Sample records for cost graphics processing

  1. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  2. Interactive computer graphics system for structural sizing and analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.

    1975-01-01

    A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.

  3. Interactive computer graphics - Why's, wherefore's and examples

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Carmichael, R. L.

    1983-01-01

    The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.

  4. System analysis of graphics processor architecture using virtual prototyping

    NASA Astrophysics Data System (ADS)

    Hancock, William R.; Groat, Jeff; Steeves, Todd; Spaanenburg, Henk; Shackleton, John

    1995-06-01

    Honeywell has been actively involved in the definition of the next generation display processors for military and commercial cockpits. A major concern is how to achieve super graphics workstation performance in avionics application. Most notable are requirements for low volume, low power, harsh environmental conditions, real-time performance and low cost. This paper describes the application of VHDL to the system analysis tasks associated with achieving these goals in a cost effective manner. The paper will describe the top level architecture identified to provide the graphical and video processing power needed to drive future high resolution display devices and to generate more natural panoramic 3D formats. The major discussion, however, will be on the use of VHDL to model the processing elements and customized pipelines needed to realize the architecture and for doing the complex system tradeoff studies necessary to achieve a cost effective implementation. New software tools have been developed to allow 'virtual' prototyping in the VHDL environment. This results in a hardware/software codesign using VHDL performance and functional models. This unique architectural tool allows simulation and tradeoffs within a standard and tightly integrated toolset, which eventually will be used to specify and design the entire system from the top level requirements and system performance to the lowest level individual ASICs. New processing elements, algorithms, and standard graphical inputs can be designed, tested and evaluated without the costly hardware prototyping using the innovative 'virtual' prototyping techniques which are evolving on this project. In addition, virtual prototyping of the display processor does not bind the preliminary design to point solutions as a physical prototype will. when the development schedule is known, one can extrapolate processing elements performance and design the system around the most current technology.

  5. Potential Application of a Graphical Processing Unit to Parallel Computations in the NUBEAM Code

    NASA Astrophysics Data System (ADS)

    Payne, J.; McCune, D.; Prater, R.

    2010-11-01

    NUBEAM is a comprehensive computational Monte Carlo based model for neutral beam injection (NBI) in tokamaks. NUBEAM computes NBI-relevant profiles in tokamak plasmas by tracking the deposition and the slowing of fast ions. At the core of NUBEAM are vector calculations used to track fast ions. These calculations have recently been parallelized to run on MPI clusters. However, cost and interlink bandwidth limit the ability to fully parallelize NUBEAM on an MPI cluster. Recent implementation of double precision capabilities for Graphical Processing Units (GPUs) presents a cost effective and high performance alternative or complement to MPI computation. Commercially available graphics cards can achieve up to 672 GFLOPS double precision and can handle hundreds of thousands of threads. The ability to execute at least one thread per particle simultaneously could significantly reduce the execution time and the statistical noise of NUBEAM. Progress on implementation on a GPU will be presented.

  6. Installation to Production of a Large-Scale General Purpose Graphics Processing Unit (GPGPU) Cluster at the U.S. Army Research Laboratory: Thufir

    DTIC Science & Technology

    2014-09-01

    semiempirical and ray-optical models. For example, the semiempirical COST-Walfisch- Ikegami model (3) estimates the received power predominantly on the...Books: Philadelphia, PA, 1965. 2. Rick, T .; Mathur, R. Fast Edge-Diffraction-Based Radio Wave Propagation Model for Graphics Hardware. Proceedings of

  7. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    NASA Astrophysics Data System (ADS)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  8. Automated path planning of the Payload Inspection and Processing System

    NASA Technical Reports Server (NTRS)

    Byers, Robert M.

    1994-01-01

    The Payload Changeout Room Inspection and Processing System (PIPS) is a highly redundant manipulator intended for performing tasks in the crowded and sensitive environment of the Space Shuttle Orbiter payload bay. Its dexterity will be exploited to maneuver the end effector in a workspace populated with obstacles. A method is described by which the end effector of a highly redundant manipulator is directed toward a target via a Lyapunov stability function. A cost function is constructed which represents the distance from the manipulator links to obstacles. Obstacles are avoided by causing the vector of joint parameters to move orthogonally to the gradient of the workspace cost function. A C language program implements the algorithm to generate a joint history. The resulting motion is graphically displayed using the Interactive Graphical Robot Instruction Program (IGRIP) produced by Deneb Robotics. The graphical simulation has the potential to be a useful tool in path planning for the PIPS in the Shuttle Payload Bay environment.

  9. Applying graphics user interface ot group technology classification and coding at the Boeing aerospace company

    NASA Astrophysics Data System (ADS)

    Ness, P. H.; Jacobson, H.

    1984-10-01

    The thrust of 'group technology' is toward the exploitation of similarities in component design and manufacturing process plans to achieve assembly line flow cost efficiencies for small batch production. The systematic method devised for the identification of similarities in component geometry and processing steps is a coding and classification scheme implemented by interactive CAD/CAM systems. This coding and classification scheme has led to significant increases in computer processing power, allowing rapid searches and retrievals on the basis of a 30-digit code together with user-friendly computer graphics.

  10. Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Richard A.; Radford, David C.

    2013-12-30

    Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less

  11. Evaluation of three electronic report processing systems for preparing hydrologic reports of the U.S Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Stiltner, G.J.

    1990-01-01

    In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25% less than costs of printing the reports prepared by conventional methods. Because the largest report workload in the offices conducting water resources investigations is preparation of Water-Resources Investigations Reports, Open-File Reports, and annual State Data Reports, the pilot studies only involved these projects. (USGS)

  12. Graphics processing unit based computation for NDE applications

    NASA Astrophysics Data System (ADS)

    Nahas, C. A.; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2012-05-01

    Advances in parallel processing in recent years are helping to improve the cost of numerical simulation. Breakthroughs in Graphical Processing Unit (GPU) based computation now offer the prospect of further drastic improvements. The introduction of 'compute unified device architecture' (CUDA) by NVIDIA (the global technology company based in Santa Clara, California, USA) has made programming GPUs for general purpose computing accessible to the average programmer. Here we use CUDA to develop parallel finite difference schemes as applicable to two problems of interest to NDE community, namely heat diffusion and elastic wave propagation. The implementations are for two-dimensions. Performance improvement of the GPU implementation against serial CPU implementation is then discussed.

  13. Low Cost Graphics. Second Edition.

    ERIC Educational Resources Information Center

    Tinker, Robert F.

    This manual describes the CALM TV graphics interface, a low-cost means of producing quality graphics on an ordinary TV. The system permits the output of data in graphic as well as alphanumeric form and the input of data from the face of the TV using a light pen. The integrated circuits required in the interface can be obtained from standard…

  14. Clinical process analysis and activity-based costing at a heart center.

    PubMed

    Ridderstolpe, Lisa; Johansson, Andreas; Skau, Tommy; Rutberg, Hans; Ahlfeldt, Hans

    2002-08-01

    Cost studies, productivity, efficiency, and quality of care measures, the links between resources and patient outcomes, are fundamental issues for hospital management today. This paper describes the implementation of a model for process analysis and activity-based costing (ABC)/management at a Heart Center in Sweden as a tool for administrative cost information, strategic decision-making, quality improvement, and cost reduction. A commercial software package (QPR) containing two interrelated parts, "ProcessGuide and CostControl," was used. All processes at the Heart Center were mapped and graphically outlined. Processes and activities such as health care procedures, research, and education were identified together with their causal relationship to costs and products/services. The construction of the ABC model in CostControl was time-consuming. However, after the ABC/management system was created, it opened the way for new possibilities including process and activity analysis, simulation, and price calculations. Cost analysis showed large variations in the cost obtained for individual patients undergoing coronary artery bypass grafting (CABG) surgery. We conclude that a process-based costing system is applicable and has the potential to be useful in hospital management.

  15. Accelerating epistasis analysis in human genetics with consumer graphics hardware.

    PubMed

    Sinnott-Armstrong, Nicholas A; Greene, Casey S; Cancare, Fabio; Moore, Jason H

    2009-07-24

    Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU available for other tasks. The GPU workstation containing three GPUs costs $2000 while obtaining similar performance on a Beowulf cluster requires 150 CPU cores which, including the added infrastructure and support cost of the cluster system, cost approximately $82,500. Graphics hardware based computing provides a cost effective means to perform genetic analysis of epistasis using MDR on large datasets without the infrastructure of a computing cluster.

  16. Software engineering capability for Ada (GRASP/Ada Tool)

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1995-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.

  17. Apple's Macintosh.

    ERIC Educational Resources Information Center

    Miller, Michael J.

    1984-01-01

    Description of the Macintosh personal, educational, and business computer produced by Apple covers cost; physical characteristics including display devices, circuit boards, and built-in features; company-produced software; third-party produced software; memory and storage capacity; word-processing features; and graphics capabilities. (MBR)

  18. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.

    PubMed

    Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying

    2013-12-01

    Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.

  19. Efficient particle-in-cell simulation of auroral plasma phenomena using a CUDA enabled graphics processing unit

    NASA Astrophysics Data System (ADS)

    Sewell, Stephen

    This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.

  20. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loughry, Thomas A.

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to tenmore » times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.« less

  1. High resolution image processing on low-cost microcomputers

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1993-01-01

    Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.

  2. Laserprinter applications in a medical graphics department.

    PubMed

    Lynch, P J

    1987-01-01

    Our experience with the Apple Macintosh and LaserWriter equipment has convinced us that lasergraphics holds much current and future promise in the creation of line graphics and typography for the biomedical community. Although we continue to use other computer graphics equipment to produce color slides and an occasional pen-plotter graphic, the most rapidly growing segment of our graphics workload is in material well-suited to production on the Macintosh/LaserWriter system. At present our goal is to integrate all of our computer graphics production (color slides, video paint graphics and monochrome print graphics) into a single Macintosh-based system within the next two years. The software and hardware currently available are capable of producing a wide range of science graphics very quickly and inexpensively. The cost-effectiveness, versatility and relatively low initial investment required to install this equipment make it an attractive alternative for cost-recovery departments just entering the field of computer graphics.

  3. Lessons from a doctoral thesis.

    PubMed

    Peiris, A N; Mueller, R A; Sheridan, D P

    1990-01-01

    The production of a doctoral thesis is a time-consuming affair that until recently was done in conjunction with professional publishing services. Advances in computer technology have made many sophisticated desktop publishing techniques available to the microcomputer user. We describe the computer method used, the problems encountered, and the solutions improvised in the production of a doctoral thesis by computer. The Apple Macintosh was selected for its ease of use and intrinsic graphics capabilities. A scanner was used to incorporate text from published papers into a word processing program. The body of the text was updated and supplemented with new sections. Scanned graphics from the published papers were less suitable for publication, and the original data were replotted and modified with a graphics-drawing program. Graphics were imported and incorporated in the text. Final hard copy was produced by a laser printer and bound with both conventional and rapid new binding techniques. Microcomputer-based desktop processing methods provide a rapid and cost-effective means of communicating the written word. We anticipate that this evolving technology will have increased use by physicians in both the private and academic sectors.

  4. Accelerating image recognition on mobile devices using GPGPU

    NASA Astrophysics Data System (ADS)

    Bordallo López, Miguel; Nykänen, Henri; Hannuksela, Jari; Silvén, Olli; Vehviläinen, Markku

    2011-01-01

    The future multi-modal user interfaces of battery-powered mobile devices are expected to require computationally costly image analysis techniques. The use of Graphic Processing Units for computing is very well suited for parallel processing and the addition of programmable stages and high precision arithmetic provide for opportunities to implement energy-efficient complete algorithms. At the moment the first mobile graphics accelerators with programmable pipelines are available, enabling the GPGPU implementation of several image processing algorithms. In this context, we consider a face tracking approach that uses efficient gray-scale invariant texture features and boosting. The solution is based on the Local Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and feature extraction phase. We have implemented a series of image processing techniques in the shader language of OpenGL ES 2.0, compiled them for a mobile graphics processing unit and performed tests on a mobile application processor platform (OMAP3530). In our contribution, we describe the challenges of designing on a mobile platform, present the performance achieved and provide measurement results for the actual power consumption in comparison to using the CPU (ARM) on the same platform.

  5. Low-cost digital image processing at the University of Oklahoma

    NASA Technical Reports Server (NTRS)

    Harrington, J. A., Jr.

    1981-01-01

    Computer assisted instruction in remote sensing at the University of Oklahoma involves two separate approaches and is dependent upon initial preprocessing of a LANDSAT computer compatible tape using software developed for an IBM 370/158 computer. In-house generated preprocessing algorithms permits students or researchers to select a subset of a LANDSAT scene for subsequent analysis using either general purpose statistical packages or color graphic image processing software developed for Apple II microcomputers. Procedures for preprocessing the data and image analysis using either of the two approaches for low-cost LANDSAT data processing are described.

  6. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  7. Hybrid parallel computing architecture for multiview phase shifting

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun

    2014-11-01

    The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.

  8. Remedial Action Assessment System: A computer-based methodology for conducting feasibility studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.K.; Buelt, J.L.; Stottlemyre, J.A.

    1991-02-01

    Because of the complexity and number of potential waste sites facing the US Department of Energy (DOE) for potential cleanup, DOE is supporting the development of a computer-based methodology to streamline the remedial investigation/feasibility study process. The Remedial Action Assessment System (RAAS), can be used for screening, linking, and evaluating established technology processes in support of conducting feasibility studies. It is also intended to do the same in support of corrective measures studies. The user interface employs menus, windows, help features, and graphical information while RAAS is in operation. Object-oriented programming is used to link unit processes into sets ofmore » compatible processes that form appropriate remedial alternatives. Once the remedial alternatives are formed, the RAAS methodology can evaluate them in terms of effectiveness, implementability, and cost. RAAS will access a user-selected risk assessment code to determine the reduction of risk after remedial action by each recommended alternative. The methodology will also help determine the implementability of the remedial alternatives at a site and access cost estimating tools to provide estimates of capital, operating, and maintenance costs. This paper presents the characteristics of two RAAS prototypes currently being developed. These include the RAAS Technology Information System, which accesses graphical, tabular and textual information about technologies, and the main RAAS methodology, which screens, links, and evaluates remedial technologies. 4 refs., 3 figs., 1 tab.« less

  9. An optimal policy for a single-vendor and a single-buyer integrated system with setup cost reduction and process-quality improvement

    NASA Astrophysics Data System (ADS)

    Shu, Hui; Zhou, Xideng

    2014-05-01

    The single-vendor single-buyer integrated production inventory system has been an object of study for a long time, but little is known about the effect of investing in reducing setup cost reduction and process-quality improvement for an integrated inventory system in which the products are sold with free minimal repair warranty. The purpose of this article is to minimise the integrated cost by optimising simultaneously the number of shipments and the shipment quantity, the setup cost, and the process quality. An efficient algorithm procedure is proposed for determining the optimal decision variables. A numerical example is presented to illustrate the results of the proposed models graphically. Sensitivity analysis of the model with respect to key parameters of the system is carried out. The paper shows that the proposed integrated model can result in significant savings in the integrated cost.

  10. GPU Based Software Correlators - Perspectives for VLBI2010

    NASA Technical Reports Server (NTRS)

    Hobiger, Thomas; Kimura, Moritaka; Takefuji, Kazuhiro; Oyama, Tomoaki; Koyama, Yasuhiro; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun

    2010-01-01

    Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec.

  11. A fast CT reconstruction scheme for a general multi-core PC.

    PubMed

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  12. A Fast CT Reconstruction Scheme for a General Multi-Core PC

    PubMed Central

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors. PMID:18256731

  13. Accelerating Malware Detection via a Graphics Processing Unit

    DTIC Science & Technology

    2010-09-01

    Processing Unit . . . . . . . . . . . . . . . . . . 4 PE Portable Executable . . . . . . . . . . . . . . . . . . . . . 4 COFF Common Object File Format...operating systems for the future [Szo05]. The PE format is an updated version of the common object file format ( COFF ) [Mic06]. Microsoft released a new...NAs02]. These alerts can be costly in terms of time and resources for individuals and organizations to investigate each misidentified file [YWL07] [Vak10

  14. Distributed GPU Computing in GIScience

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Yang, C.; Huang, Q.; Li, J.; Sun, M.

    2013-12-01

    Geoscientists strived to discover potential principles and patterns hidden inside ever-growing Big Data for scientific discoveries. To better achieve this objective, more capable computing resources are required to process, analyze and visualize Big Data (Ferreira et al., 2003; Li et al., 2013). Current CPU-based computing techniques cannot promptly meet the computing challenges caused by increasing amount of datasets from different domains, such as social media, earth observation, environmental sensing (Li et al., 2013). Meanwhile CPU-based computing resources structured as cluster or supercomputer is costly. In the past several years with GPU-based technology matured in both the capability and performance, GPU-based computing has emerged as a new computing paradigm. Compare to traditional computing microprocessor, the modern GPU, as a compelling alternative microprocessor, has outstanding high parallel processing capability with cost-effectiveness and efficiency(Owens et al., 2008), although it is initially designed for graphical rendering in visualization pipe. This presentation reports a distributed GPU computing framework for integrating GPU-based computing within distributed environment. Within this framework, 1) for each single computer, computing resources of both GPU-based and CPU-based can be fully utilized to improve the performance of visualizing and processing Big Data; 2) within a network environment, a variety of computers can be used to build up a virtual super computer to support CPU-based and GPU-based computing in distributed computing environment; 3) GPUs, as a specific graphic targeted device, are used to greatly improve the rendering efficiency in distributed geo-visualization, especially for 3D/4D visualization. Key words: Geovisualization, GIScience, Spatiotemporal Studies Reference : 1. Ferreira de Oliveira, M. C., & Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE Transactions on, 9(3), 378-394. 2. Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013). Visualizing 3D/4D Environmental Data Using Many-core Graphics Processing Units (GPUs) and Multi-core Central Processing Units (CPUs). Computers & Geosciences, 59(9), 78-89. 3. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879-899.

  15. High-throughput sequence alignment using Graphics Processing Units

    PubMed Central

    Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh

    2007-01-01

    Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356

  16. Publishing on the WWW. Part 1 - Static graphics

    PubMed Central

    Grech, V

    2000-01-01

    An on-line journal's ability to publish graphics at no additional cost is a major advantage over conventional printed journals. This article outlines technical, copyright and other issues related to graphic publishing on the world-wide-web. PMID:22368588

  17. Mendel-GPU: haplotyping and genotype imputation on graphics processing units

    PubMed Central

    Chen, Gary K.; Wang, Kai; Stram, Alex H.; Sobel, Eric M.; Lange, Kenneth

    2012-01-01

    Motivation: In modern sequencing studies, one can improve the confidence of genotype calls by phasing haplotypes using information from an external reference panel of fully typed unrelated individuals. However, the computational demands are so high that they prohibit researchers with limited computational resources from haplotyping large-scale sequence data. Results: Our graphics processing unit based software delivers haplotyping and imputation accuracies comparable to competing programs at a fraction of the computational cost and peak memory demand. Availability: Mendel-GPU, our OpenCL software, runs on Linux platforms and is portable across AMD and nVidia GPUs. Users can download both code and documentation at http://code.google.com/p/mendel-gpu/. Contact: gary.k.chen@usc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22954633

  18. TOOKUIL: A case study in user interface development for safety code application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.

    1997-07-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interfacemore » named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.« less

  19. Exploiting graphics processing units for computational biology and bioinformatics.

    PubMed

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  20. Customizing graphical user interface technology for spacecraft control centers

    NASA Technical Reports Server (NTRS)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  1. Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS

    NASA Technical Reports Server (NTRS)

    Callegari, Andres C.

    1990-01-01

    This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.

  2. Accelerating NBODY6 with graphics processing units

    NASA Astrophysics Data System (ADS)

    Nitadori, Keigo; Aarseth, Sverre J.

    2012-07-01

    We describe the use of graphics processing units (GPUs) for speeding up the code NBODY6 which is widely used for direct N-body simulations. Over the years, the N2 nature of the direct force calculation has proved a barrier for extending the particle number. Following an early introduction of force polynomials and individual time steps, the calculation cost was first reduced by the introduction of a neighbour scheme. After a decade of GRAPE computers which speeded up the force calculation further, we are now in the era of GPUs where relatively small hardware systems are highly cost effective. A significant gain in efficiency is achieved by employing the GPU to obtain the so-called regular force which typically involves some 99 per cent of the particles, while the remaining local forces are evaluated on the host. However, the latter operation is performed up to 20 times more frequently and may still account for a significant cost. This effort is reduced by parallel SSE/AVX procedures where each interaction term is calculated using mainly single precision. We also discuss further strategies connected with coordinate and velocity prediction required by the integration scheme. This leaves hard binaries and multiple close encounters which are treated by several regularization methods. The present NBODY6-GPU code is well balanced for simulations in the particle range 104-2 × 105 for a dual-GPU system attached to a standard PC.

  3. A Linux Workstation for High Performance Graphics

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  4. Ice-sheet modelling accelerated by graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  5. Visual Information (6)

    DTIC Science & Technology

    1987-12-01

    definition 33., below). 7. Commercial VI Production. A completed VI production, purchased off-the- shelf; i.e., from the stocks of a vendor. 8. Computer ...Generated Graphics. The production of graphics through an electronic medium based on a computer or computer techniques. 9. Contract VI Production. A VI...displays, presentations, and exhibits prepared manually, by machine, or by computer . 16. Indirect Costs. An item of cost (or the aggregate thereof) that is

  6. Optimizing ion channel models using a parallel genetic algorithm on graphical processors.

    PubMed

    Ben-Shalom, Roy; Aviv, Amit; Razon, Benjamin; Korngreen, Alon

    2012-01-01

    We have recently shown that we can semi-automatically constrain models of voltage-gated ion channels by combining a stochastic search algorithm with ionic currents measured using multiple voltage-clamp protocols. Although numerically successful, this approach is highly demanding computationally, with optimization on a high performance Linux cluster typically lasting several days. To solve this computational bottleneck we converted our optimization algorithm for work on a graphical processing unit (GPU) using NVIDIA's CUDA. Parallelizing the process on a Fermi graphic computing engine from NVIDIA increased the speed ∼180 times over an application running on an 80 node Linux cluster, considerably reducing simulation times. This application allows users to optimize models for ion channel kinetics on a single, inexpensive, desktop "super computer," greatly reducing the time and cost of building models relevant to neuronal physiology. We also demonstrate that the point of algorithm parallelization is crucial to its performance. We substantially reduced computing time by solving the ODEs (Ordinary Differential Equations) so as to massively reduce memory transfers to and from the GPU. This approach may be applied to speed up other data intensive applications requiring iterative solutions of ODEs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Development of High-speed Visualization System of Hypocenter Data Using CUDA-based GPU computing

    NASA Astrophysics Data System (ADS)

    Kumagai, T.; Okubo, K.; Uchida, N.; Matsuzawa, T.; Kawada, N.; Takeuchi, N.

    2014-12-01

    After the Great East Japan Earthquake on March 11, 2011, intelligent visualization of seismic information is becoming important to understand the earthquake phenomena. On the other hand, to date, the quantity of seismic data becomes enormous as a progress of high accuracy observation network; we need to treat many parameters (e.g., positional information, origin time, magnitude, etc.) to efficiently display the seismic information. Therefore, high-speed processing of data and image information is necessary to handle enormous amounts of seismic data. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for data processing and calculation in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. GPU computing gives us the high-performance computing environment at a lower cost than before. Moreover, use of GPU has an advantage of visualization of processed data, because GPU is originally architecture for graphics processing. In the GPU computing, the processed data is always stored in the video memory. Therefore, we can directly write drawing information to the VRAM on the video card by combining CUDA and the graphics API. In this study, we employ CUDA and OpenGL and/or DirectX to realize full-GPU implementation. This method makes it possible to write drawing information to the VRAM on the video card without PCIe bus data transfer: It enables the high-speed processing of seismic data. The present study examines the GPU computing-based high-speed visualization and the feasibility for high-speed visualization system of hypocenter data.

  8. Color graphics, interactive processing, and the supercomputer

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen

    1987-01-01

    The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.

  9. Transportable Applications Environment (TAE) Plus - A NASA productivity tool used to develop graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUIs), supports prototyping, allows applications to be oported easily between different platforms, and encourages appropriate levels of user interface consistency between applications. This paper discusses the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUIs easier for the application developers. The paper also explains how tools like TAE Plus provide for reusability and ensure reliability of UI software components, as well as how they aid in the reduction of development and maintenance costs.

  10. GPUs: An Emerging Platform for General-Purpose Computation

    DTIC Science & Technology

    2007-08-01

    programming; real-time cinematic quality graphics Peak stream (26) License required (limited time no- cost evaluation program) Commercially...folding.stanford.edu (accessed 30 March 2007). 2. Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S. GPU Cluster for High Performance Computing. ACM/IEEE...accessed 30 March 2007). 8. Goodnight, N.; Wang, R.; Humphreys, G. Computation on Programmable Graphics Hardware. IEEE Computer Graphics and

  11. General aviation design synthesis utilizing interactive computer graphics

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.; Smith, M. R.

    1976-01-01

    Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

  12. The use of graphics in the design of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.

  13. Computer program to perform cost and weight analysis of transport aircraft. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A digital computer program for evaluating the weight and costs of advanced transport designs was developed. The resultant program, intended for use at the preliminary design level, incorporates both batch mode and interactive graphics run capability. The basis of the weight and cost estimation method developed is a unique way of predicting the physical design of each detail part of a vehicle structure at a time when only configuration concept drawings are available. In addition, the technique relies on methods to predict the precise manufacturing processes and the associated material required to produce each detail part. Weight data are generated in four areas of the program. Overall vehicle system weights are derived on a statistical basis as part of the vehicle sizing process. Theoretical weights, actual weights, and the weight of the raw material to be purchased are derived as part of the structural synthesis and part definition processes based on the computed part geometry.

  14. A low-cost computer-controlled Arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zachariadou, K.; Yiasemides, K.; Trougkakos, N.

    2012-11-01

    We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental concepts of semiconductor physics by exploring the process of an experimental physics inquiry. The system runs under the Windows operating system and is composed of a data acquisition/control board, a power supply and processing boards, sensing elements, a graphical user interface and data analysis software. The data acquisition/control board is based on the Arduino open source electronics prototyping platform. The graphical user interface and communication with the Arduino are developed in C# and C++ programming languages respectively, by using IDE Microsoft Visual Studio 2010 Professional, which is freely available to students. Finally, the data analysis is performed by using the open source, object-oriented framework ROOT. Currently the system supports five teaching activities, each one corresponding to an independent tab in the user interface. SolarInsight has been partially developed in the context of a diploma thesis conducted within the Technological Educational Institute of Piraeus under the co-supervision of the Physics and Electronic Computer Systems departments’ academic staff.

  15. A low-cost 3-D printed stethoscope connected to a smartphone.

    PubMed

    Aguilera-Astudillo, Carlos; Chavez-Campos, Marx; Gonzalez-Suarez, Alan; Garcia-Cordero, Jose L

    2016-08-01

    We demonstrate the fabrication of a digital stethoscope using a 3D printer and commercial off-the-shelf electronics. A chestpiece consists of an electret microphone embedded into the drum of a 3D printed chestpiece. An electronic dongle amplifies the signal from the microphone and reduces any external noise. It also adjusts the signal to the voltages accepted by the smartphones headset jack. A graphical user interface programmed in Android displays the signals processed by the dongle. The application also saves the processed signal and sends it to a physician.

  16. Shortcomings of low-cost imaging systems for viewing computed radiographs.

    PubMed

    Ricke, J; Hänninen, E L; Zielinski, C; Amthauer, H; Stroszczynski, C; Liebig, T; Wolf, M; Hosten, N

    2000-01-01

    To assess potential advantages of a new PC-based viewing tool featuring image post-processing for viewing computed radiographs on low-cost hardware (PC) with a common display card and color monitor, and to evaluate the effect of using color versus monochrome monitors. Computed radiographs of a statistical phantom were viewed on a PC, with and without post-processing (spatial frequency and contrast processing), employing a monochrome or a color monitor. Findings were compared with the viewing on a radiological Workstation and evaluated with ROC analysis. Image post-processing improved the perception of low-contrast details significantly irrespective of the monitor used. No significant difference in perception was observed between monochrome and color monitors. The review at the radiological Workstation was superior to the review done using the PC with image processing. Lower quality hardware (graphic card and monitor) used in low cost PCs negatively affects perception of low-contrast details in computed radiographs. In this situation, it is highly recommended to use spatial frequency and contrast processing. No significant quality gain has been observed for the high-end monochrome monitor compared to the color display. However, the color monitor was affected stronger by high ambient illumination.

  17. Effect of Message Format and Content on Attitude Accessibility Regarding Sexually Transmitted Infections.

    PubMed

    Jain, Parul; Hoffman, Eric; Beam, Michael; Xu, Shan Susan

    2017-11-01

    Sexually transmitted infections (STIs) are widespread in the United States among people ages 15-24 years and cost almost $16 billion yearly. It is therefore important to understand message design strategies that could help reduce these numbers. Guided by exemplification theory and the extended parallel process model (EPPM), this study examines the influence of message format and the presence versus absence of a graphic image on recipients' accessibility of STI attitudes regarding safe sex. Results of the experiment indicate a significant effect from testimonial messages on increased attitude accessibility regarding STIs compared to statistical messages. Results also indicate a conditional indirect effect of testimonial messages on STI attitude accessibility, though threat is greater when a graphic image is included. Implications and directions for future research are discussed.

  18. A Theoretical Analysis of Learning with Graphics--Implications for Computer Graphics Design.

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan

    This paper reviews the literature pertinent to learning with graphics. The dual coding theory provides explanation about how graphics are stored and precessed in semantic memory. The level of processing theory suggests how graphics can be employed in learning to encourage deeper processing. In addition to dual coding theory and level of processing…

  19. Development of a Low Cost Graphics Terminal.

    ERIC Educational Resources Information Center

    Lehr, Ted

    1985-01-01

    Describes modifications made to expand the capabilities of a display unit (Lear Siegler ADM-3A) to include medium resolution graphics. The modifying circuitry is detailed along with software subroutined written in Z-80 machine language for controlling the video display. (JN)

  20. Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs

    NASA Technical Reports Server (NTRS)

    Garvis, Michael; Dougherty, Andrew; Whittier, Wallace

    1996-01-01

    Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.

  1. Low-cost optical data acquisition system for blade vibration measurement

    NASA Technical Reports Server (NTRS)

    Posta, Stephen J.

    1988-01-01

    A low cost optical data acquisition system was designed to measure deflection of vibrating rotor blade tips. The basic principle of the new design is to record raw data, which is a set of blade arrival times, in memory and to perform all processing by software following a run. This approach yields a simple and inexpensive system with the least possible hardware. Functional elements of the system were breadboarded and operated satisfactorily during rotor simulations on the bench, and during a data collection run with a two-bladed rotor in the Lewis Research Center Spin Rig. Software was written to demonstrate the sorting and processing of data stored in the system control computer, after retrieval from the data acquisition system. The demonstration produced an accurate graphical display of deflection versus time.

  2. High-performance image processing on the desktop

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen D.

    1996-04-01

    The suitability of computers to the task of medical image visualization for the purposes of primary diagnosis and treatment planning depends on three factors: speed, image quality, and price. To be widely accepted the technology must increase the efficiency of the diagnostic and planning processes. This requires processing and displaying medical images of various modalities in real-time, with accuracy and clarity, on an affordable system. Our approach to meeting this challenge began with market research to understand customer image processing needs. These needs were translated into system-level requirements, which in turn were used to determine which image processing functions should be implemented in hardware. The result is a computer architecture for 2D image processing that is both high-speed and cost-effective. The architectural solution is based on the high-performance PA-RISC workstation with an HCRX graphics accelerator. The image processing enhancements are incorporated into the image visualization accelerator (IVX) which attaches to the HCRX graphics subsystem. The IVX includes a custom VLSI chip which has a programmable convolver, a window/level mapper, and an interpolator supporting nearest-neighbor, bi-linear, and bi-cubic modes. This combination of features can be used to enable simultaneous convolution, pan, zoom, rotate, and window/level control into 1 k by 1 k by 16-bit medical images at 40 frames/second.

  3. Public service user terminus study compendium of terminus equipment

    NASA Technical Reports Server (NTRS)

    1979-01-01

    General descriptions and specifications are given for equipments which facilitate satellite and terrestrial communications delivery by acting as interfaces between a human, mechanical, or electrical information generator (or source) and the communication system. Manufactures and suppliers are given as well as the purchase, service, or lease costs of various products listed under the following cateories: voice/telephony/facsimile equipment; data/graphics terminals; full motion and processes video equipment; and multiple access equipment.

  4. Simulated breeding with QU-GENE graphical user interface.

    PubMed

    Hathorn, Adrian; Chapman, Scott; Dieters, Mark

    2014-01-01

    Comparing the efficiencies of breeding methods with field experiments is a costly, long-term process. QU-GENE is a highly flexible genetic and breeding simulation platform capable of simulating the performance of a range of different breeding strategies and for a continuum of genetic models ranging from simple to complex. In this chapter we describe some of the basic mechanics behind the QU-GENE user interface and give a simplified example of how it works.

  5. Real-time range generation for ladar hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    Olson, Eric M.; Coker, Charles F.

    1996-05-01

    Real-time closed loop simulation of LADAR seekers in a hardware-in-the-loop facility can reduce program risk and cost. This paper discusses an implementation of real-time range imagery generated in a synthetic environment at the Kinetic Kill Vehicle Hardware-in-the Loop facility at Eglin AFB, for the stimulation of LADAR seekers and algorithms. The computer hardware platform used was a Silicon Graphics Incorporated Onyx Reality Engine. This computer contains graphics hardware, and is optimized for generating visible or infrared imagery in real-time. A by-produce of the rendering process, in the form of a depth buffer, is generated from all objects in view during its rendering process. The depth buffer is an array of integer values that contributes to the proper rendering of overlapping objects and can be converted to range values using a mathematical formula. This paper presents an optimized software approach to the generation of the scenes, calculation of the range values, and outputting the range data for a LADAR seeker.

  6. Multidimensional upwind hydrodynamics on unstructured meshes using graphics processing units - I. Two-dimensional uniform meshes

    NASA Astrophysics Data System (ADS)

    Paardekooper, S.-J.

    2017-08-01

    We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.

