standards and guidelines for procurement of construction works and consulting services of public works and the ministry of housing. RPTRA development at 123 locations in Jakarta was implemented base on the contract of design and build. The design study was influenced by the cost elements; the main strength (expert), skilled personnel, support personnel, major equipment and support. The construction fee relies on; expert implementation, hardware implementation, preparation work, land, buildings, courtyards, fences, complementary and governance capabilities for human resources in completing the construction activities to minimize the cost risk. Montecarlo simulations was conducted to determine the average unit price, model and analyze systems. In the cost contract, the percentage of design work stipulated 2.5%, build 97.5%. Base on regulation the minister of public work for design work cost 2.72%, build 97.28%. Then, actual cost for design 2.67% and build 97.33%. From the three reference was shown that there are differentiation one another. The acceleration of planning able to make the cost and time more efficient that impact on the implementation margin.

  15. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.; Halse, C.

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  16. The Effect of Multispectral Image Fusion Enhancement on Human Efficiency

    DTIC Science & Technology

    2017-03-20

    performance of the ideal observer is indicative of the relative amount of informa- tion across various experimental manipulations. In our experimental design ...registration and fusion processes, and contributed strongly to the statistical analyses. LMB contributed to the experimental design and writing structure. All... designed to be innovative, low-cost, and (relatively) easy-to-implement, and to provide support across the spectrum of possible users including

  17. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  18. Joint histogram-based cost aggregation for stereo matching.

    PubMed

    Min, Dongbo; Lu, Jiangbo; Do, Minh N

    2013-10-01

    This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.

  19. Identification of High Performance, Low Environmental Impact Materials and Processes Using Systematic Substitution (SyS)

    NASA Technical Reports Server (NTRS)

    Dhooge, P. M.; Nimitz, J. S.

    2001-01-01

    Process analysis can identify opportunities for efficiency improvement including cost reduction, increased safety, improved quality, and decreased environmental impact. A thorough, systematic approach to materials and process selection is valuable in any analysis. New operations and facilities design offer the best opportunities for proactive cost reduction and environmental improvement, but existing operations and facilities can also benefit greatly. Materials and processes that have been used for many years may be sources of excessive resource use, waste generation, pollution, and cost burden that should be replaced. Operational and purchasing personnel may not recognize some materials and processes as problems. Reasons for materials or process replacement may include quality and efficiency improvements, excessive resource use and waste generation, materials and operational costs, safety (flammability or toxicity), pollution prevention, compatibility with new processes or materials, and new or anticipated regulations.

  20. Macroalgae for CO 2 Capture and Renewable Energy - A Pilot Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, Kristine

    2011-01-31

    The objective of this project was to demonstrate, at a pilot scale, the beneficial use of carbon dioxide (CO 2) through a technology designed to capture CO 2 from fossil-fuel fired power plant stack gas, generating macroalgae and converting the macroalgae at high efficiency to renewable methane that can be utilized in the power plant or introduced into a natural gas pipeline. The proposed pilot plant would demonstrate the cost-effectiveness and CO 2/ NO x flue-gas removal efficiency of an innovative algal scrubber technology where seaweeds are grown out of water on specially-designed supporting structures contained within greenhouses where themore » plants are constantly bathed by recycled nutrient sprays enriched by flue gas constituents. The work described in this document addresses Phase 1 of the project only. The scope of work for Phase 1 includes the completion of a preliminary design package; the collection of additional experimental data to support the preliminary and detailed design for a pilot scale utilization of CO 2 to cultivate macroalage and to process that algae to produce methane; and a technological and economic analysis to evaluate the potential of the system. Selection criteria for macroalgae that could survive the elevated temperatures and potential periodic desiccation of near desert project sites were identified. Samples of the selected macroalgae species were obtained and then subjected to anaerobic digestion to determine conversions and potential methane yields. A Process Design Package (PDP) was assembled that included process design, process flow diagram, material balance, instrumentation, and equipment list, sizes, and cost for the Phase 2 pilot plant. Preliminary economic assessments were performed under the various assumptions made, which are purposely conservative. Based on the results, additional development work should be conducted to delineate the areas for improving efficiency, reducing contingencies, and reducing overall costs.« less

  1. Process-based organization design and hospital efficiency.

    PubMed

    Vera, Antonio; Kuntz, Ludwig

    2007-01-01

    The central idea of process-based organization design is that organizing a firm around core business processes leads to cost reductions and quality improvements. We investigated theoretically and empirically whether the implementation of a process-based organization design is advisable in hospitals. The data came from a database compiled by the Statistical Office of the German federal state of Rheinland-Pfalz and from a written questionnaire, which was sent to the chief executive officers (CEOs) of all 92 hospitals in this federal state. We used data envelopment analysis (DEA) to measure hospital efficiency, and factor analysis and regression analysis to test our hypothesis. Our principal finding is that a high degree of process-based organization has a moderate but significant positive effect on the efficiency of hospitals. The main implication is that hospitals should implement a process-based organization to improve their efficiency. However, to actually achieve positive effects on efficiency, it is of paramount importance to observe some implementation rules, in particular to mobilize physician participation and to create an adequate organizational culture.

  2. Payload Instrument Design Rules for Safe and Efficient Flight Operations

    NASA Astrophysics Data System (ADS)

    Montagnon, E.; Ferri, P.

    2004-04-01

    Payload operations are often being neglected in favour of optimisation of scientific performance of the instrument design. This has major drawbacks in terms of cost, safety, efficiency of operations and finally science return. By taking operational aspects into account in the early phases of the instrument design, with a minimum more cultural than financial or technological additional effort, many problems can be avoided or minimized, with significant benefits to be gained in the mission execution phases. This paper presents possible improvements based on the use of the telemetry and telecommand packet standard, proper sharing of autonomy functions between instrument and platform, and enhanced interface documents.

  3. A study of power generation from a low-cost hydrokinetic energy system

    NASA Astrophysics Data System (ADS)

    Davila Vilchis, Juana Mariel

    The kinetic energy in river streams, tidal currents, or other artificial water channels has been used as a feasible source of renewable power through different conversion systems. Thus, hydrokinetic energy conversion systems are attracting worldwide interest as another form of distributed alternative energy. Because these systems are still in early stages of development, the basic approaches need significant research. The main challenges are not only to have efficient systems, but also to convert energy more economically so that the cost-benefit analysis drives the growth of this alternative energy form. One way to view this analysis is in terms of the energy conversion efficiency per unit cost. This study presents a detailed assessment of a prototype hydrokinetic energy system along with power output costs. This experimental study was performed using commercial low-cost blades of 20 in diameter inside a tank with water flow speed up to 1.3 m/s. The work was divided into two stages: (a) a fixed-pitch blade configuration, using a radial permanent magnet generator (PMG), and (b) the same hydrokinetic turbine, with a variable-pitch blade and an axial-flux PMG. The results indicate that even though the efficiency of a simple blade configuration is not high, the power coefficient is in the range of other, more complicated designs/prototypes. Additionally, the low manufacturing and operation costs of this system offer an option for low-cost distributed power applications.

  4. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  5. Strategies for designing an efficient insurance fertility benefit: a 21st century approach.

    PubMed

    Jones, Howard W; Allen, Brian D

    2009-06-01

    Creating a 21st century insurance benefit for infertility should be cost effective. Savings can be realized by eliminating hidden infertility costs, eliminating payments for ineffective treatments, and providing coverage for effective 21st century treatments, thus reducing costs associated with iatrogenic multiple pregnancies. The new benefit allows patients to attempt 21st century forms of infertility treatments while being managed by certified infertility providers. Industry and insurance carriers might save money by examination and implementation of this concept.

  6. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plantmore » operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.« less

  7. Multi-Function Gas Fired Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Heiba, Ahmad; Vineyard, Edward Allan

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibrationmore » reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.« less

  8. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    NASA Technical Reports Server (NTRS)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  9. Maximize Energy Efficiency in Buildings | Climate Neutral Research Campuses

    Science.gov Websites

    Buildings on a research campus, especially laboratory buildings, often represent the most cost-effective plans, campuses can evaluate the following: Energy Management Building Management New Buildings Design

  10. Time-dependent classification accuracy curve under marker-dependent sampling.

    PubMed

    Zhu, Zhaoyin; Wang, Xiaofei; Saha-Chaudhuri, Paramita; Kosinski, Andrzej S; George, Stephen L

    2016-07-01

    Evaluating the classification accuracy of a candidate biomarker signaling the onset of disease or disease status is essential for medical decision making. A good biomarker would accurately identify the patients who are likely to progress or die at a particular time in the future or who are in urgent need for active treatments. To assess the performance of a candidate biomarker, the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are commonly used. In many cases, the standard simple random sampling (SRS) design used for biomarker validation studies is costly and inefficient. In order to improve the efficiency and reduce the cost of biomarker validation, marker-dependent sampling (MDS) may be used. In a MDS design, the selection of patients to assess true survival time is dependent on the result of a biomarker assay. In this article, we introduce a nonparametric estimator for time-dependent AUC under a MDS design. The consistency and the asymptotic normality of the proposed estimator is established. Simulation shows the unbiasedness of the proposed estimator and a significant efficiency gain of the MDS design over the SRS design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Design optimisation of powers-of-two FIR filter using self-organising random immigrants GA

    NASA Astrophysics Data System (ADS)

    Chandra, Abhijit; Chattopadhyay, Sudipta

    2015-01-01

    In this communication, we propose a novel design strategy of multiplier-less low-pass finite impulse response (FIR) filter with the aid of a recent evolutionary optimisation technique, known as the self-organising random immigrants genetic algorithm. Individual impulse response coefficients of the proposed filter have been encoded as sum of signed powers-of-two. During the formulation of the cost function for the optimisation algorithm, both the frequency response characteristic and the hardware cost of the discrete coefficient FIR filter have been considered. The role of crossover probability of the optimisation technique has been evaluated on the overall performance of the proposed strategy. For this purpose, the convergence characteristic of the optimisation technique has been included in the simulation results. In our analysis, two design examples of different specifications have been taken into account. In order to substantiate the efficiency of our proposed structure, a number of state-of-the-art design strategies of multiplier-less FIR filter have also been included in this article for the purpose of comparison. Critical analysis of the result unambiguously establishes the usefulness of our proposed approach for the hardware efficient design of digital filter.

