Evaluation of Sequencing Approaches for High-Throughput Transcriptomics - (BOSC)
Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. The generation of high-throughput global gene expression...
High throughput toxicology programs, such as ToxCast and Tox21, have provided biological effects data for thousands of chemicals at multiple concentrations. Compared to traditional, whole-organism approaches, high throughput assays are rapid and cost-effective, yet they generall...
The development of a general purpose ARM-based processing unit for the ATLAS TileCal sROD
NASA Astrophysics Data System (ADS)
Cox, M. A.; Reed, R.; Mellado, B.
2015-01-01
After Phase-II upgrades in 2022, the data output from the LHC ATLAS Tile Calorimeter will increase significantly. ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface to the ARM processors. An overview of the PU is given and the results for performance and throughput testing of four different ARM Cortex System on Chips are presented.
Economic consequences of high throughput maskless lithography
NASA Astrophysics Data System (ADS)
Hartley, John G.; Govindaraju, Lakshmi
2005-11-01
Many people in the semiconductor industry bemoan the high costs of masks and view mask cost as one of the significant barriers to bringing new chip designs to market. All that is needed is a viable maskless technology and the problem will go away. Numerous sites around the world are working on maskless lithography but inevitably, the question asked is "Wouldn't a one wafer per hour maskless tool make a really good mask writer?" Of course, the answer is yes, the hesitation you hear in the answer isn't based on technology concerns, it's financial. The industry needs maskless lithography because mask costs are too high. Mask costs are too high because mask pattern generators (PG's) are slow and expensive. If mask PG's become much faster, mask costs go down, the maskless market goes away and the PG supplier is faced with an even smaller tool demand from the mask shops. Technical success becomes financial suicide - or does it? In this paper we will present the results of a model that examines some of the consequences of introducing high throughput maskless pattern generation. Specific features in the model include tool throughput for masks and wafers, market segmentation by node for masks and wafers and mask cost as an entry barrier to new chip designs. How does the availability of low cost masks and maskless tools affect the industries tool makeup and what is the ultimate potential market for high throughput maskless pattern generators?
A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting
Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.
2016-01-01
Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945
NASA Astrophysics Data System (ADS)
Ahmad, Afandi; Roslan, Muhammad Faris; Amira, Abbes
2017-09-01
In high jump sports, approach take-off speed and force during the take-off are two (2) main important parts to gain maximum jump. To measure both parameters, wireless sensor network (WSN) that contains microcontroller and sensor are needed to describe the results of speed and force for jumpers. Most of the microcontroller exhibit transmission issues in terms of throughput, latency and cost. Thus, this study presents the comparison of wireless microcontrollers in terms of throughput, latency and cost, and the microcontroller that have best performances and cost will be implemented in high jump wearable device. In the experiments, three (3) parts have been integrated - input, process and output. Force (for ankle) and global positioning system (GPS) sensor (for body waist) acts as an input for data transmission. These data were then being processed by both microcontrollers, ESP8266 and Arduino Yun Mini to transmit the data from sensors to the server (host-PC) via message queuing telemetry transport (MQTT) protocol. The server acts as receiver and the results was calculated from the MQTT log files. At the end, results obtained have shown ESP8266 microcontroller had been chosen since it achieved high throughput, low latency and 11 times cheaper in term of prices compared to Arduino Yun Mini microcontroller.
GiNA, an efficient and high-throughput software for horticultural phenotyping
USDA-ARS?s Scientific Manuscript database
Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed,...
USDA-ARS?s Scientific Manuscript database
Field-based high-throughput phenotyping is an emerging approach to characterize difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts have been developed as an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the fi...
Evaluation of sequencing approaches for high-throughput toxicogenomics (SOT)
Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. We present the evaluation of three toxicogenomics platfo...
High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics
NASA Astrophysics Data System (ADS)
Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine
2016-06-01
Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.
Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.
Yang, Darren; Wong, Wesley P
2018-01-01
We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.
Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...
An Evaluation of 25 Selected ToxCast Chemicals in Medium-Throughput Assays to Detect Genotoxicity
ABSTRACTToxCast is a multi-year effort to develop a cost-effective approach for the US EPA to prioritize chemicals for toxicity testing. Initial evaluation of more than 500 high-throughput (HT) microwell-based assays without metabolic activation showed that most lacked high speci...
Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...
High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT)
USDA-ARS?s Scientific Manuscript database
Implementation of molecular methods in hop breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. Diversity Arrays Technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of...
Edwards, Bonnie; Lesnick, John; Wang, Jing; Tang, Nga; Peters, Carl
2016-02-01
Epigenetics continues to emerge as an important target class for drug discovery and cancer research. As programs scale to evaluate many new targets related to epigenetic expression, new tools and techniques are required to enable efficient and reproducible high-throughput epigenetic screening. Assay miniaturization increases screening throughput and reduces operating costs. Echo liquid handlers can transfer compounds, samples, reagents, and beads in submicroliter volumes to high-density assay formats using only acoustic energy-no contact or tips required. This eliminates tip costs and reduces the risk of reagent carryover. In this study, we demonstrate the miniaturization of a methyltransferase assay using Echo liquid handlers and two different assay technologies: AlphaLISA from PerkinElmer and EPIgeneous HTRF from Cisbio. © 2015 Society for Laboratory Automation and Screening.
Hospital economics of the hospitalist.
Gregory, Douglas; Baigelman, Walter; Wilson, Ira B
2003-06-01
To determine the economic impact on the hospital of a hospitalist program and to develop insights into the relative economic importance of variables such as reductions in mean length of stay and cost, improvements in throughput (patients discharged per unit time), payer methods of reimbursement, and the cost of the hospitalist program. The primary data source was Tufts-New England Medical Center in Boston. Patient demographics, utilization, cost, and revenue data were obtained from the hospital's cost accounting system and medical records. The hospitalist admitted and managed all patients during a six-week period on the general medical unit of Tufts-New England Medical Center. Reimbursement, cost, length of stay, and throughput outcomes during this period were contrasted with patients admitted to the unit in the same period in the prior year, in the preceding period, and in the following period. The hospitalist group compared with the control group demonstrated: length of stay reduced to 2.19 days from 3.45 days (p<.001); total hospital costs per admission reduced to 1,775 dollars from 2,332 dollars (p<.001); costs per day increased to 811 dollars from 679 dollars (p<.001); no differences for readmission within 30 days of discharge to extended care facilities. The hospital's expected incremental profitability with the hospitalist was -1.44 dollars per admission excluding incremental throughput effects, and it was most sensitive to changes in the ratio of per diem to case rate reimbursement. Incremental throughput with the hospitalist was estimated at 266 patients annually with an associated incremental profitability of 1.3 million dollars. Hospital interventions designed to reduce length of stay, such as the hospitalist, should be evaluated in terms of cost, throughput, and reimbursement effects. Excluding throughput effects, the hospitalist program was not economically viable due to the influence of per diem reimbursement. Throughput improvements occasioned by the hospitalist program with high baseline occupancy levels are substantial and tend to favor a hospitalist program.
Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells.
Baud, Anna; Wessely, Frank; Mazzacuva, Francesca; McCormick, James; Camuzeaux, Stephane; Heywood, Wendy E; Little, Daniel; Vowles, Jane; Tuefferd, Marianne; Mosaku, Olukunbi; Lako, Majlinda; Armstrong, Lyle; Webber, Caleb; Cader, M Zameel; Peeters, Pieter; Gissen, Paul; Cowley, Sally A; Mills, Kevin
2017-02-21
Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.
USDA-ARS?s Scientific Manuscript database
The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...
Erickson, Heidi S
2012-09-28
The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Recent developments in high-throughput sequencing technology have made low-cost sequencing an attractive approach for many genome analysis tasks. Increasing read lengths, improving quality and the production of increasingly larger numbers of usable sequences per instrument-run continue to make whole...
USDA-ARS?s Scientific Manuscript database
The Axiom® IStraw90 SNP (single nucleotide polymorphism) array was developed to enable high-throughput genotyping in allo-octoploid cultivated strawberry (Fragaria ×ananassa). However, high cost ($80-105 per sample) limits throughput for certain applications. On average the IStraw90 has yielded 50% ...
NASA Astrophysics Data System (ADS)
Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin
2015-09-01
We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a
High-Throughput and Cost-Effective Characterization of Induced Pluripotent Stem Cells.
D'Antonio, Matteo; Woodruff, Grace; Nathanson, Jason L; D'Antonio-Chronowska, Agnieszka; Arias, Angelo; Matsui, Hiroko; Williams, Roy; Herrera, Cheryl; Reyna, Sol M; Yeo, Gene W; Goldstein, Lawrence S B; Panopoulos, Athanasia D; Frazer, Kelly A
2017-04-11
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) offers the possibility of studying the molecular mechanisms underlying human diseases in cell types difficult to extract from living patients, such as neurons and cardiomyocytes. To date, studies have been published that use small panels of iPSC-derived cell lines to study monogenic diseases. However, to study complex diseases, where the genetic variation underlying the disorder is unknown, a sizable number of patient-specific iPSC lines and controls need to be generated. Currently the methods for deriving and characterizing iPSCs are time consuming, expensive, and, in some cases, descriptive but not quantitative. Here we set out to develop a set of simple methods that reduce cost and increase throughput in the characterization of iPSC lines. Specifically, we outline methods for high-throughput quantification of surface markers, gene expression analysis of in vitro differentiation potential, and evaluation of karyotype with markedly reduced cost. Published by Elsevier Inc.
Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime
NASA Astrophysics Data System (ADS)
Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie
2017-09-01
Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.
High-throughput sample adaptive offset hardware architecture for high-efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin
2018-03-01
A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.
Lens-free shadow image based high-throughput continuous cell monitoring technique.
Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu
2012-01-01
A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.
A high-throughput multiplex method adapted for GMO detection.
Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique
2008-12-24
A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.
Raspberry Pi-powered imaging for plant phenotyping.
Tovar, Jose C; Hoyer, J Steen; Lin, Andy; Tielking, Allison; Callen, Steven T; Elizabeth Castillo, S; Miller, Michael; Tessman, Monica; Fahlgren, Noah; Carrington, James C; Nusinow, Dmitri A; Gehan, Malia A
2018-03-01
Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.
Traditional toxicity testing involves a large investment in resources, often using low-throughput in vivo animal studies for limited numbers of chemicals. An alternative strategy is the emergence of high-throughput (HT) in vitro assays as a rapid, cost-efficient means to screen t...
Accelerating the design of solar thermal fuel materials through high throughput simulations.
Liu, Yun; Grossman, Jeffrey C
2014-12-10
Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.
Sheng, Yanghao; Zhou, Boting
2017-05-26
Therapeutic drug monitoring (TDM) is one of the most important services of clinical laboratories. Two main techniques are commonly used: the immunoassay and chromatography method. We have developed a cost-effective system of two-dimensional liquid chromatography with ultraviolet detection (2D-LC-UV) for high-throughput determination of vancomycin in human plasma that combines the automation and low start-up costs of the immunoassay with the high selectivity and sensitivity of the liquid chromatography coupled with mass spectrometric detection without incurring their disadvantages, achieving high cost-effectiveness. This 2D-LC system offers a large volume injection to provide sufficient sensitivity and uses simulated gradient peak compression technology to control peak broadening and to improve peak shape. A middle column was added to reduce the analysis cycle time and make it suitable for high-throughput routine clinical assays. The analysis cycle time was 4min and the peak width was 0.8min. Compared with other chromatographic methods that have been developed, the analysis cycle time and peak width for vancomycin was reduced significantly. The lower limit of quantification was 0.20μg/mL for vancomycin, which is the same as certain LC-MS/MS methods that have been recently developed and validated. The method is rapid, automated, and low-cost and has high selectivity and sensitivity for the quantification of vancomycin in human plasma, thus making it well-suited for use in hospital clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.
Gassner, Christoph; Meyer, Stefan; Frey, Beat M; Vollmert, Caren
2013-01-01
Although matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry (MALDI-TOF MS) has previously been reported for high throughput blood group genotyping, those reports are limited to only a few blood group systems. This review describes the development of a large cooperative Swiss-German project, aiming to employ MALDI-TOF MS for the molecular detection of the blood groups Rh, Kell, Kidd, Duffy, MNSs, a comprehensive collection of low incidence antigens, as well as the platelet and granulocyte antigens HPA and HNA, representing a total of 101 blood group antigens, encoded by 170 alleles, respectively. Recent reports describe MALDI-TOF MS as a technology with short time-to-resolution, ability for high throughput, and cost-efficiency when used in genetic analysis, including forensics, pharmacogenetics, oncology and hematology. Furthermore, Kell and RhD genotyping have been performed on fetal DNA from maternal plasma with excellent results. In summary, this article introduces a new technological approach for high throughput blood group genotyping by means of MALDI-TOF MS. Although all data presented are preliminary, the observed success rates, data quality and concordance with known blood group types are highly impressive, underlining the accuracy and reliability of this cost-efficient high throughput method. Copyright © 2013 Elsevier Inc. All rights reserved.
Jia, Kun; Bijeon, Jean Louis; Adam, Pierre Michel; Ionescu, Rodica Elena
2013-02-21
A commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.
High-throughput sequence alignment using Graphics Processing Units
Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh
2007-01-01
Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356
Advances in high throughput DNA sequence data compression.
Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz
2016-06-01
Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted.
Chatterjee, Anirban; Mirer, Paul L; Zaldivar Santamaria, Elvira; Klapperich, Catherine; Sharon, Andre; Sauer-Budge, Alexis F
2010-06-01
The life science and healthcare communities have been redefining the importance of ribonucleic acid (RNA) through the study of small molecule RNA (in RNAi/siRNA technologies), micro RNA (in cancer research and stem cell research), and mRNA (gene expression analysis for biologic drug targets). Research in this field increasingly requires efficient and high-throughput isolation techniques for RNA. Currently, several commercial kits are available for isolating RNA from cells. Although the quality and quantity of RNA yielded from these kits is sufficiently good for many purposes, limitations exist in terms of extraction efficiency from small cell populations and the ability to automate the extraction process. Traditionally, automating a process decreases the cost and personnel time while simultaneously increasing the throughput and reproducibility. As the RNA field matures, new methods for automating its extraction, especially from low cell numbers and in high throughput, are needed to achieve these improvements. The technology presented in this article is a step toward this goal. The method is based on a solid-phase extraction technology using a porous polymer monolith (PPM). A novel cell lysis approach and a larger binding surface throughout the PPM extraction column ensure a high yield from small starting samples, increasing sensitivity and reducing indirect costs in cell culture and sample storage. The method ensures a fast and simple procedure for RNA isolation from eukaryotic cells, with a high yield both in terms of quality and quantity. The technique is amenable to automation and streamlined workflow integration, with possible miniaturization of the sample handling process making it suitable for high-throughput applications.
A high-throughput screening approach for the optoelectronic properties of conjugated polymers.
Wilbraham, Liam; Berardo, Enrico; Turcani, Lukas; Jelfs, Kim E; Zwijnenburg, Martijn A
2018-06-25
We propose a general high-throughput virtual screening approach for the optical and electronic properties of conjugated polymers. This approach makes use of the recently developed xTB family of low-computational-cost density functional tight-binding methods from Grimme and co-workers, calibrated here to (TD-)DFT data computed for a representative diverse set of (co-)polymers. Parameters drawn from the resulting calibration using a linear model can then be applied to the xTB derived results for new polymers, thus generating near DFT-quality data with orders of magnitude reduction in computational cost. As a result, after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order of thousands of polymers for target applications. We also demonstrate that the (opto)electronic properties of the conjugated polymers show only a very minor variation when considering different conformers and that the results of high-throughput screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied.
High-Throughput Functional Validation of Progression Drivers in Lung Adenocarcinoma
2013-09-01
2) a novel molecular barcoding approach that facilitates cost- effective detection of driver events following in vitro and in vivo functional screens...aberration construction pipeline, which we named High-Throughput 3 Mutagenesis and Molecular Barcoding (HiTMMoB; Fig.1). We have therefore been able...lentiviral vector specially constructed for this project. This vector is compatible with our flexible molecular barcoding technology (Fig. 1), thus each
A comparison of high-throughput techniques for assaying circadian rhythms in plants.
Tindall, Andrew J; Waller, Jade; Greenwood, Mark; Gould, Peter D; Hartwell, James; Hall, Anthony
2015-01-01
Over the last two decades, the development of high-throughput techniques has enabled us to probe the plant circadian clock, a key coordinator of vital biological processes, in ways previously impossible. With the circadian clock increasingly implicated in key fitness and signalling pathways, this has opened up new avenues for understanding plant development and signalling. Our tool-kit has been constantly improving through continual development and novel techniques that increase throughput, reduce costs and allow higher resolution on the cellular and subcellular levels. With circadian assays becoming more accessible and relevant than ever to researchers, in this paper we offer a review of the techniques currently available before considering the horizons in circadian investigation at ever higher throughputs and resolutions.
NASA Astrophysics Data System (ADS)
Green, Martin L.; Takeuchi, Ichiro; Hattrick-Simpers, Jason R.
2013-06-01
High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a "library" sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same "library" sample, they can be highly uniform with respect to fixed processing parameters. This article critically reviews the literature pertaining to applications of combinatorial materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high throughput methodologies will facilitate commercialization of novel materials for these critically important applications. Despite the overwhelming evidence presented in this paper that high throughput studies can effectively inform commercial practice, in our perception, it remains an underutilized research and development tool. Part of this perception may be due to the inaccessibility of proprietary industrial research and development practices, but clearly the initial cost and availability of high throughput laboratory equipment plays a role. Combinatorial materials science has traditionally been focused on materials discovery, screening, and optimization to combat the extremely high cost and long development times for new materials and their introduction into commerce. Going forward, combinatorial materials science will also be driven by other needs such as materials substitution and experimental verification of materials properties predicted by modeling and simulation, which have recently received much attention with the advent of the Materials Genome Initiative. Thus, the challenge for combinatorial methodology will be the effective coupling of synthesis, characterization and theory, and the ability to rapidly manage large amounts of data in a variety of formats.
Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.
Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan
2011-09-01
Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.
Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications
Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan
2011-01-01
Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing
Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph
2011-01-01
Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.; ...
2017-03-28
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Grossman, JC
2014-12-01
Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less
NASA Astrophysics Data System (ADS)
Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela
2016-10-01
Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.
Noyes, Aaron; Huffman, Ben; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Sunasara, Khurram; Mukhopadhyay, Tarit
2015-08-01
The biotech industry is under increasing pressure to decrease both time to market and development costs. Simultaneously, regulators are expecting increased process understanding. High throughput process development (HTPD) employs small volumes, parallel processing, and high throughput analytics to reduce development costs and speed the development of novel therapeutics. As such, HTPD is increasingly viewed as integral to improving developmental productivity and deepening process understanding. Particle conditioning steps such as precipitation and flocculation may be used to aid the recovery and purification of biological products. In this first part of two articles, we describe an ultra scale-down system (USD) for high throughput particle conditioning (HTPC) composed of off-the-shelf components. The apparatus is comprised of a temperature-controlled microplate with magnetically driven stirrers and integrated with a Tecan liquid handling robot. With this system, 96 individual reaction conditions can be evaluated in parallel, including downstream centrifugal clarification. A comprehensive suite of high throughput analytics enables measurement of product titer, product quality, impurity clearance, clarification efficiency, and particle characterization. HTPC at the 1 mL scale was evaluated with fermentation broth containing a vaccine polysaccharide. The response profile was compared with the Pilot-scale performance of a non-geometrically similar, 3 L reactor. An engineering characterization of the reactors and scale-up context examines theoretical considerations for comparing this USD system with larger scale stirred reactors. In the second paper, we will explore application of this system to industrially relevant vaccines and test different scale-up heuristics. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsillac, Sylvain
2015-11-30
The main objective of this proposal was to use several pathways to reduce the production cost of Cu(In,Ga)Se 2 (CIGS) PV modules and therefore the levelized cost of energy (LCOE) associated with this technology. Three high cost drivers were identified, nominally: 1) Materials cost and availability; 2) Large scale uniformity; 3) Improved throughput These three cost drivers were targeted using the following pathways: 1) Reducing the thickness of the CIGS layer while enhancing materials quality; 2) Developing and applying enhanced in-situ metrology via real time spectroscopic ellipsometry; 3) Looking into alternative heterojunction partner, back contact and anti-reflection (AR) coating Elevenmore » main Tasks were then defined to achieve these goals (5 in Phase 1 and 6 in Phase 2), with 11 Milestones and 2 Go/No-go decision points at the end of Phase 1. The key results are summarized below« less
Bergander, Tryggve; Nilsson-Välimaa, Kristina; Oberg, Katarina; Lacki, Karol M
2008-01-01
Steadily increasing demand for more efficient and more affordable biomolecule-based therapies put a significant burden on biopharma companies to reduce the cost of R&D activities associated with introduction of a new drug to the market. Reducing the time required to develop a purification process would be one option to address the high cost issue. The reduction in time can be accomplished if more efficient methods/tools are available for process development work, including high-throughput techniques. This paper addresses the transitions from traditional column-based process development to a modern high-throughput approach utilizing microtiter filter plates filled with a well-defined volume of chromatography resin. The approach is based on implementing the well-known batch uptake principle into microtiter plate geometry. Two variants of the proposed approach, allowing for either qualitative or quantitative estimation of dynamic binding capacity as a function of residence time, are described. Examples of quantitative estimation of dynamic binding capacities of human polyclonal IgG on MabSelect SuRe and of qualitative estimation of dynamic binding capacity of amyloglucosidase on a prototype of Capto DEAE weak ion exchanger are given. The proposed high-throughput method for determination of dynamic binding capacity significantly reduces time and sample consumption as compared to a traditional method utilizing packed chromatography columns without sacrificing the accuracy of data obtained.
Polymer-Carbon Nanotube Composites, A Literature Review
2004-08-01
have led to improvements in product controllability, yield, and cost . Other aspects of nanotube synthesis currently under scrutiny include study of...progress in many areas of characterization and applications was initially hindered by the high cost of production, as well as the requirement of...processing the nanotubes. In recent years, the production costs have decreased dramatically as a result of the development of new, high-throughput
Integrated Device for Circulating Tumor Cell Capture, Characterization and Lens-Free Microscopy
2012-08-01
peripheral blood of breast cancer patients indicates high metastatic potential and increased morbidity. Development of a cost - effective CTC detection and...microfilter platform captures CTC from the cancer patients’ blood cost effectively , where the larger CTC are preferentially retained on the membrane...development of a cost - effective and high-throughput CTC analysis system would revolutionize the field of CTC detection, prognosis, and therapeutic
A time-and-motion approach to micro-costing of high-throughput genomic assays
Costa, S.; Regier, D.A.; Meissner, B.; Cromwell, I.; Ben-Neriah, S.; Chavez, E.; Hung, S.; Steidl, C.; Scott, D.W.; Marra, M.A.; Peacock, S.J.; Connors, J.M.
2016-01-01
Background Genomic technologies are increasingly used to guide clinical decision-making in cancer control. Economic evidence about the cost-effectiveness of genomic technologies is limited, in part because of a lack of published comprehensive cost estimates. In the present micro-costing study, we used a time-and-motion approach to derive cost estimates for 3 genomic assays and processes—digital gene expression profiling (gep), fluorescence in situ hybridization (fish), and targeted capture sequencing, including bioinformatics analysis—in the context of lymphoma patient management. Methods The setting for the study was the Department of Lymphoid Cancer Research laboratory at the BC Cancer Agency in Vancouver, British Columbia. Mean per-case hands-on time and resource measurements were determined from a series of direct observations of each assay. Per-case cost estimates were calculated using a bottom-up costing approach, with labour, capital and equipment, supplies and reagents, and overhead costs included. Results The most labour-intensive assay was found to be fish at 258.2 minutes per case, followed by targeted capture sequencing (124.1 minutes per case) and digital gep (14.9 minutes per case). Based on a historical case throughput of 180 cases annually, the mean per-case cost (2014 Canadian dollars) was estimated to be $1,029.16 for targeted capture sequencing and bioinformatics analysis, $596.60 for fish, and $898.35 for digital gep with an 807-gene code set. Conclusions With the growing emphasis on personalized approaches to cancer management, the need for economic evaluations of high-throughput genomic assays is increasing. Through economic modelling and budget-impact analyses, the cost estimates presented here can be used to inform priority-setting decisions about the implementation of such assays in clinical practice. PMID:27803594
2018-01-01
The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies. PMID:29870560
Ortiz, Diego; Litvin, Alexander G; Salas Fernandez, Maria G
2018-01-01
The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies.
Forreryd, Andy; Johansson, Henrik; Albrekt, Ann-Sofie; Lindstedt, Malin
2014-05-16
Allergic contact dermatitis (ACD) develops upon exposure to certain chemical compounds termed skin sensitizers. To reduce the occurrence of skin sensitizers, chemicals are regularly screened for their capacity to induce sensitization. The recently developed Genomic Allergen Rapid Detection (GARD) assay is an in vitro alternative to animal testing for identification of skin sensitizers, classifying chemicals by evaluating transcriptional levels of a genomic biomarker signature. During assay development and biomarker identification, genome-wide expression analysis was applied using microarrays covering approximately 30,000 transcripts. However, the microarray platform suffers from drawbacks in terms of low sample throughput, high cost per sample and time consuming protocols and is a limiting factor for adaption of GARD into a routine assay for screening of potential sensitizers. With the purpose to simplify assay procedures, improve technical parameters and increase sample throughput, we assessed the performance of three high throughput gene expression platforms--nCounter®, BioMark HD™ and OpenArray®--and correlated their performance metrics against our previously generated microarray data. We measured the levels of 30 transcripts from the GARD biomarker signature across 48 samples. Detection sensitivity, reproducibility, correlations and overall structure of gene expression measurements were compared across platforms. Gene expression data from all of the evaluated platforms could be used to classify most of the sensitizers from non-sensitizers in the GARD assay. Results also showed high data quality and acceptable reproducibility for all platforms but only medium to poor correlations of expression measurements across platforms. In addition, evaluated platforms were superior to the microarray platform in terms of cost efficiency, simplicity of protocols and sample throughput. We evaluated the performance of three non-array based platforms using a limited set of transcripts from the GARD biomarker signature. We demonstrated that it was possible to achieve acceptable discriminatory power in terms of separation between sensitizers and non-sensitizers in the GARD assay while reducing assay costs, simplify assay procedures and increase sample throughput by using an alternative platform, providing a first step towards the goal to prepare GARD for formal validation and adaption of the assay for industrial screening of potential sensitizers.
Knight, Jean; Rovida, Costanca
2014-01-01
The proposed Safe Cosmetics and Personal Care Products Act of 2013 calls for a new evaluation program for cosmetic ingredients in the US, with the new assessments initially dependent on expanded animal testing. This paper considers possible testing scenarios under the proposed Act and estimates the number of test animals and cost under each scenario. It focuses on the impact for the first 10 years of testing, the period of greatest impact on animals and costs. The analysis suggests the first 10 years of testing under the Act could evaluate, at most, about 50% of ingredients used in cosmetics. Testing during this period would cost about $ 1.7-$ 9 billion and 1-11.5 million animals. By test year 10, alternative, high-throughput test methods under development are expected to be available, replacing animal testing and allowing rapid evaluation of all ingredients. Given the high cost in dollars and animal lives of the first 10 years for only about half of ingredients, a better choice may be to accelerate development of high-throughput methods. This would allow evaluation of 100% of cosmetic ingredients before year 10 at lower cost and without animal testing.
High-throughput spectrometer designs in a compact form-factor: principles and applications
NASA Astrophysics Data System (ADS)
Norton, S. M.
2013-05-01
Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.
Low-Cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process.
Shapland, Elaine B; Holmes, Victor; Reeves, Christopher D; Sorokin, Elena; Durot, Maxime; Platt, Darren; Allen, Christopher; Dean, Jed; Serber, Zach; Newman, Jack; Chandran, Sunil
2015-07-17
In recent years, next-generation sequencing (NGS) technology has greatly reduced the cost of sequencing whole genomes, whereas the cost of sequence verification of plasmids via Sanger sequencing has remained high. Consequently, industrial-scale strain engineers either limit the number of designs or take short cuts in quality control. Here, we show that over 4000 plasmids can be completely sequenced in one Illumina MiSeq run for less than $3 each (15× coverage), which is a 20-fold reduction over using Sanger sequencing (2× coverage). We reduced the volume of the Nextera tagmentation reaction by 100-fold and developed an automated workflow to prepare thousands of samples for sequencing. We also developed software to track the samples and associated sequence data and to rapidly identify correctly assembled constructs having the fewest defects. As DNA synthesis and assembly become a centralized commodity, this NGS quality control (QC) process will be essential to groups operating high-throughput pipelines for DNA construction.
The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio).
Usui, Takuji; Noble, Daniel W A; O'Dea, Rose E; Fangmeier, Melissa L; Lagisz, Malgorzata; Hesselson, Daniel; Nakagawa, Shinichi
2018-01-01
Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34-0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes.
The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio)
Usui, Takuji; Noble, Daniel W.A.; O’Dea, Rose E.; Fangmeier, Melissa L.; Lagisz, Malgorzata; Hesselson, Daniel
2018-01-01
Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34–0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes. PMID:29372124
The next generation CdTe technology- Substrate foil based solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferekides, Chris
The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal ofmore » this project) a roll-to-toll high throughput technology could be developed.« less
High-throughput screening and small animal models, where are we?
Giacomotto, Jean; Ségalat, Laurent
2010-01-01
Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day. PMID:20423335
The application of the high throughput sequencing technology in the transposable elements.
Liu, Zhen; Xu, Jian-hong
2015-09-01
High throughput sequencing technology has dramatically improved the efficiency of DNA sequencing, and decreased the costs to a great extent. Meanwhile, this technology usually has advantages of better specificity, higher sensitivity and accuracy. Therefore, it has been applied to the research on genetic variations, transcriptomics and epigenomics. Recently, this technology has been widely employed in the studies of transposable elements and has achieved fruitful results. In this review, we summarize the application of high throughput sequencing technology in the fields of transposable elements, including the estimation of transposon content, preference of target sites and distribution, insertion polymorphism and population frequency, identification of rare copies, transposon horizontal transfers as well as transposon tagging. We also briefly introduce the major common sequencing strategies and algorithms, their advantages and disadvantages, and the corresponding solutions. Finally, we envision the developing trends of high throughput sequencing technology, especially the third generation sequencing technology, and its application in transposon studies in the future, hopefully providing a comprehensive understanding and reference for related scientific researchers.
ADAPTING THE MEDAKA EMBRYO ASSAY TO A HIGH-THROUGHPUT APPROACH FOR DEVELOPMENTAL TOXICITY TESTING.
Chemical exposure during embryonic development may cause persistent effects, yet developmental toxicity data exist for very few chemicals. Current testing procedures are time consuming and costly, underlining the need for rapid and low cost screening strategies. While in vitro ...
NASA Astrophysics Data System (ADS)
Zhang, Yuli; Han, Jun; Weng, Xinqian; He, Zhongzhu; Zeng, Xiaoyang
This paper presents an Application Specific Instruction-set Processor (ASIP) for the SHA-3 BLAKE algorithm family by instruction set extensions (ISE) from an RISC (reduced instruction set computer) processor. With a design space exploration for this ASIP to increase the performance and reduce the area cost, we accomplish an efficient hardware and software implementation of BLAKE algorithm. The special instructions and their well-matched hardware function unit improve the calculation of the key section of the algorithm, namely G-functions. Also, relaxing the time constraint of the special function unit can decrease its hardware cost, while keeping the high data throughput of the processor. Evaluation results reveal the ASIP achieves 335Mbps and 176Mbps for BLAKE-256 and BLAKE-512. The extra area cost is only 8.06k equivalent gates. The proposed ASIP outperforms several software approaches on various platforms in cycle per byte. In fact, both high throughput and low hardware cost achieved by this programmable processor are comparable to that of ASIC implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melman, Jonathan
The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.
A high-throughput microRNA expression profiling system.
Guo, Yanwen; Mastriano, Stephen; Lu, Jun
2014-01-01
As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.
Advances in high-throughput screening technologies and in vitro systems have opened doors for cost-efficient evaluation of chemical effects on a diversity of biological endpoints. However, toxicogenomics platforms remain too costly to evaluate large libraries of chemicals in conc...
Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P
2017-05-02
Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2005-01-01
High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.
Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai
2013-01-01
Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999
High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system
NASA Astrophysics Data System (ADS)
Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.
2015-11-01
Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.
High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.
Liu, Guangbo; Lanham, Clayton; Buchan, J Ross; Kaplan, Matthew E
2017-01-01
Saccharomyces cerevisiae (budding yeast) is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc) transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids) or genome mutation (e.g., gene mutation, deletion, epitope tagging) is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.
High-Throughput Toxicity Testing: New Strategies for ...
In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct additives, and food contact substances. With the rapidly growing use of new food additives, as well as innovation in food contact substance development, an interest in exploring the use of high-throughput chemical safety testing approaches has emerged. Currently, the field of toxicology is undergoing a paradigm shift in how chemical hazards can be evaluated. Since there are tens of thousands of chemicals in use, many of which have little to no hazard information and there are limited resources (namely time and money) for testing these chemicals, it is necessary to prioritize which chemicals require further safety testing to better protect human health. Advances in biochemistry and computational toxicology have paved the way for animal-free (in vitro) high-throughput screening which can characterize chemical interactions with highly specific biological processes. Screening approaches are not novel; in fact, quantitative high-throughput screening (qHTS) methods that incorporate dose-response evaluation have been widely used in the pharmaceutical industry. For toxicological evaluation and prioritization, it is the throughput as well as the cost- and time-efficient nature of qHTS that makes it
Cytopathological image analysis using deep-learning networks in microfluidic microscopy.
Gopakumar, G; Hari Babu, K; Mishra, Deepak; Gorthi, Sai Siva; Sai Subrahmanyam, Gorthi R K
2017-01-01
Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process. Several neural network architectures were designed to provide human expertise to machines. In this paper, we explore and propose the feasibility of using deep-learning networks for cytopathologic analysis by performing the classification of three important unlabeled, unstained leukemia cell lines (K562, MOLT, and HL60). The cell images used in the classification are captured using a low-cost, high-throughput cell imaging technique: microfluidics-based imaging flow cytometry. We demonstrate that without any conventional fine segmentation followed by explicit feature extraction, the proposed deep-learning algorithms effectively classify the coarsely localized cell lines. We show that the designed deep belief network as well as the deeply pretrained convolutional neural network outperform the conventionally used decision systems and are important in the medical domain, where the availability of labeled data is limited for training. We hope that our work enables the development of a clinically significant high-throughput microfluidic microscopy-based tool for disease screening/triaging, especially in resource-limited settings.