  7. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  8. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    NASA Astrophysics Data System (ADS)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  9. High-Speed Particle-in-Cell Simulation Parallelized with Graphic Processing Units for Low Temperature Plasmas for Material Processing

    NASA Astrophysics Data System (ADS)

    Hur, Min Young; Verboncoeur, John; Lee, Hae June

    2014-10-01

    Particle-in-cell (PIC) simulations have high fidelity in the plasma device requiring transient kinetic modeling compared with fluid simulations. It uses less approximation on the plasma kinetics but requires many particles and grids to observe the semantic results. It means that the simulation spends lots of simulation time in proportion to the number of particles. Therefore, PIC simulation needs high performance computing. In this research, a graphic processing unit (GPU) is adopted for high performance computing of PIC simulation for low temperature discharge plasmas. GPUs have many-core processors and high memory bandwidth compared with a central processing unit (CPU). NVIDIA GeForce GPUs were used for the test with hundreds of cores which show cost-effective performance. PIC code algorithm is divided into two modules which are a field solver and a particle mover. The particle mover module is divided into four routines which are named move, boundary, Monte Carlo collision (MCC), and deposit. Overall, the GPU code solves particle motions as well as electrostatic potential in two-dimensional geometry almost 30 times faster than a single CPU code. This work was supported by the Korea Institute of Science Technology Information.

  10. Fiscal output data produce versatile graphic-numeric charts

    NASA Technical Reports Server (NTRS)

    Powell, R. W.; Romo, J. J.

    1971-01-01

    Refined computerized plotting system produces low-cost graphic-numeric charts that illustrate fiscal data on monthly incremental or cumulative basis, or both. Output is in the form of hard copy or microfilm, or visual-aid transparencies prepared from hard copy for rapid management status presentations.

  11. A Study to Determine the Most Feasible Sign System for Improving the Flow of Patients in the Interior Hospital

    DTIC Science & Technology

    1985-08-01

    29 E. NEW GRAPHICS DESIGNED BY AUTHOR ....... ................ .37 F. COST-BENEFIT ANALYSIS ........ ..................... ... 44 G. IMPLEMENTATION OF...Cornett, and Catherine Tillotson were invaluable in designing new hospital graphics . Finally, a big thanks for the faith and typing support of...February 1975): 25. "Careful Design Provides Outpatient Facility with Simple, Clear, Attractive Signage and Graphics ." Hospitals, Vol 53 (16 April 1979): 40

  12. Evaluating virtual hosted desktops for graphics-intensive astronomy

    NASA Astrophysics Data System (ADS)

    Meade, B. F.; Fluke, C. J.

    2018-04-01

    Visualisation of data is critical to understanding astronomical phenomena. Today, many instruments produce datasets that are too big to be downloaded to a local computer, yet many of the visualisation tools used by astronomers are deployed only on desktop computers. Cloud computing is increasingly used to provide a computation and simulation platform in astronomy, but it also offers great potential as a visualisation platform. Virtual hosted desktops, with graphics processing unit (GPU) acceleration, allow interactive, graphics-intensive desktop applications to operate co-located with astronomy datasets stored in remote data centres. By combining benchmarking and user experience testing, with a cohort of 20 astronomers, we investigate the viability of replacing physical desktop computers with virtual hosted desktops. In our work, we compare two Apple MacBook computers (one old and one new, representing hardware and opposite ends of the useful lifetime) with two virtual hosted desktops: one commercial (Amazon Web Services) and one in a private research cloud (the Australian NeCTAR Research Cloud). For two-dimensional image-based tasks and graphics-intensive three-dimensional operations - typical of astronomy visualisation workflows - we found that benchmarks do not necessarily provide the best indication of performance. When compared to typical laptop computers, virtual hosted desktops can provide a better user experience, even with lower performing graphics cards. We also found that virtual hosted desktops are equally simple to use, provide greater flexibility in choice of configuration, and may actually be a more cost-effective option for typical usage profiles.

  13. BarraCUDA - a fast short read sequence aligner using graphics processing units

    PubMed Central

    2012-01-01

    Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497

  14. Effectiveness and cost of different strategies for information feedback in general practice.

    PubMed Central

    Szczepura, A; Wilmot, J; Davies, C; Fletcher, J

    1994-01-01

    AIM. The aim of this study was to determine the effectiveness and relative cost of three forms of information feedback to general practices--graphical, graphical plus a visit by a medical facilitator and tabular. METHOD. Routinely collected, centrally-held data were used where possible, analysed at practice level. Some non-routine practice data in the form of risk factor recording in medical notes, for example weight, smoking status, alcohol consumption and blood pressure, were also provided to those who requested it. The 52 participating practices were stratified and randomly allocated to one of the three feedback groups. The cost of providing each type of feedback was determined. The immediate response of practitioners to the form of feedback (acceptability), ease of understanding (intelligibility), and usefulness of regular feedback was recorded. Changes introduced as a result of feedback were assessed by questionnaire shortly after feedback, and 12 months later. Changes at the practice level in selected indicators were also assessed 12 and 24 months after initial feedback. RESULTS. The resulting cost per effect was calculated to be 46.10 pounds for both graphical and tabular feedback, 132.50 pounds for graphical feedback plus facilitator visit and 773.00 pounds for the manual audit of risk factors recorded in the practice notes. The three forms of feedback did not differ in intelligibility or usefulness, but feedback plus a medical facilitator visit was significantly less acceptable. There was a high level of self-reported organizational change following feedback, with 69% of practices reporting changes as a direct result; this was not significantly different for the three types of feedback. There were no significant changes in the selected indicators at 12 or 24 months following feedback. The practice characteristic most closely related to better indicators of preventive practice was practice size, smaller practices performing significantly better. Separate clinics were not associated with better preventive practice. CONCLUSION. It is concluded that feedback strategies using graphical and tabular comparative data are equally cost-effective in general practice with about two thirds of practices reporting organizational change as a consequence; feedback involving unsolicited medical facilitator visits is less cost-effective. The cost-effectiveness of manual risk factor audit is also called into question. PMID:8312032

  15. Digital Waveguide Architectures for Virtual Musical Instruments

    NASA Astrophysics Data System (ADS)

    Smith, Julius O.

    Digital sound synthesis has become a standard staple of modern music studios, videogames, personal computers, and hand-held devices. As processing power has increased over the years, sound synthesis implementations have evolved from dedicated chip sets, to single-chip solutions, and ultimately to software implementations within processors used primarily for other tasks (such as for graphics or general purpose computing). With the cost of implementation dropping closer and closer to zero, there is increasing room for higher quality algorithms.

  16. Enhancing the immersive reality of virtual simulators for easily accessible laparoscopic surgical training

    NASA Astrophysics Data System (ADS)

    McKenna, Kyra; McMenemy, Karen; Ferguson, R. S.; Dick, Alistair; Potts, Stephen

    2008-02-01

    Computer simulators are a popular method of training surgeons in the techniques of laparoscopy. However, for the trainee to feel totally immersed in the process, the graphical display should be as lifelike as possible and two-handed force feedback interaction is required. This paper reports on how a compelling immersive experience can be delivered at low cost using commonly available hardware components. Three specific themes are brought together. Firstly, programmable shaders executing in standard PC graphics adapter's deliver the appearance of anatomical realism, including effects of: translucent tissue surfaces, semi-transparent membranes, multilayer image texturing and real-time shadowing. Secondly, relatively inexpensive 'off the shelf' force feedback devices contribute to a holistic immersive experience. The final element described is the custom software that brings these together with hierarchically organized and optimized polygonal models for abdominal anatomy.

  17. Exploring Gigabyte Datasets in Real Time: Architectures, Interfaces and Time-Critical Design

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Architectures and Interfaces: The implications of real-time interaction on software architecture design: decoupling of interaction/graphics and computation into asynchronous processes. The performance requirements of graphics and computation for interaction. Time management in such an architecture. Examples of how visualization algorithms must be modified for high performance. Brief survey of interaction techniques and design, including direct manipulation and manipulation via widgets. talk discusses how human factors considerations drove the design and implementation of the virtual wind tunnel. Time-Critical Design: A survey of time-critical techniques for both computation and rendering. Emphasis on the assignment of a time budget to both the overall visualization environment and to each individual visualization technique in the environment. The estimation of the benefit and cost of an individual technique. Examples of the modification of visualization algorithms to allow time-critical control.

  18. Student Thinking Processes While Constructing Graphic Representations of Textbook Content: What Insights Do Think-Alouds Provide?

    ERIC Educational Resources Information Center

    Scott, D. Beth; Dreher, Mariam Jean

    2016-01-01

    This study examined the thinking processes students engage in while constructing graphic representations of textbook content. Twenty-eight students who either used graphic representations in a routine manner during social studies instruction or learned to construct graphic representations based on the rhetorical patterns used to organize textbook…

  19. Scientific Programming Using Java and C: A Remote Sensing Example

    NASA Technical Reports Server (NTRS)

    Prados, Donald; Johnson, Michael; Mohamed, Mohamed A.; Cao, Chang-Yong; Gasser, Jerry; Powell, Don; McGregor, Lloyd

    1999-01-01

    This paper presents results of a project to port code for processing remotely sensed data from the UNIX environment to Windows. Factors considered during this process include time schedule, cost, resource availability, reuse of existing code, rapid interface development, ease of integration, and platform independence. The approach selected for this project used both Java and C. By using Java for the graphical user interface and C for the domain model, the strengths of both languages were utilized and the resulting code can easily be ported to other platforms. The advantages of this approach are discussed in this paper.

  20. Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations.

    PubMed

    Eggeman, A S; London, A; Midgley, P A

    2013-11-01

    Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes. © 2013 Elsevier B.V. All rights reserved.

  1. Cost effectiveness of tobacco control policies in Vietnam: the case of population-level interventions.

    PubMed

    Higashi, Hideki; Truong, Khoa D; Barendregt, Jan J; Nguyen, Phuong K; Vuong, Mai L; Nguyen, Thuy T; Hoang, Phuong T; Wallace, Angela L; Tran, Tien V; Le, Cuong Q; Doran, Christopher M

    2011-05-01

    Tobacco smoking is one of the leading public health problems in the world. It is also possible to prevent and/or reduce the harm from tobacco use through the use of cost-effective tobacco control measures. However, most of this evidence comes from developed countries and little research has been conducted on this issue in developing countries. The objective of this study was to analyse the cost effectiveness of four population-level tobacco control interventions in Vietnam. Four tobacco control interventions were evaluated: excise tax increase; graphic warning labels on cigarette packs; mass media campaigns; and smoking bans (in public or in work places). A multi-state life table model was constructed in Microsoft® Excel to examine the cost effectiveness of the tobacco control intervention options. A government perspective was adopted, with costing conducted using a bottom-up approach. Health improvement was considered in terms of disability-adjusted life-years (DALYs) averted. All assumptions were subject to sensitivity and uncertainty analysis. All the interventions fell within the definition of being very cost effective according to the threshold level suggested by the WHO (i.e.

  2. An application of interactive computer graphics technology to the design of dispersal mechanisms

    NASA Technical Reports Server (NTRS)

    Richter, B. J.; Welch, B. H.

    1977-01-01

    Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.

  3. Adding tactile realism to a virtual reality laparoscopic surgical simulator with a cost-effective human interface device

    NASA Astrophysics Data System (ADS)

    Mack, Ian W.; Potts, Stephen; McMenemy, Karen R.; Ferguson, R. S.

    2006-02-01

    The laparoscopic technique for performing abdominal surgery requires a very high degree of skill in the medical practitioner. Much interest has been focused on using computer graphics to provide simulators for training surgeons. Unfortunately, these tend to be complex and have a very high cost, which limits availability and restricts the length of time over which individuals can practice their skills. With computer game technology able to provide the graphics required for a surgical simulator, the cost does not have to be high. However, graphics alone cannot serve as a training simulator. Human interface hardware, the equivalent of the force feedback joystick for a flight simulator game, is required to complete the system. This paper presents a design for a very low cost device to address this vital issue. The design encompasses: the mechanical construction, the electronic interfaces and the software protocols to mimic a laparoscopic surgical set-up. Thus the surgeon has the capability of practicing two-handed procedures with the possibility of force feedback. The force feedback and collision detection algorithms allow surgeons to practice realistic operating theatre procedures with a good degree of authenticity.

  4. Graphic Design in Libraries: A Conceptual Process

    ERIC Educational Resources Information Center

    Ruiz, Miguel

    2014-01-01

    Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…

  5. How Much Does it Cost to Go Metric?

    ERIC Educational Resources Information Center

    Lindbeck, John R.

    1976-01-01

    Presents information on metric conversion costs and offers suggestions to aid teachers in making intelligent decisions with regard to programs in drafting, woodworking, metal working, and graphic arts. (HD)

  6. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  7. Realtime multi-plot graphics system

    NASA Technical Reports Server (NTRS)

    Shipkowski, Michael S.

    1990-01-01

    The increased complexity of test operations and customer requirements at Langley Research Center's National Transonic Facility (NTF) surpassed the capabilities of the initial realtime graphics system. The analysis of existing hardware and software and the enhancements made to develop a new realtime graphics system are described. The result of this effort is a cost effective system, based on hardware already in place, that support high speed, high resolution, generation and display of multiple realtime plots. The enhanced graphics system (EGS) meets the current and foreseeable future realtime graphics requirements of the NTF. While this system was developed to support wind tunnel operations, the overall design and capability of the system is applicable to other realtime data acquisition systems that have realtime plot requirements.

  8. Experiences modeling ocean circulation problems on a 30 node commodity cluster with 3840 GPU processor cores.

    NASA Astrophysics Data System (ADS)

    Hill, C.

    2008-12-01

    Low cost graphic cards today use many, relatively simple, compute cores to deliver support for memory bandwidth of more than 100GB/s and theoretical floating point performance of more than 500 GFlop/s. Right now this performance is, however, only accessible to highly parallel algorithm implementations that, (i) can use a hundred or more, 32-bit floating point, concurrently executing cores, (ii) can work with graphics memory that resides on the graphics card side of the graphics bus and (iii) can be partially expressed in a language that can be compiled by a graphics programming tool. In this talk we describe our experiences implementing a complete, but relatively simple, time dependent shallow-water equations simulation targeting a cluster of 30 computers each hosting one graphics card. The implementation takes into account the considerations (i), (ii) and (iii) listed previously. We code our algorithm as a series of numerical kernels. Each kernel is designed to be executed by multiple threads of a single process. Kernels are passed memory blocks to compute over which can be persistent blocks of memory on a graphics card. Each kernel is individually implemented using the NVidia CUDA language but driven from a higher level supervisory code that is almost identical to a standard model driver. The supervisory code controls the overall simulation timestepping, but is written to minimize data transfer between main memory and graphics memory (a massive performance bottle-neck on current systems). Using the recipe outlined we can boost the performance of our cluster by nearly an order of magnitude, relative to the same algorithm executing only on the cluster CPU's. Achieving this performance boost requires that many threads are available to each graphics processor for execution within each numerical kernel and that the simulations working set of data can fit into the graphics card memory. As we describe, this puts interesting upper and lower bounds on the problem sizes for which this technology is currently most useful. However, many interesting problems fit within this envelope. Looking forward, we extrapolate our experience to estimate full-scale ocean model performance and applicability. Finally we describe preliminary hybrid mixed 32-bit and 64-bit experiments with graphics cards that support 64-bit arithmetic, albeit at a lower performance.

  9. Multiprocessor graphics computation and display using transputers

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A package of two-dimensional graphics routines was developed to run on a transputer-based parallel processing system. These routines were designed to enable applications programmers to easily generate and display results from the transputer network in a graphic format. The graphics procedures were designed for the lowest possible network communication overhead for increased performance. The routines were designed for ease of use and to present an intuitive approach to generating graphics on the transputer parallel processing system.

  10. Commercial Off-The-Shelf (COTS) Graphics Processing Board (GPB) Radiation Test Evaluation Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.; Steele, Glen F.

    2013-01-01

    Large round trip communications latency for deep space missions will require more onboard computational capabilities to enable the space vehicle to undertake many tasks that have traditionally been ground-based, mission control responsibilities. As a result, visual display graphics will be required to provide simpler vehicle situational awareness through graphical representations, as well as provide capabilities never before done in a space mission, such as augmented reality for in-flight maintenance or Telepresence activities. These capabilities will require graphics processors and associated support electronic components for high computational graphics processing. In an effort to understand the performance of commercial graphics card electronics operating in the expected radiation environment, a preliminary test was performed on five commercial offthe- shelf (COTS) graphics cards. This paper discusses the preliminary evaluation test results of five COTS graphics processing cards tested to the International Space Station (ISS) low earth orbit radiation environment. Three of the five graphics cards were tested to a total dose of 6000 rads (Si). The test articles, test configuration, preliminary results, and recommendations are discussed.

  11. Efficient implementation of constant pH molecular dynamics on modern graphics processors.

    PubMed

    Arthur, Evan J; Brooks, Charles L

    2016-09-15

    The treatment of pH sensitive ionization states for titratable residues in proteins is often omitted from molecular dynamics (MD) simulations. While static charge models can answer many questions regarding protein conformational equilibrium and protein-ligand interactions, pH-sensitive phenomena such as acid-activated chaperones and amyloidogenic protein aggregation are inaccessible to such models. Constant pH molecular dynamics (CPHMD) coupled with the Generalized Born with a Simple sWitching function (GBSW) implicit solvent model provide an accurate framework for simulating pH sensitive processes in biological systems. Although this combination has demonstrated success in predicting pKa values of protein structures, and in exploring dynamics of ionizable side-chains, its speed has been an impediment to routine application. The recent availability of low-cost graphics processing unit (GPU) chipsets with thousands of processing cores, together with the implementation of the accurate GBSW implicit solvent model on those chipsets (Arthur and Brooks, J. Comput. Chem. 2016, 37, 927), provide an opportunity to improve the speed of CPHMD and ionization modeling greatly. Here, we present a first implementation of GPU-enabled CPHMD within the CHARMM-OpenMM simulation package interface. Depending on the system size and nonbonded force cutoff parameters, we find speed increases of between one and three orders of magnitude. Additionally, the algorithm scales better with system size than the CPU-based algorithm, thus allowing for larger systems to be modeled in a cost effective manner. We anticipate that the improved performance of this methodology will open the door for broad-spread application of CPHMD in its modeling pH-mediated biological processes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Prototype of a Graphical CONOPS (Concept of Operations) Development Environment for Agile Systems Engineering

    DTIC Science & Technology

    2013-08-30

    H98230-08-D-0171 TTO 0025, RT0030a Report No. 2013-TR-030-2 August 30, 2013 UNCLASSIFIED - Open interfaces Cost: - per seat - to deploy...site-wide and server licenses may help mitigate concerns that per seat licenses may incur. Although not stated as one of the “critical...process shown in Figure 4, each list was designated as a scheduled sprint, and one was labeled Backlog. Figure 5 represents a Trello board with three

  13. Application of the SCADA system in wastewater treatment plants.

    PubMed

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  14. Prediction of energy cost of treadmill work.

    DOT National Transportation Integrated Search

    1962-04-01

    The relative contributions of rate progression (1.5 to 4.0 mph), grade (4 to 9%), and load (10 to 30 Kg), to the total energy cost of treadmill work were determined. The data obtained were integrated graphically with some of the available energy cost...

  15. Microarthroscopy System With Image Processing Technology Developed for Minimally Invasive Surgery

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    In a joint effort, NASA, Micro Medical Devices, and the Cleveland Clinic have developed a microarthroscopy system with digital image processing. This system consists of a disposable endoscope the size of a needle that is aimed at expanding the use of minimally invasive surgery on the knee, ankle, and other small joints. This device not only allows surgeons to make smaller incisions (by improving the clarity and brightness of images), but it gives them a better view of the injured area to make more accurate diagnoses. Because of its small size, the endoscope helps reduce physical trauma and speeds patient recovery. The faster recovery rate also makes the system cost effective for patients. The digital image processing software used with the device was originally developed by the NASA Glenn Research Center to conduct computer simulations of satellite positioning in space. It was later modified to reflect lessons learned in enhancing photographic images in support of the Center's microgravity program. Glenn's Photovoltaic Branch and Graphics and Visualization Lab (G-VIS) computer programmers and software developers enhanced and speed up graphic imaging for this application. Mary Vickerman at Glenn developed algorithms that enabled Micro Medical Devices to eliminate interference and improve the images.

  16. Interactive Graphics Simulator: Design, Development, and Effectiveness/Cost Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Pieper, William J.; And Others

    This study was initiated to design, develop, implement, and evaluate a videodisc-based simulator system, the Interactive Graphics Simulator (IGS) for 6883 Converter Flight Control Test Station training at Lowry Air Force Base, Colorado. The simulator provided a means for performing task analysis online, developing simulations from the task…

  17. Graphical Internet Access on a Budget: Making a Pseudo-SLIP Connection.

    ERIC Educational Resources Information Center

    McCulley, P. Michael

    1995-01-01

    Examines The Internet Adapter (TIA), an Internet protocol that allows computers to be directly on the Internet and access graphics over standard telephone lines using high-speed modems. Compares TIA's system requirements, performance, and costs to other Internet connections. Sidebars describe connections other than TIA and how to find information…

  18. A prototype for communitising technology: Development of a smart salt water desalination device

    NASA Astrophysics Data System (ADS)

    Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.

    2018-04-01

    Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.

  19. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments

    PubMed Central

    Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu

    2017-01-01

    High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments. PMID:28835734

  20. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments.

    PubMed

    Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu

    2017-01-01

    High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.

  1. Graphic artist in computerland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolberg, K.M.

    1983-01-01

    The field of computer graphics is rapidly opening up to the graphic artist. It is not necessary to be a programming expert to enter this fascinating world. The capabilities of the medium are astounding: neon and metallic effects, translucent plastic and clear glass effects, sensitive 3-D shadings, limitless textures, and above all color. As with any medium, computer graphics has its advantages, such as speed, ease of form manipulation, and a variety of type fonts and alphabets. It also has its limitations, such as data input time, final output turnaround time, and not necessarily being the right medium for themore » job at hand. And finally, it is the time- and cost-saving characteristics of computer-generated visuals, opposed to original artwork, that make computer graphics a viable alternative. This paper focuses on parts of the computer graphics system in use at the Los Alamos National Laboratory to provide specific examples.« less

  2. The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing

    DTIC Science & Technology

    2017-08-01

    access to the GPU for general purpose processing .5 CUDA is designed to work easily with multiple programming languages , including Fortran. CUDA is a...Using Graphics Processing Unit (GPU) Computing by Leelinda P Dawson Approved for public release; distribution unlimited...The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing by Leelinda

  3. Synthetic vision in the cockpit: 3D systems for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth

    2001-08-01

    Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.

  4. A Relational Reasoning Approach to Text-Graphic Processing

    ERIC Educational Resources Information Center

    Danielson, Robert W.; Sinatra, Gale M.

    2017-01-01

    We propose that research on text-graphic processing could be strengthened by the inclusion of relational reasoning perspectives. We briefly outline four aspects of relational reasoning: "analogies," "anomalies," "antinomies", and "antitheses". Next, we illustrate how text-graphic researchers have been…

  5. Printing--Graphic Arts--Graphic Communications

    ERIC Educational Resources Information Center

    Hauenstein, A. Dean

    1975-01-01

    Recently, "graphic arts" has shifted from printing skills to a conceptual approach of production processes. "Graphic communications" must embrace the total system of communication through graphic media, to serve broad career education purposes; students taught concepts and principles can be flexible and adaptive. The author…

  6. Modeling And Simulation Of Bar Code Scanners Using Computer Aided Design Software

    NASA Astrophysics Data System (ADS)

    Hellekson, Ron; Campbell, Scott

    1988-06-01

    Many optical systems have demanding requirements to package the system in a small 3 dimensional space. The use of computer graphic tools can be a tremendous aid to the designer in analyzing the optical problems created by smaller and less costly systems. The Spectra Physics grocery store bar code scanner employs an especially complex 3 dimensional scan pattern to read bar code labels. By using a specially written program which interfaces with a computer aided design system, we have simulated many of the functions of this complex optical system. In this paper we will illustrate how a recent version of the scanner has been designed. We will discuss the use of computer graphics in the design process including interactive tweaking of the scan pattern, analysis of collected light, analysis of the scan pattern density, and analysis of the manufacturing tolerances used to build the scanner.

  7. Development and implementation of a low cost micro computer system for LANDSAT analysis and geographic data base applications

    NASA Technical Reports Server (NTRS)

    Faust, N.; Jordon, L.

    1981-01-01

    Since the implementation of the GRID and IMGRID computer programs for multivariate spatial analysis in the early 1970's, geographic data analysis subsequently moved from large computers to minicomputers and now to microcomputers with radical reduction in the costs associated with planning analyses. Programs designed to process LANDSAT data to be used as one element in a geographic data base were used once NIMGRID (new IMGRID), a raster oriented geographic information system, was implemented on the microcomputer. Programs for training field selection, supervised and unsupervised classification, and image enhancement were added. Enhancements to the color graphics capabilities of the microsystem allow display of three channels of LANDSAT data in color infrared format. The basic microcomputer hardware needed to perform NIMGRID and most LANDSAT analyses is listed as well as the software available for LANDSAT processing.

  8. Human sense utilization method on real-time computer graphics

    NASA Astrophysics Data System (ADS)

    Maehara, Hideaki; Ohgashi, Hitoshi; Hirata, Takao

    1997-06-01

    We are developing an adjustment method of real-time computer graphics, to obtain effective ones which give audience various senses intended by producer, utilizing human sensibility technologically. Generally, production of real-time computer graphics needs much adjustment of various parameters, such as 3D object models/their motions/attributes/view angle/parallax etc., in order that the graphics gives audience superior effects as reality of materials, sense of experience and so on. And it is also known it costs much to adjust such various parameters by trial and error. A graphics producer often evaluates his graphics to improve it. For example, it may lack 'sense of speed' or be necessary to be given more 'sense of settle down,' to improve it. On the other hand, we can know how the parameters in computer graphics affect such senses by means of statistically analyzing several samples of computer graphics which provide different senses. We paid attention to these two facts, so that we designed an adjustment method of the parameters by inputting phases of sense into a computer. By the way of using this method, it becomes possible to adjust real-time computer graphics more effectively than by conventional way of trial and error.

  9. Measuring Cognitive Load in Test Items: Static Graphics versus Animated Graphics

    ERIC Educational Resources Information Center

    Dindar, M.; Kabakçi Yurdakul, I.; Inan Dönmez, F.

    2015-01-01

    The majority of multimedia learning studies focus on the use of graphics in learning process but very few of them examine the role of graphics in testing students' knowledge. This study investigates the use of static graphics versus animated graphics in a computer-based English achievement test from a cognitive load theory perspective. Three…

  10. Cots Correlator Platform

    NASA Astrophysics Data System (ADS)

    Schaaf, Kjeld; Overeem, Ruud

    2004-06-01

    Moore’s law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore’s law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC’s supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.

  11. Brian hears: online auditory processing using vectorization over channels.

    PubMed

    Fontaine, Bertrand; Goodman, Dan F M; Benichoux, Victor; Brette, Romain

    2011-01-01

    The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in "Brian Hears," a library for the spiking neural network simulator package "Brian." This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations.

  12. Micromagnetics on high-performance workstation and mobile computational platforms

    NASA Astrophysics Data System (ADS)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  13. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1990-01-01

    How people comprehend graphics is examined. Graphical comprehension involves the cognitive representation of information from a graphic display and the processing strategies that people apply to answer questions about graphics. Research on representation has examined both the features present in a graphic display and the cognitive representation of the graphic. The key features include the physical components of a graph, the relation between the figure and its axes, and the information in the graph. Tests of people's memory for graphs indicate that both the physical and informational aspect of a graph are important in the cognitive representation of a graph. However, the physical (or perceptual) features overshadow the information to a large degree. Processing strategies also involve a perception-information distinction. In order to answer simple questions (e.g., determining the value of a variable, comparing several variables, and determining the mean of a set of variables), people switch between two information processing strategies: (1) an arithmetic, look-up strategy in which they use a graph much like a table, looking up values and performing arithmetic calculations; and (2) a perceptual strategy in which they use the spatial characteristics of the graph to make comparisons and estimations. The user's choice of strategies depends on the task and the characteristics of the graph. A theory of graphic comprehension is presented.

  14. Software Graphics Processing Unit (sGPU) for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    McCabe, Mary; Salazar, George; Steele, Glen

    2015-01-01

    A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

  15. Maximising profits for an EPQ model with unreliable machine and rework of random defective items

    NASA Astrophysics Data System (ADS)

    Pal, Brojeswar; Sankar Sana, Shib; Chaudhuri, Kripasindhu

    2013-03-01

    This article deals with an economic production quantity (EPQ) model in an imperfect production system. The production system may undergo in 'out-of-control' state from 'in-control' state, after a certain time that follows a probability density function. The density function varies with reliability of the machinery system that may be controlled by new technologies, investing more costs. The defective items produced in 'out-of-control' state are reworked at a cost just after the regular production time. Occurrence of the 'out-of-control' state during or after regular production-run time is analysed and also graphically illustrated separately. Finally, an expected profit function regarding the inventory cost, unit production cost and selling price is maximised analytically. Sensitivity analysis of the model with respect to key parameters of the system is carried out. Two numerical examples are considered to test the model and one of them is illustrated graphically.

  16. The Mediterranean diet among British older adults: Its understanding, acceptability and the feasibility of a randomised brief intervention with two levels of dietary advice.

    PubMed

    Lara, Jose; Turbett, Edel; Mckevic, Agata; Rudgard, Kate; Hearth, Henrietta; Mathers, John C

    2015-12-01

    To assess (i) understanding, acceptability and preference for two graphical displays of the Mediterranean diet (MD); and (ii) feasibility of a brief MD intervention and cost of adherence to this diet among British older adults. Two studies undertaken at the Human Nutrition Research Centre, Newcastle University are reported. In study-1, preference and understanding of the MD guidelines and two graphical displays, a plate and a pyramid, were evaluated in an educational group session (EGS). In study-2, we evaluated the feasibility of a three-week brief MD intervention with two levels of dietary advice: Group-1 (level 1) attended an EGS on the MD, and Group-2 (level 2) attended an EGS and received additional support. MD adherence using a 9-point score, and the cost of food intake during intervention, were assessed. RESULTS STUDY-1: No differences in preference for a MD plate or pyramid were observed. Both graphic displays were rated as acceptable and conveyed clearly these guidelines. STUDY-2: The intervention was rated as acceptable. No significant differences were observed between groups 1 and 2. Analysis of the combined sample showed significant increases from baseline in fish intake (P=0.01) and MD score (P=0.05). The cost of food intake during intervention was not significantly different from baseline. British older adults rated a MD as an acceptable model of healthy eating, and a plate and a pyramid as comprehensible graphic displays of these guidelines. A brief dietary intervention was also acceptable and revealed that greater adherence to the MD could be achieved without incurring significantly greater costs. Copyright © 2015. Published by Elsevier Ireland Ltd.

  17. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1993-01-01

    Our initial model of graphic comprehension has focused on statistical graphs. Like other models of human-computer interaction, models of graphical comprehension can be used by human-computer interface designers and developers to create interfaces that present information in an efficient and usable manner. Our investigation of graph comprehension addresses two primary questions: how do people represent the information contained in a data graph?; and how do they process information from the graph? The topics of focus for graphic representation concern the features into which people decompose a graph and the representations of the graph in memory. The issue of processing can be further analyzed as two questions: what overall processing strategies do people use?; and what are the specific processing skills required?

  18. Integration of rocket turbine design and analysis through computer graphics

    NASA Technical Reports Server (NTRS)

    Hsu, Wayne; Boynton, Jim

    1988-01-01

    An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.

  19. The human role in space (THURIS) applications study. Final briefing

    NASA Technical Reports Server (NTRS)

    Maybee, George W.

    1987-01-01

    The THURIS (The Human Role in Space) application is an iterative process involving successive assessments of man/machine mixes in terms of performance, cost and technology to arrive at an optimum man/machine mode for the mission application. The process begins with user inputs which define the mission in terms of an event sequence and performance time requirements. The desired initial operational capability date is also an input requirement. THURIS terms and definitions (e.g., generic activities) are applied to the input data converting it into a form which can be analyzed using the THURIS cost model outputs. The cost model produces tabular and graphical outputs for determining the relative cost-effectiveness of a given man/machine mode and generic activity. A technology database is provided to enable assessment of support equipment availability for selected man/machine modes. If technology gaps exist for an application, the database contains information supportive of further investigation into the relevant technologies. The present study concentrated on testing and enhancing the THURIS cost model and subordinate data files and developing a technology database which interfaces directly with the user via technology readiness displays. This effort has resulted in a more powerful, easy-to-use applications system for optimization of man/machine roles. Volume 1 is an executive summary.

  20. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources.

    PubMed

    Starling, Maria Clara V M; Castro, Luiz Augusto S; Marcelino, Rafaela B P; Leão, Mônica M D; Amorim, Camila C

    2017-03-01

    In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m -3 for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.

  1. 77 FR 12843 - Fees for Sanitation Inspections of Cruise Ships

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... used to determine the fees: [GRAPHIC] [TIFF OMITTED] TN02MR12.006 The average cost per inspection is multiplied by size and cost factors to determine the fee for vessels in each size category. The size and cost... exists rodent, insect, or other vermin infestations, contaminated food or water, or other sanitary...

  2. Graphic Design Is Not a Medium.

    ERIC Educational Resources Information Center

    Gruber, John Edward, Jr.

    2001-01-01

    Discusses graphic design and reviews its development from analog processes to a digital tool with the use of computers. Topics include graphical user interfaces; the need for visual communication concepts; transmedia as opposed to repurposing; and graphic design instruction in higher education. (LRW)

  3. Reducing Costs and Increasing Productivity in Ship Maintenance Using Product Lifecycle Management, 3D Laser Scanning and 3D Printing

    DTIC Science & Technology

    2014-03-01

    information modeling guide series: 03—GSA BIM guide for 3D imaging (Ver. 1). Retrieved from http://www.gsa.gov/graphics/pbs/GSA_BIM_Guide_Series_03... model during a KVA knowledge audit at FRC San Diego. The information used in the creation of his KVA models was generated from the SME-provided...Kenney then used the information gathered during SME interviews to reengineer the process to include 3D printing to form his “to-be” model . The

  4. A Cost Simulation Tool for Estimating the Cost of Operating Government Owned and Operated Ships

    DTIC Science & Technology

    1994-09-01

    Horngren , C.T., Foster, G., Datar, S.M., Cost Accounting : A Management Emphasis, Prentice-Hall, Englewood Cliffs, NJ, 1994 IBM Corporation, A Graphical...4. TITLE AND SUBTITLE A COST SIMULATION TOOL FOR 5. FUNDING NUMBERS ESTIMATING THE COST OF OPERATING GOVERNMENT OWNED AND OPERATED SHIPS 6. AUTHOR( S ...normally does not present a problem to the accounting department. The final category, the cost of operating the government owned and operated ships is

  5. Grace: A cross-platform micromagnetic simulator on graphics processing units

    NASA Astrophysics Data System (ADS)

    Zhu, Ru

    2015-12-01

    A micromagnetic simulator running on graphics processing units (GPUs) is presented. Different from GPU implementations of other research groups which are predominantly running on NVidia's CUDA platform, this simulator is developed with C++ Accelerated Massive Parallelism (C++ AMP) and is hardware platform independent. It runs on GPUs from venders including NVidia, AMD and Intel, and achieves significant performance boost as compared to previous central processing unit (CPU) simulators, up to two orders of magnitude. The simulator paved the way for running large size micromagnetic simulations on both high-end workstations with dedicated graphics cards and low-end personal computers with integrated graphics cards, and is freely available to download.