  12. Simulation analysis of a novel high efficiency silicon solar cell

    NASA Technical Reports Server (NTRS)

    Mokashi, Anant R.; Daud, T.; Kachare, A. H.

    1985-01-01

    It is recognized that crystalline silicon photovoltaic module efficiency of 15 percent or more is required for cost-effective photovoltaic energy utilization. This level of module efficiency requires large-area encapsulated production cell efficiencies in the range of 18 to 20 percent. Though the theoretical maximum of silicon solar cell efficiency for an idealized case is estimated to be around 30 percent, practical performance of cells to-date are considerably below this limit. This is understood to be largely a consequence of minority carrier losses in the bulk as well as at all surfaces including those under the metal contacts. In this paper a novel device design with special features to reduce bulk and surface recombination losses is evaluated using numerical analysis technique. Details of the numerical model, cell design, and analysis results are presented.

  13. Low-cost, high-performance and efficiency computational photometer design

    NASA Astrophysics Data System (ADS)

    Siewert, Sam B.; Shihadeh, Jeries; Myers, Randall; Khandhar, Jay; Ivanov, Vitaly

    2014-05-01

    Researchers at the University of Alaska Anchorage and University of Colorado Boulder have built a low cost high performance and efficiency drop-in-place Computational Photometer (CP) to test in field applications ranging from port security and safety monitoring to environmental compliance monitoring and surveying. The CP integrates off-the-shelf visible spectrum cameras with near to long wavelength infrared detectors and high resolution digital snapshots in a single device. The proof of concept combines three or more detectors into a single multichannel imaging system that can time correlate read-out, capture, and image process all of the channels concurrently with high performance and energy efficiency. The dual-channel continuous read-out is combined with a third high definition digital snapshot capability and has been designed using an FPGA (Field Programmable Gate Array) to capture, decimate, down-convert, re-encode, and transform images from two standard definition CCD (Charge Coupled Device) cameras at 30Hz. The continuous stereo vision can be time correlated to megapixel high definition snapshots. This proof of concept has been fabricated as a fourlayer PCB (Printed Circuit Board) suitable for use in education and research for low cost high efficiency field monitoring applications that need multispectral and three dimensional imaging capabilities. Initial testing is in progress and includes field testing in ports, potential test flights in un-manned aerial systems, and future planned missions to image harsh environments in the arctic including volcanic plumes, ice formation, and arctic marine life.

  14. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  15. Delivering pediatric HIV care in resource-limited settings: cost considerations in an expanded response.

    PubMed

    Tolle, Michael A; Phelps, B Ryan; Desmond, Chris; Sugandhi, Nandita; Omeogu, Chinyere; Jamieson, David; Ahmed, Saeed; Reuben, Elan; Muhe, Lulu; Kellerman, Scott E

    2013-11-01

    If children are to be protected from HIV, the expansion of PMTCT programs must be complemented by increased provision of paediatric treatment. This is expensive, yet there are humanitarian, equity and children's rights arguments to justify the prioritization of treating HIV-infected children. In the context of limited budgets, inefficiencies cost lives, either through lower coverage or less effective services. With the goal of informing the design and expansion of efficient paediatric treatment programs able to utilize to greatest effect the available resources allocated to the treatment of HIV-infected children, this article reviews what is known about cost drivers in paediatric HIV interventions, and makes suggestions for improving efficiency in paediatric HIV programming. High-impact interventions known to deliver disproportional returns on investment are highlighted and targeted for immediate scale-up. Progress will carry a cost - increased funding, as well as additional data on intervention costs and outcomes, will be required if universal access of HIV-infected children to treatment is to be achieved and sustained.

  16. CARBON FIBER COMPOSITES IN HIGH VOLUME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Charles David; Das, Sujit; Jeon, Dr. Saeil

    2014-01-01

    Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysismore » is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.« less

  17. Process design and economic analysis of the zinc selenide thermochemical hydrogen cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otsuki, H.H.; Krikorian, O.H.

    1978-09-06

    A detailed preliminary design for a hydrogen production plant has been developed based on an improved version of the ZnSe thermochemical cycle for decomposing water. In the latest version of the cycle, ZnCl/sub 2/ is converted directly to ZnO through high temperature steam hydrolysis. This eliminates the need for first converting ZnCl/sub 2/ to ZnSO/sub 4/ and also slightly reduces the overall heat requirement. Moreover, it broadens the temperature range over which prime heat is required and improves the coupling of the cycle with a nuclear reactor heat source. The ZnSe cycle is driven by a very-high-temperature nuclear reactor (VHTR)more » proposed by Westinghouse that provides a high-temperature (1283 K) helium working gas for process heat and power. The plant is sized to produce 27.3 Mg H/sub 2//h (60,000 lb H/sub 2//h) and requires specially designed equipment to perform the critical reaction steps in the cycle. We have developed conceptual designs for several of the important process steps to make cost estimates, and have obtained a cycle efficiency of about 40% and a hydrogen production cost of about $14/GJ. We believe that the cost is high because input data on reaction rates and equipment lifetimes have been conservatively estimated and the cycle parameters have not been optimized. Nonetheless, this initial analysis serves an important function in delineating areas in the cycle where additional research is needed to increase efficiency and reduce costs in a more advanced version of the cycle.« less

  18. Efficient Research Design: Using Value-of-Information Analysis to Estimate the Optimal Mix of Top-down and Bottom-up Costing Approaches in an Economic Evaluation alongside a Clinical Trial.

    PubMed

    Wilson, Edward C F; Mugford, Miranda; Barton, Garry; Shepstone, Lee

    2016-04-01

    In designing economic evaluations alongside clinical trials, analysts are frequently faced with alternative methods of collecting the same data, the extremes being top-down ("gross costing") and bottom-up ("micro-costing") approaches. A priori, bottom-up approaches may be considered superior to top-down approaches but are also more expensive to collect and analyze. In this article, we use value-of-information analysis to estimate the efficient mix of observations on each method in a proposed clinical trial. By assigning a prior bivariate distribution to the 2 data collection processes, the predicted posterior (i.e., preposterior) mean and variance of the superior process can be calculated from proposed samples using either process. This is then used to calculate the preposterior mean and variance of incremental net benefit and hence the expected net gain of sampling. We apply this method to a previously collected data set to estimate the value of conducting a further trial and identifying the optimal mix of observations on drug costs at 2 levels: by individual item (process A) and by drug class (process B). We find that substituting a number of observations on process A for process B leads to a modest £ 35,000 increase in expected net gain of sampling. Drivers of the results are the correlation between the 2 processes and their relative cost. This method has potential use following a pilot study to inform efficient data collection approaches for a subsequent full-scale trial. It provides a formal quantitative approach to inform trialists whether it is efficient to collect resource use data on all patients in a trial or on a subset of patients only or to collect limited data on most and detailed data on a subset. © The Author(s) 2016.

  19. Performance Evaluation of Low Cost LoRa Modules in IoT Applications

    NASA Astrophysics Data System (ADS)

    Daud, Shuhaizar; Shi Yang, Teoh; Asmi Romli, Muhamad; Awang Ahmad, Zahari; Mahrom, Norfadila; Raof, Rafikha Aliana A.

    2018-03-01

    LoRa is a low power long range wireless communication platform that is designed as an efficient communication platform for small, low powered devices. This makes it very suitable for battery powered devices and IoT implementation. This paper evaluates some low cost LoRa modules available on the market and their suitability, energy efficiency and performance during operation. Two low cost LoRa transceiver from Semtech Industries, the SX1272 and SX1278 were tested for their power consumption and maximum transmission range. This study have evaluated the two LoRa solutions and found that the SX1278 have a better transmission range and uses lower energy compared to the SX1272 thus making it more suitable for embedded implementation as a data gateway.

  20. A Process Management System for Networked Manufacturing

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  1. 2016 Standard Scenarios Report: A U.S. Electricity Sector Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Mai, Trieu; Logan, Jeffrey

    The National Renewable Energy Laboratory is conducting a study sponsored by the Office of Energy Efficiency and Renewable Energy (EERE) that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis.

  2. Game Theory and Risk-Based Levee System Design

    NASA Astrophysics Data System (ADS)

    Hui, R.; Lund, J. R.; Madani, K.

    2014-12-01

    Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.

  3. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1980-01-01

    A barrier crucible design which consistently maintains melt stability over long periods of time was successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours. The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and operated successfully for 3.5 hours demonstrating the feasibility of semi-automated dendritic web growth. The sensitivity of the cost of sheet, to variations in capital equipment cost and recycling dendrites was calculated and it was shown that these factors have relatively little impact on sheet cost. Dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.

  4. Investigation of a family of power conditioners integrated into a utility grid: final report Category I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, P.; Putkovich, R.P.

