Sample records for cost model virtual

  1. Virtual Reference, Real Money: Modeling Costs in Virtual Reference Services

    ERIC Educational Resources Information Center

    Eakin, Lori; Pomerantz, Jeffrey

    2009-01-01

    Libraries nationwide are in yet another phase of belt tightening. Without an understanding of the economic factors that influence library operations, however, controlling costs and performing cost-benefit analyses on services is difficult. This paper describes a project to develop a cost model for collaborative virtual reference services. This…

  2. [Development of a virtual model of fibro-bronchoscopy].

    PubMed

    Solar, Mauricio; Ducoing, Eugenio

    2011-09-01

    A virtual model of fibro-bronchoscopy is reported. The virtual model represents in 3D the trachea and the bronchi creating a virtual world of the bronchial tree. The bronchoscope is modeled to look over the bronchial tree imitating the displacement and rotation of the real bronchoscope. The parameters of the virtual model were gradually adjusted according to expert opinion and allowed the training of specialists with a virtual bronchoscope of great realism. The virtual bronchial tree provides clues of reality regarding the movement of the bronchoscope, creating the illusion that the virtual instrument is behaving as the real one with all the benefits in costs that this means.

  3. 78 FR 32224 - Availability of Version 3.1.2 of the Connect America Fund Phase II Cost Model; Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Version 3.1.2 of the Connect America Fund Phase II Cost Model; Additional Discussion Topics in Connect America Cost Model Virtual Workshop AGENCY: Federal Communications Commission. ACTION: Proposed rule... America Cost Model (CAM v3.1.2), which allows Commission staff and interested parties to calculate costs...

  4. Modeling Environmental Impacts on Cognitive Performance for Artificially Intelligent Entities

    DTIC Science & Technology

    2017-06-01

    of the agent behavior model is presented in a military-relevant virtual game environment. We then outline a quantitative approach to test the agent...relevant virtual game environment. We then outline a quantitative approach to test the agent behavior model within the virtual environment. Results show...x Game View of Hot Environment Condition Displaying Total “f” Cost for Each Searched Waypoint Node

  5. Customized "In-Office" Three-Dimensional Printing for Virtual Surgical Planning in Craniofacial Surgery.

    PubMed

    Mendez, Bernardino M; Chiodo, Michael V; Patel, Parit A

    2015-07-01

    Virtual surgical planning using three-dimensional (3D) printing technology has improved surgical efficiency and precision. A limitation to this technology is that production of 3D surgical models requires a third-party source, leading to increased costs (up to $4000) and prolonged assembly times (averaging 2-3 weeks). The purpose of this study is to evaluate the feasibility, cost, and production time of customized skull models created by an "in-office" 3D printer for craniofacial reconstruction. Two patients underwent craniofacial reconstruction with the assistance of "in-office" 3D printing technology. Three-dimensional skull models were created from a bioplastic filament with a 3D printer using computed tomography (CT) image data. The cost and production time for each model were measured. For both patients, a customized 3D surgical model was used preoperatively to plan split calvarial bone grafting and intraoperatively to more efficiently and precisely perform the craniofacial reconstruction. The average cost for surgical model production with the "in-office" 3D printer was $25 (cost of bioplastic materials used to create surgical model) and the average production time was 14  hours. Virtual surgical planning using "in office" 3D printing is feasible and allows for a more cost-effective and less time consuming method for creating surgical models and guides. By bringing 3D printing to the office setting, we hope to improve intraoperative efficiency, surgical precision, and overall cost for various types of craniofacial and reconstructive surgery.

  6. 78 FR 5765 - Wireline Competition Bureau Releases Connect America Phase II Cost Model Virtual Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... variation by geography; inter-office transport cost; voice capability; wire center facilities; sizing of... through traditional channels at the FCC, such as the Commission's Electronic Comment Filing System (ECFS... Electronic Comment Filing System (ECFS). In the meantime, parties are encouraged to examine both the Virtual...

  7. Social Protocols for Agile Virtual Teams

    NASA Astrophysics Data System (ADS)

    Picard, Willy

    Despite many works on collaborative networked organizations (CNOs), CSCW, groupware, workflow systems and social networks, computer support for virtual teams is still insufficient, especially support for agility, i.e. the capability of virtual team members to rapidly and cost efficiently adapt the way they interact to changes. In this paper, requirements for computer support for agile virtual teams are presented. Next, an extension of the concept of social protocol is proposed as a novel model supporting agile interactions within virtual teams. The extended concept of social protocol consists of an extended social network and a workflow model.

  8. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.

    2010-12-01

    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  9. The ScanTrainer obstetrics and gynaecology ultrasound virtual reality training simulator: A cost model to determine the cost viability of replacing clinical training with simulation training.

    PubMed

    Carolan-Rees, G; Ray, A F

    2015-05-01

    The aim of this study was to produce an economic cost model comparing the use of the Medaphor ScanTrainer virtual reality training simulator for obstetrics and gynaecology ultrasound to achieve basic competence, with the traditional training method. A literature search and survey of expert opinion were used to identify resources used in training. An executable model was produced in Excel. The model showed a cost saving for a clinic using the ScanTrainer of £7114 per annum. The uncertainties of the model were explored and it was found to be robust. Threshold values for the key drivers of the model were identified. Using the ScanTrainer is cost saving for clinics with at least two trainees per year to train, if it would take at least six lists to train them using the traditional training method and if a traditional training list has at least two fewer patients than a standard list.

  10. Two-stage collaborative global optimization design model of the CHPG microgrid

    NASA Astrophysics Data System (ADS)

    Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng

    2017-06-01

    With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.

  11. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    NASA Astrophysics Data System (ADS)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-09-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  12. Virtual reality applied to teletesting

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon

    2003-05-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.

  13. Virtual Realities: A School Leader's Guide to Online Education. A Technology Leadership Network Special Report.

    ERIC Educational Resources Information Center

    Abdal-Haqq, Ismat, Ed.

    This book is designed to provide practical information about planning and operating virtual, or online, schools. It discusses and illustrates promising practices and successful models and approaches; provides planning resources for implementation; presents costs and benefits of launching virtual schools; offers preventive strategies that help…

  14. Virtual reality in ophthalmology training.

    PubMed

    Khalifa, Yousuf M; Bogorad, David; Gibson, Vincent; Peifer, John; Nussbaum, Julian

    2006-01-01

    Current training models are limited by an unstructured curriculum, financial costs, human costs, and time constraints. With the newly mandated resident surgical competency, training programs are struggling to find viable methods of assessing and documenting the surgical skills of trainees. Virtual-reality technologies have been used for decades in flight simulation to train and assess competency, and there has been a recent push in surgical specialties to incorporate virtual-reality simulation into residency programs. These efforts have culminated in an FDA-approved carotid stenting simulator. What role virtual reality will play in the evolution of ophthalmology surgical curriculum is uncertain. The current apprentice system has served the art of surgery for over 100 years, and we foresee virtual reality working synergistically with our current curriculum modalities to streamline and enhance the resident's learning experience.

  15. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reductionmore » and energy saving, as well as working productivity improvements, can be achieved.« less

  16. From Panoramic Photos to a Low-Cost Photogrammetric Workflow for Cultural Heritage 3d Documentation

    NASA Astrophysics Data System (ADS)

    D'Annibale, E.; Tassetti, A. N.; Malinverni, E. S.

    2013-07-01

    The research aims to optimize a workflow of architecture documentation: starting from panoramic photos, tackling available instruments and technologies to propose an integrated, quick and low-cost solution of Virtual Architecture. The broader research background shows how to use spherical panoramic images for the architectural metric survey. The input data (oriented panoramic photos), the level of reliability and Image-based Modeling methods constitute an integrated and flexible 3D reconstruction approach: from the professional survey of cultural heritage to its communication in virtual museum. The proposed work results from the integration and implementation of different techniques (Multi-Image Spherical Photogrammetry, Structure from Motion, Imagebased Modeling) with the aim to achieve high metric accuracy and photorealistic performance. Different documentation chances are possible within the proposed workflow: from the virtual navigation of spherical panoramas to complex solutions of simulation and virtual reconstruction. VR tools make for the integration of different technologies and the development of new solutions for virtual navigation. Image-based Modeling techniques allow 3D model reconstruction with photo realistic and high-resolution texture. High resolution of panoramic photo and algorithms of panorama orientation and photogrammetric restitution vouch high accuracy and high-resolution texture. Automated techniques and their following integration are subject of this research. Data, advisably processed and integrated, provide different levels of analysis and virtual reconstruction joining the photogrammetric accuracy to the photorealistic performance of the shaped surfaces. Lastly, a new solution of virtual navigation is tested. Inside the same environment, it proposes the chance to interact with high resolution oriented spherical panorama and 3D reconstructed model at once.

  17. SLA Negotiation for VO Formation

    NASA Astrophysics Data System (ADS)

    Paurobally, Shamimabi

    Resource management systems are changing from localized resources and services towards virtual organizations (VOs) sharing millions of heterogeneous resources across multiple organizations and domains. The virtual organizations and usage models include a variety of owners and consumers with different usage, access policies, cost models, varying loads, requirements and availability. The stakeholders have private utility functions that must be satisfied and possibly maximized.

  18. The virtual cooperation platform in enterprise and supplier cooperation models.

    PubMed

    Chang, Che-Wei; Wu, Cheng-Ru; Liao, Chia-Chun

    2010-08-01

    Abstract This study examines the use of the virtual enterprise network supplier supply-chain model of business behavior in creating synergies of cooperation. To explore virtual network behavior, it evaluates 60 samples, taken from of a few supply chains, and 17 items meeting certain behavioral criteria. Such an analysis may help to reduce costs and processing time effectively, as well as promote effective communication. Furthermore, the study of behavior in this electronic setting is a reliable and useful assessment method.

  19. A virtual maintenance-based approach for satellite assembling and troubleshooting assessment

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Li, Ying; Wang, Ranran; Wang, Zili; Lv, Chuan; Zhou, Dong

    2017-09-01

    In this study, a Virtual Maintenance (VM)-based approach for satellite troubleshooting assessment is proposed. By focusing on various elements in satellite assemble troubleshooting, such as accessibility, ergonomics, wiring, and extent of damage, a systematic, quantitative, and objective assessment model is established to decrease subjectivity in satellite assembling and troubleshooting assessment. Afterwards, based on the established assessment model and satellite virtual prototype, an application process of this model suitable for a virtual environment is presented. Finally, according to the application process, all the elements in satellite troubleshooting are analyzed and assessed. The corresponding improvements, which realize the transformation from a conventional way to a virtual simulation and assessment, are suggested, and the flaws in assembling and troubleshooting are revealed. Assembling or troubleshooting schemes can be improved in the early stage of satellite design with the help of a virtual prototype. Repetition in the practical operation is beneficial to companies as risk and cost are effectively reduced.

  20. 78 FR 48851 - Wireline Competition Bureau Announces Closing of the Bureau's Cost Model Virtual Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... questions through Public Notice. DATES: Virtual workshop closure effective August 12, 2013. ADDRESSES: You.... The filing hours are 8:00 a.m. to 7:00 p.m. All hand deliveries must be held together with rubber...

  1. An Integrated FDD System for HVAC&R Based on Virtual Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun

    According to the U.S Department of Energy, space heating, ventilation and air conditioning system account for 40% of residential primary energy use and for 30% of primary energy use in commercial buildings. A study released by the Energy Information Administration indicated that packaged air conditioners are widely used in 46% of all commercial buildings in the U.S. This study indicates that the annual cooling energy consumption related to the packaged air conditioner is about 160 trillion Btus. Therefore, an automated FDD system that can automatically detect and diagnose faults and evaluate fault impacts has the potential for improving energy efficiencymore » along with reducing service costs and comfort complaints. The primary bottlenecks to diagnostic implementation in the field are the high initial costs of additional sensors. To prevent those limitations, virtual sensors with low cost measurements and simple models are developed to estimate quantities that would be expensive and or difficult to measure directly. The use of virtual sensors can reduce costs compared to the use of real sensors and provide additional information for economic assessment. The virtual sensor can be embedded in a permanently installed control or monitoring system and continuous monitoring potentially leads to early detection of faults. The virtual sensors of individual equipment components can be integrated to estimate overall diagnostic information using the output of each virtual sensor.« less

  2. A Preliminary Investigation of Maine Virtual Charter School Costs Relative to the Essential Programs and Services Funding Model

    ERIC Educational Resources Information Center

    Johnson, Amy F.; Hopper, Fleur; Sloan, James E.

    2016-01-01

    In 2015, the Maine State Legislature's Joint Standing Committee on Education and Cultural Affairs commissioned the Maine Education Policy Research Institute (MEPRI) to study the state's Essential Program and Services (EPS) K-12 education funding model in relationship to the funding for Maine's two virtual charter schools. The study was initiated…

  3. Evaluation of glucose controllers in virtual environment: methodology and sample application.

    PubMed

    Chassin, Ludovic J; Wilinska, Malgorzata E; Hovorka, Roman

    2004-11-01

    Adaptive systems to deliver medical treatment in humans are safety-critical systems and require particular care in both the testing and the evaluation phase, which are time-consuming, costly, and confounded by ethical issues. The objective of the present work is to develop a methodology to test glucose controllers of an artificial pancreas in a simulated (virtual) environment. A virtual environment comprising a model of the carbohydrate metabolism and models of the insulin pump and the glucose sensor is employed to simulate individual glucose excursions in subjects with type 1 diabetes. The performance of the control algorithm within the virtual environment is evaluated by considering treatment and operational scenarios. The developed methodology includes two dimensions: testing in relation to specific life style conditions, i.e. fasting, post-prandial, and life style (metabolic) disturbances; and testing in relation to various operating conditions, i.e. expected operating conditions, adverse operating conditions, and system failure. We define safety and efficacy criteria and describe the measures to be taken prior to clinical testing. The use of the methodology is exemplified by tuning and evaluating a model predictive glucose controller being developed for a wearable artificial pancreas focused on fasting conditions. Our methodology to test glucose controllers in a virtual environment is instrumental in anticipating the results of real clinical tests for different physiological conditions and for different operating conditions. The thorough testing in the virtual environment reduces costs and speeds up the development process.

  4. Assessing biocomputational modelling in transforming clinical guidelines for osteoporosis management.

    PubMed

    Thiel, Rainer; Viceconti, Marco; Stroetmann, Karl

    2011-01-01

    Biocomputational modelling as developed by the European Virtual Physiological Human (VPH) Initiative is the area of ICT most likely to revolutionise in the longer term the practice of medicine. Using the example of osteoporosis management, a socio-economic assessment framework is presented that captures how the transformation of clinical guidelines through VPH models can be evaluated. Applied to the Osteoporotic Virtual Physiological Human Project, a consequent benefit-cost analysis delivers promising results, both methodologically and substantially.

  5. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  6. Computer Applications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  7. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  8. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  9. 78 FR 38265 - Wireline Competition Bureau Adds Two New Discussion Topics to Connect America Cost Model Virtual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... information from parties that post material in the virtual workshop will be publicly available for inspection... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 54 [WC Docket No. 10-90; DA 13-1396] Wireline...: Federal Communications Commission. ACTION: Proposed rule. SUMMARY: In this document, the Wireline...

  10. Cost comparison of orthopaedic fracture pathways using discrete event simulation in a Glasgow hospital

    PubMed Central

    Jenkins, Paul J; McDonald, David A; Van Der Meer, Robert; Morton, Alec; Nugent, Margaret; Rymaszewski, Lech A

    2017-01-01

    Objective Healthcare faces the continual challenge of improving outcome while aiming to reduce cost. The aim of this study was to determine the micro cost differences of the Glasgow non-operative trauma virtual pathway in comparison to a traditional pathway. Design Discrete event simulation was used to model and analyse cost and resource utilisation with an activity-based costing approach. Data for a full comparison before the process change was unavailable so we used a modelling approach, comparing a virtual fracture clinic (VFC) with a simulated traditional fracture clinic (TFC). Setting The orthopaedic unit VFC pathway pioneered at Glasgow Royal Infirmary has attracted significant attention and interest and is the focus of this cost study. Outcome measures Our study focused exclusively on patients with non-operative trauma attending emergency department or the minor injuries unit and the subsequent step in the patient pathway. Retrospective studies of patient outcomes as a result of the protocol introductions for specific injuries are presented in association with activity costs from the models. Results Patients are satisfied with the new pathway, the information provided and the outcome of their injuries (Evidence Level IV). There was a 65% reduction in the number of first outpatient face-to-face (f2f) attendances in orthopaedics. In the VFC pathway, the resources required per day were significantly lower for all staff groups (p≤0.001). The overall cost per patient of the VFC pathway was £22.84 (95% CI 21.74 to 23.92) per patient compared with £36.81 (95% CI 35.65 to 37.97) for the TFC pathway. Conclusions Our results give a clearer picture of the cost comparison of the virtual pathway over a wholly traditional f2f clinic system. The use of simulation-based stochastic costings in healthcare economic analysis has been limited to date, but this study provides evidence for adoption of this method as a basis for its application in other healthcare settings. PMID:28882905

  11. Virtual experiments, physical validation: dental morphology at the intersection of experiment and theory

    PubMed Central

    Anderson, P. S. L.; Rayfield, E. J.