  6. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  7. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    PubMed

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The Effects of Interactive Graphics Analogies on Recall of Concepts in Science

    DTIC Science & Technology

    1976-08-01

    processing , in the Craik and Lockhart sense, were induced by this postlesson condition. 3. The fact that students were able to deal with both...higher scores on a graphics posttest in Experiment III. These results suggest that both shallow and deep processing , in the Craik and Lockhart ...graphics posttest in Experiment III. These results suggest that both shallow and deep processing , in the Cralk and Lockhart sense, were induced by

  9. Graphic Arts: Process Camera, Stripping, and Platemaking. Fourth Edition. Teacher Edition [and] Student Edition.

    ERIC Educational Resources Information Center

    Multistate Academic and Vocational Curriculum Consortium, Stillwater, OK.

    This publication contains both a teacher edition and a student edition of materials for a course in graphic arts that covers the process camera, stripping, and platemaking. The course introduces basic concepts and skills necessary for entry-level employment in a graphic communication occupation. The contents of the materials are tied to measurable…

  10. GPU Accelerated Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Daigle, Matthew J.; Sankararaman, Shankar; Kulkarni, Chetan S.; Ng, Eley

    2017-01-01

    Prognostic methods enable operators and maintainers to predict the future performance for critical systems. However, these methods can be computationally expensive and may need to be performed each time new information about the system becomes available. In light of these computational requirements, we have investigated the application of graphics processing units (GPUs) as a computational platform for real-time prognostics. Recent advances in GPU technology have reduced cost and increased the computational capability of these highly parallel processing units, making them more attractive for the deployment of prognostic software. We present a survey of model-based prognostic algorithms with considerations for leveraging the parallel architecture of the GPU and a case study of GPU-accelerated battery prognostics with computational performance results.

  11. HMI conventions for process control graphics.

    PubMed

    Pikaar, Ruud N

    2012-01-01

    Process operators supervise and control complex processes. To enable the operator to do an adequate job, instrumentation and process control engineers need to address several related topics, such as console design, information design, navigation, and alarm management. In process control upgrade projects, usually a 1:1 conversion of existing graphics is proposed. This paper suggests another approach, efficiently leading to a reduced number of new powerful process graphics, supported by a permanent process overview displays. In addition a road map for structuring content (process information) and conventions for the presentation of objects, symbols, and so on, has been developed. The impact of the human factors engineering approach on process control upgrade projects is illustrated by several cases.

  12. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-08

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  13. Analysis of impact of general-purpose graphics processor units in supersonic flow modeling

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.

    2017-06-01

    Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  14. Fast data preprocessing with Graphics Processing Units for inverse problem solving in light-scattering measurements

    NASA Astrophysics Data System (ADS)

    Derkachov, G.; Jakubczyk, T.; Jakubczyk, D.; Archer, J.; Woźniak, M.

    2017-07-01

    Utilising Compute Unified Device Architecture (CUDA) platform for Graphics Processing Units (GPUs) enables significant reduction of computation time at a moderate cost, by means of parallel computing. In the paper [Jakubczyk et al., Opto-Electron. Rev., 2016] we reported using GPU for Mie scattering inverse problem solving (up to 800-fold speed-up). Here we report the development of two subroutines utilising GPU at data preprocessing stages for the inversion procedure: (i) A subroutine, based on ray tracing, for finding spherical aberration correction function. (ii) A subroutine performing the conversion of an image to a 1D distribution of light intensity versus azimuth angle (i.e. scattering diagram), fed from a movie-reading CPU subroutine running in parallel. All subroutines are incorporated in PikeReader application, which we make available on GitHub repository. PikeReader returns a sequence of intensity distributions versus a common azimuth angle vector, corresponding to the recorded movie. We obtained an overall ∼ 400 -fold speed-up of calculations at data preprocessing stages using CUDA codes running on GPU in comparison to single thread MATLAB-only code running on CPU.

  15. Write Is Right: Using Graphic Organizers to Improve Student Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Zollman, Alan

    2012-01-01

    Teachers have used graphic organizers successfully in teaching the writing process. This paper describes graphic organizers and their potential mathematics benefits for both students and teachers, elucidates a specific graphic organizer adaptation for mathematical problem solving, and discusses results using the "four-corners-and-a-diamond"…

  16. Building Regression Models: The Importance of Graphics.

    ERIC Educational Resources Information Center

    Dunn, Richard

    1989-01-01

    Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)

  17. Mathematical Creative Activity and the Graphic Calculator

    ERIC Educational Resources Information Center

    Duda, Janina

    2011-01-01

    Teaching mathematics using graphic calculators has been an issue of didactic discussions for years. Finding ways in which graphic calculators can enrich the development process of creative activity in mathematically gifted students between the ages of 16-17 is the focus of this article. Research was conducted using graphic calculators with…

  18. Defining Identities through Multiliteracies: EL Teens Narrate Their Immigration Experiences as Graphic Stories

    ERIC Educational Resources Information Center

    Danzak, Robin L.

    2011-01-01

    Based on a framework of identity-as-narrative and multiliteracies, this article describes "Graphic Journeys," a multimedia literacy project in which English learners (ELs) in middle school created graphic stories that expressed their families' immigration experiences. The process involved reading graphic novels, journaling, interviewing, and…

  19. Robot graphic simulation testbed

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.

    1991-01-01

    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.

  20. Analysis of post-mining excavations as places for municipal waste

    NASA Astrophysics Data System (ADS)

    Górniak-Zimroz, Justyna

    2018-01-01

    Waste management planning is an interdisciplinary task covering a wide range of issues including costs, legal requirements, spatial planning, environmental protection, geography, demographics, and techniques used in collecting, transporting, processing and disposing of waste. Designing and analyzing this issue is difficult and requires the use of advanced analysis methods and tools available in GIS geographic information systems containing readily available graphical and descriptive databases, data analysis tools providing expert decision support while selecting the best-designed alternative, and simulation models that allow the user to simulate many variants of waste management together with graphical visualization of the results of performed analyzes. As part of the research study, there have been works undertaken concerning the use of multi-criteria data analysis in waste management in areas located in southwestern Poland. These works have proposed the inclusion in waste management of post-mining excavations as places for the final or temporary collection of waste assessed in terms of their suitability with the tools available in GIS systems.

  1. Parallel processor-based raster graphics system architecture

    DOEpatents

    Littlefield, Richard J.

    1990-01-01

    An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.

  2. Brian Hears: Online Auditory Processing Using Vectorization Over Channels

    PubMed Central

    Fontaine, Bertrand; Goodman, Dan F. M.; Benichoux, Victor; Brette, Romain

    2011-01-01

    The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in “Brian Hears,” a library for the spiking neural network simulator package “Brian.” This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations. PMID:21811453

  3. Tools for computer graphics applications

    NASA Technical Reports Server (NTRS)

    Phillips, R. L.

    1976-01-01

    Extensive research in computer graphics has produced a collection of basic algorithms and procedures whose utility spans many disciplines. These tools are described in terms of their fundamental aspects, implementations, applications, and availability. Programs which are discussed include basic data plotting, curve smoothing, and depiction of three dimensional surfaces. As an aid to potential users of these tools, particular attention is given to discussing their availability and, where applicable, their cost.

  4. The Next Generation of Personal Computers.

    ERIC Educational Resources Information Center

    Crecine, John P.

    1986-01-01

    Discusses factors converging to create high-capacity, low-cost nature of next generation of microcomputers: a coherent vision of what graphics workstation and future computing environment should be like; hardware developments leading to greater storage capacity at lower costs; and development of software and expertise to exploit computing power…

  5. Graphical Models for Ordinal Data

    PubMed Central

    Guo, Jian; Levina, Elizaveta; Michailidis, George; Zhu, Ji

    2014-01-01

    A graphical model for ordinal variables is considered, where it is assumed that the data are generated by discretizing the marginal distributions of a latent multivariate Gaussian distribution. The relationships between these ordinal variables are then described by the underlying Gaussian graphical model and can be inferred by estimating the corresponding concentration matrix. Direct estimation of the model is computationally expensive, but an approximate EM-like algorithm is developed to provide an accurate estimate of the parameters at a fraction of the computational cost. Numerical evidence based on simulation studies shows the strong performance of the algorithm, which is also illustrated on data sets on movie ratings and an educational survey. PMID:26120267

  6. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less

  7. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.

    PubMed

    Chikkagoudar, Satish; Wang, Kai; Li, Mingyao

    2011-05-26

    Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  8. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores

    PubMed Central

    2011-01-01

    Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/. PMID:21615923

  9. Advantages of GPU technology in DFT calculations of intercalated graphene

    NASA Astrophysics Data System (ADS)

    Pešić, J.; Gajić, R.

    2014-09-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an acceleration of several times compared to standard CPU calculations.

  10. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  11. Advancing satellite operations with intelligent graphical monitoring systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1993-01-01

    For nearly twenty-five years, spacecraft missions have been operated in essentially the same manner: human operators monitor displays filled with alphanumeric text watching for limit violations or other indicators that signal a problem. The task is performed predominately by humans. Only in recent years have graphical user interfaces and expert systems been accepted within the control center environment to help reduce operator workloads. Unfortunately, the development of these systems is often time consuming and costly. At the NASA Goddard Space Flight Center (GSFC), a new domain specific expert system development tool called the Generic Spacecraft Analyst Assistant (GenSAA) has been developed. Through the use of a highly graphical user interface and point-and-click operation, GenSAA facilitates the rapid, 'programming-free' construction of intelligent graphical monitoring systems to serve as real-time, fault-isolation assistants for spacecraft analysts. Although specifically developed to support real-time satellite monitoring, GenSAA can support the development of intelligent graphical monitoring systems in a variety of space and commercial applications.

  12. Target Information Processing: A Joint Decision and Estimation Approach

    DTIC Science & Technology

    2012-03-29

    ground targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important...targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important

  13. Orthorectification by Using Gpgpu Method

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Kulur, S.

    2012-07-01

    Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.

  14. Graphical Man/Machine Communications

    DTIC Science & Technology

    Progress is reported concerning the use of computer controlled graphical displays in the areas of radiaton diffusion and hydrodynamics, general...ventricular dynamics. Progress is continuing on the use of computer graphics in architecture. Some progress in halftone graphics is reported with no basic...developments presented. Colored halftone perspective pictures are being used to represent multivariable situations. Nonlinear waveform processing is

  15. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment

    PubMed Central

    Manavski, Svetlin A; Valle, Giorgio

    2008-01-01

    Background Searching for similarities in protein and DNA databases has become a routine procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than 25 years. It is based on a dynamic programming approach that explores all the possible alignments between two sequences; as a result it returns the optimal local alignment. Unfortunately, the computational cost is very high, requiring a number of operations proportional to the product of the length of two sequences. Furthermore, the exponential growth of protein and DNA databases makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of sequences. For these reasons heuristic approaches such as those implemented in FASTA and BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The main motivation of our work is to exploit the huge computational power of commonly available graphic cards, to develop high performance solutions for sequence alignment. Results In this paper we present what we believe is the fastest solution of the exact Smith-Waterman algorithm running on commodity hardware. It is implemented in the recently released CUDA programming environment by NVidia. CUDA allows direct access to the hardware primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5 GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800 GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST, running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These tests show that our implementation performs from 2 to 30 times faster than any other previous attempt available on commodity hardware. Conclusions The results show that graphic cards are now sufficiently advanced to be used as efficient hardware accelerators for sequence alignment. Their performance is better than any alternative available on commodity hardware platforms. The solution presented in this paper allows large scale alignments to be performed at low cost, using the exact Smith-Waterman algorithm instead of the largely adopted heuristic approaches. PMID:18387198

  16. Weather information network including graphical display

    NASA Technical Reports Server (NTRS)

    Leger, Daniel R. (Inventor); Burdon, David (Inventor); Son, Robert S. (Inventor); Martin, Kevin D. (Inventor); Harrison, John (Inventor); Hughes, Keith R. (Inventor)

    2006-01-01

    An apparatus for providing weather information onboard an aircraft includes a processor unit and a graphical user interface. The processor unit processes weather information after it is received onboard the aircraft from a ground-based source, and the graphical user interface provides a graphical presentation of the weather information to a user onboard the aircraft. Preferably, the graphical user interface includes one or more user-selectable options for graphically displaying at least one of convection information, turbulence information, icing information, weather satellite information, SIGMET information, significant weather prognosis information, and winds aloft information.

  17. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  18. Selected Tether Applications Cost Model

    NASA Technical Reports Server (NTRS)

    Keeley, Michael G.

    1988-01-01

    Diverse cost-estimating techniques and data combined into single program. Selected Tether Applications Cost Model (STACOM 1.0) is interactive accounting software tool providing means for combining several independent cost-estimating programs into fully-integrated mathematical model capable of assessing costs, analyzing benefits, providing file-handling utilities, and putting out information in text and graphical forms to screen, printer, or plotter. Program based on Lotus 1-2-3, version 2.0. Developed to provide clear, concise traceability and visibility into methodology and rationale for estimating costs and benefits of operations of Space Station tether deployer system.

  19. Model for mapping settlements

    DOEpatents

    Vatsavai, Ranga Raju; Graesser, Jordan B.; Bhaduri, Budhendra L.

    2016-07-05

    A programmable media includes a graphical processing unit in communication with a memory element. The graphical processing unit is configured to detect one or more settlement regions from a high resolution remote sensed image based on the execution of programming code. The graphical processing unit identifies one or more settlements through the execution of the programming code that executes a multi-instance learning algorithm that models portions of the high resolution remote sensed image. The identification is based on spectral bands transmitted by a satellite and on selected designations of the image patches.

  20. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    PubMed Central

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-01-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures. PMID:24027616

  1. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures.

    PubMed

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R

    2012-02-23

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  2. [Influence of the recording interval and a graphic organizer on the writing process/product and on other psychological variables].

    PubMed

    García Sánchez, Jesús N; Rodríguez Pérez, Celestino

    2007-05-01

    An experimental study of the influence of the recording interval and a graphic organizer on the processes of writing composition and on the final product is presented. We studied 326 participants, age 10 to 16 years old, by means of a nested design. Two groups were compared: one group was aided in the writing process with a graphic organizer and the other was not. Each group was subdivided into two further groups: one with a mean recording interval of 45 seconds and the other with approximately 90 seconds recording interval in a writing log. The results showed that the group aided by a graphic organizer obtained better results both in processes and writing product, and that the groups assessed with an average interval of 45 seconds obtained worse results. Implications for educational practice are discussed, and limitations and future perspectives are commented on.

  3. Chromium: A Stress-Processing Framework for Interactive Rendering on Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, G,; Houston, M.; Ng, Y.-R.

    2002-01-11

    We describe Chromium, a system for manipulating streams of graphics API commands on clusters of workstations. Chromium's stream filters can be arranged to create sort-first and sort-last parallel graphics architectures that, in many cases, support the same applications while using only commodity graphics accelerators. In addition, these stream filters can be extended programmatically, allowing the user to customize the stream transformations performed by nodes in a cluster. Because our stream processing mechanism is completely general, any cluster-parallel rendering algorithm can be either implemented on top of or embedded in Chromium. In this paper, we give examples of real-world applications thatmore » use Chromium to achieve good scalability on clusters of workstations, and describe other potential uses of this stream processing technology. By completely abstracting the underlying graphics architecture, network topology, and API command processing semantics, we allow a variety of applications to run in different environments.« less

  4. A study of computer graphics technology in application of communication resource management

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhou, Liang; Yang, Fei

    2017-08-01

    With the development of computer technology, computer graphics technology has been widely used. Especially, the success of object-oriented technology and multimedia technology promotes the development of graphics technology in the computer software system. Therefore, the computer graphics theory and application technology have become an important topic in the field of computer, while the computer graphics technology becomes more and more extensive in various fields of application. In recent years, with the development of social economy, especially the rapid development of information technology, the traditional way of communication resource management cannot effectively meet the needs of resource management. In this case, the current communication resource management is still using the original management tools and management methods, resource management equipment management and maintenance, which brought a lot of problems. It is very difficult for non-professionals to understand the equipment and the situation in communication resource management. Resource utilization is relatively low, and managers cannot quickly and accurately understand the resource conditions. Aimed at the above problems, this paper proposes to introduce computer graphics technology into the communication resource management. The introduction of computer graphics not only makes communication resource management more vivid, but also reduces the cost of resource management and improves work efficiency.

  5. Implementation of a low-cost, commercial orbit determination system

    NASA Technical Reports Server (NTRS)

    Corrigan, Jim

    1994-01-01

    This paper describes the implementation and potential applications of a workstation-based orbit determination system developed by Storm Integration, Inc. called the Precision Orbit Determination System (PODS). PODS is offered as a layered product to the commercially-available Satellite Tool Kit (STK) produced by Analytical Graphics, Inc. PODS also incorporates the Workstation/Precision Orbit Determination (WS/POD) product offered by Van Martin System, Inc. The STK graphical user interface is used to access and invoke the PODS capabilities and to display the results. WS/POD is used to compute a best-fit solution to user-supplied tracking data. PODS provides the capability to simultaneously estimate the orbits of up to 99 satellites based on a wide variety of observation types including angles, range, range rate, and Global Positioning System (GPS) data. PODS can also estimate ground facility locations, Earth geopotential model coefficients, solar pressure and atmospheric drag parameters, and observation data biases. All determined data is automatically incorporated into the STK data base, which allows storage, manipulation and export of the data to other applications. PODS is offered in three levels: Standard, Basic GPS and Extended GPS. Standard allows processing of non-GPS observation types for any number of vehicles and facilities. Basic GPS adds processing of GPS pseudo-ranging data to the Standard capabilities. Extended GPS adds the ability to process GPS carrier phase data.

  6. Task-Analytic Design of Graphic Presentations

    DTIC Science & Technology

    1990-05-18

    important premise of Larkin and Simon’s work is that, when comparing alternative presentations, it is fruitful to characterize graphic-based problem solving...using the same information-processing models used to help understand problem solving using other representations [Newell and Simon, 19721...luring execution of graphic presentation- 4 based problem -solving procedures. Chapter 2 reviews other work related to the problem of designing graphic

  7. Audit of the annual reports of directors of public health: production methods.

    PubMed

    Sidhu, K S

    1992-07-01

    An audit of production methods used for the Directors of Public Health (DsPH) Annual Report of the health of their local population. Postal questionnaire survey. 23 Departments of Public Health in the West Midlands Region. Costs and problems relating to different production techniques used. The majority of DsPH favoured reports with figures and graphs. This led to most DsPH using in-house desktop publishing or employing external graphic designers. Those using the former technique had more problems related to computers and felt they spent too much medical time working on the document. However, they also valued the relative low cost, editorial freedom and the ability to correct mistakes easily. Departments which employed external graphic designers generally paid more, but appreciated the extra time made available by delegating the work. They also felt that the expertise was valuable in document design. However, inaccuracies were cited as being more difficult to correct. Perhaps the best way of producing an annual report is to amalgamate the two commonest production techniques (i.e. external graphic design and in-house desktop publishing).

  8. The manager's guide to NASA graphics standards

    NASA Technical Reports Server (NTRS)

    1980-01-01

    NASA managers have the responsibility to initiate and carry out communication projects with a degree of sophistication that properly reflects the agency's substantial work. Over the course of the last decade, it has become more important to clearly communicate NASA's objectives in aeronautical research, space exploration, and related sciences. Many factors come into play when preparing communication materials for internal and external use. Three overriding factors are: producing the materials by the most cost-efficient method; ensuring that each item reflects the vitality, knowledge, and precision of NASA; and portraying all visual materials with a unified appearance. This guide will serve as the primary tool in meeting these criteria. This publication spells out the many benefits inherent in the Unified Visual Communication System and describes how the system was developed. The last section lists the graphic coordinators at headquarters and the centers who can assist with graphic projects. By understanding the Unified Visual Communication System, NASA managers will be able to manage a project from inception through production in the most cost-effective manner while maintaining the quality of NASA communications.

  9. Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1975-01-01

    An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.

  10. Low-Level Graphics Cues For Solicit Image Interpretation

    NASA Astrophysics Data System (ADS)

    McAnulty, Michael A.; Gemmill, Jill P.; Kegley, Kathleen A.; Chiu, Haw-Tsang

    1984-08-01

    Several straightforward techniques for displaying arbitrary solids of the sort encountered in the life sciences are presented, all variations of simple three-dimensional scatter plots. They are all targeted for a medium cost raster display (an AED-5l2 has been used here). Practically any host computer may be used to implement them. All techniques are broadly applicable and were implemented as Master Degree projects. The major hardware constraint is data transmission speed, and this is met by minimizing the amount of graphical data, ignoring enhancement of the data, and using terminal scan-conversion and aspect firmware wherever possible. Three simple rendering techniques and the use of several graphics cues are described.

  11. Fast optically sectioned fluorescence HiLo endomicroscopy.

    PubMed

    Ford, Tim N; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  12. Fast optically sectioned fluorescence HiLo endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  13. STORMSeq: an open-source, user-friendly pipeline for processing personal genomics data in the cloud.

    PubMed

    Karczewski, Konrad J; Fernald, Guy Haskin; Martin, Alicia R; Snyder, Michael; Tatonetti, Nicholas P; Dudley, Joel T

    2014-01-01

    The increasing public availability of personal complete genome sequencing data has ushered in an era of democratized genomics. However, read mapping and variant calling software is constantly improving and individuals with personal genomic data may prefer to customize and update their variant calls. Here, we describe STORMSeq (Scalable Tools for Open-Source Read Mapping), a graphical interface cloud computing solution that does not require a parallel computing environment or extensive technical experience. This customizable and modular system performs read mapping, read cleaning, and variant calling and annotation. At present, STORMSeq costs approximately $2 and 5-10 hours to process a full exome sequence and $30 and 3-8 days to process a whole genome sequence. We provide this open-access and open-source resource as a user-friendly interface in Amazon EC2.

  14. CrossTalk. The Journal of Defense Software Engineering. Volume 25, Number 3

    DTIC Science & Technology

    2012-06-01

    OMG) standard Business Process Modeling and Nota- tion ( BPMN ) [6] graphical notation. I will address each of these: identify and document steps...to a value stream map using BPMN and textual process narratives. The resulting process narratives or process metadata includes key information...objectives. Once the processes are identified we can graphically document them capturing the process using BPMN (see Figure 1). The BPMN models

  15. A reformulation of the Cost Plus Net Value Change (C+NVC) model of wildfire economics

    Treesearch

    Geoffrey H. Donovan; Douglas B. Rideout

    2003-01-01

    The Cost plus Net Value Change (C+NVC) model provides the theoretical foundation for wildland fire economics and provides the basis for the National Fire Management Analysis System (NFMAS). The C+NVC model is based on the earlier least Cost plus Loss model (LC+L) expressed by Sparhawk (1925). Mathematical and graphical analysis of the LC+L model illustrates two errors...

  16. Lean methodology in health care.

    PubMed

    Kimsey, Diane B

    2010-07-01

    Lean production is a process management philosophy that examines organizational processes from a customer perspective with the goal of limiting the use of resources to those processes that create value for the end customer. Lean manufacturing emphasizes increasing efficiency, decreasing waste, and using methods to decide what matters rather than accepting preexisting practices. A rapid improvement team at Lehigh Valley Health Network, Allentown, Pennsylvania, implemented a plan, do, check, act cycle to determine problems in the central sterile processing department, test solutions, and document improved processes. By using A3 thinking, a consensus building process that graphically depicts the current state, the target state, and the gaps between the two, the team worked to improve efficiency and safety, and to decrease costs. Use of this methodology has increased teamwork, created user-friendly work areas and processes, changed management styles and expectations, increased staff empowerment and involvement, and streamlined the supply chain within the perioperative area. Copyright (c) 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  17. Graphic Arts: Book Two. Process Camera, Stripping, and Platemaking.

    ERIC Educational Resources Information Center

    Farajollahi, Karim; And Others

    The second of a three-volume set of instructional materials for a course in graphic arts, this manual consists of 10 instructional units dealing with the process camera, stripping, and platemaking. Covered in the individual units are the process camera and darkroom photography, line photography, half-tone photography, other darkroom techniques,…

  18. Graphic Arts: Process Camera, Stripping, and Platemaking. Third Edition.

    ERIC Educational Resources Information Center

    Crummett, Dan

    This document contains teacher and student materials for a course in graphic arts concentrating on camera work, stripping, and plate making in the printing process. Eight units of instruction cover the following topics: (1) the process camera and darkroom equipment; (2) line photography; (3) halftone photography; (4) other darkroom techniques; (5)…

  19. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    PubMed

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pre and post processing using the IBM 3277 display station graphics attachment (RPQ7H0284)

    NASA Technical Reports Server (NTRS)

    Burroughs, S. H.; Lawlor, M. B.; Miller, I. M.

    1978-01-01

    A graphical interactive procedure operating under TSO and utilizing two CRT display terminals is shown to be an effective means of accomplishing mesh generation, establishing boundary conditions, and reviewing graphic output for finite element analysis activity.

  1. Getting Graphic at the School Library.

    ERIC Educational Resources Information Center

    Kan, Kat

    2003-01-01

    Provides information for school libraries interested in acquiring graphic novels. Discusses theft prevention; processing and cataloging; maintaining the collection; what to choose, with two Web sites for more information on graphic novels for libraries; collection development decisions; and Japanese comics called Manga. Includes an annotated list…

  2. A graphically oriented specification language for automatic code generation. GRASP/Ada: A Graphical Representation of Algorithms, Structure, and Processes for Ada, phase 1

    NASA Technical Reports Server (NTRS)

    Cross, James H., II; Morrison, Kelly I.; May, Charles H., Jr.; Waddel, Kathryn C.

    1989-01-01

    The first phase of a three-phase effort to develop a new graphically oriented specification language which will facilitate the reverse engineering of Ada source code into graphical representations (GRs) as well as the automatic generation of Ada source code is described. A simplified view of the three phases of Graphical Representations for Algorithms, Structure, and Processes for Ada (GRASP/Ada) with respect to three basic classes of GRs is presented. Phase 1 concentrated on the derivation of an algorithmic diagram, the control structure diagram (CSD) (CRO88a) from Ada source code or Ada PDL. Phase 2 includes the generation of architectural and system level diagrams such as structure charts and data flow diagrams and should result in a requirements specification for a graphically oriented language able to support automatic code generation. Phase 3 will concentrate on the development of a prototype to demonstrate the feasibility of this new specification language.

  3. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization.

    PubMed

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun

    2013-08-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.

  4. Tunable, mixed-resolution modeling using library-based Monte Carlo and graphics processing units

    PubMed Central

    Mamonov, Artem B.; Lettieri, Steven; Ding, Ying; Sarver, Jessica L.; Palli, Rohith; Cunningham, Timothy F.; Saxena, Sunil; Zuckerman, Daniel M.

    2012-01-01

    Building on our recently introduced library-based Monte Carlo (LBMC) approach, we describe a flexible protocol for mixed coarse-grained (CG)/all-atom (AA) simulation of proteins and ligands. In the present implementation of LBMC, protein side chain configurations are pre-calculated and stored in libraries, while bonded interactions along the backbone are treated explicitly. Because the AA side chain coordinates are maintained at minimal run-time cost, arbitrary sites and interaction terms can be turned on to create mixed-resolution models. For example, an AA region of interest such as a binding site can be coupled to a CG model for the rest of the protein. We have additionally developed a hybrid implementation of the generalized Born/surface area (GBSA) implicit solvent model suitable for mixed-resolution models, which in turn was ported to a graphics processing unit (GPU) for faster calculation. The new software was applied to study two systems: (i) the behavior of spin labels on the B1 domain of protein G (GB1) and (ii) docking of randomly initialized estradiol configurations to the ligand binding domain of the estrogen receptor (ERα). The performance of the GPU version of the code was also benchmarked in a number of additional systems. PMID:23162384

  5. Accelerating large-scale protein structure alignments with graphics processing units

    PubMed Central

    2012-01-01

    Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132

  6. Guide to making time-lapse graphics using the facilities of the National Magnetic Fusion Energy Computing Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, J.K. Jr.

    1980-05-01

    The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone whomore » wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.« less

  7. Cost of phosphate removal in municipal wastewater treatment plants

    NASA Technical Reports Server (NTRS)

    Schuessler, H.

    1983-01-01

    Construction and operating costs of advanced wastewater treatment for phosphate removal at municipal wastewater treatment plants have been investigated on orders from the Federal Environmental Bureau in Berlin. Particular attention has been paid to applicable kinds of precipitants for pre-, simultaneous and post-precipitation as well as to different phosphate influent and effluent concentrations. The article offers detailed comments on determination of technical data, investments, capital costs, operating costs and annual costs as well as potential cost reductions resulting from precipitation. Selected results of the cost investigation are shown in graphical form as specific investments, operating and annual costs depending on wastewater flow.

  8. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    NASA Astrophysics Data System (ADS)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  9. Graphic Warning Labels Elicit Affective and Thoughtful Responses from Smokers: Results of a Randomized Clinical Trial.

    PubMed

    Evans, Abigail T; Peters, Ellen; Strasser, Andrew A; Emery, Lydia F; Sheerin, Kaitlin M; Romer, Daniel

    2015-01-01

    Observational research suggests that placing graphic images on cigarette warning labels can reduce smoking rates, but field studies lack experimental control. Our primary objective was to determine the psychological processes set in motion by naturalistic exposure to graphic vs. text-only warnings in a randomized clinical trial involving exposure to modified cigarette packs over a 4-week period. Theories of graphic-warning impact were tested by examining affect toward smoking, credibility of warning information, risk perceptions, quit intentions, warning label memory, and smoking risk knowledge. Adults who smoked between 5 and 40 cigarettes daily (N = 293; mean age = 33.7), did not have a contra-indicated medical condition, and did not intend to quit were recruited from Philadelphia, PA and Columbus, OH. Smokers were randomly assigned to receive their own brand of cigarettes for four weeks in one of three warning conditions: text only, graphic images plus text, or graphic images with elaborated text. Data from 244 participants who completed the trial were analyzed in structural-equation models. The presence of graphic images (compared to text-only) caused more negative affect toward smoking, a process that indirectly influenced risk perceptions and quit intentions (e.g., image->negative affect->risk perception->quit intention). Negative affect from graphic images also enhanced warning credibility including through increased scrutiny of the warnings, a process that also indirectly affected risk perceptions and quit intentions (e.g., image->negative affect->risk scrutiny->warning credibility->risk perception->quit intention). Unexpectedly, elaborated text reduced warning credibility. Finally, graphic warnings increased warning-information recall and indirectly increased smoking-risk knowledge at the end of the trial and one month later. In the first naturalistic clinical trial conducted, graphic warning labels are more effective than text-only warnings in encouraging smokers to consider quitting and in educating them about smoking's risks. Negative affective reactions to smoking, thinking about risks, and perceptions of credibility are mediators of their impact. Clinicaltrials.gov NCT01782053.

  10. A GPU-Based Wide-Band Radio Spectrometer

    NASA Astrophysics Data System (ADS)

    Chennamangalam, Jayanth; Scott, Simon; Jones, Glenn; Chen, Hong; Ford, John; Kepley, Amanda; Lorimer, D. R.; Nie, Jun; Prestage, Richard; Roshi, D. Anish; Wagner, Mark; Werthimer, Dan

    2014-12-01

    The graphics processing unit has become an integral part of astronomical instrumentation, enabling high-performance online data reduction and accelerated online signal processing. In this paper, we describe a wide-band reconfigurable spectrometer built using an off-the-shelf graphics processing unit card. This spectrometer, when configured as a polyphase filter bank, supports a dual-polarisation bandwidth of up to 1.1 GHz (or a single-polarisation bandwidth of up to 2.2 GHz) on the latest generation of graphics processing units. On the other hand, when configured as a direct fast Fourier transform, the spectrometer supports a dual-polarisation bandwidth of up to 1.4 GHz (or a single-polarisation bandwidth of up to 2.8 GHz).

  11. Vital Signs for Instructional Design

    ERIC Educational Resources Information Center

    Ley, Kathryn; Gannon-Cook, Ruth

    2014-01-01

    The purpose of this study was to investigate the relationship between a collaborative design process for selecting instructional graphics and online learner perceptions of graphic appropriateness. At the end of their online graduate course, 9 students ranked how appropriately each of 25 graphics represented 1 of 8 human performance technology…

  12. Theoretical and experimental researches on the operating costs of a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, M.; Panaitescu, F.-V.; Anton, I.-A.

    2015-11-01

    Purpose of the work: The total cost of a sewage plants is often determined by the present value method. All of the annual operating costs for each process are converted to the value of today's correspondence and added to the costs of investment for each process, which leads to getting the current net value. The operating costs of the sewage plants are subdivided, in general, in the premises of the investment and operating costs. The latter can be stable (normal operation and maintenance, the establishment of power) or variables (chemical and power sludge treatment and disposal, of effluent charges). For the purpose of evaluating the preliminary costs so that an installation can choose between different alternatives in an incipient phase of a project, can be used cost functions. In this paper will be calculated the operational cost to make several scenarios in order to optimize its. Total operational cost (fixed and variable) is dependent global parameters of wastewater treatment plant. Research and methodology: The wastewater treatment plant costs are subdivided in investment and operating costs. We can use different cost functions to estimate fixed and variable operating costs. In this study we have used the statistical formulas for cost functions. The method which was applied to study the impact of the influent characteristics on the costs is economic analysis. Optimization of plant design consist in firstly, to assess the ability of the smallest design to treat the maximum loading rates to a given effluent quality and, secondly, to compare the cost of the two alternatives for average and maximum loading rates. Results: In this paper we obtained the statistical values for the investment cost functions, operational fixed costs and operational variable costs for wastewater treatment plant and its graphical representations. All costs were compared to the net values. Finally we observe that it is more economical to build a larger plant, especially if maximum loading rates are reached. The actual target of operational management is to directly implement the presented cost functions in a software tool, in which the design of a plant and the simulation of its behaviour are evaluated simultaneously.