    1981-07-01

    A study was conducted of the requirements for and technologies applicable to power conditioning equipment in residential solar photovoltaic systems. A survey of companies known or thought to manufacture power conditioning equipment was conducted to asses the technology. Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, andmore » the three best candidate technologies--the current-sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible. (LEW)« less

  5. The DOE Next-Generation Drivetrain for Wind Turbine Applications: Gearbox, Generator, and Advanced Si/SiC Hybrid Inverter System: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, William; Keller, Jonathan

    This paper reports on the design and testing results from the U.S. Department of Energy Next-Generation Wind Turbine Drivetrain Project. The drivetrain design reduces the cost of energy by increasing energy capture through drivetrain efficiency improvements; by reducing operation and maintenance costs through reducing gearbox failures; and by lowering capital costs through weight reduction and a series of mechanical and electronic innovations. The paper provides an overview of the drivetrain gearbox and generator and provides a deeper look into the power converter system. The power converter has a number of innovations including the use of hybrid silicon (Si)/silicon carbide (SiC)more » isolated baseplate switching modules. Switching energies are compared between SiC and Si PIN diodes. The efficiency improvement by use of the SiC diode in a three-level converter is also described. Finally, a brief discussion covering utility interconnect requirements for turbines is provided with a particular focus on utility events that lead to high transient torque loads on drivetrain mechanical elements.« less

  6. Domestic refrigeration appliances in Poland: Potential for improving energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, S.; Schipper, L.; Lebot, B.

    1993-08-01

    This report is based on information collected from the main Polish manufacturer of refrigeration appliances. We describe their production facilities, and show that the energy consumption of their models for domestic sale is substantially higher than the average for similar models made in W. Europe. Lack of data and uncertainty about future production costs in Poland limits our evaluation of the cost-effective potential to increase energy efficiency, but it appears likely that considerable improvement would be economic from a societal perspective. Many design options are likely to have a simple payback of less than five years. We found that themore » production facilities are in need of substantial modernization in order to produce higher quality and more efficient appliances. We discuss policy options that could help to build a market for more efficient appliances in Poland and thereby encourage investment to produce such equipment.« less

  7. Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Liu, He; Wu, Wei

    2014-06-01

    We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.

  8. Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures.

    PubMed

    Mayer, Jan A; Offermans, Ton; Chrapa, Marek; Pfannmöller, Martin; Bals, Sara; Ferrini, Rolando; Nisato, Giovanni

    2018-03-19

    Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%.

  9. Strategy Guideline. Compact Air Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balancedmore » HVAC system, and overall improved energy efficiency of the home.« less

  10. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 2, Subtask 2.2: Design optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.

    1994-12-01

    The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed thatmore » the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.« less

  11. Design for Manufacture and Assembly for Product Development (Case study : Emergency Lamp)

    NASA Astrophysics Data System (ADS)

    Ngatilah, Y.; Pulansari, F.; Ernawati, Dira; Pujiastuti, C.; Parwati, C. I.; Prasetyo, B.

    2018-01-01

    Community needs that are not primary but important in everyday life are lights for lighting. State electricity company (PLN) is experiencing limitations in supplying electricity for this puIDRose. Therefore emergency lights (emergency lights) are already marketed in the community, which limited function only illuminate a very limited space. Therefore we developed the design of energy saving lamps using “Light Emitting Diode” (LED) which can illuminate the whole house as well as functioning as mobile phone charger (HP). The method used is Design for Manufacture and Assembly (DFMA), with the result of design development The percentage increase in assembly efficiency (E) is 0.01071 - 0.00645 = 0.00426 or = 39.76%. The decrease in material costs is IDR 234,000 - IDR 214,000 = IDR 20,000 or = 8.54% .Development design is received because of more assembly efficiency than the initial design. Power usage on previous products with series and designs of the original product can last only 4-5 hours non-stop, while the development of the design can survive 9-10 hours 2x more energy efficient.

  12. Design and optimisation of novel configurations of stormwater constructed wetlands

    NASA Astrophysics Data System (ADS)

    Kiiza, Christopher

    2017-04-01

    Constructed wetlands (CWs) are recognised as a cost-effective technology for wastewater treatment. CWs have been deployed and could be retrofitted into existing urban drainage systems to prevent surface water pollution, attenuate floods and act as sources for reusable water. However, there exist numerous criteria for design configuration and operation of CWs. The aim of the study was to examine effects of design and operational variables on performance of CWs. To achieve this, 8 novel designs of vertical flow CWs were continuously operated and monitored (weekly) for 2years. Pollutant removal efficiency in each CW unit was evaluated from physico-chemical analyses of influent and effluent water samples. Hybrid optimised multi-layer perceptron artificial neural networks (MLP ANNs) were applied to simulate treatment efficiency in the CWs. Subsequently, predictive and analytical models were developed for each design unit. Results show models have sound generalisation abilities; with various design configurations and operational variables influencing performance of CWs. Although some design configurations attained faster and higher removal efficiencies than others; all 8 CW designs produced effluents permissible for discharge into watercourses with strict regulatory standards.

  13. Aneurysm coil embolization: cost per volumetric filling analysis and strategy for cost reduction.

    PubMed

    Wang, Charlie; Ching, Esteban Cheng; Hui, Ferdinand K

    2016-05-01

    One of the primary device expenditures associated with the endovascular treatment of aneurysms is that of detachable coils. Analyzing the cost efficiency of detachable coils is difficult, given the differences in design, implantable volume, and the presence of additives. However, applying a volume per cost metric may provide an index analogous to unit price found in grocery stores. The price information for 509 different coils belonging to 31 different coil lines, available as of September 2013, was obtained through the inventory management system at the study site, and normalized to the price of the least expensive coil. Values were used to calculate the logarithmic ratio of volume over cost. Operator choice among coil sizes can vary the material costs by five-fold in a hypothetical aneurysm. The difference in coil costs as a function of cost per volume of coil can vary tremendously. Using the present pricing algorithms, using the longest available length at a particular helical dimension and system yields improved efficiency. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.

    This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less

  15. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells

    PubMed Central

    McDaniel, Hunter; Fuke, Nobuhiro; Makarov, Nikolay S.; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2−x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2−x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime. PMID:24322379

  16. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 2: Ground operations problems

    NASA Technical Reports Server (NTRS)

    Waldrop, Glen S.

    1990-01-01

    Operations problems and cost drivers were identified for current propulsion systems and design and technology approaches were identified to increase the operational efficiency and to reduce operations costs for future propulsion systems. To provide readily usable data for the ALS program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume presents a detailed description of 25 major problems encountered during launch processing of current expendable and reusable launch vehicles. A concise description of each problem and its operational impact on launch processing is presented, along with potential solutions and technology recommendation.

  17. Modifying physician behavior to improve cost-efficiency in safety-net ambulatory settings.

    PubMed

    Borkowski, Nancy; Gumus, Gulcin; Deckard, Gloria J

    2013-01-01

    Change interventions in one form or another are viewed as important tools to reduce variation in medical services, reduce costs, and improve quality of care. With the current focus on efficient resource use, the successful design and implementation of change strategies are of utmost importance for health care managers. We present a case study in which macro and micro level change strategies were used to modify primary care physicians' practice patterns of prescribing diagnostic services in a safety-net's ambulatory clinics. The findings suggest that health care managers using evidence-based strategies can create a practice environment that reduces barriers and facilitates change.

  18. Research on liquid impact forming technology of double-layered tubes

    NASA Astrophysics Data System (ADS)

    Sun, Changying; Liu, Jianwei; Yao, Xinqi; Huang, Beixing; Li, Yuhan

    2018-03-01

    A double-layered tube is widely used and developed in various fields because of its perfect comprehensive performance and design. With the advent of the era of a double-layered tube, the requirements for double layered tube forming quality, manufacturing cost and forming efficiency are getting higher, so forming methods of a double-layered tube are emerged in an endless stream, the forming methods of a double-layered tube have a great potential in the future. The liquid impact forming technology is a combination of stamping technology and hydroforming technology. Forming a double-layered tube has huge advantages in production cost, quality and efficiency.

  19. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  20. Guidelines for glycol dehydrator design; Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, W.P.; Wood, H.S.

    1993-01-01

    Better designs and instrumentation improve glycol dehydrator performance. This paper reports on these guidelines which emphasize efficient water removal from natural gas. Water, a common contaminant in natural gas, causes operational problems when it forms hydrates and deposits on solid surfaces. Result: plugged valves, meters, instruments and even pipelines. Simple rules resolve these problems and reduce downtime and maintenance costs.

  1. Optimizing Experimental Designs Relative to Costs and Effect Sizes.

    ERIC Educational Resources Information Center

    Headrick, Todd C.; Zumbo, Bruno D.

    A general model is derived for the purpose of efficiently allocating integral numbers of units in multi-level designs given prespecified power levels. The derivation of the model is based on a constrained optimization problem that maximizes a general form of a ratio of expected mean squares subject to a budget constraint. This model provides more…

  2. Challenge Students to Design an Energy-Efficient Home

    ERIC Educational Resources Information Center

    Griffith, Jack

    2008-01-01

    This article presents an activity that gives students a practical understanding of how much energy the average home consumes and wastes, and shows how the construction technologies used in home design affect overall energy usage. In this activity, students will outline the cost of a home's electrical system, give a breakdown of how much power the…

  3. Optimizing Railroad Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk

    ERIC Educational Resources Information Center

    Saat, Mohd Rapik

    2009-01-01

    The design of railroad tank cars is subject to structural and performance requirements and constrained by weight. They can be made safer by increasing tank thickness and adding various protective features, but these increase the weight and cost of the car and reduce its capacity and consequent transportation efficiency. Aircraft, automobiles and…

  4. Design, Development, and Maintenance of the GLOBE Program Website and Database

    NASA Technical Reports Server (NTRS)

    Brummer, Renate; Matsumoto, Clifford

    2004-01-01

    This is a 1-year (Fy 03) proposal to design and develop enhancements, implement improved efficiency and reliability, and provide responsive maintenance for the operational GLOBE (Global Learning and Observations to Benefit the Environment) Program website and database. This proposal is renewable, with a 5% annual inflation factor providing an approximate cost for the out years.