Controlling high-throughput manufacturing at the nano-scale
NASA Astrophysics Data System (ADS)
Cooper, Khershed P.
2013-09-01
Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.
Correction of Microplate Data from High-Throughput Screening.
Wang, Yuhong; Huang, Ruili
2016-01-01
High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.
Zhou, Chengran
2017-01-01
Abstract Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)–based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn’t show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes. PMID:29077841
Liu, Shanlin; Yang, Chentao; Zhou, Chengran; Zhou, Xin
2017-12-01
Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)-based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn't show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes. © The Authors 2017. Published by Oxford University Press.
Handheld Fluorescence Microscopy based Flow Analyzer.
Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva
2016-03-01
Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.
Life in the fast lane: high-throughput chemistry for lead generation and optimisation.
Hunter, D
2001-01-01
The pharmaceutical industry has come under increasing pressure due to regulatory restrictions on the marketing and pricing of drugs, competition, and the escalating costs of developing new drugs. These forces can be addressed by the identification of novel targets, reductions in the development time of new drugs, and increased productivity. Emphasis has been placed on identifying and validating new targets and on lead generation: the response from industry has been very evident in genomics and high throughput screening, where new technologies have been applied, usually coupled with a high degree of automation. The combination of numerous new potential biological targets and the ability to screen large numbers of compounds against many of these targets has generated the need for large diverse compound collections. To address this requirement, high-throughput chemistry has become an integral part of the drug discovery process. Copyright 2002 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham; Cady, Eric; Pueyo, Laurent; Ana, Xin; Shaklan, Stuart; Guyon, Olivier; Belikov, Ruslan
2011-01-01
Off-axis, high-sag PIAA optics for high contrast imaging present challenges in manufacturing and testing. With smaller form factors and consequently smaller surface deformations (< 80 microns), diamond turned fabrication of these mirrors becomes feasible. Though such a design reduces the system throughput, it still provides 2(lambda)D inner working angle. We report on the design, fabrication, measurements, and initial assessment of the novel PIAA optics in a coronagraph testbed. We also describe, for the first time, a four mirror PIAA coronagraph that relaxes apodizer requirements and significantly improves throughput while preserving the low-cost benefits.
Multiplex amplification of large sets of human exons.
Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay
2007-11-01
A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-01-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-08-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C
2016-01-01
Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chitre, S. R.
1978-01-01
The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.
Jobs, Magnus; Howell, W. Mathias; Strömqvist, Linda; Mayr, Torsten; Brookes, Anthony J.
2003-01-01
Genotyping technologies need to be continually improved in terms of their flexibility, cost-efficiency, and throughput, to push forward genome variation analysis. To this end, we have leveraged the inherent simplicity of dynamic allele-specific hybridization (DASH) and coupled it to recent innovations of centrifugal arrays and iFRET. We have thereby created a new genotyping platform we term DASH-2, which we demonstrate and evaluate in this report. The system is highly flexible in many ways (any plate format, PCR multiplexing, serial and parallel array processing, spectral-multiplexing of hybridization probes), thus supporting a wide range of application scales and objectives. Precision is demonstrated to be in the range 99.8–100%, and assay costs are 0.05 USD or less per genotype assignment. DASH-2 thus provides a powerful new alternative for genotyping practice, which can be used without the need for expensive robotics support. PMID:12727908
NASA Astrophysics Data System (ADS)
Xu, Shicai; Zhan, Jian; Man, Baoyuan; Jiang, Shouzhen; Yue, Weiwei; Gao, Shoubao; Guo, Chengang; Liu, Hanping; Li, Zhenhua; Wang, Jihua; Zhou, Yaoqi
2017-03-01
Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.
Henriques, Dora; Browne, Keith A; Barnett, Mark W; Parejo, Melanie; Kryger, Per; Freeman, Tom C; Muñoz, Irene; Garnery, Lionel; Highet, Fiona; Jonhston, J Spencer; McCormack, Grace P; Pinto, M Alice
2018-06-04
The natural distribution of the honeybee (Apis mellifera L.) has been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apis mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained for the four assays combined (117 SNPs). The best compromise between accuracy and genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation of introgression levels to more effectively monitor and manage A. m. mellifera conservatories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, N.; Liu, Xiang Yang; Choudary, P.V.
1997-01-01
The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also bemore » used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
Aldhaibani, Jaafar A.; Ahmad, R. B.; Yahya, A.; Azeez, Suzan A.
2015-05-01
Wireless multi-hop relay networks have become very important technologies in mobile communications. These networks ensure high throughput and coverage extension with a low cost. The poor capacity at cell edges is not enough to meet with growing demand of high capacity and throughput irrespective of user's placement in the cellular network. In this paper we propose optimal placement of relay node that provides maximum achievable rate at users and enhances the throughput and coverage at cell edge region. The proposed scheme is based on the outage probability at users and taken on account the interference between nodes. Numerical analyses along with simulation results indicated there are an improvement in capacity for users at the cell edge is 40% increment from all cell capacity.
Translational bioinformatics in the cloud: an affordable alternative
2010-01-01
With the continued exponential expansion of publicly available genomic data and access to low-cost, high-throughput molecular technologies for profiling patient populations, computational technologies and informatics are becoming vital considerations in genomic medicine. Although cloud computing technology is being heralded as a key enabling technology for the future of genomic research, available case studies are limited to applications in the domain of high-throughput sequence data analysis. The goal of this study was to evaluate the computational and economic characteristics of cloud computing in performing a large-scale data integration and analysis representative of research problems in genomic medicine. We find that the cloud-based analysis compares favorably in both performance and cost in comparison to a local computational cluster, suggesting that cloud computing technologies might be a viable resource for facilitating large-scale translational research in genomic medicine. PMID:20691073
Development of a simple and low cost microbioreactor for high-throughput bioprocessing.
Rahman, Pattanathu K S M; Pasirayi, Godfrey; Auger, Vincent; Ali, Zulfiqur
2009-02-01
A simple microbioreactor for high-throughput bioprocessing made from low cost polymer polytetrafluoroethylene (PTFE) tubes with a working volume of 1.5 ml is described. We have developed a microfluidic system that handles a small population of cells of a model microorganism, Pseudomonas aeruginosa DS10-129. Under the conditions of the microbioreactor, the organism produced extracellular secondary metabolites by using nutrient broth modified with glycerol. Pyocyanins were isolated from the fermented medium as a metabolite of interest. Antibiotic properties of pyocyanin were effective against a number of microorganisms such as Staphylococcus aureus, S. epidermis, Bacillus subtilis, Micrococcus luteus and Saccharomyces cerevisiae. Batch fermentation of the model organism in the microbioreactor was compared to shake-flask and conventional bench fermenter methods. Results obtained from the microbioreactor compared favourably with the conventional processes.
Modeling and Simulation Reliable Spacecraft On-Board Computing
NASA Technical Reports Server (NTRS)
Park, Nohpill
1999-01-01
The proposed project will investigate modeling and simulation-driven testing and fault tolerance schemes for Spacecraft On-Board Computing, thereby achieving reliable spacecraft telecommunication. A spacecraft communication system has inherent capabilities of providing multipoint and broadcast transmission, connectivity between any two distant nodes within a wide-area coverage, quick network configuration /reconfiguration, rapid allocation of space segment capacity, and distance-insensitive cost. To realize the capabilities above mentioned, both the size and cost of the ground-station terminals have to be reduced by using reliable, high-throughput, fast and cost-effective on-board computing system which has been known to be a critical contributor to the overall performance of space mission deployment. Controlled vulnerability of mission data (measured in sensitivity), improved performance (measured in throughput and delay) and fault tolerance (measured in reliability) are some of the most important features of these systems. The system should be thoroughly tested and diagnosed before employing a fault tolerance into the system. Testing and fault tolerance strategies should be driven by accurate performance models (i.e. throughput, delay, reliability and sensitivity) to find an optimal solution in terms of reliability and cost. The modeling and simulation tools will be integrated with a system architecture module, a testing module and a module for fault tolerance all of which interacting through a centered graphical user interface.
Bond, Thomas E H; Sorenson, Alanna E; Schaeffer, Patrick M
2017-12-01
Biotin protein ligase (BirA) has been identified as an emerging drug target in Mycobacterium tuberculosis due to its essential metabolic role. Indeed, it is the only enzyme capable of covalently attaching biotin onto the biotin carboxyl carrier protein subunit of the acetyl-CoA carboxylase. Despite recent interest in this protein, there is still a gap in cost-effective high-throughput screening assays for rapid identification of mycobacterial BirA-targeting inhibitors. We present for the first time the cloning, expression, purification of mycobacterial GFP-tagged BirA and its application for the development of a high-throughput assay building on the principle of differential scanning fluorimetry of GFP-tagged proteins. The data obtained in this study reveal how biotin and ATP significantly increase the thermal stability (ΔT m =+16.5°C) of M. tuberculosis BirA and lead to formation of a high affinity holoenzyme complex (K obs =7.7nM). The new findings and mycobacterial BirA high-throughput assay presented in this work could provide an efficient platform for future anti-tubercular drug discovery campaigns. Copyright © 2017 Elsevier GmbH. All rights reserved.
Diving deeper into Zebrafish development of social behavior: analyzing high resolution data.
Buske, Christine; Gerlai, Robert
2014-08-30
Vertebrate model organisms have been utilized in high throughput screening but only with substantial cost and human capital investment. The zebrafish is a vertebrate model species that is a promising and cost effective candidate for efficient high throughput screening. Larval zebrafish have already been successfully employed in this regard (Lessman, 2011), but adult zebrafish also show great promise. High throughput screening requires the use of a large number of subjects and collection of substantial amount of data. Collection of data is only one of the demanding aspects of screening. However, in most screening approaches that involve behavioral data the main bottleneck that slows throughput is the time consuming aspect of analysis of the collected data. Some automated analytical tools do exist, but often they only work for one subject at a time, eliminating the possibility of fully utilizing zebrafish as a screening tool. This is a particularly important limitation for such complex phenotypes as social behavior. Testing multiple fish at a time can reveal complex social interactions but it may also allow the identification of outliers from a group of mutagenized or pharmacologically treated fish. Here, we describe a novel method using a custom software tool developed within our laboratory, which enables tracking multiple fish, in combination with a sophisticated analytical approach for summarizing and analyzing high resolution behavioral data. This paper focuses on the latter, the analytic tool, which we have developed using the R programming language and environment for statistical computing. We argue that combining sophisticated data collection methods with appropriate analytical tools will propel zebrafish into the future of neurobehavioral genetic research. Copyright © 2014. Published by Elsevier B.V.
Neto, A I; Correia, C R; Oliveira, M B; Rial-Hermida, M I; Alvarez-Lorenzo, C; Reis, R L; Mano, J F
2015-04-01
We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.
High-throughput sequencing: a failure mode analysis.
Yang, George S; Stott, Jeffery M; Smailus, Duane; Barber, Sarah A; Balasundaram, Miruna; Marra, Marco A; Holt, Robert A
2005-01-04
Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.
Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Maucourant, Sophie; Crescente, Vincenzo; Rosenberg, William; Mukhopadhyay, Tarit K
2018-01-01
The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018. © 2017 American Institute of Chemical Engineers.
Appliation of rad-sequencing to linkage mapping in citrus
USDA-ARS?s Scientific Manuscript database
High density linkage maps can be developed for modest cost using high-throughput DNA sequencing to genotype a defined fraction (representation) of the genome. We developed linkage maps in two citrus populations using the RAD (Restriction site Associated DNA) genotyping method which involves restrict...
Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).
Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E
2017-01-01
Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.
An innovative SNP genotyping method adapting to multiple platforms and throughputs.
Long, Y M; Chao, W S; Ma, G J; Xu, S S; Qi, L L
2017-03-01
An innovative genotyping method designated as semi-thermal asymmetric reverse PCR (STARP) was developed for genotyping individual SNPs with improved accuracy, flexible throughputs, low operational costs, and high platform compatibility. Multiplex chip-based technology for genome-scale genotyping of single nucleotide polymorphisms (SNPs) has made great progress in the past two decades. However, PCR-based genotyping of individual SNPs still remains problematic in accuracy, throughput, simplicity, and/or operational costs as well as the compatibility with multiple platforms. Here, we report a novel SNP genotyping method designated semi-thermal asymmetric reverse PCR (STARP). In this method, genotyping assay was performed under unique PCR conditions using two universal priming element-adjustable primers (PEA-primers) and one group of three locus-specific primers: two asymmetrically modified allele-specific primers (AMAS-primers) and their common reverse primer. The two AMAS-primers each were substituted one base in different positions at their 3' regions to significantly increase the amplification specificity of the two alleles and tailed at 5' ends to provide priming sites for PEA-primers. The two PEA-primers were developed for common use in all genotyping assays to stringently target the PCR fragments generated by the two AMAS-primers with similar PCR efficiencies and for flexible detection using either gel-free fluorescence signals or gel-based size separation. The state-of-the-art primer design and unique PCR conditions endowed STARP with all the major advantages of high accuracy, flexible throughputs, simple assay design, low operational costs, and platform compatibility. In addition to SNPs, STARP can also be employed in genotyping of indels (insertion-deletion polymorphisms). As vast variations in DNA sequences are being unearthed by many genome sequencing projects and genotyping by sequencing, STARP will have wide applications across all biological organisms in agriculture, medicine, and forensics.
Nanostructured plasmonic interferometers for ultrasensitive label-free biosensing
NASA Astrophysics Data System (ADS)
Gao, Yongkang
Optical biosensors that utilize surface plasmon resonance (SPR) technique to analyze the biomolecular interactions have been extensively explored in the last two decades and have become the gold standard for label-free biosensing. These powerful sensing tools allow fast, highly-sensitive monitoring of the interaction between biomolecules in real time, without the need for laborious fluorescent labeling, and have found widely ranging applications from biomedical diagnostics and drug discovery, to environmental sensing and food safety monitoring. However, the prism-coupling SPR geometry is complex and bulky, and has severely limited the integration of this technique into low-cost portable biomedical devices for point-of-care diagnostics and personal healthcare applications. Also, the complex prism-coupling scheme prevents the use of high numerical aperture (NA) optics to increase the spatial resolution for multi-channel, high-throughput detection in SPR imaging mode. This dissertation is focused on the design and fabrication of a promising new class of nanopatterned interferometric SPR sensors that integrate the strengths of miniaturized nanoplasmonic architectures with sensitive optical interferometry techniques to achieve bold advances in SPR biosensing. The nanosensor chips developed provide superior sensing performance comparable to conventional SPR systems, but employing a far simpler collinear optical transmission geometry, which largely facilitates system integration, miniaturization, and low-cost production. Moreover, the fabricated nanostructure-based SPR sensors feature a very small sensor footprint, allowing massive multiplexing on a chip for high-throughput detection. The successful transformation of SPR technique from bulky prism-coupling setup into this low-cost compact plasmonic platform would have a far-reaching impact on point-of-care diagnostic tools and also lead to advances in high-throughput sensing applications in proteomics, immunology, drug discovery, and fundamental cell biology research.
NASA Astrophysics Data System (ADS)
Aksu, Serap
Development of low cost nanolithography tools for precisely creating a variety of nanostructure shapes and arrangements in a high-throughput fashion is crucial for next generation biophotonic technologies. Although existing lithography techniques offer tremendous design flexibility, they have major drawbacks such as low-throughput and fabrication complexity. In addition the demand for the systematic fabrication of sub-100 nm structures on flexible, stretchable, non-planar nanoelectronic/photonic systems and multi-functional materials has fueled the research for innovative fabrication methods in recent years. This thesis research investigates a novel lithography approach for fabrication of engineered plasmonic nanostructures and metamaterials operating at visible and infrared wavelengths. The technique is called Nanostencil Lithography (NSL) and relies on direct deposition of materials through nanoapertures on a stencil. NSL enables high throughput fabrication of engineered antenna arrays with optical qualities similar to the ones fabricated by standard electron beam lithography. Moreover, nanostencils can be reused multiple times to fabricate series of plasmonic nanoantenna arrays with identical optical responses enabling high throughput manufacturing. Using nanostencils, very precise nanostructures could be fabricated with 10 nm accuracy. Furthermore, this technique has flexibility and resolution to create complex plasmonic nanostructure arrays on the substrates that are difficult to work with e-beam and ion beam lithography tools. Combining plasmonics with polymeric materials, biocompatible surfaces or curvilinear and non-planar objects enable unique optical applications since they can preserve normal device operation under large strain. In this work, mechanically tunable flexible optical materials and spectroscopy probes integrated on fiber surfaces that could be used for a wide range of applications are demonstrated. Finally, the first application of NSL fabricated low cost infrared nanoantenna arrays for plasmonically enhanced vibrational biospectroscopy is presented. Detection of immunologically important protein monolayers with thickness as small as 3 nm, and antibody assays are demonstrated using nanoantenna arrays fabricated with reusable nanostencils. The results presented indicate that nanostencil lithography is a promising method for reducing the nano manufacturing cost while enhancing the performance of biospectroscopy tools for biology and medicine. As a single step and low cost nanofabrication technique, NSL could facilitate the manufacturing of biophotonic technologies for real-world applications.
Future technologies for monitoring HIV drug resistance and cure.
Parikh, Urvi M; McCormick, Kevin; van Zyl, Gert; Mellors, John W
2017-03-01
Sensitive, scalable and affordable assays are critically needed for monitoring the success of interventions for preventing, treating and attempting to cure HIV infection. This review evaluates current and emerging technologies that are applicable for both surveillance of HIV drug resistance (HIVDR) and characterization of HIV reservoirs that persist despite antiretroviral therapy and are obstacles to curing HIV infection. Next-generation sequencing (NGS) has the potential to be adapted into high-throughput, cost-efficient approaches for HIVDR surveillance and monitoring during continued scale-up of antiretroviral therapy and rollout of preexposure prophylaxis. Similarly, improvements in PCR and NGS are resulting in higher throughput single genome sequencing to detect intact proviruses and to characterize HIV integration sites and clonal expansions of infected cells. Current population genotyping methods for resistance monitoring are high cost and low throughput. NGS, combined with simpler sample collection and storage matrices (e.g. dried blood spots), has considerable potential to broaden global surveillance and patient monitoring for HIVDR. Recent adaptions of NGS to identify integration sites of HIV in the human genome and to characterize the integrated HIV proviruses are likely to facilitate investigations of the impact of experimental 'curative' interventions on HIV reservoirs.
A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets.
Teste, Bruno; Ali-Cherif, Anaïs; Viovy, Jean Louis; Malaquin, Laurent
2013-06-21
Although passive immuno-agglutination assays consist of one step and simple procedures, they are usually not adapted for high throughput analyses and they require expensive and bulky equipment for quantitation steps. Here we demonstrate a low cost, multimodal and high throughput immuno-agglutination assay that relies on a combination of magnetic beads (MBs), droplets microfluidics and magnetic tweezers. Antibody coated MBs were used as a capture support in the homogeneous phase. Following the immune interaction, water in oil droplets containing MBs and analytes were generated and transported in Teflon tubing. When passing in between magnetic tweezers, the MBs contained in the droplets were magnetically confined in order to enhance the agglutination rate and kinetics. When releasing the magnetic field, the internal recirculation flows in the droplet induce shear forces that favor MBs redispersion. In the presence of the analyte, the system preserves specific interactions and MBs stay in the aggregated state while in the case of a non-specific analyte, redispersion of particles occurs. The analyte quantitation procedure relies on the MBs redispersion rate within the droplet. The influence of different parameters such as magnetic field intensity, flow rate and MBs concentration on the agglutination performances have been investigated and optimized. Although the immuno-agglutination assay described in this work may not compete with enzyme linked immunosorbent assay (ELISA) in terms of sensitivity, it offers major advantages regarding the reagents consumption (analysis is performed in sub microliter droplet) and the platform cost that yields to very cheap analyses. Moreover the fully automated analysis procedure provides reproducible analyses with throughput well above those of existing technologies. We demonstrated the detection of biotinylated phosphatase alkaline in 100 nL sample volumes with an analysis rate of 300 assays per hour and a limit of detection of 100 pM.
NASA Astrophysics Data System (ADS)
Close, Dan; Webb, James; Ripp, Steven; Patterson, Stacey; Sayler, Gary
2012-06-01
Traditionally, human toxicant bioavailability screening has been forced to proceed in either a high throughput fashion using prokaryotic or lower eukaryotic targets with minimal applicability to humans, or in a more expensive, lower throughput manner that uses fluorescent or bioluminescent human cells to directly provide human bioavailability data. While these efforts are often sufficient for basic scientific research, they prevent the rapid and remote identification of potentially toxic chemicals required for modern biosecurity applications. To merge the advantages of high throughput, low cost screening regimens with the direct bioavailability assessment of human cell line use, we re-engineered the bioluminescent bacterial luciferase gene cassette to function autonomously (without exogenous stimulation) within human cells. Optimized cassette expression provides for fully endogenous bioluminescent production, allowing continuous, real time monitoring of the bioavailability and toxicology of various compounds in an automated fashion. To access the functionality of this system, two sets of bioluminescent human cells were developed. The first was programed to suspend bioluminescent production upon toxicological challenge to mimic the non-specific detection of a toxicant. The second induced bioluminescence upon detection of a specific compound to demonstrate autonomous remote target identification. These cells were capable of responding to μM concentrations of the toxicant n-decanal, and allowed for continuous monitoring of cellular health throughout the treatment process. Induced bioluminescence was generated through treatment with doxycycline and was detectable upon dosage at a 100 ng/ml concentration. These results demonstrate that leveraging autonomous bioluminescence allows for low-cost, high throughput direct assessment of toxicant bioavailability.
Accessible high-throughput virtual screening molecular docking software for students and educators.
Jacob, Reed B; Andersen, Tim; McDougal, Owen M
2012-05-01
We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms.
Targeted post-mortem computed tomography cardiac angiography: proof of concept.
Saunders, Sarah L; Morgan, Bruno; Raj, Vimal; Robinson, Claire E; Rutty, Guy N
2011-07-01
With the increasing use and availability of multi-detector computed tomography and magnetic resonance imaging in autopsy practice, there has been an international push towards the development of the so-called near virtual autopsy. However, currently, a significant obstacle to the consideration as to whether or not near virtual autopsies could one day replace the conventional invasive autopsy is the failure of post-mortem imaging to yield detailed information concerning the coronary arteries. To date, a cost-effective, practical solution to allow high throughput imaging has not been presented within the forensic literature. We present a proof of concept paper describing a simple, quick, cost-effective, manual, targeted in situ post-mortem cardiac angiography method using a minimally invasive approach, to be used with multi-detector computed tomography for high throughput cadaveric imaging which can be used in permanent or temporary mortuaries.
Simple fluorescence-based high throughput cell viability assay for filamentous fungi.
Chadha, S; Kale, S P
2015-09-01
Filamentous fungi are important model organisms to understand the eukaryotic process and have been frequently exploited in research and industry. These fungi are also causative agents of serious diseases in plants and humans. Disease management strategies include in vitro susceptibility testing of the fungal pathogens to environmental conditions and antifungal agents. Conventional methods used for antifungal susceptibilities are cumbersome, time-consuming and are not suitable for a large-scale analysis. Here, we report a rapid, high throughput microplate-based fluorescence method for investigating the toxicity of antifungal and stress (osmotic, salt and oxidative) agents on Magnaporthe oryzae and compared it with agar dilution method. This bioassay is optimized for the resazurin reduction to fluorescent resorufin by the fungal hyphae. Resazurin bioassay showed inhibitory rates and IC50 values comparable to the agar dilution method and to previously reported IC50 or MICs for M. oryzae and other fungi. The present method can screen range of test agents from different chemical classes with different modes of action for antifungal activities in a simple, sensitive, time and cost effective manner. A simple fluorescence-based high throughput method is developed to test the effects of stress and antifungal agents on viability of filamentous fungus Magnaporthe oryzae. This resazurin fluorescence assay can detect inhibitory effects comparable to those obtained using the growth inhibition assay with added advantages of simplicity, time and cost effectiveness. This high throughput viability assay has a great potential in large-scale screening of the chemical libraries of antifungal agents, for evaluating the effects of environmental conditions and hyphal kinetic studies in mutant and natural populations of filamentous fungi. © 2015 The Society for Applied Microbiology.
'PACLIMS': a component LIM system for high-throughput functional genomic analysis.
Donofrio, Nicole; Rajagopalon, Ravi; Brown, Douglas; Diener, Stephen; Windham, Donald; Nolin, Shelly; Floyd, Anna; Mitchell, Thomas; Galadima, Natalia; Tucker, Sara; Orbach, Marc J; Patel, Gayatri; Farman, Mark; Pampanwar, Vishal; Soderlund, Cari; Lee, Yong-Hwan; Dean, Ralph A
2005-04-12
Recent advances in sequencing techniques leading to cost reduction have resulted in the generation of a growing number of sequenced eukaryotic genomes. Computational tools greatly assist in defining open reading frames and assigning tentative annotations. However, gene functions cannot be asserted without biological support through, among other things, mutational analysis. In taking a genome-wide approach to functionally annotate an entire organism, in this application the approximately 11,000 predicted genes in the rice blast fungus (Magnaporthe grisea), an effective platform for tracking and storing both the biological materials created and the data produced across several participating institutions was required. The platform designed, named PACLIMS, was built to support our high throughput pipeline for generating 50,000 random insertion mutants of Magnaporthe grisea. To be a useful tool for materials and data tracking and storage, PACLIMS was designed to be simple to use, modifiable to accommodate refinement of research protocols, and cost-efficient. Data entry into PACLIMS was simplified through the use of barcodes and scanners, thus reducing the potential human error, time constraints, and labor. This platform was designed in concert with our experimental protocol so that it leads the researchers through each step of the process from mutant generation through phenotypic assays, thus ensuring that every mutant produced is handled in an identical manner and all necessary data is captured. Many sequenced eukaryotes have reached the point where computational analyses are no longer sufficient and require biological support for their predicted genes. Consequently, there is an increasing need for platforms that support high throughput genome-wide mutational analyses. While PACLIMS was designed specifically for this project, the source and ideas present in its implementation can be used as a model for other high throughput mutational endeavors.
'PACLIMS': A component LIM system for high-throughput functional genomic analysis
Donofrio, Nicole; Rajagopalon, Ravi; Brown, Douglas; Diener, Stephen; Windham, Donald; Nolin, Shelly; Floyd, Anna; Mitchell, Thomas; Galadima, Natalia; Tucker, Sara; Orbach, Marc J; Patel, Gayatri; Farman, Mark; Pampanwar, Vishal; Soderlund, Cari; Lee, Yong-Hwan; Dean, Ralph A
2005-01-01
Background Recent advances in sequencing techniques leading to cost reduction have resulted in the generation of a growing number of sequenced eukaryotic genomes. Computational tools greatly assist in defining open reading frames and assigning tentative annotations. However, gene functions cannot be asserted without biological support through, among other things, mutational analysis. In taking a genome-wide approach to functionally annotate an entire organism, in this application the ~11,000 predicted genes in the rice blast fungus (Magnaporthe grisea), an effective platform for tracking and storing both the biological materials created and the data produced across several participating institutions was required. Results The platform designed, named PACLIMS, was built to support our high throughput pipeline for generating 50,000 random insertion mutants of Magnaporthe grisea. To be a useful tool for materials and data tracking and storage, PACLIMS was designed to be simple to use, modifiable to accommodate refinement of research protocols, and cost-efficient. Data entry into PACLIMS was simplified through the use of barcodes and scanners, thus reducing the potential human error, time constraints, and labor. This platform was designed in concert with our experimental protocol so that it leads the researchers through each step of the process from mutant generation through phenotypic assays, thus ensuring that every mutant produced is handled in an identical manner and all necessary data is captured. Conclusion Many sequenced eukaryotes have reached the point where computational analyses are no longer sufficient and require biological support for their predicted genes. Consequently, there is an increasing need for platforms that support high throughput genome-wide mutational analyses. While PACLIMS was designed specifically for this project, the source and ideas present in its implementation can be used as a model for other high throughput mutational endeavors. PMID:15826298
Britton, Sumudu; Cheng, Qin; McCarthy, James S
2016-02-16
As malaria transmission continues to decrease, an increasing number of countries will enter pre-elimination and elimination. To interrupt transmission, changes in control strategies are likely to require more accurate identification of all carriers of Plasmodium parasites, both symptomatic and asymptomatic, using diagnostic tools that are highly sensitive, high throughput and with fast turnaround times preferably performed in local health service settings. Currently available immunochromatographic lateral flow rapid diagnostic tests and field microscopy are unlikely to consistently detect infections at parasite densities less than 100 parasites/µL making them insufficiently sensitive for detecting all carriers. Molecular diagnostic platforms, such as PCR and LAMP, are currently available in reference laboratories, but at a cost both financially and in turnaround time. This review describes the recent progress in developing molecular diagnostic tools in terms of their capacity for high throughput and potential for performance in non-reference laboratories for malaria elimination.
NASA Astrophysics Data System (ADS)
Alexander, Kristen; Hampton, Meredith; Lopez, Rene; Desimone, Joseph
2009-03-01
When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.
NASA Astrophysics Data System (ADS)
Alexander, Kristen; Lopez, Rene; Hampton, Meredith; Desimone, Joseph
2008-10-01
When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.
Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications
Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun
2016-01-01
Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968
Using high-throughput barcode sequencing to efficiently map connectomes
Peikon, Ian D.; Kebschull, Justus M.; Vagin, Vasily V.; Ravens, Diana I.; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R.; Bressan, Dario
2017-01-01
Abstract The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision—a ‘connectome’—is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence—an RNA ‘barcode’—which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. PMID:28449067
Software Voting in Asynchronous NMR (N-Modular Redundancy) Computer Structures.
1983-05-06
added reliability is exchanged for increased system cost and decreased throughput. Some applications require extremely reliable systems, so the only...not the other way around. Although no systems proidc abstract voting yet. as more applications are written for NMR systems, the programmers are going...throughput goes down, the overhead goes up. Mathematically : Overhead= Non redundant Throughput- Actual Throughput (1) In this section, the actual throughput
Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.
Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N
2014-03-06
Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time.
Wu, Yichen; Ozcan, Aydogan
2018-03-01
Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology. Copyright © 2017 Elsevier Inc. All rights reserved.
Adverse outcome pathway networks II: Network analytics
The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental biological processes...
Chen, LiQin; Wang, Hui; Xu, Zhen; Zhang, QiuYue; Liu, Jia; Shen, Jun; Zhang, WanQi
2018-08-03
In the present study, we developed a simple and high-throughput solid phase extraction (SPE) procedure for selective extraction of catecholamines (CAs) in urine samples. The SPE adsorbents were electrospun composite fibers functionalized with 4-carboxybenzo-18-crown-6 ether modified XAD resin and polystyrene, which were packed into 96-well columns and used for high-throughput selective extraction of CAs in healthy human urine samples. Moreover, the extraction efficiency of packed-fiber SPE (PFSPE) was examined by high performance liquid chromatography coupled with fluorescence detector. The parameters affecting the extraction efficiency and impurity removal efficiency were optimized, and good linearity ranging from 0.5 to 400 ng/mL was obtained with a low limit of detection (LOD, 0.2-0.5 ng/mL) and a good repeatability (2.7%-3.7%, n = 6). The extraction recoveries of three CAs ranged from 70.5% to 119.5%. Furthermore, stable and reliable results obtained by the fluorescence detector were superior to those obtained by the electrochemical detector. Collectively, PFSPE coupled with 96-well columns was a simple, rapid, selective, high-throughput and cost-efficient method, and the proposed method could be applied in clinical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.
Performance evaluation of hybrid VLC using device cost and power over data throughput criteria
NASA Astrophysics Data System (ADS)
Lee, C. C.; Tan, C. S.; Wong, H. Y.; Yahya, M. B.
2013-09-01
Visible light communication (VLC) technology has attained its attention in both academic and industry lately. It is determined by the development of light emitting diode (LED) technology for solid-state lighting (SSL).It has great potential to gradually replace radio frequency (RF) wireless technology because it offers unregulated and unlicensed bandwidth to withstand future demand of indoor wireless access to real-time bandwidth-demanding applications. However, it was found to provide intrusive uplink channel that give rise to unpleasant irradiance from the user device which could interfere with the downlink channel of VLC and hence limit mobility to users as a result of small coverage (field of view of VLC).To address this potential problem, a Hybrid VLC system which integrates VLC (for downlink) and RF (for uplink) technology is proposed. It offers a non-intrusive RF back channel that provides high throughput VLC and maintains durability with conventional RF devices. To deploy Hybrid VLC system in the market, it must be energy and cost saving to attain its equivalent economical advantage by comparing to existing architecture that employs fluorescent or LED lights with RF technology. In this paper, performance evaluation on the proposed hybrid system was carried out in terms of device cost and power consumption against data throughput. Based on our simulation, Hybrid VLC system was found to reduce device cost by 3% and power consumption by 68% when compares to fluorescent lights with RF technology. Nevertheless, when it is compared to LED lights with RF technology, our proposed hybrid system is found to achieve device cost saving as high as 47% and reduced power consumption by 49%. Such promising results have demonstrated that Hybrid VLC system is a feasible solution and has paved the way for greater cost saving and energy efficient compares with the current RF architecture even with the increasing requirement of indoor area coverage.
Standfield, L; Comans, T; Raymer, M; O'Leary, S; Moretto, N; Scuffham, P
2016-08-01
Hospital outpatient orthopaedic services traditionally rely on medical specialists to assess all new patients to determine appropriate care. This has resulted in significant delays in service provision. In response, Orthopaedic Physiotherapy Screening Clinics and Multidisciplinary Services (OPSC) have been introduced to assess and co-ordinate care for semi- and non-urgent patients. To compare the efficiency of delivering increased semi- and non-urgent orthopaedic outpatient services through: (1) additional OPSC services; (2) additional traditional orthopaedic medical services with added surgical resources (TOMS + Surg); or (3) additional TOMS without added surgical resources (TOMS - Surg). A cost-utility analysis using discrete event simulation (DES) with dynamic queuing (DQ) was used to predict the cost effectiveness, throughput, queuing times, and resource utilisation, associated with introducing additional OPSC or TOMS ± Surg versus usual care. The introduction of additional OPSC or TOMS (±surgery) would be considered cost effective in Australia. However, OPSC was the most cost-effective option. Increasing the capacity of current OPSC services is an efficient way to improve patient throughput and waiting times without exceeding current surgical resources. An OPSC capacity increase of ~100 patients per month appears cost effective (A$8546 per quality-adjusted life-year) and results in a high level of OPSC utilisation (98 %). Increasing OPSC capacity to manage semi- and non-urgent patients would be cost effective, improve throughput, and reduce waiting times without exceeding current surgical resources. Unlike Markov cohort modelling, microsimulation, or DES without DQ, employing DES-DQ in situations where capacity constraints predominate provides valuable additional information beyond cost effectiveness to guide resource allocation decisions.