  13. Relative Importance of Different Attributes of Graphic Health Warnings on Tobacco Packages in Viet Nam.

    PubMed

    Giang, Kim Bao; Chung, Le Hong; Minh, Hoang Van; Kien, Vu Duy; Giap, Vu Van; Hinh, Nguyen Duc; Cuong, Nguyen Manh; Manh, Pham Duc; Duc, Ha Anh; Yang, Jui-Chen

    2016-01-01

    Graphic health warnings (GHW) on tobacco packages have proven to be effective in increasing quit attempts among smokers and reducing initial smoking among adolescents. This research aimed to examine the relative importance of different attributes of graphic health warnings on tobacco packages in Viet Nam. A discrete choice experimental (DCE) design was applied with a conditional logit model. In addition, a ranking method was used to list from the least to the most dreadful GHW labels. With the results from DCE model, graphic type was shown to be the most important attribute, followed by cost and coverage area of GHW. The least important attribute was position of the GHW. Among 5 graphic types (internal lung cancer image, external damaged teeth, abstract image, human suffering image and text), the image of lung cancer was found to have the strongest influence on both smokers and non-smokers. With ranking method, the image of throat cancer and heart diseases were considered the most dreadful images. GHWs should be designed with these attributes in mind, to maximise influence on purchase among both smokers and non-smokers.

  14. Graphical tactile displays for visually-impaired people.

    PubMed

    Vidal-Verdú, Fernando; Hafez, Moustapha

    2007-03-01

    This paper presents an up-to-date survey of graphical tactile displays. These devices provide information through the sense of touch. At best, they should display both text and graphics (text may be considered a type of graphic). Graphs made with shapeable sheets result in bulky items awkward to store and transport; their production is expensive and time-consuming and they deteriorate quickly. Research is ongoing for a refreshable tactile display that acts as an output device for a computer or other information source and can present the information in text and graphics. The work in this field has branched into diverse areas, from physiological studies to technological aspects and challenges. Moreover, interest in these devices is now being shown by other fields such as virtual reality, minimally invasive surgery and teleoperation. It is attracting more and more people, research and money. Many proposals have been put forward, several of them succeeding in the task of presenting tactile information. However, most are research prototypes and very expensive to produce commercially. Thus the goal of an efficient low-cost tactile display for visually-impaired people has not yet been reached.

  15. GPU-computing in econophysics and statistical physics

    NASA Astrophysics Data System (ADS)

    Preis, T.

    2011-03-01

    A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.

  16. Graphic support resources for workers with intellectual disability engaged in office tasks: a comparison with verbal instructions from a work mate.

    PubMed

    Becerra, María-Teresa; Montanero, Manuel; Lucero, Manuel

    2018-02-01

    Research into workplace adjustments for people with disabilities is a fundamental challenge of supported employment. The aim of the present work is to investigate the effect of several graphic resources as natural support for workers with intellectual disability. Two case studies were conducted to assess the performance of five workers engaged in office tasks, with three different support conditions. Results reveal a 20% increase in quality of performance of the tasks undertaken with graphic support as compared to support in which the participants received verbal instructions (VIs) from a work mate; and between 25 and 30% as compared to a control condition which included no help of any kind. These findings are consistent with previous studies which support the possibility of generating, at low cost, iconic materials (with maps or simple graphics), which progressively facilitate workers' autonomy, without dependence or help from the job trainer. We observed that the worst performance is in the support condition with VIs, this shows the limitations of this type of natural support, which is provided on demand by work mates without specialist knowledge of work support. Implications for Rehabilitation We studied the use of various types of natural support for people with intellectual disability in their workplace. The findings suggest that, with some brief training, the simple use in the workplace of graphic help on a card can increase between 20 and 30% the quality of performance of certain work tasks carried out by workers with intellectual disability. This advantage contrasts with the high cost or lower "manageability" of other material resources of natural support based on the use of technology.

  17. NASTRAN data generation and management using interactive graphics

    NASA Technical Reports Server (NTRS)

    Smootkatow, M.; Cooper, B. M.

    1972-01-01

    A method of using an interactive graphics device to generate a large portion of the input bulk data with visual checks of the structure and the card images is described. The generation starts from GRID and PBAR cards. The visual checks result from a three-dimensional display of the model in any rotated position. By detailing the steps, the time saving and cost effectiveness of this method may be judged, and its potential as a useful tool for the structural analyst may be established.

  18. Graphical approach for multiple values logic minimization

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul Ahad S.; Iftekharuddin, Khan M.

    1999-03-01

    Multiple valued logic (MVL) is sought for designing high complexity, highly compact, parallel digital circuits. However, the practical realization of an MVL-based system is dependent on optimization of cost, which directly affects the optical setup. We propose a minimization technique for MVL logic optimization based on graphical visualization, such as a Karnaugh map. The proposed method is utilized to solve signed-digit binary and trinary logic minimization problems. The usefulness of the minimization technique is demonstrated for the optical implementation of MVL circuits.

  19. Graphical Representation of Parallel Algorithmic Processes

    DTIC Science & Technology

    1990-12-01

    interface with the AAARF main process . The source code for the AAARF class-common library is in the common subdi- rectory and consists of the following files... for public release; distribution unlimited AFIT/GCE/ENG/90D-07 Graphical Representation of Parallel Algorithmic Processes THESIS Presented to the...goal of this study is to develop an algorithm animation facility for parallel processes executing on different architectures, from multiprocessor

  20. Finite Element Optimization for Nondestructive Evaluation on a Graphics Processing Unit for Ground Vehicle Hull Inspection

    DTIC Science & Technology

    2013-08-22

    4 cores, where the code may simultaneously run on the multiple cores or the graphics processing unit (or GPU – to be more specific on an NVIDIA ...allowed to get accurate crack shapes. DISCLAIMER Reference herein to any specific commercial company , product, process, or service by trade name

  1. The Application and Evaluation of PLATO IV in AF Technical Training.

    ERIC Educational Resources Information Center

    Mockovak, William P.; And Others

    The Air Force has been plagued with the rising cost of technical training and has increasingly turned to computer-assisted instruction (CAI) for better cost effectiveness. Toward this aim a trial of PLATO IV, a CAI system utilizing a graphic display and centered at the University of Illinois, was initiated at the Chanute and Sheppard training…

  2. FACTS ON THE MAJOR KILLING AND CRIPPLING DISEASES IN THE UNITED STATES TODAY.

    ERIC Educational Resources Information Center

    National Health Education Committee, Inc., New York, NY.

    MAJOR CAUSES OF DEATH AND DISABILITY, RESULTS OF MEDICAL RESEARCH, LIFE EXPECTANCY FIGURES, COST OF ILLNESS TO THE UNITED STATES, AND GOVERNMENT EXPENDITURES IN MEDICINE AND HEALTH ARE PRESENTED TABULARLY AND GRAPHICALLY IN QUESTION AND ANSWER FORM. FOR EACH OF 14 MAJOR DISEASES, PERTINENT FACTS ARE LISTED ABOUT INCIDENCE, COST, DEATH RATE,…

  3. Raw and real: an innovative communication approach to smokeless tobacco control messaging in low and middle-income countries.

    PubMed

    Turk, Tahir; Chaturvedi, Pankaj; Murukutla, Nandita; Mallik, Vaishakhi; Sinha, Praveen; Mullin, Sandra

    2017-07-01

    The evidence on the efficacy of tobacco control messages in low and middle-income country (LMIC) settings is limited but growing. Low message salience and disengagement, in the face of tobacco control messages, are possible barriers to self-efficacy and cessation-related behaviours of tobacco users. Although adaptations of existing pretested graphic and emotional appeals have been found to impact on behaviours, more personalised, culturally relevant and compelling appeals may more fully engage message receivers to elicit optimal behavioural responses. The objective of these case studies is to use lessons learnt from high-income country tobacco control communication programmes, and adapt practical approaches to provide cost-effective, culturally nuanced, graphic and personalised messages from tobacco victims to achieve the optimal behavioural impact for population-level communication campaigns in the resource-constrained settings of LMICs. The 'raw and real' messaging approach, which emanated from message pretesting in India, outlines creative and production processes for the production of tobacco victim testimonials, given the need to source patients, facing life-threatening conditions. This cost-efficient approach uses real tobacco victims, doctors and family members in a cinéma vérité style approach to achieve more personalised and culturally resonant messages. The methodological approach, used for the development of a number of patient testimonial messages initially in India, and later adapted for tobacco cessation, smoke-free and graphic health warning communication campaigns in other countries, is outlined. Findings from campaigns evaluated to date are encouraging as a result of the simple fact that true stories of local people's suffering are simply too difficult to ignore. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. On the Road to Graphicacy: The Learning of Graphical Representation Systems

    ERIC Educational Resources Information Center

    Postigo, Yolanda; Pozo, Juan Ignacio

    2004-01-01

    This article examines the learning of different types of graphic information by subjects with different levels of education and knowledge of the content represented. Three levels of graphic information learning were distinguished (explicit, implicit, and conceptual information processing) and two experiments were conducted, looking at graph and…

  5. Conceptual Learning with Multiple Graphical Representations: Intelligent Tutoring Systems Support for Sense-Making and Fluency-Building Processes

    ERIC Educational Resources Information Center

    Rau, Martina A.

    2013-01-01

    Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…

  6. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models

    PubMed Central

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348

  7. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

    PubMed

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

  8. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres

    NASA Astrophysics Data System (ADS)

    Egel, Amos; Pattelli, Lorenzo; Mazzamuto, Giacomo; Wiersma, Diederik S.; Lemmer, Uli

    2017-09-01

    CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (>104 scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 105 particles.

  9. Design and implementation of H.264 based embedded video coding technology

    NASA Astrophysics Data System (ADS)

    Mao, Jian; Liu, Jinming; Zhang, Jiemin

    2016-03-01

    In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].

  10. The value of animations in biology teaching: a study of long-term memory retention.

    PubMed

    O'Day, Danton H

    2007-01-01

    Previous work has established that a narrated animation is more effective at communicating a complex biological process (signal transduction) than the equivalent graphic with figure legend. To my knowledge, no study has been done in any subject area on the effectiveness of animations versus graphics in the long-term retention of information, a primary and critical issue in studies of teaching and learning. In this study, involving 393 student responses, three different animations and two graphics-one with and one lacking a legend-were used to determine the long-term retention of information. The results show that students retain more information 21 d after viewing an animation without narration compared with an equivalent graphic whether or not that graphic had a legend. Students' comments provide additional insight into the value of animations in the pedagogical process, and suggestions for future work are proposed.

  11. Multi-tasking computer control of video related equipment

    NASA Technical Reports Server (NTRS)

    Molina, Rod; Gilbert, Bob

    1989-01-01

    The flexibility, cost-effectiveness and widespread availability of personal computers now makes it possible to completely integrate the previously separate elements of video post-production into a single device. Specifically, a personal computer, such as the Commodore-Amiga, can perform multiple and simultaneous tasks from an individual unit. Relatively low cost, minimal space requirements and user-friendliness, provides the most favorable environment for the many phases of video post-production. Computers are well known for their basic abilities to process numbers, text and graphics and to reliably perform repetitive and tedious functions efficiently. These capabilities can now apply as either additions or alternatives to existing video post-production methods. A present example of computer-based video post-production technology is the RGB CVC (Computer and Video Creations) WorkSystem. A wide variety of integrated functions are made possible with an Amiga computer existing at the heart of the system.

  12. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  13. Surface and deep structures in graphics comprehension.

    PubMed

    Schnotz, Wolfgang; Baadte, Christiane

    2015-05-01

    Comprehension of graphics can be considered as a process of schema-mediated structure mapping from external graphics on internal mental models. Two experiments were conducted to test the hypothesis that graphics possess a perceptible surface structure as well as a semantic deep structure both of which affect mental model construction. The same content was presented to different groups of learners by graphics from different perspectives with different surface structures but the same deep structure. Deep structures were complementary: major features of the learning content in one experiment became minor features in the other experiment, and vice versa. Text was held constant. Participants were asked to read, understand, and memorize the learning material. Furthermore, they were either instructed to process the material from the perspective supported by the graphic or from an alternative perspective, or they received no further instruction. After learning, they were asked to recall the learning content from different perspectives by completing graphs of different formats as accurately as possible. Learners' recall was more accurate if the format of recall was the same as the learning format which indicates surface structure influences. However, participants also showed more accurate recall when they remembered the content from a perspective emphasizing the deep structure, regardless of the graphics format presented before. This included better recall of what they had not seen than of what they really had seen before. That is, deep structure effects overrode surface effects. Depending on context conditions, stimulation of additional cognitive processing by instruction had partially positive and partially negative effects.

  14. A State Articulated Instructional Objectives Guide for Occupational Education Programs. State Pilot Model for Drafting (Graphic Communications). Part I--Basic. Part II--Specialty Programs. Section A (Mechanical Drafting and Design). Section B (Architectural Drafting and Design).

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    A two-part articulation instructional objective guide for drafting (graphic communications) is provided. Part I contains summary information on seven blocks (courses) of instruction. They are as follow: introduction; basic technical drafting; problem solving in graphics; reproduction processes; freehand drawing and sketching; graphics composition;…

  15. ROSE: the road simulation environment

    NASA Astrophysics Data System (ADS)

    Liatsis, Panos; Mitronikas, Panogiotis

    1997-05-01

    Evaluation of advanced sensing systems for autonomous vehicle navigation (AVN) is currently carried out off-line with prerecorded image sequences taken by physically attaching the sensors to the ego-vehicle. The data collection process is cumbersome and costly as well as highly restricted to specific road environments and weather conditions. This work proposes the use of scientific animation in modeling and representation of real-world traffic scenes and aims to produce an efficient, reliable and cost-effective concept evaluation suite for AVN sensing algorithms. ROSE is organized in a modular fashion consisting of the route generator, the journey generator, the sequence description generator and the renderer. The application was developed in MATLAB and POV-Ray was selected as the rendering module. User-friendly graphical user interfaces have been designed to allow easy selection of animation parameters and monitoring of the generation proces. The system, in its current form, allows the generation of various traffic scenarios, providing for an adequate number of static/dynamic objects, road types and environmental conditions. Initial tests on the robustness of various image processing algorithms to varying lighting and weather conditions have been already carried out.

  16. CMOS based capacitance to digital converter circuit for MEMS sensor

    NASA Astrophysics Data System (ADS)

    Rotake, D. R.; Darji, A. D.

    2018-02-01

    Most of the MEMS cantilever based system required costly instruments for characterization, processing and also has large experimental setups which led to non-portable device. So there is a need of low cost, highly sensitive, high speed and portable digital system. The proposed Capacitance to Digital Converter (CDC) interfacing circuit converts capacitance to digital domain which can be easily processed. Recent demand microcantilever deflection is part per trillion ranges which change the capacitance in 1-10 femto farad (fF) range. The entire CDC circuit is designed using CMOS 250nm technology. Design of CDC circuit consists of a D-latch and two oscillators, namely Sensor controlled oscillator (SCO) and digitally controlled oscillator (DCO). The D-latch is designed using transmission gate based MUX for power optimization. A CDC design of 7-stage, 9-stage and 11-stage tested for 1-18 fF and simulated using mentor graphics Eldo tool with parasitic. Since the proposed design does not use resistance component, the total power dissipation is reduced to 2.3621 mW for CDC designed using 9-stage SCO and DCO.

  17. Mathematical simulation and optimization of cutting mode in turning of workpieces made of nickel-based heat-resistant alloy

    NASA Astrophysics Data System (ADS)

    Bogoljubova, M. N.; Afonasov, A. I.; Kozlov, B. N.; Shavdurov, D. E.

    2018-05-01

    A predictive simulation technique of optimal cutting modes in the turning of workpieces made of nickel-based heat-resistant alloys, different from the well-known ones, is proposed. The impact of various factors on the cutting process with the purpose of determining optimal parameters of machining in concordance with certain effectiveness criteria is analyzed in the paper. A mathematical model of optimization, algorithms and computer programmes, visual graphical forms reflecting dependences of the effectiveness criteria – productivity, net cost, and tool life on parameters of the technological process - have been worked out. A nonlinear model for multidimensional functions, “solution of the equation with multiple unknowns”, “a coordinate descent method” and heuristic algorithms are accepted to solve the problem of optimization of cutting mode parameters. Research shows that in machining of workpieces made from heat-resistant alloy AISI N07263, the highest possible productivity will be achieved with the following parameters: cutting speed v = 22.1 m/min., feed rate s=0.26 mm/rev; tool life T = 18 min.; net cost – 2.45 per hour.

  18. Processing Information in Graphical Form.

    ERIC Educational Resources Information Center

    Curcio, Frances R.; Smith-Burke, M. Trika

    The purpose of this exploratory, descriptive study was to examine how children process different tasks of comprehension presented in graphical form. During the Spring 1981, 8 fourth graders and 9 seventh graders were interviewed. The children were presented with graphs accompanied by six questions reflecting three levels of comprehension:…

  19. Concept Learning through Image Processing.

    ERIC Educational Resources Information Center

    Cifuentes, Lauren; Yi-Chuan, Jane Hsieh

    This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…

  20. Industrial Technology Modernization Program. Project 32. Factory Vision. Phase 2

    DTIC Science & Technology

    1988-04-01

    instructions for the PWA’s, generating the numerical control (NC) program instructions for factory assembly equipment, controlling the process... generating the numerical control (NC) program instructions for factory assembly equipment, controlling the production process instructions and NC... Assembly Operations the "Create Production Process Program" will automatically generate a sequence of graphics pages (in paper mode), or graphics screens

  1. Accident data availability

    DOT National Transportation Integrated Search

    2000-06-01

    This project investigates alternate forms of dissemination for the accident information. Costs, capabilities, and compatibility are reviewed for integration of the accident database with a GIS format to allow a graphical and spatial interface. the is...

  2. STORMSeq: An Open-Source, User-Friendly Pipeline for Processing Personal Genomics Data in the Cloud

    PubMed Central

    Karczewski, Konrad J.; Fernald, Guy Haskin; Martin, Alicia R.; Snyder, Michael; Tatonetti, Nicholas P.; Dudley, Joel T.

    2014-01-01

    The increasing public availability of personal complete genome sequencing data has ushered in an era of democratized genomics. However, read mapping and variant calling software is constantly improving and individuals with personal genomic data may prefer to customize and update their variant calls. Here, we describe STORMSeq (Scalable Tools for Open-Source Read Mapping), a graphical interface cloud computing solution that does not require a parallel computing environment or extensive technical experience. This customizable and modular system performs read mapping, read cleaning, and variant calling and annotation. At present, STORMSeq costs approximately $2 and 5–10 hours to process a full exome sequence and $30 and 3–8 days to process a whole genome sequence. We provide this open-access and open-source resource as a user-friendly interface in Amazon EC2. PMID:24454756

  3. Frequency domain zero padding for accurate autofocusing based on digital holography

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Kim, Ju Wan; Eom, Tae Joong; Lee, Byeong Ha

    2018-01-01

    The numerical refocusing feature of digital holography enables the reconstruction of a well-focused image from a digital hologram captured at an arbitrary out-of-focus plane without the supervision of end users. However, in general, the autofocusing process for getting a highly focused image requires a considerable computational cost. In this study, to reconstruct a better-focused image, we propose the zero padding technique implemented in the frequency domain. Zero padding in the frequency domain enhances the visibility or numerical resolution of the image, which allows one to measure the degree of focus with more accuracy. A coarse-to-fine search algorithm is used to reduce the computing load, and a graphics processing unit (GPU) is employed to accelerate the process. The performance of the proposed scheme is evaluated with simulation and experiment, and the possibility of obtaining a well-refocused image with an enhanced accuracy and speed are presented.

  4. Use of graphics in the design office at the Military Aircraft Division of the British Aircraft Corporation

    NASA Technical Reports Server (NTRS)

    Coles, W. A.

    1975-01-01

    The CAD/CAM interactive computer graphics system was described; uses to which it has been put were shown, and current developments of the system were outlined. The system supports batch, time sharing, and fully interactive graphic processing. Engineers using the system may switch between these methods of data processing and problem solving to make the best use of the available resources. It is concluded that the introduction of on-line computing in the form of teletypes, storage tubes, and fully interactive graphics has resulted in large increases in productivity and reduced timescales in the geometric computing, numerical lofting and part programming areas, together with a greater utilization of the system in the technical departments.

  5. Distributed computation of graphics primitives on a transputer network

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A method is developed for distributing the computation of graphics primitives on a parallel processing network. Off-the-shelf transputer boards are used to perform the graphics transformations and scan-conversion tasks that would normally be assigned to a single transputer based display processor. Each node in the network performs a single graphics primitive computation. Frequently requested tasks can be duplicated on several nodes. The results indicate that the current distribution of commands on the graphics network shows a performance degradation when compared to the graphics display board alone. A change to more computation per node for every communication (perform more complex tasks on each node) may cause the desired increase in throughput.

  6. A Strategy for Making Content Reading Successful: Grades 4-6.

    ERIC Educational Resources Information Center

    Alvermann, Donna E.; Boothby, Paula R.

    A graphic organizer is a tree diagram that consists of vocabulary related to one particular concept. A modified version of a graphic organizer contains empty slots that represent missing information and actively involves students during the reading process as opposed to before or after. This modified graphic organizer can provide both the…

  7. Role of Graphics Tools in the Learning Design Process

    ERIC Educational Resources Information Center

    Laisney, Patrice; Brandt-Pomares, Pascale

    2015-01-01

    This paper discusses the design activities of students in secondary school in France. Graphics tools are now part of the capacity of design professionals. It is therefore apt to reflect on their integration into the technological education. Has the use of intermediate graphical tools changed students' performance, and if so in what direction, in…

  8. Graphic Arts: Process Camera, Stripping, and Platemaking. Teacher Guide.

    ERIC Educational Resources Information Center

    Feasley, Sue C., Ed.

    This curriculum guide is the second in a three-volume series of instructional materials for competency-based graphic arts instruction. Each publication is designed to include the technical content and tasks necessary for a student to be employed in an entry-level graphic arts occupation. Introductory materials include an instructional/task…

  9. Critique and Process: Signature Pedagogies in the Graphic Design Classroom

    ERIC Educational Resources Information Center

    Motley, Phillip

    2017-01-01

    Like many disciplines in design and the visual fine arts, critique is a signature pedagogy in the graphic design classroom. It serves as both a formative and summative assessment while also giving students the opportunity to practice the habits of graphic design. Critiques help students become keen observers of relevant disciplinary criteria;…

  10. A DDC Bibliography on Optical or Graphic Information Processing (Information Sciences Series). Volume I.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    This unclassified-unlimited bibliography contains 183 references, with abstracts, dealing specifically with optical or graphic information processing. Citations are grouped under three headings: display devices and theory, character recognition, and pattern recognition. Within each group, they are arranged in accession number (AD-number) sequence.…

  11. An Interactive Graphics Program for Investigating Digital Signal Processing.

    ERIC Educational Resources Information Center

    Miller, Billy K.; And Others

    1983-01-01

    Describes development of an interactive computer graphics program for use in teaching digital signal processing. The program allows students to interactively configure digital systems on a monitor display and observe their system's performance by means of digital plots on the system's outputs. A sample program run is included. (JN)

  12. Performance Testing of GPU-Based Approximate Matching Algorithm on Network Traffic

    DTIC Science & Technology

    2015-03-01

    Defense Department’s use. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I.  INTRODUCTION...22  D.  GENERATING DIGESTS ............................................................................23  1.  Reference...the-shelf GPU Graphical Processing Unit GPGPU General -Purpose Graphic Processing Unit HBSS Host-Based Security System HIPS Host Intrusion

  13. Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units

    USDA-ARS?s Scientific Manuscript database

    This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...

  14. Graphic Arts: Book Three. The Press and Related Processes.

    ERIC Educational Resources Information Center

    Farajollahi, Karim; And Others

    The third of a three-volume set of instructional materials for a graphic arts course, this manual consists of nine instructional units dealing with presses and related processes. Covered in the units are basic press fundamentals, offset press systems, offset press operating procedures, offset inks and dampening chemistry, preventive maintenance…

  15. The Use of Computer Graphics in the Design Process.

    ERIC Educational Resources Information Center

    Palazzi, Maria

    This master's thesis examines applications of computer technology to the field of industrial design and ways in which technology can transform the traditional process. Following a statement of the problem, the history and applications of the fields of computer graphics and industrial design are reviewed. The traditional industrial design process…

  16. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  17. A graphical language for reliability model generation

    NASA Technical Reports Server (NTRS)

    Howell, Sandra V.; Bavuso, Salvatore J.; Haley, Pamela J.

    1990-01-01

    A graphical interface capability of the hybrid automated reliability predictor (HARP) is described. The graphics-oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault tree gates, including sequence dependency gates, or by a Markov chain. With this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the Graphical Kernel System (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing.

  18. GRASP/Ada: Graphical Representations of Algorithms, Structures, and Processes for Ada. The development of a program analysis environment for Ada: Reverse engineering tools for Ada, task 2, phase 3

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1991-01-01

    The main objective is the investigation, formulation, and generation of graphical representations of algorithms, structures, and processes for Ada (GRASP/Ada). The presented task, in which various graphical representations that can be extracted or generated from source code are described and categorized, is focused on reverse engineering. The following subject areas are covered: the system model; control structure diagram generator; object oriented design diagram generator; user interface; and the GRASP library.

  19. Graphical Language for Data Processing

    NASA Technical Reports Server (NTRS)

    Alphonso, Keith

    2011-01-01

    A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.

  20. GPU Multi-Scale Particle Tracking and Multi-Fluid Simulations of the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; Carscadden, J.; O'Donnell, D.; Winglee, R.; Harnett, E.; Cash, M.

    2007-12-01

    The properties of the radiation belts can vary dramatically under the influence of magnetic storms and storm-time substorms. The task of understanding and predicting radiation belt properties is made difficult because their properties determined by global processes as well as small-scale wave-particle interactions. A full solution to the problem will require major innovations in technique and computer hardware. The proposed work will demonstrates liked particle tracking codes with new multi-scale/multi-fluid global simulations that provide the first means to include small-scale processes within the global magnetospheric context. A large hurdle to the problem is having sufficient computer hardware that is able to handle the dissipate temporal and spatial scale sizes. A major innovation of the work is that the codes are designed to run of graphics processing units (GPUs). GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for little more cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. A demonstration of the code pushing more than 500,000 particles faster than real time is presented, and used to provide new insight into radiation belt dynamics.

  1. EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units

    PubMed Central

    Kam-Thong, Tony; Czamara, Darina; Tsuda, Koji; Borgwardt, Karsten; Lewis, Cathryn M; Erhardt-Lehmann, Angelika; Hemmer, Bernhard; Rieckmann, Peter; Daake, Markus; Weber, Frank; Wolf, Christiane; Ziegler, Andreas; Pütz, Benno; Holsboer, Florian; Schölkopf, Bernhard; Müller-Myhsok, Bertram

    2011-01-01

    Detection of epistatic interaction between loci has been postulated to provide a more in-depth understanding of the complex biological and biochemical pathways underlying human diseases. Studying the interaction between two loci is the natural progression following traditional and well-established single locus analysis. However, the added costs and time duration required for the computation involved have thus far deterred researchers from pursuing a genome-wide analysis of epistasis. In this paper, we propose a method allowing such analysis to be conducted very rapidly. The method, dubbed EPIBLASTER, is applicable to case–control studies and consists of a two-step process in which the difference in Pearson's correlation coefficients is computed between controls and cases across all possible SNP pairs as an indication of significant interaction warranting further analysis. For the subset of interactions deemed potentially significant, a second-stage analysis is performed using the likelihood ratio test from the logistic regression to obtain the P-value for the estimated coefficients of the individual effects and the interaction term. The algorithm is implemented using the parallel computational capability of commercially available graphical processing units to greatly reduce the computation time involved. In the current setup and example data sets (211 cases, 222 controls, 299468 SNPs; and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be completed in roughly 1 day. Our method allows for exhaustive and rapid detection of significant SNP pair interactions without imposing significant marginal effects of the single loci involved in the pair. PMID:21150885

  2. Interface design of VSOP'94 computer code for safety analysis

    NASA Astrophysics Data System (ADS)

    Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi

    2014-09-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  3. Information quality-control model

    NASA Technical Reports Server (NTRS)

    Vincent, D. A.

    1971-01-01

    Model serves as graphic tool for estimating complete product objectives from limited input information, and is applied to cost estimations, product-quality evaluations, and effectiveness measurements for manpower resources allocation. Six product quality levels are defined.

  4. Desktop Publishing in Libraries.

    ERIC Educational Resources Information Center

    Cisler, Steve

    1987-01-01

    Describes the components, costs, and capabilities of several desktop publishing systems, and examines their possible impact on work patterns within organizations. The text and graphics of the article were created using various microcomputer software packages. (CLB)

  5. The use of hypermedia to increase the productivity of software development teams

    NASA Technical Reports Server (NTRS)

    Coles, L. Stephen

    1991-01-01

    Rapid progress in low-cost commercial PC-class multimedia workstation technology will potentially have a dramatic impact on the productivity of distributed work groups of 50-100 software developers. Hypermedia/multimedia involves the seamless integration in a graphical user interface (GUI) of a wide variety of data structures, including high-resolution graphics, maps, images, voice, and full-motion video. Hypermedia will normally require the manipulation of large dynamic files for which relational data base technology and SQL servers are essential. Basic machine architecture, special-purpose video boards, video equipment, optical memory, software needed for animation, network technology, and the anticipated increase in productivity that will result for the introduction of hypermedia technology are covered. It is suggested that the cost of the hardware and software to support an individual multimedia workstation will be on the order of $10,000.

  6. Satellite broadcasting system study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The study to develop a system model and computer program representative of broadcasting satellite systems employing community-type receiving terminals is reported. The program provides a user-oriented tool for evaluating performance/cost tradeoffs, synthesizing minimum cost systems for a given set of system requirements, and performing sensitivity analyses to identify critical parameters and technology. The performance/ costing philosophy and what is meant by a minimum cost system is shown graphically. Topics discussed include: main line control program, ground segment model, space segment model, cost models and launch vehicle selection. Several examples of minimum cost systems resulting from the computer program are presented. A listing of the computer program is also included.

  7. Evaluating Mobile Graphics Processing Units (GPUs) for Real-Time Resource Constrained Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meredith, J; Conger, J; Liu, Y

    2005-11-11

    Modern graphics processing units (GPUs) can provide tremendous performance boosts for some applications beyond what a single CPU can accomplish, and their performance is growing at a rate faster than CPUs as well. Mobile GPUs available for laptops have the small form factor and low power requirements suitable for use in embedded processing. We evaluated several desktop and mobile GPUs and CPUs on traditional and non-traditional graphics tasks, as well as on the most time consuming pieces of a full hyperspectral imaging application. Accuracy remained high despite small differences in arithmetic operations like rounding. Performance improvements are summarized here relativemore » to a desktop Pentium 4 CPU.« less

  8. TRIIG - Time-lapse reproduction of images through interactive graphics. [digital processing of quality hard copy

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.

  9. Graphic Warning Labels Elicit Affective and Thoughtful Responses from Smokers: Results of a Randomized Clinical Trial

    PubMed Central

    Evans, Abigail T.; Peters, Ellen; Strasser, Andrew A.; Emery, Lydia F.; Sheerin, Kaitlin M.; Romer, Daniel

    2015-01-01

    Objective Observational research suggests that placing graphic images on cigarette warning labels can reduce smoking rates, but field studies lack experimental control. Our primary objective was to determine the psychological processes set in motion by naturalistic exposure to graphic vs. text-only warnings in a randomized clinical trial involving exposure to modified cigarette packs over a 4-week period. Theories of graphic-warning impact were tested by examining affect toward smoking, credibility of warning information, risk perceptions, quit intentions, warning label memory, and smoking risk knowledge. Methods Adults who smoked between 5 and 40 cigarettes daily (N = 293; mean age = 33.7), did not have a contra-indicated medical condition, and did not intend to quit were recruited from Philadelphia, PA and Columbus, OH. Smokers were randomly assigned to receive their own brand of cigarettes for four weeks in one of three warning conditions: text only, graphic images plus text, or graphic images with elaborated text. Results Data from 244 participants who completed the trial were analyzed in structural-equation models. The presence of graphic images (compared to text-only) caused more negative affect toward smoking, a process that indirectly influenced risk perceptions and quit intentions (e.g., image->negative affect->risk perception->quit intention). Negative affect from graphic images also enhanced warning credibility including through increased scrutiny of the warnings, a process that also indirectly affected risk perceptions and quit intentions (e.g., image->negative affect->risk scrutiny->warning credibility->risk perception->quit intention). Unexpectedly, elaborated text reduced warning credibility. Finally, graphic warnings increased warning-information recall and indirectly increased smoking-risk knowledge at the end of the trial and one month later. Conclusions In the first naturalistic clinical trial conducted, graphic warning labels are more effective than text-only warnings in encouraging smokers to consider quitting and in educating them about smoking’s risks. Negative affective reactions to smoking, thinking about risks, and perceptions of credibility are mediators of their impact. Trial Registration Clinicaltrials.gov NCT01782053 PMID:26672982

  10. The Study of Graphic Sense and Its Effects on the Acquisition of Literacy. Final Report.

    ERIC Educational Resources Information Center

    Hernandez-Chavez, Eduardo; Curtis, Jan

    This report describes a study on the development of children's conceptualizations of written language, that is, their graphic sense. The study investigated three issues: (1) whether acquisition of literacy is a developmental process common to all normal children, (2) whether the levels of graphic sense tend to be associated with particular…

  11. Groundwater Resources Assessment under the Pressures of Humanity and Climate Changes

    Treesearch

    Bret Bruce; Diana Allen; Henrique Chaves; Gordon Grant; Gualbert Oude Essink; Henk Kooi; Ian White; Jason Gurdak; Jay Famiglietti; Jose Luis Martin-Bordes; Kevin Hiscock; Matthew Rodell; Neno Kukuric; Peter B. McMahon; Richard Taylor; Timothy Green; Yoseph Yechieli

    2008-01-01

    Given the vision and mission statements for GRAPHIC above, this document provides an updated framework for the GRAPHIC program. The approach to addressing global issues under the GRAPHIC umbrella involves case studies designed to cover a broad range of the identified Subjects, Methods, and Regions. Interdependencies of factors and processes affecting subsurface water...

  12. Interplay of Computer and Paper-Based Sketching in Graphic Design

    ERIC Educational Resources Information Center

    Pan, Rui; Kuo, Shih-Ping; Strobel, Johannes

    2013-01-01

    The purpose of this study is to investigate student designers' attitude and choices towards the use of computers and paper sketches when involved in a graphic design process. 65 computer graphic technology undergraduates participated in this research. A mixed method study with survey and in-depth interviews was applied to answer the research…

  13. Pre-Service Science Teachers' Construction and Interpretation of Graphs

    ERIC Educational Resources Information Center

    Ergül, N. Remziye

    2018-01-01

    Data and graphic analysis and interpretation are important parts of science process skills and science curriculum. So it refers to visual display of data using relevant graphical representations. One of the tools used in science courses is graphics for explain the relationship among each of the concepts and therefore it is important to know data…

  14. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    NASA Technical Reports Server (NTRS)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  15. A graphical weather system design for the NASA transport systems research vehicle B-737

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    A graphical weather system was designed for testing in the NASA Transport Systems Research Vehicle B-737 airplane and simulator. The purpose of these tests was to measure the impact of graphical weather products on aircrew decision processes, weather situation awareness, reroute clearances, workload, and weather monitoring. The flight crew graphical weather interface is described along with integration of the weather system with the flight navigation system, and data link transmission methods for sending weather data to the airplane.