  5. The impact of solar cell technology on planar solar array performance

    NASA Technical Reports Server (NTRS)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  6. Designing a capacitated multi-configuration logistics network under disturbances and parameter uncertainty: a real-world case of a drug supply chain

    NASA Astrophysics Data System (ADS)

    Shishebori, Davood; Babadi, Abolghasem Yousefi

    2018-03-01

    This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.

  7. Structural design and stress analysis program for advanced composite filament-wound axisymmetric pressure vessels (COMTANK)

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1972-01-01

    Computer program has been specifically developed to handle, in an efficient and cost effective manner, planar wound pressure vessels fabricated of either boron-epoxy or graphite-epoxy advanced composite materials.

  8. Electric power - Photovoltaic or solar dynamic?

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.

    1985-01-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  9. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    NASA Astrophysics Data System (ADS)

    Ahmad, Samir Mahmmod; Cheow, Siu Leong; Ludin, Norasikin A.; Sopian, K.; Zaidi, Saleem H.

    Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt) is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50-150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3). Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells.

  10. Organizing for low cost space operations - Status and plans

    NASA Technical Reports Server (NTRS)

    Lee, C.

    1976-01-01

    Design features of the Space Transportation System (vehicle reuse, low cost expendable components, simple payload interfaces, standard support systems) must be matched by economical operational methods to achieve low operating and payload costs. Users will be responsible for their own payloads and will be charged according to the services they require. Efficient use of manpower, simple documentation, simplified test, checkout, and flight planning are firm goals, together with flexibility for quick response to varying user needs. Status of the Shuttle hardware, plans for establishing low cost procedures, and the policy for user charges are discussed.

  11. Assessing the Efficiency of HIV Prevention around the World: Methods of the PANCEA Project

    PubMed Central

    Marseille, Elliot; Dandona, Lalit; Saba, Joseph; McConnel, Coline; Rollins, Brandi; Gaist, Paul; Lundberg, Mattias; Over, Mead; Bertozzi, Stefano; Kahn, James G

    2004-01-01

    Objective To develop data collection methods suitable to obtain data to assess the costs, cost-efficiency, and cost-effectiveness of eight types of HIV prevention programs in five countries. Data Sources/Study Setting Primary data collection from prevention programs for 2002–2003 and prior years, in Uganda, South Africa, India, Mexico, and Russia. Study Design This study consisted of a retrospective review of HIV prevention programs covering one to several years of data. Key variables include services delivered (outputs), quality indicators, and costs. Data Collection/Extraction Methods Data were collected by trained in-country teams during week-long site visits, by reviewing service and financial records and interviewing program managers and clients. Principal Findings Preliminary data suggest that the unit cost of HIV prevention programs may be both higher and more variable than previous studies suggest. Conclusions A mix of standard data collection methods can be successfully implemented across different HIV prevention program types and countries. These methods can provide comprehensive services and cost data, which may carry valuable information for the allocation of HIV prevention resources. PMID:15544641

  12. Multi-object medium resolution optical spectroscopy at the E-ELT

    NASA Astrophysics Data System (ADS)

    Spanò, Paolo; Bonifacio, Piercarlo

    2008-07-01

    We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.

  13. Heat pump study: Tricks of the trade that can pump up efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, V.

    Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less

  14. Modelling of sequential groundwater treatment with zero valent iron and granular activated carbon.

    PubMed

    Bayer, Peter; Finkel, Michael

    2005-06-01

    Multiple contaminant mixtures in groundwater may not efficiently be treated by a single technology if contaminants possess rather different properties with respect to sorptivity, solubility, and degradation potential. An obvious choice is to use sequenced units of the generally accepted treatment materials zero valent iron (ZVI) and granular activated carbon (GAC). However, as the results of this modelling study suggest, the required dimensions of both reactor units may strongly differ from those expected on the grounds of a contaminant-specific design. This is revealed by performing an analysis for a broad spectrum of design alternatives through numerical experiments for selected patterns of contaminant mixtures consisting of monochlorobenzene, tetrachloroethylene, trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), and vinyl chloride (VC). It is shown that efficient treatment can be achieved only if competitive sorption effects in the GAC unit as well as the formation of intermediate products in the ZVI unit are carefully taken into account. Cost-optimal designs turned out to vary extremely depending on the prevailing conditions concerning contaminant concentrations, branching ratios, and unit costs of both reactor materials. Where VC is the critical contaminant, due to high initial concentration or extensive production as an intermediate, two options are cost-effective: an oversized ZVI unit with an oversized GAC unit or a pure GAC reactor.

  15. Advanced Lubrication for Energy Efficiency, Durability and Lower Maintenance Costs of Advanced Naval Components and Systems

    DTIC Science & Technology

    2011-05-12

    life expectancy of the Figure 47. FZG model 47    test rig. The shaft design and bearing layout have been completed and sizing of the system for...enabling all  these at minimal  cost and great environmental  safety. These materials  specifically  ii    designed  on  antiwear  and extreme pressure...reduce  wear  and  friction.  These  active  nanolubricant additives are  designed  as surface‐stabilized nanomaterials that are dispersed  in a

  16. What Determines HIV Prevention Costs at Scale? Evidence from the Avahan Programme in India

    PubMed Central

    Chandrashekar, Sudhashree; Shetty, Govindraj; Vickerman, Peter; Bradley, Janet; Alary, Michel; Moses, Stephen; Vassall, Anna

    2016-01-01

    Abstract Expanding essential health services through non‐government organisations (NGOs) is a central strategy for achieving universal health coverage in many low‐income and middle‐income countries. Human immunodeficiency virus (HIV) prevention services for key populations are commonly delivered through NGOs and have been demonstrated to be cost‐effective and of substantial global public health importance. However, funding for HIV prevention remains scarce, and there are growing calls internationally to improve the efficiency of HIV prevention programmes as a key strategy to reach global HIV targets. To date, there is limited evidence on the determinants of costs of HIV prevention delivered through NGOs; and thus, policymakers have little guidance in how best to design programmes that are both effective and efficient. We collected economic costs from the Indian Avahan initiative, the largest HIV prevention project conducted globally, during the first 4 years of its implementation. We use a fixed‐effect panel estimator and a random‐intercept model to investigate the determinants of average cost. We find that programme design choices such as NGO scale, the extent of community involvement, the way in which support is offered to NGOs and how clinical services are organised substantially impact average cost in a grant‐based payment setting. © 2016 The Authors. Health Economics published by John Wiley & Sons Ltd. PMID:26763652

  17. Status of multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Chu, C. L.

    1996-01-01

    This paper describes Applied Solar's present activity on Multijunction (MJ) space cells. We have worked on a variety of MJ cells, both monolithic and mechanically stacked. In recent years, most effort has been directed to GaInP2/GaAs monolithic cells, grown on Ge substrates, and the status of this cell design will be reviewed here. MJ cells are in demand to provide satellite power because of the acceptance of the overwhelming importance of high efficiency to reduce the area, weight and cost of space PV power systems. The need for high efficiencies has already accelerated the production of GaAs/Ge cells, with efficiencies 18.5-19%. When users realized that MJ cells could provide higher efficiencies (from 22% to 26%) with only fractional increase in costs, the demand for production MJ cells increased rapidly. The main purpose of the work described is to transfer the MOCVD growth technology of MJ high efficiency cells to a production environment, providing all the space requirements of users.

  18. A Bayesian multi-stage cost-effectiveness design for animal studies in stroke research

    PubMed Central

    Cai, Chunyan; Ning, Jing; Huang, Xuelin

    2017-01-01

    Much progress has been made in the area of adaptive designs for clinical trials. However, little has been done regarding adaptive designs to identify optimal treatment strategies in animal studies. Motivated by an animal study of a novel strategy for treating strokes, we propose a Bayesian multi-stage cost-effectiveness design to simultaneously identify the optimal dose and determine the therapeutic treatment window for administrating the experimental agent. We consider a non-monotonic pattern for the dose-schedule-efficacy relationship and develop an adaptive shrinkage algorithm to assign more cohorts to admissible strategies. We conduct simulation studies to evaluate the performance of the proposed design by comparing it with two standard designs. These simulation studies show that the proposed design yields a significantly higher probability of selecting the optimal strategy, while it is generally more efficient and practical in terms of resource usage. PMID:27405325

  19. Energy Efficient Engine: High-pressure compressor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Marchant, R. D.

    1988-01-01

    The objective of the NASA Energy Efficient Engine program is to identify and verify the technology required to achieve significant reductions in fuel consumption and operating cost for future commercial gas turbine engines. The design and analysis is documented of the high pressure compressor which was tested as part of the Pratt and Whitney effort under the Energy Efficient Engine program. This compressor was designed to produce a 14:1 pressure ratio in ten stages with an adiabatic efficiency of 88.2 percent in the flight propulsion system. The corresponding expected efficiency for the compressor component test rig is 86.5 percent. Other performance goals are a surge margin of 20 percent, a corrected flow rate of 35.2 kg/sec (77.5 lb/sec), and a life of 20,000 missions and 30,000 hours. Low loss, highly loaded airfoils are used to increase efficiency while reducing the parts count. Active clearance control and case trenches in abradable strips over the blade tips are included in the compressor component design to further increase the efficiency potential. The test rig incorporates variable geometry stator vanes in all stages to permit maximum flexibility in developing stage-to-stage matching. This provision precluded active clearance control on the rear case of the test rig. Both the component and rig designs meet or exceed design requirements with the exception of life goals, which will be achievable with planned advances in materials technology.