High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs.
Kampmann, Marie-Louise; Buchard, Anders; Børsting, Claus; Morling, Niels
2016-01-01
Here, we demonstrate that punches from buccal swab samples preserved on FTA cards can be used for high-throughput DNA sequencing, also known as massively parallel sequencing (MPS). We typed 44 reference samples with the HID-Ion AmpliSeq Identity Panel using washed 1.2 mm punches from FTA cards with buccal swabs and compared the results with those obtained with DNA extracted using the EZ1 DNA Investigator Kit. Concordant profiles were obtained for all samples. Our protocol includes simple punch, wash, and PCR steps, reducing cost and hands-on time in the laboratory. Furthermore, it facilitates automation of DNA sequencing.
Improving Cardiac Action Potential Measurements: 2D and 3D Cell Culture.
Daily, Neil J; Yin, Yue; Kemanli, Pinar; Ip, Brian; Wakatsuki, Tetsuro
2015-11-01
Progress in the development of assays for measuring cardiac action potential is crucial for the discovery of drugs for treating cardiac disease and assessing cardiotoxicity. Recently, high-throughput methods for assessing action potential using induced pluripotent stem cell (iPSC) derived cardiomyocytes in both two-dimensional monolayer cultures and three-dimensional tissues have been developed. We describe an improved method for assessing cardiac action potential using an ultra-fast cost-effective plate reader with commercially available dyes. Our methods improve dramatically the detection of the fluorescence signal from these dyes and make way for the development of more high-throughput methods for cardiac drug discovery and cardiotoxicity.
Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A
2017-04-10
High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10 -3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon
2016-01-01
Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.
Genome sequencing in microfabricated high-density picolitre reactors.
Margulies, Marcel; Egholm, Michael; Altman, William E; Attiya, Said; Bader, Joel S; Bemben, Lisa A; Berka, Jan; Braverman, Michael S; Chen, Yi-Ju; Chen, Zhoutao; Dewell, Scott B; Du, Lei; Fierro, Joseph M; Gomes, Xavier V; Godwin, Brian C; He, Wen; Helgesen, Scott; Ho, Chun Heen; Ho, Chun He; Irzyk, Gerard P; Jando, Szilveszter C; Alenquer, Maria L I; Jarvie, Thomas P; Jirage, Kshama B; Kim, Jong-Bum; Knight, James R; Lanza, Janna R; Leamon, John H; Lefkowitz, Steven M; Lei, Ming; Li, Jing; Lohman, Kenton L; Lu, Hong; Makhijani, Vinod B; McDade, Keith E; McKenna, Michael P; Myers, Eugene W; Nickerson, Elizabeth; Nobile, John R; Plant, Ramona; Puc, Bernard P; Ronan, Michael T; Roth, George T; Sarkis, Gary J; Simons, Jan Fredrik; Simpson, John W; Srinivasan, Maithreyan; Tartaro, Karrie R; Tomasz, Alexander; Vogt, Kari A; Volkmer, Greg A; Wang, Shally H; Wang, Yong; Weiner, Michael P; Yu, Pengguang; Begley, Richard F; Rothberg, Jonathan M
2005-09-15
The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.
OLEDs for lighting: new approaches
NASA Astrophysics Data System (ADS)
Duggal, Anil R.; Foust, Donald F.; Nealon, William F.; Heller, Christian M.
2004-02-01
OLED technology has improved to the point where it is now possible to envision developing OLEDs as a low cost solid state light source. In order to realize this, significant advances have to be made in device efficiency, lifetime at high brightness, high throughput fabrication, and the generation of illumination quality white light. In this talk, the requirements for general lighting will be reviewed and various approaches to meeting them will be outlined. Emphasis will be placed on a new monolithic series-connected OLED design architecture that promises scalability without high fabrication cost or design complexity.
Deadpool: A how-to-build guide
USDA-ARS?s Scientific Manuscript database
An easy-to-customize, low-cost, low disturbance proximal sensing cart for field-based high-throughput phenotyping is described. General dimensions and build guidelines are provided. The cart, named Deadpool, supports mounting multiple proximal sensors and cameras for characterizing plant traits grow...
Adverse outcome pathway networks: Development, analytics and applications
The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental biological processes...
Adverse outcome pathway networks I: Development and applications
The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental biological processes...
Professor: A motorized field-based phenotyping cart
USDA-ARS?s Scientific Manuscript database
An easy-to-customize, low-cost, low disturbance, motorized proximal sensing cart for field-based high-throughput phenotyping is described. General dimensions, motor specifications, and a remote operation application are given. The cart, named Professor, supports mounting multiple proximal sensors an...
Adverse outcome pathway networks: Development, analytics, and applications
Product Description:The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental ...
Guimaraes, S; Pruvost, M; Daligault, J; Stoetzel, E; Bennett, E A; Côté, N M-L; Nicolas, V; Lalis, A; Denys, C; Geigl, E-M; Grange, T
2017-05-01
We present a cost-effective metabarcoding approach, aMPlex Torrent, which relies on an improved multiplex PCR adapted to highly degraded DNA, combining barcoding and next-generation sequencing to simultaneously analyse many heterogeneous samples. We demonstrate the strength of these improvements by generating a phylochronology through the genotyping of ancient rodent remains from a Moroccan cave whose stratigraphy covers the last 120 000 years. Rodents are important for epidemiology, agronomy and ecological investigations and can act as bioindicators for human- and/or climate-induced environmental changes. Efficient and reliable genotyping of ancient rodent remains has the potential to deliver valuable phylogenetic and paleoecological information. The analysis of multiple ancient skeletal remains of very small size with poor DNA preservation, however, requires a sensitive high-throughput method to generate sufficient data. We show this approach to be particularly adapted at accessing this otherwise difficult taxonomic and genetic resource. As a highly scalable, lower cost and less labour-intensive alternative to targeted sequence capture approaches, we propose the aMPlex Torrent strategy to be a useful tool for the genetic analysis of multiple degraded samples in studies involving ecology, archaeology, conservation and evolutionary biology. © 2016 John Wiley & Sons Ltd.
MGIS: Managing banana (Musa spp.) genetic resources information and high-throughput genotyping data
USDA-ARS?s Scientific Manuscript database
Unraveling genetic diversity held in genebanks on a large scale is underway, due to the advances in Next-generation sequence-based technologies that produce high-density genetic markers for a large number of samples at low cost. Genebank users should be in a position to identify and select germplasm...
The need to develop novel screening methods for developmental neurotoxicity in order to alleviate the demands of cost, time, and animals required for in vivo toxicity studies is well recognized. Accordingly, the U.S. EPA launched the ToxCast research program in 2007 to develop c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, H.A.; Ashworth, R.L. Jr.; Phelps, R.H.
1990-01-01
Asynchronous computer conferencing (ACC) was investigated as an alternative to resident training for the Army Reserve Component (RC). Specifically, the goals were to (1) evaluate the performance and throughput of ACC as compared with traditional Resident School instruction and (2) determine the cost-effectiveness of developing and implementing ACC. Fourteen RC students took a module of the Army Engineer Officer Advanced Course (EOAC) via ACC. Course topics included Army doctrine, technical engineering subjects, leadership, and presentation skills. Resident content was adapted for presentation via ACC. The programs of instruction for ACC and the equivalent resident course were identical; only the mediamore » used for presentation were changed. Performance on tests, homework, and practical exercises; self-assessments of learning; throughput; and cost data wee the measures of interest. Comparison data were collected on RC students taking the course in residence. Results indicated that there were no performance differences between the two groups. Students taking the course via ACC perceived greater learning benefit than did students taking the course in residence. Resident throughput was superior to ACC throughput, both in terms of numbers of students completing and time to complete the course. In spite of this fact, however, ACC was more cost-effective than resident training.« less
Qi, Liming; Xia, Yong; Qi, Wenjing; Gao, Wenyue; Wu, Fengxia; Xu, Guobao
2016-01-19
Both a wireless electrochemiluminescence (ECL) electrode microarray chip and the dramatic increase in ECL by embedding a diode in an electromagnetic receiver coil have been first reported. The newly designed device consists of a chip and a transmitter. The chip has an electromagnetic receiver coil, a mini-diode, and a gold electrode array. The mini-diode can rectify alternating current into direct current and thus enhance ECL intensities by 18 thousand times, enabling a sensitive visual detection using common cameras or smart phones as low cost detectors. The detection limit of hydrogen peroxide using a digital camera is comparable to that using photomultiplier tube (PMT)-based detectors. Coupled with a PMT-based detector, the device can detect luminol with higher sensitivity with linear ranges from 10 nM to 1 mM. Because of the advantages including high sensitivity, high throughput, low cost, high portability, and simplicity, it is promising in point of care testing, drug screening, and high throughput analysis.
NASA Astrophysics Data System (ADS)
Lan, Ding-Hung; Hong, Shao-Huan; Chou, Li-Hui; Wang, Xiao-Feng; Liu, Cheng-Liang
2018-06-01
Organometal halide perovskite materials have demonstrated tremendous advances in the photovoltaic field recently because of their advantageous features of simple fabrication and high power conversion efficiency. To meet the high demand for high throughput and cost-effective, we present a wet process method that enables the probing of the parameters for perovskite layer deposition through two-step sequential ultrasonic spray-coating. This paper describes a detailed investigation on the effects of modification of spray precursor solution (PbI2 and CH3NH3I precursor concentration and solvents used) and post-annealing condition (temperature and time), which can be performed to create optimal film quality as well as improve device efficiency. Through the systematic optimization, the inverted planar perovskite solar cells show the reproducible photovoltaic properties with best power conversion efficiency (PCE) of 10.40% and average PCE of 9.70 ± 0.40%. A continuous spray-coating technique for rapid fabrication of total 16 pieces of perovskite films was demonstrated for providing a viable alternative for the high throughput production of the perovskite solar cells.
Large-Scale Biomonitoring of Remote and Threatened Ecosystems via High-Throughput Sequencing
Gibson, Joel F.; Shokralla, Shadi; Curry, Colin; Baird, Donald J.; Monk, Wendy A.; King, Ian; Hajibabaei, Mehrdad
2015-01-01
Biodiversity metrics are critical for assessment and monitoring of ecosystems threatened by anthropogenic stressors. Existing sorting and identification methods are too expensive and labour-intensive to be scaled up to meet management needs. Alternately, a high-throughput DNA sequencing approach could be used to determine biodiversity metrics from bulk environmental samples collected as part of a large-scale biomonitoring program. Here we show that both morphological and DNA sequence-based analyses are suitable for recovery of individual taxonomic richness, estimation of proportional abundance, and calculation of biodiversity metrics using a set of 24 benthic samples collected in the Peace-Athabasca Delta region of Canada. The high-throughput sequencing approach was able to recover all metrics with a higher degree of taxonomic resolution than morphological analysis. The reduced cost and increased capacity of DNA sequence-based approaches will finally allow environmental monitoring programs to operate at the geographical and temporal scale required by industrial and regulatory end-users. PMID:26488407
A gas trapping method for high-throughput metabolic experiments.
Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E
2018-01-01
Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.
Piezo-thermal Probe Array for High Throughput Applications
Gaitas, Angelo; French, Paddy
2012-01-01
Microcantilevers are used in a number of applications including atomic-force microscopy (AFM). In this work, deflection-sensing elements along with heating elements are integrated onto micromachined cantilever arrays to increase sensitivity, and reduce complexity and cost. An array of probes with 5–10 nm gold ultrathin film sensors on silicon substrates for high throughput scanning probe microscopy is developed. The deflection sensitivity is 0.2 ppm/nm. Plots of the change in resistance of the sensing element with displacement are used to calibrate the probes and determine probe contact with the substrate. Topographical scans demonstrate high throughput and nanometer resolution. The heating elements are calibrated and the thermal coefficient of resistance (TCR) is 655 ppm/K. The melting temperature of a material is measured by locally heating the material with the heating element of the cantilever while monitoring the bending with the deflection sensing element. The melting point value measured with this method is in close agreement with the reported value in literature. PMID:23641125
FMLRC: Hybrid long read error correction using an FM-index.
Wang, Jeremy R; Holt, James; McMillan, Leonard; Jones, Corbin D
2018-02-09
Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging "hybrid" assemblies that use long reads for scaffolding and short reads for accuracy. We describe a novel method leveraging a multi-string Burrows-Wheeler Transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We demonstrate that our method efficiently produces significantly more high quality corrected sequence than existing hybrid error-correction methods. We also show that our method produces more contiguous assemblies, in many cases, than existing state-of-the-art hybrid and long-read only de novo assembly methods. Our method accurately corrects long read sequence data using complementary short reads. We demonstrate higher total throughput of corrected long reads and a corresponding increase in contiguity of the resulting de novo assemblies. Improved throughput and computational efficiency than existing methods will help better economically utilize emerging long read sequencing technologies.
Adverse outcome pathways (AOPs): A framework to support predictive toxicology
High throughput and in silico methods are providing the regulatory toxicology community with capacity to rapidly and cost effectively generate data concerning a chemical’s ability to initiate one or more biological perturbations that may culminate in an adverse ecological o...
In 2007, EPA launched ToxCast™ in order to develop a cost-effective approach for prioritizing the toxicity testing of large numbers of chemicals in a short period of time. Using data from state-of-the-art high throughput screening (HTS) bioassays developed in the pharmaceutical i...
Analysis, annotation, and profiling of the oat seed transcriptome
USDA-ARS?s Scientific Manuscript database
Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...
Development and Validation of a Computational Model for Androgen Receptor Activity
Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can mo...
AN APPROACH TO METHODS DEVELOPMENT FOR HUMAN EXPOSURE ASSESSMENT STUDIES
Human exposure assessment studies require methods that are rapid, cost-effective and have a high sample through-put. The development of analytical methods for exposure studies should be based on specific information for individual studies. Human exposure studies suggest that di...
3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy
Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan
2017-01-01
High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings. PMID:28819645
A Disk-Based System for Producing and Distributing Science Products from MODIS
NASA Technical Reports Server (NTRS)
Masuoka, Edward; Wolfe, Robert; Sinno, Scott; Ye Gang; Teague, Michael
2007-01-01
Since beginning operations in 1999, the MODIS Adaptive Processing System (MODAPS) has evolved to take advantage of trends in information technology, such as the falling cost of computing cycles and disk storage and the availability of high quality open-source software (Linux, Apache and Perl), to achieve substantial gains in processing and distribution capacity and throughput while driving down the cost of system operations.
Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C
2016-08-01
As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. © 2016 Society for Laboratory Automation and Screening.
Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard
2015-02-09
Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.
A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.
Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao
2016-10-17
In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.
Carvalho, Rimenys J; Cruz, Thayana A
2018-01-01
High-throughput screening (HTS) systems have emerged as important tools to provide fast and low cost evaluation of several conditions at once since it requires small quantities of material and sample volumes. These characteristics are extremely valuable for experiments with large number of variables enabling the application of design of experiments (DoE) strategies or simple experimental planning approaches. Once, the capacity of HTS systems to mimic chromatographic purification steps was established, several studies were performed successfully including scale down purification. Here, we propose a method for studying different purification conditions that can be used for any recombinant protein, including complex and glycosylated proteins, using low binding filter microplates.
Novel selection methods for DNA-encoded chemical libraries
Chan, Alix I.; McGregor, Lynn M.; Liu, David R.
2015-01-01
Driven by the need for new compounds to serve as biological probes and leads for therapeutic development and the growing accessibility of DNA technologies including high-throughput sequencing, many academic and industrial groups have begun to use DNA-encoded chemical libraries as a source of bioactive small molecules. In this review, we describe the technologies that have enabled the selection of compounds with desired activities from these libraries. These methods exploit the sensitivity of in vitro selection coupled with DNA amplification to overcome some of the limitations and costs associated with conventional screening methods. In addition, we highlight newer techniques with the potential to be applied to the high-throughput evaluation of DNA-encoded chemical libraries. PMID:25723146
High-throughput purification of recombinant proteins using self-cleaving intein tags.
Coolbaugh, M J; Shakalli Tang, M J; Wood, D W
2017-01-01
High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format. Copyright © 2016 Elsevier Inc. All rights reserved.
High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wei; Shabbir, Faizan; Gong, Chao
2015-04-13
We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processingmore » units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.« less
Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang
2017-04-01
Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.
To become more efficient and cost effective regulatory toxicology is increasingly averting from whole animal testing toward collecting data at lower levels of biological organization, through such means as in vitro high throughput screening (HTS) assays. When anchored to relevant...
Adverse outcome pathways (AOPs): A framework to support predictive toxicology (presentation)
High throughput and in silico methods are providing the regulatory toxicology community with capacity to rapidly and cost effectively generate data concerning a chemical’s ability to initiate one or more biological perturbations that may culminate in an adverse ecological o...
ECONOMICS OF SAMPLE COMPOSITING AS A SCREENING TOOL IN GROUND WATER QUALITY MONITORING
Recent advances in high throughput/automated compositing with robotics/field-screening methods offer seldom-tapped opportunities for achieving cost-reduction in ground water quality monitoring programs. n economic framework is presented in this paper for the evaluation of sample ...
AOP-informed assessment of endocrine disruption in freshwater crustaceans
To date, most research focused on developing more efficient and cost effective methods to predict toxicity have focused on human biology. However, there is also a need for effective high throughput tools to predict toxicity to other species that perform critical ecosystem functio...
Application of a Permethrin Immunosorbent Assay Method to Residential Soil and Dust Samples
A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:wate...
Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.
Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie
2017-01-01
Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.
High-throughput STR analysis for DNA database using direct PCR.
Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan
2013-07-01
Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Guodong; Wu, Hong
2008-01-01
In this paper, we demonstrate an electrochemical high-throughput sensing platform for simple, sensitive detection of PSA based on QD labels. This sensing platform uses a microplate for immunoreactions and disposable screen-printed electrodes (SPE) for electrochemical stripping analysis of metal ions released from QD labels. With the 96-well microplate, capturing antibodies are conveniently immobilized to the well surface, and the process of immunoreaction is easily controlled. The formed sandwich complexes on the well surface are also easily isolated from reaction solutions. In particular, a microplate-based electrochemical assay can make it feasible to conduct a parallel analysis of several samples or multiplemore » protein markers. This assay offers a number of advantages including (1) simplicity, cost-effectiveness, (2) high sensitivity, (3) capability to sense multiple samples or targets in parallel, and (4) a potentially portable device with an SPE array implanted in the microplate. This PSA assay is sensitive because it uses two amplification processes: (1) QDs as a label for enhancing electrical signal since secondary antibodies are linked to QDs that contain a large number of metal atoms and (2) there is inherent signal amplification for electrochemical stripping analysis—preconcentration of metal ion onto the electrode surface for amplifying electrical signals. Therefore, the high sensitivity of this method, stemming from dual signal amplification via QD labels and pre-concentration, allows low concentration levels to be detected while using small sample volumes. Thus, this QD-based electrochemical detection approach offers a simple, rapid, cost-effective, and high throughput assay of PSA.« less
Shinozuka, Hiroshi; Forster, John W
2016-01-01
Background. Multiplexed sequencing is commonly performed on massively parallel short-read sequencing platforms such as Illumina, and the efficiency of library normalisation can affect the quality of the output dataset. Although several library normalisation approaches have been established, none are ideal for highly multiplexed sequencing due to issues of cost and/or processing time. Methods. An inexpensive and high-throughput library quantification method has been developed, based on an adaptation of the melting curve assay. Sequencing libraries were subjected to the assay using the Bio-Rad Laboratories CFX Connect(TM) Real-Time PCR Detection System. The library quantity was calculated through summation of reduction of relative fluorescence units between 86 and 95 °C. Results.PCR-enriched sequencing libraries are suitable for this quantification without pre-purification of DNA. Short DNA molecules, which ideally should be eliminated from the library for subsequent processing, were differentiated from the target DNA in a mixture on the basis of differences in melting temperature. Quantification results for long sequences targeted using the melting curve assay were correlated with those from existing methods (R (2) > 0.77), and that observed from MiSeq sequencing (R (2) = 0.82). Discussion.The results of multiplexed sequencing suggested that the normalisation performance of the described method is equivalent to that of another recently reported high-throughput bead-based method, BeNUS. However, costs for the melting curve assay are considerably lower and processing times shorter than those of other existing methods, suggesting greater suitability for highly multiplexed sequencing applications.
Use of the Zebrafish Larvae as a Model to Study Cigarette Smoke Condensate Toxicity
Ellis, Lee D.; Soo, Evelyn C.; Achenbach, John C.; Morash, Michael G.; Soanes, Kelly H.
2014-01-01
The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products. PMID:25526262
Use of the zebrafish larvae as a model to study cigarette smoke condensate toxicity.
Ellis, Lee D; Soo, Evelyn C; Achenbach, John C; Morash, Michael G; Soanes, Kelly H
2014-01-01
The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products.
Using high-throughput barcode sequencing to efficiently map connectomes.
Peikon, Ian D; Kebschull, Justus M; Vagin, Vasily V; Ravens, Diana I; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R; Bressan, Dario; Zador, Anthony M
2017-07-07
The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Nanowire-nanopore transistor sensor for DNA detection during translocation
NASA Astrophysics Data System (ADS)
Xie, Ping; Xiong, Qihua; Fang, Ying; Qing, Quan; Lieber, Charles
2011-03-01
Nanopore sequencing, as a promising low cost, high throughput sequencing technique, has been proposed more than a decade ago. Due to the incompatibility between small ionic current signal and fast translocation speed and the technical difficulties on large scale integration of nanopore for direct ionic current sequencing, alternative methods rely on integrated DNA sensors have been proposed, such as using capacitive coupling or tunnelling current etc. But none of them have been experimentally demonstrated yet. Here we show that for the first time an amplified sensor signal has been experimentally recorded from a nanowire-nanopore field effect transistor sensor during DNA translocation. Independent multi-channel recording was also demonstrated for the first time. Our results suggest that the signal is from highly localized potential change caused by DNA translocation in none-balanced buffer condition. Given this method may produce larger signal for smaller nanopores, we hope our experiment can be a starting point for a new generation of nanopore sequencing devices with larger signal, higher bandwidth and large-scale multiplexing capability and finally realize the ultimate goal of low cost high throughput sequencing.
Zhu, Xudong; Arman, Bessembayev; Chu, Ju; Wang, Yonghong; Zhuang, Yingping
2017-05-01
To develop an efficient cost-effective screening process to improve production of glucoamylase in Aspergillus niger. The cultivation of A. niger was achieved with well-dispersed morphology in 48-deep-well microtiter plates, which increased the throughput of the samples compared to traditional flask cultivation. There was a close negative correlation between glucoamylase and its pH of the fermentation broth. A novel high-throughput analysis method using Methyl Orange was developed. When compared to the conventional analysis method using 4-nitrophenyl α-D-glucopyranoside as substrate, a correlation coefficient of 0.96 by statistical analysis was obtained. Using this novel screening method, we acquired a strain with an activity of 2.2 × 10 3 U ml -1 , a 70% higher yield of glucoamylase than its parent strain.
Taxonomic relevance of an adverse outcome pathway network considering apis and non-apis bees
Product Description: The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental...
Lessons from Cotton: Research Projects Following Development of a Community-based Genotyping Array
USDA-ARS?s Scientific Manuscript database
High-throughput, cost-effective genotyping arrays provide a standardized resource for plant breeding communities that can be used for a wide range of applications at a suitable pace for integrating pertinent information into breeding programs. Traditionally, crop research communities will target dev...
The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to devel...
Next generation platforms for high-throughput biodosimetry
Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.
2014-01-01
Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of biodosimetry assays was described. These platforms can be used at different stages of biodosimetry assays starting from blood collection into microtubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multiwell and multichannel plates. Robotically friendly platforms can be used for different biodosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. PMID:24837249
Hegab, Hanaa M.; ElMekawy, Ahmed; Stakenborg, Tim
2013-01-01
Microbial fermentation process development is pursuing a high production yield. This requires a high throughput screening and optimization of the microbial strains, which is nowadays commonly achieved by applying slow and labor-intensive submerged cultivation in shake flasks or microtiter plates. These methods are also limited towards end-point measurements, low analytical data output, and control over the fermentation process. These drawbacks could be overcome by means of scaled-down microfluidic microbioreactors (μBR) that allow for online control over cultivation data and automation, hence reducing cost and time. This review goes beyond previous work not only by providing a detailed update on the current μBR fabrication techniques but also the operation and control of μBRs is compared to large scale fermentation reactors. PMID:24404006
Predicting Novel Bulk Metallic Glasses via High- Throughput Calculations
NASA Astrophysics Data System (ADS)
Perim, E.; Lee, D.; Liu, Y.; Toher, C.; Gong, P.; Li, Y.; Simmons, W. N.; Levy, O.; Vlassak, J.; Schroers, J.; Curtarolo, S.
Bulk metallic glasses (BMGs) are materials which may combine key properties from crystalline metals, such as high hardness, with others typically presented by plastics, such as easy processability. However, the cost of the known BMGs poses a significant obstacle for the development of applications, which has lead to a long search for novel, economically viable, BMGs. The emergence of high-throughput DFT calculations, such as the library provided by the AFLOWLIB consortium, has provided new tools for materials discovery. We have used this data to develop a new glass forming descriptor combining structural factors with thermodynamics in order to quickly screen through a large number of alloy systems in the AFLOWLIB database, identifying the most promising systems and the optimal compositions for glass formation. National Science Foundation (DMR-1436151, DMR-1435820, DMR-1436268).
High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling
Till, Bradley J.; Zerr, Troy; Bowers, Elisabeth; Greene, Elizabeth A.; Comai, Luca; Henikoff, Steven
2006-01-01
Human individuals differ from one another at only ∼0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease. PMID:16893952
Kittelmann, Jörg; Ottens, Marcel; Hubbuch, Jürgen
2015-04-15
High-throughput batch screening technologies have become an important tool in downstream process development. Although continuative miniaturization saves time and sample consumption, there is yet no screening process described in the 384-well microplate format. Several processes are established in the 96-well dimension to investigate protein-adsorbent interactions, utilizing between 6.8 and 50 μL resin per well. However, as sample consumption scales with resin volumes and throughput scales with experiments per microplate, they are limited in costs and saved time. In this work, a new method for in-well resin quantification by optical means, applicable in the 384-well format, and resin volumes as small as 0.1 μL is introduced. A HTS batch isotherm process is described, utilizing this new method in combination with optical sample volume quantification for screening of isotherm parameters in 384-well microplates. Results are qualified by confidence bounds determined by bootstrap analysis and a comprehensive Monte Carlo study of error propagation. This new approach opens the door to a variety of screening processes in the 384-well format on HTS stations, higher quality screening data and an increase in throughput. Copyright © 2015 Elsevier B.V. All rights reserved.
Towards roll-to-roll manufacturing of polymer photonic devices
NASA Astrophysics Data System (ADS)
Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.
2014-03-01
Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.
Image Harvest: an open-source platform for high-throughput plant image processing and analysis
Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal
2016-01-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917
High throughput and miniaturised systems for biodegradability assessments.
Cregut, Mickael; Jouanneau, Sulivan; Brillet, François; Durand, Marie-José; Sweetlove, Cyril; Chenèble, Jean-Charles; L'Haridon, Jacques; Thouand, Gérald
2014-01-01
The society demands safer products with a better ecological profile. Regulatory criteria have been developed to prevent risks for human health and the environment, for example, within the framework of the European regulation REACH (Regulation (EC) No 1907, 2006). This has driven industry to consider the development of high throughput screening methodologies for assessing chemical biodegradability. These new screening methodologies must be scalable for miniaturisation, reproducible and as reliable as existing procedures for enhanced biodegradability assessment. Here, we evaluate two alternative systems that can be scaled for high throughput screening and conveniently miniaturised to limit costs in comparison with traditional testing. These systems are based on two dyes as follows: an invasive fluorescent dyes that serves as a cellular activity marker (a resazurin-like dye reagent) and a noninvasive fluorescent oxygen optosensor dye (an optical sensor). The advantages and limitations of these platforms for biodegradability assessment are presented. Our results confirm the feasibility of these systems for evaluating and screening chemicals for ready biodegradability. The optosensor is a miniaturised version of a component already used in traditional ready biodegradability testing, whereas the resazurin dye offers an interesting new screening mechanism for chemical concentrations greater than 10 mg/l that are not amenable to traditional closed bottle tests. The use of these approaches allows generalisation of high throughput screening methodologies to meet the need of developing new compounds with a favourable ecological profile and also assessment for regulatory purpose.
Monolithic amorphous silicon modules on continuous polymer substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimmer, D.P.
This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience canmore » increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.« less
Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi
NASA Astrophysics Data System (ADS)
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad
2015-05-01
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).
High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission
Plouffe, David M.; Wree, Melanie; Du, Alan Y.; Meister, Stephan; Li, Fengwu; Patra, Kailash; Lubar, Aristea; Okitsu, Shinji L.; Flannery, Erika L.; Kato, Nobutaka; Tanaseichuk, Olga; Comer, Eamon; Zhou, Bin; Kuhen, Kelli; Zhou, Yingyao; Leroy, Didier; Schreiber, Stuart L.; Scherer, Christina A.; Vinetz, Joseph; Winzeler, Elizabeth A.
2016-01-01
Summary Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs. PMID:26749441
Construction of siRNA/miRNA expression vectors based on a one-step PCR process
Xu, Jun; Zeng, Jie Qiong; Wan, Gang; Hu, Gui Bin; Yan, Hong; Ma, Li Xin
2009-01-01
Background RNA interference (RNAi) has become a powerful means for silencing target gene expression in mammalian cells and is envisioned to be useful in therapeutic approaches to human disease. In recent years, high-throughput, genome-wide screening of siRNA/miRNA libraries has emerged as a desirable approach. Current methods for constructing siRNA/miRNA expression vectors require the synthesis of long oligonucleotides, which is costly and suffers from mutation problems. Results Here we report an ingenious method to solve traditional problems associated with construction of siRNA/miRNA expression vectors. We synthesized shorter primers (< 50 nucleotides) to generate a linear expression structure by PCR. The PCR products were directly transformed into chemically competent E. coli and converted to functional vectors in vivo via homologous recombination. The positive clones could be easily screened under UV light. Using this method we successfully constructed over 500 functional siRNA/miRNA expression vectors. Sequencing of the vectors confirmed a high accuracy rate. Conclusion This novel, convenient, low-cost and highly efficient approach may be useful for high-throughput assays of RNAi libraries. PMID:19490634
High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope
Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M
2011-01-01
Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462
Development and use of molecular markers: past and present.
Grover, Atul; Sharma, P C
2016-01-01
Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.
A high-throughput method for GMO multi-detection using a microfluidic dynamic array.
Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J
2014-02-01
The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.
USDA-ARS?s Scientific Manuscript database
Genotyping-by-Sequencing (GBS) is a low-cost, high-throughput, method for genome-wide polymorphism discovery and genotyping adjacent to restriction sites. Since 2010, GBS has been applied for the genotyping of over 12,000 grape breeding lines, with a primary focus on identifying markers predictive ...
The U.S. EPA's ToxCast Chemical Screening Program and Predictive Modeling of Toxicity
The ToxCast program was developed by the U.S. EPA's National Center for Computational Toxicology to provide cost-effective high-throughput screening for the potential toxicity of thousands of chemicals. Phase I screened 309 compounds in over 500 assays to evaluate concentration-...
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
Maintaining Momentum toward Graduation: OER and the Course Throughput Rate
ERIC Educational Resources Information Center
Hilton, John, III; Fischer, Lane; Wiley, David; Williams, Linda
2016-01-01
"Open Educational Resources" (OER) have the potential to replace traditional textbooks in higher education. Previous studies indicate that use of OER results in high student and faculty satisfaction, lower costs, and similar or better educational outcomes. In this case study, we compared students using traditional textbooks with those…
USDA-ARS?s Scientific Manuscript database
Genetic diversity is an essential resource for breeders to improve new cultivars with desirable characteristics. Recently genotyping-by-sequencing (GBS), a next generation sequencing (NGS) based technology that can simplify complex genomes, has been used as a high-throughput and cost-effective molec...
Recent advances in targeted RNA-Seq technology allow researchers to efficiently and cost-effectively obtain whole transcriptome profiles using picograms of mRNA from human cell lysates. Low mRNA input requirements and sample multiplexing capabilities has made time- and concentrat...
A reduced transcriptome approach to assess environmental toxicants using zebrafish embryo tests
This paper reports on the pilot testing of a new bioassay platform that monitors expression of 1600 genes in zebrafish embryos exposed to either single chemicals or complex water samples. The method provides a more cost effective, high throughput means to broadly evaluate the pot...
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing technologies are able to produce high-throughput short sequence reads in a cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. Here I survey their major applications ranging...
Recent Applications of DNA Sequencing Technologies in Food, Nutrition and Agriculture
USDA-ARS?s Scientific Manuscript database
Next-generation DNA sequencing technologies are able to produce millions of short sequence reads in a high-throughput, cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. This review surveys their rec...
Next generation sequencers: methods and applications in food-borne pathogens
USDA-ARS?s Scientific Manuscript database
Next generation sequencers are able to produce millions of short sequence reads in a high-throughput, low-cost way. The emergence of these technologies has not only facilitated genome sequencing but also started to change the landscape of life sciences. This chapter will survey their methods and app...
Multi-locus mixed model analysis of stem rust resistance in a worldwide collection of winter wheat
USDA-ARS?s Scientific Manuscript database
Genome-wide association mapping is a powerful tool for dissecting the relationship between phenotypes and genetic variants in diverse populations. With improved cost efficiency of high-throughput genotyping platforms, association mapping is a desirable method to mine populations for favorable allele...
Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in hig...
The rapidly expanding field of nanotechnology is introducing a large number and diversity of engineered nanomaterials into research and commerce with concordant uncertainty regarding the potential adverse health and ecological effects. With costs and time of traditional animal to...