    2012-01-01

    Computational models such as finite-element analysis offer biologists a means of exploring the structural mechanics of biological systems that cannot be directly observed. Validated against experimental data, a model can be manipulated to perform virtual experiments, testing variables that are hard to control in physical experiments. The relationship between tooth form and the ability to break down prey is key to understanding the evolution of dentition. Recent experimental work has quantified how tooth shape promotes fracture in biological materials. We present a validated finite-element model derived from physical compression experiments. The model shows close agreement with strain patterns observed in photoelastic test materials and reaction forces measured during these experiments. We use the model to measure strain energy within the test material when different tooth shapes are used. Results show that notched blades deform materials for less strain energy cost than straight blades, giving insights into the energetic relationship between tooth form and prey materials. We identify a hypothetical ‘optimal’ blade angle that minimizes strain energy costs and test alternative prey materials via virtual experiments. Using experimental data and computational models offers an integrative approach to understand the mechanics of tooth morphology. PMID:22399789

  12. Therapists' perception of benefits and costs of using virtual reality treatments.

    PubMed

    Segal, Robert; Bhatia, Maneet; Drapeau, Martin

    2011-01-01

    Research indicates that virtual reality is effective in the treatment of many psychological difficulties and is being used more frequently. However, little is known about therapists' perception of the benefits and costs related to the use of virtual therapy in treatment delivery. In the present study, 271 therapists completed an online questionnaire that assessed their perceptions about the potential benefits and costs of using virtual reality in psychotherapy. Results indicated that therapists perceived the potential benefits as outweighing the potential costs. Therapists' self-reported knowledge of virtual reality, theoretical orientation, and interest in using virtual reality were found to be associated with perceptual measures. These findings contribute to the current knowledge of the perception of virtual reality amongst psychotherapists.

  13. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  14. Cost Optimization Model for Business Applications in Virtualized Grid Environments

    NASA Astrophysics Data System (ADS)

    Strebel, Jörg

    The advent of Grid computing gives enterprises an ever increasing choice of computing options, yet research has so far hardly addressed the problem of mixing the different computing options in a cost-minimal fashion. The following paper presents a comprehensive cost model and a mixed integer optimization model which can be used to minimize the IT expenditures of an enterprise and help in decision-making when to outsource certain business software applications. A sample scenario is analyzed and promising cost savings are demonstrated. Possible applications of the model to future research questions are outlined.

  15. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  16. Around Marshall

    NASA Image and Video Library

    1993-12-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  17. Virtual Organizations: Trends and Models

    NASA Astrophysics Data System (ADS)

    Nami, Mohammad Reza; Malekpour, Abbaas

    The Use of ICT in business has changed views about traditional business. With VO, organizations with out physical, geographical, or structural constraint can collaborate with together in order to fulfill customer requests in a networked environment. This idea improves resource utilization, reduces development process and costs, and saves time. Virtual Organization (VO) is always a form of partnership and managing partners and handling partnerships are crucial. Virtual organizations are defined as a temporary collection of enterprises that cooperate and share resources, knowledge, and competencies to better respond to business opportunities. This paper presents an overview of virtual organizations and main issues in collaboration such as security and management. It also presents a number of different model approaches according to their purpose and applications.

  18. A telemedicine model for integrating point-of-care testing into a distributed health-care environment.

    PubMed

    Villalar, J L; Arredondo, M T; Meneu, T; Traver, V; Cabrera, M F; Guillen, S; Del Pozo, F

    2002-01-01

    Centralized testing demands costly laboratories, which are inefficient and may provide poor services. Recent advances make it feasible to move clinical testing nearer to patients and the requesting physicians, thus reducing the time to treatment. Internet technologies can be used to create a virtual laboratory information system in a distributed health-care environment. This allows clinical testing to be transferred to a cooperative scheme of several point-of-care testing (POCT) nodes. Two pilot virtual laboratories were established, one in Italy (AUSL Modena) and one in Greece (Athens Medical Centre). They were constructed on a three-layer model to allow both technical and clinical verification. Different POCT devices were connected. The pilot sites produced good preliminary results in relation to user acceptance, efficiency, convenience and costs. Decentralized laboratories can be expected to become cost-effective.

  19. Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR

  20. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    PubMed

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  2. Hospital admission avoidance through the introduction of a virtual ward.

    PubMed

    Jones, Joanne; Carroll, Andrea

    2014-07-01

    The ageing British population is placing increased demands on the delivery of care in mainstream health-care institutions. While people are living longer, a significant percentage is also living with one or more long-term conditions. These issues, alongside continuing financial austerity measures, require a radical improvement in the care of patients away from hospitals. The Wyre Forest Clinical Commissioning Group introduced a virtual ward model for two main purposes: to save on spiralling costs of hospital admissions, and, secondly, to ensure the preferred wishes of most patients to be cared for and even die at home were achieved. This commentary describes how the virtual ward model was implemented and the impact of preventing unplanned emergency admissions to hospitals. The setting up of enhanced care services and virtual wards in one county is discussed, aiming to highlight success points and potential pitfalls to avoid. The results from the implementation of the virtual ward model show a significant reduction in emergency and avoidable patient admissions to hospital. The success of virtual wards is dependent on integrated working between different health-care disciplines.

  3. Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them.

    PubMed

    Chase, J Geoffrey; Preiser, Jean-Charles; Dickson, Jennifer L; Pironet, Antoine; Chiew, Yeong Shiong; Pretty, Christopher G; Shaw, Geoffrey M; Benyo, Balazs; Moeller, Knut; Safaei, Soroush; Tawhai, Merryn; Hunter, Peter; Desaive, Thomas

    2018-02-20

    Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.

  4. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  5. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  6. Security model for VM in cloud

    NASA Astrophysics Data System (ADS)

    Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.

    2013-03-01

    Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.

  7. Reduced-Drift Virtual Gyro from an Array of Low-Cost Gyros.

    PubMed

    Vaccaro, Richard J; Zaki, Ahmed S

    2017-02-11

    A Kalman filter approach for combining the outputs of an array of high-drift gyros to obtain a virtual lower-drift gyro has been known in the literature for more than a decade. The success of this approach depends on the correlations of the random drift components of the individual gyros. However, no method of estimating these correlations has appeared in the literature. This paper presents an algorithm for obtaining the statistical model for an array of gyros, including the cross-correlations of the individual random drift components. In order to obtain this model, a new statistic, called the "Allan covariance" between two gyros, is introduced. The gyro array model can be used to obtain the Kalman filter-based (KFB) virtual gyro. Instead, we consider a virtual gyro obtained by taking a linear combination of individual gyro outputs. The gyro array model is used to calculate the optimal coefficients, as well as to derive a formula for the drift of the resulting virtual gyro. The drift formula for the optimal linear combination (OLC) virtual gyro is identical to that previously derived for the KFB virtual gyro. Thus, a Kalman filter is not necessary to obtain a minimum drift virtual gyro. The theoretical results of this paper are demonstrated using simulated as well as experimental data. In experimental results with a 28-gyro array, the OLC virtual gyro has a drift spectral density 40 times smaller than that obtained by taking the average of the gyro signals.

  8. Lower Total Cost of Ownership of ONE-NET by Using Thin-Client Desktop Deployment and Virtualization-Based Server Technology

    DTIC Science & Technology

    2010-09-01

    NNWC) was used to calculate major cost components—labor, hardware, software , and transport, while a VMware tool was used to calculate power and...cooling costs for both solutions. In addition, VMware provided a cost estimate for the upfront hardware and software licensing costs needed to support...cost per seat (CPS) model developed by Naval Network Warfare Command (NNWC) was used to calculate major cost components—labor, hardware, software , and

  9. Office-Based Three-Dimensional Printing Workflow for Craniomaxillofacial Fracture Repair.

    PubMed

    Elegbede, Adekunle; Diaconu, Silviu C; McNichols, Colton H L; Seu, Michelle; Rasko, Yvonne M; Grant, Michael P; Nam, Arthur J

    2018-03-08

    Three-dimensional printing of patient-specific models is being used in various aspects of craniomaxillofacial reconstruction. Printing is typically outsourced to off-site vendors, with the main disadvantages being increased costs and time for production. Office-based 3-dimensional printing has been proposed as a means to reduce costs and delays, but remains largely underused because of the perception among surgeons that it is futuristic, highly technical, and prohibitively expensive. The goal of this report is to demonstrate the feasibility and ease of incorporating in-office 3-dimensional printing into the standard workflow for facial fracture repair.Patients with complex mandible fractures requiring open repair were identified. Open-source software was used to create virtual 3-dimensional skeletal models of the, initial injury pattern, and then the ideally reduced fractures based on preoperative computed tomography (CT) scan images. The virtual 3-dimensional skeletal models were then printed in our office using a commercially available 3-dimensional printer and bioplastic filament. The 3-dimensional skeletal models were used as templates to bend and shape titanium plates that were subsequently used for intraoperative fixation.Average print time was 6 hours. Excluding the 1-time cost of the 3-dimensional printer of $2500, roughly the cost of a single commercially produced model, the average material cost to print 1 model mandible was $4.30. Postoperative CT imaging demonstrated precise, predicted reduction in all patients.Office-based 3-dimensional printing of skeletal models can be routinely used in repair of facial fractures in an efficient and cost-effective manner.

  10. A 3D visualization and simulation of the individual human jaw.

    PubMed

    Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo

    2003-01-01

    A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.

  11. Planning Image-Based Measurements in Wind Tunnels by Virtual Imaging

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Schairer, Edward T.

    2011-01-01

    Virtual imaging is routinely used at NASA Ames Research Center to plan the placement of cameras and light sources for image-based measurements in production wind tunnel tests. Virtual imaging allows users to quickly and comprehensively model a given test situation, well before the test occurs, in order to verify that all optical testing requirements will be met. It allows optimization of the placement of cameras and light sources and leads to faster set-up times, thereby decreasing tunnel occupancy costs. This paper describes how virtual imaging was used to plan optical measurements for three tests in production wind tunnels at NASA Ames.

  12. Cost comparison of orthopaedic fracture pathways using discrete event simulation in a Glasgow hospital.

    PubMed

    Anderson, Gillian H; Jenkins, Paul J; McDonald, David A; Van Der Meer, Robert; Morton, Alec; Nugent, Margaret; Rymaszewski, Lech A

    2017-09-07

    Healthcare faces the continual challenge of improving outcome while aiming to reduce cost. The aim of this study was to determine the micro cost differences of the Glasgow non-operative trauma virtual pathway in comparison to a traditional pathway. Discrete event simulation was used to model and analyse cost and resource utilisation with an activity-based costing approach. Data for a full comparison before the process change was unavailable so we used a modelling approach, comparing a virtual fracture clinic (VFC) with a simulated traditional fracture clinic (TFC). The orthopaedic unit VFC pathway pioneered at Glasgow Royal Infirmary has attracted significant attention and interest and is the focus of this cost study. Our study focused exclusively on patients with non-operative trauma attending emergency department or the minor injuries unit and the subsequent step in the patient pathway. Retrospective studies of patient outcomes as a result of the protocol introductions for specific injuries are presented in association with activity costs from the models. Patients are satisfied with the new pathway, the information provided and the outcome of their injuries (Evidence Level IV). There was a 65% reduction in the number of first outpatient face-to-face (f2f) attendances in orthopaedics. In the VFC pathway, the resources required per day were significantly lower for all staff groups (p≤0.001). The overall cost per patient of the VFC pathway was £22.84 (95% CI 21.74 to 23.92) per patient compared with £36.81 (95% CI 35.65 to 37.97) for the TFC pathway. Our results give a clearer picture of the cost comparison of the virtual pathway over a wholly traditional f2f clinic system. The use of simulation-based stochastic costings in healthcare economic analysis has been limited to date, but this study provides evidence for adoption of this method as a basis for its application in other healthcare settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Rule-based modeling with Virtual Cell

    PubMed Central

    Schaff, James C.; Vasilescu, Dan; Moraru, Ion I.; Loew, Leslie M.; Blinov, Michael L.

    2016-01-01

    Summary: Rule-based modeling is invaluable when the number of possible species and reactions in a model become too large to allow convenient manual specification. The popular rule-based software tools BioNetGen and NFSim provide powerful modeling and simulation capabilities at the cost of learning a complex scripting language which is used to specify these models. Here, we introduce a modeling tool that combines new graphical rule-based model specification with existing simulation engines in a seamless way within the familiar Virtual Cell (VCell) modeling environment. A mathematical model can be built integrating explicit reaction networks with reaction rules. In addition to offering a large choice of ODE and stochastic solvers, a model can be simulated using a network free approach through the NFSim simulation engine. Availability and implementation: Available as VCell (versions 6.0 and later) at the Virtual Cell web site (http://vcell.org/). The application installs and runs on all major platforms and does not require registration for use on the user’s computer. Tutorials are available at the Virtual Cell website and Help is provided within the software. Source code is available at Sourceforge. Contact: vcell_support@uchc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27497444

  14. System analysis of graphics processor architecture using virtual prototyping

    NASA Astrophysics Data System (ADS)

    Hancock, William R.; Groat, Jeff; Steeves, Todd; Spaanenburg, Henk; Shackleton, John

    1995-06-01

    Honeywell has been actively involved in the definition of the next generation display processors for military and commercial cockpits. A major concern is how to achieve super graphics workstation performance in avionics application. Most notable are requirements for low volume, low power, harsh environmental conditions, real-time performance and low cost. This paper describes the application of VHDL to the system analysis tasks associated with achieving these goals in a cost effective manner. The paper will describe the top level architecture identified to provide the graphical and video processing power needed to drive future high resolution display devices and to generate more natural panoramic 3D formats. The major discussion, however, will be on the use of VHDL to model the processing elements and customized pipelines needed to realize the architecture and for doing the complex system tradeoff studies necessary to achieve a cost effective implementation. New software tools have been developed to allow 'virtual' prototyping in the VHDL environment. This results in a hardware/software codesign using VHDL performance and functional models. This unique architectural tool allows simulation and tradeoffs within a standard and tightly integrated toolset, which eventually will be used to specify and design the entire system from the top level requirements and system performance to the lowest level individual ASICs. New processing elements, algorithms, and standard graphical inputs can be designed, tested and evaluated without the costly hardware prototyping using the innovative 'virtual' prototyping techniques which are evolving on this project. In addition, virtual prototyping of the display processor does not bind the preliminary design to point solutions as a physical prototype will. when the development schedule is known, one can extrapolate processing elements performance and design the system around the most current technology.

  15. Three Dimensional (3D) Printing: A Straightforward, User-Friendly Protocol to Convert Virtual Chemical Models to Real-Life Objects

    ERIC Educational Resources Information Center

    Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel

    2015-01-01

    A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…

  16. Multi-ray medical ultrasound simulation without explicit speckle modelling.

    PubMed

    Tuzer, Mert; Yazıcı, Abdulkadir; Türkay, Rüştü; Boyman, Michael; Acar, Burak

    2018-05-04

    To develop a medical ultrasound (US) simulation method using T1-weighted magnetic resonance images (MRI) as the input that offers a compromise between low-cost ray-based and high-cost realistic wave-based simulations. The proposed method uses a novel multi-ray image formation approach with a virtual phased array transducer probe. A domain model is built from input MR images. Multiple virtual acoustic rays are emerged from each element of the linear transducer array. Reflected and transmitted acoustic energy at discrete points along each ray is computed independently. Simulated US images are computed by fusion of the reflected energy along multiple rays from multiple transducers, while phase delays due to differences in distances to transducers are taken into account. A preliminary implementation using GPUs is presented. Preliminary results show that the multi-ray approach is capable of generating view point-dependent realistic US images with an inherent Rician distributed speckle pattern automatically. The proposed simulator can reproduce the shadowing artefacts and demonstrates frequency dependence apt for practical training purposes. We also have presented preliminary results towards the utilization of the method for real-time simulations. The proposed method offers a low-cost near-real-time wave-like simulation of realistic US images from input MR data. It can further be improved to cover the pathological findings using an improved domain model, without any algorithmic updates. Such a domain model would require lesion segmentation or manual embedding of virtual pathologies for training purposes.