  20. Glass for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1980-01-01

    Various aspects of glass encapsulation that are important for the designer of photovoltaic systems are discussed. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the low-cost solar array project goals for arrays: (1) a low degradation rate, (2) high reliability, (3) an efficiency greater than 10 percent, (4) a total array price less than $500/kW, and (5) a production capacity of 500,000 kW/yr. The glass design areas discussed include the types of glass, sources and costs, physical properties, and glass modifications, such as antireflection coatings.

  1. Design of sensor node platform for wireless biomedical sensor networks.

    PubMed

    Xijun, Chen; -H Meng, Max; Hongliang, Ren

    2005-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, flexible sensor platform capable of customization and seamless integration into a wireless biomedical sensor network(WBSN) for health monitoring applications presents one of the most challenging tasks. In this paper, we propose a WBSN node platform featuring an ultra low-power microcontroller, an IEEE 802.15.4 compatible transceiver, and a flexible expansion connector. The proposed solution promises a cost-effective, flexible platform that allows easy customization, energy-efficient computation and communication. The development of a common platform for multiple physical sensors will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of an ECG (Electrocardiogram) sensor.

  2. Enhanced waterflooding design with dilute surfactant concentrations for North Sea conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michels, A.M.; Djojosoeparto, R.S.; Haas, H.

    1996-08-01

    Efficient selection procedures for surfactants have been applied to design a low-concentration surfactant-flooding process for North Sea oilfield application. Anionic surfactants of the propoxy ethoxy glyceryl sulfonate type can be used at 0.1 wt% concentrations together with sacrificial agents and without a polymer drive. Currently estimated unit technical costs (UTC`s)--at 8%--for application in the North Sea oil fields range frommore » $81 to $$94/incremental m{sup 3}, without taking uncertainty factors into account. Including such factors would likely add another $$31/m{sup 3} to the costs.« less

  3. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  4. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  5. Effects of cost metric on cost-effectiveness of protected-area network design in urban landscapes.

    PubMed

    Burkhalter, J C; Lockwood, J L; Maslo, B; Fenn, K H; Leu, K

    2016-04-01

    A common goal in conservation planning is to acquire areas that are critical to realizing biodiversity goals in the most cost-effective manner. The way monetary acquisition costs are represented in such planning is an understudied but vital component to realizing cost efficiencies. We sought to design a protected-area network within a forested urban region that would protect 17 birds of conservation concern. We compared the total costs and spatial structure of the optimal protected-area networks produced using three acquisition-cost surrogates (area, agricultural land value, and tax-assessed land value). Using the tax-assessed land values there was a 73% and 78% cost savings relative to networks derived using area or agricultural land value, respectively. This cost reduction was due to the considerable heterogeneity in acquisition costs revealed in tax-assessed land values, especially for small land parcels, and the corresponding ability of the optimization algorithm to identify lower-cost parcels for inclusion that had equal value to our target species. Tax-assessed land values also reflected the strong spatial differences in acquisition costs (US$0.33/m(2)-$55/m(2)) and thus allowed the algorithm to avoid inclusion of high-cost parcels when possible. Our results add to a nascent but growing literature that suggests conservation planners must consider the cost surrogate they use when designing protected-area networks. We suggest that choosing cost surrogates that capture spatial- and size-dependent heterogeneity in acquisition costs may be relevant to establishing protected areas in urbanizing ecosystems. © 2015 Society for Conservation Biology.

  6. Designing cost effective water demand management programs in Australia.

    PubMed

    White, S B; Fane, S A

    2002-01-01

    This paper describes recent experience with integrated resource planning (IRP) and the application of least cost planning (LCP) for the evaluation of demand management strategies in urban water. Two Australian case studies, Sydney and Northern New South Wales (NSW) are used in illustration. LCP can determine the most cost effective means of providing water services or alternatively the cheapest forms of water conservation. LCP contrasts to a traditional approach of evaluation which looks only at means of increasing supply. Detailed investigation of water usage, known as end-use analysis, is required for LCP. End-use analysis allows both rigorous demand forecasting, and the development and evaluation of conservation strategies. Strategies include education campaigns, increasing water use efficiency and promoting wastewater reuse or rainwater tanks. The optimal mix of conservation strategies and conventional capacity expansion is identified based on levelised unit cost. IRP uses LCP in the iterative process, evaluating and assessing options, investing in selected options, measuring the results, and then re-evaluating options. Key to this process is the design of cost effective demand management programs. IRP however includes a range of parameters beyond least economic cost in the planning process and program designs, including uncertainty, benefit partitioning and implementation considerations.

  7. Nursing Home Cost Studies and Reimbursement Issues

    PubMed Central

    Bishop, Christine E.

    1980-01-01

    This review of nursing home cost function research shows that certain provider and service characteristics are systematically associated with differences in the average cost of care. This information can be used to group providers for reasonable cost related rate-setting or to adjust their rates or rate ceilings. However, relationships between average cost and such service characteristics as patient mix, service intensity, and quality of care have not been fully delineated. Therefore, econometric cost functions cannot yet provide rate-setters with predictions about the cost of the efficient provision of nursing home care appropriate to patient needs. In any case, the design of reimbursement systems must be founded not only on technical information but also on public policy goals for long-term care. PMID:10309223

  8. Nursing home cost studies and reimbursement issues.

    PubMed

    Bishop, C E

    1980-01-01

    This review of nursing home cost function research shows that certain provider and service characteristics are systematically associated with differences in the average cost of care. This information can be used to group providers for reasonable cost related rate-setting or to adjust their rates or rate ceilings. However, relationships between average cost and such service characteristics as patient mix, service intensity, and quality of care have not been fully delineated. Therefore, econometric cost functions cannot yet provide rate-setters with predictions about the cost of the efficient provision of nursing home care appropriate to patient needs. In any case, the design of reimbursement systems must be founded not only on technical information but also on public policy goals for long-term care.

  9. Heliostat cost optimization study

    NASA Astrophysics Data System (ADS)

    von Reeken, Finn; Weinrebe, Gerhard; Keck, Thomas; Balz, Markus

    2016-05-01

    This paper presents a methodology for a heliostat cost optimization study. First different variants of small, medium sized and large heliostats are designed. Then the respective costs, tracking and optical quality are determined. For the calculation of optical quality a structural model of the heliostat is programmed and analyzed using finite element software. The costs are determined based on inquiries and from experience with similar structures. Eventually the levelised electricity costs for a reference power tower plant are calculated. Before each annual simulation run the heliostat field is optimized. Calculated LCOEs are then used to identify the most suitable option(s). Finally, the conclusions and findings of this extensive cost study are used to define the concept of a new cost-efficient heliostat called `Stellio'.

  10. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  11. Building America Case Study: Meeting DOE Challenge Home Program Certification, Chicago, Illinois; Denver, Colorado; Devens, Massachusetts (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this project was to evaluate integrated packages of advanced measures in individual test homes to assess their performance with respect to Building America Program goals, specifically compliance with the DOE Challenge Home Program. BSC consulted on the construction of five test houses by three Cold Climate production builders in three separate US cities. BSC worked with the builders to develop a design package tailored to the cost-related impacts for each builder. Therefore, the resulting design packages do vary from builder to builder. BSC provided support through this research project on the design, construction and performance testing ofmore » the five test homes. Overall, the builders have concluded that the energy related upgrades (either through the prescriptive or performance path) represent reasonable upgrades. The builders commented that while not every improvement in specification was cost effective (as in a reasonable payback period), many were improvements that could improve the marketability of the homes and serve to attract more energy efficiency discerning prospective homeowners. However, the builders did express reservations on the associated checklists and added certifications. An increase in administrative time was observed with all builders. The checklists and certifications also inherently increase cost due to: 1. Adding services to the scope of work for various trades, such as HERS Rater, HVAC contractor. 2. Increased material costs related to the checklists, especially the EPA Indoor airPLUS and EPA WaterSense Efficient Hot Water Distribution requirement.« less

  12. Evaluation of the U.S. Department of Energy Challenge Home Program Certification of Production Builders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerrigan, P.; Loomis, H.