Sobhani, R; McVicker, R; Spangenberg, C; Rosso, D
2012-01-01
In regions characterized by water scarcity, such as coastal Southern California, groundwater containing chromophoric dissolved organic matter is a viable source of water supply. In the coastal aquifer of Orange County in California, seawater intrusion driven by coastal groundwater pumping increased the concentration of bromide in extracted groundwater from 0.4 mg l⁻¹ in 2000 to over 0.8 mg l⁻¹ in 2004. Bromide, a precursor to bromate formation is regulated by USEPA and the California Department of Health as a potential carcinogen and therefore must be reduced to a level below 10 μg l⁻¹. This paper compares two processes for treatment of highly coloured groundwater: nanofiltration and ozone injection coupled with biologically activated carbon. The requirement for bromate removal decreased the water production in the ozonation process to compensate for increased maintenance requirements, and required the adoption of catalytic carbon with associated increase in capital and operating costs per unit volume. However, due to the absence of oxidant addition in nanofiltration processes, this process is not affected by bromide. We performed a process analysis and a comparative economic analysis of capital and operating costs for both technologies. Our results show that for the case studied in coastal Southern California, nanofiltration has higher throughput and lower specific capital and operating cost, when compared to ozone injection with biologically activate carbon. Ozone injection with biologically activated carbon, compared to nanofiltration, has 14% higher capital cost and 12% higher operating costs per unit water produced while operating at the initial throughput. Due to reduced ozone concentration required to accommodate for bromate reduction, the ozonation process throughput is reduced and the actual cost increase (per unit water produced) is 68% higher for capital cost and 30% higher for operations. Copyright © 2011 Elsevier Ltd. All rights reserved.
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...
2017-06-12
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianlin; Du, Zhijia; Ruther, Rose E.
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.
2017-09-01
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.
Integrative Systems Biology for Data Driven Knowledge Discovery
Greene, Casey S.; Troyanskaya, Olga G.
2015-01-01
Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756
Chang, Yun-Chorng; Lu, Sih-Chen; Chung, Hsin-Chan; Wang, Shih-Ming; Tsai, Tzung-Da; Guo, Tzung-Fang
2013-01-01
Various infra-red and planar chiral metamaterials were fabricated using the modified Nanospherical-Lens Lithography. By replacing the light source with a hand-held ultraviolet lamp, its asymmetric light emission pattern produces the elliptical-shaped photoresist holes after passing through the spheres. The long axis of the ellipse is parallel to the lamp direction. The fabricated ellipse arrays exhibit localized surface plasmon resonance in mid-infra-red and are ideal platforms for surface enhanced infra-red absorption (SEIRA). We also demonstrate a way to design and fabricate complicated patterns by tuning parameters in each exposure step. This method is both high-throughput and low-cost, which is a powerful tool for future infra-red metamaterials applications. PMID:24284941
ADMET in silico modelling: towards prediction paradise?
van de Waterbeemd, Han; Gifford, Eric
2003-03-01
Following studies in the late 1990s that indicated that poor pharmacokinetics and toxicity were important causes of costly late-stage failures in drug development, it has become widely appreciated that these areas should be considered as early as possible in the drug discovery process. However, in recent years, combinatorial chemistry and high-throughput screening have significantly increased the number of compounds for which early data on absorption, distribution, metabolism, excretion (ADME) and toxicity (T) are needed, which has in turn driven the development of a variety of medium and high-throughput in vitro ADMET screens. Here, we describe how in silico approaches will further increase our ability to predict and model the most relevant pharmacokinetic, metabolic and toxicity endpoints, thereby accelerating the drug discovery process.
Li, B; Chan, E C Y
2003-01-01
We present an approach to customize the sample submission process for high-throughput purification (HTP) of combinatorial parallel libraries using preparative liquid chromatography electrospray ionization mass spectrometry. In this study, Visual Basic and Visual Basic for Applications programs were developed using Microsoft Visual Basic 6 and Microsoft Excel 2000, respectively. These programs are subsequently applied for the seamless electronic submission and handling of data for HTP. Functions were incorporated into these programs where medicinal chemists can perform on-line verification of the purification status and on-line retrieval of postpurification data. The application of these user friendly and cost effective programs in our HTP technology has greatly increased our work efficiency by reducing paper work and manual manipulation of data.
Novel selection methods for DNA-encoded chemical libraries.
Chan, Alix I; McGregor, Lynn M; Liu, David R
2015-06-01
Driven by the need for new compounds to serve as biological probes and leads for therapeutic development and the growing accessibility of DNA technologies including high-throughput sequencing, many academic and industrial groups have begun to use DNA-encoded chemical libraries as a source of bioactive small molecules. In this review, we describe the technologies that have enabled the selection of compounds with desired activities from these libraries. These methods exploit the sensitivity of in vitro selection coupled with DNA amplification to overcome some of the limitations and costs associated with conventional screening methods. In addition, we highlight newer techniques with the potential to be applied to the high-throughput evaluation of DNA-encoded chemical libraries. Copyright © 2015 Elsevier Ltd. All rights reserved.
ADVANCES IN DISCOVERING SMALL MOLECULES TO PROBE PROTEIN FUNCTION IN A SYSTEMS CONTEXT
Doyle, Shelby K; Pop, Marius S; Evans, Helen L; Koehler, Angela N
2015-01-01
High throughput screening has historically been used for drug discovery almost exclusively by the pharmaceutical industry. Due to a significant decrease in costs associated with establishing a high throughput facility and an exponential interest in discovering probes of development and disease associated biomolecules, HTS core facilities have become an integral part of most academic and non-profit research institutions over the past decade. This major shift has led to the development of new HTS methodologies extending beyond the capabilities and target classes used in classical drug discovery approaches such as traditional enzymatic activity-based screens. In this brief review we describe some of the most interesting developments in HTS technologies and methods for chemical probe discovery. PMID:26615565
Wilson, Kitchener D; Shen, Peidong; Fung, Eula; Karakikes, Ioannis; Zhang, Angela; InanlooRahatloo, Kolsoum; Odegaard, Justin; Sallam, Karim; Davis, Ronald W; Lui, George K; Ashley, Euan A; Scharfe, Curt; Wu, Joseph C
2015-09-11
Thousands of mutations across >50 genes have been implicated in inherited cardiomyopathies. However, options for sequencing this rapidly evolving gene set are limited because many sequencing services and off-the-shelf kits suffer from slow turnaround, inefficient capture of genomic DNA, and high cost. Furthermore, customization of these assays to cover emerging targets that suit individual needs is often expensive and time consuming. We sought to develop a custom high throughput, clinical-grade next-generation sequencing assay for detecting cardiac disease gene mutations with improved accuracy, flexibility, turnaround, and cost. We used double-stranded probes (complementary long padlock probes), an inexpensive and customizable capture technology, to efficiently capture and amplify the entire coding region and flanking intronic and regulatory sequences of 88 genes and 40 microRNAs associated with inherited cardiomyopathies, congenital heart disease, and cardiac development. Multiplexing 11 samples per sequencing run resulted in a mean base pair coverage of 420, of which 97% had >20× coverage and >99% were concordant with known heterozygous single nucleotide polymorphisms. The assay correctly detected germline variants in 24 individuals and revealed several polymorphic regions in miR-499. Total run time was 3 days at an approximate cost of $100 per sample. Accurate, high-throughput detection of mutations across numerous cardiac genes is achievable with complementary long padlock probe technology. Moreover, this format allows facile insertion of additional probes as more cardiomyopathy and congenital heart disease genes are discovered, giving researchers a powerful new tool for DNA mutation detection and discovery. © 2015 American Heart Association, Inc.
Analysis of Illumina Microbial Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clum, Alicia; Foster, Brian; Froula, Jeff
2010-05-28
Since the emerging of second generation sequencing technologies, the evaluation of different sequencing approaches and their assembly strategies for different types of genomes has become an important undertaken. Next generation sequencing technologies dramatically increase sequence throughput while decreasing cost, making them an attractive tool for whole genome shotgun sequencing. To compare different approaches for de-novo whole genome assembly, appropriate tools and a solid understanding of both quantity and quality of the underlying sequence data are crucial. Here, we performed an in-depth analysis of short-read Illumina sequence assembly strategies for bacterial and archaeal genomes. Different types of Illumina libraries as wellmore » as different trim parameters and assemblers were evaluated. Results of the comparative analysis and sequencing platforms will be presented. The goal of this analysis is to develop a cost-effective approach for the increased throughput of the generation of high quality microbial genomes.« less
Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen
2015-10-01
Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.
Taylor, Jessica; Woodcock, Simon
2015-09-01
For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA-Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery. © 2015 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Mughal, A.; Newman, H.
2017-10-01
We review and demonstrate the design of efficient data transfer nodes (DTNs), from the perspective of the highest throughput over both local and wide area networks, as well as the highest performance per unit cost. A careful system-level design is required for the hardware, firmware, OS and software components. Furthermore, additional tuning of these components, and the identification and elimination of any remaining bottlenecks is needed once the system is assembled and commissioned, in order to obtain optimal performance. For high throughput data transfers, specialized software is used to overcome the traditional limits in performance caused by the OS, file system, file structures used, etc. Concretely, we will discuss and present the latest results using Fast Data Transfer (FDT), developed by Caltech. We present and discuss the design choices for three generations of Caltech DTNs. Their transfer capabilities range from 40 Gbps to 400 Gbps. Disk throughput is still the biggest challenge in the current generation of available hardware. However, new NVME drives combined with RDMA and a new NVME network fabric are expected to improve the overall data-transfer throughput and simultaneously reduce the CPU load on the end nodes.
High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, Chuan; Zhang, Haibin
2017-03-01
For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
Saramago, P; Yang, H; Llewellyn, A; Palmer, S; Simmonds, M; Griffin, S
2018-02-07
To evaluate the cost-effectiveness of high-throughput, non-invasive prenatal testing (HT-NIPT) for fetal Rhesus D (RhD) genotype to guide antenatal prophylaxis with anti-D immunoglobulin compared with routine antenatal anti-D immunoglobulin prophylaxis (RAADP). Cost-effectiveness decision-analytic modelling. Primary care. A simulated population of 100 000 RhD-negative women not known to be sensitised to the RhD antigen. A decision tree model was used to characterise the antenatal care pathway in England and the long-term consequences of sensitisation events. The diagnostic accuracy of HT-NIPT was derived from a systematic review and bivariate meta-analysis; estimates of other inputs were derived from relevant literature sources and databases. Women in whom the HT-NIPT was positive or inconclusive continued to receive RAADP, whereas women with a negative result received none. Five alternative strategies in which the use of HT-NIPT may affect the existing postpartum care pathway were considered. Costs expressed in 2015GBP and impact on health outcomes expressed in terms of quality-adjusted life-years over a lifetime. The results suggested that HT-NIPT appears cost saving but also less effective than current practice, irrespective of the postpartum strategy evaluated. A postpartum strategy in which inconclusive test results are distinguished from positive results performed best. HT-NIPT is only cost-effective when the overall test cost is £26.60 or less. HT-NIPT would reduce unnecessary treatment with routine anti-D immunoglobulin and is cost saving when compared with current practice. The extent of any savings and cost-effectiveness is sensitive to the overall test cost. HT-NIPT is cost saving compared with providing anti-D to all RhD-negative pregnant women. © 2018 Royal College of Obstetricians and Gynaecologists.
Abal-Fabeiro, J L; Maside, X; Llovo, J; Bello, X; Torres, M; Treviño, M; Moldes, L; Muñoz, A; Carracedo, A; Bartolomé, C
2014-04-01
The epidemiological study of human cryptosporidiosis requires the characterization of species and subtypes involved in human disease in large sample collections. Molecular genotyping is costly and time-consuming, making the implementation of low-cost, highly efficient technologies increasingly necessary. Here, we designed a protocol based on MALDI-TOF mass spectrometry for the high-throughput genotyping of a panel of 55 single nucleotide variants (SNVs) selected as markers for the identification of common gp60 subtypes of four Cryptosporidium species that infect humans. The method was applied to a panel of 608 human and 63 bovine isolates and the results were compared with control samples typed by Sanger sequencing. The method allowed the identification of species in 610 specimens (90·9%) and gp60 subtype in 605 (90·2%). It displayed excellent performance, with sensitivity and specificity values of 87·3 and 98·0%, respectively. Up to nine genotypes from four different Cryptosporidium species (C. hominis, C. parvum, C. meleagridis and C. felis) were detected in humans; the most common ones were C. hominis subtype Ib, and C. parvum IIa (61·3 and 28·3%, respectively). 96·5% of the bovine samples were typed as IIa. The method performs as well as the widely used Sanger sequencing and is more cost-effective and less time consuming.
Modeling congenital disease and inborn errors of development in Drosophila melanogaster
Moulton, Matthew J.; Letsou, Anthea
2016-01-01
ABSTRACT Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes. PMID:26935104
Mask pattern generator employing EPL technology
NASA Astrophysics Data System (ADS)
Yoshioka, Nobuyuki; Yamabe, Masaki; Wakamiya, Wataru; Endo, Nobuhiro
2003-08-01
Mask cost is one of crucial issues in device fabrication, especially in SoC (System on a Chip) with small-volume production. The cost mainly depends on productivity of mask manufacturing tools such as mask writers and defect inspection tools. EPL (Electron Projection Lithography) has been developing as a high-throughput electron beam exposure technology that will succeed optical lithography. The application of EPL technology to mask writing will result in high productivity and contribute to decrease the mask cost. The concept of a mask pattern generator employing EPL technology is proposed in this paper. It is very similar to EPL technology used for pattern printing on a wafer. The mask patterns on the glass substrate are exposed by projecting the basic circuit patterns formed on the mother EPL mask. One example of the mother EPL mask is a stencil type made with 200-mm Si wafer. The basic circuit patterns are IP patterns and logical primitive patterns such as cell libraries (AND, OR, Inverter, Flip-Flop and etc.) to express the SoC device patterns. Since the SoC patterns are exposed with its collective units such as IP and logical primitive patterns by using this method, the high throughput will be expected comparing with conventional mask E-beam writers. In this paper, the mask pattern generator with the EPL technology is proposed. The concept, its advantages and issues to be solved are discussed.
Testing has begun as part of the EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 battery of 11 in vitro and in vivo tests. A recognized issue with the EDSP is that the current Tier 1 screening battery is highly resource intensive in terms of cost, time and animal usage fo...
Cowan, Lauren S; Diem, Lois; Brake, Mary Catherine; Crawford, Jack T
2004-01-01
Spoligotyping using Luminex technology was shown to be a highly reproducible method suitable for high-throughput analysis. Spoligotyping of 48 isolates using the traditional membrane-based assay and the Luminex assay yielded concordant results for all isolates. The Luminex platform provides greater flexibility and cost effectiveness than the membrane-based assay.
Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik
2017-11-03
High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.
Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz
2017-01-01
High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791
Protocols and programs for high-throughput growth and aging phenotyping in yeast.
Jung, Paul P; Christian, Nils; Kay, Daniel P; Skupin, Alexander; Linster, Carole L
2015-01-01
In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.
Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...
2015-05-22
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less
Kuhn, Alexandre; Ong, Yao Min; Quake, Stephen R; Burkholder, William F
2015-07-08
Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed. We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate. This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.
Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.
Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup
2011-10-01
The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.
Using the ToxMiner Database for Identifying Disease-Gene Associations in the ToxCast Dataset
The US EPA ToxCast program is using in vitro, high-throughput screening (HTS) to profile and model the bioactivity of environmental chemicals. The main goal of the ToxCast program is to generate predictive signatures of toxicity that ultimately provide rapid and cost-effective me...
The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...
High throughput toxicity testing (HTT) holds the promise of providing data for tens of thousands of chemicals that currently have no data due to the cost and time required for animal testing. Interpretation of these results require information linking the perturbations seen in vi...
Abstract: There are tens of thousands of man-made chemicals to which humans are exposed, but only a fraction of these have the extensive in vivo toxicity data used in most traditional risk assessments. This lack of data, coupled with concerns about testing costs and animal use, a...
High-throughput, lower-cost, in vitro toxicity testing is currently being evaluated for use in prioritization and eventually for predicting in vivo toxicity. Interpreting in vitro data in the context of in vivo human relevance remains a formidable challenge. A key component in us...
Cai, Shaobo; Pourdeyhimi, Behnam; Loboa, Elizabeth G
2017-06-28
In this study, we report a high-throughput fabrication method at industrial pilot scale to produce a silver-nanoparticles-doped nanoclay-polylactic acid composite with a novel synergistic antibacterial effect. The obtained nanocomposite has a significantly lower affinity for bacterial adhesion, allowing the loading amount of silver nanoparticles to be tremendously reduced while maintaining satisfactory antibacterial efficacy at the material interface. This is a great advantage for many antibacterial applications in which cost is a consideration. Furthermore, unlike previously reported methods that require additional chemical reduction processes to produce the silver-nanoparticles-doped nanoclay, an in situ preparation method was developed in which silver nanoparticles were created simultaneously during the composite fabrication process by thermal reduction. This is the first report to show that altered material surface submicron structures created with the loading of nanoclay enables the creation of a nanocomposite with significantly lower affinity for bacterial adhesion. This study provides a promising scalable approach to produce antibacterial polymeric products with minimal changes to industry standard equipment, fabrication processes, or raw material input cost.
Veeranagouda, Yaligara; Debono-Lagneaux, Delphine; Fournet, Hamida; Thill, Gilbert; Didier, Michel
2018-01-16
The emergence of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) gene editing systems has enabled the creation of specific mutants at low cost, in a short time and with high efficiency, in eukaryotic cells. Since a CRISPR-Cas9 system typically creates an array of mutations in targeted sites, a successful gene editing project requires careful selection of edited clones. This process can be very challenging, especially when working with multiallelic genes and/or polyploid cells (such as cancer and plants cells). Here we described a next-generation sequencing method called CRISPR-Cas9 Edited Site Sequencing (CRES-Seq) for the efficient and high-throughput screening of CRISPR-Cas9-edited clones. CRES-Seq facilitates the precise genotyping up to 96 CRISPR-Cas9-edited sites (CRES) in a single MiniSeq (Illumina) run with an approximate sequencing cost of $6/clone. CRES-Seq is particularly useful when multiple genes are simultaneously targeted by CRISPR-Cas9, and also for screening of clones generated from multiallelic genes/polyploid cells. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan
2016-01-01
Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023
Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput.
Gierahn, Todd M; Wadsworth, Marc H; Hughes, Travis K; Bryson, Bryan D; Butler, Andrew; Satija, Rahul; Fortune, Sarah; Love, J Christopher; Shalek, Alex K
2017-04-01
Single-cell RNA-seq can precisely resolve cellular states, but applying this method to low-input samples is challenging. Here, we present Seq-Well, a portable, low-cost platform for massively parallel single-cell RNA-seq. Barcoded mRNA capture beads and single cells are sealed in an array of subnanoliter wells using a semipermeable membrane, enabling efficient cell lysis and transcript capture. We use Seq-Well to profile thousands of primary human macrophages exposed to Mycobacterium tuberculosis.
Zhou, Haiying; Purdie, Jennifer; Wang, Tongtong; Ouyang, Anli
2010-01-01
The number of therapeutic proteins produced by cell culture in the pharmaceutical industry continues to increase. During the early stages of manufacturing process development, hundreds of clones and various cell culture conditions are evaluated to develop a robust process to identify and select cell lines with high productivity. It is highly desirable to establish a high throughput system to accelerate process development and reduce cost. Multiwell plates and shake flasks are widely used in the industry as the scale down model for large-scale bioreactors. However, one of the limitations of these two systems is the inability to measure and control pH in a high throughput manner. As pH is an important process parameter for cell culture, this could limit the applications of these scale down model vessels. An economical, rapid, and robust pH measurement method was developed at Eli Lilly and Company by employing SNARF-4F 5-(-and 6)-carboxylic acid. The method demonstrated the ability to measure the pH values of cell culture samples in a high throughput manner. Based upon the chemical equilibrium of CO(2), HCO(3)(-), and the buffer system, i.e., HEPES, we established a mathematical model to regulate pH in multiwell plates and shake flasks. The model calculates the required %CO(2) from the incubator and the amount of sodium bicarbonate to be added to adjust pH to a preset value. The model was validated by experimental data, and pH was accurately regulated by this method. The feasibility of studying the pH effect on cell culture in 96-well plates and shake flasks was also demonstrated in this study. This work shed light on mini-bioreactor scale down model construction and paved the way for cell culture process development to improve productivity or product quality using high throughput systems. Copyright 2009 American Institute of Chemical Engineers
Mason, Annaliese S; Zhang, Jing; Tollenaere, Reece; Vasquez Teuber, Paula; Dalton-Morgan, Jessica; Hu, Liyong; Yan, Guijun; Edwards, David; Redden, Robert; Batley, Jacqueline
2015-09-01
Germplasm collections provide an extremely valuable resource for breeders and researchers. However, misclassification of accessions by species often hinders the effective use of these collections. We propose that use of high-throughput genotyping tools can provide a fast, efficient and cost-effective way of confirming species in germplasm collections, as well as providing valuable genetic diversity data. We genotyped 180 Brassicaceae samples sourced from the Australian Grains Genebank across the recently released Illumina Infinium Brassica 60K SNP array. Of these, 76 were provided on the basis of suspected misclassification and another 104 were sourced independently from the germplasm collection. Presence of the A- and C-genomes combined with principle components analysis clearly separated Brassica rapa, B. oleracea, B. napus, B. carinata and B. juncea samples into distinct species groups. Several lines were further validated using chromosome counts. Overall, 18% of samples (32/180) were misclassified on the basis of species. Within these 180 samples, 23/76 (30%) supplied on the basis of suspected misclassification were misclassified, and 9/105 (9%) of the samples randomly sourced from the Australian Grains Genebank were misclassified. Surprisingly, several individuals were also found to be the product of interspecific hybridization events. The SNP (single nucleotide polymorphism) array proved effective at confirming species, and provided useful information related to genetic diversity. As similar genomic resources become available for different crops, high-throughput molecular genotyping will offer an efficient and cost-effective method to screen germplasm collections worldwide, facilitating more effective use of these valuable resources by breeders and researchers. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Carlson, H. K.; Coates, J. D.; Deutschbauer, A. M.
2015-12-01
The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive and corrosive. Current strategies to selectively inhibit sulfidogenesis are based on non-specific biocide treatments, bio-competitive exclusion by alternative electron acceptors or sulfate-analogs which are competitive inhibitors or futile/alternative substrates of the sulfate reduction pathway. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to target SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Once inhibitor selectivity is defined, high-throughput characterization of microbial community structure across compound gradients and identification of fitness determinants using isolate bar-coded transposon mutant libraries can give insights into the genetic mechanisms whereby compounds structure microbial communities. The high-throughput (HT) approach we present can be readily applied to target SRM in diverse environments and more broadly, could be used to identify and quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant for engineering environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.
Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal
2016-05-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Hardcastle, Thomas J
2016-01-15
High-throughput data are now commonplace in biological research. Rapidly changing technologies and application mean that novel methods for detecting differential behaviour that account for a 'large P, small n' setting are required at an increasing rate. The development of such methods is, in general, being done on an ad hoc basis, requiring further development cycles and a lack of standardization between analyses. We present here a generalized method for identifying differential behaviour within high-throughput biological data through empirical Bayesian methods. This approach is based on our baySeq algorithm for identification of differential expression in RNA-seq data based on a negative binomial distribution, and in paired data based on a beta-binomial distribution. Here we show how the same empirical Bayesian approach can be applied to any parametric distribution, removing the need for lengthy development of novel methods for differently distributed data. Comparisons with existing methods developed to address specific problems in high-throughput biological data show that these generic methods can achieve equivalent or better performance. A number of enhancements to the basic algorithm are also presented to increase flexibility and reduce computational costs. The methods are implemented in the R baySeq (v2) package, available on Bioconductor http://www.bioconductor.org/packages/release/bioc/html/baySeq.html. tjh48@cam.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Information-based management mode based on value network analysis for livestock enterprises
NASA Astrophysics Data System (ADS)
Liu, Haoqi; Lee, Changhoon; Han, Mingming; Su, Zhongbin; Padigala, Varshinee Anu; Shen, Weizheng
2018-01-01
With the development of computer and IT technologies, enterprise management has gradually become information-based management. Moreover, due to poor technical competence and non-uniform management, most breeding enterprises show a lack of organisation in data collection and management. In addition, low levels of efficiency result in increasing production costs. This paper adopts 'struts2' in order to construct an information-based management system for standardised and normalised management within the process of production in beef cattle breeding enterprises. We present a radio-frequency identification system by studying multiple-tag anti-collision via a dynamic grouping ALOHA algorithm. This algorithm is based on the existing ALOHA algorithm and uses an improved packet dynamic of this algorithm, which is characterised by a high-throughput rate. This new algorithm can reach a throughput 42% higher than that of the general ALOHA algorithm. With a change in the number of tags, the system throughput is relatively stable.
Laser processes and system technology for the production of high-efficient crystalline solar cells
NASA Astrophysics Data System (ADS)
Mayerhofer, R.; Hendel, R.; Zhu, Wenjie; Geiger, S.
2012-10-01
The laser as an industrial tool is an essential part of today's solar cell production. Due to the on-going efforts in the solar industry, to increase the cell efficiency, more and more laser-based processes, which have been discussed and tested at lab-scale for many years, are now being implemented in mass production lines. In order to cope with throughput requirements, standard laser concepts have to be improved continuously with respect to available average power levels, repetition rates or beam profile. Some of the laser concepts, that showed high potential in the past couple of years, will be substituted by other, more economic laser types. Furthermore, requirements for processing with less-heat affected zones fuel the development of industry-ready ultra short pulsed lasers with pulse widths even below the picosecond range. In 2011, the German Ministry of Education and Research (BMBF) had launched the program "PV-Innovation Alliance", with the aim to support the rapid transfer of high-efficiency processes out of development departments and research institutes into solar cell production lines. Here, lasers play an important role as production tools, allowing the fast implementation of high-performance solar cell concepts. We will report on the results achieved within the joint project FUTUREFAB, where efficiency optimization, throughput enhancement and cost reduction are the main goals. Here, the presentation will focus on laser processes like selective emitter doping and ablation of dielectric layers. An indispensable part of the efforts towards cost reduction in solar cell production is the improvement of wafer handling and throughput capabilities of the laser processing system. Therefore, the presentation will also elaborate on new developments in the design of complete production machines.
High performance, inexpensive solar cell process capable of a high degree of automation
NASA Technical Reports Server (NTRS)
Shah, P.; Fuller, C. R.
1976-01-01
This paper proposes a process for inexpensive high performance solar cell fabrication that can be automated for further cost reduction and higher throughputs. The unique feature of the process is the use of oxides as doping sources for simultaneous n(+) junction formation and back p(+) layer, as a mask for metallization and as an in situ AR coating for spectrum matching. Cost analysis is performed to show that significant cost reductions over the conventional process is possible using the proposed scheme and the cost intensive steps are identified which can be further reduced to make the process compatible with the needed price goals of 50 cents/watt. The process was demonstrated by fabricating n(+)-p cells using Arsenic doped oxides. Simple n(+)-p structure cells showed corrected efficiencies of 14.5% (AMO) and 12% with doped oxide as an in situ antireflection coating.
High-throughput selection for cellulase catalysts using chemical complementation.
Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W
2008-12-24
Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.
A High-throughput Selection for Cellulase Catalysts Using Chemical Complementation
Peralta-Yahya, Pamela; Carter, Brian T.; Lin, Hening; Tao, Haiyan; Cornish, Virginia W.
2010-01-01
Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases however is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Due to the large number of enzyme variants selections can test compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity. PMID:19053460
Caboche, Ségolène; Audebert, Christophe; Hot, David
2014-01-01
The recent progresses of high-throughput sequencing (HTS) technologies enable easy and cost-reduced access to whole genome sequencing (WGS) or re-sequencing. HTS associated with adapted, automatic and fast bioinformatics solutions for sequencing applications promises an accurate and timely identification and characterization of pathogenic agents. Many studies have demonstrated that data obtained from HTS analysis have allowed genome-based diagnosis, which has been consistent with phenotypic observations. These proofs of concept are probably the first steps toward the future of clinical microbiology. From concept to routine use, many parameters need to be considered to promote HTS as a powerful tool to help physicians and clinicians in microbiological investigations. This review highlights the milestones to be completed toward this purpose. PMID:25437800
Microfluidic cell chips for high-throughput drug screening
Chi, Chun-Wei; Ahmed, AH Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong
2016-01-01
The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell–drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838
High-throughput NGL electron-beam direct-write lithography system
NASA Astrophysics Data System (ADS)
Parker, N. William; Brodie, Alan D.; McCoy, John H.
2000-07-01
Electron beam lithography systems have historically had low throughput. The only practical solution to this limitation is an approach using many beams writing simultaneously. For single-column multi-beam systems, including projection optics (SCALPELR and PREVAIL) and blanked aperture arrays, throughput and resolution are limited by space-charge effects. Multibeam micro-column (one beam per column) systems are limited by the need for low voltage operation, electrical connection density and fabrication complexities. In this paper, we discuss a new multi-beam concept employing multiple columns each with multiple beams to generate a very large total number of parallel writing beams. This overcomes the limitations of space-charge interactions and low voltage operation. We also discuss a rationale leading to the optimum number of columns and beams per column. Using this approach we show how production throughputs >= 60 wafers per hour can be achieved at CDs
Microbial forensics: fiber optic microarray subtyping of Bacillus anthracis
NASA Astrophysics Data System (ADS)
Shepard, Jason R. E.
2009-05-01
The past decade has seen increased development and subsequent adoption of rapid molecular techniques involving DNA analysis for detection of pathogenic microorganisms, also termed microbial forensics. The continued accumulation of microbial sequence information in genomic databases now better positions the field of high-throughput DNA analysis to proceed in a more manageable fashion. The potential to build off of these databases exists as technology continues to develop, which will enable more rapid, cost effective analyses. This wealth of genetic information, along with new technologies, has the potential to better address some of the current problems and solve the key issues involved in DNA analysis of pathogenic microorganisms. To this end, a high density fiber optic microarray has been employed, housing numerous DNA sequences simultaneously for detection of various pathogenic microorganisms, including Bacillus anthracis, among others. Each organism is analyzed with multiple sequences and can be sub-typed against other closely related organisms. For public health labs, real-time PCR methods have been developed as an initial preliminary screen, but culture and growth are still considered the gold standard. Technologies employing higher throughput than these standard methods are better suited to capitalize on the limitless potential garnered from the sequence information. Microarray analyses are one such format positioned to exploit this potential, and our array platform is reusable, allowing repetitive tests on a single array, providing an increase in throughput and decrease in cost, along with a certainty of detection, down to the individual strain level.
Cowan, Lauren S.; Diem, Lois; Brake, Mary Catherine; Crawford, Jack T.
2004-01-01
Spoligotyping using Luminex technology was shown to be a highly reproducible method suitable for high-throughput analysis. Spoligotyping of 48 isolates using the traditional membrane-based assay and the Luminex assay yielded concordant results for all isolates. The Luminex platform provides greater flexibility and cost effectiveness than the membrane-based assay. PMID:14715809
Wu, Han; Chen, Xinlian; Gao, Xinghua; Zhang, Mengying; Wu, Jinbo; Wen, Weijia
2018-04-03
High-throughput measurements can be achieved using droplet-based assays. In this study, we exploited the principles of wetting behavior and capillarity to guide liquids sliding along a solid surface with hybrid wettability. Oil-covered droplet arrays with uniformly sized and regularly shaped picoliter droplets were successfully generated on hydrophilic-in-hydrophobic patterned substrates. More than ten thousand 31-pL droplets were generated in 5 s without any sophisticated instruments. Covering the droplet arrays with oil during generation not only isolated the droplets from each other but also effectively prevented droplet evaporation. The oil-covered droplet arrays could be stored for more than 2 days with less than 35% volume loss. Single microspheres, microbial cells, or mammalian cells were successfully captured in the droplets. We demonstrate that Escherichia coli could be encapsulated at a certain number (1-4) and cultured for 3 days in droplets. Cell population and morphology were dynamically tracked within individual droplets. Our droplet array generation method enables high-throughput processing and is facile, efficient, and low-cost; in addition, the prepared droplet arrays have enormous potential for applications in chemical and biological assays.
Candidiasis and the impact of flow cytometry on antifungal drug discovery.
Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A
2017-11-01
Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.
NASA Astrophysics Data System (ADS)
Lawton, Zachary E.; Traub, Angelica; Fatigante, William L.; Mancias, Jose; O'Leary, Adam E.; Hall, Seth E.; Wieland, Jamie R.; Oberacher, Herbert; Gizzi, Michael C.; Mulligan, Christopher C.
2017-06-01
Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. [Figure not available: see fulltext.
Aryee, Martin J.; Jaffe, Andrew E.; Corrada-Bravo, Hector; Ladd-Acosta, Christine; Feinberg, Andrew P.; Hansen, Kasper D.; Irizarry, Rafael A.
2014-01-01
Motivation: The recently released Infinium HumanMethylation450 array (the ‘450k’ array) provides a high-throughput assay to quantify DNA methylation (DNAm) at ∼450 000 loci across a range of genomic features. Although less comprehensive than high-throughput sequencing-based techniques, this product is more cost-effective and promises to be the most widely used DNAm high-throughput measurement technology over the next several years. Results: Here we describe a suite of computational tools that incorporate state-of-the-art statistical techniques for the analysis of DNAm data. The software is structured to easily adapt to future versions of the technology. We include methods for preprocessing, quality assessment and detection of differentially methylated regions from the kilobase to the megabase scale. We show how our software provides a powerful and flexible development platform for future methods. We also illustrate how our methods empower the technology to make discoveries previously thought to be possible only with sequencing-based methods. Availability and implementation: http://bioconductor.org/packages/release/bioc/html/minfi.html. Contact: khansen@jhsph.edu; rafa@jimmy.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24478339
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanic, Vesna; Broadbent, Charlotte; DiMasi, Elaine
2016-11-14
The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such datamore » make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.« less
High-Throughput Fabrication of Flexible and Transparent All-Carbon Nanotube Electronics.
Chen, Yong-Yang; Sun, Yun; Zhu, Qian-Bing; Wang, Bing-Wei; Yan, Xin; Qiu, Song; Li, Qing-Wen; Hou, Peng-Xiang; Liu, Chang; Sun, Dong-Ming; Cheng, Hui-Ming
2018-05-01
This study reports a simple and effective technique for the high-throughput fabrication of flexible all-carbon nanotube (CNT) electronics using a photosensitive dry film instead of traditional liquid photoresists. A 10 in. sized photosensitive dry film is laminated onto a flexible substrate by a roll-to-roll technology, and a 5 µm pattern resolution of the resulting CNT films is achieved for the construction of flexible and transparent all-CNT thin-film transistors (TFTs) and integrated circuits. The fabricated TFTs exhibit a desirable electrical performance including an on-off current ratio of more than 10 5 , a carrier mobility of 33 cm 2 V -1 s -1 , and a small hysteresis. The standard deviations of on-current and mobility are, respectively, 5% and 2% of the average value, demonstrating the excellent reproducibility and uniformity of the devices, which allows constructing a large noise margin inverter circuit with a voltage gain of 30. This study indicates that a photosensitive dry film is very promising for the low-cost, fast, reliable, and scalable fabrication of flexible and transparent CNT-based integrated circuits, and opens up opportunities for future high-throughput CNT-based printed electronics.