  17. A Low-cost System for Generating Near-realistic Virtual Actors

    NASA Astrophysics Data System (ADS)

    Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.

    2015-06-01

    Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.

  18. Surface modeling method for aircraft engine blades by using speckle patterns based on the virtual stereo vision system

    NASA Astrophysics Data System (ADS)

    Yu, Zhijing; Ma, Kai; Wang, Zhijun; Wu, Jun; Wang, Tao; Zhuge, Jingchang

    2018-03-01

    A blade is one of the most important components of an aircraft engine. Due to its high manufacturing costs, it is indispensable to come up with methods for repairing damaged blades. In order to obtain a surface model of the blades, this paper proposes a modeling method by using speckle patterns based on the virtual stereo vision system. Firstly, blades are sprayed evenly creating random speckle patterns and point clouds from blade surfaces can be calculated by using speckle patterns based on the virtual stereo vision system. Secondly, boundary points are obtained in the way of varied step lengths according to curvature and are fitted to get a blade surface envelope with a cubic B-spline curve. Finally, the surface model of blades is established with the envelope curves and the point clouds. Experimental results show that the surface model of aircraft engine blades is fair and accurate.

  19. 3D Virtual Environment Used to Support Lighting System Management in a Building

    NASA Astrophysics Data System (ADS)

    Sampaio, A. Z.; Ferreira, M. M.; Rosário, D. P.

    The main aim of the research project, which is in progress at the UTL, is to develop a virtual interactive model as a tool to support decision-making in the planning of construction maintenance and facilities management. The virtual model gives the capacity to allow the user to transmit, visually and interactively, information related to the components of a building, defined as a function of the time variable. In addition, the analysis of solutions for repair work/substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The first component of the virtual prototype concerns the management of lamps in a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in 3D and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.

  20. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.

    PubMed

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung

    2018-03-05

    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  1. Virtual water management in the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B.; Van Beek, L. P.; Meeks, E.; Klein Goldewijk, K.; Bierkens, M. F.; Scheidel, W.; Wassen, M. J.; Van der Velde, Y.; Dekker, S. C.

    2013-12-01

    Climate change can have extreme societal impacts particularly in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or the redistribution of virtual water resources through trade in food. Here, we explore how such water management strategies improve societal resilience by examining virtual water management during the Roman Empire in the water-limited region of the Mediterranean. Climate was prescribed based on previously published reconstructions which show that during the Roman Empire when the Central Mediterranean was wetter, the West and Southeastern Mediterranean became drier and vice-versa. Evidence indicates that these shifts in the climatic seesaw may have occurred relatively rapidly. Using the Global hydrological model PCR GLOBWB and estimates of landcover based on the HYDE dataset we generate potential agricultural yield maps under two extremes of this climatic seesaw. HYDE estimates of population in conjunction with potential yield estimates are used to identify regions of Mediterranean with a yield surplus or deficit. The surplus and deficit regions form nodes on a virtual water redistribution network with transport costs taken from the Stanford Geospatial Network Model of the Roman World (ORBIS). Our demand-driven, virtual water redistribution network allows us to quantitatively explore the importance of water management strategies such as irrigation and food trade for the Romans. By examining virtual water transport cost anomalies between climate scenarios our analysis highlights regions of the Mediterranean that were most vulnerable to climate change during the Roman Period.

  2. Leveraging Behavioral Health Expertise: Practices and Potential of the Project ECHO Approach to Virtually Integrating Care in Underserved Areas.

    PubMed

    Hager, Brant; Hasselberg, Michael; Arzubi, Eric; Betlinski, Jonathan; Duncan, Mark; Richman, Jennifer; Raney, Lori E

    2018-04-01

    This column describes Project ECHO (Extension for Community Healthcare Outcomes), a teleconsultation, tele-education, telementoring model for enhancing primary care treatment of underserved patients with complex medical conditions. Numerous centers have adapted ECHO to support primary care treatment of behavioral health disorders. Preliminary evidence for behavioral health ECHO programs suggests positive impacts on providers, treatment planning, and emergency department costs. ECHO has the potential to improve access to effective and cost-effective behavioral health care by virtually integrating behavioral health knowledge and support in sites where specialty providers are not available. Patient-level outcomes research is critical.

  3. The Photogrammetric Survey Methodologies Applied to Low Cost 3d Virtual Exploration in Multidisciplinary Field

    NASA Astrophysics Data System (ADS)

    Palestini, C.; Basso, A.

    2017-11-01

    In recent years, an increase in international investment in hardware and software technology to support programs that adopt algorithms for photomodeling or data management from laser scanners significantly reduced the costs of operations in support of Augmented Reality and Virtual Reality, designed to generate real-time explorable digital environments integrated to virtual stereoscopic headset. The research analyzes transversal methodologies related to the acquisition of these technologies in order to intervene directly on the phenomenon of acquiring the current VR tools within a specific workflow, in light of any issues related to the intensive use of such devices , outlining a quick overview of the possible "virtual migration" phenomenon, assuming a possible integration with the new internet hyper-speed systems, capable of triggering a massive cyberspace colonization process that paradoxically would also affect the everyday life and more in general, on human space perception. The contribution aims at analyzing the application systems used for low cost 3d photogrammetry by means of a precise pipeline, clarifying how a 3d model is generated, automatically retopologized, textured by color painting or photo-cloning techniques, and optimized for parametric insertion on virtual exploration platforms. Workflow analysis will follow some case studies related to photomodeling, digital retopology and "virtual 3d transfer" of some small archaeological artifacts and an architectural compartment corresponding to the pronaus of Aurum, a building designed in the 1940s by Michelucci. All operations will be conducted on cheap or free licensed software that today offer almost the same performance as their paid counterparts, progressively improving in the data processing speed and management.

  4. Virtual Reconstruction of Lost Architectures: from the Tls Survey to AR Visualization

    NASA Astrophysics Data System (ADS)

    Quattrini, R.; Pierdicca, R.; Frontoni, E.; Barcaglioni, R.

    2016-06-01

    The exploitation of high quality 3D models for dissemination of archaeological heritage is currently an investigated topic, although Mobile Augmented Reality platforms for historical architecture are not available, allowing to develop low-cost pipelines for effective contents. The paper presents a virtual anastylosis, starting from historical sources and from 3D model based on TLS survey. Several efforts and outputs in augmented or immersive environments, exploiting this reconstruction, are discussed. The work demonstrates the feasibility of a 3D reconstruction approach for complex architectural shapes starting from point clouds and its AR/VR exploitation, allowing the superimposition with archaeological evidences. Major contributions consist in the presentation and the discussion of a pipeline starting from the virtual model, to its simplification showing several outcomes, comparing also the supported data qualities and advantages/disadvantages due to MAR and VR limitations.

  5. A virtual surgical environment for rehearsal of tympanomastoidectomy.

    PubMed

    Chan, Sonny; Li, Peter; Lee, Dong Hoon; Salisbury, J Kenneth; Blevins, Nikolas H

    2011-01-01

    This article presents a virtual surgical environment whose purpose is to assist the surgeon in preparation for individual cases. The system constructs interactive anatomical models from patient-specific, multi-modal preoperative image data, and incorporates new methods for visually and haptically rendering the volumetric data. Evaluation of the system's ability to replicate temporal bone dissections for tympanomastoidectomy, using intraoperative video of the same patients as guides, showed strong correlations between virtual and intraoperative anatomy. The result is a portable and cost-effective tool that may prove highly beneficial for the purposes of surgical planning and rehearsal.

  6. Business Case Analysis of the Marine Corps Base Pendleton Virtual Smart Grid

    DTIC Science & Technology

    2017-06-01

    Metering Infrastructure on DOD installations. An examination of five case studies highlights the costs and benefits of the Virtual Smart Grid (VSG...studies highlights the costs and benefits of the Virtual Smart Grid (VSG) developed by Space and Naval Warfare Systems Command for use at Marine Corps...41 A. SMART GRID BENEFITS .....................................................................41 B. SUMMARY OF VSG ESTIMATED COSTS AND BENEFITS

  7. A Web-based cost-effective training tool with possible application to brain injury rehabilitation.

    PubMed

    Wang, Peijun; Kreutzer, Ina Anna; Bjärnemo, Robert; Davies, Roy C

    2004-06-01

    Virtual reality (VR) has provoked enormous interest in the medical community. In particular, VR offers therapists new approaches for improving rehabilitation effects. However, most of these VR assistant tools are not very portable, extensible or economical. Due to the vast amount of 3D data, they are not suitable for Internet transfer. Furthermore, in order to run these VR systems smoothly, special hardware devices are needed. As a result, existing VR assistant tools tend to be available in hospitals but not in patients' homes. To overcome these disadvantages, as a case study, this paper proposes a Web-based Virtual Ticket Machine, called WBVTM, using VRML [VRML Consortium, The Virtual Reality Modeling Language: International Standard ISO/IEC DIS 14772-1, 1997, available at ], Java and EAI (External Authoring Interface) [Silicon Graphics, Inc., The External Authoring Interface (EAI), available at ], to help people with acquired brain injury (ABI) to relearn basic living skills at home at a low cost. As these technologies are open standard and feature usability on the Internet, WBVTM achieves the goals of portability, easy accessibility and cost-effectiveness.

  8. Design of a lightweight, cost effective thimble-like sensor for haptic applications based on contact force sensors.

    PubMed

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  9. Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors

    PubMed Central

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation. PMID:22247677

  10. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  11. Current Status of Surgical Planning for Orthognathic Surgery: Traditional Methods versus 3D Surgical Planning

    PubMed Central

    Hammoudeh, Jeffrey A.; Howell, Lori K.; Boutros, Shadi; Scott, Michelle A.

    2015-01-01

    Background: Orthognathic surgery has traditionally been performed using stone model surgery. This involves translating desired clinical movements of the maxilla and mandible into stone models that are then cut and repositioned into class I occlusion from which a splint is generated. Model surgery is an accurate and reproducible method of surgical correction of the dentofacial skeleton in cleft and noncleft patients, albeit considerably time-consuming. With the advent of computed tomography scanning, 3D imaging and virtual surgical planning (VSP) have gained a foothold in orthognathic surgery with VSP rapidly replacing traditional model surgery in many parts of the country and the world. What has yet to be determined is whether the application and feasibility of virtual model surgery is at a point where it will eliminate the need for traditional model surgery in both the private and academic setting. Methods: Traditional model surgery was compared with VSP splint fabrication to determine the feasibility of use and accuracy of application in orthognathic surgery within our institution. Results: VSP was found to generate acrylic splints of equal quality to model surgery splints in a fraction of the time. Drawbacks of VSP splint fabrication are the increased cost of production and certain limitations as it relates to complex craniofacial patients. Conclusions: It is our opinion that virtual model surgery will displace and replace traditional model surgery as it will become cost and time effective in both the private and academic setting for practitioners providing orthognathic surgical care in cleft and noncleft patients. PMID:25750846

  12. Logistic Model to Support Service Modularity for the Promotion of Reusability in a Web Objects-Enabled IoT Environment.

    PubMed

    Kibria, Muhammad Golam; Ali, Sajjad; Jarwar, Muhammad Aslam; Kumar, Sunil; Chong, Ilyoung

    2017-09-22

    Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented.

  13. Logistic Model to Support Service Modularity for the Promotion of Reusability in a Web Objects-Enabled IoT Environment

    PubMed Central

    Chong, Ilyoung

    2017-01-01

    Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented. PMID:28937590

  14. 78 FR 12271 - Wireline Competition Bureau Seeks Additional Comment In Connect America Cost Model Virtual Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Competition Bureau seeks public input on additional questions relating to modeling voice capability and Annual... submitting comments and additional information on the rulemaking process, see the SUPPLEMENTARY INFORMATION section of this document. FOR FURTHER INFORMATION CONTACT: Katie King, Wireline Competition Bureau at (202...

  15. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  16. A commercially viable virtual reality knee arthroscopy training system.

    PubMed

    McCarthy, A D; Hollands, R J

    1998-01-01

    Arthroscopy is a minimally invasive form of surgery used to inspect joints. It is complex to learn yet current training methods appear inadequate, thus negating the potential benefits to the patient. This paper describes the development and initial assessment of a cost-effective virtual reality based system for training surgeons in arthroscopy of the knee. The system runs on a P.C. Initial assessments by surgeons have been positive and current developments in deformable models are described.

  17. Updates in Head and Neck Reconstruction.

    PubMed

    Largo, Rene D; Garvey, Patrick B

    2018-02-01

    After reading this article, the participant should be able to: 1. Have a basic understanding of virtual planning, rapid prototype modeling, three-dimensional printing, and computer-assisted design and manufacture. 2. Understand the principles of combining virtual planning and vascular mapping. 3. Understand principles of flap choice and design in preoperative planning of free osteocutaneous flaps in mandible and midface reconstruction. 4. Discuss advantages and disadvantages of computer-assisted design and manufacture in reconstruction of advanced oncologic mandible and midface defects. Virtual planning and rapid prototype modeling are increasingly used in head and neck reconstruction with the aim of achieving superior surgical outcomes in functionally and aesthetically critical areas of the head and neck compared with conventional reconstruction. The reconstructive surgeon must be able to understand this rapidly-advancing technology, along with its advantages and disadvantages. There is no limit to the degree to which patient-specific data may be integrated into the virtual planning process. For example, vascular mapping can be incorporated into virtual planning of mandible or midface reconstruction. Representative mandible and midface cases are presented to illustrate the process of virtual planning. Although virtual planning has become helpful in head and neck reconstruction, its routine use may be limited by logistic challenges, increased acquisition costs, and limited flexibility for intraoperative modifications. Nevertheless, the authors believe that the superior functional and aesthetic results realized with virtual planning outweigh the limitations.

  18. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-12-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  19. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-06-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to climate variability in the short term. However, urbanisation arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and reduced its resilience to climate variability in the long-term. In addition to improving our understanding of Roman water resource management, our cost-distance based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  20. The Predecessors of Bitcoin and Their Implications for the Prospect of Virtual Currencies

    PubMed Central

    Kim, Thomas

    2015-01-01

    To examine whether the recent price patterns and transaction costs of Bitcoin represent a general characteristic of decentralized virtual currencies, we analyze virtual currencies in online games that have been voluntarily managed by individuals since 1990s. We find that matured game currencies have price stability similar to that of small size equities or gold, and their transaction costs are sometimes lower than real currencies. Assuming that virtual currencies with a longer history can provide an estimate for Bitcoin’s prospects, we project that Bitcoin will be less influenced by speculative trades and become a low cost alternative to real currencies. PMID:25919027

  1. The predecessors of bitcoin and their implications for the prospect of virtual currencies.

    PubMed

    Kim, Thomas

    2014-01-01

    To examine whether the recent price patterns and transaction costs of Bitcoin represent a general characteristic of decentralized virtual currencies, we analyze virtual currencies in online games that have been voluntarily managed by individuals since 1990s. We find that matured game currencies have price stability similar to that of small size equities or gold, and their transaction costs are sometimes lower than real currencies. Assuming that virtual currencies with a longer history can provide an estimate for Bitcoin's prospects, we project that Bitcoin will be less influenced by speculative trades and become a low cost alternative to real currencies.

  2. Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.

    PubMed

    Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan

    2016-05-01

    Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Virtual instrument: remote control and monitoring of an artificial heart driver

    NASA Astrophysics Data System (ADS)

    Nguyen, An H.; Farrar, David

    1993-07-01

    A development of a virtual instrument based on the top-down model approach for an artificial heart driver is presented. Driver parameters and status were being dynamically updated on the virtual system at the remote station. The virtual system allowed the remote operator to interact with the physical heart driver as if he/she were at the local station. Besides use as an effective training tool, the system permits an expert operator to monitor and also control the Thoratec heart driver from a distant location. We believe that the virtual instrument for biomedical devices in general and for the Thoratec heart driver in particular, not only improves system reliability but also opens up a real possibility in reducing medical cost. Utilizing the top-down scheme developed recently for telerobotics, realtime operation in both instrument display and remote communication were possible via a low bandwidth telephone medium.