  16. A Low-cost System for Generating Near-realistic Virtual Actors

    NASA Astrophysics Data System (ADS)

    Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.

    2015-06-01

    Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.

  17. Application of ERTS-1 data to the protection and management of New Jersey's coastal environment

    NASA Technical Reports Server (NTRS)

    Yunghans, R. S.; Feinberg, E. B.; Wobber, F. J.; Mairs, R. L. (Principal Investigator); Macomber, R. T.; Stanczuk, D.

    1973-01-01

    The author has identified the following significant results. Rates of erosion and accretion of the shoreline are being calculated for two test areas along the New Jersey coast. Measurements are made on aerial photographs taken over the last 20 years and processed by computer. The rates are presented in graphic form on an ERTS-1 base map at a scale of 1:125,000. These rates are being used to determine the effectiveness of various shore protection structures at preventing sand removal and encouraging sand accumulation. Information on maintenance and construction expenditures is being used to obtain a cost effectiveness ratio for various shore protection devices. The relationship of erosion rates, property value, and project cost are all criteria for selection of site type and extent of a shore protection structure. Compilation and evaluation of historical data will identify past decision making patterns. The effectiveness of these decisions with respect to erosion rates, property value, and project cost, can be used as an added criteria for future allocation of money and the selection of site and type of structure to be built.

  18. CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units

    PubMed Central

    Liu, Yongchao; Maskell, Douglas L; Schmidt, Bertil

    2009-01-01

    Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Findings Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. Conclusion CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. PMID:19416548

  19. The development of a program analysis environment for Ada: Reverse engineering tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1991-01-01

    The Graphical Representations of Algorithms, Structures, and Processes for Ada (GRASP/Ada) has successfully created and prototyped a new algorithm level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and thus improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under the Virtual Memory System (VMS) on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. In Phase 3 of the project, the prototype was prepared for limited distribution (GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was extensively reworked. The current prototype provides the capability for the user to generate CSD from Ada source code in a reverse engineering mode with a level of flexibility suitable for practical application.

  20. GRASP - A Prototype Interactive Graphic Sawing Program - (Forest Products Journal)

    Treesearch

    Luis G. Occeña; Daniel L. Schmoldt

    1996-01-01

    A versatile microcomputer-based interactive graphics sawing program has been developed as a tool for modeling various hardwood processes, from bucking and topping to log sawing, lumber edging, secondary processing, and even veneering. The microcomputer platform makes the tool affordable and accessible. A solid modeling basis provides the tool with a sound geometrical...

  1. Digital-Computer Processing of Graphical Data. Final Report.

    ERIC Educational Resources Information Center

    Freeman, Herbert

    The final report of a two-year study concerned with the digital-computer processing of graphical data. Five separate investigations carried out under this study are described briefly, and a detailed bibliography, complete with abstracts, is included in which are listed the technical papers and reports published during the period of this program.…

  2. GRASP - A Prototype Interactive Graphic Sawing Program - (MU-IE Technical Report)

    Treesearch

    Luis G. Occeña; Daniel L. Schmoldt

    1995-01-01

    A versatile microcomputer-based interactive graphics program has been developed as a tool for modeling various hardwood processes, from bucking and topping to log sawing, lumber edging, secondary processing, even veneering. The microcomputer platform makes the tool affordable and accessible.A solid modeling basis provides the tool with a sound geometrical and...

  3. How to Apply for Protection Time Graphic

    EPA Pesticide Factsheets

    We will review insect repellent products that voluntarily apply to use the repellency awareness graphic to ensure that their scientific data meet current testing protocols and standard evaluation processes.

  4. Graphical representations of data improve student understanding of measurement and uncertainty: An eye-tracking study

    NASA Astrophysics Data System (ADS)

    Susac, Ana; Bubic, Andreja; Martinjak, Petra; Planinic, Maja; Palmovic, Marijan

    2017-12-01

    Developing a better understanding of the measurement process and measurement uncertainty is one of the main goals of university physics laboratory courses. This study investigated the influence of graphical representation of data on student understanding and interpreting of measurement results. A sample of 101 undergraduate students (48 first year students and 53 third and fifth year students) from the Department of Physics, University of Zagreb were tested with a paper-and-pencil test consisting of eight multiple-choice test items about measurement uncertainties. One version of the test items included graphical representations of the measurement data. About half of the students solved that version of the test while the remaining students solved the same test without graphical representations. The results have shown that the students who had the graphical representation of data scored higher than their colleagues without graphical representation. In the second part of the study, measurements of eye movements were carried out on a sample of thirty undergraduate students from the Department of Physics, University of Zagreb while students were solving the same test on a computer screen. The results revealed that students who had the graphical representation of data spent considerably less time viewing the numerical data than the other group of students. These results indicate that graphical representation may be beneficial for data processing and data comparison. Graphical representation helps with visualization of data and therefore reduces the cognitive load on students while performing measurement data analysis, so students should be encouraged to use it.

  5. Analyzing women's roles through graphic representation of narratives.

    PubMed

    Hall, Joanne M

    2003-08-01

    A 1992 triangulated international nursing study of women's health was reported. The researchers used the perspectives of feminism and symbolic interactionism, specifically role theory. A narrative analysis was done to clarify the concept of role integration. The narrative analysis was reported in 1992, but graphic/visual techniques used in the team dialogue process of narrative analysis were not reported due to space limitations. These techniques have not been reported elsewhere and thus remain innovative. Specific steps in the method are outlined here in detail as an audit trail. The process would be useful to other qualitative researchers as an exemplar of one novel way that verbal data can be abstracted visually/graphically. Suggestions are included for aspects of narrative, in addition to roles, that could be depicted graphically in qualitative research.

  6. DspaceOgre 3D Graphics Visualization Tool

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.

    2011-01-01

    This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.

  7. Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units

    NASA Astrophysics Data System (ADS)

    Corral, Roque; Gisbert, Fernando; Pueblas, Jesus

    2017-02-01

    The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.

  8. Pre-layout AC decoupling analysis with Mentor Graphics HyperLynx

    NASA Astrophysics Data System (ADS)

    Hnatiuc, Mihaela; Iov, Cǎtǎlin J.

    2015-02-01

    Considerable resources have been used since the humans got interested to discover the world around. Any discovery and science advance was taken tremendously amount of time, money, sometimes lives. All of these define the cost of a discovery, developing process. Getting back to electronics, this field faced in the last 20-30 years, a big boom in terms of technologies and opportunities. Thousands of equipment were developed and placed on the market. The big difference between various competitors is made at the moment by that we call the time to market. A mobile, for instance, has a time to market of around 6 months and the tendency is to have it smaller than that. That means between the concept and the first model sale, no more than 6 months should be passing. That is why new approaches are needed. The one extensively used now is the simulation. We call the simulation virtual prototyping. The virtual prototyping takes into account more than the components only. It takes into account some other project parameters that would affect the final product. Certified tools can handle such analysis. In our paper we present the case of HyperLynx, a concept developed by Mentor Graphics Company, assisting the hardware designer throughout the designing process, from thermal point of view. A test case board was analyzed at the pre-layout stage and the results presented.

  9. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction

    NASA Astrophysics Data System (ADS)

    Song, Chenchen; Martínez, Todd J.

    2017-01-01

    In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N2.5) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

  10. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction.

    PubMed

    Song, Chenchen; Martínez, Todd J

    2017-01-21

    In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N 2.5 ) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

  11. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  12. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  13. A Low Cost Rokkaku Kite Setup for Aerial Photogrammetric System

    NASA Astrophysics Data System (ADS)

    Khan, A. F.; Khurshid, K.; Saleh, N.; Yousuf, A. A.

    2015-03-01

    Orthogonally Projected Area (OPA) of a geographical feature has primarily been studied utilizing rather time consuming field based sampling techniques. Remote sensing on the contrary provides the ability to acquire large scale data at a snapshot of time and lets the OPA to be calculated conveniently and with reasonable accuracy. Unfortunately satellite based remote sensing provides data at high cost and limited spatial resolution for scientific studies focused at small areas such as micro lakes micro ecosystems, etc. More importantly, recent satellite data may not be readily available for a particular location. This paper describes a low cost photogrammetric system to measure the OPA of a small scale geographic feature such as a plot of land, micro lake or an archaeological site, etc. Fitted with a consumer grade digital imaging system, a Rokkaku kite aerial platform with stable flight characteristics is designed and fabricated for image acquisition. The data processing procedure involves automatic Ground Control Point (GCP) detection, intelligent target area shape determination with minimal human input. A Graphical User Interface (GUI) is built from scratch in MATLAB to allow the user to conveniently process the acquired data, archive and retrieve the results. Extensive on-field experimentation consists of multiple geographic features including flat land surfaces, buildings, undulating rural areas, and an irregular shaped micro lake, etc. Our results show that the proposed system is not only low cost, but provides a framework that is easy and fast to setup while maintaining the required constraints on the accuracy.

  14. Visualization Methods for Viability Studies of Inspection Modules for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Mobasher, Amir A.

    2005-01-01

    An effective simulation of an object, process, or task must be similar to that object, process, or task. A simulation could consist of a physical device, a set of mathematical equations, a computer program, a person, or some combination of these. There are many reasons for the use of simulators. Although some of the reasons are unique to a specific situation, there are many general reasons and purposes for using simulators. Some are listed but not limited to (1) Safety, (2) Scarce resources, (3) Teaching/education, (4) Additional capabilities, (5) Flexibility and (6) Cost. Robot simulators are in use for all of these reasons. Virtual environments such as simulators will eliminate physical contact with humans and hence will increase the safety of work environment. Corporations with limited funding and resources may utilize simulators to accomplish their goals while saving manpower and money. A computer simulation is safer than working with a real robot. Robots are typically a scarce resource. Schools typically don t have a large number of robots, if any. Factories don t want the robots not performing useful work unless absolutely necessary. Robot simulators are useful in teaching robotics. A simulator gives a student hands-on experience, if only with a simulator. The simulator is more flexible. A user can quickly change the robot configuration, workcell, or even replace the robot with a different one altogether. In order to be useful, a robot simulator must create a model that accurately performs like the real robot. A powerful simulator is usually thought of as a combination of a CAD package with simulation capabilities. Computer Aided Design (CAD) techniques are used extensively by engineers in virtually all areas of engineering. Parts are designed interactively aided by the graphical display of both wireframe and more realistic shaded renderings. Once a part s dimensions have been specified to the CAD package, designers can view the part from any direction to examine how it will look and perform in relation to other parts. If changes are deemed necessary, the designer can easily make the changes and view the results graphically. However, a complex process of moving parts intended for operation in a complex environment can only be fully understood through the process of animated graphical simulation. A CAD package with simulation capabilities allows the designer to develop geometrical models of the process being designed, as well as the environment in which the process will be used, and then test the process in graphical animation much as the actual physical system would be run . By being able to operate the system of moving and stationary parts, the designer is able to see in simulation how the system will perform under a wide variety of conditions. If, for example, undesired collisions occur between parts of the system, design changes can be easily made without the expense or potential danger of testing the physical system.

  15. Curriculum Design of Computer Graphics Programs: A Survey of Art/Design Programs at the University Level.

    ERIC Educational Resources Information Center

    McKee, Richard Lee

    This master's thesis reports the results of a survey submitted to over 30 colleges and universities that currently offer computer graphics courses or are in the planning stage of curriculum design. Intended to provide a profile of the computer graphics programs and insight into the process of curriculum design, the survey gathered data on program…

  16. Graphic Arts Technology: Industrial Arts Curriculum Guide. Grades 9-12. Bulletin No. 1334 (Tentative).

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    The tentative guide in graphic arts technology for senior high schools is part of a series of industrial arts curriculum materials developed by the State of Louisiana. The course is designed to provide "hands-on" experience with tools and materials along with a study of the industrial processes in graphic arts technology. In addition,…

  17. High-performance floating-point image computing workstation for medical applications

    NASA Astrophysics Data System (ADS)

    Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin

    1990-07-01

    The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.

  18. Real-Time Radio Wave Propagation for Mobile Ad-Hoc Network Emulation and Simulation Using General Purpose Graphics Processing Units (GPGPUs)

    DTIC Science & Technology

    2014-05-01

    COST-Walfisch- Ikegami model (14) estimates the received power predominantly on the basis of frequency and distance to the transmitter. Ray-optical (15...34 # $ $ # % & ’ ( ) * + , , - . / - 0 1 2 3 4 5 6 7 7 6 8 9 : ; < = > ? @ A B C ? D E F A B G H ? E E I J K L M N O P Q R S T U V W X S Y Z O Y [ Q [ \\ W O P...a b _ c _ d _ e f ` d g h ` i j k l l m n o p k q r s t u v w w x y z

  19. MIDAS - A microcomputer-based image display and analysis system with full Landsat frame processing capabilities

    NASA Technical Reports Server (NTRS)

    Hofman, L. B.; Erickson, W. K.; Donovan, W. E.

    1984-01-01

    Image Display and Analysis Systems (MIDAS) developed at NASA/Ames for the analysis of Landsat MSS images is described. The MIDAS computer power and memory, graphics, resource-sharing, expansion and upgrade, environment and maintenance, and software/user-interface requirements are outlined; the implementation hardware (including 32-bit microprocessor, 512K error-correcting RAM, 70 or 140-Mbyte formatted disk drive, 512 x 512 x 24 color frame buffer, and local-area-network transceiver) and applications software (ELAS, CIE, and P-EDITOR) are characterized; and implementation problems, performance data, and costs are examined. Planned improvements in MIDAS hardware and design goals and areas of exploration for MIDAS software are discussed.

  20. Color engineering in the age of digital convergence

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    1998-09-01

    Digital color imaging has developed over the past twenty years from specialized scientific applications into the mainstream of computing. In addition to the phenomenal growth of computer processing power and storage capacity, great advances have been made in the capabilities and cost-effectiveness of color imaging peripherals. The majority of imaging applications, including the graphic arts, video and film have made the transition from analogue to digital production methods. Digital convergence of computing, communications and television now heralds new possibilities for multimedia publishing and mobile lifestyles. Color engineering, the application of color science to the design of imaging products, is an emerging discipline that poses exciting challenges to the international color imaging community for training, research and standards.

  1. Design and implementation of an electrocardiographical signal acquisition and digital processing system orientated to the detection of paroxysmal arrhythmias

    NASA Astrophysics Data System (ADS)

    Iriart Braceli, Agustín; Exequiel Morani, Jorge

    2011-12-01

    This article describes the design, technical aspects and implementation of a device capable of acquiring electrocardiograph signals; visualize them in real time over a graphic liquid crystal display (GLCD), and the storage of these ECG registers on a SD memory card. It also details a noise suppression algorithm using the Wavelet Transform. This system was specially developed to cover some bankruptcy that presents actual Holters or ECG regarding the detection of paroxysmal arrhythmias. The contribution of this work is settled on its portability and low production cost. The filtering method used provides an ECG signal without any significant noise and appropriate to the diagnosis of cardiac pathologies.

  2. Software With Strong Ties to Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    TieFlow is a simple but powerful business process improvement solution. It can automate and simplify any generic or industry-specific work process, helping organizations to transform work inefficiencies and internal operations involving people, paper, and procedures into a streamlined, well-organized, electronicbased process. TieFlow increases business productivity by improving process cycle times. The software can expedite generic processes in the areas of product design and development, purchase orders, expense reports, benefits enrollment, budgeting, hiring, and sales. It can also shore up vertical market processes such as claims processing, loan application and processing, health care administration, contract management, and advertising agency traffic. The processes can be easily and rapidly captured in a graphical manner and enforced together with rules pertaining to assignments that need to be performed. Aside from boosting productivity, TieFlow also reduces organizational costs and errors. TieFlow was developed with Small Business Innovation Research (SBIR) assistance from Johnson. The SBIR support entitles all Federal Government agencies to utilize the TieFlow software technology free of charge. Tietronix emphasizes that TieFlow is an outstanding workflow resource that could produce dramatic productivity and cost improvements for all agencies, just as it has done and continues to do for NASA. The Space Agency is currently using the software throughout several mission-critical offices, including the Mission Operations Directorate and the Flight Director s Office, for worldwide participation of authorized users in NASA processes. At the Flight Director s Office, TieFlow allows personnel to electronically submit and review changes to the flight rules carried out during missions.

  3. Benefits and Costs of the Clean Air Act 1990-2020. Report Documents and Graphics

    EPA Pesticide Factsheets

    The report includes an Executive Summary which describes the study and its findings in more detail and nine technical appendices which provide in-depth documentation for each of the analytical components.

  4. Interactive Computing and Graphics in Undergraduate Digital Signal Processing. Microcomputing Working Paper Series F 84-9.

    ERIC Educational Resources Information Center

    Onaral, Banu; And Others

    This report describes the development of a Drexel University electrical and computer engineering course on digital filter design that used interactive computing and graphics, and was one of three courses in a senior-level sequence on digital signal processing (DSP). Interactive and digital analysis/design routines and the interconnection of these…

  5. Malleable Thought: The Role of Craft Thinking in Practice-Led Graphic Design

    ERIC Educational Resources Information Center

    Ings, Welby

    2015-01-01

    This article considers the potential of craft processes as creative engagements in graphic design research. It initially discusses the uneasy history of craft within the discipline, then draws upon case studies undertaken by three established designers who, in their postgraduate theses, engaged with craft as a process of thinking. In doing so, the…

  6. Graphic model of the processes involved in the production of casegood furniture

    Treesearch

    Kristen G. Hoff; Subhash C. Sarin; R. Bruce Anderson; R. Bruce Anderson

    1992-01-01

    Imports from foreign furniture manufacturers are on ,the rise, and American manufacturers must take advantage of recent technological advances to regain their lost market share. To facilitate the implementation of these technologies for improving productivity and quality, a graphic model of the wood furniture production process is presented using the IDEF modeling...

  7. Shuttle user analysis (study 2.2): Volume 3. Business Risk And Value of Operations in space (BRAVO). Part 4: Computer programs and data look-up

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Computer program listings as well as graphical and tabulated data needed by the analyst to perform a BRAVO analysis were examined. Graphical aid which can be used to determine the earth coverage of satellites in synchronous equatorial orbits was described. A listing for satellite synthesis computer program as well as a sample printout for the DSCS-11 satellite program and a listing of the symbols used in the program were included. The APL language listing for the payload program cost estimating computer program was given. This language is compatible with many of the time sharing remote terminals computers used in the United States. Data on the intelsat communications network was studied. Costs for telecommunications systems leasing, line of sight microwave relay communications systems, submarine telephone cables, and terrestrial power generation systems were also described.

  8. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM

    PubMed Central

    Battye, T. Geoff G.; Kontogiannis, Luke; Johnson, Owen; Powell, Harold R.; Leslie, Andrew G. W.

    2011-01-01

    iMOSFLM is a graphical user interface to the diffraction data-integration program MOSFLM. It is designed to simplify data processing by dividing the process into a series of steps, which are normally carried out sequentially. Each step has its own display pane, allowing control over parameters that influence that step and providing graphical feedback to the user. Suitable values for integration parameters are set automatically, but additional menus provide a detailed level of control for experienced users. The image display and the interfaces to the different tasks (indexing, strategy calculation, cell refinement, integration and history) are described. The most important parameters for each step and the best way of assessing success or failure are discussed. PMID:21460445

  9. Geowall: Investigations into low-cost stereo display technologies

    USGS Publications Warehouse

    Steinwand, Daniel R.; Davis, Brian; Weeks, Nathan

    2003-01-01

    Recently, the combination of new projection technology, fast, low-cost graphics cards, and Linux-powered personal computers has made it possible to provide a stereoprojection and stereoviewing system that is much more affordable than previous commercial solutions. These Geowall systems are low-cost visualization systems built with commodity off-the-shelf components, run on open-source (and other) operating systems, and using open-source applications software. In short, they are ?Beowulf-class? visualization systems that provide a cost-effective way for the U. S. Geological Survey to broaden participation in the visualization community and view stereoimagery and three-dimensional models2.

  10. Geometric Processing and Its Relational Graphics

    DTIC Science & Technology

    1976-10-01

    20, If different from Report) f3. SUPPLEMENTARY NOTES 9. KEY WORDS (Cbnttnue on reverse aide if neceaaary .mdldentlfy by bfock number) Graphics GIFT ...are typified by defining an object as a series of adjacent triangular or rectangular patches or surfaces (ruled surfaces may also be used). The GIFT ...code embodies the Patch code concept in one of its solids, the ARS; however, processing of a many-faceted GIFT solid takes longer to process than its

  11. Fast approach for toner saving

    NASA Astrophysics Data System (ADS)

    Safonov, Ilia V.; Kurilin, Ilya V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sangho; Choi, Donchul

    2011-01-01

    Reducing toner consumption is an important task in modern printing devices and has a significant positive ecological impact. Existing toner saving approaches have two main drawbacks: appearance of hardcopy in toner saving mode is worse in comparison with normal mode; processing of whole rendered page bitmap requires significant computational costs. We propose to add small holes of various shapes and sizes to random places inside a character bitmap stored in font cache. Such random perforation scheme is based on processing pipeline in RIP of standard printer languages Postscript and PCL. Processing of text characters only, and moreover, processing of each character for given font and size alone, is an extremely fast procedure. The approach does not deteriorate halftoned bitmap and business graphics and provide toner saving for typical office documents up to 15-20%. Rate of toner saving is adjustable. Alteration of resulted characters' appearance is almost indistinguishable in comparison with solid black text due to random placement of small holes inside the character regions. The suggested method automatically skips small fonts to preserve its quality. Readability of text processed by proposed method is fine. OCR programs process that scanned hardcopy successfully too.

  12. Common Graphics Library (CGL). Volume 1: LEZ user's guide

    NASA Technical Reports Server (NTRS)

    Taylor, Nancy L.; Hammond, Dana P.; Hofler, Alicia S.; Miner, David L.

    1988-01-01

    Users are introduced to and instructed in the use of the Langley Easy (LEZ) routines of the Common Graphics Library (CGL). The LEZ routines form an application independent graphics package which enables the user community to view data quickly and easily, while providing a means of generating scientific charts conforming to the publication and/or viewgraph process. A distinct advantage for using the LEZ routines is that the underlying graphics package may be replaced or modified without requiring the users to change their application programs. The library is written in ANSI FORTRAN 77, and currently uses a CORE-based underlying graphics package, and is therefore machine independent, providing support for centralized and/or distributed computer systems.

  13. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 4: Graphical status display

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (4 of 4) contains the description, structured flow charts, prints of the graphical displays, and source code to generate the displays for the AMPS graphical status system. The function of these displays is to present to the manager of the AMPS system a graphical status display with the hot boxes that allow the manager to get more detailed status on selected portions of the AMPS system. The development of the graphical displays is divided into two processes; the creation of the screen images and storage of them in files on the computer, and the running of the status program which uses the screen images.

  14. The role of word order in the interpretation of canonical and non-canonical graphic symbol utterances: A developmental study.

    PubMed

    Trudeau, Natacha; Morford, Jill P; Sutton, Ann

    2010-06-01

    Graphic symbols are often used to represent words in Augmentative and Alternative Communication systems. Previous findings suggest that different processes operate when using graphic symbols and when using speech. This study assessed the ability of native speakers of French with no communication disorders from four age groups to interpret graphic-symbol sequences of varying length and canonicity. Results reveal that, as they get older, participants show an increase in their capacity to interpret graphic-symbol sequences. Constituent order played an important role in the interpretation of the sequences. However, the specific word-order strategies used varied depending on the age group and the type of sequence presented.

  15. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    PubMed

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  16. Graphics processing unit-assisted lossless decompression

    DOEpatents

    Loughry, Thomas A.

    2016-04-12

    Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.

  17. 76 FR 70490 - Certain Electronic Devices With Graphics Data Processing Systems, Components Thereof, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Graphics Data Processing Systems, Components Thereof, and Associated Software; Institution of Investigation... associated software by reason of infringement of certain claims of U.S. Patent No. 5,945,997 (``the `997... software that infringe one or more of claims 1, 3-5, 9, and 16 of the `997 patent; claims 1, 5, and 9 of...

  18. Graphic facilitation as a novel approach to practice development.

    PubMed

    Leonard, Angela; Bonaconsa, Candice; Ssenyonga, Lydia; Coetzee, Minette

    2017-10-10

    The active participation of staff from the outset of any health service or practice improvement process ensures they are more likely to become engaged in the implementation phases that follow initial service analyses. Graphic facilitation is a way of getting participants to develop an understanding of complex systems and articulate solutions from within them. This article describes how a graphic facilitation process enabled the members of a multidisciplinary team at a specialist paediatric neurosurgery hospital in Uganda to understand how their system worked. The large graphic representation the team created helped each team member to visualise their day-to-day practice, understand each person's contribution, celebrate their triumphs and highlight opportunities for service improvement. The process highlighted three features of their practice: an authentic interdisciplinary team approach to care, admission of the primary carer with the child, and previously unrecognised delays in patient flow through the outpatients department. The team's active participation and ownership of the process resulted in sustainable improvements to clinical practice. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  19. UWGSP4: an imaging and graphics superworkstation and its medical applications

    NASA Astrophysics Data System (ADS)

    Jong, Jing-Ming; Park, Hyun Wook; Eo, Kilsu; Kim, Min-Hwan; Zhang, Peng; Kim, Yongmin

    1992-05-01

    UWGSP4 is configured with a parallel architecture for image processing and a pipelined architecture for computer graphics. The system's peak performance is 1,280 MFLOPS for image processing and over 200,000 Gouraud shaded 3-D polygons per second for graphics. The simulated sustained performance is about 50% of the peak performance in general image processing. Most of the 2-D image processing functions are efficiently vectorized and parallelized in UWGSP4. A performance of 770 MFLOPS in convolution and 440 MFLOPS in FFT is achieved. The real-time cine display, up to 32 frames of 1280 X 1024 pixels per second, is supported. In 3-D imaging, the update rate for the surface rendering is 10 frames of 20,000 polygons per second; the update rate for the volume rendering is 6 frames of 128 X 128 X 128 voxels per second. The system provides 1280 X 1024 X 32-bit double frame buffers and one 1280 X 1024 X 8-bit overlay buffer for supporting realistic animation, 24-bit true color, and text annotation. A 1280 X 1024- pixel, 66-Hz noninterlaced display screen with 1:1 aspect ratio can be windowed into the frame buffer for the display of any portion of the processed image or graphics.

  20. Computational Vision in Uv-Mapping of Textured Meshes Coming from Photogrammetric Recovery: Unwrapping Frescoed Vaults

    NASA Astrophysics Data System (ADS)

    Robleda, P. G.; Caroti, G.; Martínez-Espejo Zaragoza, I.; Piemonte, A.

    2016-06-01

    Sometimes it is difficult to represent "on paper" the existing reality of architectonic elements, depending on the complexity of his geometry, but not only in cases with complex geometries: non-relief surfaces, can need a "special planar format" for its graphical representation. Nowadays, there are a lot of methods to obtain tridimensional recovery of our Cultural Heritage with different ranges of the relationship accuracy / costs, even getting high accuracy using "low-cost" recovery methods as digital photogrammetry, which allow us easily to obtain a graphical representation "on paper": ortho-images of different points of view. This can be useful for many purposes but, for others, an orthographic projection is not really very interesting. In non-site restoration tasks of frescoed vaults, a "planar format" representation in needed to see in true magnitude the paintings represented on the intrados vault, because of the general methodology used: gluing the fresco on a fabric, removing the fresco-fabric from the support, moving to laboratory, removing the fresco from the fabric, restoring the fresco, gluing back the restored fresco on another fabric, laying the restored fresco on the original location and removing the fabric. Because of this, many times, an unfolded model is needed, in a similar way a cylinder or cone can be unfolded, but in this case with a texture included: UV unwrapping. Unfold and fold-back processes, can be especially interesting in restoration field of frescoed vaults and domes at: chromatic recovery of paintings, reconstruction of partially missed geometries, transference of paintings on surfaces, etc.

  1. Apparatus and method for implementing power saving techniques when processing floating point values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Moon; Park, Sang Phill

    An apparatus and method are described for reducing power when reading and writing graphics data. For example, one embodiment of an apparatus comprises: a graphics processor unit (GPU) to process graphics data including floating point data; a set of registers, at least one of the registers of the set partitioned to store the floating point data; and encode/decode logic to reduce a number of binary 1 values being read from the at least one register by causing a specified set of bit positions within the floating point data to be read out as 0s rather than 1s.

  2. Hyper-Spectral Synthesis of Active OB Stars Using GLaDoS

    NASA Astrophysics Data System (ADS)

    Hill, N. R.; Townsend, R. H. D.

    2016-11-01

    In recent years there has been considerable interest in using graphics processing units (GPUs) to perform scientific computations that have traditionally been handled by central processing units (CPUs). However, there is one area where the scientific potential of GPUs has been overlooked - computer graphics, the task they were originally designed for. Here we introduce GLaDoS, a hyper-spectral code which leverages the graphics capabilities of GPUs to synthesize spatially and spectrally resolved images of complex stellar systems. We demonstrate how GLaDoS can be applied to calculate observables for various classes of stars including systems with inhomogenous surface temperatures and contact binaries.

  3. The role of graphics super-workstations in a supercomputing environment

    NASA Technical Reports Server (NTRS)

    Levin, E.

    1989-01-01

    A new class of very powerful workstations has recently become available which integrate near supercomputer computational performance with very powerful and high quality graphics capability. These graphics super-workstations are expected to play an increasingly important role in providing an enhanced environment for supercomputer users. Their potential uses include: off-loading the supercomputer (by serving as stand-alone processors, by post-processing of the output of supercomputer calculations, and by distributed or shared processing), scientific visualization (understanding of results, communication of results), and by real time interaction with the supercomputer (to steer an iterative computation, to abort a bad run, or to explore and develop new algorithms).

  4. Graphical user interface for wireless sensor networks simulator

    NASA Astrophysics Data System (ADS)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  5. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.

    PubMed

    McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C

    2017-11-07

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  6. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.

    2017-11-01

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  7. CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis

    PubMed Central

    Raimondo, Federico; Kamienkowski, Juan E.; Sigman, Mariano; Fernandez Slezak, Diego

    2012-01-01

    In recent years, Independent Component Analysis (ICA) has become a standard to identify relevant dimensions of the data in neuroscience. ICA is a very reliable method to analyze data but it is, computationally, very costly. The use of ICA for online analysis of the data, used in brain computing interfaces, results are almost completely prohibitive. We show an increase with almost no cost (a rapid video card) of speed of ICA by about 25 fold. The EEG data, which is a repetition of many independent signals in multiple channels, is very suitable for processing using the vector processors included in the graphical units. We profiled the implementation of this algorithm and detected two main types of operations responsible of the processing bottleneck and taking almost 80% of computing time: vector-matrix and matrix-matrix multiplications. By replacing function calls to basic linear algebra functions to the standard CUBLAS routines provided by GPU manufacturers, it does not increase performance due to CUDA kernel launch overhead. Instead, we developed a GPU-based solution that, comparing with the original BLAS and CUBLAS versions, obtains a 25x increase of performance for the ICA calculation. PMID:22811699

  8. Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System (AWIPS) Using Shapefiles and DGM Files

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian

    2007-01-01

    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or DARE Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU). The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) and 45th Weather Squadron (45 WS) to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. Advantages of both file types will be listed.

  9. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; Russell, Samuel S.

    2012-01-01

    Objective Develop a software application utilizing high performance computing techniques, including general purpose graphics processing units (GPGPUs), for the analysis and visualization of large thermographic data sets. Over the past several years, an increasing effort among scientists and engineers to utilize graphics processing units (GPUs) in a more general purpose fashion is allowing for previously unobtainable levels of computation by individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU which yield significant increases in performance. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Image processing is one area were GPUs are being used to greatly increase the performance of certain analysis and visualization techniques.

  10. Computer program to perform cost and weight analysis of transport aircraft. Volume 2: Technical volume

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An improved method for estimating aircraft weight and cost using a unique and fundamental approach was developed. The results of this study were integrated into a comprehensive digital computer program, which is intended for use at the preliminary design stage of aircraft development. The program provides a means of computing absolute values for weight and cost, and enables the user to perform trade studies with a sensitivity to detail design and overall structural arrangement. Both batch and interactive graphics modes of program operation are available.

  11. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.

  12. The Value of Animations in Biology Teaching: A Study of Long-Term Memory Retention

    PubMed Central

    2007-01-01

    Previous work has established that a narrated animation is more effective at communicating a complex biological process (signal transduction) than the equivalent graphic with figure legend. To my knowledge, no study has been done in any subject area on the effectiveness of animations versus graphics in the long-term retention of information, a primary and critical issue in studies of teaching and learning. In this study, involving 393 student responses, three different animations and two graphics—one with and one lacking a legend—were used to determine the long-term retention of information. The results show that students retain more information 21 d after viewing an animation without narration compared with an equivalent graphic whether or not that graphic had a legend. Students' comments provide additional insight into the value of animations in the pedagogical process, and suggestions for future work are proposed. PMID:17785404

  13. Are Graphic Novels Always "Cool"? Parent and Student Perspectives on Elementary Mathematics and Science Graphic Novels: The Need for Action Research by School Leaders

    ERIC Educational Resources Information Center

    Nesmith, Suzanne; Cooper, Sandi; Schwarz, Gretchen; Walker, Amanda

    2016-01-01

    Often the stakeholders most affected by curriculum change are uninvolved in the change process, leading to curriculum reforms that fail. Thus, a group of university researchers conducted a small-scale study to explore the thoughts and opinions of parents and elementary students on the use of mathematics and science graphic novels to support the…

  14. Animation graphic interface for the space shuttle onboard computer

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey; Griffith, Paul

    1989-01-01

    Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

  15. Graphical workstation capability for reliability modeling

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.

    1992-01-01

    In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.

  16. Tomorrow's Online in Today's CD-ROM: Interfaces and Images.

    ERIC Educational Resources Information Center

    Jacso, Peter

    1994-01-01

    Considers the appropriateness of using CD-ROM versus online systems. Topics discussed include cost effectiveness; how current the information is; full-text capabilities; a variety of interfaces; graphical user interfaces on CD-ROM; and possibilities for image representations. (LRW)

  17. Software Reviews.

    ERIC Educational Resources Information Center

    Teles, Elizabeth, Ed.; And Others

    1990-01-01

    Reviewed are two computer software packages for Macintosh microcomputers including "Phase Portraits," an exploratory graphics tool for studying first-order planar systems; and "MacMath," a set of programs for exploring differential equations, linear algebra, and other mathematical topics. Features, ease of use, cost, availability, and hardware…

  18. Medical Information Management System (MIMS) CareWindows.

    PubMed Central

    Stiphout, R. M.; Schiffman, R. M.; Christner, M. F.; Ward, R.; Purves, T. M.