Prediction-based association control scheme in dense femtocell networks.
Sung, Nak Woon; Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond
2017-01-01
The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system's effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective.
Efficient mouse genome engineering by CRISPR-EZ technology.
Modzelewski, Andrew J; Chen, Sean; Willis, Brandon J; Lloyd, K C Kent; Wood, Joshua A; He, Lin
2018-06-01
CRISPR/Cas9 technology has transformed mouse genome editing with unprecedented precision, efficiency, and ease; however, the current practice of microinjecting CRISPR reagents into pronuclear-stage embryos remains rate-limiting. We thus developed CRISPR ribonucleoprotein (RNP) electroporation of zygotes (CRISPR-EZ), an electroporation-based technology that outperforms pronuclear and cytoplasmic microinjection in efficiency, simplicity, cost, and throughput. In C57BL/6J and C57BL/6N mouse strains, CRISPR-EZ achieves 100% delivery of Cas9/single-guide RNA (sgRNA) RNPs, facilitating indel mutations (insertions or deletions), exon deletions, point mutations, and small insertions. In a side-by-side comparison in the high-throughput KnockOut Mouse Project (KOMP) pipeline, CRISPR-EZ consistently outperformed microinjection. Here, we provide an optimized protocol covering sgRNA synthesis, embryo collection, RNP electroporation, mouse generation, and genotyping strategies. Using CRISPR-EZ, a graduate-level researcher with basic embryo-manipulation skills can obtain genetically modified mice in 6 weeks. Altogether, CRISPR-EZ is a simple, economic, efficient, and high-throughput technology that is potentially applicable to other mammalian species.
Raffoux, Xavier; Bourge, Mickael; Dumas, Fabrice; Martin, Olivier C; Falque, Matthieu
2018-06-01
Allelic recombination owing to meiotic crossovers is a major driver of genome evolution, as well as a key player for the selection of high-performing genotypes in economically important species. Therefore, we developed a high-throughput and low-cost method to measure recombination rates and crossover patterning (including interference) in large populations of the budding yeast Saccharomyces cerevisiae. Recombination and interference were analysed by flow cytometry, which allows time-consuming steps such as tetrad microdissection or spore growth to be avoided. Moreover, our method can also be used to compare recombination in wild-type vs. mutant individuals or in different environmental conditions, even if the changes in recombination rates are small. Furthermore, meiotic mutants often present recombination and/or pairing defects affecting spore viability but our method does not involve growth steps and thus avoids filtering out non-viable spores. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun
2017-03-01
The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.
Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin
2015-10-19
The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.
Parkison, Steven A.; Carlson, Jay D.; Chaudoin, Tammy R.; Hoke, Traci A.; Schenk, A. Katrin; Goulding, Evan H.; Pérez, Lance C.; Bonasera, Stephen J.
2016-01-01
Inexpensive, high-throughput, low maintenance systems for precise temporal and spatial measurement of mouse home cage behavior (including movement, feeding, and drinking) are required to evaluate products from large scale pharmaceutical design and genetic lesion programs. These measurements are also required to interpret results from more focused behavioral assays. We describe the design and validation of a highly-scalable, reliable mouse home cage behavioral monitoring system modeled on a previously described, one-of-a-kind system [1]. Mouse position was determined by solving static equilibrium equations describing the force and torques acting on the system strain gauges; feeding events were detected by a photobeam across the food hopper, and drinking events were detected by a capacitive lick sensor. Validation studies show excellent agreement between mouse position and drinking events measured by the system compared with video-based observation – a gold standard in neuroscience. PMID:23366406
USDA-ARS?s Scientific Manuscript database
Large-scale, gene expression methods allow for high throughput analysis of physiological pathways at a fraction of the cost of individual gene expression analysis. Systems, such as the Fluidigm quantitative PCR array described here, can provide powerful assessments of the effects of diet, environme...
The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...
The field of toxicology is on the cusp of a major transformation in how the safety and hazard of chemicals are evaluated for potential effects on human health and the environment. Brought on by the recognition of the limitations of the current paradigm in terms of cost, time, and...
Low-Cost, High-Throughput 3D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI
2016-10-01
COMMUNITIES OF INTEREST? ................................................. 8 4. IMPACT...publicize the work performed and also for their exposure to biomedical science. How were the results disseminated to communities of interest? Nothing...biomedical community , expanding the utility of HP methods as a new tool for probing fundamental biomedical questions. Acknowledgments The authors thank
High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive un...
Abstract: There are tens of thousands of man-made chemicals to which humans are exposed, but only a fraction of these have the extensive in vivo toxicity data used in most traditional risk assessments. This lack of data, coupled with concerns about testing costs and animal use, a...
The proposed paradigm for “Toxicity Testing in the 21st Century” supports the development of mechanistically-based, high-throughput in vitro assays as a potential cost effective and scientifically-sound alternative to some whole animal hazard testing. To accomplish this long-term...
Osterman, Ilya A.; Komarova, Ekaterina S.; Shiryaev, Dmitry I.; Korniltsev, Ilya A.; Khven, Irina M.; Lukyanov, Dmitry A.; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Efremenkova, Olga V.; Ivanenkov, Yan A.; Bogdanov, Alexey A.; Dontsova, Olga A.
2016-01-01
In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals. PMID:27736765
Devailly, Guillaume; Mantsoki, Anna; Joshi, Anagha
2016-11-01
Better protocols and decreasing costs have made high-throughput sequencing experiments now accessible even to small experimental laboratories. However, comparing one or few experiments generated by an individual lab to the vast amount of relevant data freely available in the public domain might be limited due to lack of bioinformatics expertise. Though several tools, including genome browsers, allow such comparison at a single gene level, they do not provide a genome-wide view. We developed Heat*seq, a web-tool that allows genome scale comparison of high throughput experiments chromatin immuno-precipitation followed by sequencing, RNA-sequencing and Cap Analysis of Gene Expression) provided by a user, to the data in the public domain. Heat*seq currently contains over 12 000 experiments across diverse tissues and cell types in human, mouse and drosophila. Heat*seq displays interactive correlation heatmaps, with an ability to dynamically subset datasets to contextualize user experiments. High quality figures and tables are produced and can be downloaded in multiple formats. Web application: http://www.heatstarseq.roslin.ed.ac.uk/ Source code: https://github.com/gdevailly CONTACT: Guillaume.Devailly@roslin.ed.ac.uk or Anagha.Joshi@roslin.ed.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
"First generation" automated DNA sequencing technology.
Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M
2011-10-01
Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.
Characterization of the Ecosole HCPV tracker and single module inverter
NASA Astrophysics Data System (ADS)
Carpanelli, Maurizio; Borelli, Gianni; Verdilio, Daniele; De Nardis, Davide; Migali, Fabrizio; Cancro, Carmine; Graditi, Giorgio
2015-09-01
BECAR, the Beghelli group's R&D company, is leading ECOSOLE (Elevated COncentration SOlar Energy), one of the largest European Demonstration projects in solar photovoltaic. ECOSOLE, started in 2012, is focused on the study, design, and realization of new HCPV generator made of high efficiency PV modules equipped with SoG (Silicone on Glass) fresnel lenses and III-V solar cells, and a low cost matched solar tracker with distributed inverters approach. The project also regards the study and demonstration of new high throughput methods for the industrial large scale productions, at very low manufacturing costs. This work reports the description of the characterization of the tracker and single module.
OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology
NASA Astrophysics Data System (ADS)
Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia
2016-02-01
In the last two decades, <30% of drugs withdrawals from the market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.
Parriot, Sandi; Hudson, Thomas H.; Lang, Thierry; Ngundam, Franklyn; Leed, Susan; Sena, Jenell; Harris, Michael; O'Neil, Michael; Sciotti, Richard; Read, Lisa; Lecoeur, Herve; Grogl, Max
2017-01-01
ABSTRACT In any drug discovery and development effort, a reduction in the time of the lead optimization cycle is critical to decrease the time to license and reduce costs. In addition, ethical guidelines call for the more ethical use of animals to minimize the number of animals used and decrease their suffering. Therefore, any effort to develop drugs to treat cutaneous leishmaniasis requires multiple tiers of in vivo testing that start with higher-throughput efficacy assessments and progress to lower-throughput models with the most clinical relevance. Here, we describe the validation of a high-throughput, first-tier, noninvasive model of lesion suppression that uses an in vivo optical imaging technology for the initial screening of compounds. A strong correlation between luciferase activity and the parasite load at up to 18 days postinfection was found. This correlation allows the direct assessment of the effects of drug treatment on parasite burden. We demonstrate that there is a strong correlation between drug efficacy measured on day 18 postinfection and the suppression of lesion size by day 60 postinfection, which allows us to reach an accurate conclusion on drug efficacy in only 18 days. Compounds demonstrating a significant reduction in the bioluminescence signal compared to that in control animals can be tested in lower-throughput, more definitive tests of lesion cure in BALB/c mice and Golden Syrian hamsters (GSH) using Old World and New World parasites. PMID:28137819
Oguntimein, Gbekeloluwa B; Rodriguez, Miguel; Dumitrache, Alexandru; Shollenberger, Todd; Decker, Stephen R; Davison, Brian H; Brown, Steven D
2018-02-01
To develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentations when compared to the Δhpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.
The main challenges that remain in applying high-throughput sequencing to clinical diagnostics.
Loeffelholz, Michael; Fofanov, Yuriy
2015-01-01
Over the last 10 years, the quality, price and availability of high-throughput sequencing instruments have improved to the point that this technology may be close to becoming a routine tool in the diagnostic microbiology laboratory. Two groups of challenges, however, have to be resolved in order to move this powerful research technology into routine use in the clinical microbiology laboratory. The computational/bioinformatics challenges include data storage cost and privacy concerns, requiring analysis to be performed without access to cloud storage or expensive computational infrastructure. The logistical challenges include interpretation of complex results and acceptance and understanding of the advantages and limitations of this technology by the medical community. This article focuses on the approaches to address these challenges, such as file formats, algorithms, data collection, reporting and good laboratory practices.
High-throughput sequencing in veterinary infection biology and diagnostics.
Belák, S; Karlsson, O E; Leijon, M; Granberg, F
2013-12-01
Sequencing methods have improved rapidly since the first versions of the Sanger techniques, facilitating the development of very powerful tools for detecting and identifying various pathogens, such as viruses, bacteria and other microbes. The ongoing development of high-throughput sequencing (HTS; also known as next-generation sequencing) technologies has resulted in a dramatic reduction in DNA sequencing costs, making the technology more accessible to the average laboratory. In this White Paper of the World Organisation for Animal Health (OIE) Collaborating Centre for the Biotechnology-based Diagnosis of Infectious Diseases in Veterinary Medicine (Uppsala, Sweden), several approaches and examples of HTS are summarised, and their diagnostic applicability is briefly discussed. Selected future aspects of HTS are outlined, including the need for bioinformatic resources, with a focus on improving the diagnosis and control of infectious diseases in veterinary medicine.
Mapper: high throughput maskless lithography
NASA Astrophysics Data System (ADS)
Kuiper, V.; Kampherbeek, B. J.; Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Boers, J.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.
2009-01-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron beams. This manuscript describes the first patterning results with this 300 mm platform.
Kalinina, Marina A; Skvortsov, Dmitry A; Rubtsova, Maria P; Komarova, Ekaterina S; Dontsova, Olga A
2018-06-01
High- and medium-throughput assays are now routine methods for drug screening and toxicology investigations on mammalian cells. However, a simple and cost-effective analysis of cytotoxicity that can be carried out with commonly used laboratory equipment is still required. The developed cytotoxicity assays are based on human cell lines stably expressing eGFP, tdTomato, mCherry, or Katushka2S fluorescent proteins. Red fluorescent proteins exhibit a higher signal-to-noise ratio, due to less interference by medium autofluorescence, in comparison to green fluorescent protein. Measurements have been performed on a fluorescence scanner, a plate fluorimeter, and a camera photodocumentation system. For a 96-well plate assay, the sensitivity per well and the measurement duration were 250 cells and 15 min for the scanner, 500 cells and 2 min for the plate fluorimeter, and 1000 cells and less than 1 min for the camera detection. These sensitivities are similar to commonly used MTT (tetrazolium dye) assays. The used scanner and the camera had not been previously applied for cytotoxicity evaluation. An image processing scheme for the high-resolution scanner is proposed that significantly diminishes the number of control wells, even for a library containing fluorescent substances. The suggested cytotoxicity assay has been verified by measurements of the cytotoxicity of several well-known cytotoxic drugs and further applied to test a set of novel bacteriotoxic compounds in a medium-throughput format. The fluorescent signal of living cells is detected without disturbing them and adding any reagents, thus allowing to investigate time-dependent cytotoxicity effects on the same sample of cells. A fast, simple and cost-effective assay is suggested for cytotoxicity evaluation based on mammalian cells expressing fluorescent proteins and commonly used laboratory equipment.
Prediction-based association control scheme in dense femtocell networks
Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond
2017-01-01
The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system’s effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective. PMID:28328992
Financial analysis for the infusion alliance.
Perucca, Roxanne
2010-01-01
Providing high-quality, cost-efficient care is a major strategic initiative of every health care organization. Today's health care environment is transparent; very competitive; and focused upon providing exceptional service, safety, and quality. Establishing an infusion alliance facilitates the achievement of organizational strategic initiatives, that is, increases patient throughput, decreases length of stay, prevents the occurrence of infusion-related complications, enhances customer satisfaction, and provides greater cost-efficiency. This article will discuss how to develop a financial analysis that promotes value and enhances the financial outcomes of an infusion alliance.
Low cost composite manufacturing utilizing intelligent pultrusion and resin transfer molding (IPRTM)
NASA Astrophysics Data System (ADS)
Bradley, James E.; Wysocki, Tadeusz S., Jr.
1993-02-01
This article describes an innovative method for the economical manufacturing of large, intricately-shaped tubular composite parts. Proprietary intelligent process control techniques are combined with standard pultrusion and RTM methodologies to provide high part throughput, performance, and quality while substantially reducing scrap, rework costs, and labor requirements. On-line process monitoring and control is achieved through a smart tooling interface consisting of modular zone tiles installed on part-specific die assemblies. Real-time archiving of process run parameters provides enhanced SPC and SQC capabilities.
Biological Utilization of Wood for Production of Chemicals and Foodstuffs.
1981-03-01
ration and, corn . The results are presented in of lambs. As high as 20 percent of although the cost of gains on the table 50. The results of the...differs in that, after an initial 185 ° C. At this time, most of the low- Residues high in bark reduce the period of low-temperature hydrolysis...and hydrolyzate is removed at the per part of the chip bed. The high table 6. bottom with no interruptions until the through-put rate is continued until
High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate.
Kojima, Takashi; Tsutsumi, Shunichirou; Yamamoto, Katsuhiko; Ikeda, Yukihiro; Moriwaki, Toshiya
2010-10-31
Cocrystal has attracted much attention in order to improve poor physicochemical properties, since cocrystal former crystallize with the ionic drugs as well as nonionic drugs. Cocrystal screening was usually conducted by crystallization, slurry and co-grinding techniques, however sensitivity, cost and time for screening were limited because of issues such as dissociation of cocrystal during crystallization and cost and time required for slurry and co-grinding methods. To overcome these issues, novel high-throughput cocrystal slurry screening was developed by using in situ Raman microscope and a multi-well plate. Cocrystal screening of indomethacin was conducted with 46 cocrystal formers and potential cocrystals were prepared on a large scale for the characterization with powder X-ray diffractometry, thermal analysis, and Raman microscopy and (1)H NMR spectroscopy. Compared with the characterization of scale-up cocrystals, the cocrystal screening indicated that indomethacin structured novel cocrystals with D/L-mandelic acid, nicotinamide, lactamide and benzamide which was not obtained in the screening with crystallization technique previously reported. In addition, the screening provided not only information of cocrystal formation within a day but also information of equilibrium of cocrystal formation and polymorphic transformation in one screening. Information obtained in this screening allows effective solid form selection by saving cost and time for the development. Copyright © 2010 Elsevier B.V. All rights reserved.
Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.
Lama, Lodoe; Ryan, Kevin
2016-01-01
Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. © 2015 Lama and Ryan; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Smith, S; Joss, T; Stow, A
2011-10-01
The analysis of microsatellite loci has allowed significant advances in evolutionary biology and pest management. However, until very recently, the potential benefits have been compromised by the high costs of developing these neutral markers. High-throughput sequencing provides a solution to this problem. We describe the development of 13 microsatellite markers for the eusocial ambrosia beetle, Austroplatypus incompertus, a significant pest of forests in southeast Australia. The frequency of microsatellite repeats in the genome of A. incompertus was determined to be low, and previous attempts at microsatellite isolation using a traditional genomic library were problematic. Here, we utilised two protocols, microsatellite-enriched genomic library construction and high-throughput 454 sequencing and characterised 13 loci which were polymorphic among 32 individuals. Numbers of alleles per locus ranged from 2 to 17, and observed and expected heterozygosities from 0.344 to 0.767 and from 0.507 to 0.860, respectively. These microsatellites have the resolution required to analyse fine-scale colony and population genetic structure. Our work demonstrates the utility of next-generation 454 sequencing as a method for rapid and cost-effective acquisition of microsatellites where other techniques have failed, or for taxa where marker development has historically been both complicated and expensive.
The US EPA ToxCast program is using in vitro, high-throughput screening (HTS) to profile and model the bioactivity of environmental chemicals. The main goal of the ToxCast program is to generate predictive signatures of toxicity that ultimately provide rapid and cost-effective me...
USDA-ARS?s Scientific Manuscript database
Ongoing developments and cost decreases in next-generation sequencing (NGS) technologies have led to an increase in their application, which has greatly enhanced the fields of genetics and genomics. Mapping sequence reads onto a reference genome is a fundamental step in the analysis of NGS data. Eff...
Wilson, Justin; Dai, Manhong; Jakupovic, Elvis; Watson, Stanley; Meng, Fan
2007-01-01
Modern video cards and game consoles typically have much better performance to price ratios than that of general purpose CPUs. The parallel processing capabilities of game hardware are well-suited for high throughput biomedical data analysis. Our initial results suggest that game hardware is a cost-effective platform for some computationally demanding bioinformatics problems.
USDA-ARS?s Scientific Manuscript database
High-throughput sequencing is often used for studies of the transcriptome, particularly for comparisons between experimental conditions. Due to sequencing costs, a limited number of biological replicates are typically considered in such experiments, leading to low detection power for differential ex...
Plastic straw: future of high-speed signaling
NASA Astrophysics Data System (ADS)
Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min
2015-11-01
The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.
Automation of Technology for Cancer Research.
van der Ent, Wietske; Veneman, Wouter J; Groenewoud, Arwin; Chen, Lanpeng; Tulotta, Claudia; Hogendoorn, Pancras C W; Spaink, Herman P; Snaar-Jagalska, B Ewa
2016-01-01
Zebrafish embryos can be obtained for research purposes in large numbers at low cost and embryos develop externally in limited space, making them highly suitable for high-throughput cancer studies and drug screens. Non-invasive live imaging of various processes within the larvae is possible due to their transparency during development, and a multitude of available fluorescent transgenic reporter lines.To perform high-throughput studies, handling large amounts of embryos and larvae is required. With such high number of individuals, even minute tasks may become time-consuming and arduous. In this chapter, an overview is given of the developments in the automation of various steps of large scale zebrafish cancer research for discovering important cancer pathways and drugs for the treatment of human disease. The focus lies on various tools developed for cancer cell implantation, embryo handling and sorting, microfluidic systems for imaging and drug treatment, and image acquisition and analysis. Examples will be given of employment of these technologies within the fields of toxicology research and cancer research.
High-Throughput Printing Process for Flexible Electronics
NASA Astrophysics Data System (ADS)
Hyun, Woo Jin
Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.
Stephen J. Amish,; Paul A. Hohenlohe,; Sally Painter,; Robb F. Leary,; Muhlfeld, Clint C.; Fred W. Allendorf,; Luikart, Gordon
2012-01-01
Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orton, Daniel J.; Tfaily, Malak M.; Moore, Ronald J.
To better understand disease conditions and environmental perturbations, multi-omic studies (i.e. proteomic, lipidomic, metabolomic, etc. analyses) are vastly increasing in popularity. In a multi-omic study, a single sample is typically extracted in multiple ways and numerous analyses are performed using different instruments. Thus, one sample becomes many analyses, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injection. While some FIA systems have been created to address these challenges, many have limitations such as high consumable costs, lowmore » pressure capabilities, limited pressure monitoring and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at diverse flow rates (~50 nL/min to 500 µL/min) to accommodate low- and high-flow instrument sources. This system can also operate at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system. The results from these studies showed a highly robust platform, providing consistent performance over many days without carryover as long as washing buffers specific to each molecular analysis were utilized.« less
A high throughput architecture for a low complexity soft-output demapping algorithm
NASA Astrophysics Data System (ADS)
Ali, I.; Wasenmüller, U.; Wehn, N.
2015-11-01
Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.
Duan, Yongbo; Zhai, Chenguang; Li, Hao; Li, Juan; Mei, Wenqian; Gui, Huaping; Ni, Dahu; Song, Fengshun; Li, Li; Zhang, Wanggen; Yang, Jianbo
2012-09-01
A number of Agrobacterium-mediated rice transformation systems have been developed and widely used in numerous laboratories and research institutes. However, those systems generally employ antibiotics like kanamycin and hygromycin, or herbicide as selectable agents, and are used for the small-scale experiments. To address high-throughput production of transgenic rice plants via Agrobacterium-mediated transformation, and to eliminate public concern on antibiotic markers, we developed a comprehensive efficient protocol, covering from explant preparation to the acquisition of low copy events by real-time PCR analysis before transplant to field, for high-throughput production of transgenic plants of Japonica rice varieties Wanjing97 and Nipponbare using Escherichia coli phosphomannose isomerase gene (pmi) as a selectable marker. The transformation frequencies (TF) of Wanjing97 and Nipponbare were achieved as high as 54.8 and 47.5%, respectively, in one round of selection of 7.5 or 12.5 g/L mannose appended with 5 g/L sucrose. High-throughput transformation from inoculation to transplant of low copy events was accomplished within 55-60 days. Moreover, the Taqman assay data from a large number of transformants showed 45.2% in Wanjing97 and 31.5% in Nipponbare as a low copy rate, and the transformants are fertile and follow the Mendelian segregation ratio. This protocol facilitates us to perform genome-wide functional annotation of the open reading frames and utilization of the agronomically important genes in rice under a reduced public concern on selectable markers. We describe a comprehensive protocol for large scale production of transgenic Japonica rice plants using non-antibiotic selectable agent, at simplified, cost- and labor-saving manners.
Ramlee, Muhammad Khairul; Wang, Jing; Cheung, Alice M S; Li, Shang
2017-04-08
The development of programmable genome-editing tools has facilitated the use of reverse genetics to understand the roles specific genomic sequences play in the functioning of cells and whole organisms. This cause has been tremendously aided by the recent introduction of the CRISPR/Cas9 system-a versatile tool that allows researchers to manipulate the genome and transcriptome in order to, among other things, knock out, knock down, or knock in genes in a targeted manner. For the purpose of knocking out a gene, CRISPR/Cas9-mediated double-strand breaks recruit the non-homologous end-joining DNA repair pathway to introduce the frameshift-causing insertion or deletion of nucleotides at the break site. However, an individual guide RNA may cause undesirable off-target effects, and to rule these out, the use of multiple guide RNAs is necessary. This multiplicity of targets also means that a high-volume screening of clones is required, which in turn begs the use of an efficient high-throughput technique to genotype the knockout clones. Current genotyping techniques either suffer from inherent limitations or incur high cost, hence rendering them unsuitable for high-throughput purposes. Here, we detail the protocol for using fluorescent PCR, which uses genomic DNA from crude cell lysate as a template, and then resolving the PCR fragments via capillary gel electrophoresis. This technique is accurate enough to differentiate one base-pair difference between fragments and hence is adequate in indicating the presence or absence of a frameshift in the coding sequence of the targeted gene. This precise knowledge effectively precludes the need for a confirmatory sequencing step and allows users to save time and cost in the process. Moreover, this technique has proven to be versatile in genotyping various mammalian cells of various tissue origins targeted by guide RNAs against numerous genes, as shown here and elsewhere.
Weimar, M R; Cheung, J; Dey, D; McSweeney, C; Morrison, M; Kobayashi, Y; Whitman, W B; Carbone, V; Schofield, L R; Ronimus, R S; Cook, G M
2017-08-01
Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H 2 and CO 2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions. IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high-throughput 96-well microtiter plate assay for growing environmental and rumen methanogens. Using this platform, we identified several new inhibitors of methanogen growth, demonstrating the utility of this approach to fast track the development of methanogen-specific inhibitors for controlling ruminant methane emissions. Copyright © 2017 American Society for Microbiology.
Ghaemi, Reza; Selvaganapathy, Ponnambalam R
Drug discovery is a long and expensive process, which usually takes 12-15 years and could cost up to ~$1 billion. Conventional drug discovery process starts with high throughput screening and selection of drug candidates that bind to specific target associated with a disease condition. However, this process does not consider whether the chosen candidate is optimal not only for binding but also for ease of administration, distribution in the body, effect of metabolism and associated toxicity if any. A holistic approach, using model organisms early in the drug discovery process to select drug candidates that are optimal not only in binding but also suitable for administration, distribution and are not toxic is now considered as a viable way for lowering the cost and time associated with the drug discovery process. However, the conventional drug discovery assays using Drosophila are manual and required skill operator, which makes them expensive and not suitable for high-throughput screening. Recently, microfluidics has been used to automate many of the operations (e.g. sorting, positioning, drug delivery) associated with the Drosophila drug discovery assays and thereby increase their throughput. This review highlights recent microfluidic devices that have been developed for Drosophila assays with primary application towards drug discovery for human diseases. The microfluidic devices that have been reviewed in this paper are categorized based on the stage of the Drosophila that have been used. In each category, the microfluidic technologies behind each device are described and their potential biological applications are discussed.
Electron-processing technology: A promising application for the viscose industry
NASA Astrophysics Data System (ADS)
Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.
1998-06-01
In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.
Flip the tip: an automated, high quality, cost-effective patch clamp screen.
Lepple-Wienhues, Albrecht; Ferlinz, Klaus; Seeger, Achim; Schäfer, Arvid
2003-01-01
The race for creating an automated patch clamp has begun. Here, we present a novel technology to produce true gigaseals and whole cell preparations at a high rate. Suspended cells are flushed toward the tip of glass micropipettes. Seal, whole-cell break-in, and pipette/liquid handling are fully automated. Extremely stable seals and access resistance guarantee high recording quality. Data obtained from different cell types sealed inside pipettes show long-term stability, voltage clamp and seal quality, as well as block by compounds in the pM range. A flexible array of independent electrode positions minimizes consumables consumption at maximal throughput. Pulled micropipettes guarantee a proven gigaseal substrate with ultra clean and smooth surface at low cost.
A Formal Messaging Notation for Alaskan Aviation Data
NASA Technical Reports Server (NTRS)
Rios, Joseph L.
2015-01-01
Data exchange is an increasingly important aspect of the National Airspace System. While many data communication channels have become more capable of sending and receiving data at higher throughput rates, there is still a need to use communication channels efficiently with limited throughput. The limitation can be based on technological issues, financial considerations, or both. This paper provides a complete description of several important aviation weather data in Abstract Syntax Notation format. By doing so, data providers can take advantage of Abstract Syntax Notation's ability to encode data in a highly compressed format. When data such as pilot weather reports, surface weather observations, and various weather predictions are compressed in such a manner, it allows for the efficient use of throughput-limited communication channels. This paper provides details on the Abstract Syntax Notation One (ASN.1) implementation for Alaskan aviation data, and demonstrates its use on real-world aviation weather data samples as Alaska has sparse terrestrial data infrastructure and data are often sent via relatively costly satellite channels.
Hu, E; Liao, T. W.; Tiersch, T. R.
2013-01-01
Emerging commercial-level technology for aquatic sperm cryopreservation has not been modeled by computer simulation. Commercially available software (ARENA, Rockwell Automation, Inc. Milwaukee, WI) was applied to simulate high-throughput sperm cryopreservation of blue catfish (Ictalurus furcatus) based on existing processing capabilities. The goal was to develop a simulation model suitable for production planning and decision making. The objectives were to: 1) predict the maximum output for 8-hr workday; 2) analyze the bottlenecks within the process, and 3) estimate operational costs when run for daily maximum output. High-throughput cryopreservation was divided into six major steps modeled with time, resources and logic structures. The modeled production processed 18 fish and produced 1164 ± 33 (mean ± SD) 0.5-ml straws containing one billion cryopreserved sperm. Two such production lines could support all hybrid catfish production in the US and 15 such lines could support the entire channel catfish industry if it were to adopt artificial spawning techniques. Evaluations were made to improve efficiency, such as increasing scale, optimizing resources, and eliminating underutilized equipment. This model can serve as a template for other aquatic species and assist decision making in industrial application of aquatic germplasm in aquaculture, stock enhancement, conservation, and biomedical model fishes. PMID:25580079
High-Throughput Screening To Identify Potent and Specific Inhibitors of Microbial Sulfate Reduction.
Carlson, Hans K; Mullan, Mark R; Mosqueda, Lorraine A; Chen, Steven; Arkin, Michelle R; Coates, John D
2017-06-20
The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive, and corrosive. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to identify potent and selective inhibitors of SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Zinc pyrithione is the most potent inhibitor of sulfidogenesis that we identified, and is several orders of magnitude more potent than commonly used industrial biocides. Both zinc and copper pyrithione are also moderately selective against SRM. The high-throughput (HT) approach we present can be readily adapted to target SRM in diverse environments and similar strategies could be used to quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant to efforts to engineer environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.
Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.
Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford
2016-12-01
Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Microarray platform affords improved product analysis in mammalian cell growth studies
Li, Lingyun; Migliore, Nicole; Schaefer, Eugene; Sharfstein, Susan T.; Dordick, Jonathan S.; Linhardt, Robert J.
2014-01-01
High throughput (HT) platforms serve as cost-efficient and rapid screening method for evaluating the effect of cell culture conditions and screening of chemicals. The aim of the current study was to develop a high-throughput cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/MSX CHO cell line, which produces a therapeutic monoclonal antibody, was examined using microarray system in conjunction with conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60 nl spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base media results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the high-throughput microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as, cell growth, metabolism and productivity. PMID:24227746
SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution
NASA Astrophysics Data System (ADS)
Voorkamp, R.; Verschuuren, M. A.; van Brakel, R.
2016-10-01
Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 - 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and yield. Soft stamps, usually based on silicone rubber, behave fundamentally different compared to rigid stamps on the macro-, micro- and nanometer level. The main limitation of traditional silicones is that they are too soft to support sub-micron features against surface tension based stamp deformation and collapse [4] and handling a soft stamp to achieve accurate feature placement on wafer scales to allow overlay alignment with sub-100nm overlay accuracy.
Archival storage solutions for PACS
NASA Astrophysics Data System (ADS)
Chunn, Timothy
1997-05-01
While they are many, one of the inhibitors to the wide spread diffusion of PACS systems has been robust, cost effective digital archive storage solutions. Moreover, an automated Nearline solution is key to a central, sharable data repository, enabling many applications such as PACS, telemedicine and teleradiology, and information warehousing and data mining for research such as patient outcome analysis. Selecting the right solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, configuration architecture and flexibility, subsystem availability and reliability, security requirements, system cost, achievable benefits and cost savings, investment protection, strategic fit and more.This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on storage system throughput will be analyzed. The concept of automated migration of images from high performance, high cost storage devices to high capacity, low cost storage devices will be introduced as a viable way to minimize overall storage costs for an archive. The concept of access density will also be introduced and applied to the selection of the most cost effective archive solution.
Microelectroporation device for genomic screening
Perroud, Thomas D.; Renzi, Ronald F.; Negrete, Oscar; Claudnic, Mark R.
2014-09-09
We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.
Next generation platforms for high-throughput biodosimetry.
Repin, Mikhail; Turner, Helen C; Garty, Guy; Brenner, David J
2014-06-01
Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of biodosimetry assays was described. These platforms can be used at different stages of biodosimetry assays starting from blood collection into microtubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multiwell and multichannel plates. Robotically friendly platforms can be used for different biodosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Factors influencing equipment selection in electron beam processing
NASA Astrophysics Data System (ADS)
Barnard, J. W.
2003-08-01
During the eighties and nineties accelerator manufacturers dramatically increased the beam power available for high-energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain per unit costs low for treatment. This philosophy runs counter to certain present-day realities of the sterilization business as well as conditions influencing accelerator selection in other electron beam applications. Recent experience in machine selection is described and factors affecting choice are presented.
WIYN bench upgrade: a revitalized spectrograph
NASA Astrophysics Data System (ADS)
Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.
2008-07-01
We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.
Hawkins, Liam J; Storey, Kenneth B
2017-01-01
Common Western-blot imaging systems have previously been adapted to measure signals from luminescent microplate assays. This can be a cost saving measure as Western-blot imaging systems are common laboratory equipment and could substitute a dedicated luminometer if one is not otherwise available. One previously unrecognized limitation is that the signals captured by the cameras in these systems are not equal for all wells. Signals are dependent on the angle of incidence to the camera, and thus the location of the well on the microplate. Here we show that: •The position of a well on a microplate significantly affects the signal captured by a common Western-blot imaging system from a luminescent assay.•The effect of well position can easily be corrected for.•This method can be applied to commercially available luminescent assays, allowing for high-throughput quantification of a wide range of biological processes and biochemical reactions.
Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING
Till, Bradley J.; Reynolds, Steven H.; Greene, Elizabeth A.; Codomo, Christine A.; Enns, Linda C.; Johnson, Jessica E.; Burtner, Chris; Odden, Anthony R.; Young, Kim; Taylor, Nicholas E.; Henikoff, Jorja G.; Comai, Luca; Henikoff, Steven
2003-01-01
TILLING (Targeting Induced Local Lesions in Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and low-cost discovery of induced point mutations in populations of chemically mutagenized individuals. As chemical mutagenesis is widely applicable and mutation detection for TILLING is dependent only on sufficient yield of PCR products, TILLING can be applied to most organisms. We have developed TILLING as a service to the Arabidopsis community known as the Arabidopsis TILLING Project (ATP). Our goal is to rapidly deliver allelic series of ethylmethanesulfonate-induced mutations in target 1-kb loci requested by the international research community. In the first year of public operation, ATP has discovered, sequenced, and delivered >1000 mutations in >100 genes ordered by Arabidopsis researchers. The tools and methodologies described here can be adapted to create similar facilities for other organisms. PMID:12618384
Screening of Compounds Toxicity against Human Monocytic cell line-THP-1 by Flow Cytometry
Pick, Neora; Cameron, Scott; Arad, Dorit
2004-01-01
The worldwide rapid increase in bacterial resistance to numerous antibiotics requires on-going development of new drugs to enter the market. As the development of new antibiotics is lengthy and costly, early monitoring of compound's toxicity is essential in the development of novel agents. Our interest is in a rapid, simple, high throughput screening method to assess cytotoxicity induced by potential agents. Some intracellular pathogens, such as Mycobacterium tuberculosis primary site of infection is human alveolar macrophages. Thus, evaluation of candidate drugs for macrophage toxicity is crucial. Protocols for high throughput drug toxicity screening of macrophages using flow cytometry are lacking in the literature. For this application we modified a preexisting technique, propidium iodide (PI) exclusion staining and utilized it for rapid toxicity tests. Samples were prepared in 96 well plates and analyzed by flow cytometry, which allowed for rapid, inexpensive and precise assessment of compound's toxicity associated with cell death. PMID:15472722
Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C
2013-02-01
Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.
Dentinger, Bryn T M; Margaritescu, Simona; Moncalvo, Jean-Marc
2010-07-01
We present two methods for DNA extraction from fresh and dried mushrooms that are adaptable to high-throughput sequencing initiatives, such as DNA barcoding. Our results show that these protocols yield ∼85% sequencing success from recently collected materials. Tests with both recent (<2 year) and older (>100 years) specimens reveal that older collections have low success rates and may be an inefficient resource for populating a barcode database. However, our method of extracting DNA from herbarium samples using small amount of tissue is reliable and could be used for important historical specimens. The application of these protocols greatly reduces time, and therefore cost, of generating DNA sequences from mushrooms and other fungi vs. traditional extraction methods. The efficiency of these methods illustrates that standardization and streamlining of sample processing should be shifted from the laboratory to the field. © 2009 Blackwell Publishing Ltd.
TriageTools: tools for partitioning and prioritizing analysis of high-throughput sequencing data.
Fimereli, Danai; Detours, Vincent; Konopka, Tomasz
2013-04-01
High-throughput sequencing is becoming a popular research tool but carries with it considerable costs in terms of computation time, data storage and bandwidth. Meanwhile, some research applications focusing on individual genes or pathways do not necessitate processing of a full sequencing dataset. Thus, it is desirable to partition a large dataset into smaller, manageable, but relevant pieces. We present a toolkit for partitioning raw sequencing data that includes a method for extracting reads that are likely to map onto pre-defined regions of interest. We show the method can be used to extract information about genes of interest from DNA or RNA sequencing samples in a fraction of the time and disk space required to process and store a full dataset. We report speedup factors between 2.6 and 96, depending on settings and samples used. The software is available at http://www.sourceforge.net/projects/triagetools/.
Oguntimein, Gbekeloluwa B.; Rodriguez, Jr., Miguel; Dumitrache, Alexandru; ...
2017-11-09
Here, to develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δ hpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentationsmore » when compared to the Δ hpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguntimein, Gbekeloluwa B.; Rodriguez, Jr., Miguel; Dumitrache, Alexandru
Here, to develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δ hpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentationsmore » when compared to the Δ hpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.« less
Seita, Matteo; Volpi, Marco; Patala, Srikanth; ...
2016-06-24
Grain boundaries (GBs) govern many properties of polycrystalline materials. However, because of their structural variability, our knowledge of GB constitutive relations is still very limited. We present a novel method to characterise the complete crystallography of individual GBs non-destructively, with high-throughput, and using commercially available tools. This method combines electron diffraction, optical reflectance and numerical image analysis to determine all five crystallographic parameters of numerous GBs in samples with through-thickness grains. We demonstrate the technique by measuring the crystallographic character of about 1,000 individual GBs in aluminum in a single run. Our method enables cost- and time-effective assembly of crystallography–propertymore » databases for thousands of individual GBs. Furthermore, such databases are essential for identifying GB constitutive relations and for predicting GB-related behaviours of polycrystalline solids.« less
High-throughput mouse genotyping using robotics automation.
Linask, Kaari L; Lo, Cecilia W
2005-02-01
The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon
2016-01-01
Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.
High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
Cai, Hongbing; Meng, Qiushi; Zhao, Hui; Li, Mingling; Dai, Yanmeng; Lin, Yue; Ding, Huaiyi; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping
2018-06-13
The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, high-throughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 × 10 6 and a detection limit of 10 -11 M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe 2 . Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.
Spiking neural networks on high performance computer clusters
NASA Astrophysics Data System (ADS)
Chen, Chong; Taha, Tarek M.
2011-09-01
In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.
Patel, Rajesh; Tsan, Alison; Sumiyoshi, Teiko; Fu, Ling; Desai, Rupal; Schoenbrunner, Nancy; Myers, Thomas W.; Bauer, Keith; Smith, Edward; Raja, Rajiv
2014-01-01
Molecular profiling of tumor tissue to detect alterations, such as oncogenic mutations, plays a vital role in determining treatment options in oncology. Hence, there is an increasing need for a robust and high-throughput technology to detect oncogenic hotspot mutations. Although commercial assays are available to detect genetic alterations in single genes, only a limited amount of tissue is often available from patients, requiring multiplexing to allow for simultaneous detection of mutations in many genes using low DNA input. Even though next-generation sequencing (NGS) platforms provide powerful tools for this purpose, they face challenges such as high cost, large DNA input requirement, complex data analysis, and long turnaround times, limiting their use in clinical settings. We report the development of the next generation mutation multi-analyte panel (MUT-MAP), a high-throughput microfluidic, panel for detecting 120 somatic mutations across eleven genes of therapeutic interest (AKT1, BRAF, EGFR, FGFR3, FLT3, HRAS, KIT, KRAS, MET, NRAS, and PIK3CA) using allele-specific PCR (AS-PCR) and Taqman technology. This mutation panel requires as little as 2 ng of high quality DNA from fresh frozen or 100 ng of DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Mutation calls, including an automated data analysis process, have been implemented to run 88 samples per day. Validation of this platform using plasmids showed robust signal and low cross-reactivity in all of the newly added assays and mutation calls in cell line samples were found to be consistent with the Catalogue of Somatic Mutations in Cancer (COSMIC) database allowing for direct comparison of our platform to Sanger sequencing. High correlation with NGS when compared to the SuraSeq500 panel run on the Ion Torrent platform in a FFPE dilution experiment showed assay sensitivity down to 0.45%. This multiplexed mutation panel is a valuable tool for high-throughput biomarker discovery in personalized medicine and cancer drug development. PMID:24658394
Low Cost, High-Throughput 3D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low Field MRI
2016-10-01
HAS THE PROJECT PROVIDED? ..... 7 HOW WERE THE RESULTS DISSEMINATED TO COMMUNITIES OF INTEREST? ................................................. 8...the results disseminated to communities of interest? Nothing to Report 4. IMPACT What was the impact on the development of the principal...the broader biomedical community , expanding the utility of HP methods as a new tool for probing fundamental biomedical questions. Acknowledgments The
Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali
2016-02-01
The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost.
Lai, Y W; Hamann, S; Ehmann, M; Ludwig, A
2011-06-01
We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent. © 2011 American Institute of Physics
A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing.
Hsiao, Yi-Hsing; Hsu, Chia-Hsien; Chen, Chihchen
2016-07-08
The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca(2+) concentration. However, glucose evoked a rapid elevation of intracellular Ca(2+) followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.
A high throughput mechanical screening device for cartilage tissue engineering.
Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L
2014-06-27
Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.
High-throughput cultivation and screening platform for unicellular phototrophs.
Tillich, Ulrich M; Wolter, Nick; Schulze, Katja; Kramer, Dan; Brödel, Oliver; Frohme, Marcus
2014-09-16
High-throughput cultivation and screening methods allow a parallel, miniaturized and cost efficient processing of many samples. These methods however, have not been generally established for phototrophic organisms such as microalgae or cyanobacteria. In this work we describe and test high-throughput methods with the model organism Synechocystis sp. PCC6803. The required technical automation for these processes was achieved with a Tecan Freedom Evo 200 pipetting robot. The cultivation was performed in 2.2 ml deepwell microtiter plates within a cultivation chamber outfitted with programmable shaking conditions, variable illumination, variable temperature, and an adjustable CO2 atmosphere. Each microtiter-well within the chamber functions as a separate cultivation vessel with reproducible conditions. The automated measurement of various parameters such as growth, full absorption spectrum, chlorophyll concentration, MALDI-TOF-MS, as well as a novel vitality measurement protocol, have already been established and can be monitored during cultivation. Measurement of growth parameters can be used as inputs for the system to allow for periodic automatic dilutions and therefore a semi-continuous cultivation of hundreds of cultures in parallel. The system also allows the automatic generation of mid and long term backups of cultures to repeat experiments or to retrieve strains of interest. The presented platform allows for high-throughput cultivation and screening of Synechocystis sp. PCC6803. The platform should be usable for many phototrophic microorganisms as is, and be adaptable for even more. A variety of analyses are already established and the platform is easily expandable both in quality, i.e. with further parameters to screen for additional targets and in quantity, i.e. size or number of processed samples.
High-throughput screening of dye-ligands for chromatography.
Kumar, Sunil; Punekar, Narayan S
2014-01-01
Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.
High speed micromachining with high power UV laser
NASA Astrophysics Data System (ADS)
Patel, Rajesh S.; Bovatsek, James M.
2013-03-01
Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.
From big data analysis to personalized medicine for all: challenges and opportunities.
Alyass, Akram; Turcotte, Michelle; Meyre, David
2015-06-27
Recent advances in high-throughput technologies have led to the emergence of systems biology as a holistic science to achieve more precise modeling of complex diseases. Many predict the emergence of personalized medicine in the near future. We are, however, moving from two-tiered health systems to a two-tiered personalized medicine. Omics facilities are restricted to affluent regions, and personalized medicine is likely to widen the growing gap in health systems between high and low-income countries. This is mirrored by an increasing lag between our ability to generate and analyze big data. Several bottlenecks slow-down the transition from conventional to personalized medicine: generation of cost-effective high-throughput data; hybrid education and multidisciplinary teams; data storage and processing; data integration and interpretation; and individual and global economic relevance. This review provides an update of important developments in the analysis of big data and forward strategies to accelerate the global transition to personalized medicine.
Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection
NASA Astrophysics Data System (ADS)
Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan
2018-03-01
X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400 × 400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.
Liu, I-Chen; Chen, Pin-Chuan; Chau, Lai-Kwan; Chang, Guo-En
2018-01-08
We propose and develop an intensity-detection-based refractive-index (RI) sensor for low-cost, rapid RI sensing. The sensor is composed of a polymer bent ridge waveguide (BRWG) structure on a low-cost glass substrate and is integrated with a microfluidic channel. Different-RI solutions flowing through the BRWG sensing region induce output optical power variations caused by optical bend losses, enabling simple and real-time RI detection. Additionally, the sensors are fabricated using rapid and cost-effective vacuum-less processes, attaining the low cost and high throughput required for mass production. A good RI solution of 5.31 10 -4 × RIU -1 is achieved from the RI experiments. This study demonstrates mass-producible and compact RI sensors for rapid and sensitive chemical analysis and biomedical sensing.
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-08-01
In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only +/- 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization.
Diversity arrays technology (DArT) markers in apple for genetic linkage maps.
Schouten, Henk J; van de Weg, W Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J; van Kaauwen, Martijn P W; Wittenberg, Alexander H J; Koehorst-van Putten, Herma J J; Noordijk, Yolanda; Gao, Zhongshan; Rees, D Jasper G; Van Dyk, Maria M; Jaccoud, Damian; Considine, Michael J; Kilian, Andrzej
2012-03-01
Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.
Laboratory cost control and financial management software.
Mayer, M
1998-02-09
Economical constraints within the health care system advocate the introduction of tighter control of costs in clinical laboratories. Detailed cost information forms the basis for cost control and financial management. Based on the cost information, proper decisions regarding priorities, procedure choices, personnel policies and investments can be made. This presentation outlines some principles of cost analysis, describes common limitations of cost analysis, and exemplifies use of software to achieve optimized cost control. One commercially available cost analysis software, LabCost, is described in some detail. In addition to provision of cost information, LabCost also serves as a general management tool for resource handling, accounting, inventory management and billing. The application of LabCost in the selection process of a new high throughput analyzer for a large clinical chemistry service is taken as an example for decisions that can be assisted by cost evaluation. It is concluded that laboratory management that wisely utilizes cost analysis to support the decision-making process will undoubtedly have a clear advantage over those laboratories that fail to employ cost considerations to guide their actions.
Development of Low-cost, High Energy-per-unit-area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.
1978-01-01
The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.
Wake Vortex Systems Cost/Benefits Analysis
NASA Technical Reports Server (NTRS)
Crisp, Vicki K.
1997-01-01
The goals of cost/benefit assessments are to provide quantitative and qualitative data to aid in the decision-making process. Benefits derived from increased throughput (or decreased delays) used to balance life-cycle costs. Packaging technologies together may provide greater gains (demonstrate higher return on investment).
A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.
Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S
2012-01-01
This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.
A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications
Sa-ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T. S.
2012-01-01
This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing. PMID:23112633
NASA Astrophysics Data System (ADS)
Abbott, W. W.; Faisal, A. A.
2012-08-01
Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.
Museum genomics: low-cost and high-accuracy genetic data from historical specimens.
Rowe, Kevin C; Singhal, Sonal; Macmanes, Matthew D; Ayroles, Julien F; Morelli, Toni Lyn; Rubidge, Emily M; Bi, Ke; Moritz, Craig C
2011-11-01
Natural history collections are unparalleled repositories of geographical and temporal variation in faunal conditions. Molecular studies offer an opportunity to uncover much of this variation; however, genetic studies of historical museum specimens typically rely on extracting highly degraded and chemically modified DNA samples from skins, skulls or other dried samples. Despite this limitation, obtaining short fragments of DNA sequences using traditional PCR amplification of DNA has been the primary method for genetic study of historical specimens. Few laboratories have succeeded in obtaining genome-scale sequences from historical specimens and then only with considerable effort and cost. Here, we describe a low-cost approach using high-throughput next-generation sequencing to obtain reliable genome-scale sequence data from a traditionally preserved mammal skin and skull using a simple extraction protocol. We show that single-nucleotide polymorphisms (SNPs) from the genome sequences obtained independently from the skin and from the skull are highly repeatable compared to a reference genome. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Philipsen, R. H. H. M.; Sánchez, C. I.; Maduskar, P.; Melendez, J.; Peters-Bax, L.; Peter, J. G.; Dawson, R.; Theron, G.; Dheda, K.; van Ginneken, B.
2015-07-01
Molecular tests hold great potential for tuberculosis (TB) diagnosis, but are costly, time consuming, and HIV-infected patients are often sputum scarce. Therefore, alternative approaches are needed. We evaluated automated digital chest radiography (ACR) as a rapid and cheap pre-screen test prior to Xpert MTB/RIF (Xpert). 388 suspected TB subjects underwent chest radiography, Xpert and sputum culture testing. Radiographs were analysed by computer software (CAD4TB) and specialist readers, and abnormality scores were allocated. A triage algorithm was simulated in which subjects with a score above a threshold underwent Xpert. We computed sensitivity, specificity, cost per screened subject (CSS), cost per notified TB case (CNTBC) and throughput for different diagnostic thresholds. 18.3% of subjects had culture positive TB. For Xpert alone, sensitivity was 78.9%, specificity 98.1%, CSS $13.09 and CNTBC $90.70. In a pre-screening setting where 40% of subjects would undergo Xpert, CSS decreased to $6.72 and CNTBC to $54.34, with eight TB cases missed and throughput increased from 45 to 113 patients/day. Specialists, on average, read 57% of radiographs as abnormal, reducing CSS ($8.95) and CNTBC ($64.84). ACR pre-screening could substantially reduce costs, and increase daily throughput with few TB cases missed. These data inform public health policy in resource-constrained settings.
Even-Desrumeaux, Klervi; Baty, Daniel; Chames, Patrick
2010-01-01
Antibodies microarrays are among the novel class of rapidly emerging proteomic technologies that will allow us to efficiently perform specific diagnosis and proteome analysis. Recombinant antibody fragments are especially suited for this approach but their stability is often a limiting factor. Camelids produce functional antibodies devoid of light chains (HCAbs) of which the single N-terminal domain is fully capable of antigen binding. When produced as an independent domain, these so-called single domain antibody fragments (sdAbs) have several advantages for biotechnological applications thanks to their unique properties of size (15 kDa), stability, solubility, and expression yield. These features should allow sdAbs to outperform other antibody formats in a number of applications, notably as capture molecule for antibody arrays. In this study, we have produced antibody microarrays using direct and oriented immobilization of sdAbs produced in crude bacterial lysates to generate proof-of-principle of a high-throughput compatible array design. Several sdAb immobilization strategies have been explored. Immobilization of in vivo biotinylated sdAbs by direct spotting of bacterial lysate on streptavidin and sandwich detection was developed to achieve high sensitivity and specificity, whereas immobilization of “multi-tagged” sdAbs via anti-tag antibodies and direct labeled sample detection strategy was optimized for the design of high-density antibody arrays for high-throughput proteomics and identification of potential biomarkers. PMID:20859568
Yajuan, Xiao; Xin, Liang; Zhiyuan, Li
2012-01-01
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269
Exclusion-Based Capture and Enumeration of CD4+ T Cells from Whole Blood for Low-Resource Settings.
Howard, Alexander L; Pezzi, Hannah M; Beebe, David J; Berry, Scott M
2014-06-01
In developing countries, demand exists for a cost-effective method to evaluate human immunodeficiency virus patients' CD4(+) T-helper cell count. The TH (CD4) cell count is the current marker used to identify when an HIV patient has progressed to acquired immunodeficiency syndrome, which results when the immune system can no longer prevent certain opportunistic infections. A system to perform TH count that obviates the use of costly flow cytometry will enable physicians to more closely follow patients' disease progression and response to therapy in areas where such advanced equipment is unavailable. Our system of two serially-operated immiscible phase exclusion-based cell isolations coupled with a rapid fluorescent readout enables exclusion-based isolation and accurate counting of T-helper cells at lower cost and from a smaller volume of blood than previous methods. TH cell isolation via immiscible filtration assisted by surface tension (IFAST) compares well against the established Dynal T4 Quant Kit and is sensitive at CD4 counts representative of immunocompromised patients (less than 200 TH cells per microliter of blood). Our technique retains use of open, simple-to-operate devices that enable IFAST as a high-throughput, automatable sample preparation method, improving throughput over previous low-resource methods. © 2013 Society for Laboratory Automation and Screening.
A 48Cycles/MB H.264/AVC Deblocking Filter Architecture for Ultra High Definition Applications
NASA Astrophysics Data System (ADS)
Zhou, Dajiang; Zhou, Jinjia; Zhu, Jiayi; Goto, Satoshi
In this paper, a highly parallel deblocking filter architecture for H.264/AVC is proposed to process one macroblock in 48 clock cycles and give real-time support to QFHD@60fps sequences at less than 100MHz. 4 edge filters organized in 2 groups for simultaneously processing vertical and horizontal edges are applied in this architecture to enhance its throughput. While parallelism increases, pipeline hazards arise owing to the latency of edge filters and data dependency of deblocking algorithm. To solve this problem, a zig-zag processing schedule is proposed to eliminate the pipeline bubbles. Data path of the architecture is then derived according to the processing schedule and optimized through data flow merging, so as to minimize the cost of logic and internal buffer. Meanwhile, the architecture's data input rate is designed to be identical to its throughput, while the transmission order of input data can also match the zig-zag processing schedule. Therefore no intercommunication buffer is required between the deblocking filter and its previous component for speed matching or data reordering. As a result, only one 24×64 two-port SRAM as internal buffer is required in this design. When synthesized with SMIC 130nm process, the architecture costs a gate count of 30.2k, which is competitive considering its high performance.
Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed
2016-08-10
Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.
High performance gel imaging with a commercial single lens reflex camera
NASA Astrophysics Data System (ADS)
Slobodan, J.; Corbett, R.; Wye, N.; Schein, J. E.; Marra, M. A.; Coope, R. J. N.
2011-03-01
A high performance gel imaging system was constructed using a digital single lens reflex camera with epi-illumination to image 19 × 23 cm agarose gels with up to 10,000 DNA bands each. It was found to give equivalent performance to a laser scanner in this high throughput DNA fingerprinting application using the fluorophore SYBR Green®. The specificity and sensitivity of the imager and scanner were within 1% using the same band identification software. Low and high cost color filters were also compared and it was found that with care, good results could be obtained with inexpensive dyed acrylic filters in combination with more costly dielectric interference filters, but that very poor combinations were also possible. Methods for determining resolution, dynamic range, and optical efficiency for imagers are also proposed to facilitate comparison between systems.
Strategic and Operational Plan for Integrating Transcriptomics ...
Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016
High-Throughput Experimental Approach Capabilities | Materials Science |
NREL High-Throughput Experimental Approach Capabilities High-Throughput Experimental Approach by yellow and is for materials in the upper right sector. NREL's high-throughput experimental ,Te) and oxysulfide sputtering Combi-5: Nitrides and oxynitride sputtering We also have several non
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, C. V.; Mendez, A. J.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Mendez R & D Associates (MRDA) to develop and demonstrate a reconfigurable and cost effective design for optical code division multiplexing (O-CDM) with high spectral efficiency and throughput, as applied to the field of distributed computing, including multiple accessing (sharing of communication resources) and bidirectional data distribution in fiber-to-the-premise (FTTx) networks.
Steven J. Hall; Wenjuan Huang; Kenneth Hammel
2017-01-01
RATIONALE: Carbon dioxide isotope (Î13C value) measurements enable quantification of the sources of soil microbial respiration, thus informing ecosystem C dynamics. Tunable diode lasers (TDLs) can precisely measure CO2 isotopes at low cost and high throughput, but are seldom used for small samples (â¤5 mL). We developed a...
The LAMAR: A high throughput X-ray astronomy facility for a moderate cost mission
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Schwartz, D.
1981-01-01
The performance of a large area modular array of reflectors (LAMAR) is considered in several hypothetical observations relevant to: (1) cosmology, the X-ray background, and large scale structure of the universe; (2) clusters of galaxies and their evolution; (3) quasars and other active galactic nuclei; (4) compact objects in our galaxy; (5) stellar coronae; and (6) energy input to the interstellar medium.
Laurin, Nancy; DeMoors, Anick; Frégeau, Chantal
2012-09-01
Direct amplification of STR loci from biological samples collected on FTA cards without prior DNA purification was evaluated using Identifiler Direct and PowerPlex 16 HS in conjunction with the use of a high throughput Applied Biosystems 3730 DNA Analyzer. In order to reduce the overall sample processing cost, reduced PCR volumes combined with various FTA disk sizes were tested. Optimized STR profiles were obtained using a 0.53 mm disk size in 10 μL PCR volume for both STR systems. These protocols proved effective in generating high quality profiles on the 3730 DNA Analyzer from both blood and buccal FTA samples. Reproducibility, concordance, robustness, sample stability and profile quality were assessed using a collection of blood and buccal samples on FTA cards from volunteer donors as well as from convicted offenders. The new developed protocols offer enhanced throughput capability and cost effectiveness without compromising the robustness and quality of the STR profiles obtained. These results support the use of these protocols for processing convicted offender samples submitted to the National DNA Data Bank of Canada. Similar protocols could be applied to the processing of casework reference samples or in paternity or family relationship testing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L
2014-01-01
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.
FPGA Implementation of Stereo Disparity with High Throughput for Mobility Applications
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Morfopolous, Arin; Matthies, Larry; Goldberg, Steven
2011-01-01
High speed stereo vision can allow unmanned robotic systems to navigate safely in unstructured terrain, but the computational cost can exceed the capacity of typical embedded CPUs. In this paper, we describe an end-to-end stereo computation co-processing system optimized for fast throughput that has been implemented on a single Virtex 4 LX160 FPGA. This system is capable of operating on images from a 1024 x 768 3CCD (true RGB) camera pair at 15 Hz. Data enters the FPGA directly from the cameras via Camera Link and is rectified, pre-filtered and converted into a disparity image all within the FPGA, incurring no CPU load. Once complete, a rectified image and the final disparity image are read out over the PCI bus, for a bandwidth cost of 68 MB/sec. Within the FPGA there are 4 distinct algorithms: Camera Link capture, Bilinear rectification, Bilateral subtraction pre-filtering and the Sum of Absolute Difference (SAD) disparity. Each module will be described in brief along with the data flow and control logic for the system. The system has been successfully fielded upon the Carnegie Mellon University's National Robotics Engineering Center (NREC) Crusher system during extensive field trials in 2007 and 2008 and is being implemented for other surface mobility systems at JPL.
Motato, Karina Edith; Milani, Christian; Ventura, Marco; Valencia, Francia Elena; Ruas-Madiedo, Patricia; Delgado, Susana
2017-12-01
"Suero Costeño" (SC) is a traditional soured cream elaborated from raw milk in the Northern-Caribbean coast of Colombia. The natural microbiota that characterizes this popular Colombian fermented milk is unknown, although several culturing studies have previously been attempted. In this work, the microbiota associated with SC from three manufacturers in two regions, "Planeta Rica" (Córdoba) and "Caucasia" (Antioquia), was analysed by means of culturing methods in combination with high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. The bacterial ecosystem of SC samples was revealed to be composed of lactic acid bacteria belonging to the Streptococcaceae and Lactobacillaceae families; the proportions and genera varying among manufacturers and region of elaboration. Members of the Lactobacillus acidophilus group, Lactocococcus lactis, Streptococcus infantarius and Streptococcus salivarius characterized this artisanal product. In comparison with culturing, the use of molecular in deep culture-independent techniques provides a more realistic picture of the overall bacterial communities residing in SC. Besides the descriptive purpose, these approaches will facilitate a rational strategy to follow (culture media and growing conditions) for the isolation of indigenous strains that allow standardization in the manufacture of SC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Developing science gateways for drug discovery in a grid environment.
Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra
2016-01-01
Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.
Ooi, Shing Ming; Sarkar, Srimanta; van Varenbergh, Griet; Schoeters, Kris; Heng, Paul Wan Sia
2013-04-01
Continuous processing and production in pharmaceutical manufacturing has received increased attention in recent years mainly due to the industries' pressing needs for more efficient, cost-effective processes and production, as well as regulatory facilitation. To achieve optimum product quality, the traditional trial-and-error method for the optimization of different process and formulation parameters is expensive and time consuming. Real-time evaluation and the control of product quality using an online process analyzer in continuous processing can provide high-quality production with very high-throughput at low unit cost. This review focuses on continuous processing and the application of different real-time monitoring tools used in the pharmaceutical industry for continuous processing from powder to tablets.
Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks
NASA Astrophysics Data System (ADS)
Breskovic, Damir; Begusic, Dinko
2017-05-01
In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.
Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping
2016-10-01
Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.
The high throughput virtual slit enables compact, inexpensive Raman spectral imagers
NASA Astrophysics Data System (ADS)
Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.
2018-02-01
Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.
High-throughput profiling of nanoparticle-protein interactions by fluorescamine labeling.
Ashby, Jonathan; Duan, Yaokai; Ligans, Erik; Tamsi, Michael; Zhong, Wenwan
2015-02-17
A rapid, high throughput fluorescence assay was designed to screen interactions between proteins and nanoparticles. The assay employs fluorescamine, a primary-amine specific fluorogenic dye, to label proteins. Because fluorescamine could specifically target the surface amines on proteins, a conformational change of the protein upon interaction with nanoparticles will result in a change in fluorescence. In the present study, the assay was applied to test the interactions between a selection of proteins and nanoparticles made of polystyrene, silica, or iron oxide. The particles were also different in their hydrodynamic diameter, synthesis procedure, or surface modification. Significant labeling differences were detected when the same protein incubated with different particles. Principal component analysis (PCA) on the collected fluorescence profiles revealed clear grouping effects of the particles based on their properties. The results prove that fluorescamine labeling is capable of detecting protein-nanoparticle interactions, and the resulting fluorescence profile is sensitive to differences in nanoparticle's physical properties. The assay can be carried out in a high-throughput manner, and is rapid with low operation cost. Thus, it is well suited for evaluating interactions between a larger number of proteins and nanoparticles. Such assessment can help to improve our understanding on the molecular basis that governs the biological behaviors of nanomaterials. It will also be useful for initial examination of the bioactivity and reproducibility of nanomaterials employed in biomedical fields.
Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions.
Trinder, Mark; Daisley, Brendan A; Dube, Josh S; Reid, Gregor
2017-01-01
Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host-microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host-microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host-microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.
Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.
2016-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644
Accelerating evaluation of converged lattice thermal conductivity
NASA Astrophysics Data System (ADS)
Qin, Guangzhao; Hu, Ming
2018-01-01
High-throughput computational materials design is an emerging area in materials science, which is based on the fast evaluation of physical-related properties. The lattice thermal conductivity (κ) is a key property of materials for enormous implications. However, the high-throughput evaluation of κ remains a challenge due to the large resources costs and time-consuming procedures. In this paper, we propose a concise strategy to efficiently accelerate the evaluation process of obtaining accurate and converged κ. The strategy is in the framework of phonon Boltzmann transport equation (BTE) coupled with first-principles calculations. Based on the analysis of harmonic interatomic force constants (IFCs), the large enough cutoff radius (rcutoff), a critical parameter involved in calculating the anharmonic IFCs, can be directly determined to get satisfactory results. Moreover, we find a simple way to largely ( 10 times) accelerate the computations by fast reconstructing the anharmonic IFCs in the convergence test of κ with respect to the rcutof, which finally confirms the chosen rcutoff is appropriate. Two-dimensional graphene and phosphorene along with bulk SnSe are presented to validate our approach, and the long-debate divergence problem of thermal conductivity in low-dimensional systems is studied. The quantitative strategy proposed herein can be a good candidate for fast evaluating the reliable κ and thus provides useful tool for high-throughput materials screening and design with targeted thermal transport properties.
Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip
2011-08-01
The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.
[Induction and regulation of cellulase expression in filamentous fungi: a review].
Zhang, Fei; Bai, Fengwu; Zhao, Xinqing
2016-11-25
Production of bioenergy and bio-based chemicals by using fermentable sugars released from low-cost renewable lignocellulosic biomass has received great attention. Efficient cellulolytic enzymes are crucial for lignocellulose bioconversion, but high cellulase production cost is limiting the bioconversion efficiency of cellulosic biomass and industrial applications of lignocellulose biorefinery. Studies on induction and regulation of cellulase in filamentous fungi will help to further develop superior fungal strains for efficient cellulase production and reduce cellulase production cost. With the advances in high-throughput sequencing and gene manipulation technology using fungal strains, an in-depth understanding of cellulase induction and regulation mechanisms of enzyme expression has been achieved. We reviewed recent progresses in the induction and regulation of cellulase expression in several model filamentous fungi, emphasizing sugar transporters, transcription factors and chromatin remodeling. Future prospects in application of artificial zinc finger proteins for cellulase induction and regulation in filamentous fungi were discussed.
18 CFR 2.104 - Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs.
Code of Federal Regulations, 2011 CFR
2011-04-01
... surcharge or a volumetric surcharge on total throughput. (b) Cost allocation procedures. A pipeline's volume... surcharges, together with any necessary accounting procedures, designed to assure that revenues recovered by...
Nucleic Acids for Ultra-Sensitive Protein Detection
Janssen, Kris P. F.; Knez, Karel; Spasic, Dragana; Lammertyn, Jeroen
2013-01-01
Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. PMID:23337338
QoS-aware integrated fiber-wireless standard compliant architecture based on XGPON and EDCA
NASA Astrophysics Data System (ADS)
Kaur, Ravneet; Srivastava, Anand
2018-01-01
Converged Fiber-Wireless (FiWi) broadband access network proves to be a promising candidate that is reliable, robust, cost efficient, ubiquitous and capable of providing huge amount of bandwidth. To meet the ever-increasing bandwidth requirements, it has become very crucial to investigate the performance issues that arise with the deployment of next-generation Passive Optical Network (PON) and its integration with various wireless technologies. Apart from providing high speed internet access for mass use, this combined architecture aims to enable delivery of high quality and effective e-services in different categories including health, education, finance, banking, agriculture and e-government. In this work, we present an integrated architecture of 10-Gigabit-capable PON (XG-PON) and Enhanced Distributed Channel Access (EDCA) that combines the benefits of both technologies to meet the QoS demands of subscribers. Performance evaluation of the standards-compliant hybrid network is done using discrete-event Network Simulator-3 (NS-3) and results are reported in terms of throughput, average delay, average packet loss rate and fairness index. Per-class throughput signifies effectiveness of QoS distribution whereas aggregate throughput indicates effective utilization of wireless channel. This work has not been reported so far to the best of our knowledge.
Kwak, Jihoon; Genovesio, Auguste; Kang, Myungjoo; Hansen, Michael Adsett Edberg; Han, Sung-Jun
2015-01-01
Genotoxicity testing is an important component of toxicity assessment. As illustrated by the European registration, evaluation, authorization, and restriction of chemicals (REACH) directive, it concerns all the chemicals used in industry. The commonly used in vivo mammalian tests appear to be ill adapted to tackle the large compound sets involved, due to throughput, cost, and ethical issues. The somatic mutation and recombination test (SMART) represents a more scalable alternative, since it uses Drosophila, which develops faster and requires less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila wings required for the SMART limits its usage. To overcome this limitation, we have developed an automated SMART readout. It consists of automated imaging, followed by an image analysis pipeline that measures individual wing genotoxicity scores. Finally, we have developed a wing score-based dose-dependency approach that can provide genotoxicity profiles. We have validated our method using 6 compounds, obtaining profiles almost identical to those obtained from manual measures, even for low-genotoxicity compounds such as urethane. The automated SMART, with its faster and more reliable readout, fulfills the need for a high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools we provide should facilitate the optimization and dissemination of our methods. PMID:25830368
Pérez Del Palacio, José; Díaz, Caridad; de la Cruz, Mercedes; Annang, Frederick; Martín, Jesús; Pérez-Victoria, Ignacio; González-Menéndez, Víctor; de Pedro, Nuria; Tormo, José R; Algieri, Francesca; Rodriguez-Nogales, Alba; Rodríguez-Cabezas, M Elena; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; Gálvez, Julio
2016-07-01
It is widely accepted that central nervous system inflammation and systemic inflammation play a significant role in the progression of chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury, and multiple sclerosis. Therefore, it seems reasonable to propose that the use of anti-inflammatory drugs might diminish the cumulative effects of inflammation. Indeed, some epidemiological studies suggest that sustained use of anti-inflammatory drugs may prevent or slow down the progression of neurodegenerative diseases. However, the anti-inflammatory drugs and biologics used clinically have the disadvantage of causing side effects and a high cost of treatment. Alternatively, natural products offer great potential for the identification and development of bioactive lead compounds into drugs for treating inflammatory diseases with an improved safety profile. In this work, we present a validated high-throughput screening approach in 96-well plate format for the discovery of new molecules with anti-inflammatory/immunomodulatory activity. The in vitro models are based on the quantitation of nitrite levels in RAW264.7 murine macrophages and interleukin-8 in Caco-2 cells. We have used this platform in a pilot project to screen a subset of 5976 noncytotoxic crude microbial extracts from the MEDINA microbial natural product collection. To our knowledge, this is the first report on an high-throughput screening of microbial natural product extracts for the discovery of immunomodulators. © 2016 Society for Laboratory Automation and Screening.