  4. Characterizing the Elastic Behaviour of a Press Table through Topology Optimization

    NASA Astrophysics Data System (ADS)

    Pilthammar, J.; Sigvant, M.; Hansson, M.; Pálsson, E.; Rutgersson, W.

    2017-09-01

    Sheet metal forming in the car industry is a highly competitive area. The use of digital techniques and numerical methods are therefore of high interest for reduced costs and lead times. One method for reducing the try-out phase is virtual rework of die surfaces. The virtual rework is based on Finite Element (FE) simulations and can reduce and support manual rework. The elastic behaviour of dies and presses must be represented in a reliable way in FE-models to be able to perform virtual rework. CAD-models exists for nearly all dies today, but not for press lines. A full geometrical representation of presses will also yield very large FE- models. This paper will discuss and demonstrate a strategy for measuring and characterizing a press table for inclusion in FE-models. The measurements of the elastic press deformations is carried out with force transducers and an ARAMIS 3D optical measurement system. The press table is then inverse modelled by topology optimization using the recorded results as boundary conditions. Finally, the press table is coupled with a FE-model of a die to demonstrate its influence on the deformations. This indicates the importance of having a reliable representation of the press deformations during virtual rework.

  5. Virtual plane-wave imaging via Marchenko redatuming

    NASA Astrophysics Data System (ADS)

    Meles, Giovanni Angelo; Wapenaar, Kees; Thorbecke, Jan

    2018-04-01

    Marchenko redatuming is a novel scheme used to retrieve up- and down-going Green's functions in an unknown medium. Marchenko equations are based on reciprocity theorems and are derived on the assumption of the existence of functions exhibiting space-time focusing properties once injected in the subsurface. In contrast to interferometry but similarly to standard migration methods, Marchenko redatuming only requires an estimate of the direct wave from the virtual source (or to the virtual receiver), illumination from only one side of the medium, and no physical sources (or receivers) inside the medium. In this contribution we consider a different time-focusing condition within the frame of Marchenko redatuming that leads to the retrieval of virtual plane-wave responses. As a result, it allows multiple-free imaging using only a one-dimensional sampling of the targeted model at a fraction of the computational cost of standard Marchenko schemes. The potential of the new method is demonstrated on 2D synthetic models.

  6. Developing Historic Building Information Modelling Guidelines and Procedures for Architectural Heritage in Ireland

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Corns, A.; Cahill, J.; Eliashvili, K.; Chenau, A.; Pybus, C.; Shaw, R.; Devlin, G.; Deevy, A.; Truong-Hong, L.

    2017-08-01

    Cultural heritage researchers have recently begun applying Building Information Modelling (BIM) to historic buildings. The model is comprised of intelligent objects with semantic attributes which represent the elements of a building structure and are organised within a 3D virtual environment. Case studies in Ireland are used to test and develop the suitable systems for (a) data capture/digital surveying/processing (b) developing library of architectural components and (c) mapping these architectural components onto the laser scan or digital survey to relate the intelligent virtual representation of a historic structure (HBIM). While BIM platforms have the potential to create a virtual and intelligent representation of a building, its full exploitation and use is restricted to narrow set of expert users with access to costly hardware, software and skills. The testing of open BIM approaches in particular IFCs and the use of game engine platforms is a fundamental component for developing much wider dissemination. The semantically enriched model can be transferred into a WEB based game engine platform.

  7. Design checkpoint kinase 2 inhibitors by pharmacophore modeling and virtual screening techniques.

    PubMed

    Wang, Yen-Ling; Lin, Chun-Yuan; Shih, Kuei-Chung; Huang, Jui-Wen; Tang, Chuan-Yi

    2013-12-01

    Damage to DNA is caused by ionizing radiation, genotoxic chemicals or collapsed replication forks. When DNA is damaged or cells fail to respond, a mutation that is associated with breast or ovarian cancer may occur. Mammalian cells control and stabilize the genome using a cell cycle checkpoint to prevent damage to DNA or to repair damaged DNA. Checkpoint kinase 2 (Chk2) is one of the important kinases, which strongly affects DNA-damage and plays an important role in the response to the breakage of DNA double-strands and related lesions. Therefore, this study concerns Chk2. Its purpose is to find potential inhibitors using the pharmacophore hypotheses (PhModels) and virtual screening techniques. PhModels can identify inhibitors with high biological activities and virtual screening techniques are used to screen the database of the National Cancer Institute (NCI) to retrieve compounds that exhibit all of the pharmacophoric features of potential inhibitors with high interaction energy. Ten PhModels were generated using the HypoGen best algorithm. The established PhModel, Hypo01, was evaluated by performing a cost function analysis of its correlation coefficient (r), root mean square deviation (RMSD), cost difference, and configuration cost, with the values 0.955, 1.28, 192.51, and 16.07, respectively. The result of Fischer's cross-validation test for the Hypo01 model yielded a 95% confidence level, and the correlation coefficient of the testing set (rtest) had a best value of 0.81. The potential inhibitors were then chosen from the NCI database by Hypo01 model screening and molecular docking using the cdocker docking program. Finally, the selected compounds exhibited the identified pharmacophoric features and had a high interaction energy between the ligand and the receptor. Eighty-three potential inhibitors for Chk2 are retrieved for further study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  9. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country and high resolution satellite images are costly. In this study, proposed method is based on only simple video recording of area. Thus this proposed method is suitable for 3D city modeling. Photo-realistic, scalable, geo-referenced virtual 3D city model is useful for various kinds of applications such as for planning in navigation, tourism, disasters management, transportations, municipality, urban and environmental managements, real-estate industry. Thus this study will provide a good roadmap for geomatics community to create photo-realistic virtual 3D city model by using close range photogrammetry.

  10. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE PAGES

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp; ...

    2017-02-03

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  11. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  12. Naval Science and Technology Future Force Magazine

    Science.gov Websites

    Issues Contact Us Links RSS Feed Facebook IT'S EASY TO SEE THE COST SAVINGS OF VIRTUAL REALITY TRAINING THE [...] Not Just a Fad: Virtual Reality Really Does Benefit the Military IT'S EASY TO SEE THE COST SAVINGS OF VIRTUAL REALITY TRAINING-BUT IS IT AS EFFECTIVE AS, OR EVEN BETTER THAN, OTHER TYPES OF

  13. Defense Acquisition Research Journal. Volume 18, Number 3, Issue 59, July 2011

    DTIC Science & Technology

    2011-07-01

    cost estimate. Thus, it is important to adjust the original cost estimates reflected in the first SAR to account for the changes in the quan- tity...effect on the model (Figure 6). To account for this possibility, taBLE 4. oLS RESuLtS: PRoCuREMENt CoSt GRoWtH vS. aCtuaL CoNCuRRENCY Estimate Std...Kelley & Watkins, 1998). The pattern in which a relatively small proportion of programs account for virtually all of MDAP cost growth cannot be

  14. Evaluating the impact of a ‘virtual clinic’ on patient experience, personal and provider costs of care in urinary incontinence: A randomised controlled trial

    PubMed Central

    2018-01-01

    Objective To evaluate the impact of using a ‘virtual clinic’ on patient experience and cost in the care of women with urinary incontinence. Materials and methods Women, aged > 18 years referred to a urogynaecology unit were randomised to either (1) A Standard Clinic or (2) A Virtual Clinic. Both groups completed a validated, web-based interactive, patient-reported outome measure (ePAQ-Pelvic Floor), in advance of their appointment followed by either a telephone consultation (Virtual Clinic) or face-to-face consultation (Standard Care). The primary outcome was the mean ‘short-term outcome scale’ score on the Patient Experience Questionnaire (PEQ). Secondary Outcome Measures included the other domains of the PEQ (Communications, Emotions and Barriers), Client Satisfaction Questionnaire (CSQ), Short-Form 12 (SF-12), personal, societal and NHS costs. Results 195 women were randomised: 98 received the intervention and 97 received standard care. The primary outcome showed a non-significant difference between the two study arms. No significant differences were also observed on the CSQ and SF-12. However, the intervention group showed significantly higher PEQ domain scores for Communications, Emotions and Barriers (including following adjustment for age and parity). Whilst standard care was overall more cost-effective, this was minimal (£38.04). The virtual clinic also significantly reduced consultation time (10.94 minutes, compared with a mean duration of 25.9 minutes respectively) and consultation costs compared to usual care (£31.75 versus £72.17 respectively), thus presenting potential cost-savings in out-patient management. Conclusions The virtual clinical had no impact on the short-term dimension of the PEQ and overall was not as cost-effective as standard care, due to greater clinic re-attendances in this group. In the virtual clinic group, consultation times were briefer, communication experience was enhanced and personal costs lower. For medical conditions of a sensitive or intimate nature, a virtual clinic has potential to support patients to communicate with health professionals about their condition. PMID:29346378

  15. Using virtual machine monitors to overcome the challenges of monitoring and managing virtualized cloud infrastructures

    NASA Astrophysics Data System (ADS)

    Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati

    2012-01-01

    Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.

  16. Building A Community Focused Data and Modeling Collaborative platform with Hardware Virtualization Technology

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Wang, W.; Melton, F. S.; Votava, P.; Milesi, C.; Hashimoto, H.; Nemani, R. R.; Hiatt, S. H.

    2009-12-01

    As the length and diversity of the global earth observation data records grow, modeling and analyses of biospheric conditions increasingly requires multiple terabytes of data from a diversity of models and sensors. With network bandwidth beginning to flatten, transmission of these data from centralized data archives presents an increasing challenge, and costs associated with local storage and management of data and compute resources are often significant for individual research and application development efforts. Sharing community valued intermediary data sets, results and codes from individual efforts with others that are not in direct funded collaboration can also be a challenge with respect to time, cost and expertise. We purpose a modeling, data and knowledge center that houses NASA satellite data, climate data and ancillary data where a focused community may come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform, named Ecosystem Modeling Center (EMC). With the recent development of new technologies for secure hardware virtualization, an opportunity exists to create specific modeling, analysis and compute environments that are customizable, “archiveable” and transferable. Allowing users to instantiate such environments on large compute infrastructures that are directly connected to large data archives may significantly reduce costs and time associated with scientific efforts by alleviating users from redundantly retrieving and integrating data sets and building modeling analysis codes. The EMC platform also provides the possibility for users receiving indirect assistance from expertise through prefabricated compute environments, potentially reducing study “ramp up” times.

  17. Open Source Virtual Worlds and Low Cost Sensors for Physical Rehab of Patients with Chronic Diseases

    NASA Astrophysics Data System (ADS)

    Romero, Salvador J.; Fernandez-Luque, Luis; Sevillano, José L.; Vognild, Lars

    For patients with chronic diseases, exercise is a key part of rehab to deal better with their illness. Some of them do rehabilitation at home with telemedicine systems. However, keeping to their exercising program is challenging and many abandon the rehabilitation. We postulate that information technologies for socializing and serious games can encourage patients to keep doing physical exercise and rehab. In this paper we present Virtual Valley, a low cost telemedicine system for home exercising, based on open source virtual worlds and utilizing popular low cost motion controllers (e.g. Wii Remote) and medical sensors. Virtual Valley allows patient to socialize, learn, and play group based serious games while exercising.

  18. A simulation model to estimate the cost and effectiveness of alternative dialysis initiation strategies.

    PubMed

    Lee, Chris P; Chertow, Glenn M; Zenios, Stefanos A

    2006-01-01

    Patients with end-stage renal disease (ESRD) require dialysis to maintain survival. The optimal timing of dialysis initiation in terms of cost-effectiveness has not been established. We developed a simulation model of individuals progressing towards ESRD and requiring dialysis. It can be used to analyze dialysis strategies and scenarios. It was embedded in an optimization frame worked to derive improved strategies. Actual (historical) and simulated survival curves and hospitalization rates were virtually indistinguishable. The model overestimated transplantation costs (10%) but it was related to confounding by Medicare coverage. To assess the model's robustness, we examined several dialysis strategies while input parameters were perturbed. Under all 38 scenarios, relative rankings remained unchanged. An improved policy for a hypothetical patient was derived using an optimization algorithm. The model produces reliable results and is robust. It enables the cost-effectiveness analysis of dialysis strategies.

  19. Omics approaches to individual variation: modeling networks and the virtual patient.

    PubMed

    Lehrach, Hans

    2016-09-01

    Every human is unique. We differ in our genomes, environment, behavior, disease history, and past and current medical treatment-a complex catalog of differences that often leads to variations in the way each of us responds to a particular therapy. We argue here that true personalization of drug therapies will rely on "virtual patient" models based on a detailed characterization of the individual patient by molecular, imaging, and sensor techniques. The models will be based, wherever possible, on the molecular mechanisms of disease processes and drug action but can also expand to hybrid models including statistics/machine learning/artificial intelligence-based elements trained on available data to address therapeutic areas or therapies for which insufficient information on mechanisms is available. Depending on the disease, its mechanisms, and the therapy, virtual patient models can be implemented at a fairly high level of abstraction, with molecular models representing cells, cell types, or organs relevant to the clinical question, interacting not only with each other but also the environment. In the future, "virtual patient/in-silico self" models may not only become a central element of our health care system, reducing otherwise unavoidable mistakes and unnecessary costs, but also act as "guardian angels" accompanying us through life to protect us against dangers and to help us to deal intelligently with our own health and wellness.

  20. Omics approaches to individual variation: modeling networks and the virtual patient

    PubMed Central

    Lehrach, Hans

    2016-01-01

    Every human is unique. We differ in our genomes, environment, behavior, disease history, and past and current medical treatment—a complex catalog of differences that often leads to variations in the way each of us responds to a particular therapy. We argue here that true personalization of drug therapies will rely on “virtual patient” models based on a detailed characterization of the individual patient by molecular, imaging, and sensor techniques. The models will be based, wherever possible, on the molecular mechanisms of disease processes and drug action but can also expand to hybrid models including statistics/machine learning/artificial intelligence-based elements trained on available data to address therapeutic areas or therapies for which insufficient information on mechanisms is available. Depending on the disease, its mechanisms, and the therapy, virtual patient models can be implemented at a fairly high level of abstraction, with molecular models representing cells, cell types, or organs relevant to the clinical question, interacting not only with each other but also the environment. In the future, “virtual patient/in-silico self” models may not only become a central element of our health care system, reducing otherwise unavoidable mistakes and unnecessary costs, but also act as “guardian angels” accompanying us through life to protect us against dangers and to help us to deal intelligently with our own health and wellness. PMID:27757060

  1. Virtual Versus In-Person Focus Groups: Comparison of Costs, Recruitment, and Participant Logistics

    PubMed Central

    Poehlman, Jon A; Hayes, Jennifer J; Ray, Sarah E; Moultrie, Rebecca R

    2017-01-01

    Background Virtual focus groups—such as online chat and video groups—are increasingly promoted as qualitative research tools. Theoretically, virtual groups offer several advantages, including lower cost, faster recruitment, greater geographic diversity, enrollment of hard-to-reach populations, and reduced participant burden. However, no study has compared virtual and in-person focus groups on these metrics. Objective To rigorously compare virtual and in-person focus groups on cost, recruitment, and participant logistics. We examined 3 focus group modes and instituted experimental controls to ensure a fair comparison. Methods We conducted 6 1-hour focus groups in August 2014 using in-person (n=2), live chat (n=2), and video (n=2) modes with individuals who had type 2 diabetes (n=48 enrolled, n=39 completed). In planning groups, we solicited bids from 6 virtual platform vendors and 4 recruitment firms. We then selected 1 platform or facility per mode and a single recruitment firm across all modes. To minimize bias, the recruitment firm employed different recruiters by mode who were blinded to recruitment efforts for other modes. We tracked enrollment during a 2-week period. A single moderator conducted all groups using the same guide, which addressed the use of technology to communicate with health care providers. We conducted the groups at the same times of day on Monday to Wednesday during a single week. At the end of each group, participants completed a short survey. Results Virtual focus groups offered minimal cost savings compared with in-person groups (US $2000 per chat group vs US $2576 per in-person group vs US $2,750 per video group). Although virtual groups did not incur travel costs, they often had higher management fees and miscellaneous expenses (eg, participant webcams). Recruitment timing did not differ by mode, but show rates were higher for in-person groups (94% [15/16] in-person vs 81% [13/16] video vs 69% [11/16] chat). Virtual group participants were more geographically diverse (but with significant clustering around major metropolitan areas) and more likely to be non-white, less educated, and less healthy. Internet usage was higher among virtual group participants, yet virtual groups still reached light Internet users. In terms of burden, chat groups were easiest to join and required the least preparation (chat = 13 minutes, video = 40 minutes, in-person = 78 minutes). Virtual group participants joined using laptop or desktop computers, and most virtual participants (82% [9/11] chat vs 62% [8/13] video) reported having no other people in their immediate vicinity. Conclusions Virtual focus groups offer potential advantages for participant diversity and reaching less healthy populations. However, virtual groups do not appear to cost less or recruit participants faster than in-person groups. Further research on virtual group data quality and group dynamics is needed to fully understand their advantages and limitations. PMID:28330832

  2. LVC interaction within a mixed-reality training system

    NASA Astrophysics Data System (ADS)

    Pollock, Brice; Winer, Eliot; Gilbert, Stephen; de la Cruz, Julio

    2012-03-01

    The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems.