    1991-01-01

    The demonstration of MIMS/CareWindows will include: (1) a review of the application environment and development history, (2) a demonstration of a very large, comprehensive clinical information system with a cost effective graphic user server and communications interface. PMID:1807755

  19. Transputer parallel processing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1989-01-01

    The transputer parallel processing lab at NASA Lewis Research Center (LeRC) consists of 69 processors (transputers) that can be connected into various networks for use in general purpose concurrent processing applications. The main goal of the lab is to develop concurrent scientific and engineering application programs that will take advantage of the computational speed increases available on a parallel processor over the traditional sequential processor. Current research involves the development of basic programming tools. These tools will help standardize program interfaces to specific hardware by providing a set of common libraries for applications programmers. The thrust of the current effort is in developing a set of tools for graphics rendering/animation. The applications programmer currently has two options for on-screen plotting. One option can be used for static graphics displays and the other can be used for animated motion. The option for static display involves the use of 2-D graphics primitives that can be called from within an application program. These routines perform the standard 2-D geometric graphics operations in real-coordinate space as well as allowing multiple windows on a single screen.

  20. Assessing the impact of graphical quality on automatic text recognition in digital maps

    NASA Astrophysics Data System (ADS)

    Chiang, Yao-Yi; Leyk, Stefan; Honarvar Nazari, Narges; Moghaddam, Sima; Tan, Tian Xiang

    2016-08-01

    Converting geographic features (e.g., place names) in map images into a vector format is the first step for incorporating cartographic information into a geographic information system (GIS). With the advancement in computational power and algorithm design, map processing systems have been considerably improved over the last decade. However, the fundamental map processing techniques such as color image segmentation, (map) layer separation, and object recognition are sensitive to minor variations in graphical properties of the input image (e.g., scanning resolution). As a result, most map processing results would not meet user expectations if the user does not "properly" scan the map of interest, pre-process the map image (e.g., using compression or not), and train the processing system, accordingly. These issues could slow down the further advancement of map processing techniques as such unsuccessful attempts create a discouraged user community, and less sophisticated tools would be perceived as more viable solutions. Thus, it is important to understand what kinds of maps are suitable for automatic map processing and what types of results and process-related errors can be expected. In this paper, we shed light on these questions by using a typical map processing task, text recognition, to discuss a number of map instances that vary in suitability for automatic processing. We also present an extensive experiment on a diverse set of scanned historical maps to provide measures of baseline performance of a standard text recognition tool under varying map conditions (graphical quality) and text representations (that can vary even within the same map sheet). Our experimental results help the user understand what to expect when a fully or semi-automatic map processing system is used to process a scanned map with certain (varying) graphical properties and complexities in map content.

  1. Span graphics display utilities handbook, first edition

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Green, J. L.; Newman, R.

    1985-01-01

    The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphite images. This handbook details procedures that can be used to exchange graphic images over SPAN. The intent is to periodically update this handbook to reflect the constantly changing facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite servations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.

  2. Common Graphics Library (CGL). Volume 2: Low-level user's guide

    NASA Technical Reports Server (NTRS)

    Taylor, Nancy L.; Hammond, Dana P.; Theophilos, Pauline M.

    1989-01-01

    The intent is to instruct the users of the Low-Level routines of the Common Graphics Library (CGL). The Low-Level routines form an application-independent graphics package enabling the user community to construct and design scientific charts conforming to the publication and/or viewgraph process. The Low-Level routines allow the user to design unique or unusual report-quality charts from a set of graphics utilities. The features of these routines can be used stand-alone or in conjunction with other packages to enhance or augment their capabilities. This library is written in ANSI FORTRAN 77, and currently uses a CORE-based underlying graphics package, and is therefore machine-independent, providing support for centralized and/or distributed computer systems.

  3. Note: Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Cerchiari, G.; Croccolo, F.; Cardinaux, F.; Scheffold, F.

    2012-10-01

    We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit. We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.

  4. Inkjet-printed optoelectronics.

    PubMed

    Zhan, Zhaoyao; An, Jianing; Wei, Yuefan; Tran, Van Thai; Du, Hejun

    2017-01-19

    Inkjet printing is a powerful and cost-effective technique for deposition of liquid inks with high accuracy, which is not only of great significance for graphic applications but also has enormous potential for the direct printing of optoelectronic devices. This review highlights a comprehensive overview of the progress that has been made in optoelectronics fabrication by the inkjet printing technique. The first part briefly covers the droplet-generation process in the nozzles of printheads and the physical properties affecting droplet formation and the profiles of the printed patterns. The second section outlines the recent activities related to applications of inkjet printing in optoelectronics fabrication including solar cells, light-emitting diodes, photodetectors and transparent electrodes. In each application field, the challenges with the inkjet printing process and the possible solutions are discussed before a few remarks. In the last section, a brief summary on the progress of inkjet printing fabrication of optoelectronics and an outlook for future research effort are presented.

  5. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    NASA Astrophysics Data System (ADS)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  6. EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis

    NASA Technical Reports Server (NTRS)

    Hagale, Thomas J.; Price, Larry R.

    2000-01-01

    The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.

  7. j5 DNA assembly design automation.

    PubMed

    Hillson, Nathan J

    2014-01-01

    Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost-benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.

  8. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20xmore » to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.« less

  9. How gamma radiation processing systems are benefiting from the latest advances in information technology

    NASA Astrophysics Data System (ADS)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  10. Distributed Energy Resources Customer Adoption Model - Graphical User Interface, Version 2.1.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewald, Friedrich; Stadler, Michael; Cardoso, Goncalo F

    The DER-CAM Graphical User Interface has been redesigned to consist of a dynamic tree structure on the left side of the application window to allow users to quickly navigate between different data categories and views. Views can either be tables with model parameters and input data, the optimization results, or a graphical interface to draw circuit topology and visualize investment results. The model parameters and input data consist of tables where values are assigned to specific keys. The aggregation of all model parameters and input data amounts to the data required to build a DER-CAM model, and is passed tomore » the GAMS solver when users initiate the DER-CAM optimization process. Passing data to the GAMS solver relies on the use of a Java server that handles DER-CAM requests, queuing, and results delivery. This component of the DER-CAM GUI can be deployed either locally or remotely, and constitutes an intermediate step between the user data input and manipulation, and the execution of a DER-CAM optimization in the GAMS engine. The results view shows the results of the DER-CAM optimization and distinguishes between a single and a multi-objective process. The single optimization runs the DER-CAM optimization once and presents the results as a combination of summary charts and hourly dispatch profiles. The multi-objective optimization process consists of a sequence of runs initiated by the GUI, including: 1) CO2 minimization, 2) cost minimization, 3) a user defined number of points in-between objectives 1) and 2). The multi-objective results view includes both access to the detailed results of each point generated by the process as well as the generation of a Pareto Frontier graph to illustrate the trade-off between objectives. DER-CAM GUI 2.1.8 also introduces the ability to graphically generate circuit topologies, enabling support to DER-CAM 5.0.0. This feature consists of: 1) The drawing area, where users can manually create nodes and define their properties (e.g. point of common coupling, slack bus, load) and connect them through edges representing either power lines, transformers, or heat pipes, all with user defined characteristics (e.g., length, ampacity, inductance, or heat loss); 2) The tables, which display the user-defined topology in the final numerical form that will be passed to the DER-CAM optimization. Finally, the DER-CAM GUI is also deployed with a database schema that allows users to provide different energy load profiles, solar irradiance profiles, and tariff data, that can be stored locally and later used in any DER-CAM model. However, no real data will be delivered with this version.« less

  11. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  12. ShelXle: a Qt graphical user interface for SHELXL.

    PubMed

    Hübschle, Christian B; Sheldrick, George M; Dittrich, Birger

    2011-12-01

    ShelXle is a graphical user interface for SHELXL [Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122], currently the most widely used program for small-molecule structure refinement. It combines an editor with syntax highlighting for the SHELXL-associated .ins (input) and .res (output) files with an interactive graphical display for visualization of a three-dimensional structure including the electron density (F(o)) and difference density (F(o)-F(c)) maps. Special features of ShelXle include intuitive atom (re-)naming, a strongly coupled editor, structure visualization in various mono and stereo modes, and a novel way of displaying disorder extending over special positions. ShelXle is completely compatible with all features of SHELXL and is written entirely in C++ using the Qt4 and FFTW libraries. It is available at no cost for Windows, Linux and Mac-OS X and as source code.

  13. Current concepts of Harm–Benefit Analysis of Animal Experiments – Report from the AALAS–FELASA Working Group on Harm–Benefit Analysis – Part 1

    PubMed Central

    Brønstad, Aurora; Newcomer, Christian E; Decelle, Thierry; Everitt, Jeffrey I; Guillen, Javier; Laber, Kathy

    2016-01-01

    International regulations and guidelines strongly suggest that the use of animal models in scientific research should be initiated only after the authority responsible for the review of animal studies has concluded a well-thought-out harm–benefit analysis (HBA) and deemed the project to be appropriate. Although the process for conducting HBAs may not be new, the relevant factors and algorithms used in conducting them during the review process are deemed to be poorly defined or lacking by committees in many institutions. This paper presents the current concept of HBAs based on a literature review. References on cost or risk benefit from clinical trials and other industries are also included. Several approaches to HBA have been discovered including algorithms, graphic presentations and generic processes. The aim of this study is to better aid and harmonize understanding of the concepts of ‘harm’, ‘benefit’ and ‘harm–benefit analysis’. PMID:27188275

  14. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  15. Creation Stations.

    ERIC Educational Resources Information Center

    Sauer, Jeff; Murphy, Sam

    1997-01-01

    In this comparison, NewMedia lab looks at 10 Pentium II workstations preconfigured for demanding three dimensional and multimedia work with OpenGL cards and fast Ultra SCSI hard drives. Highlights include costs, tests with Photoshop, technical support, and a sidebar that explains Accelerated Graphics Port. (Author/LRW)

  16. NASTRAN pre and postprocessors using low-cost interactive graphics

    NASA Technical Reports Server (NTRS)

    Herness, E. D.; Kriloff, H. Z.

    1975-01-01

    A design for a NASTRAN preprocessor is given to illustrate a typical preprocessor. Several displays of NASTRAN models illustrate the preprocessor's capabilities. A design of a NASTRAN postprocessor is presented along with an example of displays generated by that NASTRAN processor.

  17. The New Generation of Information Systems.

    ERIC Educational Resources Information Center

    Grunwald, Peter

    1990-01-01

    A new generation of home-use electronic information systems could help transform American schooling. These services reach beyond computer enthusiasts, using various combinations of mass marketing techniques, attractive graphics, easy-to-use controls, localized information, low-cost access, and dedicated terminals. Representative samples include…

  18. Another (Yawn) Revolution.

    ERIC Educational Resources Information Center

    McDonald, William

    1987-01-01

    Some of the limitations of desktop publishing are identified including: desktop systems cannot match the finished quality of typeset copy and traditionally prepared graphics; nonpublications office desktop publishing would require more time, and publishing will not be easier; hidden costs; and high quality depends on trained people. (MLW)

  19. Flying High.

    ERIC Educational Resources Information Center

    Sherman, Lee; Paglin, Catherine; Jarrett, Denise; Kneidek, Tony

    1998-01-01

    Profiles 10 technology-based programs in Montana, Oregon, Washington, Alaska, and Idaho schools that use computers, the Internet, and multimedia to teach math, science, information skills, economics, English, history, and graphic design. Includes teacher comments on hardware, software, costs, the changing role of the teacher, Internet safety, and…

  20. Image reproduction with interactive graphics

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Software application or development in optical image digital data processing requires a fast, good quality, yet inexpensive hard copy of processed images. To achieve this, a Cambo camera with an f 2.8/150-mm Xenotar lens in a Copal shutter having a Graflok back for 4 x 5 Polaroid type 57 pack-film has been interfaced to an existing Adage, AGT-30/Electro-Mechanical Research, EMR 6050 graphic computer system. Time-lapse photography in conjunction with a log to linear voltage transformation has resulted in an interactive system capable of producing a hard copy in 54 sec. The interactive aspect of the system lies in a Tektronix 4002 graphic computer terminal and its associated hard copy unit.

  1. Performance evaluation of throughput computing workloads using multi-core processors and graphics processors

    NASA Astrophysics Data System (ADS)

    Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.

    2017-11-01

    Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.

  2. Automated Illustration of Patients Instructions

    PubMed Central

    Bui, Duy; Nakamura, Carlos; Bray, Bruce E.; Zeng-Treitler, Qing

    2012-01-01

    A picture can be a powerful communication tool. However, creating pictures to illustrate patient instructions can be a costly and time-consuming task. Building on our prior research in this area, we developed a computer application that automatically converts text to pictures using natural language processing and computer graphics techniques. After iterative testing, the automated illustration system was evaluated using 49 previously unseen cardiology discharge instructions. The completeness of the system-generated illustrations was assessed by three raters using a three-level scale. The average inter-rater agreement for text correctly represented in the pictograph was about 66 percent. Since illustration in this context is intended to enhance rather than replace text, these results support the feasibility of conducting automated illustration. PMID:23304392

  3. PVEX: An expert system for producibility/value engineering

    NASA Technical Reports Server (NTRS)

    Lam, Chun S.; Moseley, Warren

    1991-01-01

    PVEX is described as an expert system that solves the problem of selection of the material and process in missile manufacturing. The producibility and the value problem has been deeply studied in the past years, and was written in dBase III and PROLOG before. A new approach is presented in that the solution is achieved by introducing hypothetical reasoning, heuristic criteria integrated with a simple hypertext system and shell programming. PVEX combines KMS with Unix scripts which graphically depicts decision trees. The decision trees convey high level qualitative problem solving knowledge to users, and a stand-alone help facility and technical documentation is available through KMS. The system developed is considerably less development costly than any other comparable expert system.

  4. Real-Time Pattern Recognition - An Industrial Example

    NASA Astrophysics Data System (ADS)

    Fitton, Gary M.

    1981-11-01

    Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.

  5. Tool for Ranking Research Options

    NASA Technical Reports Server (NTRS)

    Ortiz, James N.; Scott, Kelly; Smith, Harold

    2005-01-01

    Tool for Research Enhancement Decision Support (TREDS) is a computer program developed to assist managers in ranking options for research aboard the International Space Station (ISS). It could likely also be adapted to perform similar decision-support functions in industrial and academic settings. TREDS provides a ranking of the options, based on a quantifiable assessment of all the relevant programmatic decision factors of benefit, cost, and risk. The computation of the benefit for each option is based on a figure of merit (FOM) for ISS research capacity that incorporates both quantitative and qualitative inputs. Qualitative inputs are gathered and partly quantified by use of the time-tested analytical hierarchical process and used to set weighting factors in the FOM corresponding to priorities determined by the cognizant decision maker(s). Then by use of algorithms developed specifically for this application, TREDS adjusts the projected benefit for each option on the basis of levels of technical implementation, cost, and schedule risk. Based partly on Excel spreadsheets, TREDS provides screens for entering cost, benefit, and risk information. Drop-down boxes are provided for entry of qualitative information. TREDS produces graphical output in multiple formats that can be tailored by users.

  6. Cooperative processing user interfaces for AdaNET

    NASA Technical Reports Server (NTRS)

    Gutzmann, Kurt M.

    1991-01-01

    A cooperative processing user interface (CUI) system shares the task of graphical display generation and presentation between the user's computer and a remote host. The communications link between the two computers is typically a modem or Ethernet. The two main purposes of a CUI are reduction of the amount of data transmitted between user and host machines, and provision of a graphical user interface system to make the system easier to use.

  7. Automated Flight Dynamics Product Generation for the EOS AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Matusow, Carla

    1999-01-01

    As part of NASA's Earth Science Enterprise, the Earth Observing System (EOS) AM-1 spacecraft is designed to monitor long-term, global, environmental changes. Because of the complexity of the AM-1 spacecraft, the mission operations center requires more than 80 distinct flight dynamics products (reports). To create these products, the AM-1 Flight Dynamics Team (FDT) will use a combination of modified commercial software packages (e.g., Analytical Graphic's Satellite ToolKit) and NASA-developed software applications. While providing the most cost-effective solution to meeting the mission requirements, the integration of these software applications raises several operational concerns: (1) Routine product generation requires knowledge of multiple applications executing on variety of hardware platforms. (2) Generating products is a highly interactive process requiring a user to interact with each application multiple times to generate each product. (3) Routine product generation requires several hours to complete. (4) User interaction with each application introduces the potential for errors, since users are required to manually enter filenames and input parameters as well as run applications in the correct sequence. Generating products requires some level of flight dynamics expertise to determine the appropriate inputs and sequencing. To address these issues, the FDT developed an automation software tool called AutoProducts, which runs on a single hardware platform and provides all necessary coordination and communication among the various flight dynamics software applications. AutoProducts, autonomously retrieves necessary files, sequences and executes applications with correct input parameters, and deliver the final flight dynamics products to the appropriate customers. Although AutoProducts will normally generate pre-programmed sets of routine products, its graphical interface allows for easy configuration of customized and one-of-a-kind products. Additionally, AutoProducts has been designed as a mission-independent tool, and can be easily reconfigured to support other missions or incorporate new flight dynamics software packages. After the AM-1 launch, AutoProducts will run automatically at pre-determined time intervals . The AutoProducts tool reduces many of the concerns associated with the flight dynamics product generation. Although AutoProducts required a significant effort to develop because of the complexity of the interfaces involved, its use will provide significant cost savings through reduced operator time and maximum product reliability. In addition, user satisfaction is significantly improved and flight dynamics experts have more time to perform valuable analysis work. This paper will describe the evolution of the AutoProducts tool, highlighting the cost savings and customer satisfaction resulting from its development. It will also provide details about the tool including its graphical interface and operational capabilities.

  8. A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1997-01-01

    This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.

  9. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  10. Computer graphics to display plume-modeling results for nuclear emergency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawchuk, B.; Gotham, I.; Matuszek, J.

    1985-01-01

    New York uses a color graphics display/analysis system, ANALYSE, to portray the results of the plume transport models, MATHEW/ADPIC and PATRIC. As a tool for the researcher and meteorologist, it provides a detailed look into the model results, input and performance. Used in an automatic mode and pre-programmed for use in an emergency, it provides a sequence of informative and attractive of displays to assessment staff at the State EOC through an easily-learned display module. Though successfully implemented on low-cost display and communication equipment, further technical improvements and software development would greatly enhance the system for use in an emergency.

  11. That Article: Frame Relay.

    ERIC Educational Resources Information Center

    Schuyler, Michael

    1994-01-01

    Compares Frame Relay with digital and analog alternatives for connecting sites on a Wide Area Network. Cost considerations, the concepts on which the technology is based, its carrying capacity, the use of CD-ROM and Graphical User Interface (GUI) on Frame Relay, and engineering bandwidth limitations are covered. (KRN)

  12. SSSFD manipulator engineering using statistical experiment design techniques

    NASA Technical Reports Server (NTRS)

    Barnes, John

    1991-01-01

    The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.

  13. Computer animation for minimally invasive surgery: computer system requirements and preferred implementations

    NASA Astrophysics Data System (ADS)

    Pieper, Steven D.; McKenna, Michael; Chen, David; McDowall, Ian E.

    1994-04-01

    We are interested in the application of computer animation to surgery. Our current project, a navigation and visualization tool for knee arthroscopy, relies on real-time computer graphics and the human interface technologies associated with virtual reality. We believe that this new combination of techniques will lead to improved surgical outcomes and decreased health care costs. To meet these expectations in the medical field, the system must be safe, usable, and cost-effective. In this paper, we outline some of the most important hardware and software specifications in the areas of video input and output, spatial tracking, stereoscopic displays, computer graphics models and libraries, mass storage and network interfaces, and operating systems. Since this is a fairly new combination of technologies and a new application, our justification for our specifications are drawn from the current generation of surgical technology and by analogy to other fields where virtual reality technology has been more extensively applied and studied.

  14. Low-cost compact ECG with graphic LCD and phonocardiogram system design.

    PubMed

    Kara, Sadik; Kemaloğlu, Semra; Kirbaş, Samil

    2006-06-01

    Till today, many different ECG devices are made in developing countries. In this study, low cost, small size, portable LCD screen ECG device, and phonocardiograph were designed. With designed system, heart sounds that take synchronously with ECG signal are heard as sensitive. Improved system consist three units; Unit 1, ECG circuit, filter and amplifier structure. Unit 2, heart sound acquisition circuit. Unit 3, microcontroller, graphic LCD and ECG signal sending unit to computer. Our system can be used easily in different departments of the hospital, health institution and clinics, village clinic and also in houses because of its small size structure and other benefits. In this way, it is possible that to see ECG signal and hear heart sounds as synchronously and sensitively. In conclusion, heart sounds are heard on the part of both doctor and patient because sounds are given to environment with a tiny speaker. Thus, the patient knows and hears heart sounds him/herself and is acquainted by doctor about healthy condition.

  15. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells.

    PubMed

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-03-09

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level.

  16. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells

    PubMed Central

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-01-01

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level. PMID:27005630

  17. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.

  18. Low-cost and high-speed optical mark reader based on an intelligent line camera

    NASA Astrophysics Data System (ADS)

    Hussmann, Stephan; Chan, Leona; Fung, Celine; Albrecht, Martin

    2003-08-01

    Optical Mark Recognition (OMR) is thoroughly reliable and highly efficient provided that high standards are maintained at both the planning and implementation stages. It is necessary to ensure that OMR forms are designed with due attention to data integrity checks, the best use is made of features built into the OMR, used data integrity is checked before the data is processed and data is validated before it is processed. This paper describes the design and implementation of an OMR prototype system for marking multiple-choice tests automatically. Parameter testing is carried out before the platform and the multiple-choice answer sheet has been designed. Position recognition and position verification methods have been developed and implemented in an intelligent line scan camera. The position recognition process is implemented into a Field Programmable Gate Array (FPGA), whereas the verification process is implemented into a micro-controller. The verified results are then sent to the Graphical User Interface (GUI) for answers checking and statistical analysis. At the end of the paper the proposed OMR system will be compared with commercially available system on the market.

  19. Design and Evaluation of a Scalable and Reconfigurable Multi-Platform System for Acoustic Imaging

    PubMed Central

    Izquierdo, Alberto; Villacorta, Juan José; del Val Puente, Lara; Suárez, Luis

    2016-01-01

    This paper proposes a scalable and multi-platform framework for signal acquisition and processing, which allows for the generation of acoustic images using planar arrays of MEMS (Micro-Electro-Mechanical Systems) microphones with low development and deployment costs. Acoustic characterization of MEMS sensors was performed, and the beam pattern of a module, based on an 8 × 8 planar array and of several clusters of modules, was obtained. A flexible framework, formed by an FPGA, an embedded processor, a computer desktop, and a graphic processing unit, was defined. The processing times of the algorithms used to obtain the acoustic images, including signal processing and wideband beamforming via FFT, were evaluated in each subsystem of the framework. Based on this analysis, three frameworks are proposed, defined by the specific subsystems used and the algorithms shared. Finally, a set of acoustic images obtained from sound reflected from a person are presented as a case study in the field of biometric identification. These results reveal the feasibility of the proposed system. PMID:27727174

  20. Methodologie experimentale pour evaluer les caracteristiques des plateformes graphiques avioniques

    NASA Astrophysics Data System (ADS)

    Legault, Vincent

    Within a context where the aviation industry intensifies the development of new visually appealing features and where time-to-market must be as short as possible, rapid graphics processing benchmarking in a certified avionics environment becomes an important issue. With this work we intend to demonstrate that it is possible to deploy a high-performance graphics application on an avionics platform that uses certified graphical COTS components. Moreover, we would like to bring to the avionics community a methodology which will allow developers to identify the needed elements for graphics system optimisation and provide them tools that can measure the complexity of this type of application and measure the amount of resources to properly scale a graphics system according to their needs. As far as we know, no graphics performance profiling tool dedicated to critical embedded architectures has been proposed. We thus had the idea of implementing a specialized benchmarking tool that would be an appropriate and effective solution to this problem. Our solution resides in the extraction of the key graphics specifications from an inherited application to use them afterwards in a 3D image generation application.

  1. Preschool-aged children have difficulty constructing and interpreting simple utterances composed of graphic symbols.

    PubMed

    Sutton, Ann; Trudeau, Natacha; Morford, Jill; Rios, Monica; Poirier, Marie-Andrée

    2010-01-01

    Children who require augmentative and alternative communication (AAC) systems while they are in the process of acquiring language face unique challenges because they use graphic symbols for communication. In contrast to the situation of typically developing children, they use different modalities for comprehension (auditory) and expression (visual). This study explored the ability of three- and four-year-old children without disabilities to perform tasks involving sequences of graphic symbols. Thirty participants were asked to transpose spoken simple sentences into graphic symbols by selecting individual symbols corresponding to the spoken words, and to interpret graphic symbol utterances by selecting one of four photographs corresponding to a sequence of three graphic symbols. The results showed that these were not simple tasks for the participants, and few of them performed in the expected manner - only one in transposition, and only one-third of participants in interpretation. Individual response strategies in some cases lead to contrasting response patterns. Children at this age level have not yet developed the skills required to deal with graphic symbols even though they have mastered the corresponding spoken language structures.

  2. Graphic Communications--Commercial Photography. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Ohio Competency Analysis Profile (OCAP), derived from a modified Developing a Curriculum (DACUM) process, is a current comprehensive and verified employer competency program list for graphic communications--commercial photography. Each unit (with or without subunits) contains competencies and competency builders that identify the…

  3. Design and Implementation of a Tool for Teaching Programming.

    ERIC Educational Resources Information Center

    Goktepe, Mesut; And Others

    1989-01-01

    Discussion of the use of computers in education focuses on a graphics-based system for teaching the Pascal programing language for problem solving. Topics discussed include user interface; notification based systems; communication processes; object oriented programing; workstations; graphics architecture; and flowcharts. (18 references) (LRW)

  4. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization

    PubMed Central

    Chen, Qingkui; Zhao, Deyu; Wang, Jingjuan

    2017-01-01

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes’ diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services. PMID:28777325

  5. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization.

    PubMed

    Fang, Yuling; Chen, Qingkui; Xiong, Neal N; Zhao, Deyu; Wang, Jingjuan

    2017-08-04

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes' diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services.

  6. Telemetry Monitoring and Display Using LabVIEW

    NASA Technical Reports Server (NTRS)

    Wells, George; Baroth, Edmund C.

    1993-01-01

    The Measurement Technology Center of the Instrumentation Section configures automated data acquisition systems to meet the diverse needs of JPL's experimental research community. These systems are based on personal computers or workstations (Apple, IBM/Compatible, Hewlett-Packard, and Sun Microsystems) and often include integrated data analysis, visualization and experiment control functions in addition to data acquisition capabilities. These integrated systems may include sensors, signal conditioning, data acquisition interface cards, software, and a user interface. Graphical programming is used to simplify configuration of such systems. Employment of a graphical programming language is the most important factor in enabling the implementation of data acquisition, analysis, display and visualization systems at low cost. Other important factors are the use of commercial software packages and off-the-shelf data acquisition hardware where possible. Understanding the experimenter's needs is also critical. An interactive approach to user interface construction and training of operators is also important. One application was created as a result of a competative effort between a graphical programming language team and a text-based C language programming team to verify the advantages of using a graphical programming language approach. With approximately eight weeks of funding over a period of three months, the text-based programming team accomplished about 10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having gone beyond the original requirements to simulate a telemetry stream and provide utility programs. This application verified that using graphical programming can significantly reduce software development time. As a result of this initial effort, additional follow-on work was awarded to the graphical programming team.

  7. Display system for imaging scientific telemetric information

    NASA Technical Reports Server (NTRS)

    Zabiyakin, G. I.; Rykovanov, S. N.

    1979-01-01

    A system for imaging scientific telemetric information, based on the M-6000 minicomputer and the SIGD graphic display, is described. Two dimensional graphic display of telemetric information and interaction with the computer, in analysis and processing of telemetric parameters displayed on the screen is provided. The running parameter information output method is presented. User capabilities in the analysis and processing of telemetric information imaged on the display screen and the user language are discussed and illustrated.

  8. Accelerating Molecular Dynamic Simulation on Graphics Processing Units

    PubMed Central

    Friedrichs, Mark S.; Eastman, Peter; Vaidyanathan, Vishal; Houston, Mike; Legrand, Scott; Beberg, Adam L.; Ensign, Daniel L.; Bruns, Christopher M.; Pande, Vijay S.

    2009-01-01

    We describe a complete implementation of all-atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it can be more than 700 times faster than a conventional implementation running on a single CPU core. PMID:19191337

  9. AVE-SESAME program for the REEDA System

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1981-01-01

    The REEDA system software was modified and improved to process the AVE-SESAME severe storm data. A random access file system for the AVE storm data was designed, tested, and implemented. The AVE/SESAME software was modified to incorporate the random access file input and to interface with new graphics hardware/software now available on the REEDA system. Software was developed to graphically display the AVE/SESAME data in the convention normally used by severe storm researchers. Software was converted to AVE/SESAME software systems and interfaced with existing graphics hardware/software available on the REEDA System. Software documentation was provided for existing AVE/SESAME programs underlining functional flow charts and interacting questions. All AVE/SESAME data sets in random access format was processed to allow developed software to access the entire AVE/SESAME data base. The existing software was modified to allow for processing of different AVE/SESAME data set types including satellite surface and radar data.

  10. GPU Acceleration of DSP for Communication Receivers.

    PubMed

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  11. Caititu: a tool to graphically represent peptide sequence coverage and domain distribution.

    PubMed

    Carvalho, Paulo C; Junqueira, Magno; Valente, Richard H; Domont, Gilberto B

    2008-10-07

    Here we present Caititu, an easy-to-use proteomics software to graphically represent peptide sequence coverage and domain distribution for different correlated samples (e.g. originated from 2D gel spots) relatively to the full-sequence of the known protein they are related to. Although Caititu has a broad applicability, we exemplify its usefulness in Toxinology using snake venom as a model. For example, proteolytic processing may lead to inactivation or loss of domains. Therefore, our proposed graphic representation for peptides identified by two dimensional electrophoresis followed by mass spectrometric identification of excised spots can aid in inferring what kind of processing happened to the toxins, if any. Caititu is freely available to download at: http://pcarvalho.com/things/caititu.

  12. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.

    PubMed

    Levin, David; Aladl, Usaf; Germano, Guido; Slomka, Piotr

    2005-09-01

    We exploit consumer graphics hardware to perform real-time processing and visualization of high-resolution, 4D cardiac data. We have implemented real-time, realistic volume rendering, interactive 4D motion segmentation of cardiac data, visualization of multi-modality cardiac data and 3D display of multiple series cardiac MRI. We show that an ATI Radeon 9700 Pro can render a 512x512x128 cardiac Computed Tomography (CT) study at 0.9 to 60 frames per second (fps) depending on rendering parameters and that 4D motion based segmentation can be performed in real-time. We conclude that real-time rendering and processing of cardiac data can be implemented on consumer graphics cards.

  13. Melanie II--a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface.

    PubMed

    Appel, R D; Palagi, P M; Walther, D; Vargas, J R; Sanchez, J C; Ravier, F; Pasquali, C; Hochstrasser, D F

    1997-12-01

    Although two-dimensional electrophoresis (2-DE) computer analysis software packages have existed ever since 2-DE technology was developed, it is only now that the hardware and software technology allows large-scale studies to be performed on low-cost personal computers or workstations, and that setting up a 2-DE computer analysis system in a small laboratory is no longer considered a luxury. After a first attempt in the seventies and early eighties to develop 2-DE analysis software systems on hardware that had poor or even no graphical capabilities, followed in the late eighties by a wave of innovative software developments that were possible thanks to new graphical interface standards such as XWindows, a third generation of 2-DE analysis software packages has now come to maturity. It can be run on a variety of low-cost, general-purpose personal computers, thus making the purchase of a 2-DE analysis system easily attainable for even the smallest laboratory that is involved in proteome research. Melanie II 2-D PAGE, developed at the University Hospital of Geneva, is such a third-generation software system for 2-DE analysis. Based on unique image processing algorithms, this user-friendly object-oriented software package runs on multiple platforms, including Unix, MS-Windows 95 and NT, and Power Macintosh. It provides efficient spot detection and quantitation, state-of-the-art image comparison, statistical data analysis facilities, and is Internet-ready. Linked to proteome databases such as those available on the World Wide Web, it represents a valuable tool for the "Virtual Lab" of the post-genome area.

  14. EMERGENCY RESPONSE TEAMS TRAINING IN PUBLIC HEALTH CRISIS - THE SERIOUSNESS OF SERIOUS GAMES.

    PubMed

    Stanojevic, Vojislav; Stanojevic, Cedomirka

    2016-07-01

    The rapid development of multimedia technologies in the last twenty years has lead to the emergence of new ways of learning academic and professional skills, which implies the application of multimedia technology in the form of a software -" serious computer games". Three-Dimensional Virtual Worlds. The basis of this game-platform is made of the platform of three-dimensional virtual worlds that can be described as communication systems in which participants share the same three-dimensional virtual space within which they can move, manipulate objects and communicate through their graphical representatives- avatars. Medical Education and Training. Arguments in favor of these computer tools in the learning process are accessibility, repeatability, low cost, the use of attractive graphics and a high degree of adaptation to the user. Specifically designed avatars allow students to get adapted to their roles in certain situations, especially to those which are considered rare, dangerous or unethical in real life. Drilling of major incidents, which includes the need to create environments for training, cannot be done in the real world due to high costs'and necessity to utilize the extensive resources. In addition, it is impossible to engage all the necessary health personnel at the same time. New technologies intended for conducting training, which are also called "virtual worlds", make the following possible: training at all times depending on user's commitments; simultaneous simulations on multiple levels, in several areas, in different circumstances, including dozens of unique victims; repeated scenarios and learning from mistakes; rapid feedback and the development of non-technical skills which are critical for reducing errors in dynamic, high-risk environments. Virtual worlds, which should be the subject of further research and improvements, in the field of hospital emergency response training for mass casualty incidents, certainly have a promising future.