Application of Computational and High-Throughput in vitro ...
Abstract: There are tens of thousands of man-made chemicals to which humans are exposed, but only a fraction of these have the extensive in vivo toxicity data used in most traditional risk assessments. This lack of data, coupled with concerns about testing costs and animal use, are driving the development of new methods for assessing the risk of toxicity. These methods include the use of in vitro high-throughput screening assays and computational models. This talk will review a variety of high-throughput, non-animal methods being used at the U.S. EPA to screen chemicals for a variety of toxicity endpoints, with a focus on their potential to be endocrine disruptors as part of the Endocrine Disruptor Screening Program (EDSP). These methods all start with the use of in vitro assays, e.g. for activity against the estrogen and androgen receptors (ER and AR) and targets in the steroidogenesis and thyroid signaling pathways. Because all individual assays are subject to a variety of noise processes and technology-specific assay artefacts, we have developed methods to create consensus predictions from multiple assays against the same target. The goal of these models is to both robustly predict in vivo activity, and also to provide quantitative estimates of uncertainty. This talk will describe these models, and how they are validated against both in vitro and in vivo reference chemicals. The U.S. EPA has deemed the in vitro ER model results to be of high enough accuracy t
Application of computational and high-throughput in vitro ...
Abstract: There are tens of thousands of man-made chemicals to which humans are exposed, but only a fraction of these have the extensive in vivo toxicity data used in most traditional risk assessments. This lack of data, coupled with concerns about testing costs and animal use, are driving the development of new methods for assessing the risk of toxicity. These methods include the use of in vitro high-throughput screening assays and computational models. This talk will review a variety of high-throughput, non-animal methods being used at the U.S. EPA to screen chemicals for their potential to be endocrine disruptors as part of the Endocrine Disruptor Screening Program (EDSP). These methods all start with the use of in vitro assays, e.g. for activity against the estrogen and androgen receptors (ER and AR) and targets in the steroidogenesis and thyroid signaling pathways. Because all individual assays are subject to a variety of noise processes and technology-specific assay artefacts, we have developed methods to create consensus predictions from multiple assays against the same target. The goal of these models is to both robustly predict in vivo activity, and also to provide quantitative estimates of uncertainty. This talk will describe these models, and how they are validated against both in vitro and in vivo reference chemicals. The U.S. EPA has deemed the in vitro ER model results to be of high enough accuracy to be used as a substitute for the current EDSP Ti
High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.
Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca
2015-01-01
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
Pronk, Sander; Páll, Szilárd; Schulz, Roland; Larsson, Per; Bjelkmar, Pär; Apostolov, Rossen; Shirts, Michael R.; Smith, Jeremy C.; Kasson, Peter M.; van der Spoel, David; Hess, Berk; Lindahl, Erik
2013-01-01
Motivation: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Results: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. Availability: GROMACS is an open source and free software available from http://www.gromacs.org. Contact: erik.lindahl@scilifelab.se Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23407358
Egea, Leticia A.; Mérida-García, Rosa; Kilian, Andrzej; Hernandez, Pilar; Dorado, Gabriel
2017-01-01
Garlic (Allium sativum) is used worldwide in cooking and industry, including pharmacology/medicine and cosmetics, for its interesting properties. Identifying redundancies in germplasm blanks to generate core collections is a major concern, mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar appearance and phenotypic plasticity of garlic varieties hinder their morphological classification. Molecular studies are challenging, due to the large and expected complex genome of this species, with asexual reproduction. Classical molecular markers, like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm core-collections for this species. The recent emergence of high-throughput genotyping-by-sequencing (GBS) approaches, like DArTseq, allow to overcome such limitations to characterize and protect genetic diversity. Therefore, such technology was used in this work to: (i) assess genetic diversity and structure of a large garlic-germplasm bank (417 accessions); (ii) create a core collection; (iii) relate genotype to agronomical features; and (iv) describe a cost-effective method to manage genetic diversity in garlic-germplasm banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE showed general consistency, generating three main garlic-groups, mostly determined by variety and geographical origin. In addition, high-resolution genotyping identified 286 unique and 131 redundant accessions, used to select a reduced size germplasm-bank core collection. This demonstrates that DArTseq is a cost-effective method to analyze species with large and expected complex genomes, like garlic. To the best of our knowledge, this is the first report of high-throughput genotyping of a large garlic germplasm. This is particularly interesting for garlic adaptation and improvement, to fight biotic and abiotic stresses, in the current context of climate change and global warming. PMID:28775737
Soendergaard, Mette; Newton-Northup, Jessica R; Deutscher, Susan L
2014-01-01
Ovarian cancer is among the leading causes of cancer deaths in women, and is the most fatal gynecological malignancy. Poor outcomes of the disease are a direct result of inadequate detection and diagnostic methods, which may be overcome by the development of novel efficacious screening modalities. However, the advancement of such technologies is often time-consuming and costly. To overcome this hurdle, our laboratory has established a time and cost effective method of selecting and identifying ovarian carcinoma avid bacteriophage (phage) clones using high throughput phage display technology. These phage clones were selected from a filamentous phage fusion vector (fUSE5) 15-amino acid peptide library against human ovarian carcinoma (SKOV-3) cells, and identified by DNA sequencing. Two phage clones, pM6 and pM9, were shown to exhibit high binding affinity and specificity for SKOV-3 cells using micropanning, cell binding and fluorescent microscopy studies. To validate that the binding was mediated by the phage-displayed peptides, biotinylated peptides (M6 and M9) were synthesized and the specificity for ovarian carcinoma cells was analyzed. These results showed that M6 and M9 bound to SKOV-3 cells in a dose-response manner and exhibited EC50 values of 22.9 ± 2.0 μM and 12.2 ± 2.1μM (mean ± STD), respectively. Based on this, phage clones pM6 and pM9 were labeled with the near-infrared fluorophore AF680, and examined for their pharmacokinetic properties and tumor imaging abilities in vivo. Both phage successfully targeted and imaged SKOV-3 tumors in xenografted nude mice, demonstrating the ability of this method to quickly and cost effectively develop novel ovarian carcinoma avid phage.
Mail-Order Microfluidics: Evaluation of Stereolithography for the Production of Microfluidic Devices
Au, Anthony K.; Lee, Wonjae; Folch, Albert
2015-01-01
The vast majority of microfluidic devices are developed in PDMS by molding (“soft lithography”) because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate for prototype development. However, PDMS molding is tediously slow and thus cannot provide the high- or medium-volume production required for the commercialization of devices. While high-throughput plastic molding techniques (e.g. injection molding) exist, the exorbitant cost of the molds and/or the equipment can be a serious obstacle for device commercialization, especially for small startups. High-volume production is not required to reach niche markets such as clinical trials, biomedical research supplies, customized research equipment, and classroom projects. Crucially, both PDMS and plastic molding are layer-by-layer techniques where each layer is produced as a result of physicochemical processes not specified in the initial photomask(s) and where the final device requires assembly by bonding, all resulting in a cost that is very hard to predict at the start of the project. By contrast, stereolithography (SL) is an automated fabrication technique that allows for the production of quasi-arbitrary 3D shapes in a single polymeric material at medium-volume throughputs (ranging from a single part to hundreds of parts). Importantly, SL devices can be designed between several groups using CAD tools, conveniently ordered by mail, and their cost precisely predicted via a web interface. Here we evaluate the resolution of an SL mail-order service and the main causes of resolution loss; the optical clarity of the devices and how to address the lack of clarity for imaging in the channels; and the future role that SL could play in the commercialization of microfluidic devices. PMID:24510161
Au, Anthony K; Lee, Wonjae; Folch, Albert
2014-04-07
The vast majority of microfluidic devices are developed in PDMS by molding ("soft lithography") because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate for prototype development. However, PDMS molding is tediously slow and thus cannot provide the high- or medium-volume production required for the commercialization of devices. While high-throughput plastic molding techniques (e.g. injection molding) exist, the exorbitant cost of the molds and/or the equipment can be a serious obstacle for device commercialization, especially for small startups. High-volume production is not required to reach niche markets such as clinical trials, biomedical research supplies, customized research equipment, and classroom projects. Crucially, both PDMS and plastic molding are layer-by-layer techniques where each layer is produced as a result of physicochemical processes not specified in the initial photomask(s) and where the final device requires assembly by bonding, all resulting in a cost that is very hard to predict at the start of the project. By contrast, stereolithography (SL) is an automated fabrication technique that allows for the production of quasi-arbitrary 3D shapes in a single polymeric material at medium-volume throughputs (ranging from a single part to hundreds of parts). Importantly, SL devices can be designed between several groups using CAD tools, conveniently ordered by mail, and their cost precisely predicted via a web interface. Here we evaluate the resolution of an SL mail-order service and the main causes of resolution loss; the optical clarity of the devices and how to address the lack of clarity for imaging in the channels; and the future role that SL could play in the commercialization of microfluidic devices.
Egea, Leticia A; Mérida-García, Rosa; Kilian, Andrzej; Hernandez, Pilar; Dorado, Gabriel
2017-01-01
Garlic ( Allium sativum ) is used worldwide in cooking and industry, including pharmacology/medicine and cosmetics, for its interesting properties. Identifying redundancies in germplasm blanks to generate core collections is a major concern, mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar appearance and phenotypic plasticity of garlic varieties hinder their morphological classification. Molecular studies are challenging, due to the large and expected complex genome of this species, with asexual reproduction. Classical molecular markers, like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm core-collections for this species. The recent emergence of high-throughput genotyping-by-sequencing (GBS) approaches, like DArTseq, allow to overcome such limitations to characterize and protect genetic diversity. Therefore, such technology was used in this work to: (i) assess genetic diversity and structure of a large garlic-germplasm bank (417 accessions); (ii) create a core collection; (iii) relate genotype to agronomical features; and (iv) describe a cost-effective method to manage genetic diversity in garlic-germplasm banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE showed general consistency, generating three main garlic-groups, mostly determined by variety and geographical origin. In addition, high-resolution genotyping identified 286 unique and 131 redundant accessions, used to select a reduced size germplasm-bank core collection. This demonstrates that DArTseq is a cost-effective method to analyze species with large and expected complex genomes, like garlic. To the best of our knowledge, this is the first report of high-throughput genotyping of a large garlic germplasm. This is particularly interesting for garlic adaptation and improvement, to fight biotic and abiotic stresses, in the current context of climate change and global warming.
EDGE 2017 R&D 100 Entry with Appendix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, Patrick Sam Guy; Davenport, Karen Walston; Li, Po-E
Diabetes, infertility, cancer, and Alzheimer’s disease—the key to one day preventing or even curing such afflictions and diseases (both infectious and genetically driven) may be locked in our own genetic code and the code of microorganisms that inhabit our bodies. The study of this code, known as genomics, has recently become much more promising as a result of two things: (1) vast improvements in high-throughput, nextgeneration sequencing (NSG), and (2) an exponential decrease in the cost of such sequencing. For example, it originally cost approximately $3 billion to sequence the human genome; today, this genome could be resequenced for lessmore » than $1,000.« less
Wilkinson, Samuel L.; John, Shibu; Walsh, Roddy; Novotny, Tomas; Valaskova, Iveta; Gupta, Manu; Game, Laurence; Barton, Paul J R.; Cook, Stuart A.; Ware, James S.
2013-01-01
Background Molecular genetic testing is recommended for diagnosis of inherited cardiac disease, to guide prognosis and treatment, but access is often limited by cost and availability. Recently introduced high-throughput bench-top DNA sequencing platforms have the potential to overcome these limitations. Methodology/Principal Findings We evaluated two next-generation sequencing (NGS) platforms for molecular diagnostics. The protein-coding regions of six genes associated with inherited arrhythmia syndromes were amplified from 15 human samples using parallelised multiplex PCR (Access Array, Fluidigm), and sequenced on the MiSeq (Illumina) and Ion Torrent PGM (Life Technologies). Overall, 97.9% of the target was sequenced adequately for variant calling on the MiSeq, and 96.8% on the Ion Torrent PGM. Regions missed tended to be of high GC-content, and most were problematic for both platforms. Variant calling was assessed using 107 variants detected using Sanger sequencing: within adequately sequenced regions, variant calling on both platforms was highly accurate (Sensitivity: MiSeq 100%, PGM 99.1%. Positive predictive value: MiSeq 95.9%, PGM 95.5%). At the time of the study the Ion Torrent PGM had a lower capital cost and individual runs were cheaper and faster. The MiSeq had a higher capacity (requiring fewer runs), with reduced hands-on time and simpler laboratory workflows. Both provide significant cost and time savings over conventional methods, even allowing for adjunct Sanger sequencing to validate findings and sequence exons missed by NGS. Conclusions/Significance MiSeq and Ion Torrent PGM both provide accurate variant detection as part of a PCR-based molecular diagnostic workflow, and provide alternative platforms for molecular diagnosis of inherited cardiac conditions. Though there were performance differences at this throughput, platforms differed primarily in terms of cost, scalability, protocol stability and ease of use. Compared with current molecular genetic diagnostic tests for inherited cardiac arrhythmias, these NGS approaches are faster, less expensive, and yet more comprehensive. PMID:23861798
Development and Performance of the ACTS High Speed VSAT
NASA Technical Reports Server (NTRS)
Quintana, J.; Tran, Q.; Dendy, R.
1999-01-01
The Advanced Communication Technology Satellite (ACTS), developed by the U.S. National Aeronautics and Space Administration (NASA) has demonstrated the breakthrough technologies of Ka-band, spot beam antennas, and on-board processing. These technologies have enabled the development of very small aperture terminals (VSAT) and ultra-small aperture terminals (USAT) which have capabilities greater than were previously possible with conventional satellite technologies. However, the ACTS baseband processor (BBP) is designed using a time division multiple access (TDMA) scheme, which requires each earth station using the BBP to transmit data at a burst rate which is much higher than the user throughput data rate. This tends to mitigate the advantage of the new technologies by requiring a larger earth station antenna and/or a higher-powered uplink amplifier than would be necessary for a continuous transmission at the user data rate. Conversely, the user data rate is much less than the rate that can be supported by the antenna size and amplifier. For example, the ACTS TI VSAT operates at a burst rate of 27.5 Mbps, but the maximum user data rate is 1.792 Mbps. The throughput efficiency is slightly more than 6.5%. For an operational network, this level of overhead will greatly increase the cost of the user earth stations, and that increased cost must be repeated thousands of times, which may ultimately reduce the market for such a system. The ACTS High Speed VSAT (HS VSAT) is an effort to experimentally demonstrate the maximum user throughput data rate which can be achieved using the technologies developed and implemented on ACTS. Specifically, this was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available TDMA time slots to a single user on each of two uplink frequencies. Preliminary results show that using a 1.2-m antenna in this mode, the HS VSAT can achieve between 22 and 24 Mbps out of the 27.5 Mbps burst rate, for a throughput efficiency of 80-88%. This paper describes the modifications made to the TI VSAT to enable it to operate at high speed, including hardware considerations, interface modifications, and software modifications. In addition, it describes the results of NASA HS VSAT experiments, continuing work on an improved user interface, and plans for future experiments.
Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production
NASA Astrophysics Data System (ADS)
Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun
2018-07-01
Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.
Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production
NASA Astrophysics Data System (ADS)
Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun
2018-03-01
Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.
Control of Entry to a Queueing System
1979-11-01
being devoted to the use of queueing theory to control ard optimize the o~peration i f a system. Here, queueing analyses are used to design a system...operpting costs below somae upper bound while maximizing throughput of the queue. This more recent approach of designing or controlling a queueing system...ports designated as high density traffic airports, the Federal Aviation Administration (FAA) limits the number of instrument flight r’ule (IFR
High-content screening in microfluidic devices.
Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre
2010-08-01
Miniaturization is the key to advancing the state of the art in high-content screening (HCS) in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. The advantages of this technology are discussed, including cost savings, high-throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration and scaling. The reader will understand the capabilities of anew microfluidics-based platform for HCS and the advantages it provides over conventional plate-based HCS. Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery.
Pan, Jui-Wen; Tu, Sheng-Han
2012-05-20
A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.
Optoelectronic image processing for cervical cancer screening
NASA Astrophysics Data System (ADS)
Narayanswamy, Ramkumar; Sharpe, John P.; Johnson, Kristina M.
1994-05-01
Automation of the Pap-smear cervical screening method is highly desirable as it relieves tedium for the human operators, reduces cost and should increase accuracy and provide repeatability. We present here the design for a high-throughput optoelectronic system which forms the first stage of a two stage system to automate pap-smear screening. We use a mathematical morphological technique called the hit-or-miss transform to identify the suspicious areas on a pap-smear slide. This algorithm is implemented using a VanderLugt architecture and a time-sequential ANDing smart pixel array.
Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing
Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko
2015-01-01
The development of high-speed analytical techniques such as next-generation sequencing and microarrays allows high-throughput analysis of biological information at a low cost. These techniques contribute to medical and bioscience advancements and provide new avenues for scientific research. Here, we outline a variety of new innovative techniques and discuss their use in omics research (e.g., genomics, transcriptomics, metabolomics, proteomics, and interactomics). We also discuss the possible applications of these methods, including an interactome sequencing technology that we developed, in future medical and life science research. PMID:25649523
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-01-01
Background In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. Results To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only ± 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. Conclusion The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization. PMID:19646274
Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection.
Taheri, Mohammadreza; Fotovati, Mohsen; Hosseini, Seyed-Kiumars; Ghassempour, Alireza
2017-10-01
An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is "How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?" To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase. © 2017 Wiley Periodicals, Inc.
Droplet Microarray Based on Superhydrophobic-Superhydrophilic Patterns for Single Cell Analysis.
Jogia, Gabriella E; Tronser, Tina; Popova, Anna A; Levkin, Pavel A
2016-12-09
Single-cell analysis provides fundamental information on individual cell response to different environmental cues and is a growing interest in cancer and stem cell research. However, current existing methods are still facing challenges in performing such analysis in a high-throughput manner whilst being cost-effective. Here we established the Droplet Microarray (DMA) as a miniaturized screening platform for high-throughput single-cell analysis. Using the method of limited dilution and varying cell density and seeding time, we optimized the distribution of single cells on the DMA. We established culturing conditions for single cells in individual droplets on DMA obtaining the survival of nearly 100% of single cells and doubling time of single cells comparable with that of cells cultured in bulk cell population using conventional methods. Our results demonstrate that the DMA is a suitable platform for single-cell analysis, which carries a number of advantages compared with existing technologies allowing for treatment, staining and spot-to-spot analysis of single cells over time using conventional analysis methods such as microscopy.
Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses
NASA Astrophysics Data System (ADS)
Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan
2013-03-01
The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.
Microfluidics-assisted in vitro drug screening and carrier production
Tsui, Jonathan H.; Lee, Woohyuk; Pun, Suzie H.; Kim, Jungkyu; Kim, Deok-Ho
2013-01-01
Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development. PMID:23856409
Decker, Stephen R.; Sykes, Robert W.; Turner, Geoffrey B.; Lupoi, Jason S.; Doepkke, Crissa; Tucker, Melvin P.; Schuster, Logan A.; Mazza, Kimberly; Himmel, Michael E.; Davis, Mark F.; Gjersing, Erica
2015-01-01
The conversion of lignocellulosic biomass to fuels, chemicals, and other commodities has been explored as one possible pathway toward reductions in the use of non-renewable energy sources. In order to identify which plants, out of a diverse pool, have the desired chemical traits for downstream applications, attributes, such as cellulose and lignin content, or monomeric sugar release following an enzymatic saccharification, must be compared. The experimental and data analysis protocols of the standard methods of analysis can be time-consuming, thereby limiting the number of samples that can be measured. High-throughput (HTP) methods alleviate the shortcomings of the standard methods, and permit the rapid screening of available samples to isolate those possessing the desired traits. This study illustrates the HTP sugar release and pyrolysis-molecular beam mass spectrometry pipelines employed at the National Renewable Energy Lab. These pipelines have enabled the efficient assessment of thousands of plants while decreasing experimental time and costs through reductions in labor and consumables. PMID:26437006
Impact of automation on mass spectrometry.
Zhang, Yan Victoria; Rockwood, Alan
2015-10-23
Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations. Copyright © 2015 Elsevier B.V. All rights reserved.
Mordwinkin, Nicholas M.; Burridge, Paul W.; Wu, Joseph C.
2013-01-01
Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results, and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach. PMID:23229562
Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J.; Long, Christian; Takeuchi, Ichiro
2014-01-01
Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet. PMID:25220062
Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Knight, Michelle; Loesel, Jens; Mathias, John; McLoughlin, David; Mills, James; Sharp, Robert E; Williams, Christine; Wood, Terence P
2013-05-01
The screening files of many large companies, including Pfizer, have grown considerably due to internal chemistry efforts, company mergers and acquisitions, external contracted synthesis, or compound purchase schemes. In order to screen the targets of interest in a cost-effective fashion, we devised an easy-to-assemble, plate-based diversity subset (PBDS) that represents almost the entire computed chemical space of the screening file whilst comprising only a fraction of the plates in the collection. In order to create this file, we developed new design principles for the quality assessment of screening plates: the Rule of 40 (Ro40) and a plate selection process that insured excellent coverage of both library chemistry and legacy chemistry space. This paper describes the rationale, design, construction, and performance of the PBDS, that has evolved into the standard paradigm for singleton (one compound per well) high-throughput screening in Pfizer since its introduction in 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, Stephen R.; Sykes, Robert W.; Turner, Geoffrey B.
The conversion of lignocellulosic biomass to fuels, chemicals, and other commodities has been explored as one possible pathway toward reductions in the use of non-renewable energy sources. In order to identify which plants, out of a diverse pool, have the desired chemical traits for downstream applications, attributes, such as cellulose and lignin content, or monomeric sugar release following an enzymatic saccharification, must be compared. The experimental and data analysis protocols of the standard methods of analysis can be time-consuming, thereby limiting the number of samples that can be measured. High-throughput (HTP) methods alleviate the shortcomings of the standard methods, andmore » permit the rapid screening of available samples to isolate those possessing the desired traits. This study illustrates the HTP sugar release and pyrolysis-molecular beam mass spectrometry pipelines employed at the National Renewable Energy Lab. These pipelines have enabled the efficient assessment of thousands of plants while decreasing experimental time and costs through reductions in labor and consumables.« less
Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses
Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan
2013-01-01
The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles. PMID:24358054
GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping
Diaz-Garcia, Luis; Covarrubias-Pazaran, Giovanny; Schlautman, Brandon; Zalapa, Juan
2016-01-01
Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed, but most of them are expensive, species-dependent, complex to use, and available only for major crops. To overcome such limitations, we present the open-source software GiNA, which is a simple and free tool for measuring horticultural traits such as shape- and color-related parameters of fruits, vegetables, and seeds. GiNA is multiplatform software available in both R and MATLAB® programming languages and uses conventional images from digital cameras with minimal requirements. It can process up to 11 different horticultural morphological traits such as length, width, two-dimensional area, volume, projected skin, surface area, RGB color, among other parameters. Different validation tests produced highly consistent results under different lighting conditions and camera setups making GiNA a very reliable platform for high-throughput phenotyping. In addition, five-fold cross validation between manually generated and GiNA measurements for length and width in cranberry fruits were 0.97 and 0.92. In addition, the same strategy yielded prediction accuracies above 0.83 for color estimates produced from images of cranberries analyzed with GiNA compared to total anthocyanin content (TAcy) of the same fruits measured with the standard methodology of the industry. Our platform provides a scalable, easy-to-use and affordable tool for massive acquisition of phenotypic data of fruits, seeds, and vegetables. PMID:27529547
GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping.
Diaz-Garcia, Luis; Covarrubias-Pazaran, Giovanny; Schlautman, Brandon; Zalapa, Juan
2016-01-01
Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed, but most of them are expensive, species-dependent, complex to use, and available only for major crops. To overcome such limitations, we present the open-source software GiNA, which is a simple and free tool for measuring horticultural traits such as shape- and color-related parameters of fruits, vegetables, and seeds. GiNA is multiplatform software available in both R and MATLAB® programming languages and uses conventional images from digital cameras with minimal requirements. It can process up to 11 different horticultural morphological traits such as length, width, two-dimensional area, volume, projected skin, surface area, RGB color, among other parameters. Different validation tests produced highly consistent results under different lighting conditions and camera setups making GiNA a very reliable platform for high-throughput phenotyping. In addition, five-fold cross validation between manually generated and GiNA measurements for length and width in cranberry fruits were 0.97 and 0.92. In addition, the same strategy yielded prediction accuracies above 0.83 for color estimates produced from images of cranberries analyzed with GiNA compared to total anthocyanin content (TAcy) of the same fruits measured with the standard methodology of the industry. Our platform provides a scalable, easy-to-use and affordable tool for massive acquisition of phenotypic data of fruits, seeds, and vegetables.
NASA Astrophysics Data System (ADS)
Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek
2013-12-01
Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.
Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters
NASA Astrophysics Data System (ADS)
Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James
3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.
McDonald, Jeffrey G.; Matthew, Susan
2012-01-01
The ability to measure steroid hormone concentrations in blood and urine specimens is central to the diagnosis and proper treatment of adrenal diseases. The traditional approach has been to assay each steroid hormone, precursor, or metabolite using individual aliquots of serum, each with a separate immunoassay. For complex diseases, such as congenital adrenal hyperplasia and adrenocortical cancer, in which the assay of several steroids is essential for management, this approach is time consuming and costly, in addition to using large amounts of serum. Gas chromatography/mass spectrometry profiling of steroid metabolites in urine has been employed for many years but only in a small number of specialized laboratories and suffers from slow throughput. The advent of commercial high-performance liquid chromatography instruments coupled to tandem mass spectrometers offers the potential for medium- to high-throughput profiling of serum steroids using small quantities of sample. Here, we review the physical principles of mass spectrometry, the instrumentation used for these techniques, the terminology used in this field and applications to steroid analysis. PMID:22170384
Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron
2016-01-01
Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341
High Throughput PBTK: Open-Source Data and Tools for ...
Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy
Jiang, Liren
2017-01-01
Background The aim was to develop scalable Whole Slide Imaging (sWSI), a WSI system based on mainstream smartphones coupled with regular optical microscopes. This ultra-low-cost solution should offer diagnostic-ready imaging quality on par with standalone scanners, supporting both oil and dry objective lenses of different magnifications, and reasonably high throughput. These performance metrics should be evaluated by expert pathologists and match those of high-end scanners. Objective The aim was to develop scalable Whole Slide Imaging (sWSI), a whole slide imaging system based on smartphones coupled with optical microscopes. This ultra-low-cost solution should offer diagnostic-ready imaging quality on par with standalone scanners, supporting both oil and dry object lens of different magnification. All performance metrics should be evaluated by expert pathologists and match those of high-end scanners. Methods In the sWSI design, the digitization process is split asynchronously between light-weight clients on smartphones and powerful cloud servers. The client apps automatically capture FoVs at up to 12-megapixel resolution and process them in real-time to track the operation of users, then give instant feedback of guidance. The servers first restitch each pair of FoVs, then automatically correct the unknown nonlinear distortion introduced by the lens of the smartphone on the fly, based on pair-wise stitching, before finally combining all FoVs into one gigapixel VS for each scan. These VSs can be viewed using Internet browsers anywhere. In the evaluation experiment, 100 frozen section slides from patients randomly selected among in-patients of the participating hospital were scanned by both a high-end Leica scanner and sWSI. All VSs were examined by senior pathologists whose diagnoses were compared against those made using optical microscopy as ground truth to evaluate the image quality. Results The sWSI system is developed for both Android and iPhone smartphones and is currently being offered to the public. The image quality is reliable and throughput is approximately 1 FoV per second, yielding a 15-by-15 mm slide under 20X object lens in approximately 30-35 minutes, with little training required for the operator. The expected cost for setup is approximately US $100 and scanning each slide costs between US $1 and $10, making sWSI highly cost-effective for infrequent or low-throughput usage. In the clinical evaluation of sample-wise diagnostic reliability, average accuracy scores achieved by sWSI-scan-based diagnoses were as follows: 0.78 for breast, 0.88 for uterine corpus, 0.68 for thyroid, and 0.50 for lung samples. The respective low-sensitivity rates were 0.05, 0.05, 0.13, and 0.25 while the respective low-specificity rates were 0.18, 0.08, 0.20, and 0.25. The participating pathologists agreed that the overall quality of sWSI was generally on par with that produced by high-end scanners, and did not affect diagnosis in most cases. Pathologists confirmed that sWSI is reliable enough for standard diagnoses of most tissue categories, while it can be used for quick screening of difficult cases. Conclusions As an ultra-low-cost alternative to whole slide scanners, diagnosis-ready VS quality and robustness for commercial usage is achieved in the sWSI solution. Operated on main-stream smartphones installed on normal optical microscopes, sWSI readily offers affordable and reliable WSI to resource-limited or infrequent clinical users. PMID:28916508
Kalb, Daniel M; Fencl, Frank A; Woods, Travis A; Swanson, August; Maestas, Gian C; Juárez, Jaime J; Edwards, Bruce S; Shreve, Andrew P; Graves, Steven W
2017-09-19
Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 μL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.
Fixed Delay Interferometry for Doppler Extrasolar Planet Detection
NASA Astrophysics Data System (ADS)
Ge, Jian
2002-06-01
We present a new technique based on fixed delay interferometry for high-throughput, high-precision, and multiobject Doppler radial velocity (RV) surveys for extrasolar planets. The Doppler measurements are conducted by monitoring the stellar fringe phase shifts of the interferometer instead of absorption-line centroid shifts as in state-of-the-art echelle spectroscopy. High Doppler sensitivity is achieved through optimizing the optical delay in the interferometer and reducing photon noise by measuring multiple fringes over a broad band. This broadband operation is performed by coupling the interferometer with a low- to medium-resolution postdisperser. The resulting fringing spectra over the bandpass are recorded on a two-dimensional detector, with fringes sampled in the slit spatial direction and the spectrum sampled in the dispersion direction. The resulting total Doppler sensitivity is, in theory, independent of the dispersing power of the postdisperser, which allows for the development of new-generation RV machines with much reduced size, high stability, and low cost compared to echelles. This technique has the potential to improve RV survey efficiency by 2-3 orders of magnitude over the cross-dispersed echelle spectroscopy approach, which would allow a full-sky RV survey of hundreds of thousands of stars for planets, brown dwarfs, and stellar companions once the instrument is operated as a multiobject instrument and is optimized for high throughput. The simple interferometer response potentially allows this technique to be operated at other wavelengths independent of popular iodine reference sources, being actively used in most of the current echelles for Doppler planet searches, to search for planets around early-type stars, white dwarfs, and M, L, and T dwarfs for the first time. The high throughput of this instrument could also allow investigation of extragalactic objects for RV variations at high precision.
Crystal Solar and NREL Team Up to Cut Costs | News | NREL
throughput and half the cost could be a game-changer, creating American jobs and stemming the flow of solar , as a way of making it cost competitive with fossil-fuel-based electricity. Incubator Program at NREL cost of the final PV product." Solar Wafers at 13 Cents per Watt Photo of three men. Enlarge image
Fabrication of wafer-scale nanopatterned sapphire substrate through phase separation lithography
NASA Astrophysics Data System (ADS)
Guo, Xu; Ni, Mengyang; Zhuang, Zhe; Dai, Jiangping; Wu, Feixiang; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng
2016-04-01
A phase separation lithography (PSL) based on polymer blend provides an extremely simple, low-cost, and high-throughput way to fabricate wafer-scale disordered nanopatterns. This method was introduced to fabricate nanopatterned sapphire substrates (NPSSs) for GaN-based light-emitting diodes (LEDs). The PSL process only involved in spin-coating of polystyrene (PS)/polyethylene glycol (PEG) polymer blend on sapphire substrate and followed by a development with deionized water to remove PEG moiety. The PS nanoporous network was facilely obtained, and the structural parameters could be effectively tuned by controlling the PS/PEG weight ratio of the spin-coating solution. 2-in. wafer-scale NPSSs were conveniently achieved through the PS nanoporous network in combination with traditional nanofabrication methods, such as O2 reactive ion etching (RIE), e-beam evaporation deposition, liftoff, and chlorine-based RIE. In order to investigate the performance of such NPSSs, typical blue LEDs with emission wavelengths of ~450 nm were grown on the NPSS and a flat sapphire substrate (FSS) by metal-organic chemical vapor deposition, respectively. The integral photoluminescence (PL) intensity of the NPSS LED was enhanced by 32.3 % compared to that of the FSS-LED. The low relative standard deviation of 4.7 % for PL mappings of NPSS LED indicated the high uniformity of PL data across the whole 2-in. wafer. Extremely simple, low cost, and high throughput of the process and the ability to fabricate at the wafer scale make PSL a potential method for production of nanopatterned sapphire substrates.
High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT).
Howard, E L; Whittock, S P; Jakše, J; Carling, J; Matthews, P D; Probasco, G; Henning, J A; Darby, P; Cerenak, A; Javornik, B; Kilian, A; Koutoulis, A
2011-05-01
Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.