  3. Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

    PubMed Central

    Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.

    2013-01-01

    SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

  4. Phase Transition of a Dynamical System with a Bi-Directional, Instantaneous Coupling to a Virtual System

    NASA Astrophysics Data System (ADS)

    Gintautas, Vadas; Hubler, Alfred

    2006-03-01

    As worldwide computer resources increase in power and decrease in cost, real-time simulations of physical systems are becoming increasingly prevalent, from laboratory models to stock market projections and entire ``virtual worlds'' in computer games. Often, these systems are meticulously designed to match real-world systems as closely as possible. We study the limiting behavior of a virtual horizontally driven pendulum coupled to its real-world counterpart, where the interaction occurs on a time scale that is much shorter than the time scale of the dynamical system. We find that if the physical parameters of the virtual system match those of the real system within a certain tolerance, there is a qualitative change in the behavior of the two-pendulum system as the strength of the coupling is increased. Applications include a new method to measure the physical parameters of a real system and the use of resonance spectroscopy to refine a computer model. As virtual systems better approximate real ones, even very weak interactions may produce unexpected and dramatic behavior. The research is supported by the National Science Foundation Grant No. NSF PHY 01-40179, NSF DMS 03-25939 ITR, and NSF DGE 03-38215.

  5. Design of a cost-effective, hemodynamically adjustable model for resuscitative endovascular balloon occlusion of the aorta (REBOA) simulation.

    PubMed

    Keller, Benjamin A; Salcedo, Edgardo S; Williams, Timothy K; Neff, Lucas P; Carden, Anthony J; Li, Yiran; Gotlib, Oren; Tran, Nam K; Galante, Joseph M

    2016-09-01

    Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an adjunct technique for salvaging patients with noncompressible torso hemorrhage. Current REBOA training paradigms require large animals, virtual reality simulators, or human cadavers for acquisition of skills. These training strategies are expensive and resource intensive, which may prevent widespread dissemination of REBOA. We have developed a low-cost, near-physiologic, pulsatile REBOA simulator by connecting an anatomic vascular circuit constructed out of latex and polyvinyl chloride tubing to a commercially available pump. This pulsatile simulator is capable of generating cardiac outputs ranging from 1.7 to 6.8 L/min with corresponding arterial blood pressures of 54 to 226/14 to 121 mmHg. The simulator accommodates a 12 French introducer sheath and a CODA balloon catheter. Upon balloon inflation, the arterial waveform distal to the occlusion flattens, distal pulsation within the simulator is lost, and systolic blood pressures proximal to the balloon catheter increase by up to 62 mmHg. Further development and validation of this simulator will allow for refinement, reduction, and replacement of large animal models, costly virtual reality simulators, and perfused cadavers for training purposes. This will ultimately facilitate the low-cost, high-fidelity REBOA simulation needed for the widespread dissemination of this life-saving technique.

  6. Homesteading on the Web: The Queensland Department of Education Virtual Library.

    ERIC Educational Resources Information Center

    Cram, Jennifer; Allison, Myrl

    1996-01-01

    The Queensland Department of Education (Australia) developed a homesteading model as an alternative to the urban-built environment model of large multi-purpose networks. This resulted in the in-house development of a low-cost, stand-alone server and homepage. The charette technique was used to plan and design the Queensland Department of Education…

  7. Development of a low-cost virtual reality workstation for training and education

    NASA Technical Reports Server (NTRS)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.

  8. Efficient system modeling for a small animal PET scanner with tapered DOI detectors.

    PubMed

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-21

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  9. 77 FR 23512 - Advisory Committee on Apprenticeship; virtual meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ...; virtual meeting AGENCY: Employment and Training Administration (ETA), Labor. ACTION: Notice of a virtual....S.C. APP. 1), notice is hereby given to announce a open virtual meeting of the Advisory Committee on... the public. A virtual meeting of the ACA provides cost savings and a greater degree of public...

  10. Virtual Reality: An Overview.

    ERIC Educational Resources Information Center

    Franchi, Jorge

    1994-01-01

    Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)

  11. Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture

    NASA Technical Reports Server (NTRS)

    Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan

    2014-01-01

    With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the downlinked data stream and injects messages into the GMSEC bus that are monitored to automatically page the on-call operator or Systems Administrator (SA) when an off-nominal condition is detected. This architecture, like the LTSP thin clients, are shared across all tenant missions.Other required IT security controls are implemented at the ground system level, including physical access controls, logical system-level authentication authorization management, auditing and reporting, network management and a NIST 800-53 FISMA-Moderate IT Security plan Risk Assessment Contingency Plan, helping multiple missions share the cost of compliance with agency-mandated directives.The SPOCC architecture provides science payload control centers and backup mission operations centers with a cost-effective, standardized approach to virtualizing and monitoring resources that were traditionally multiple racks full of physical machines. The increased agility in deploying new virtual systems and thin client workstations can provide significant savings in personnel costs for maintaining the ground system. The cost savings in procurement, power, rack footprint and cooling as well as the shared multi-mission design greatly reduces upfront cost for missions moving into the facility. Overall, the authors hope that this architecture will become a model for how future NASA operations centers are constructed!

  12. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks

    PubMed Central

    Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-01-01

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes. PMID:29642483

  13. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks.

    PubMed

    Murakami, Masaya; Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-04-08

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.

  14. An e-consent-based shared EHR system architecture for integrated healthcare networks.

    PubMed

    Bergmann, Joachim; Bott, Oliver J; Pretschner, Dietrich P; Haux, Reinhold

    2007-01-01

    Virtual integration of distributed patient data promises advantages over a consolidated health record, but raises questions mainly about practicability and authorization concepts. Our work aims on specification and development of a virtual shared health record architecture using a patient-centred integration and authorization model. A literature survey summarizes considerations of current architectural approaches. Complemented by a methodical analysis in two regional settings, a formal architecture model was specified and implemented. Results presented in this paper are a survey of architectural approaches for shared health records and an architecture model for a virtual shared EHR, which combines a patient-centred integration policy with provider-oriented document management. An electronic consent system assures, that access to the shared record remains under control of the patient. A corresponding system prototype has been developed and is currently being introduced and evaluated in a regional setting. The proposed architecture is capable of partly replacing message-based communications. Operating highly available provider repositories for the virtual shared EHR requires advanced technology and probably means additional costs for care providers. Acceptance of the proposed architecture depends on transparently embedding document validation and digital signature into the work processes. The paradigm shift from paper-based messaging to a "pull model" needs further evaluation.

  15. How Virtual Technology Can Impact Total Ownership Costs on a USN Vessel

    DTIC Science & Technology

    2012-03-01

    Clients (After Lam, 2010) Alternative Solutions Labor $M Hardware $M Software $M Transport $M Power & Cooling $M Virtualization $M...and will hold contractors accountable to ensure energy efficiency targets of new equipment are as advertised . 2. Total Cost of Ownership...automatically placed into Standby by the VMware software and reduced energy consumption by 230 watts. Even though there were 12 virtual desktops online and in

  16. Virtual Versus In-Person Focus Groups: Comparison of Costs, Recruitment, and Participant Logistics.

    PubMed

    Rupert, Douglas J; Poehlman, Jon A; Hayes, Jennifer J; Ray, Sarah E; Moultrie, Rebecca R

    2017-03-22

    Virtual focus groups-such as online chat and video groups-are increasingly promoted as qualitative research tools. Theoretically, virtual groups offer several advantages, including lower cost, faster recruitment, greater geographic diversity, enrollment of hard-to-reach populations, and reduced participant burden. However, no study has compared virtual and in-person focus groups on these metrics. To rigorously compare virtual and in-person focus groups on cost, recruitment, and participant logistics. We examined 3 focus group modes and instituted experimental controls to ensure a fair comparison. We conducted 6 1-hour focus groups in August 2014 using in-person (n=2), live chat (n=2), and video (n=2) modes with individuals who had type 2 diabetes (n=48 enrolled, n=39 completed). In planning groups, we solicited bids from 6 virtual platform vendors and 4 recruitment firms. We then selected 1 platform or facility per mode and a single recruitment firm across all modes. To minimize bias, the recruitment firm employed different recruiters by mode who were blinded to recruitment efforts for other modes. We tracked enrollment during a 2-week period. A single moderator conducted all groups using the same guide, which addressed the use of technology to communicate with health care providers. We conducted the groups at the same times of day on Monday to Wednesday during a single week. At the end of each group, participants completed a short survey. Virtual focus groups offered minimal cost savings compared with in-person groups (US $2000 per chat group vs US $2576 per in-person group vs US $2,750 per video group). Although virtual groups did not incur travel costs, they often had higher management fees and miscellaneous expenses (eg, participant webcams). Recruitment timing did not differ by mode, but show rates were higher for in-person groups (94% [15/16] in-person vs 81% [13/16] video vs 69% [11/16] chat). Virtual group participants were more geographically diverse (but with significant clustering around major metropolitan areas) and more likely to be non-white, less educated, and less healthy. Internet usage was higher among virtual group participants, yet virtual groups still reached light Internet users. In terms of burden, chat groups were easiest to join and required the least preparation (chat = 13 minutes, video = 40 minutes, in-person = 78 minutes). Virtual group participants joined using laptop or desktop computers, and most virtual participants (82% [9/11] chat vs 62% [8/13] video) reported having no other people in their immediate vicinity. Virtual focus groups offer potential advantages for participant diversity and reaching less healthy populations. However, virtual groups do not appear to cost less or recruit participants faster than in-person groups. Further research on virtual group data quality and group dynamics is needed to fully understand their advantages and limitations. ©Douglas J Rupert, Jon A Poehlman, Jennifer J Hayes, Sarah E Ray, Rebecca R Moultrie. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.03.2017.

  17. Virtual patient simulation at US and Canadian medical schools.

    PubMed

    Huang, Grace; Reynolds, Robby; Candler, Chris

    2007-05-01

    "Virtual patients" are computer-based simulations designed to complement clinical training. These applications possess numerous educational benefits but are costly to develop. Few medical schools can afford to create them. The purpose of this inventory was to gather information regarding in-house virtual patient development at U.S. and Canadian medical schools to promote the sharing of existing cases and future collaboration. From February to September 2005, the authors contacted 142 U.S. and Canadian medical schools and requested that they report on virtual patient simulation activities at their respective institutions. The inventory elicited information regarding the pedagogic and technical characteristics of each virtual patient application. The schools were also asked to report on their willingness to share virtual patients. Twenty-six out of 108 responding schools reported that they were producing virtual patients. Twelve schools provided additional data on 103 cases and 111 virtual patients. The vast majority of virtual patients were media rich and were associated with significant production costs and time. The reported virtual patient cases tended to focus on primary care disciplines and did not as a whole exhibit racial or ethnic diversity. Funding sources, production costs, and production duration influenced the extent of schools' willingness to share. Broader access to and cooperative development of these resources would allow medical schools to enhance their clinical curricula. Virtual patient development should include basic science objectives for more integrative learning, simulate the consequences of clinical decision making, and include additional cases in cultural competency. Together, these efforts can enhance medical education despite external constraints on clinical training.

  18. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  19. a Low-Cost and Lightweight 3d Interactive Real Estate-Purposed Indoor Virtual Reality Application

    NASA Astrophysics Data System (ADS)

    Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I. R.

    2017-11-01

    Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  20. Panoramic imaging and virtual reality — filling the gaps between the lines

    NASA Astrophysics Data System (ADS)

    Chapman, David; Deacon, Andrew

    Close range photogrammetry projects rely upon a clear and unambiguous specification of end-user requirements to inform decisions relating to the format, coverage, accuracy and complexity of the final deliverable. Invariably such deliverables will be a partial and incomplete abstraction of the real world where the benefits of higher accuracy and increased complexity must be traded against the cost of the project. As photogrammetric technologies move into the digital era, computerisation offers opportunities for the photogrammetrist to revisit established mapping traditions in order to explore new markets. One such market is that for three-dimensional Virtual Reality (VR) models for clients who have previously had little exposure to the capabilities, and limitations, of photogrammetry and may have radically different views on the cost/benefit trade-offs in producing geometric models. This paper will present some examples of the authors' recent experience of such markets, drawn from a number of research and commercial projects directed towards the modelling of complex man-made objects. This experience seems to indicate that suitably configured digital image archives may form an important deliverable for a wide range of photogrammetric projects and supplement, or even replace, more traditional CAD models.

  1. Development of three-dimensional patient face model that enables real-time collision detection and cutting operation for a dental simulator.

    PubMed

    Yamaguchi, Satoshi; Yamada, Yuya; Yoshida, Yoshinori; Noborio, Hiroshi; Imazato, Satoshi

    2012-01-01

    The virtual reality (VR) simulator is a useful tool to develop dental hand skill. However, VR simulations with reactions of patients have limited computational time to reproduce a face model. Our aim was to develop a patient face model that enables real-time collision detection and cutting operation by using stereolithography (STL) and deterministic finite automaton (DFA) data files. We evaluated dependence of computational cost and constructed the patient face model using the optimum condition for combining STL and DFA data files, and assessed the computational costs for operation in do-nothing, collision, cutting, and combination of collision and cutting. The face model was successfully constructed with low computational costs of 11.3, 18.3, 30.3, and 33.5 ms for do-nothing, collision, cutting, and collision and cutting, respectively. The patient face model could be useful for developing dental hand skill with VR.

  2. Colorectal Cancer

    MedlinePlus

    ... be detected by optical colonoscopy. Virtual colonoscopy uses virtual reality technology to produce three-dimensional images of the colon and rectum. However, the costs and benefits of virtual colonoscopy are still being investigated, and the technique ...

  3. Intelligent Controls for Net-Zero Energy Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less

  4. Computational tissue volume reconstruction of a peripheral nerve using high-resolution light-microscopy and reconstruct.

    PubMed

    Gierthmuehlen, Mortimer; Freiman, Thomas M; Haastert-Talini, Kirsten; Mueller, Alexandra; Kaminsky, Jan; Stieglitz, Thomas; Plachta, Dennis T T

    2013-01-01

    The development of neural cuff-electrodes requires several in vivo studies and revisions of the electrode design before the electrode is completely adapted to its target nerve. It is therefore favorable to simulate many of the steps involved in this process to reduce costs and animal testing. As the restoration of motor function is one of the most interesting applications of cuff-electrodes, the position and trajectories of myelinated fibers in the simulated nerve are important. In this paper, we investigate a method for building a precise neuroanatomical model of myelinated fibers in a peripheral nerve based on images obtained using high-resolution light microscopy. This anatomical model describes the first aim of our "Virtual workbench" project to establish a method for creating realistic neural simulation models based on image datasets. The imaging, processing, segmentation and technical limitations are described, and the steps involved in the transition into a simulation model are presented. The results showed that the position and trajectories of the myelinated axons were traced and virtualized using our technique, and small nerves could be reliably modeled based on of light microscopy images using low-cost OpenSource software and standard hardware. The anatomical model will be released to the scientific community.

  5. Computational Tissue Volume Reconstruction of a Peripheral Nerve Using High-Resolution Light-Microscopy and Reconstruct

    PubMed Central

    Gierthmuehlen, Mortimer; Freiman, Thomas M.; Haastert-Talini, Kirsten; Mueller, Alexandra; Kaminsky, Jan; Stieglitz, Thomas; Plachta, Dennis T. T.