  15. Graphical modeling and query language for hospitals.

    PubMed

    Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris

    2013-01-01

    So far there has been little evidence that implementation of the health information technologies (HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the complexity of the business process ownership in the hospitals. The goal of our research is to develop a business model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from various hospital databases. We have developed a special domain-specific process modelling language called the MedMod. Formally, we define the MedMod language as a profile on UML Class diagrams, but we also demonstrate it on examples, where we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL) that is based on MedMod process definition language. The purpose of PQL is to allow a doctor querying (filtering) runtime data of hospital's processes described using MedMod. The MedMod language tries to overcome deficiencies in existing process modeling languages, allowing to specify the loosely-defined sequence of the steps to be performed in the clinical process. The main advantages of PQL are in two main areas - usability and efficiency. They are: 1) the view on data through "glasses" of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and data retrieving allows to execute queries in O(n) time regarding the size of the dataset. We are about to continue developing this project with three further steps. First, we are planning to develop user-friendly graphical editors for the MedMod process modeling and query languages. The second step is to do evaluation of usability the proposed language and tool involving the physicians from several hospitals in Latvia and working with real data from these hospitals. Our third step is to develop an efficient implementation of the query language.

  16. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  17. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. A survey of techniques for visualization of noise fields

    NASA Technical Reports Server (NTRS)

    Marshall, S. E.; Bernhard, R.

    1984-01-01

    A survey of the most widely used methods for visualizing acoustic phenomena is presented. Emphasis is placed on acoustic processes in the audible frequencies. Many visual problems are analyzed on computer graphic systems. A brief description of the current technology in computer graphics is included. The visualization technique survey will serve as basis for recommending an optimum scheme for displaying acoustic fields on computer graphic systems.

  18. Desktop Publishing: Its Impact on Community College Journalism.

    ERIC Educational Resources Information Center

    Grzywacz-Gray, John; And Others

    1987-01-01

    Illustrates the kinds of copy that can be created on Apple Macintosh computers and laser printers. Shows font and type specification options. Discusses desktop publishing costs, potential problems, and computer compatibility. Considers the use of computers in college journalism in production, graphics, accounting, advertising, and promotion. (AYC)

  19. Do graphic health warning labels have an impact on adolescents' smoking-related beliefs and behaviours?

    PubMed

    White, Victoria; Webster, Bernice; Wakefield, Melanie

    2008-09-01

    To assess the impact of the introduction of graphic health warning labels on cigarette packets on adolescents at different smoking uptake stages. School-based surveys conducted in the year prior to (2005) and approximately 6 months after (2006) the introduction of the graphic health warnings. The 2006 survey was conducted after a TV advertising campaign promoting two new health warnings. Secondary schools in greater metropolitan Melbourne, Australia. Students in year levels 8-12: 2432 students in 2005, and 2050 in 2006, participated. Smoking uptake stage, intention to smoke, reported exposure to cigarette packs, knowledge of health effects of smoking, cognitive processing of warning labels and perceptions of cigarette pack image. At baseline, 72% of students had seen cigarette packs in the previous 6 months, while at follow-up 77% had seen packs and 88% of these had seen the new warning labels. Cognitive processing of warning labels increased, with students more frequently reading, attending to, thinking and talking about warning labels at follow-up. Experimental and established smokers thought about quitting and forgoing cigarettes more at follow-up. At follow-up intention to smoke was lower among those students who had talked about the warning labels and had forgone cigarettes. Graphic warning labels on cigarette packs are noticed by the majority of adolescents, increase adolescents' cognitive processing of these messages and have the potential to lower smoking intentions. Our findings suggest that the introduction of graphic warning labels may help to reduce smoking among adolescents.

  20. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  1. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  2. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  3. Data Analysis with Graphical Models: Software Tools

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.

    1994-01-01

    Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.

  4. Graphic Design in Educational Television.

    ERIC Educational Resources Information Center

    Clarke, Beverley

    To help educational television (ETV) practitioners achieve maximum clarity, economy and purposiveness, the range of techniques of television graphics is explained. Closed-circuit and broadcast ETV are compared. The design process is discussed in terms of aspect ratio, line structure, cut off, screen size, tone scales, studio apparatus, and…

  5. Collaboration between Writers and Graphic Designers in Documentation Projects.

    ERIC Educational Resources Information Center

    Mirel, Barbara; And Others

    1995-01-01

    Analyzes collaborations between software manual writers and graphic designers to discover how their processes of collaboration directly affect the form of a finished manual. Identifies three models of collaboration: assembly line (linear drafting), swap meet (iterative drafting and joint problem solving), and symphony (codevelopment in every…

  6. SraTailor: graphical user interface software for processing and visualizing ChIP-seq data.

    PubMed

    Oki, Shinya; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Meno, Chikara

    2014-12-01

    Raw data from ChIP-seq (chromatin immunoprecipitation combined with massively parallel DNA sequencing) experiments are deposited in public databases as SRAs (Sequence Read Archives) that are publically available to all researchers. However, to graphically visualize ChIP-seq data of interest, the corresponding SRAs must be downloaded and converted into BigWig format, a process that involves complicated command-line processing. This task requires users to possess skill with script languages and sequence data processing, a requirement that prevents a wide range of biologists from exploiting SRAs. To address these challenges, we developed SraTailor, a GUI (Graphical User Interface) software package that automatically converts an SRA into a BigWig-formatted file. Simplicity of use is one of the most notable features of SraTailor: entering an accession number of an SRA and clicking the mouse are the only steps required to obtain BigWig-formatted files and to graphically visualize the extents of reads at given loci. SraTailor is also able to make peak calls, generate files of other formats, process users' own data, and accept various command-line-like options. Therefore, this software makes ChIP-seq data fully exploitable by a wide range of biologists. SraTailor is freely available at http://www.devbio.med.kyushu-u.ac.jp/sra_tailor/, and runs on both Mac and Windows machines. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  7. Acceleration of GPU-based Krylov solvers via data transfer reduction

    DOE PAGES

    Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...

    2015-04-08

    Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less

  8. Update of GRASP/Ada reverse engineering tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1992-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation of Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAS 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3, the prototype was evaluated by software engineering students at Auburn University and then updated with significant enhancements to the user interface including editing capabilities. Version 3.2 of the prototype was prepared for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application.

  9. An Overview of Psycholinguistic Reading Theory.

    ERIC Educational Resources Information Center

    Hayes, Christopher G.

    In the most adequate psycholinguistic model of the reading process the proficient silent reader decodes directly from graphic surface structure into deep structure, with no decoding into oral surface structure. Three cue systems used by all proficient readers include graphic cues (letters and words), syntactic cues (the grammatical arrangement of…

  10. Interactive Learning for Graphic Design Foundations

    ERIC Educational Resources Information Center

    Chu, Sauman; Ramirez, German Mauricio Mejia

    2012-01-01

    One of the biggest problems for students majoring in pre-graphic design is students' inability to apply their knowledge to different design solutions. The purpose of this study is to examine the effectiveness of interactive learning modules in facilitating knowledge acquisition during the learning process and to create interactive learning modules…

  11. Computer Instructional Aids for Undergraduate Control Education.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…

  12. Arrows: A Special Case of Graphic Communication.

    ERIC Educational Resources Information Center

    Hardin, Pris

    The purpose of this paper is to examine arrow design in relation to the type of pointing, connecting, or processing involved. Three possible approaches to the investigation of arrows as graphic communication include research: by arrow function, relating message structure to arrow design, and linking user expectations to arrow design. The following…

  13. The View from Here: Emergence of Graphical Literacy

    ERIC Educational Resources Information Center

    Roberts, Kathryn L.; Brugar, Kristy A.

    2017-01-01

    The purpose of this study is to describe upper elementary students' understandings of four graphical devices that frequently occur in social studies texts: captioned images, maps, tables, and timelines. Using verbal protocol data collection procedures, we collected information on students' metacognitive processes when they were explicitly asked to…

  14. Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Dixon, Anthony G.

    1987-01-01

    Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)

  15. Animation as a Distractor to Learning.

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.

    1996-01-01

    A study of 364 fifth graders investigated distractibility of animated graphics in a computer-based tutorial about Newton's Laws of Motion. Found no difference in post-test performance for those with high, medium, or no distraction graphics. Students in the two distraction conditions took less time to process instructional frames than students in…

  16. Visual Invention and the Composition of Scientific Research Graphics: A Topological Approach

    ERIC Educational Resources Information Center

    Walsh, Lynda

    2018-01-01

    This report details the second phase of an ongoing research project investigating the visual invention and composition processes of scientific researchers. In this phase, four academic researchers completed think-aloud protocols as they composed graphics for research presentations; they also answered follow-up questions about their visual…

  17. Science Learning with Information Technologies as a Tool for "Scientific Thinking" in Engineering Education

    ERIC Educational Resources Information Center

    Smirnov, Eugeny; Bogun, Vitali

    2011-01-01

    New methodologies in science (or mathematics) learning process and scientific thinking in the classroom activity of engineer students with ICT (information and communication technology), including graphic calculator are presented: visual modelling with ICT, action research with graphic calculator, insight in classroom and communications and…

  18. A microcontroller-based portable electrocardiograph recorder.

    PubMed

    Segura-Juárez, José J; Cuesta-Frau, David; Samblas-Pena, Luis; Aboy, Mateo

    2004-09-01

    We describe a low cost portable Holter design that can be implemented with off-the-shelf components. The recorder is battery powered and includes a graphical display and keyboard. The recorder is capable of acquiring up to 48 hours of continuous electrocardiogram data at a sample rate of up to 250 Hz.

  19. Digital Data Transmission Via CATV.

    ERIC Educational Resources Information Center

    Stifle, Jack; And Others

    A low cost communications network has been designed for use in the PLATO IV computer-assisted instruction system. Over 1,000 remote computer graphic terminals each requiring a 1200 bps channel are to be connected to one centrally located computer. Digital data are distributed to these terminals using standard commercial cable television (CATV)…

  20. Common Sense Wordworking III: Desktop Publishing and Desktop Typesetting.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1987-01-01

    Describes current desktop publishing packages available for microcomputers and discusses the disadvantages, especially in cost, for most personal computer users. Also described is a less expensive alternative technology--desktop typesetting--which meets the requirements of users who do not need elaborate techniques for combining text and graphics.…

  1. Radar Cuts Subsoil Survey Costs

    NASA Technical Reports Server (NTRS)

    Johnson, R.; Glaccum, R.

    1984-01-01

    Soil features located with minimum time and labor. Ground-penetrating radar (GPR) system supplements manual and mechanical methods in performing subsurface soil survey. Mobile system obtains graphic profile of soil discontinuities and interfaces as function of depth. One or two test borings necessary to substantiate soil profile. GPR proves useful as reconnaissance tool.

  2. Audiographics for Distance Education: An Alternative Technology.

    ERIC Educational Resources Information Center

    Fredrickson, Scott

    Audiographics is the merging of microcomputer graphics, telephone communications systems, and teaching strategies into a cost effective method of delivering distance education classes. The teacher creates visual images that are sent to and stored on computers at the remote sites. At the appropriate time the teacher and the remote site assistants…

  3. Low Computational-Cost Footprint Deformities Diagnosis Sensor through Angles, Dimensions Analysis and Image Processing Techniques

    PubMed Central

    Maestre-Rendon, J. Rodolfo; Sierra-Hernandez, Juan M.; Contreras-Medina, Luis M.; Fernandez-Jaramillo, Arturo A.

    2017-01-01

    Manual measurements of foot anthropometry can lead to errors since this task involves the experience of the specialist who performs them, resulting in different subjective measures from the same footprint. Moreover, some of the diagnoses that are given to classify a footprint deformity are based on a qualitative interpretation by the physician; there is no quantitative interpretation of the footprint. The importance of providing a correct and accurate diagnosis lies in the need to ensure that an appropriate treatment is provided for the improvement of the patient without risking his or her health. Therefore, this article presents a smart sensor that integrates the capture of the footprint, a low computational-cost analysis of the image and the interpretation of the results through a quantitative evaluation. The smart sensor implemented required the use of a camera (Logitech C920) connected to a Raspberry Pi 3, where a graphical interface was made for the capture and processing of the image, and it was adapted to a podoscope conventionally used by specialists such as orthopedist, physiotherapists and podiatrists. The footprint diagnosis smart sensor (FPDSS) has proven to be robust to different types of deformity, precise, sensitive and correlated in 0.99 with the measurements from the digitalized image of the ink mat. PMID:29165397

  4. Low Computational-Cost Footprint Deformities Diagnosis Sensor through Angles, Dimensions Analysis and Image Processing Techniques.

    PubMed

    Maestre-Rendon, J Rodolfo; Rivera-Roman, Tomas A; Sierra-Hernandez, Juan M; Cruz-Aceves, Ivan; Contreras-Medina, Luis M; Duarte-Galvan, Carlos; Fernandez-Jaramillo, Arturo A

    2017-11-22

    Manual measurements of foot anthropometry can lead to errors since this task involves the experience of the specialist who performs them, resulting in different subjective measures from the same footprint. Moreover, some of the diagnoses that are given to classify a footprint deformity are based on a qualitative interpretation by the physician; there is no quantitative interpretation of the footprint. The importance of providing a correct and accurate diagnosis lies in the need to ensure that an appropriate treatment is provided for the improvement of the patient without risking his or her health. Therefore, this article presents a smart sensor that integrates the capture of the footprint, a low computational-cost analysis of the image and the interpretation of the results through a quantitative evaluation. The smart sensor implemented required the use of a camera (Logitech C920) connected to a Raspberry Pi 3, where a graphical interface was made for the capture and processing of the image, and it was adapted to a podoscope conventionally used by specialists such as orthopedist, physiotherapists and podiatrists. The footprint diagnosis smart sensor (FPDSS) has proven to be robust to different types of deformity, precise, sensitive and correlated in 0.99 with the measurements from the digitalized image of the ink mat.

  5. Small Interactive Image Processing System (SMIPS) system description

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    The Small Interactive Image Processing System (SMIPS) operates under control of the IBM-OS/MVT operating system and uses an IBM-2250 model 1 display unit as interactive graphic device. The input language in the form of character strings or attentions from keys and light pen is interpreted and causes processing of built-in image processing functions as well as execution of a variable number of application programs kept on a private disk file. A description of design considerations is given and characteristics, structure and logic flow of SMIPS are summarized. Data management and graphic programming techniques used for the interactive manipulation and display of digital pictures are also discussed.

  6. Modeling biochemical transformation processes and information processing with Narrator.

    PubMed

    Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner

    2007-03-27

    Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from http://www.narrator-tool.org.

  7. Modeling biochemical transformation processes and information processing with Narrator

    PubMed Central

    Mandel, Johannes J; Fuß, Hendrik; Palfreyman, Niall M; Dubitzky, Werner

    2007-01-01

    Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from . PMID:17389034

  8. What Can Causal Networks Tell Us about Metabolic Pathways?

    PubMed Central

    Blair, Rachael Hageman; Kliebenstein, Daniel J.; Churchill, Gary A.

    2012-01-01

    Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies. PMID:22496633

  9. Real-Time Wavefront Control for the PALM-3000 High Order Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Truong, Tuan N.; Bouchez, Antonin H.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Troy, Mitchell

    2008-01-01

    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. The architecture enables full-matrix reconstruction of the wavefront at up to 2 KHz with latency under 250 us for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64 x 64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 241 active actuator tweeter DM. The architecture can easily scale up to support much larger AO systems at higher rates and lower latency.

  10. Making Astronomy and Space Science Accessible to the Blind and Visually Impaired

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, B.; Hoette, V.; Grice, N.

    2003-12-01

    One of the biggest obstacles blind and visually impaired people face in science is the ubiquity of important graphical information, which is generally not made available in alternate formats accessible to them. Funded by NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS), we have recently formed a team of scientists and educators from universities, the SOFIA NASA mission, a science museum, an observatory, and schools for the blind. Our goal is to develop and test Braille/tactile space science activities that actively engage students from elementary grades through introductory college-level in space science. We will discuss effective strategies and low-cost technologies that can be used to make graphical information accessible. We will also demonstrate examples, such a thermal expansion graphics created from telescope images of the Moon and other celestial objects, a tactile planisphere, three-dimensional models of near-Earth asteroids and tactile diagrams of their orbits, and an infrared detector activity.

  11. Stochastic Spectral Descent for Discrete Graphical Models

    DOE PAGES

    Carlson, David; Hsieh, Ya-Ping; Collins, Edo; ...

    2015-12-14

    Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted asmore » gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.« less

  12. Stakeholders' perceptions of ways to support decisions about health insurance marketplace enrollment: a qualitative study.

    PubMed

    Housten, A J; Furtado, K; Kaphingst, K A; Kebodeaux, C; McBride, T; Cusanno, B; Politi, M C

    2016-11-08

    Approximately 29 million individuals are expected to enroll in health insurance using the Patient Protection and Affordable Care Act (ACA) Marketplace by 2022. Those seeking health insurance struggle to understand insurance options and choose a plan that best suits their needs. We interviewed stakeholders to identify the challenges associated with the ACA Marketplace health insurance enrollment and elicited feedback about what to include in health insurance decision support tools. Interviews were transcribed and themes were identified using inductive thematic analysis. Stakeholders stated that consumers felt frustrated by unclear terminology, high plan costs, and complex calculations required to assess costs. Consumers felt anxious about making the wrong choice and being unable to change plans within a calendar year. Stakeholders recommended using plain language tables defining complex terms, grouping information, and using engaging graphics to communicate information about health insurance. Stakeholders thought that narratives of how others made decisions about insurance might be helpful to consumers, but recommended that they be tailored to the needs of specific consumers. Strategies that clarify health insurance terms using plain language and graphics, acknowledge concern associated with making the wrong choice, calculate and enable cost comparison, and tailor information to consumers' unique needs could benefit those enrolling in ACA Marketplace plans, Narratives developed should be simple and inclusive enough for diverse populations.

  13. A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Carney, R. R.

    1983-01-01

    A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.

  14. Three-dimensional conformal versus non-graphic radiation treatment planning for apocrine gland adenocarcinoma of the anal sac in 18 dogs (2002-2007).

    PubMed

    Keyerleber, M A; Gieger, T L; Erb, H N; Thompson, M S; McEntee, M C

    2012-12-01

    Differences in dose homogeneity and irradiated volumes of target and surrounding normal tissues between 3D conformal radiation treatment planning and simulated non-graphic manual treatment planning were evaluated in 18 dogs with apocrine gland adenocarcinoma of the anal sac. Overall, 3D conformal treatment planning resulted in more homogenous dose distribution to target tissues with lower hot spots and dose ranges. Dose homogeneity and guarantee of not under-dosing target tissues with 3D conformal planning came at the cost, however, of delivering greater mean doses of radiation and of irradiating greater volumes of surrounding normal tissue structures. © 2011 Blackwell Publishing Ltd.

  15. Sikorsky interactive graphics surface design/manufacturing system

    NASA Technical Reports Server (NTRS)

    Robbins, R.

    1975-01-01

    An interactive graphics system conceived to be used in the design, analysis, and manufacturing of aircraft components with free form surfaces was described. In addition to the basic surface definition and viewing capabilities inherent in such a system, numerous other features are present: surface editing, automated smoothing of control curves, variable milling patch boundary definitions, surface intersection definition and viewing, automatic creation of true offset surfaces, digitizer and drafting machine interfaces, and cutter path optimization. Documented costs and time savings of better than six to one are being realized with this system. The system was written in FORTRAN and GSP for use on IBM 2250 CRT's in conjunction with an IBM 370/158 computer.

  16. High-quality macromolecular graphics on mobile devices: a quick starter's guide.

    PubMed

    Yiu, Chin-Pang Benny; Chen, Yu Wai

    2014-01-01

    With the rise of tablets, truly portable molecular graphics are now available for wide use by scientists to share structural information in real time at a reasonable cost. We have surveyed the existing software available on Apple iPads and on Android tablets in order to make a recommendation to potential users, primarily based on the product features. Among 12 apps, iMolview (available on both platforms) stands out to be our choice, with PyMOL app (iOS) a close alternative and RCSB PDB Mobile viewer/NDKmol (both platforms) offering some uniquely useful functions. Finally, we include a tutorial on how to get started using iMolview to do some simple visualization in 10 min.

  17. Policy Process Editor for P3BM Software

    NASA Technical Reports Server (NTRS)

    James, Mark; Chang, Hsin-Ping; Chow, Edward T.; Crichton, Gerald A.

    2010-01-01

    A computer program enables generation, in the form of graphical representations of process flows with embedded natural-language policy statements, input to a suite of policy-, process-, and performance-based management (P3BM) software. This program (1) serves as an interface between users and the Hunter software, which translates the input into machine-readable form; and (2) enables users to initialize and monitor the policy-implementation process. This program provides an intuitive graphical interface for incorporating natural-language policy statements into business-process flow diagrams. Thus, the program enables users who dictate policies to intuitively embed their intended process flows as they state the policies, reducing the likelihood of errors and reducing the time between declaration and execution of policy.

  18. GPU-accelerated adjoint algorithmic differentiation

    NASA Astrophysics Data System (ADS)

    Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe

    2016-03-01

    Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the ;tape;. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.

  19. GPU-Accelerated Adjoint Algorithmic Differentiation.

    PubMed

    Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe

    2016-03-01

    Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the "tape". Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.

  20. GPU-Accelerated Adjoint Algorithmic Differentiation

    PubMed Central

    Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe

    2015-01-01

    Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the “tape”. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography. PMID:26941443

  1. Application of graphics processing units to search pipelines for gravitational waves from coalescing binaries of compact objects

    NASA Astrophysics Data System (ADS)

    Chung, Shin Kee; Wen, Linqing; Blair, David; Cannon, Kipp; Datta, Amitava

    2010-07-01

    We report a novel application of a graphics processing unit (GPU) for the purpose of accelerating the search pipelines for gravitational waves from coalescing binaries of compact objects. A speed-up of 16-fold in total has been achieved with an NVIDIA GeForce 8800 Ultra GPU card compared with one core of a 2.5 GHz Intel Q9300 central processing unit (CPU). We show that substantial improvements are possible and discuss the reduction in CPU count required for the detection of inspiral sources afforded by the use of GPUs.

  2. Three-dimensional structural analysis using interactive graphics

    NASA Technical Reports Server (NTRS)

    Biffle, J.; Sumlin, H. A.

    1975-01-01

    The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.

  3. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  4. Real-Time Visualization of an HPF-based CFD Simulation

    NASA Technical Reports Server (NTRS)

    Kremenetsky, Mark; Vaziri, Arsi; Haimes, Robert; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Current time-dependent CFD simulations produce very large multi-dimensional data sets at each time step. The visual analysis of computational results are traditionally performed by post processing the static data on graphics workstations. We present results from an alternate approach in which we analyze the simulation data in situ on each processing node at the time of simulation. The locally analyzed results, usually more economical and in a reduced form, are then combined and sent back for visualization on a graphics workstation.

  5. General purpose molecular dynamics simulations fully implemented on graphics processing units

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.

    2008-05-01

    Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future.

  6. Quantum optimal control with automatic differentiation using graphics processors

    NASA Astrophysics Data System (ADS)

    Leung, Nelson; Abdelhafez, Mohamed; Chakram, Srivatsan; Naik, Ravi; Groszkowski, Peter; Koch, Jens; Schuster, David

    We implement quantum optimal control based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them into the optimization process with ease. We will describe efficient techniques to optimally control weakly anharmonic systems that are commonly encountered in circuit QED, including coupled superconducting transmon qubits and multi-cavity circuit QED systems. These systems allow for a rich variety of control schemes that quantum optimal control is well suited to explore.

  7. Structured Analysis of the Logistics Support Analysis (LSA) Task, and Integrated Logistic Support (ILS) Element, ’Standardization and Interoperability (S and I)’.

    DTIC Science & Technology

    1988-11-01

    system, using graphic techniques which enable users, analysts, and designers to get a clear and common picture of the system and how its parts fit...boxes into hierarchies suitable for computer implementation. ŗ. Structured Design uses tools, especially graphic ones, to render systems readily...LSA, PROCESSES, DATA FLOWS, DATA STORES, EX"RNAL ENTITIES, OVERALL SYSTEMS DESIGN PROCESS, over 19, ABSTRACT (Continue on reverse if necessary and

  8. Improvements in recall and food choices using a graphical method to deliver information of select nutrients.

    PubMed

    Pratt, Nathan S; Ellison, Brenna D; Benjamin, Aaron S; Nakamura, Manabu T

    2016-01-01

    Consumers have difficulty using nutrition information. We hypothesized that graphically delivering information of select nutrients relative to a target would allow individuals to process information in time-constrained settings more effectively than numerical information. Objectives of the study were to determine the efficacy of the graphical method in (1) improving memory of nutrient information and (2) improving consumer purchasing behavior in a restaurant. Values of fiber and protein per calorie were 2-dimensionally plotted alongside a target box. First, a randomized cued recall experiment was conducted (n=63). Recall accuracy of nutrition information improved by up to 43% when shown graphically instead of numerically. Second, the impact of graphical nutrition signposting on diner choices was tested in a cafeteria. Saturated fat and sodium information was also presented using color coding. Nutrient content of meals (n=362) was compared between 3 signposting phases: graphical, nutrition facts panels (NFP), or no nutrition label. Graphical signposting improved nutrient content of purchases in the intended direction, whereas NFP had no effect compared with the baseline. Calories ordered from total meals, entrées, and sides were significantly less during graphical signposting than no-label and NFP periods. For total meal and entrées, protein per calorie purchased was significantly higher and saturated fat significantly lower during graphical signposting than the other phases. Graphical signposting remained a predictor of calories and protein per calorie purchased in regression modeling. These findings demonstrate that graphically presenting nutrition information makes that information more available for decision making and influences behavior change in a realistic setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Surgical pathology report in the era of desktop publishing.

    PubMed

    Pillarisetti, S G

    1993-01-01

    Since it is believed that "a picture is worth a thousand words," incorporation of computer-generated line art was used as a adjunct to gross description in surgical pathology reporting in selected cases. The lack of an integrated software program was overcome by using commercially available graphic and word processing software. A library of drawings was developed over the last few years. Most time-consuming is the development of templates and the graphic library. With some effort it is possible to integrate graphics of high quality into surgical pathology reports.

  10. Advanced graphical user interface for multi-physics simulations using AMST

    NASA Astrophysics Data System (ADS)

    Hoffmann, Florian; Vogel, Frank

    2017-07-01

    Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.

  11. Single cell HaloChip assay on paper for point-of-care diagnosis.

    PubMed

    Ma, Liyuan; Qiao, Yong; Jones, Ross; Singh, Narendra; Su, Ming

    2016-11-01

    This article describes a paper-based low cost single cell HaloChip assay that can be used to assess drug- and radiation-induced DNA damage at point-of-care. Printing ink on paper effectively blocks fluorescence of paper materials, provides high affinity to charged polyelectrolytes, and prevents penetration of water in paper. After exposure to drug or ionizing radiation, cells are patterned on paper to create discrete and ordered single cell arrays, embedded inside an agarose gel, lysed with alkaline solution to allow damaged DNA fragments to diffuse out of nucleus cores, and form diffusing halos in the gel matrix. After staining DNA with a fluorescent dye, characteristic halos formed around cells, and the level of DNA damage can be quantified by determining sizes of halos and nucleus with an image processing program based on MATLAB. With its low fabrication cost and easy operation, this HaloChip on paper platform will be attractive to rapidly and accurately determine DNA damage for point-of-care evaluation of drug efficacy and radiation condition. Graphical Abstract Single cell HaloChip on paper.

  12. Analysis of two production inventory systems with buffer, retrials and different production rates

    NASA Astrophysics Data System (ADS)

    Jose, K. P.; Nair, Salini S.

    2017-09-01

    This paper considers the comparison of two ( {s,S} ) production inventory systems with retrials of unsatisfied customers. The time for producing and adding each item to the inventory is exponentially distributed with rate β. However, a production rate α β higher than β is used at the beginning of the production. The higher production rate will reduce customers' loss when inventory level approaches zero. The demand from customers is according to a Poisson process. Service times are exponentially distributed. Upon arrival, the customers enter into a buffer of finite capacity. An arriving customer, who finds the buffer full, moves to an orbit. They can retry from there and inter-retrial times are exponentially distributed. The two models differ in the capacity of the buffer. The aim is to find the minimum value of total cost by varying different parameters and compare the efficiency of the models. The optimum value of α corresponding to minimum total cost is an important evaluation. Matrix analytic method is used to find an algorithmic solution to the problem. We also provide several numerical or graphical illustrations.

  13. Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner

    2017-11-01

    Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.

  14. Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1985-01-01

    Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.

  15. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  16. Network and user interface for PAT DOME virtual motion environment system

    NASA Technical Reports Server (NTRS)

    Worthington, J. W.; Duncan, K. M.; Crosier, W. G.

    1993-01-01

    The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) provides astronauts a virtual microgravity sensory environment designed to help alleviate tye symptoms of space motion sickness (SMS). The system consists of four microcomputers networked to provide real time control, and an image generator (IG) driving a wide angle video display inside a dome structure. The spherical display demands distortion correction. The system is currently being modified with a new graphical user interface (GUI) and a new Silicon Graphics IG. This paper will concentrate on the new GUI and the networking scheme. The new GUI eliminates proprietary graphics hardware and software, and instead makes use of standard and low cost PC video (CGA) and off the shelf software (Microsoft's Quick C). Mouse selection for user input is supported. The new Silicon Graphics IG requires an Ethernet interface. The microcomputer known as the Real Time Controller (RTC), which has overall control of the system and is written in Ada, was modified to use the free public domain NCSA Telnet software for Ethernet communications with the Silicon Graphics IG. The RTC also maintains the original ARCNET communications through Novell Netware IPX with the rest of the system. The Telnet TCP/IP protocol was first used for real-time communication, but because of buffering problems the Telnet datagram (UDP) protocol needed to be implemented. Since the Telnet modules are written in C, the Adap pragma 'Interface' was used to interface with the network calls.

  17. The Visualization Toolkit (VTK): Rewriting the rendering code for modern graphics cards

    NASA Astrophysics Data System (ADS)

    Hanwell, Marcus D.; Martin, Kenneth M.; Chaudhary, Aashish; Avila, Lisa S.

    2015-09-01

    The Visualization Toolkit (VTK) is an open source, permissively licensed, cross-platform toolkit for scientific data processing, visualization, and data analysis. It is over two decades old, originally developed for a very different graphics card architecture. Modern graphics cards feature fully programmable, highly parallelized architectures with large core counts. VTK's rendering code was rewritten to take advantage of modern graphics cards, maintaining most of the toolkit's programming interfaces. This offers the opportunity to compare the performance of old and new rendering code on the same systems/cards. Significant improvements in rendering speeds and memory footprints mean that scientific data can be visualized in greater detail than ever before. The widespread use of VTK means that these improvements will reap significant benefits.

  18. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  19. Using Common Graphics Paradigms Implemented in a Java Applet to Represent Complex Scheduling Requirements

    NASA Technical Reports Server (NTRS)

    Jaap, John; Meyer, Patrick; Davis, Elizabeth

    1997-01-01

    The experiments planned for the International Space Station promise to be complex, lengthy and diverse. The scarcity of the space station resources will cause significant competition for resources between experiments. The scheduling job facing the Space Station mission planning software requires a concise and comprehensive description of the experiments' requirements (to ensure a valid schedule) and a good description of the experiments' flexibility (to effectively utilize available resources). In addition, the continuous operation of the station, the wide geographic dispersion of station users, and the budgetary pressure to reduce operations manpower make a low-cost solution mandatory. A graphical representation of the scheduling requirements for station payloads implemented via an Internet-based application promises to be an elegant solution that addresses all of these issues. The graphical representation of experiment requirements permits a station user to describe his experiment by defining "activities" and "sequences of activities". Activities define the resource requirements (with alternatives) and other quantitative constraints of tasks to be performed. Activities definitions use an "outline" graphics paradigm. Sequences define the time relationships between activities. Sequences may also define time relationships with activities of other payloads or space station systems. Sequences of activities are described by a "network" graphics paradigm. The bulk of this paper will describe the graphical approach to representing requirements and provide examples that show the ease and clarity with which complex requirements can be represented. A Java applet, to run in a web browser, is being developed to support the graphical representation of payload scheduling requirements. Implementing the entry and editing of requirements via the web solves the problems introduced by the geographic dispersion of users. Reducing manpower is accomplished by developing a concise representation which eliminates the misunderstanding possible with verbose representations and which captures the complete requirements and flexibility of the experiments.

  20. Circumventing Graphical User Interfaces in Chemical Engineering Plant Design

    ERIC Educational Resources Information Center

    Romey, Noel; Schwartz, Rachel M.; Behrend, Douglas; Miao, Peter; Cheung, H. Michael; Beitle, Robert

    2007-01-01

    Graphical User Interfaces (GUIs) are pervasive elements of most modern technical software and represent a convenient tool for student instruction. For example, GUIs are used for [chemical] process design software (e.g., CHEMCAD, PRO/II and ASPEN) typically encountered in the senior capstone course. Drag and drop aspects of GUIs are challenging for…

  1. Graphic Arts: Orientation, Composition, and Paste-Up. Third Edition.

    ERIC Educational Resources Information Center

    Crummett, Dan

    This document contains teacher and student materials for a course in graphic arts. Ten units of instruction cover the following topics: (1) orientation; (2) shop safety; (3) shop organization; (4) printing processes; (5) paper; (6) typography; (7) typesetting; (8) design principles; (9) paste-up principles and procedures; and (10) proof procedures…

  2. A Comparison of the Use of Text Summaries, Plain Thumbnails, and Enhanced Thumbnails for Web Search Tasks.

    ERIC Educational Resources Information Center

    Woodruff, Allison; Rosenholtz, Ruth; Morrison, Julie B.; Faulring, Andrew; Pirolli, Peter

    2002-01-01

    Discussion of Web search strategies focuses on a comparative study of textual and graphical summarization mechanisms applied to search engine results. Suggests that thumbnail images (graphical summaries) can increase efficiency in processing results, and that enhanced thumbnails (augmented with readable textual elements) had more consistent…

  3. Getting the Bigger Picture: Children's Utilization of Graphics and Text

    ERIC Educational Resources Information Center

    Norman, Rebecca R.; Roberts, Kathryn L.

    2015-01-01

    This study examined 30 second graders' patterns of attention to graphics (e.g., maps, diagrams, photographs, illustrations) and their illustration extensions (e.g., captions, labels) in two informational texts, and how students processed these items (e.g., creating narrative or evaluating). Results indicate that students do tend to study different…

  4. Preschool-Aged Children Have Difficulty Constructing and Interpreting Simple Utterances Composed of Graphic Symbols

    ERIC Educational Resources Information Center

    Sutton, Ann; Trudeau, Natacha; Morford, Jill; Rios, Monica; Poirier, Marie-Andree

    2010-01-01

    Children who require augmentative and alternative communication (AAC) systems while they are in the process of acquiring language face unique challenges because they use graphic symbols for communication. In contrast to the situation of typically developing children, they use different modalities for comprehension (auditory) and expression…

  5. A real-time GNSS-R system based on software-defined radio and graphics processing units

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Amagai, Jun; Aida, Masanori; Narita, Hideki

    2012-04-01

    Reflected signals of the Global Navigation Satellite System (GNSS) from the sea or land surface can be utilized to deduce and monitor physical and geophysical parameters of the reflecting area. Unlike most other remote sensing techniques, GNSS-Reflectometry (GNSS-R) operates as a passive radar that takes advantage from the increasing number of navigation satellites that broadcast their L-band signals. Thereby, most of the GNSS-R receiver architectures are based on dedicated hardware solutions. Software-defined radio (SDR) technology has advanced in the recent years and enabled signal processing in real-time, which makes it an ideal candidate for the realization of a flexible GNSS-R system. Additionally, modern commodity graphic cards, which offer massive parallel computing performances, allow to handle the whole signal processing chain without interfering with the PC's CPU. Thus, this paper describes a GNSS-R system which has been developed on the principles of software-defined radio supported by General Purpose Graphics Processing Units (GPGPUs), and presents results from initial field tests which confirm the anticipated capability of the system.