    2014-09-01

    The purpose of this project was to evaluate integrated packages of advanced measures in individual test homes to assess their performance with respect to Building America Program goals, specifically compliance with the DOE Challenge Home Program. BSC consulted on the construction of five test houses by three Cold Climate production builders in three separate US cities. BSC worked with the builders to develop a design package tailored to the cost-related impacts for each builder. Therefore, the resulting design packages do vary from builder to builder. BSC provided support through this research project on the design, construction and performance testing ofmore » the five test homes. Overall, the builders have concluded that the energy related upgrades (either through the prescriptive or performance path) represent reasonable upgrades. The builders commented that while not every improvement in specification was cost effective (as in a reasonable payback period), many were improvements that could improve the marketability of the homes and serve to attract more energy efficiency discerning prospective homeowners. However, the builders did express reservations on the associated checklists and added certifications. An increase in administrative time was observed with all builders. The checklists and certifications also inherently increase cost due to: 1. Adding services to the scope of work for various trades, such as HERS Rater, HVAC contractor; 2. Increased material costs related to the checklists, especially the EPA Indoor airPLUS and EPA WaterSense(R) Efficient Hot Water Distribution requirement.« less

  13. Optimal surveillance strategy for invasive species management when surveys stop after detection.

    PubMed

    Guillera-Arroita, Gurutzeta; Hauser, Cindy E; McCarthy, Michael A

    2014-05-01

    Invasive species are a cause for concern in natural and economic systems and require both monitoring and management. There is a trade-off between the amount of resources spent on surveying for the species and conducting early management of occupied sites, and the resources that are ultimately spent in delayed management at sites where the species was present but undetected. Previous work addressed this optimal resource allocation problem assuming that surveys continue despite detection until the initially planned survey effort is consumed. However, a more realistic scenario is often that surveys stop after detection (i.e., follow a "removal" sampling design) and then management begins. Such an approach will indicate a different optimal survey design and can be expected to be more efficient. We analyze this case and compare the expected efficiency of invasive species management programs under both survey methods. We also evaluate the impact of mis-specifying the type of sampling approach during the program design phase. We derive analytical expressions that optimize resource allocation between monitoring and management in surveillance programs when surveys stop after detection. We do this under a scenario of unconstrained resources and scenarios where survey budget is constrained. The efficiency of surveillance programs is greater if a "removal survey" design is used, with larger gains obtained when savings from early detection are high, occupancy is high, and survey costs are not much lower than early management costs at a site. Designing a surveillance program disregarding that surveys stop after detection can result in an efficiency loss. Our results help guide the design of future surveillance programs for invasive species. Addressing program design within a decision-theoretic framework can lead to a better use of available resources. We show how species prevalence, its detectability, and the benefits derived from early detection can be considered.

  14. Reconstructing householder vectors from Tall-Skinny QR

    DOE PAGES

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; ...

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstratemore » the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.« less

  15. Holographic spectrum-splitting optical systems for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.

  16. An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater.

    PubMed

    Christgen, Beate; Scott, Keith; Dolfing, Jan; Head, Ian M; Curtis, Thomas P

    2015-01-01

    The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm(-2), and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000 Ω, Nafion and ETFE achieved an average power density of 29 mWm(-2) compared to 24 mWm(-2) for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm(-2)) would not be sufficient to offset the costs of any membrane and separator tested.

  17. An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater

    PubMed Central

    Christgen, Beate; Scott, Keith; Dolfing, Jan; Head, Ian M.; Curtis, Thomas P.

    2015-01-01

    The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm-2, and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000Ω, Nafion and ETFE achieved an average power density of 29 mWm-2 compared to 24 mWm-2 for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm-2) would not be sufficient to offset the costs of any membrane and separator tested. PMID:26305330

  18. Advanced low-floor vehicle (ALFV) specification research.

    DOT National Transportation Integrated Search

    2015-08-01

    This report details the results of research on market comparison, operational cost efficiencies, and prototype tests conducted on : a novel design for an Advanced Low Floor Vehicle (ALFV), flex-route transit bus. Section I describes how the need for ...

  19. Cost-efficient and storm surge-sensitive bridge design for coastal Maine.

    DOT National Transportation Integrated Search

    2013-08-01

    Climatic variation felt through changing weather patterns is having increasingly acute effects on Maines : transportation infrastructure. Acute risk occurs as a result of events, such as storms and flooding, while chronic risk : surrounds longer r...

  20. Identifying best practices for snowplow route optimization : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    Well-designed winter maintenance routes result in snow and ice control service that is both more effective, because roads are cleared more rapidly, and more cost-efficient, because deadheading, route overlap and other inefficiencies are reduced or el...

  1. Cost-effectiveness of health research study participant recruitment strategies: a systematic review.

    PubMed

    Huynh, Lynn; Johns, Benjamin; Liu, Su-Hsun; Vedula, S Swaroop; Li, Tianjing; Puhan, Milo A

    2014-10-01

    A large fraction of the cost of conducting clinical trials is allocated to recruitment of participants. A synthesis of findings from studies that evaluate the cost and effectiveness of different recruitment strategies will inform investigators in designing cost-efficient clinical trials. To systematically identify, assess, and synthesize evidence from published comparisons of the cost and yield of strategies for recruitment of participants to health research studies. We included randomized studies in which two or more strategies for recruitment of participants had been compared. We focused our economic evaluation on studies that randomized participants to different recruitment strategies. We identified 10 randomized studies that compared recruitment strategies, including monetary incentives (cash or prize), direct contact (letters or telephone call), and medical referral strategies. Only two of the 10 studies compared strategies for recruiting participants to clinical trials. We found that allocating additional resources to recruit participants using monetary incentives or direct contact yielded between 4% and 23% additional participants compared to using neither strategy. For medical referral, recruitment of prostate cancer patients by nurses was cost-saving compared to recruitment by consultant urologists. For all underlying study designs, monetary incentives cost more than direct contact with potential participants, with a median incremental cost per recruitment ratio of Int$72 (Int$-International dollar, a theoretical unit of currency) for monetary incentive strategy compared to Int$28 for direct contact strategy. Only monetary incentives and source of referral were evaluated for recruiting participants into clinical trials. We did not review studies that presented non-monetary cost or lost opportunity cost. We did not adjust for the number of study recruitment sites or the study duration in our economic evaluation analysis. Systematic and explicit reporting of cost and effectiveness of recruitment strategies from randomized comparisons is required to aid investigators to select cost-efficient strategies for recruiting participants to health research studies including clinical trials. © The Author(s) 2014.

  2. UTC Power/Delphi SECA CBS Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, Michael; Kerr, Rich

    2013-04-04

    The subject report summarizes the results of solid oxide fuel cell development conducted by UTC Power in conjunction with Delphi Automotive Systems under a cost-share program with from October 2008 through March of 2013. Over that period Delphi Automotive Systems developed a nearly four times larger area solid oxide fuel cell stack capable of operating on pre-reformed natural gas and simulated coal gas with durability demonstrated to 5,000 hours and projected to exceed 10,000 hours. The new stack design was scaled to 40-cell stacks with power output in excess of 6.25kW. Delphi also made significant strides in improving the manufacturability,more » yield and production cost of these solid oxide fuel cells over the course of the program. Concurrently, UTC Power developed a conceptual design for a 120 MW Integrated Gasification Fuel Cell (IGFC) operating on coal syngas with as high as 57% Higher Heating Value (HHV) efficiency as a measure of the feasibility of the technology. Subsequently a 400 kW on-site system preliminary design with 55% Lower Heating Value (LHV) efficiency operating on natural gas was down-selected from eighteen candidate designs. That design was used as the basis for a 25kW breadboard power plant incorporating four Delphi cell stacks that was tested on natural gas before the program was discontinued due to the sale of UTC Power in early 2013. Though the program was cut short of the endurance target of 3,000 hours, many aspects of the technology were proven including: large-area, repeatable cell manufacture, cell stack operation on simulated coal gas and natural gas and integrated power plant operation on natural gas. The potential of the technology for high efficiency stationary electric power generation is clear. Acceptable production costs, durability, and reliability in real world environments are the remaining challenges to commercialization.« less

  3. Major design issues of molten carbonate fuel cell power generation unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to complymore » with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.« less

  4. Magnetic bearings: A key technology for advanced rocket engines?

    NASA Technical Reports Server (NTRS)

    Girault, J. PH.

    1992-01-01

    For several years, active magnetic bearings (AMB) have demonstrated their capabilities in many fields, from industrial compressors to control wheel suspension for spacecraft. Despite this broad area, no significant advance has been observed in rocket propulsion turbomachinery, where size, efficiency, and cost are crucial design criteria. To this respect, Societe Europeenne de Propulsion (SEP) had funded for several years significant efforts to delineate the advantages and drawbacks of AMB applied to rocket propulsion systems. Objectives of this work, relative technological basis, and improvements are described and illustrated by advanced turbopump layouts. Profiting from the advantages of compact design in cryogenic environments, the designs show considerable improvements in engine life, performances, and reliability. However, these conclusions should still be tempered by high recurrent costs, mainly due to the space-rated electronics. Development work focused on this point and evolution of electronics show the possibility to decrease production costs by an order of magnitude.

  5. Clinical judgment research on economic topics: Role of congruence of tasks in clinical practice.

    PubMed

    Huttin, Christine C

    2017-01-01

    This paper discusses what can ensure the performance of judgment studies with an information design that integrates economics of medical systems, in the context of digitalization of healthcare. It is part of a series of 5 methodological papers on statistical procedures and problems to implement judgment research designs and decision models, especially to address cost of care, and ways to measure conversation on cost of care between physicians and patients, with unstructured data such as economic narratives to complement billing and financial information (e.g. cost cognitive cues in conjoint or reversed conjoint designs). The paper discusses how congruence of tasks can increase the reliability of data. It uses some results of two Meta reviews of judgment studies in different fields of applications: psychology, business, medical sciences and education. It compares tests for congruence in judgment studies and efficiency tests in econometric studies.