    2013-01-01

    The development of neural cuff-electrodes requires several in vivo studies and revisions of the electrode design before the electrode is completely adapted to its target nerve. It is therefore favorable to simulate many of the steps involved in this process to reduce costs and animal testing. As the restoration of motor function is one of the most interesting applications of cuff-electrodes, the position and trajectories of myelinated fibers in the simulated nerve are important. In this paper, we investigate a method for building a precise neuroanatomical model of myelinated fibers in a peripheral nerve based on images obtained using high-resolution light microscopy. This anatomical model describes the first aim of our “Virtual workbench” project to establish a method for creating realistic neural simulation models based on image datasets. The imaging, processing, segmentation and technical limitations are described, and the steps involved in the transition into a simulation model are presented. The results showed that the position and trajectories of the myelinated axons were traced and virtualized using our technique, and small nerves could be reliably modeled based on of light microscopy images using low-cost OpenSource software and standard hardware. The anatomical model will be released to the scientific community. PMID:23785485

  6. Effects of telework and the virtual enterprise on the organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, R.A.

    1996-12-31

    This paper provides information on the growing trend towards telework and using {open_quotes}virtual employees{close_quotes} as a fundamental component of the human resource requirements for the conduct of business. As the organization moves from a traditional approach of fixed plant and permanent employees toward a more dynamic model of motile office arrangements and virtual workers, new challenges arise for workers, supervisors, and managers. These challenges pertain to both the individual and the organization and are rooted in both technology and human behavior. Notwithstanding the challenges, the opportunities created for increased productivity and cost-effective operations are propelling organizations globally to adopt themore » virtual enterprise model, to a greater or lesser extent. Management hierarchy is giving way to autonomous teams. Middle management is being replaced by better organizational communication systems, better information storage and retrieval systems, and a newly developing classification of software called groupware. In the midst of these changes, the business process of identifying and acquiring the services of the virtual team member seems to lie at an intersection where Human Resources, Information Systems, Contracts/Subcontracts, and the functional department requiring the services intersect. Human Resources departments are slowly coming to grips with the virtual worker model but are largely uncomfortable in the role. Information Systems departments can implement networks; but, dynamic links outside the traditional organization bring up a myriad of questions about compatibility and system security. The champion of the virtual worker is the Functional Department. This might be engineering, software development, the design department, the financial analysis group, or whichever department in the organization is faced with the responsibility of creating knowledge work product and has resource constraints and upper management support.« less

  7. Using smartphone technology to deliver a virtual pedestrian environment: usability and validation.

    PubMed

    Schwebel, David C; Severson, Joan; He, Yefei

    2017-09-01

    Various programs effectively teach children to cross streets more safely, but all are labor- and cost-intensive. Recent developments in mobile phone technology offer opportunity to deliver virtual reality pedestrian environments to mobile smartphone platforms. Such an environment may offer a cost- and labor-effective strategy to teach children to cross streets safely. This study evaluated usability, feasibility, and validity of a smartphone-based virtual pedestrian environment. A total of 68 adults completed 12 virtual crossings within each of two virtual pedestrian environments, one delivered by smartphone and the other a semi-immersive kiosk virtual environment. Participants completed self-report measures of perceived realism and simulator sickness experienced in each virtual environment, plus self-reported demographic and personality characteristics. All participants followed system instructions and used the smartphone-based virtual environment without difficulty. No significant simulator sickness was reported or observed. Users rated the smartphone virtual environment as highly realistic. Convergent validity was detected, with many aspects of pedestrian behavior in the smartphone-based virtual environment matching behavior in the kiosk virtual environment. Anticipated correlations between personality and kiosk virtual reality pedestrian behavior emerged for the smartphone-based system. A smartphone-based virtual environment can be usable and valid. Future research should develop and evaluate such a training system.

  8. International trade in meat: the tip of the pork chop.

    PubMed

    Galloway, James N; Burke, Marshall; Bradford, G Eric; Naylor, Rosamond; Falcon, Walter; Chapagain, Ashok K; Gaskell, Joanne C; McCullough, Ellen; Mooney, Harold A; Oleson, Kirsten L L; Steinfeld, Henning; Wassenaar, Tom; Smil, Vaclav

    2007-12-01

    This paper provides an original account of global land, water, and nitrogen use in support of industrialized livestock production and trade, with emphasis on two of the fastest-growing sectors, pork and poultry. Our analysis focuses on trade in feed and animal products, using a new model that calculates the amount of "virtual" nitrogen, water, and land used in production but not embedded in the product. We show how key meat-importing countries, such as Japan, benefit from "virtual" trade in land, water, and nitrogen, and how key meat-exporting countries, such as Brazil, provide these resources without accounting for their true environmental cost. Results show that Japan's pig and chicken meat imports embody the virtual equivalent of 50% of Japan's total arable land, and half of Japan's virtual nitrogen total is lost in the US. Trade links with China are responsible for 15% of the virtual nitrogen left behind in Brazil due to feed and meat exports, and 20% of Brazil's area is used to grow soybean exports. The complexity of trade in meat, feed, water, and nitrogen is illustrated by the dual roles of the US and The Netherlands as both importers and exporters of meat. Mitigation of environmental damage from industrialized livestock production and trade depends on a combination of direct-pricing strategies, regulatory approaches, and use of best management practices. Our analysis indicates that increased water- and nitrogen-use efficiency and land conservation resulting from these measures could significantly reduce resource costs.

  9. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games.

    PubMed

    Seo, Na Jin; Arun Kumar, Jayashree; Hur, Pilwon; Crocher, Vincent; Motawar, Binal; Lakshminarayanan, Kishor

    2016-01-01

    The emergence of lower-cost motion tracking devices enables home-based virtual reality rehabilitation activities and increased accessibility to patients. Currently, little documentation on patients' expectations for virtual reality rehabilitation is available. This study surveyed 10 people with stroke for their expectations of virtual reality rehabilitation games. This study also evaluated the usability of three lower-cost virtual reality rehabilitation games using a survey and House of Quality analysis. The games (kitchen, archery, and puzzle) were developed in the laboratory to encourage coordinated finger and arm movements. Lower-cost motion tracking devices, the P5 Glove and Microsoft Kinect, were used to record the movements. People with stroke were found to desire motivating and easy-to-use games with clinical insights and encouragement from therapists. The House of Quality analysis revealed that the games should be improved by obtaining evidence for clinical effectiveness, including clinical feedback regarding improving functional abilities, adapting the games to the user's changing functional ability, and improving usability of the motion-tracking devices. This study reports the expectations of people with stroke for rehabilitation games and usability analysis that can help guide development of future games.

  10. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.

    PubMed

    Ahn, Hyung Soo; DiAngelo, Denis J

    2007-05-15

    This article describes a computer model of the cadaver cervical spine specimen and virtual biomechanical testing. To develop a graphics-oriented, multibody model of a cadaver cervical spine and to build a virtual laboratory simulator for the biomechanical testing using physics-based dynamic simulation techniques. Physics-based computer simulations apply the laws of physics to solid bodies with defined material properties. This technique can be used to create a virtual simulator for the biomechanical testing of a human cadaver spine. An accurate virtual model and simulation would complement tissue-based in vitro studies by providing a consistent test bed with minimal variability and by reducing cost. The geometry of cervical vertebrae was created from computed tomography images. Joints linking adjacent vertebrae were modeled as a triple-joint complex, comprised of intervertebral disc joints in the anterior region, 2 facet joints in the posterior region, and the surrounding ligament structure. A virtual laboratory simulation of an in vitro testing protocol was performed to evaluate the model responses during flexion, extension, and lateral bending. For kinematic evaluation, the rotation of motion segment unit, coupling behaviors, and 3-dimensional helical axes of motion were analyzed. The simulation results were in correlation with the findings of in vitro tests and published data. For kinetic evaluation, the forces of the intervertebral discs and facet joints of each segment were determined and visually animated. This methodology produced a realistic visualization of in vitro experiment, and allowed for the analyses of the kinematics and kinetics of the cadaver cervical spine. With graphical illustrations and animation features, this modeling technique has provided vivid and intuitive information.

  11. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Martínez, Pedro A

    2017-08-04

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units-characterization and modelling-are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions.

  12. Reusable, Lifelike Virtual Humans for Mentoring and Role-Playing

    ERIC Educational Resources Information Center

    Sims, Edward M.

    2007-01-01

    Lifelike, interactive digital characters, serving as mentors and role-playing actors, have been shown to significantly improve learner motivation and retention. However, the cost of modeling such characters, authoring and editing their interactions, and delivering them over limited-bandwidth connections can be prohibitive. This paper describes a…

  13. 78 FR 17624 - Wireline Competition Bureau Adds New Discussion Topic To Connect America Cost Model Virtual Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 54 [WC Docket No. 10-90; DA 13-311] Wireline... Communications Commission. ACTION: Proposed rule. SUMMARY: In this document, the Wireline Competition Bureau adds... . Follow the instructions for submitting comments. [ssquf] Federal Communications Commission's Web Site...

  14. 78 FR 23192 - Wireline Competition Bureau Adds New Discussion Topic to Connect America Cost Model Virtual Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 54 [WC Docket No. 10-90; DA 13-704] Wireline... Communications Commission. ACTION: Proposed rule. SUMMARY: In this document, the Wireline Competition Bureau adds...://www.regulations.gov . Follow the instructions for submitting comments. [ssquf] Federal Communications...

  15. Computational Modeling and Simulation of Developmental Toxicity: what can we learn from a virtual embryo? (RIVM, Brussels)

    EPA Science Inventory

    Developmental and Reproductive Toxicity (DART) testing is important for assessing the potential consequences of drug and chemical exposure on human health and well-being. Complexity of pregnancy and the reproductive cycle makes DART testing challenging and costly for traditional ...

  16. Supply chain quality.

    PubMed

    Feary, Simon

    2009-01-01

    As the development of complex manufacturing models and virtual companies become more prevalent in today's growing global markets, it is increasingly important to support the relationships between manufacturer and supplier. Utilising these relationships will ensure that supply chains operate more effectively and reduce costs, risks and time-to-market time frames, whilst maintaining product quality.

  17. ToxCast and Virtual Embryo: in vitro data and in silico models for predictive toxicology

    EPA Science Inventory

    Human populations may be exposed to thousands of chemicals only a fraction of which have detailed toxicity data. Traditional in vivo animal testing is costly, lengthy and normally conducted with dosages that exceed relatively insensitive to concentrations of chemicals at realisti...

  18. A Manpower, Budget, Structure, Synergism (MBSS) Model for the Comparison of US-Soviet Military-Space Research Efforts.

    DTIC Science & Technology

    1983-08-01

    particular markets . The US government, on the other hand, has no competition except from foreign governments. Judgments as to the adequacy of...Defense Burden," Naval War College Review, Jul-Aug 81, p 41. 20 TABLE 2-3 SOVIET DEFENSE COST CATEGORY MIX Percentages Rosenfielde CIA () (2...consistent that virtually identical ruble - dollar conversion rates over that period are plausible. The CIA also prepares estimates of cost category mixes

  19. A Practical Guide, with Theoretical Underpinnings, for Creating Effective Virtual Reality Learning Environments

    ERIC Educational Resources Information Center

    O'Connor, Eileen A.; Domingo, Jelia

    2017-01-01

    With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…

  20. Synchronous Learning Best Practices: An Action Research Study

    ERIC Educational Resources Information Center

    Warden, Clyde A.; Stanworth, James O.; Ren, Jian Biao; Warden, Antony R.

    2013-01-01

    Low cost and significant advances in technology now allow instructors to create their own virtual learning environments. Creating social interactions within a virtual space that emulates the physical classroom remains challenging. While students are familiar with virtual worlds and video meetings, they are inexperienced as virtual learners. Over a…

  1. Virtual Visits for Acute, Nonurgent Care: A Claims Analysis of Episode-Level Utilization.

    PubMed

    Gordon, Aliza S; Adamson, Wallace C; DeVries, Andrea R

    2017-02-17

    Expansion of virtual health care-real-time video consultation with a physician via the Internet-will continue as use of mobile devices and patient demand for immediate, convenient access to care grow. The objective of the study is to analyze the care provided and the cost of virtual visits over a 3-week episode compared with in-person visits to retail health clinics (RHC), urgent care centers (UCC), emergency departments (ED), or primary care physicians (PCP) for acute, nonurgent conditions. A cross-sectional, retrospective analysis of claims from a large commercial health insurer was performed to compare care and cost of patients receiving care via virtual visits for a condition of interest (sinusitis, upper respiratory infection, urinary tract infection, conjunctivitis, bronchitis, pharyngitis, influenza, cough, dermatitis, digestive symptom, or ear pain) matched to those receiving care for similar conditions in other settings. An episode was defined as the index visit plus 3 weeks following. Patients were children and adults younger than 65 years of age without serious chronic conditions. Visits were classified according to the setting where the visit occurred. Care provided was assessed by follow-up outpatient visits, ED visits, or hospitalizations; laboratory tests or imaging performed; and antibiotic use after the initial visit. Episode costs included the cost of the initial visit, subsequent medical care, and pharmacy. A total of 59,945 visits were included in the analysis (4635 virtual visits and 55,310 nonvirtual visits). Virtual visit episodes had similar follow-up outpatient visit rates (28.09%) as PCP (28.10%, P=.99) and RHC visits (28.59%, P=.51). During the episode, lab rates for virtual visits (12.56%) were lower than in-person locations (RHC: 36.79%, P<.001; UCC: 39.01%, P<.001; ED: 53.15%, P<.001; PCP: 37.40%, P<.001), and imaging rates for virtual visits (6.62%) were typically lower than in-person locations (RHC: 5.97%, P=.11; UCC: 8.77%, P<.001; ED: 43.06%, P<.001; PCP: 11.26%, P<.001). RHC, UCC, ED, and PCP were estimated to be $36, $153, $1735, and $162 more expensive than virtual visit episodes, respectively, including medical and pharmacy costs. Virtual care appears to be a low-cost alternative to care administered in other settings with lower testing rates. The similar follow-up rate suggests adequate clinical resolution and that patients are not using virtual visits as a first step before seeking in-person care. ©Aliza S Gordon, Wallace C Adamson, Andrea R DeVries. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 17.02.2017.

  2. Steering Control in a Low-Cost Driving Simulator: A Case for the Role of Virtual Vehicle Cab.

    PubMed

    Mecheri, Sami; Lobjois, Régis

    2018-04-01

    The aim of this study was to investigate steering control in a low-cost driving simulator with and without a virtual vehicle cab. In low-cost simulators, the lack of a vehicle cab denies driver access to vehicle width, which could affect steering control, insofar as locomotor adjustments are known to be based on action-scaled visual judgments of the environment. Two experiments were conducted in which steering control with and without a virtual vehicle cab was investigated in a within-subject design, using cornering and straight-lane-keeping tasks. Driving around curves without vehicle cab information made drivers deviate more from the lane center toward the inner edge in right (virtual cab = 4 ± 19 cm; no cab = 42 ± 28 cm; at the apex of the curve, p < .001) but not in left curves. More lateral deviation from the lane center toward the edge line was also found in driving without the virtual cab on straight roads (virtual cab = 21 ± 28 cm; no cab = 36 ± 27 cm; p < .001), whereas driving stability and presence ratings were not affected. In both experiments, the greater lateral deviation in the no-cab condition led to significantly more time driving off the lane. The findings strongly suggest that without cab information, participants underestimate the distance to the right edge of the car (in contrast to the left edge) and thus vehicle width. This produces considerable differences in the steering trajectory. Providing a virtual vehicle cab must be encouraged for more effectively capturing drivers' steering control in low-cost simulators.