  6. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.; Wu, Chris K.; Lin, Y. H.

    1991-01-01

    A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.

  7. Cost/benefit analysis for video security systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-01

    Dr. Don Hush and Scott Chapman, in conjunction with the Electrical and Computer Engineering Department of the University of New Mexico (UNM), have been contracted by Los Alamos National Laboratories to perform research in the area of high security video analysis. The first phase of this research, presented in this report, is a cost/benefit analysis of various approaches to the problem in question. This discussion begins with a description of three architectures that have been used as solutions to the problem of high security surveillance. An overview of the relative merits and weaknesses of each of the proposed systems ismore » included. These descriptions are followed directly by a discussion of the criteria chosen in evaluating the systems and the techniques used to perform the comparisons. The results are then given in graphical and tabular form, and their implications discussed. The project to this point has involved assessing hardware and software issues in image acquisition, processing and change detection. Future work is to leave these questions behind to consider the issues of change analysis - particularly the detection of human motion - and alarm decision criteria. The criteria for analysis in this report include: cost; speed; tradeoff issues in moving primative operations from software to hardware; real time operation considerations; change image resolution; and computational requirements.« less

  8. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection

    PubMed Central

    Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335

  9. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.

    PubMed

    Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.

  10. Hydrogen and oxygen sensor development

    NASA Technical Reports Server (NTRS)

    Farber, E. A.; Mahig, J.; Schaeper, H. R. A.

    1972-01-01

    A reliable and low cost gas sensor was investigated for instantaneously detecting H2 in N2, H2 in air, and O2 in N2. The major portion of the research was spent in developing a sensor which would instantaneously detect H2 to + or - 50 ppm even in the presence of trace amounts of other gases. The experimental procedures used to provide the performance characteristics for the various oscillators are discussed describing the equipment with help of schematics and photographs where applicable. The resulting performance is given in graphical form. In some cases both hydrogen and helium may be present and since both of them effect gas sensors similarly, a method was found to determine the concentration of each. The methods developed are grouped into the following four broad categories: pure metal response, variation in heat conductivity, reduction methods, and exotic processes. From the above it was decided for the present to use a copper oxide reduction process as this process was demonstrated to be capable of determining the concentrations of hydrogen and helium respectively in a gas mixture with air or nitrogen.

  11. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.

    PubMed

    Mejía-Roa, Edgardo; Tabas-Madrid, Daniel; Setoain, Javier; García, Carlos; Tirado, Francisco; Pascual-Montano, Alberto

    2015-02-13

    In the last few years, the Non-negative Matrix Factorization ( NMF ) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units ( GPUs ). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. NMF-mGPU is based on CUDA ( Compute Unified Device Architecture ), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI ( Message Passing Interface ). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the daily work of bioinformaticians that are trying to extract biological meaning out of hundreds of gigabytes of experimental information. NMF-mGPU can be used "out of the box" by researchers with little or no expertise in GPU programming in a variety of platforms, such as PCs, laptops, or high-end GPU clusters. NMF-mGPU is freely available at https://github.com/bioinfo-cnb/bionmf-gpu .

  12. Impact of memory bottleneck on the performance of graphics processing units

    NASA Astrophysics Data System (ADS)

    Son, Dong Oh; Choi, Hong Jun; Kim, Jong Myon; Kim, Cheol Hong

    2015-12-01

    Recent graphics processing units (GPUs) can process general-purpose applications as well as graphics applications with the help of various user-friendly application programming interfaces (APIs) supported by GPU vendors. Unfortunately, utilizing the hardware resource in the GPU efficiently is a challenging problem, since the GPU architecture is totally different to the traditional CPU architecture. To solve this problem, many studies have focused on the techniques for improving the system performance using GPUs. In this work, we analyze the GPU performance varying GPU parameters such as the number of cores and clock frequency. According to our simulations, the GPU performance can be improved by 125.8% and 16.2% on average as the number of cores and clock frequency increase, respectively. However, the performance is saturated when memory bottleneck problems incur due to huge data requests to the memory. The performance of GPUs can be improved as the memory bottleneck is reduced by changing GPU parameters dynamically.

  13. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    PubMed

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  14. cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud.

    PubMed

    Cianfrocco, Michael A; Lahiri, Indrajit; DiMaio, Frank; Leschziner, Andres E

    2018-06-01

    Access to streamlined computational resources remains a significant bottleneck for new users of cryo-electron microscopy (cryo-EM). To address this, we have developed tools that will submit cryo-EM analysis routines and atomic model building jobs directly to Amazon Web Services (AWS) from a local computer or laptop. These new software tools ("cryoem-cloud-tools") have incorporated optimal data movement, security, and cost-saving strategies, giving novice users access to complex cryo-EM data processing pipelines. Integrating these tools into the RELION processing pipeline and graphical user interface we determined a 2.2 Å structure of ß-galactosidase in ∼55 hours on AWS. We implemented a similar strategy to submit Rosetta atomic model building and refinement to AWS. These software tools dramatically reduce the barrier for entry of new users to cloud computing for cryo-EM and are freely available at cryoem-tools.cloud. Copyright © 2018. Published by Elsevier Inc.

  15. Radio Astronomy Software Defined Receiver Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacaliuc, Bogdan; Leech, Marcus; Oxley, Paul

    The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a usermore » s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.« less

  16. Magnetic Field Experiment Data Analysis System

    NASA Technical Reports Server (NTRS)

    Holland, D. B.; Zanetti, L. J.; Suther, L. L.; Potemra, T. A.; Anderson, B. J.

    1995-01-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) Magnetic Field Experiment Data Analysis System (MFEDAS) has been developed to process and analyze satellite magnetic field experiment data from the TRIAD, MAGSAT, AMPTE/CCE, Viking, Polar BEAR, DMSP, HILAT, UARS, and Freja satellites. The MFEDAS provides extensive data management and analysis capabilities. The system is based on standard data structures and a standard user interface. The MFEDAS has two major elements: (1) a set of satellite unique telemetry processing programs for uniform and rapid conversion of the raw data to a standard format and (2) the program Magplot which has file handling, data analysis, and data display sections. This system is an example of software reuse, allowing new data sets and software extensions to be added in a cost effective and timely manner. Future additions to the system will include the addition of standard format file import routines, modification of the display routines to use a commercial graphics package based on X-Window protocols, and a generic utility for telemetry data access and conversion.

  17. GPU accelerated manifold correction method for spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  18. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  19. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

    PubMed Central

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617

  20. Literacy learning in users of AAC: A neurocognitive perspective.

    PubMed

    Van Balkom, Hans; Verhoeven, Ludo

    2010-09-01

    The understanding of written or printed text or discourse - depicted either in orthographical, graphic-visual or tactile symbols - calls upon both bottom-up word recognition processes and top-down comprehension processes. Different architectures have been proposed to account for literacy processes. Research has shown that the first steps in perceiving, processing and deriving conceptual meaning from words, graphic symbols, manual signs, and co-speech gestures or tactile manual signing and tangible symbols can be seen as identical and collectively (sub)activated. Results from recent brain research and neurolinguistics have revealed new insights in the reading process of typical and atypical readers and may provide verifiable evidence for improved literacy assessment and the validation of early intervention programs for AAC users.

  1. Statistical Abstracts, Fall 1990: Instructional Workload, Faculty, and I&DR Costs.

    ERIC Educational Resources Information Center

    State Univ. of New York, Albany. Central Staff Office of Institutional Research.

    This publication provides summary analytical reports and graphic displays from the official Course and Section Analysis (CASA) system concerning the instructional workload and the financial resources of academic departments offering courses during the fall 1990 semester within the State University of New York system. Included are six reports. The…

  2. Teaching Optics to Blind Pupils

    ERIC Educational Resources Information Center

    Azevedo, A. C.; Santos, A. C. F.

    2014-01-01

    We focus on the difficulties that visually impaired students have when dealing with graphics and diagrams in their study of geometrical optics. This case study suggests practices that use low cost materials, easy to find and to handle, and that provide a tactile perception for visually impaired students. The activities employ light and easy to…

  3. A software architecture for automating operations processes

    NASA Technical Reports Server (NTRS)

    Miller, Kevin J.

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed a software architecture based on an integrated toolkit approach for simplifying and automating mission operations tasks. The toolkit approach is based on building adaptable, reusable graphical tools that are integrated through a combination of libraries, scripts, and system-level user interface shells. The graphical interface shells are designed to integrate and visually guide a user through the complex steps in an operations process. They provide a user with an integrated system-level picture of an overall process, defining the required inputs and possible output through interactive on-screen graphics. The OEL has developed the software for building these process-oriented graphical user interface (GUI) shells. The OEL Shell development system (OEL Shell) is an extension of JPL's Widget Creation Library (WCL). The OEL Shell system can be used to easily build user interfaces for running complex processes, applications with extensive command-line interfaces, and tool-integration tasks. The interface shells display a logical process flow using arrows and box graphics. They also allow a user to select which output products are desired and which input sources are needed, eliminating the need to know which program and its associated command-line parameters must be executed in each case. The shells have also proved valuable for use as operations training tools because of the OEL Shell hypertext help environment. The OEL toolkit approach is guided by several principles, including the use of ASCII text file interfaces with a multimission format, Perl scripts for mission-specific adaptation code, and programs that include a simple command-line interface for batch mode processing. Projects can adapt the interface shells by simple changes to the resources configuration file. This approach has allowed the development of sophisticated, automated software systems that are easy, cheap, and fast to build. This paper will discuss our toolkit approach and the OEL Shell interface builder in the context of a real operations process example. The paper will discuss the design and implementation of a Ulysses toolkit for generating the mission sequence of events. The Sequence of Events Generation (SEG) system provides an adaptable multimission toolkit for producing a time-ordered listing and timeline display of spacecraft commands, state changes, and required ground activities.

  4. The DFVLR main department for central data processing, 1976 - 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Data processing, equipment and systems operation, operative and user systems, user services, computer networks and communications, text processing, computer graphics, and high power computers are discussed.

  5. PDT - PARTICLE DISPLACEMENT TRACKING SOFTWARE

    NASA Technical Reports Server (NTRS)

    Wernet, M. P.

    1994-01-01

    Particle Imaging Velocimetry (PIV) is a quantitative velocity measurement technique for measuring instantaneous planar cross sections of a flow field. The technique offers very high precision (1%) directionally resolved velocity vector estimates, but its use has been limited by high equipment costs and complexity of operation. Particle Displacement Tracking (PDT) is an all-electronic PIV data acquisition and reduction procedure which is simple, fast, and easily implemented. The procedure uses a low power, continuous wave laser and a Charged Coupled Device (CCD) camera to electronically record the particle images. A frame grabber board in a PC is used for data acquisition and reduction processing. PDT eliminates the need for photographic processing, system costs are moderately low, and reduced data are available within seconds of acquisition. The technique results in velocity estimate accuracies on the order of 5%. The software is fully menu-driven from the acquisition to the reduction and analysis of the data. Options are available to acquire a single image or 5- or 25-field series of images separated in time by multiples of 1/60 second. The user may process each image, specifying its boundaries to remove unwanted glare from the periphery and adjusting its background level to clearly resolve the particle images. Data reduction routines determine the particle image centroids and create time history files. PDT then identifies the velocity vectors which describe the particle movement in the flow field. Graphical data analysis routines are included which allow the user to graph the time history files and display the velocity vector maps, interpolated velocity vector grids, iso-velocity vector contours, and flow streamlines. The PDT data processing software is written in FORTRAN 77 and the data acquisition routine is written in C-Language for 80386-based IBM PC compatibles running MS-DOS v3.0 or higher. Machine requirements include 4 MB RAM (3 MB Extended), a single or multiple frequency RGB monitor (EGA or better), a math co-processor, and a pointing device. The printers supported by the graphical analysis routines are the HP Laserjet+, Series II, and Series III with at least 1.5 MB memory. The data acquisition routines require the EPIX 4-MEG video board and optional 12.5MHz oscillator, and associated EPIX software. Data can be acquired from any CCD or RS-170 compatible video camera with pixel resolution of 600hX400v or better. PDT is distributed on one 5.25 inch 360K MS-DOS format diskette. Due to the use of required proprietary software, executable code is not provided on the distribution media. Compiling the source code requires the Microsoft C v5.1 compiler, Microsoft QuickC v2.0, the Microsoft Mouse Library, EPIX Image Processing Libraries, the Microway NDP-Fortran-386 v2.1 compiler, and the Media Cybernetics HALO Professional Graphics Kernal System. Due to the complexities of the machine requirements, COSMIC strongly recommends the purchase and review of the documentation prior to the purchase of the program. The source code, and sample input and output files are provided in PKZIP format; the PKUNZIP utility is included. PDT was developed in 1990. All trade names used are the property of their respective corporate owners.

  6. They are smaller, but these systems produce mighty reports.

    PubMed

    Botvin, Judith D

    2004-01-01

    The first place winner, Commonwealth Health Corporation, Bowling Green, Ky., has a successful cost-saving story. Designed in-house, with donated printing, it cost a mere 54 cents per unit. Little Company of Mary Hospital, Evergreen Park, Ill., wins second place with a publication that enlisted the help of many personnel. University Health Care System, Augusta, Ga., third place winner, uses dramatic graphics to observe its 185th anniversary. Princeton HealthCare System, Princeton, N.J., receives special recognition for the clarity and effectiveness of its four-page report.

  7. Operational experience in underwater photogrammetry

    NASA Astrophysics Data System (ADS)

    Leatherdale, John D.; John Turner, D.

    Underwater photogrammetry has become established as a cost-effective technique for inspection and maintenance of platforms and pipelines for the offshore oil industry. A commercial service based in Scotland operates in the North Sea, USA, Brazil, West Africa and Australia. 70 mm cameras and flash units are built for the purpose and analytical plotters and computer graphics systems are used for photogrammetric measurement and analysis of damage, corrosion, weld failures and redesign of underwater structures. Users are seeking simple, low-cost systems for photogrammetric analysis which their engineers can use themselves.

  8. Initial Conceptualization and Characterization of a Navy Automated Publishing System. Volume 2. Technical Report.

    DTIC Science & Technology

    1980-01-01

    its mission. The project was funded by the Naval Supply Systems (bxmand (NAVSUP) under the auspices of its Automated Graphic Sciences ( AGS ) program...Cost in the Federal Government, FY 1967-1977 3-6 3.4 Total U.S. Population Ages 18-24 Years 3-9 3.5 Supply and Demand for Young Men 3-10 3.6 Typical...NPPS, as reflected for instance in reduced cost per copy, is of benefit to all those it serves: (’NET, currently limited by appropriation ceilings to

  9. Graphical Representations of Data Improve Student Understanding of Measurement and Uncertainty: An Eye-Tracking Study

    ERIC Educational Resources Information Center

    Susac, Ana; Bubic, Andreja; Martinjak, Petra; Planinic, Maja; Palmovic, Marijan

    2017-01-01

    Developing a better understanding of the measurement process and measurement uncertainty is one of the main goals of university physics laboratory courses. This study investigated the influence of graphical representation of data on student understanding and interpreting of measurement results. A sample of 101 undergraduate students (48 first year…

  10. Expanding Students' Analytical Frameworks through the Study of Graphic Novels

    ERIC Educational Resources Information Center

    Connors, Sean P.

    2015-01-01

    When teachers work with students to construct a metalanguage that they can draw on to describe and analyze graphic novels, and then invite students to apply that metalanguage in the service of composing multimodal texts of their own, teachers broaden students' analytical frameworks. In the process of doing so, teachers empower students. In this…

  11. GUIDON-WATCH: A Graphic Interface for Viewing a Knowledge-Based System. Technical Report #14.

    ERIC Educational Resources Information Center

    Richer, Mark H.; Clancey, William J.

    This paper describes GUIDON-WATCH, a graphic interface that uses multiple windows and a mouse to allow a student to browse a knowledge base and view reasoning processes during diagnostic problem solving. The GUIDON project at Stanford University is investigating how knowledge-based systems can provide the basis for teaching programs, and this…

  12. Color-Coded Graphic Organizers for Teaching Writing to Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Ewoldt, Kathy B.; Morgan, Joseph John

    2017-01-01

    A commonly used method for supporting the writing of students with learning disabilities (LD), graphic organizers have been shown to effectively support instruction for students with LD in a variety of content areas (Dexter & Hughes, 2011). Students with LD often struggle with the process of developing their ideas into organized sentences; the…

  13. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    ERIC Educational Resources Information Center

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  14. Mediating Emotive Empathy With Informational Text: Three Students' Think-Aloud Protocols of "Gettysburg: The Graphic Novel"

    ERIC Educational Resources Information Center

    Chisholm, James S.; Shelton, Ashley L.; Sheffield, Caroline C.

    2017-01-01

    Although the popularity and use of graphic novels in literacy instruction has increased in the last decade, few sustained analyses have examined adolescents' reading processes with informational texts in social studies classrooms. Recent research that has foregrounded visual, emotional, and embodied textual responses situates this qualitative…

  15. Standardization of a Graphic Symbol System as an Alternative Communication Tool for Turkish

    ERIC Educational Resources Information Center

    Karal, Yasemin; Karal, Hasan; Silbir, Lokman; Altun, Taner

    2016-01-01

    Graphic symbols are commonly used across countries in order to support individuals with communicative deficiency. The literature review revealed the absence of such a system for Turkish socio-cultural context. In this study, the aim was to develop a symbol system appropriate for the Turkish socio-cultural context. The process began with studies…

  16. Perception in statistical graphics

    NASA Astrophysics Data System (ADS)

    VanderPlas, Susan Ruth

    There has been quite a bit of research on statistical graphics and visualization, generally focused on new types of graphics, new software to create graphics, interactivity, and usability studies. Our ability to interpret and use statistical graphics hinges on the interface between the graph itself and the brain that perceives and interprets it, and there is substantially less research on the interplay between graph, eye, brain, and mind than is sufficient to understand the nature of these relationships. The goal of the work presented here is to further explore the interplay between a static graph, the translation of that graph from paper to mental representation (the journey from eye to brain), and the mental processes that operate on that graph once it is transferred into memory (mind). Understanding the perception of statistical graphics should allow researchers to create more effective graphs which produce fewer distortions and viewer errors while reducing the cognitive load necessary to understand the information presented in the graph. Taken together, these experiments should lay a foundation for exploring the perception of statistical graphics. There has been considerable research into the accuracy of numerical judgments viewers make from graphs, and these studies are useful, but it is more effective to understand how errors in these judgments occur so that the root cause of the error can be addressed directly. Understanding how visual reasoning relates to the ability to make judgments from graphs allows us to tailor graphics to particular target audiences. In addition, understanding the hierarchy of salient features in statistical graphics allows us to clearly communicate the important message from data or statistical models by constructing graphics which are designed specifically for the perceptual system.

  17. EAGLEView: A surface and grid generation program and its data management

    NASA Technical Reports Server (NTRS)

    Remotigue, M. G.; Hart, E. T.; Stokes, M. L.

    1992-01-01

    An old and proven grid generation code, the EAGLE grid generation package, is given an added dimension of a graphical interface and a real time data base manager. The Numerical Aerodynamic Simulation (NAS) Panel Library is used for the graphical user interface. Through the panels, EAGLEView constructs the EAGLE script command and sends it to EAGLE to be processed. After the object is created, the script is saved in a mini-buffer which can be edited and/or saved and reinterpreted. The graphical objects are set-up in a linked-list and can be selected or queried by pointing and clicking the mouse. The added graphical enhancement to the EAGLE system emphasizes the unique capability to construct field points around complex geometry and visualize the construction every step of the way.

  18. User manual for two simple postscript output FORTRAN plotting routines

    NASA Technical Reports Server (NTRS)

    Nguyen, T. X.

    1991-01-01

    Graphics is one of the important tools in engineering analysis and design. However, plotting routines that generate output on high quality laser printers normally come in graphics packages, which tend to be expensive and system dependent. These factors become important for small computer systems or desktop computers, especially when only some form of a simple plotting routine is sufficient. With the Postscript language becoming popular, there are more and more Postscript laser printers now available. Simple, versatile, low cost plotting routines that can generate output on high quality laser printers are needed and standard FORTRAN language plotting routines using output in Postscript language seems logical. The purpose here is to explain two simple FORTRAN plotting routines that generate output in Postscript language.

  19. Data Acquisition with GPUs: The DAQ for the Muon $g$-$2$ Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohn, W.

    Graphical Processing Units (GPUs) have recently become a valuable computing tool for the acquisition of data at high rates and for a relatively low cost. The devices work by parallelizing the code into thousands of threads, each executing a simple process, such as identifying pulses from a waveform digitizer. The CUDA programming library can be used to effectively write code to parallelize such tasks on Nvidia GPUs, providing a significant upgrade in performance over CPU based acquisition systems. The muonmore » $g$-$2$ experiment at Fermilab is heavily relying on GPUs to process its data. The data acquisition system for this experiment must have the ability to create deadtime-free records from 700 $$\\mu$$s muon spills at a raw data rate 18 GB per second. Data will be collected using 1296 channels of $$\\mu$$TCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording of the muon decays during the spill. The described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun, E-mail: lijun_yt@163.com; Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072; Huang, Chuan-Xin

    Graphical abstract: This work reports the Ba content on thin film transistor based on a novel BaZnSnO semiconductor using solution process. - Highlights: • No reports about BaZnSnO thin film using solution process. • BaZnSnO thin film transistor (TFT) was firstly fabricated. • BaZnSnO-TFT shows a acceptable performace. • Influence of Ba content on BaZnSnO-TFT. - Abstract: A novel BaZnSnO semiconductor is fabricated using solution process and the influence of Ba addition on the structure, the chemical state of oxygen and electrical performance of BaZnSnO thin films are investigated. A high performance BaZnSnO-based thin film transistor with 15 mol% Bamore » is obtained, showing a saturation mobility of 1.94 cm{sup 2}/V s, a threshold voltage of 3.6 V, an on/off current ratio of 6.2 × 10{sup 6}, a subthreshold swing of 0.94 V/decade, and a good bias stability. Transistors with solution processed BaZnSnO films are promising candidates for the development of future large-area, low-cost and high-performance electronic devices.« less

  1. Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at GSFC, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUI's), supports prototyping, allows applications to be ported easily between different platforms and encourages appropriate levels of user interface consistency between applications. The following topics are discussed: the capabilities of the TAE Plus tool; how the implementation has utilized state-of-the-art technologies within graphic workstations; and how it has been used both within and outside of NASA.

  2. The Capabilities of the Graphical Observation Scheduling System (GROSS) as Used by the Astro-2 Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Phillips, Shaun

    1996-01-01

    The Graphical Observation Scheduling System (GROSS) and its functionality and editing capabilities are reported on. The GROSS system was developed as a replacement for a suite of existing programs and associated processes with the aim of: providing a software tool that combines the functionality of several of the existing programs, and provides a Graphical User Interface (GUI) that gives greater data visibility and editing capabilities. It is considered that the improved editing capability provided by this approach enhanced the efficiency of the second astronomical Spacelab mission's (ASTRO-2) mission planning.

  3. Standardized languages and notations for graphical modelling of patient care processes: a systematic review.

    PubMed

    Mincarone, Pierpaolo; Leo, Carlo Giacomo; Trujillo-Martín, Maria Del Mar; Manson, Jan; Guarino, Roberto; Ponzini, Giuseppe; Sabina, Saverio

    2018-04-01

    The importance of working toward quality improvement in healthcare implies an increasing interest in analysing, understanding and optimizing process logic and sequences of activities embedded in healthcare processes. Their graphical representation promotes faster learning, higher retention and better compliance. The study identifies standardized graphical languages and notations applied to patient care processes and investigates their usefulness in the healthcare setting. Peer-reviewed literature up to 19 May 2016. Information complemented by a questionnaire sent to the authors of selected studies. Systematic review conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Five authors extracted results of selected studies. Ten articles met the inclusion criteria. One notation and language for healthcare process modelling were identified with an application to patient care processes: Business Process Model and Notation and Unified Modeling Language™. One of the authors of every selected study completed the questionnaire. Users' comprehensibility and facilitation of inter-professional analysis of processes have been recognized, in the filled in questionnaires, as major strengths for process modelling in healthcare. Both the notation and the language could increase the clarity of presentation thanks to their visual properties, the capacity of easily managing macro and micro scenarios, the possibility of clearly and precisely representing the process logic. Both could increase guidelines/pathways applicability by representing complex scenarios through charts and algorithms hence contributing to reduce unjustified practice variations which negatively impact on quality of care and patient safety.

  4. Porting of the transfer-matrix method for multilayer thin-film computations on graphics processing units

    NASA Astrophysics Data System (ADS)

    Limmer, Steffen; Fey, Dietmar

    2013-07-01

    Thin-film computations are often a time-consuming task during optical design. An efficient way to accelerate these computations with the help of graphics processing units (GPUs) is described. It turned out that significant speed-ups can be achieved. We investigate the circumstances under which the best speed-up values can be expected. Therefore we compare different GPUs among themselves and with a modern CPU. Furthermore, the effect of thickness modulation on the speed-up and the runtime behavior depending on the input data is examined.

  5. People detection method using graphics processing units for a mobile robot with an omnidirectional camera

    NASA Astrophysics Data System (ADS)

    Kang, Sungil; Roh, Annah; Nam, Bodam; Hong, Hyunki

    2011-12-01

    This paper presents a novel vision system for people detection using an omnidirectional camera mounted on a mobile robot. In order to determine regions of interest (ROI), we compute a dense optical flow map using graphics processing units, which enable us to examine compliance with the ego-motion of the robot in a dynamic environment. Shape-based classification algorithms are employed to sort ROIs into human beings and nonhumans. The experimental results show that the proposed system detects people more precisely than previous methods.

  6. 3D graphics hardware accelerator programming methods for real-time visualization systems

    NASA Astrophysics Data System (ADS)

    Souetov, Andrew E.

    2001-02-01

    The paper deals with new approaches in software design for creating real-time applications that use modern graphics acceleration hardware. The growing complexity of such type of software compels programmers to use different types of CASE systems in design and development process. The subject under discussion is integration of such systems in a development process, their effective use, and the combination of these new methods with the necessity to produce optimal codes. A method of simulation integration and modeling tools in real-time software development cycle is described.

  7. 3D graphics hardware accelerator programming methods for real-time visualization systems

    NASA Astrophysics Data System (ADS)

    Souetov, Andrew E.

    2000-02-01

    The paper deals with new approaches in software design for creating real-time applications that use modern graphics acceleration hardware. The growing complexity of such type of software compels programmers to use different types of CASE systems in design and development process. The subject under discussion is integration of such systems in a development process, their effective use, and the combination of these new methods with the necessity to produce optimal codes. A method of simulation integration and modeling tools in real-time software development cycle is described.

  8. L3 Interactive Data Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, Michael; Adams, Paul

    2006-09-05

    The L3 system is a computational steering environment for image processing and scientific computing. It consists of an interactive graphical language and interface. Its purpose is to help advanced users in controlling their computational software and assist in the management of data accumulated during numerical experiments. L3 provides a combination of features not found in other environments; these are: - textual and graphical construction of programs - persistence of programs and associated data - direct mapping between the scripts, the parameters, and the produced data - implicit hierarchial data organization - full programmability, including conditionals and functions - incremental executionmore » of programs The software includes the l3 language and the graphical environment. The language is a single-assignment functional language; the implementation consists of lexer, parser, interpreter, storage handler, and editing support, The graphical environment is an event-driven nested list viewer/editor providing graphical elements corresponding to the language. These elements are both the represenation of a users program and active interfaces to the values computed by that program.« less

  9. Color postprocessing for 3-dimensional finite element mesh quality evaluation and evolving graphical workstation

    NASA Technical Reports Server (NTRS)

    Panthaki, Malcolm J.

    1987-01-01

    Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.

  10. Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.

    PubMed

    Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A

    2015-11-01

    In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.

  11. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P. A.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At themore » time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.« less

  12. Integration of Modelling and Graphics to Create an Infrared Signal Processing Test Bed

    NASA Astrophysics Data System (ADS)

    Sethi, H. R.; Ralph, John E.

    1989-03-01

    The work reported in this paper was carried out as part of a contract with MoD (PE) UK. It considers the problems associated with realistic modelling of a passive infrared system in an operational environment. Ideally all aspects of the system and environment should be integrated into a complete end-to-end simulation but in the past limited computing power has prevented this. Recent developments in workstation technology and the increasing availability of parallel processing techniques makes the end-to-end simulation possible. However the complexity and speed of such simulations means difficulties for the operator in controlling the software and understanding the results. These difficulties can be greatly reduced by providing an extremely user friendly interface and a very flexible, high power, high resolution colour graphics capability. Most system modelling is based on separate software simulation of the individual components of the system itself and its environment. These component models may have their own characteristic inbuilt assumptions and approximations, may be written in the language favoured by the originator and may have a wide variety of input and output conventions and requirements. The models and their limitations need to be matched to the range of conditions appropriate to the operational scenerio. A comprehensive set of data bases needs to be generated by the component models and these data bases must be made readily available to the investigator. Performance measures need to be defined and displayed in some convenient graphics form. Some options are presented for combining available hardware and software to create an environment within which the models can be integrated, and which provide the required man-machine interface, graphics and computing power. The impact of massively parallel processing and artificial intelligence will be discussed. Parallel processing will make real time end-to-end simulation possible and will greatly improve the graphical visualisation of the model output data. Artificial intelligence should help to enhance the man-machine interface.

  13. Design of a pulse oximeter for price sensitive emerging markets.

    PubMed

    Jones, Z; Woods, E; Nielson, D; Mahadevan, S V

    2010-01-01

    While the global market for medical devices is located primarily in developed countries, price sensitive emerging markets comprise an attractive, underserved segment in which products need a unique set of value propositions to be competitive. A pulse oximeter was designed expressly for emerging markets, and a novel feature set was implemented to reduce the cost of ownership and improve the usability of the device. Innovations included the ability of the device to generate its own electricity, a built in sensor which cuts down on operating costs, and a graphical, symbolic user interface. These features yield an average reduction of over 75% in the device cost of ownership versus comparable pulse oximeters already on the market.

  14. Measuring the electric activity of chick embryos heart through 16 bit audio card monitored by the Goldwavetm software

    NASA Astrophysics Data System (ADS)

    Silva, Dilson; Cortez, Celia Martins

    2015-12-01

    In the present work we used a high-resolution, low-cost apparatus capable of detecting waves fit inside the sound bandwidth, and the software package GoldwaveTM for graphical display, processing and monitoring the signals, to study aspects of the electric heart activity of early avian embryos, specifically at the 18th Hamburger & Hamilton stage of the embryo development. The species used was the domestic chick (Gallus gallus), and we carried out 23 experiments in which cardiographic spectra of QRS complex waves representing the propagation of depolarization waves through ventricles was recorded using microprobes and reference electrodes directly on the embryos. The results show that technique using 16 bit audio card monitored by the GoldwaveTM software was efficient to study signal aspects of heart electric activity of early avian embryos.

  15. Small Projects Rapid Integration and Test Environment (SPRITE): Application for Increasing Robustness

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Heater, Daniel; Lee, Ashley

    2013-01-01

    Marshall Space Flight Center's (MSFC) Small Projects Rapid Integration and Test Environment (SPRITE) is a Hardware-In-The-Loop (HWIL) facility that provides rapid development, integration, and testing capabilities for small projects (CubeSats, payloads, spacecraft, and launch vehicles). This facility environment focuses on efficient processes and modular design to support rapid prototyping, integration, testing and verification of small projects at an affordable cost, especially compared to larger type HWIL facilities. SPRITE (Figure 1) consists of a "core" capability or "plant" simulation platform utilizing a graphical programming environment capable of being rapidly re-configured for any potential test article's space environments, as well as a standard set of interfaces (i.e. Mil-Std 1553, Serial, Analog, Digital, etc.). SPRITE also allows this level of interface testing of components and subsystems very early in a program, thereby reducing program risk.

  16. Use of Multiple GPUs to Speedup the Execution of a Three-Dimensional Computational Model of the Innate Immune System

    NASA Astrophysics Data System (ADS)

    Xavier, M. P.; do Nascimento, T. M.; dos Santos, R. W.; Lobosco, M.

    2014-03-01

    The development of computational systems that mimics the physiological response of organs or even the entire body is a complex task. One of the issues that makes this task extremely complex is the huge computational resources needed to execute the simulations. For this reason, the use of parallel computing is mandatory. In this work, we focus on the simulation of temporal and spatial behaviour of some human innate immune system cells and molecules in a small three-dimensional section of a tissue. To perform this simulation, we use multiple Graphics Processing Units (GPUs) in a shared-memory environment. Despite of high initialization and communication costs imposed by the use of GPUs, the techniques used to implement the HIS simulator have shown to be very effective to achieve this purpose.

  17. Protein-protein docking on hardware accelerators: comparison of GPU and MIC architectures

    PubMed Central

    2015-01-01

    Background The hardware accelerators will provide solutions to computationally complex problems in bioinformatics fields. However, the effect of acceleration depends on the nature of the application, thus selection of an appropriate accelerator requires some consideration. Results In the present study, we compared the effects of acceleration using graphics processing unit (GPU) and many integrated core (MIC) on the speed of fast Fourier transform (FFT)-based protein-protein docking calculation. The GPU implementation performed the protein-protein docking calculations approximately five times faster than the MIC offload mode implementation. The MIC native mode implementation has the advantage in the implementation costs. However, the performance was worse with larger protein pairs because of memory limitations. Conclusion The results suggest that GPU is more suitable than MIC for accelerating FFT-based protein-protein docking applications. PMID:25707855

  18. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.

    PubMed

    Wilson, J Adam; Williams, Justin C

    2009-01-01

    The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  19. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.

    PubMed

    Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi

    2014-02-01

    We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.

  20. Comparisons of Kinematics and Dynamics Simulation Software Tools

    NASA Technical Reports Server (NTRS)

    Shiue, Yeu-Sheng Paul

    2002-01-01

    Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.

Top