  6. Solar upconversion with plasmon-enhanced bimolecular complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, Jennifer

    2017-04-14

    Upconversion of sub-bandgap photons is a promising approach to exceed the Shockley-Queisser limit in solar technologies. However, due to the low quantum efficiencies and narrow absorption bandwidths of upconverters, existing systems have only led to fractional percent improvements in photovoltaic devices (~0.01%). In this project, we aimed to develop an efficient upconverting material that could improve cell efficiencies by at least one absolute percent. To achieve this goal, we first used thermodynamic calculations to determine cell efficiencies with realistic upconverting materials. Then, we designed, synthesized, and characterized nanoantennas that promise >100x enhancement in both the upconverter absorption cross-section and emissivemore » radiative rate. Concurrently, we optimized the upconverer by designing new ionic and molecular complexes that promise efficient solid-state upconversion. Lastly, with Bosch, we simulated record-efficiency semi-transparent cells that will allow for ready incorporation of our upconverting materials. While we were not successful in designing record efficiency upconverters during our three years of funding, we gained significant insight into the existing limitations of upconverters and how to best address these challenges. Ongoing work is aimed at addressing these limitations, to make upconversion a cost-competitive solar technology in future years.« less

  7. Neighborhood Energy/Economic Development project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to themore » creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.« less

  8. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurlo, James; Lueck, Steve

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. willmore » leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background« less

  9. The energy-efficient implementation of an adaptive-filtering-based QRS complex detection method for wearable devices

    NASA Astrophysics Data System (ADS)

    Tian, Shudong; Han, Jun; Yang, Jianwei; Zeng, Xiaoyang

    2017-10-01

    Electrocardiogram (ECG) can be used as a valid way for diagnosing heart disease. To fulfill ECG processing in wearable devices by reducing computation complexity and hardware cost, two kinds of adaptive filters are designed to perform QRS complex detection and motion artifacts removal, respectively. The proposed design achieves a sensitivity of 99.49% and a positive predictivity of 99.72%, tested under the MIT-BIH ECG database. The proposed design is synthesized under the SMIC 65-nm CMOS technology and verified by post-synthesis simulation. Experimental results show that the power consumption and area cost of this design are of 160 μW and 1.09 × 10 5 μm2, respectively. Project supported by the National Natural Science Foundation of China (Nos. 61574040, 61234002, 61525401).

  10. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vinod

    2017-05-05

    High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly butmore » important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.« less

  11. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    NASA Technical Reports Server (NTRS)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelundur, Vijay

    Suniva, Inc., in collaboration with the University Center for Excellence in Photovoltaics (UCEP) at the Georgia Institute of Technology (GIT) proposed this comprehensive three year program to enable the development of an advanced high performance product that will help the US regain its competitive edge in PV. This project was designed to overcome cost and efficiency barriers through advances in PV science, technology innovation, low-cost manufacturing and full production of ~22.5% efficient n-type Si cells in Norcross, GA. At the heart of the project is the desire to complement the technology being developed concurrently under the Solarmat and ARPAe initiativesmore » to develop a differentiated product superior in both performance and cost effectiveness to the competing alternatives available on the market, and push towards achieving SunShot objectives while ensuring a sustainable business model based on US manufacturing. A significant reduction of the costs in modules produced today will need to combine reductions in wafer costs, cell processing costs as well as module fabrication costs while delivering a product that is not only more efficient under test conditions but also increases the energy yield in outdoor operations. This project will result in a differentiated high performance product and technology that is consistent with sustaining PV manufacturing in the US for a longer term and further highlights the need for continued support for developing the next generation concepts that can keep US manufacturing thriving to support the growing demand for PV in the US and consistent with the US government’s mandates for energy independence.« less

  13. A short-stay unit for thyroidectomy patients increases discharge efficiency.

    PubMed

    Vrabec, Sara; Oltmann, Sarah C; Clark, Nicholas; Chen, Herbert; Sippel, Rebecca S

    2013-09-01

    Patients traditionally recover overnight on a general surgery ward after a thyroidectomy; however, these units often lack the efficiency and focus for rapid discharge, which is the goal of a short-stay (SS) unit. Using an SS unit for thyroidectomy patients, who are often discharged in <24 h, may reduce the duration of hospital stay and subsequently decrease associated costs and increase hospital bed and resource availability. A retrospective review of 400 patients undergoing thyroidectomy at a single academic hospital. We analyzed postoperative discharge information and hospital cost data. Adult patients who stayed a single night in the hospital were included. We compared patients staying on a designated SS unit versus a general surgery (GS) ward. A total of 223 patients were admitted to SS, and 177 to GS. Trends of admission location were blocked based on time period, with most patients per time period going to the same location. Discharge times were significantly quicker for patients admitted to SS (P < 0.001). A total of 70% of SS patients were discharged before noon, versus 40% of GS patients (P < 0.001). Many variances were identified to account for these differences. Direct costs were significantly lower with SS, owing to savings in pharmacy, recovery room, and nursing expenses (all P < 0.01). A designated short-stay hospital unit is an effective model for increasing the efficiency of discharge for thyroidectomy patients compared with those admitted to a general surgery ward. It also serves to increase bed availability, which decreases hospital cost and may improve patient flow. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Energy efficient engine flight propulsion system preliminary analysis and design report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    A flight propulsion system preliminary design was established that meets the program goals of at least a 12 percent reduction in thrust specific fuel consumption, at least a five percent reduction in direct operating cost, and one-half the performance deterioration rate of the most efficient current commercial engines. The engine provides a high probability of meeting the 1978 noise rule goal. Smoke and gaseous emissions defined by the EPA proposed standards for engines newly certified after 1 January 1981 are met with the exception of NOx, despite incorporation of all known NOx reduction technology.

  15. Study of small civil turbofan engines applicable to military trainer airplanes

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Merrill, G. L.; Burnett, G. A.

    1975-01-01

    Small turbofan engine design concepts were applied to military trainer airplanes to establish the potential for commonality between civil and military engines. Several trainer configurations were defined and studied. A ""best'' engine was defined for the trainer mission, and sensitivity analyses were performed to determine the effects on airplane size and efficiency of wing loading, power loading, configuration, aerodynamic quality, and engine quality. It is concluded that a small civil aircraft is applicable to military trainer airplanes. Aircraft designed with these engines are smaller, less costly, and more efficient than existing trainer aircraft.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht H. Mayer

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricitymore » costs to consumers and lowest emissions.« less

  17. Low-Cost Wood Homes for Rural America - Construction Manual

    Treesearch

    L.O. Andeson

    1969-01-01

    Five home designs are described to meet the need for better housing for low-income rural families. Homes feature theintelligent use of wood and wood products as much as possible, are intended for simple and efficient constructionwith typical building labor availableln rural areas, and `are designed to meet.thegoal of a three-bedroom home with at least 1000 square feet...

  18. Advanced energy system program

    NASA Astrophysics Data System (ADS)

    Trester, K.

    1989-02-01

    The objectives of the program are to design, develop and demonstrate a natural-gas-fueled, highly recuperated, 50 kW Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Marketing studies have shown that this Advanced Energy System (AES), with its many unique and cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantages of the system that result in low cost of ownership are high electrical efficiency (30 percent, HHV), low maintenance, high reliability and long life (20 years).

  19. The high intensity solar cell: Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  20. Manufacturing Process for OLED Integrated Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Cheng-Hung; McCamy, James; Ashtosh, Ganjoo

    2017-01-27

    The primary objective of this project is to demonstrate manufacturing processes for technologies that will enable commercialization of a large-area and low-cost “integrated substrate” product for rigid OLED SSL lighting. The integrated substrate product will consist of a low cost, float glass substrate combined with a transparent conductive anode film layer, and light out-coupling (internal and external extraction layers) structures. In combination, these design elements will enable an integrated substrate meeting or exceeding 2015 performance targets for cost ($60/m2), extraction efficiency (50%) and sheet resistance (<10 ohm/sq).

  1. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high-efficiency, propeller-driven aircraft of non-U.S. manufacture. During the past year senior student design teams at Purdue developed and then responded to a Request For Proposal (RFP) for a regional transport aircraft. The RFP development identified promising world markets and their needs. The students responded by designing aircraft with ranges of up to 1500 n.m. and passenger loads of 50 to 90. During the design project, special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Twelve student teams worked for one semester developing their designs. Several of the more successful designs and those that placed a high premium on innovation are described. The depth of detail and analysis in these student efforts are also illustrated.

  2. Process Mining-Based Method of Designing and Optimizing the Layouts of Emergency Departments in Hospitals.

    PubMed

    Rismanchian, Farhood; Lee, Young Hoon

    2017-07-01

    This article proposes an approach to help designers analyze complex care processes and identify the optimal layout of an emergency department (ED) considering several objectives simultaneously. These objectives include minimizing the distances traveled by patients, maximizing design preferences, and minimizing the relocation costs. Rising demand for healthcare services leads to increasing demand for new hospital buildings as well as renovating existing ones. Operations management techniques have been successfully applied in both manufacturing and service industries to design more efficient layouts. However, high complexity of healthcare processes makes it challenging to apply these techniques in healthcare environments. Process mining techniques were applied to address the problem of complexity and to enhance healthcare process analysis. Process-related information, such as information about the clinical pathways, was extracted from the information system of an ED. A goal programming approach was then employed to find a single layout that would simultaneously satisfy several objectives. The layout identified using the proposed method improved the distances traveled by noncritical and critical patients by 42.2% and 47.6%, respectively, and minimized the relocation costs. This study has shown that an efficient placement of the clinical units yields remarkable improvements in the distances traveled by patients.

  3. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Ryan Wartman; David Tarnowski

    2006-03-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less

  4. Monitoring of energy efficiency of technological modes of gas transport using modern gas-turbine equipment

    NASA Astrophysics Data System (ADS)

    Golik, V. V.; Zemenkova, M. Yu; Shipovalov, A. N.; Akulov, K. A.