  3. Neuroanatomical basis of concern-based altruism in virtual environment.

    PubMed

    Patil, Indrajeet; Zanon, Marco; Novembre, Giovanni; Zangrando, Nicola; Chittaro, Luca; Silani, Giorgia

    2017-02-22

    Costly altruism entails helping others at a cost to the self and prior work shows that empathic concern (EC) for the well-being of distressed and vulnerable individuals is one of the primary motivators of such behavior. However, extant work has investigated costly altruism with paradigms that did not feature self-relevant and severe costs for the altruist and have solely focused on neurofunctional, and not neuroanatomical, correlates. In the current study, we used a contextually-rich virtual reality environment to study costly altruism and found that individuals who risked their own lives in the virtual world to try to save someone in danger had enlarged right anterior insula and exhibited greater empathic concern than those who did not. These findings add to the growing literature showing the role of caring motivation in promoting altruism and prosociality and its neural correlates in the right anterior insula. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Interservice/Industry Training, Simulation and Education Conference Partnerships for Learning in the New Millennium Abstracts

    DTIC Science & Technology

    2000-01-01

    for flight test data, and both generic and specialized tools of data filtering , data calibration, modeling , system identification, and simulation...GRAMMATICAL MODEL AND PARSER FOR AIR TRAFFIC CONTROLLER’S COMMANDS 11 A SPEECH-CONTROLLED INTERACTIVE VIRTUAL ENVIRONMENT FOR SHIP FAMILIARIZATION 12... MODELING AND SIMULATION IN THE 21ST CENTURY 23 NEW COTS HARDWARE AND SOFTWARE REDUCE THE COST AND EFFORT IN REPLACING AGING FLIGHT SIMULATORS SUBSYSTEMS

  5. Experts Debate Cost Savings of Virtual Education

    ERIC Educational Resources Information Center

    Ash, Katie

    2009-01-01

    This article reports that a group of superintendents and secondary school educators in Massachusetts gathered to discuss how online courses might help offset budget cuts. Maryland state officials say their virtual Advanced Placement classes are a cost-effective way to get high-quality coursework to more students. And the largest state-sponsored…

  6. Virtual reality: Avatars in human spaceflight training

    NASA Astrophysics Data System (ADS)

    Osterlund, Jeffrey; Lawrence, Brad

    2012-02-01

    With the advancements in high spatial and temporal resolution graphics, along with advancements in 3D display capabilities to model, simulate, and analyze human-to-machine interfaces and interactions, the world of virtual environments is being used to develop everything from gaming, movie special affects and animations to the design of automobiles. The use of multiple object motion capture technology and digital human tools in aerospace has demonstrated to be a more cost effective alternative to the cost of physical prototypes, provides a more efficient, flexible and responsive environment to changes in the design and training, and provides early human factors considerations concerning the operation of a complex launch vehicle or spacecraft. United Space Alliance (USA) has deployed this technique and tool under Research and Development (R&D) activities on both spacecraft assembly and ground processing operations design and training on the Orion Crew Module. USA utilizes specialized products that were chosen based on functionality, including software and fixed based hardware (e.g., infrared and visible red cameras), along with cyber gloves to ensure fine motor dexterity of the hands. The key findings of the R&D were: mock-ups should be built to not obstruct cameras from markers being tracked; a mock-up toolkit be assembled to facilitate dynamic design changes; markers should be placed in accurate positions on humans and flight hardware to help with tracking; 3D models used in the virtual environment be striped of non-essential data; high computational capable workstations are required to handle the large model data sets; and Technology Interchange Meetings with vendors and other industries also utilizing virtual reality applications need to occur on a continual basis enabling USA to maintain its leading edge within this technology. Parameters of interest and benefit in human spaceflight simulation training that utilizes virtual reality technologies are to familiarize and assess operational processes, allow the ability to train virtually, experiment with "what if" scenarios, and expedite immediate changes to validate the design implementation are all parameters of interest in human spaceflight. Training benefits encompass providing 3D animation for post-training assessment, placement of avatars within 3D replicated work environments in assembling or processing hardware, offering various viewpoints of processes viewed and assessed giving the evaluators the ability to assess task feasibility and identify potential support equipment needs; and provide human factors determinations, such as reach, visibility, and accessibility. Multiple object motion capture technology provides an effective tool to train and assess ergonomic risks, simulations for determination of negative interactions between technicians and their proposed workspaces, and evaluation of spaceflight systems prior to, and as part of, the design process to contain costs and reduce schedule delays.

  7. Virtual reality training and assessment in laparoscopic rectum surgery.

    PubMed

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Liang, Hui; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2015-06-01

    Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Comparing the cost-effectiveness of simulation modalities: a case study of peripheral intravenous catheterization training.

    PubMed

    Isaranuwatchai, Wanrudee; Brydges, Ryan; Carnahan, Heather; Backstein, David; Dubrowski, Adam

    2014-05-01

    While the ultimate goal of simulation training is to enhance learning, cost-effectiveness is a critical factor. Research that compares simulation training in terms of educational- and cost-effectiveness will lead to better-informed curricular decisions. Using previously published data we conducted a cost-effectiveness analysis of three simulation-based programs. Medical students (n = 15 per group) practiced in one of three 2-h intravenous catheterization skills training programs: low-fidelity (virtual reality), high-fidelity (mannequin), or progressive (consisting of virtual reality, task trainer, and mannequin simulator). One week later, all performed a transfer test on a hybrid simulation (standardized patient with a task trainer). We used a net benefit regression model to identify the most cost-effective training program via paired comparisons. We also created a cost-effectiveness acceptability curve to visually represent the probability that one program is more cost-effective when compared to its comparator at various 'willingness-to-pay' values. We conducted separate analyses for implementation and total costs. The results showed that the progressive program had the highest total cost (p < 0.001) whereas the high-fidelity program had the highest implementation cost (p < 0.001). While the most cost-effective program depended on the decision makers' willingness-to-pay value, the progressive training program was generally most educationally- and cost-effective. Our analyses suggest that a progressive program that strategically combines simulation modalities provides a cost-effective solution. More generally, we have introduced how a cost-effectiveness analysis may be applied to simulation training; a method that medical educators may use to investment decisions (e.g., purchasing cost-effective and educationally sound simulators).

  9. Does box model training improve surgical dexterity and economy of movement during virtual reality laparoscopy? A randomised trial.

    PubMed

    Clevin, Lotte; Grantcharov, Teodor P

    2008-01-01

    Laparoscopic box model trainers have been used in training curricula for a long time, however data on their impact on skills acquisition is still limited. Our aim was to validate a low cost box model trainer as a tool for the training of skills relevant to laparoscopic surgery. Randomised, controlled trial (Canadian Task Force Classification I). University Hospital. Sixteen gynaecologic residents with limited laparoscopic experience were randomised to a group that received a structured box model training curriculum, and a control group. Performance before and after the training was assessed in a virtual reality laparoscopic trainer (LapSim and was based on objective parameters, registered by the computer system (time, error, and economy of motion scores). Group A showed significantly greater improvement in all performance parameters compared with the control group: economy of movement (p=0.001), time (p=0.001) and tissue damage (p=0.036), confirming the positive impact of box-trainer curriculum on laparoscopic skills acquisition. Structured laparoscopic skill training on a low cost box model trainer improves performance as assessed using the VR system. Trainees who used the box model trainer showed significant improvement compared to the control group. Box model trainers are valid tools for laparoscopic skills training and should be implemented in the comprehensive training curricula in gynaecology.

  10. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  11. Endotracheal intubation: application of virtual reality to emergency medical services education.

    PubMed

    Mayrose, James; Myers, Jeffrey W

    2007-01-01

    Virtual reality simulation has been identified as an emerging educational tool with significant potential to enhance teaching of residents and students in emergency clinical encounters and procedures. Endotracheal intubation represents a critical procedure for emergency care providers. Current methods of training include working with cadavers and mannequins, which have limitations in their representation of reality, ethical concerns, and overall availability with access, cost, and location of models. This paper will present a human airway simulation model designed for tracheal intubation and discuss the aspects that lend itself to use as an educational tool. This realistic and dynamic model is used to teach routine intubations, while future models will include more difficult airway management scenarios. This work provides a solid foundation for future versions of the intubation simulator, which will incorporate two haptic devices to allow for simultaneous control of the laryngoscope blade and endotracheal tube.

  12. A study of factors affecting the adoption of server virtualization technology

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Ke; Lin, Peng-Chun; Chiang, Chang-Heng; Cho, Chien-An

    2018-04-01

    It has become a trend that worldwide enterprises and organizations apply new technologies to improve their operations; besides, it has higher cost and less flexibility to construct and manage traditional servers, therefore the current mainstream is to use server virtualization technology. However, from these new technology organizations will not necessarily get the expected benefits because each one has its own level of organizational complexity and abilities to accept changes. The researcher investigated key factors affecting the adoption of virtualization technology through two phases. In phase I, the researcher reviewed literature and then applied the dimensions of "Information Systems Success Model" (ISSM) to generalize the factors affecting the adoption of virtualization technology to be the preliminary theoretical framework and develop a questionnaire; in phase II, a three-round Delphi Method was used to integrate the opinions of experts from related fields which were then gradually converged in order to obtain a stable and objective questionnaire of key factors so that these results were expected to provide references for organizations' adoption of server virtualization technology and future studies.

  13. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios.

    PubMed

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.

  14. Virtual reality simulators for gastrointestinal endoscopy training

    PubMed Central

    Triantafyllou, Konstantinos; Lazaridis, Lazaros Dimitrios; Dimitriadis, George D

    2014-01-01

    The use of simulators as educational tools for medical procedures is spreading rapidly and many efforts have been made for their implementation in gastrointestinal endoscopy training. Endoscopy simulation training has been suggested for ascertaining patient safety while positively influencing the trainees’ learning curve. Virtual simulators are the most promising tool among all available types of simulators. These integrated modalities offer a human-like endoscopy experience by combining virtual images of the gastrointestinal tract and haptic realism with using a customized endoscope. From their first steps in the 1980s until today, research involving virtual endoscopic simulators can be divided in two categories: investigation of the impact of virtual simulator training in acquiring endoscopy skills and measuring competence. Emphasis should also be given to the financial impact of their implementation in endoscopy, including the cost of these state-of-the-art simulators and the potential economic benefits from their usage. Advances in technology will contribute to the upgrade of existing models and the development of new ones; while further research should be carried out to discover new fields of application. PMID:24527175

  15. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios

    PubMed Central

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260

  16. Cost-effective ways of delivering enquiry services: a rapid review.

    PubMed

    Sutton, Anthea; Grant, Maria J

    2011-12-01

    In the recent times of recession and budget cuts, it is more important than ever for library and information services to deliver cost-effective services. This rapid review aims to examine the evidence for the most cost-effective ways of delivering enquiry services. A literature search was conducted on LISA (Library and Information Sciences Abstracts) and MEDLINE. Searches were limited to 2007 onwards. Eight studies met the inclusion criteria. The studies covered hospital and academic libraries in the USA and Canada. Services analysed were 'point-of-care' librarian consultations, staffing models for reference desks and virtual/digital reference services. Transferable lessons, relevant to health library and information services generally, can be drawn from this rapid review. These suggest that 'point-of-care' librarians for primary care practitioners are a cost-effective way of answering questions. Reference desks can be cost-effectively staffed by student employees or general reference staff, although librarian referral must be provided for more complex and subject-specific enquiries. However, it is not possible to draw any conclusions on virtual/digital reference services because of the limited literature available. Further case analysis studies measuring specific services, particularly enquiry services within a health library and information context, are required. © 2011 The authors. Health Information and Libraries Journal © 2011 Health Libraries Group.

  17. A review of the use of simulation in dental education.

    PubMed

    Perry, Suzanne; Bridges, Susan Margaret; Burrow, Michael Francis

    2015-02-01

    In line with the advances in technology and communication, medical simulations are being developed to support the acquisition of requisite psychomotor skills before real-life clinical applications. This review article aimed to give a general overview of simulation in a cognate field, clinical dental education. Simulations in dentistry are not a new phenomenon; however, recent developments in virtual-reality technology using computer-generated medical simulations of 3-dimensional images or environments are providing more optimal practice conditions to smooth the transition from the traditional model-based simulation laboratory to the clinic. Evidence as to the positive aspects of virtual reality include increased effectiveness in comparison with traditional simulation teaching techniques, more efficient learning, objective and reproducible feedback, unlimited training hours, and enhanced cost-effectiveness for teaching establishments. Negative aspects have been indicated as initial setup costs, faculty training, and the lack of a variety of content and current educational simulation programs.

  18. Internet, Multimedia and Virtual Laboratories in a 'Third World' Environment.

    ERIC Educational Resources Information Center

    Monge-Najera, Julian Antonio; Rivas Rossi, Marta; Mendez-Estrada, Victor Hugo

    2001-01-01

    Describes the development of low-cost multimedia courses and materials for use on the Internet, as well as virtual laboratories, at the Universidad Estatal a Distancia (Costa Rica). Explains how simultaneous production of traditional printed materials and online courses, outsourcing, and the use of HTML and Java can reduce costs for developing…

  19. Haven't We Been Here Before? Some Comments on Steve Coffman's Proposal for "Earth's Largest Library".

    ERIC Educational Resources Information Center

    McGervey, Teresa

    2000-01-01

    Discusses the concept of Earth's Largest Library (ELL), a mega-virtual library based on the Amazon.com model. Topics include who will be included; privacy; censorship; scope of the collection; costs; legal aspects; collection development; personnel management; access; the concept of community; public service; lending policies; technical…

  20. Virtual Liver: integrating in vitro and in vivo data to predict chemical-induced toxicity

    EPA Science Inventory

    It is difficult to assess the health impact of long-term exposure to low levels of contaminants from animal studies. Current methods for testing the toxicity of a single chemical can cost millions of dollars, take up to two years and sacrifice thousands of animals. In vitro model...

  1. TEAM-HF Cost-Effectiveness Model: A Web-Based Program Designed to Evaluate the Cost-Effectiveness of Disease Management Programs in Heart Failure

    PubMed Central

    Reed, Shelby D.; Neilson, Matthew P.; Gardner, Matthew; Li, Yanhong; Briggs, Andrew H.; Polsky, Daniel E.; Graham, Felicia L.; Bowers, Margaret T.; Paul, Sara C.; Granger, Bradi B.; Schulman, Kevin A.; Whellan, David J.; Riegel, Barbara; Levy, Wayne C.

    2015-01-01

    Background Heart failure disease management programs can influence medical resource use and quality-adjusted survival. Because projecting long-term costs and survival is challenging, a consistent and valid approach to extrapolating short-term outcomes would be valuable. Methods We developed the Tools for Economic Analysis of Patient Management Interventions in Heart Failure (TEAM-HF) Cost-Effectiveness Model, a Web-based simulation tool designed to integrate data on demographic, clinical, and laboratory characteristics, use of evidence-based medications, and costs to generate predicted outcomes. Survival projections are based on a modified Seattle Heart Failure Model (SHFM). Projections of resource use and quality of life are modeled using relationships with time-varying SHFM scores. The model can be used to evaluate parallel-group and single-cohort designs and hypothetical programs. Simulations consist of 10,000 pairs of virtual cohorts used to generate estimates of resource use, costs, survival, and incremental cost-effectiveness ratios from user inputs. Results The model demonstrated acceptable internal and external validity in replicating resource use, costs, and survival estimates from 3 clinical trials. Simulations to evaluate the cost-effectiveness of heart failure disease management programs across 3 scenarios demonstrate how the model can be used to design a program in which short-term improvements in functioning and use of evidence-based treatments are sufficient to demonstrate good long-term value to the health care system. Conclusion The TEAM-HF Cost-Effectiveness Model provides researchers and providers with a tool for conducting long-term cost-effectiveness analyses of disease management programs in heart failure. PMID:26542504

  2. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

    NASA Astrophysics Data System (ADS)

    Portalés, Cristina; Lerma, José Luis; Navarro, Santiago

    2010-01-01

    Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.

  3. Mandible reconstruction with free fibula flaps: Outcome of a cost-effective individual planning concept compared with virtual surgical planning.