Mobil Solar Energy Corporation thin EFG octagons
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1994-06-01
Mobil Solar Energy Corporation manufactures photovoltaic modules based on its unique Edge-defined Film-fed Growth (EFG) process for producing octagon-shaped hollow polycrystalline silicon tubes. The octagons are cut by lasers into 100 mm x 100 mm wafers which are suitable for solar cell processing. This process avoids slicing, grinding and polishing operations which are wasteful of material and are typical of most other wafer production methods. EFG wafers are fabricated into solar cells and modules using processes that have been specially developed to allow scaling up to high throughput rates. The goals of the Photovoltaic Manufacturing Technology Initiative (PVMaT) program at Mobil Solar were to improve the EFG manufacturing line through technology advances that accelerate cost reduction in production and stimulate market growth for its product. The program was structured into three main tasks: to decrease silicon utilization by lowering wafer thickness from 400 to 200 (mu)m; to enhance laser cutting yields and throughput while improving the wafer strength; and to raise crystal growth productivity and yield. The technical problems faced and the advances made in the Mobil Solar PVMaT program are described. The author concludes with a presentation of the results of a detailed cost model for EFT module production. This model describes the accelerated reductions in manufacturing costs which are already in place and the future benefits anticipated to result from the technical achievements of the PVMaT program.
MAPPER: high-throughput maskless lithography
NASA Astrophysics Data System (ADS)
Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.; Kampherbeek, B. J.
2009-03-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. The objective of building these tools is to involve semiconductor companies to be able to verify tool performance in their own environment. To enable this, the tools will have a 300 mm wafer stage in addition to a 110-beam optics column. First exposures at 45 nm half pitch resolution have been performed and analyzed. On the same wafer it is observed that all beams print and based on analysis of 11 beams the CD for the different patterns is within 2.2 nm from target and the CD uniformity for the different patterns is better than 2.8 nm.
Clarke, Shannon M.; Henry, Hannah M.; Dodds, Ken G.; Jowett, Timothy W. D.; Manley, Tim R.; Anderson, Rayna M.; McEwan, John C.
2014-01-01
Accurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs) are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies. The objective of this study was to develop a high throughput SNP assay for use in the New Zealand sheep industry that gives accurate pedigree assignment and will allow a reduction in breeder input over lambing. This required two phases of development- firstly, a method of extracting quality DNA from ear-punch tissue performed in a high throughput cost efficient manner and secondly a SNP assay that has the ability to assign paternity to progeny resulting from mob mating. A likelihood based approach to infer paternity was used where sires with the highest LOD score (log of the ratio of the likelihood given parentage to likelihood given non-parentage) are assigned. An 84 “parentage SNP panel” was developed that assigned, on average, 99% of progeny to a sire in a problem where there were 3,000 progeny from 120 mob mated sires that included numerous half sib sires. In only 6% of those cases was there another sire with at least a 0.02 probability of paternity. Furthermore dam information (either recorded, or by genotyping possible dams) was absent, highlighting the SNP test’s suitability for paternity testing. Utilization of this parentage SNP assay will allow implementation of progeny testing into large commercial farms where the improved accuracy of sire assignment and genetic evaluations will increase genetic gain in the sheep industry. PMID:24740141
Clarke, Shannon M; Henry, Hannah M; Dodds, Ken G; Jowett, Timothy W D; Manley, Tim R; Anderson, Rayna M; McEwan, John C
2014-01-01
Accurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs) are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies. The objective of this study was to develop a high throughput SNP assay for use in the New Zealand sheep industry that gives accurate pedigree assignment and will allow a reduction in breeder input over lambing. This required two phases of development--firstly, a method of extracting quality DNA from ear-punch tissue performed in a high throughput cost efficient manner and secondly a SNP assay that has the ability to assign paternity to progeny resulting from mob mating. A likelihood based approach to infer paternity was used where sires with the highest LOD score (log of the ratio of the likelihood given parentage to likelihood given non-parentage) are assigned. An 84 "parentage SNP panel" was developed that assigned, on average, 99% of progeny to a sire in a problem where there were 3,000 progeny from 120 mob mated sires that included numerous half sib sires. In only 6% of those cases was there another sire with at least a 0.02 probability of paternity. Furthermore dam information (either recorded, or by genotyping possible dams) was absent, highlighting the SNP test's suitability for paternity testing. Utilization of this parentage SNP assay will allow implementation of progeny testing into large commercial farms where the improved accuracy of sire assignment and genetic evaluations will increase genetic gain in the sheep industry.
Experience with physician assistants in a Canadian arthroplasty program.
Bohm, Eric R; Dunbar, Michael; Pitman, David; Rhule, Chris; Araneta, Jose
2010-04-01
Recent increases in orthopedic surgical services in Canada have added further demand to an already stretched orthopedic workforce. Various initiatives have been undertaken across Canada to meet this demand. One successful model has been the use of physician assistants (PAs) within the Winnipeg Regional Health Authority (WRHA). This study documents the effect of PAs working in an arthroplasty practice from the perspective of patients and health care providers. We also describe the costs, time savings for surgeons and the effects on surgical throughput and waiting times. We calculated time savings by the use of a daily diary kept by the PAs. Surgeons', residents', nurses' and patients' opinions about PAs were recorded by use of a self administered questionnaire. We calculated costs using forgone general practitioner (GP) surgical assist fees and salary costs for PAs. We obtained information about surgical throughput and wait times from the WRHA waitlist database. In this study, PAs "saved" their supervising physician about 204 hours per year; this time can be used for other clinical, administrative or research duties. Physician assistants are regarded as important members of the health care team by surgeons, nurses, orthopedic residents and patients. When we compared the billing costs with those that would have been generated by the use of GP surgical assists, PAs were essentially cost neutral. Furthermore, they potentially freed GPs from the operating room to spend more time delivering primary care. We found that use of the double operating room model facilitated by PAs increased the surgical throughput of primary hip and knee replacements by 42%, and median wait times decreased from 44 weeks to 30 weeks compared with the preceding year. Physician assistants integrate well into the care team and can increase surgical volumes to reduce wait times in a cost-effective manner.
Commercialization of microfluidic devices.
Volpatti, Lisa R; Yetisen, Ali K
2014-07-01
Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multi-crystalline II-VI based multijunction solar cells and modules
Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.
2015-06-30
Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.
A universal method for automated gene mapping
Zipperlen, Peder; Nairz, Knud; Rimann, Ivo; Basler, Konrad; Hafen, Ernst; Hengartner, Michael; Hajnal, Alex
2005-01-01
Small insertions or deletions (InDels) constitute a ubiquituous class of sequence polymorphisms found in eukaryotic genomes. Here, we present an automated high-throughput genotyping method that relies on the detection of fragment-length polymorphisms (FLPs) caused by InDels. The protocol utilizes standard sequencers and genotyping software. We have established genome-wide FLP maps for both Caenorhabditis elegans and Drosophila melanogaster that facilitate genetic mapping with a minimum of manual input and at comparatively low cost. PMID:15693948
Low-cost fabrication technologies for nanostructures: state-of-the-art and potential
NASA Astrophysics Data System (ADS)
Santos, A.; Deen, M. J.; Marsal, L. F.
2015-01-01
In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine.
Hard-tip, soft-spring lithography.
Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A
2011-01-27
Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.
Application of ToxCast High-Throughput Screening and ...
Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors
Khoo, Bee Luan; Warkiani, Majid Ebrahimi; Tan, Daniel Shao-Weng; Bhagat, Ali Asgar S; Irwin, Darryl; Lau, Dawn Pingxi; Lim, Alvin S T; Lim, Kiat Hon; Krisna, Sai Sakktee; Lim, Wan-Teck; Yap, Yoon Sim; Lee, Soo Chin; Soo, Ross A; Han, Jongyoon; Lim, Chwee Teck
2014-01-01
Circulating tumor cells (CTCs) are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation. Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56) (Breast cancer samples: 12-1275 CTCs/ml; Lung cancer samples: 10-1535 CTCs/ml) rapidly from clinically relevant blood volumes (7.5 ml under 5 min). Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM), fluorescence in-situ hybridization (FISH) (EML4-ALK) or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA), and demonstrate concordance with the original tumor-biopsy samples. We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS) or proteomic analysis.
Evaluation of sequencing approaches for high-throughput ...
Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. We present the evaluation of three toxicogenomics platforms for potential application to high-throughput screening: 1. TempO-Seq utilizing custom designed paired probes per gene; 2. Targeted sequencing (TSQ) utilizing Illumina’s TruSeq RNA Access Library Prep Kit containing tiled exon-specific probe sets; 3. Low coverage whole transcriptome sequencing (LSQ) using Illumina’s TruSeq Stranded mRNA Kit. Each platform was required to cover the ~20,000 genes of the full transcriptome, operate directly with cell lysates, and be automatable with 384-well plates. Technical reproducibility was assessed using MAQC control RNA samples A and B, while functional utility for chemical screening was evaluated using six treatments at a single concentration after 6 hr in MCF7 breast cancer cells: 10 µM chlorpromazine, 10 µM ciclopriox, 10 µM genistein, 100 nM sirolimus, 1 µM tanespimycin, and 1 µM trichostatin A. All RNA samples and chemical treatments were run with 5 technical replicates. The three platforms achieved different read depths, with the TempO-Seq having ~34M mapped reads per sample, while TSQ and LSQ averaged 20M and 11M aligned reads per sample, respectively. Inter-replicate correlation averaged ≥0.95 for raw log2 expression values i
A High-Speed Design of Montgomery Multiplier
NASA Astrophysics Data System (ADS)
Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi
With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096
Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister
2014-05-01
The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.
High Throughput Screening For Hazard and Risk of Environmental Contaminants
High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...
A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor
González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco
2012-01-01
This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system. PMID:23201989
Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.
NASA Astrophysics Data System (ADS)
Schnable, J. C.; Pandey, P.; Ge, Y.; Xu, Y.; Qiu, Y.; Liang, Z.
2017-12-01
Maize Zea mays ssp. mays is one of three crops, along with rice and wheat, responsible for more than 1/2 of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping is currently the largest constraint on plant breeding efforts. Datasets linking new types of high throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision based tools. A set of maize inbreds and hybrids - primarily recently off patent lines - were phenotyped using a high throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high density genotyping, and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2014, 2015, 2016, and 2017. Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, we demonstrate that naive approaches to measuring traits such as biomass where are developed without integrating genotypic information can introduce nonrandom measurement errors which are confounded with variation between plant accessions. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue which were not identified using aerial imagry. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors influencing yield plasticity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.
2010-06-01
The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influencemore » reproduction were defined. Concentrations of DMSO vehicle {<=} 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC{sub 50} values for cadmium for automated measurements (176-192 {mu}M) were comparable to those previously reported for a 72-h exposure using manual counting (151 {mu}M). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.« less
High-throughput analysis of T-DNA location and structure using sequence capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less
Conventional and hyperspectral time-series imaging of maize lines widely used in field trials
Liang, Zhikai; Pandey, Piyush; Stoerger, Vincent; Xu, Yuhang; Qiu, Yumou; Ge, Yufeng
2018-01-01
Abstract Background Maize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision–based tools. Findings A set of maize inbreds—primarily recently off patent lines—were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB, hyperspectral, fluorescence, and thermal infrared photos has been released. Conclusions Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors that influence yield plasticity. PMID:29186425
High-throughput analysis of T-DNA location and structure using sequence capture
Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; ...
2015-10-07
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less
Conventional and hyperspectral time-series imaging of maize lines widely used in field trials.
Liang, Zhikai; Pandey, Piyush; Stoerger, Vincent; Xu, Yuhang; Qiu, Yumou; Ge, Yufeng; Schnable, James C
2018-02-01
Maize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision-based tools. A set of maize inbreds-primarily recently off patent lines-were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB, hyperspectral, fluorescence, and thermal infrared photos has been released. Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors that influence yield plasticity. © The Authors 2017. Published by Oxford University Press.
1995-09-01
New Global Competition” ...10 “New Systems for Process Control and Product Costing ” . . . 11 “Performance Measurement Systems for the Future”, should...Selected Highlights: Page 53-World Class - Definition and applicable discussions. “Its clear that yesterdays cost systems don’t work in todays...Why conventional cost systems fail Indirect, No information about activities, Too late. Plant activities only, Inaccurate product costs , No customer
Jun, Young Jin; Park, Sung Hyeon; Woo, Seong Ihl
2014-12-08
Combinatorial high-throughput optical screening method was developed to find the optimum composition of highly active Pd-based catalysts at the cathode of the hybrid Li-air battery. Pd alone, which is one-third the cost of Pt, has difficulty in replacing Pt; therefore, the integration of other metals was investigated to improve its performance toward oxygen reduction reaction (ORR). Among the binary Pd-based catalysts, the composition of Pd-Ir derived catalysts had higher performance toward ORR compared to other Pd-based binary combinations. The composition at 88:12 at. % (Pd: Ir) showed the highest activity toward ORR at the cathode of the hybrid Li-air battery. The prepared Pd(88)Ir(12)/C catalyst showed a current density of -2.58 mA cm(-2) at 0.8 V (vs RHE), which was around 30% higher compared to that of Pd/C (-1.97 mA cm(-2)). When the prepared Pd(88)Ir(12)/C catalyst was applied to the hybrid Li-air battery, the polarization of the cell was reduced and the energy efficiency of the cell was about 30% higher than that of the cell with Pd/C.
Oran, Paul E.; Trenchevska, Olgica; Nedelkov, Dobrin; Borges, Chad R.; Schaab, Matthew R.; Rehder, Douglas S.; Jarvis, Jason W.; Sherma, Nisha D.; Shen, Luhui; Krastins, Bryan; Lopez, Mary F.; Schwenke, Dawn C.; Reaven, Peter D.; Nelson, Randall W.
2014-01-01
Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify the costs of analyses, and robust industrial platforms that are reproducible across laboratories. Presented here is an MS-based quantitative IGF1 assay with performance rating of >1,000 samples/day, and a capability of quantifying IGF1 point mutations and posttranslational modifications. The throughput of the IGF1 mass spectrometric immunoassay (MSIA) benefited from a simplified sample preparation step, IGF1 immunocapture in a tip format, and high-throughput MALDI-TOF MS analysis. The Limit of Detection and Limit of Quantification of the resulting assay were 1.5 μg/L and 5 μg/L, respectively, with intra- and inter-assay precision CVs of less than 10%, and good linearity and recovery characteristics. The IGF1 MSIA was benchmarked against commercially available IGF1 ELISA via Bland-Altman method comparison test, resulting in a slight positive bias of 16%. The IGF1 MSIA was employed in an optimized parallel workflow utilizing two pipetting robots and MALDI-TOF-MS instruments synced into one-hour phases of sample preparation, extraction and MSIA pipette tip elution, MS data collection, and data processing. Using this workflow, high-throughput IGF1 quantification of 1,054 human samples was achieved in approximately 9 hours. This rate of assaying is a significant improvement over existing MS-based IGF1 assays, and is on par with that of the enzyme-based immunoassays. Furthermore, a mutation was detected in ∼1% of the samples (SNP: rs17884626, creating an A→T substitution at position 67 of the IGF1), demonstrating the capability of IGF1 MSIA to detect point mutations and posttranslational modifications. PMID:24664114
GREENE, CASEY S.; TAN, JIE; UNG, MATTHEW; MOORE, JASON H.; CHENG, CHAO
2017-01-01
Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the “big data” era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both “machine learning” algorithms as well as “unsupervised” and “supervised” examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. PMID:27908398
GREENE, CASEY S.; TAN, JIE; UNG, MATTHEW; MOORE, JASON H.; CHENG, CHAO
2017-01-01
Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the “big data” era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both “machine learning” algorithms as well as “unsupervised” and “supervised” examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. PMID:24799088
Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao
2014-12-01
Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. © 2014 Wiley Periodicals, Inc.
High Throughput Transcriptomics: From screening to pathways
The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...
NASA Astrophysics Data System (ADS)
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-12-01
Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-01-01
Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.
Leng, Yuankui
2017-01-01
Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and “point of care” platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields. PMID:26021602
High Throughput Experimental Materials Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakutayev, Andriy; Perkins, John; Schwarting, Marcus
The mission of the High Throughput Experimental Materials Database (HTEM DB) is to enable discovery of new materials with useful properties by releasing large amounts of high-quality experimental data to public. The HTEM DB contains information about materials obtained from high-throughput experiments at the National Renewable Energy Laboratory (NREL).
Innovative laser based solar cell scribing
NASA Astrophysics Data System (ADS)
Frei, Bruno; Schneeberger, Stefan; Witte, Reiner
2011-03-01
The solar photovoltaic market is continuously growing utilizing boths crystalline silicon (c-Si) as well as thin film technologies. This growth is directly dependant on the manufacturing costs for solar cells. Factors for cost reduction are innovative ideas for an optimization of precision and throughput. Lasers are excellent tools to provide highly efficient processes with impressive accuracy. They need to be used in combination with fast and precise motion systems for a maximum gain in the manufacturing process, yielding best cost of ownership. In this article such an innovative solution is presented for laser scribing in thin film Si modules. A combination of a new glass substrate holding system combined with a fast and precise motion system is the foundation for a cost effective scribing machine. In addition, the advantages of fiber lasers in beam delivery and beam quality guarantee not only shorter setup and down times but also high resolution and reproducibility for the scribing processes P1, P2 and P3. The precision of the whole system allows to reduce the dead zone to a minimum and therefore to improve the efficiency of the modules.
Infrared Photometry for Automated Telescopes: Passband Selection
NASA Astrophysics Data System (ADS)
Milone, Gene; Young, Andrew T.
2011-03-01
The high precision that photometry in the near and intermediate infrared region can provide has not been achieved, partly because of technical challenges (including cryogenics, which most IR detectors require), and partly because the filters in common use are not optimized to avoid water-vapor absorptions, which are the principal impediment to precise ground-based IR photometry. We review the IRWG filters that achieve this goal, and the trials that were undertaken to demonstrate their superiority. We focus especially on the near IR set and, for high elevation sites, the passbands in the N window. We also discuss the price to be paid for the improved precision, in the form of lower throughput, and why it should be paid: to achieve not only higher precision (i.e., improved signal-to-noise ratio), but also lower extinction, thus producing higher accuracy in extra-atmospheric magnitudes. The edges of the IRWG passbands are not defined by the edges of the atmospheric windows: therefore, they admit no flux from these (constantly varying) edges. The throughput cost and the lack of a large body of data already obtained in these passbands are principal reasons why the IRWG filters are not in wide use at observatories around the world that currently do IR work. Yet a measure of the signal-to-noise ratio varies inversely with both extinction and with a measure of the Forbes effect. So, the small loss of raw throughput is recouped in signal-to-noise gain. We illustrate these points with passbands of both near and intermediate IR passbands. There is also the matter of cost for small production runs of these filters; reduced costs can be realized through bulk orders with uniform filter specifications. As a consequence, the near-IR IRWG passbands offer the prospect of being able to do photometry in those passbands at both high and low elevation sites that are capable of supporting precise photometry, thereby freeing infrared photometry from the need to access exclusively high and dry elevation sites, although photometry done at those sites can also benefit from improved accuracy and transformability. We suggest that if the IRWG passbands are made available, they will be used! New automated systems making use of these passbands have the advantage of establishing the system more widely, creating a larger body of data to which future observations will be fully transformable, and will be cheaper to purchase. This work has been supported in part by grants to EFM by the Canadian Natural Sciences and Engineering Research Council.
Factors that determine the optimum dose for sub-20nm resist systems: DUV, EUV, and e-beam options
NASA Astrophysics Data System (ADS)
Preil, Moshe
2012-03-01
As EUV and e-beam direct write (EBDW) technologies move closer to insertion into pilot production, questions regarding cost effectiveness take on increasing importance. One of the most critical questions is determining the optimum dose which balances the requirements for cost-effective throughput vs. imaging performance. To date most of the dose requirements have been dictated by the hardware side of the industry. The exposure tool manufacturers have a vested interest in specifying the fastest resists possible in order to maximize the throughput even if it comes at the expense of optimum resist performance. This is especially true for both EUV and EBDW where source power is severely limited. We will explore the cost-benefit tradeoffs which drive the equipment side of the industry, and show how these considerations lead to the current throughput and dose requirements for volume production tools. We will then show how the resulting low doses may lead to shot noise problems and a resulting penalty in resist performance. By comparison to the history of 248 nm DUV resist development we will illustrate how setting unrealistic initial targets for resist dose may lead to unacceptable tradeoffs in resist performance and subsequently long delays in the development of production worthy resists.
Alvarez, Guillermo Dufort Y; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo
2018-02-01
This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 A per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daum, Christopher; Zane, Matthew; Han, James
2011-01-31
The U.S. Department of Energy (DOE) Joint Genome Institute's (JGI) Production Sequencing group is committed to the generation of high-quality genomic DNA sequence to support the mission areas of renewable energy generation, global carbon management, and environmental characterization and clean-up. Within the JGI's Production Sequencing group, a robust Illumina Genome Analyzer and HiSeq pipeline has been established. Optimization of the sesequencer pipelines has been ongoing with the aim of continual process improvement of the laboratory workflow, reducing operational costs and project cycle times to increases ample throughput, and improving the overall quality of the sequence generated. A sequence QC analysismore » pipeline has been implemented to automatically generate read and assembly level quality metrics. The foremost of these optimization projects, along with sequencing and operational strategies, throughput numbers, and sequencing quality results will be presented.« less
First planet confirmation with the exoplanet tracker
NASA Astrophysics Data System (ADS)
van Eyken, Julian C.; Ge, Jian C.; Mahadevan, Suvrath; DeWitt, Curtis; Ren, Deqing
2003-11-01
The Exoplanet Tracker (ET) is a new concept of instrument for measuring stellar radial velocity variations. ET is based on a dispersed fixed-delay interferometer, a combination of Michelson interferometer and medium resolution (R~6700) spectrograph which overlays interferometer fringes on a long-slit stellar spectrum. By measuring shifts in the fringes rather than the Doppler shifts in the absorption lines themselves, we are able to make accurate stellar radial velocity measurements with a high throughput and low cost instrument. The single-order operation of the instrument can also in principle allow multi-object observations. We plan eventually to conduct deep large scale surveys for extra-solar planets using this technique. We present confirmation of the planetary companion to 51Peg from our first stellar observations at the Kitt Peak 2.1m telescope, showing results consistent with previous observations. We outline the fundamentals of the instrument, and summarize our current progress in terms of accuracy and throughput.
2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Jason
In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safemore » operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.« less
Liu, Xiao; Xu, Yinyin; Liang, Dequan; Gao, Peng; Sun, Yepeng; Gifford, Benjamin; D’Ascenzo, Mark; Liu, Xiaomin; Tellier, Laurent C. A. M.; Yang, Fang; Tong, Xin; Chen, Dan; Zheng, Jing; Li, Weiyang; Richmond, Todd; Xu, Xun; Wang, Jun; Li, Yingrui
2013-01-01
The major histocompatibility complex (MHC) is one of the most variable and gene-dense regions of the human genome. Most studies of the MHC, and associated regions, focus on minor variants and HLA typing, many of which have been demonstrated to be associated with human disease susceptibility and metabolic pathways. However, the detection of variants in the MHC region, and diagnostic HLA typing, still lacks a coherent, standardized, cost effective and high coverage protocol of clinical quality and reliability. In this paper, we presented such a method for the accurate detection of minor variants and HLA types in the human MHC region, using high-throughput, high-coverage sequencing of target regions. A probe set was designed to template upon the 8 annotated human MHC haplotypes, and to encompass the 5 megabases (Mb) of the extended MHC region. We deployed our probes upon three, genetically diverse human samples for probe set evaluation, and sequencing data show that ∼97% of the MHC region, and over 99% of the genes in MHC region, are covered with sufficient depth and good evenness. 98% of genotypes called by this capture sequencing prove consistent with established HapMap genotypes. We have concurrently developed a one-step pipeline for calling any HLA type referenced in the IMGT/HLA database from this target capture sequencing data, which shows over 96% typing accuracy when deployed at 4 digital resolution. This cost-effective and highly accurate approach for variant detection and HLA typing in the MHC region may lend further insight into immune-mediated diseases studies, and may find clinical utility in transplantation medicine research. This one-step pipeline is released for general evaluation and use by the scientific community. PMID:23894464
2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses
Chou, Jason
2018-02-13
In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.
20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)
The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...
NASA Astrophysics Data System (ADS)
Haghighattalab, Atena
Wheat breeders are in a race for genetic gain to secure the future nutritional needs of a growing population. Multiple barriers exist in the acceleration of crop improvement. Emerging technologies are reducing these obstacles. Advances in genotyping technologies have significantly decreased the cost of characterizing the genetic make-up of candidate breeding lines. However, this is just part of the equation. Field-based phenotyping informs a breeder's decision as to which lines move forward in the breeding cycle. This has long been the most expensive and time-consuming, though most critical, aspect of breeding. The grand challenge remains in connecting genetic variants to observed phenotypes followed by predicting phenotypes based on the genetic composition of lines or cultivars. In this context, the current study was undertaken to investigate the utility of UAS in assessment field trials in wheat breeding programs. The major objective was to integrate remotely sensed data with geospatial analysis for high throughput phenotyping of large wheat breeding nurseries. The initial step was to develop and validate a semi-automated high-throughput phenotyping pipeline using a low-cost UAS and NIR camera, image processing, and radiometric calibration to build orthomosaic imagery and 3D models. The relationship between plot-level data (vegetation indices and height) extracted from UAS imagery and manual measurements were examined and found to have a high correlation. Data derived from UAS imagery performed as well as manual measurements while exponentially increasing the amount of data available. The high-resolution, high-temporal HTP data extracted from this pipeline offered the opportunity to develop a within season grain yield prediction model. Due to the variety in genotypes and environmental conditions, breeding trials are inherently spatial in nature and vary non-randomly across the field. This makes geographically weighted regression models a good choice as a geospatial prediction model. Finally, with the addition of georeferenced and spatial data integral in HTP and imagery, we were able to reduce the environmental effect from the data and increase the accuracy of UAS plot-level data. The models developed through this research, when combined with genotyping technologies, increase the volume, accuracy, and reliability of phenotypic data to better inform breeder selections. This increased accuracy with evaluating and predicting grain yield will help breeders to rapidly identify and advance the most promising candidate wheat varieties.
Minding our Ps and Qs? Financial incentives for efficient hospital behaviour.
Donaldson, C; Gerard, K
1991-02-01
In this paper, the empirical evidence addressing the particular issue of how hospitals may be reimbursed is reviewed. Most forthcoming is the indeterminate effect of prospective payment systems using diagnosis-related groups as a means of controlling costs. Such systems, by controlling only the price of hospital care, remain vulnerable to compensatory increase in patient throughput, cost-shifting and patient-shifting despite hospital cost per case being reduced. Health maintenance organisations have been shown to reduce hospital costs, but their effects on patients selection and patient outcome are unclear. Selective contracting in California (similar to the U.K. Government's proposed internal market) has also been shown to reduce costs by affecting both the price and quantity of hospital care. But these effects have occurred only in areas with high concentrations of hospitals. Global and clinical budgeting (which control price times quantity) seem to offer the most potential for cost reduction whilst maintaining patient outcome. By monitoring both cost and outcome within clinical budgets it should be possible to reduce wasteful variations in health care and so establish more efficient hospital practice.
Jasmine, Farzana; Shinkle, Justin; Sabarinathan, Mekala; Ahsan, Habibul; Pierce, Brandon L; Kibriya, Muhammad G
2018-03-12
Relative telomere length (RTL) is a potential biomarker of aging and risk for chronic disease. Previously, we developed a probe-based RTL assay on Luminex platform, where probes for Telomere (T) and reference gene (R) for a given DNA sample were tested in a single well. Here, we describe a method of pooling multiple samples in one well to increase the throughput and cost-effectiveness. We used four different microbeads for the same T-probe and four different microbeads for the same R-probe. Each pair of probe sets were hybridized to DNA in separate plates and then pooled in a single plate for all the subsequent steps. We used DNA samples from 60 independent individuals and repeated in multiple batches to test the precision. The precision was good to excellent with Intraclass correlation coefficient (ICC) of 0.908 (95% CI 0.856-0.942). More than 67% of the variation in the RTL could be explained by sample-to-sample variation; less than 0.1% variation was due to batch-to-batch variation and 0.3% variation was explained by bead-to-bead variation. We increased the throughput of RTL Luminex assay from 60 to 240 samples per run. The new assay was validated against the original Luminex assay without pooling (r = 0.79, P = 1.44 × 10 -15 ). In an independent set of samples (n = 550), the new assay showed a negative correlation of RTL with age (r = -0.41), a result providing external validation for the method. We describe a novel high throughput pooled-sample multiplex Luminex assay for RTL with good to excellent precision suitable for large-scale studies. © 2018 Wiley Periodicals, Inc.
Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha; ...
2018-01-10
An operation strategy known as two-tier “pressure consolidation” of delivered tube-trailers (or equivalent supply storage) has been developed to maximize the throughput at gaseous hydrogen refueling stations (HRSs) for fuel cell electric vehicles (FCEVs). The high capital costs of HRSs and the consequent high investment risk are deterring growth of the infrastructure needed to promote the deployment of FCEVs. Stations supplied by gaseous hydrogen will be necessary for FCEV deployment in both the near and long term. Here, the two-tier pressure consolidation method enhances gaseous HRSs in the following ways: (1) reduces the capital cost compared with conventional stations, asmore » well as those operating according to the original pressure consolidation approach described by Elgowainy et al. (2014) [1], (2) minimizes pressure cycling of HRS supply storage relative to the original pressure consolidation approach; and (3) increases use of the station’s supply storage (or delivered tube-trailers) while maintaining higher state-of-charge vehicle fills.« less
Integrative prescreening in analysis of multiple cancer genomic studies
2012-01-01
Background In high throughput cancer genomic studies, results from the analysis of single datasets often suffer from a lack of reproducibility because of small sample sizes. Integrative analysis can effectively pool and analyze multiple datasets and provides a cost effective way to improve reproducibility. In integrative analysis, simultaneously analyzing all genes profiled may incur high computational cost. A computationally affordable remedy is prescreening, which fits marginal models, can be conducted in a parallel manner, and has low computational cost. Results An integrative prescreening approach is developed for the analysis of multiple cancer genomic datasets. Simulation shows that the proposed integrative prescreening has better performance than alternatives, particularly including prescreening with individual datasets, an intensity approach and meta-analysis. We also analyze multiple microarray gene profiling studies on liver and pancreatic cancers using the proposed approach. Conclusions The proposed integrative prescreening provides an effective way to reduce the dimensionality in cancer genomic studies. It can be coupled with existing analysis methods to identify cancer markers. PMID:22799431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha
An operation strategy known as two-tier “pressure consolidation” of delivered tube-trailers (or equivalent supply storage) has been developed to maximize the throughput at gaseous hydrogen refueling stations (HRSs) for fuel cell electric vehicles (FCEVs). The high capital costs of HRSs and the consequent high investment risk are deterring growth of the infrastructure needed to promote the deployment of FCEVs. Stations supplied by gaseous hydrogen will be necessary for FCEV deployment in both the near and long term. Here, the two-tier pressure consolidation method enhances gaseous HRSs in the following ways: (1) reduces the capital cost compared with conventional stations, asmore » well as those operating according to the original pressure consolidation approach described by Elgowainy et al. (2014) [1], (2) minimizes pressure cycling of HRS supply storage relative to the original pressure consolidation approach; and (3) increases use of the station’s supply storage (or delivered tube-trailers) while maintaining higher state-of-charge vehicle fills.« less
Advanced digital modulation: Communication techniques and monolithic GaAs technology
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.
1983-01-01
Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.
Computer numeric control generation of toric surfaces
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Ball, Gary A.; Keller, John R.
1994-05-01
Until recently, the manufacture of toric ophthalmic lenses relied largely upon expensive, manual techniques for generation and polishing. Recent gains in computer numeric control (CNC) technology and tooling enable lens designers to employ single- point diamond, fly-cutting methods in the production of torics. Fly-cutting methods continue to improve, significantly expanding lens design possibilities while lowering production costs. Advantages of CNC fly cutting include precise control of surface geometry, rapid production with high throughput, and high-quality lens surface finishes requiring minimal polishing. As accessibility and affordability increase within the ophthalmic market, torics promise to dramatically expand lens design choices available to consumers.
2017-10-01
Body MRI Experiments. Enc. Magn. Reson. 2007, DOI: 10.1002/9780470034590.emrstm0491. (59) Minard, K. R.; Wind , R. A. Solenoidal microcoil designPart II...Optimizing winding parameters for maximum signal-to-noise perform- ance. Concepts Magn. Reson. 2001, 13, 190−210. (60) Danieli, E.; Perlo, J...NMR spinner turbine was adjusted for the detection of the gas phase just above the liquid (Figure S2). Next, the displacement of HP propane from the
Romero, Peggy; Miller, Ted; Garakani, Arman
2009-12-01
Current methods to assess neurodegradation in dorsal root ganglion cultures as a model for neurodegenerative diseases are imprecise and time-consuming. Here we describe two new methods to quantify neuroprotection in these cultures. The neurite quality index (NQI) builds upon earlier manual methods, incorporating additional morphological events to increase detection sensitivity for the detection of early degeneration events. Neurosight is a machine vision-based method that recapitulates many of the strengths of NQI while enabling high-throughput screening applications with decreased costs.
Privacy Challenges of Genomic Big Data.
Shen, Hong; Ma, Jian
2017-01-01
With the rapid advancement of high-throughput DNA sequencing technologies, genomics has become a big data discipline where large-scale genetic information of human individuals can be obtained efficiently with low cost. However, such massive amount of personal genomic data creates tremendous challenge for privacy, especially given the emergence of direct-to-consumer (DTC) industry that provides genetic testing services. Here we review the recent development in genomic big data and its implications on privacy. We also discuss the current dilemmas and future challenges of genomic privacy.
2011-01-01
Genome targeting methods enable cost-effective capture of specific subsets of the genome for sequencing. We present here an automated, highly scalable method for carrying out the Solution Hybrid Selection capture approach that provides a dramatic increase in scale and throughput of sequence-ready libraries produced. Significant process improvements and a series of in-process quality control checkpoints are also added. These process improvements can also be used in a manual version of the protocol. PMID:21205303
Challenges Surrounding the Injection and Arrival of Targets at LIFE Fusion Chamber Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, R; Spaeth, M; Manes, K
2010-12-01
IFE target designers must consider several engineering requirements in addition to the physics requirements for successful target implosion. These considerations include low target cost, high manufacturing throughput, the ability of the target to survive the injection into the fusion chamber and arrive in a condition and physical position consistent with proper laser-target interaction and ease of post-implosion debris removal. This article briefly describes these considerations for the Laser Inertial Fusion-based Energy (LIFE) targets currently being designed.
Pinto, Nicolas; Doukhan, David; DiCarlo, James J; Cox, David D
2009-11-01
While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.
Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S
2010-01-01
Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.
Pinto, Nicolas; Doukhan, David; DiCarlo, James J.; Cox, David D.
2009-01-01
While many models of biological object recognition share a common set of “broad-stroke” properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model—e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct “parts” have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision. PMID:19956750
High Throughput Determination of Critical Human Dosing Parameters (SOT)
High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data int...