    2018-05-01

    The paper presents calculations and an example of energy efficiency justification of the regimes of the equipment used. The engineering design of the gas pipeline in the part of monitoring the energy efficiency of a gas compressor unit (GCU) is considered. The results of the GCU characteristics and its components evaluation are described. The evaluation results of the energy efficiency indicators of the gas pipeline are presented. As an example of the result of the analysis, it is proposed to use gas compressor unit GCU-32 "Ladoga" because of its efficiency and cost effectiveness, in comparison with analogues.

  5. Demonstration Program for Low-Cost, High-Energy-Saving Dynamic Windows

    DTIC Science & Technology

    2014-09-01

    Design The scope of this project was to demonstrate the impact of dynamic windows via energy savings and HVAC peak-load reduction; to validate the...temperature and glare. While the installed dynamic window system does not directly control the HVAC or lighting of the facility, those systems are designed ...optimize energy efficiency and HVAC load management. The conversion to inoperable windows caused an unforeseen reluctance to accept the design and

  6. Modeling efficiency at the process level: an examination of the care planning process in nursing homes.

    PubMed

    Lee, Robert H; Bott, Marjorie J; Gajewski, Byron; Taunton, Roma Lee

    2009-02-01

    To examine the efficiency of the care planning process in nursing homes. We collected detailed primary data about the care planning process for a stratified random sample of 107 nursing homes from Kansas and Missouri. We used these data to calculate the average direct cost per care plan and used data on selected deficiencies from the Online Survey Certification and Reporting System to measure the quality of care planning. We then analyzed the efficiency of the assessment process using corrected ordinary least squares (COLS) and data envelopment analysis (DEA). Both approaches suggested that there was considerable inefficiency in the care planning process. The average COLS score was 0.43; the average DEA score was 0.48. The correlation between the two sets of scores was quite high, and there was no indication that lower costs resulted in lower quality. For-profit facilities were significantly more efficient than not-for-profit facilities. Multiple studies of nursing homes have found evidence of inefficiency, but virtually all have had measurement problems that raise questions about the results. This analysis, which focuses on a process with much simpler measurement issues, finds evidence of inefficiency that is largely consistent with earlier studies. Making nursing homes more efficient merits closer attention as a strategy for improving care. Increasing efficiency by adopting well-designed, reliable processes can simultaneously reduce costs and improve quality.

  7. Modeling and designing multilayer 2D perovskite / silicon bifacial tandem photovoltaics for high efficiencies and long-term stability.

    PubMed

    Chung, Haejun; Sun, Xingshu; Mohite, Aditya D; Singh, Rahul; Kumar, Lokendra; Alam, Muhammad A; Bermel, Peter

    2017-04-17

    A key challenge in photovoltaics today is to develop cell technologies with both higher efficiencies and lower fabrication costs than incumbent crystalline silicon (c-Si) single-junction cells. While tandem cells have higher efficiencies than c-Si alone, it is generally challenging to find a low-cost, high-performance material to pair with c-Si. However, the recent emergence of 22% efficient perovskite photovoltaics has created a tremendous opportunity for high-performance, low-cost perovskite / crystalline silicon tandem photovoltaic cells. Nonetheless, two key challenges remain. First, integrating perovskites into tandem structures has not yet been demonstrated to yield performance exceeding commercially available crystalline silicon modules. Second, the stability of perovskites is inconsistent with the needs of most end-users, who install photovoltaic modules to produce power for 25 years or more. Making these cells viable thus requires innovation in materials processing, device design, fabrication, and yield. We will address these two gaps in the photovoltaic literature by investigating new types of 2D perovskite materials with n-butylammonium spacer layers, and integrating these materials into bifacial tandem solar cells providing at least 30% normalized power production. We find that an optimized 2D perovskite ((BA)2(MA)3(Sn0.6Pb0.4)4I13)/silicon bifacial tandem cell, given a globally average albedo of 30%, yields a normalized power production of 30.31%, which should be stable for extended time periods without further change in materials or encapsulation.

  8. Micro-Grids for Colonias (TX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean Schneider; Michael Martin; Renee Berry

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing powermore » generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.« less

  9. Research requirements for development of improved helicopter rotor efficiency

    NASA Technical Reports Server (NTRS)

    Davis, S. J.

    1976-01-01

    The research requirements for developing an improved-efficiency rotor for a civil helicopter are documented. The various design parameters affecting the hover and cruise efficiency of a rotor are surveyed, and the parameters capable of producing the greatest potential improvement are identified. Research and development programs to achieve these improvements are defined, and estimated costs and schedules are presented. Interaction of the improved efficiency rotor with other technological goals for an advanced civil helicopter is noted, including its impact on engine noise, hover and cruise performance, one-engine-inoperative hover capability, and maintenance and reliability.

  10. Demonstration of a simplified optical mouse lighting module by integrating the non-Lambertian LED chip and the free-form surface.

    PubMed

    Pan, Jui-Wen; Tu, Sheng-Han

    2012-05-20

    A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.

  11. Electronic and mechanical improvement of the receiving terminal of a free-space microwave power transmission system

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1977-01-01

    Significant advancements were made in a number of areas: improved efficiency of basic receiving element at low power density levels, improved resolution and confidence in efficiency measurements mathematical modelling and computer simulation of the receiving element and the design, construction, and testing of an environmentally protected two-plane construction suitable for low cost, highly automated construction of large receiving arrays.

  12. Solar power satellite system definition study. Part 2, volume 4: Microwave power transmission systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A slotted waveguide planar array was established as the baseline design for the spaceborne transmitter antenna. Key aspects of efficient energy conversion at both ends of the power transfer link were analyzed and optimized alternate approaches in the areas of antenna and tube design are discussed. An integrated design concept was developed which meets design requirements, observes structural and thermal constraints, exhibits good performance and was developed in adequate depth to permit cost estimating at the subsystem/component level.

  13. Two-layer wireless distributed sensor/control network based on RF

    NASA Astrophysics Data System (ADS)

    Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo

    2006-11-01

    A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.

  14. Applications and development of communication models for the touchstone GAMMA and DELTA prototypes

    NASA Technical Reports Server (NTRS)

    Seidel, Steven R.

    1993-01-01

    The goal of this project was to develop models of the interconnection networks of the Intel iPSC/860 and DELTA multicomputers to guide the design of efficient algorithms for interprocessor communication in problems that commonly occur in CFD codes and other applications. Interprocessor communication costs of codes for message-passing architectures such as the iPSC/860 and DELTA significantly affect the level of performance that can be obtained from those machines. This project addressed several specific problems in the achievement of efficient communication on the Intel iPSC/860 hypercube and DELTA mesh. In particular, an efficient global processor synchronization algorithm was developed for the iPSC/860 and numerous broadcast algorithms were designed for the DELTA.

  15. Modeling and simulation of blazed grating based on MEMS scanning micro-mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie

    2015-11-01

    Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.

  16. Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2011-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing, improved operational availability, and optimized maintenance and logistic support infrastructure. This paper discusses the role of R&M in a program acquisition phase and the potential impact of R&M on safety, mission success, operational availability, and affordability. This includes discussion of the R&M elements that need to be addressed and the R&M analyses that need to be performed in order to support a safe and affordable system design. The paper also provides some lessons learned from the Space Shuttle program on the impact of R&M on safety and affordability.

  17. Managing Inventory At A Transitional Facility

    NASA Technical Reports Server (NTRS)

    Hutchins, Henry A.

    1993-01-01

    Kennedy Inventory Management System, KIMS, geared to needs of facility in transition from research and development to manufacturing. Operated jointly by several contractors at Kennedy Space Center, KIMS designed to reduce cost and increase efficiency of fabrication and maintenance of spaceflight hardware.

  18. Performance evaluation of buried pipe installation : LTRC research project capsule 08-6GT.

    DOT National Transportation Integrated Search

    2008-03-01

    The Louisiana Department of : Transportation and Development : (LADOTD) is in the process of revising : the current specifications to obtain a : more cost efficient design and : installation of buried pipes for highway : infrastructure. It aims to de...

  19. Clinical and financial considerations for implementing an ICU telemedicine program.

    PubMed

    Kruklitis, Robert J; Tracy, Joseph A; McCambridge, Matthew M

    2014-06-01

    As the population in the United States increases and ages, the need to provide high-quality, safe, and cost-effective care to the most critically ill patients will be of great importance. With the projected shortage of intensivists, innovative changes to improve efficiency and increase productivity will be necessary. Telemedicine programs in the ICUs (tele-ICUs) are a successful strategy to improve intensivist access to critically ill patients. Although significant capital and maintenance costs are associated with tele-ICUs, these costs can be offset by indirect financial benefits, such as decreased length of stay. To achieve the positive clinical outcomes desired, tele-ICUs must be carefully designed and implemented. In this article, we discuss the clinical benefits of tele-ICUs. We review the financial considerations, including direct and indirect reimbursement and development and maintenance costs. Finally, we review design and implementation considerations for tele-ICUs.

  20. Demulsification key to production efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetgoff, J.A.

    1988-08-01

    Concern over the declining profitability in the petroleum industry has generated renewed interest in reducing costs and enhancing profits. This article discusses one are often overlooked when trying to optimize profits, the process of demulsification. Resolving crude oil emulsions is a costly operational problem in most producing fields. Because it is one of the least understood facets of the petroleum industry, the costs associated with demulsification are often excessive. Although there are many similarities, desalting is a separate subject from demulsification. The removal of produced water from crude oil is the primary goal of demulsification, while minimizing the salt contentmore » in crude oil is the object of a desalting program. Understanding demulsification and desalting concepts is important to design engineers. The author discusses how this knowledge enables them to design systems that minimize operating costs while meeting present, as well as future, needs.« less

Top