    PubMed

    Rommel, Niklas; Kesting, Marco Rainer; Rohleder, Nils Hagen; Bauer, Florian Martin Josef; Wolff, Klaus-Dietrich; Weitz, Jochen

    2017-08-01

    The free osteomyocutaneous fibular flap has become one of the primary options for mandibular reconstruction, because of the later introduction and development of virtual surgical planning (VSP). However, VSP is associated with high additional pre-operative effort and costs. Therefore, the purpose of the study was to develop a new individual cost-effective pre-operative planning concept for free fibula mandible reconstruction and to compare it with VSP regarding clinical parameters and post-operative outcome. 31 patients undergoing mandibular reconstruction with a microvascular free fibular flap were divided into two groups and retrospectively reviewed. For the first group A (18 of 31 patients), an individual method with stererolithographic (STL) models, silicon templates and hand-made cutting guides was used (about 250 € planning costs/patient). For the second group B (13 of 31 patients), VSP including pre-fabricated cutting guides was used (about 2500 € planning costs/patient). We found no statistically significant differences with respect to intra-operative time of mandibular reconstruction, duration of hospitalisation or post-operative complications between the two groups (p ≥ 0.05). The surgical outcomes and operative efficiency of this individual and cost-effective planning concept are comparable with the much more expensive complete VSP concept. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Virtual Learning in Michigan's Schools. A Mackinac Center Report

    ERIC Educational Resources Information Center

    Van Beek, Michael

    2011-01-01

    Virtual learning is not for every student, but it's not science fiction, either. Right now in Michigan, it's being used by thousands of students in hundreds of virtual courses in urban, rural and suburban school districts. In fact, Michigan has been seen as a national leader in virtual learning. This study analyzes the financial costs and academic…

  5. Haptic feedback for virtual assembly

    NASA Astrophysics Data System (ADS)

    Luecke, Greg R.; Zafer, Naci

    1998-12-01

    Assembly operations require high speed and precision with low cost. The manufacturing industry has recently turned attenuation to the possibility of investigating assembly procedures using graphical display of CAD parts. For these tasks, some sort of feedback to the person is invaluable in providing a real sense of interaction with virtual parts. This research develops the use of a commercial assembly robot as the haptic display in such tasks. For demonstration, a peg-hole insertion task is studied. Kane's Method is employed to derive the dynamics of the peg and the contact motions between the peg and the hole. A handle modeled as a cylindrical peg is attached to the end effector of a PUMA 560 robotic arm. The arm is handle modeled as a cylindrical peg is attached to the end effector of a PUMA 560 robotic arm. The arm is equipped with a six axis force/torque transducer. The use grabs the handle and the user-applied forces are recorded. A 300 MHz Pentium computer is used to simulate the dynamics of the virtual peg and its interactions as it is inserted in the virtual hole. The computed torque control is then employed to exert the full dynamics of the task to the user hand. Visual feedback is also incorporated to help the user in the process of inserting the peg into the hole. Experimental results are presented to show several contact configurations for this virtually simulated task.

  6. Has your greenhouse gone virtual?

    USDA-ARS?s Scientific Manuscript database

    Virtual Grower is a free decision-support software program available from USDA-ARS that allows growers to build a virtual greenhouse. It was initially designed to help greenhouse growers estimate heating costs and conduct simple simulations to figure out where heat savings could be achieved. Featu...

  7. Using Avatars to Model Weight Loss Behaviors: Participant Attitudes and Technology Development

    PubMed Central

    Napolitano, Melissa A.; Hayes, Sharon; Russo, Giuseppe; Muresu, Debora; Giordano, Antonio; Foster, Gary D.

    2013-01-01

    Background: Virtual reality and other avatar-based technologies are potential methods for demonstrating and modeling weight loss behaviors. This study examined avatar-based technology as a tool for modeling weight loss behaviors. Methods: This study consisted of two phases: (1) an online survey to obtain feedback about using avatars for modeling weight loss behaviors and (2) technology development and usability testing to create an avatar-based technology program for modeling weight loss behaviors. Results: Results of phase 1 (n = 128) revealed that interest was high, with 88.3% stating that they would participate in a program that used an avatar to help practice weight loss skills in a virtual environment. In phase 2, avatars and modules to model weight loss skills were developed. Eight women were recruited to participate in a 4-week usability test, with 100% reporting they would recommend the program and that it influenced their diet/exercise behavior. Most women (87.5%) indicated that the virtual models were helpful. After 4 weeks, average weight loss was 1.6 kg (standard deviation = 1.7). Conclusion: This investigation revealed a high level of interest in an avatar-based program, with formative work indicating promise. Given the high costs associated with in vivo exposure and practice, this study demonstrates the potential use of avatar-based technology as a tool for modeling weight loss behaviors. PMID:23911189

  8. Evaluating performance of stormwater sampling approaches using a dynamic watershed model.

    PubMed

    Ackerman, Drew; Stein, Eric D; Ritter, Kerry J

    2011-09-01

    Accurate quantification of stormwater pollutant levels is essential for estimating overall contaminant discharge to receiving waters. Numerous sampling approaches exist that attempt to balance accuracy against the costs associated with the sampling method. This study employs a novel and practical approach of evaluating the accuracy of different stormwater monitoring methodologies using stormflows and constituent concentrations produced by a fully validated continuous simulation watershed model. A major advantage of using a watershed model to simulate pollutant concentrations is that a large number of storms representing a broad range of conditions can be applied in testing the various sampling approaches. Seventy-eight distinct methodologies were evaluated by "virtual samplings" of 166 simulated storms of varying size, intensity and duration, representing 14 years of storms in Ballona Creek near Los Angeles, California. The 78 methods can be grouped into four general strategies: volume-paced compositing, time-paced compositing, pollutograph sampling, and microsampling. The performances of each sampling strategy was evaluated by comparing the (1) median relative error between the virtually sampled and the true modeled event mean concentration (EMC) of each storm (accuracy), (2) median absolute deviation about the median or "MAD" of the relative error or (precision), and (3) the percentage of storms where sampling methods were within 10% of the true EMC (combined measures of accuracy and precision). Finally, costs associated with site setup, sampling, and laboratory analysis were estimated for each method. Pollutograph sampling consistently outperformed the other three methods both in terms of accuracy and precision, but was the most costly method evaluated. Time-paced sampling consistently underestimated while volume-paced sampling over estimated the storm EMCs. Microsampling performance approached that of pollutograph sampling at a substantial cost savings. The most efficient method for routine stormwater monitoring in terms of a balance between performance and cost was volume-paced microsampling, with variable sample pacing to ensure that the entirety of the storm was captured. Pollutograph sampling is recommended if the data are to be used for detailed analysis of runoff dynamics.

  9. Emulation-Based Virtual Laboratories: A Low-Cost Alternative to Physical Experiments in Control Engineering Education

    ERIC Educational Resources Information Center

    Goodwin, G. C.; Medioli, A. M.; Sher, W.; Vlacic, L. B.; Welsh, J. S.

    2011-01-01

    This paper argues the case for emulation-based virtual laboratories in control engineering education. It demonstrates that such emulation experiments can give students an industrially relevant educational experience at relatively low cost. The paper also describes a particular emulation-based system that has been developed with the aim of giving…

  10. Flexible Learning via Web-Based Virtual Teaching and Virtual Laboratory Systems

    ERIC Educational Resources Information Center

    Chu, K. C.; Leung, Dennis

    2003-01-01

    In the current economic situation, most academic institutions would like to plan new courses to increase enrollment. Often, these changes do not follow with a proportional increase in cost or staff numbers to the institution. For cost-efficiency reasons, a reduction in student contact hours is most desirable, providing that this can maintain the…

  11. Traffic routing for multicomputer networks with virtual cut-through capability

    NASA Technical Reports Server (NTRS)

    Kandlur, Dilip D.; Shin, Kang G.

    1992-01-01

    Consideration is given to the problem of selecting routes for interprocess communication in a network with virtual cut-through capability, while balancing the network load and minimizing the number of times that a message gets buffered. An approach is proposed that formulates the route selection problem as a minimization problem with a link cost function that depends upon the traffic through the link. The form of this cost function is derived using the probability of establishing a virtual cut-through route. The route selection problem is shown to be NP-hard, and an algorithm is developed to incrementally reduce the cost by rerouting the traffic. The performance of this algorithm is exemplified by two network topologies: the hypercube and the C-wrapped hexagonal mesh.

  12. [A new age of mass casuality education? : The InSitu project: realistic training in virtual reality environments].

    PubMed

    Lorenz, D; Armbruster, W; Vogelgesang, C; Hoffmann, H; Pattar, A; Schmidt, D; Volk, T; Kubulus, D

    2016-09-01

    Chief emergency physicians are regarded as an important element in the care of the injured and sick following mass casualty accidents. Their education is very theoretical; practical content in contrast often falls short. Limitations are usually the very high costs of realistic (large-scale) exercises, poor reproducibility of the scenarios, and poor corresponding results. To substantially improve the educational level because of the complexity of mass casualty accidents, modified training concepts are required that teach the not only the theoretical but above all the practical skills considerably more intensively than at present. Modern training concepts should make it possible for the learner to realistically simulate decision processes. This article examines how interactive virtual environments are applicable for the education of emergency personnel and how they could be designed. Virtual simulation and training environments offer the possibility of simulating complex situations in an adequately realistic manner. The so-called virtual reality (VR) used in this context is an interface technology that enables free interaction in addition to a stereoscopic and spatial representation of virtual large-scale emergencies in a virtual environment. Variables in scenarios such as the weather, the number wounded, and the availability of resources, can be changed at any time. The trainees are able to practice the procedures in many virtual accident scenes and act them out repeatedly, thereby testing the different variants. With the aid of the "InSitu" project, it is possible to train in a virtual reality with realistically reproduced accident situations. These integrated, interactive training environments can depict very complex situations on a scale of 1:1. Because of the highly developed interactivity, the trainees can feel as if they are a direct part of the accident scene and therefore identify much more with the virtual world than is possible with desktop systems. Interactive, identifiable, and realistic training environments based on projector systems could in future enable a repetitive exercise with changes within a decision tree, in reproducibility, and within different occupational groups. With a hard- and software environment numerous accident situations can be depicted and practiced. The main expense is the creation of the virtual accident scenes. As the appropriate city models and other three-dimensional geographical data are already available, this expenditure is very low compared with the planning costs of a large-scale exercise.

  13. Virtual Visits and Patient-Centered Care: Results of a Patient Survey and Observational Study

    PubMed Central

    2017-01-01

    Background Virtual visits are clinical interactions in health care that do not involve the patient and provider being in the same room at the same time. The use of virtual visits is growing rapidly in health care. Some health systems are integrating virtual visits into primary care as a complement to existing modes of care, in part reflecting a growing focus on patient-centered care. There is, however, limited empirical evidence about how patients view this new form of care and how it affects overall health system use. Objective Descriptive objectives were to assess users and providers of virtual visits, including the reasons patients give for use. The analytic objective was to assess empirically the influence of virtual visits on overall primary care use and costs, including whether virtual care is with a known or a new primary care physician. Methods The study took place in British Columbia, Canada, where virtual visits have been publicly funded since October 2012. A survey of patients who used virtual visits and an observational study of users and nonusers of virtual visits were conducted. Comparison groups included two groups: (1) all other BC residents, and (2) a group matched (3:1) to the cohort. The first virtual visit was used as the intervention and the main outcome measures were total primary care visits and costs. Results During 2013-2014, there were 7286 virtual visit encounters, involving 5441 patients and 144 physicians. Younger patients and physicians were more likely to use and provide virtual visits (P<.001), with no differences by sex. Older and sicker patients were more likely to see a known provider, whereas the lowest socioeconomic groups were the least likely (P<.001). The survey of 399 virtual visit patients indicated that virtual visits were liked by patients, with 372 (93.2%) of respondents saying their virtual visit was of high quality and 364 (91.2%) reporting their virtual visit was “very” or “somewhat” helpful to resolve their health issue. Segmented regression analysis and the corresponding regression parameter estimates suggested virtual visits appear to have the potential to decrease primary care costs by approximately Can $4 per quarter (Can –$3.79, P=.12), but that benefit is most associated with seeing a known provider (Can –$8.68, P<.001). Conclusions Virtual visits may be one means of making the health system more patient-centered, but careful attention needs to be paid to how these services are integrated into existing health care delivery systems. PMID:28550006

  14. Hardware assisted hypervisor introspection.

    PubMed

    Shi, Jiangyong; Yang, Yuexiang; Tang, Chuan

    2016-01-01

    In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually deployed either in hypervisor or in privileged virtual machines, which might also be compromised. By utilizing hardware support including nested virtualization, EPT protection and #BP, we are able to monitor all hypercalls belongs to the virtual machines of one hypervisor, include that of privileged virtual machine and even when the hypervisor is compromised. What's more, hypercall injection method is used to simulate hypercall-based attacks and evaluate the performance of our method. Experiment results show that our method can effectively detect hypercall-based attacks with some performance cost. Lastly, we discuss our furture approaches of reducing the performance cost and preventing the compromised hypervisor from detecting the existence of our introspector, in addition with some new scenarios to apply our hypervisor introspection system.

  15. Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model: A Web-based program designed to evaluate the cost-effectiveness of disease management programs in heart failure.

    PubMed

    Reed, Shelby D; Neilson, Matthew P; Gardner, Matthew; Li, Yanhong; Briggs, Andrew H; Polsky, Daniel E; Graham, Felicia L; Bowers, Margaret T; Paul, Sara C; Granger, Bradi B; Schulman, Kevin A; Whellan, David J; Riegel, Barbara; Levy, Wayne C

    2015-11-01

    Heart failure disease management programs can influence medical resource use and quality-adjusted survival. Because projecting long-term costs and survival is challenging, a consistent and valid approach to extrapolating short-term outcomes would be valuable. We developed the Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model, a Web-based simulation tool designed to integrate data on demographic, clinical, and laboratory characteristics; use of evidence-based medications; and costs to generate predicted outcomes. Survival projections are based on a modified Seattle Heart Failure Model. Projections of resource use and quality of life are modeled using relationships with time-varying Seattle Heart Failure Model scores. The model can be used to evaluate parallel-group and single-cohort study designs and hypothetical programs. Simulations consist of 10,000 pairs of virtual cohorts used to generate estimates of resource use, costs, survival, and incremental cost-effectiveness ratios from user inputs. The model demonstrated acceptable internal and external validity in replicating resource use, costs, and survival estimates from 3 clinical trials. Simulations to evaluate the cost-effectiveness of heart failure disease management programs across 3 scenarios demonstrate how the model can be used to design a program in which short-term improvements in functioning and use of evidence-based treatments are sufficient to demonstrate good long-term value to the health care system. The Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model provides researchers and providers with a tool for conducting long-term cost-effectiveness analyses of disease management programs in heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The power of virtual integration: an interview with Dell Computer's Michael Dell. Interview by Joan Magretta.

    PubMed

    Dell, M

    1998-01-01

    Michael Dell started his computer company in 1984 with a simple business insight. He could bypass the dealer channel through which personal computers were then being sold and sell directly to customers, building products to order. Dell's direct model eliminated the dealer's markup and the risks associated with carrying large inventories of finished goods. In this interview, Michael Dell provides a detailed description of how his company is pushing that business model one step further, toward what he calls virtual integration. Dell is using technology and information to blur the traditional boundaries in the value chain between suppliers, manufacturers, and customers. The individual pieces of Dell's strategy--customer focus, supplier partnerships, mass customization, just-in-time manufacturing--may be all be familiar. But Michael Dell's business insight into how to combine them is highly innovative. Direct relationships with customers create valuable information, which in turn allows the company to coordinate its entire value chain back through manufacturing to product design. Dell describes how his company has come to achieve this tight coordination without the "drag effect" of ownership. Dell reaps the advantages of being vertically integrated without incurring the costs, all the while achieving the focus, agility, and speed of a virtual organization. As envisioned by Michael Dell, virtual integration may well become a new organizational model for the information age.

  17. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.

    2016-01-01

    Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however prohibitively time consuming and cannot be generalized across wide variations of body shapes and poses. In this work, we have developed a new design tool based on the statistical analysis of body shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body size and shoulder pose for a target population. This new process, when incorporated with CAD software, will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance between the suit and body surface at reduced time and cost.

  18. A Novel Cost Based Model for Energy Consumption in Cloud Computing

    PubMed Central

    Horri, A.; Dastghaibyfard, Gh.

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  19. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  20. Virtual Laboratory "vs." Traditional Laboratory: Which Is More Effective for Teaching Electrochemistry?

    ERIC Educational Resources Information Center

    Hawkins, Ian; Phelps, Amy J.

    2013-01-01

    The use of virtual laboratories has become an increasing issue regarding science laboratories due to the increasing cost of hands-on laboratories, and the increase in distance education. Recent studies have looked at the use of virtual tools for laboratory to be used as supplements to the regular hands-on laboratories but many virtual tools have…

  1. Using virtual robot-mediated play activities to assess cognitive skills.

    PubMed

    Encarnação, Pedro; Alvarez, Liliana; Rios, Adriana; Maya, Catarina; Adams, Kim; Cook, Al

    2014-05-01

    To evaluate the feasibility of using virtual robot-mediated play activities to assess cognitive skills. Children with and without disabilities utilized both a physical robot and a matching virtual robot to perform the same play activities. The activities were designed such that successfully performing them is an indication of understanding of the underlying cognitive skills. Participants' performance with both robots was similar when evaluated by the success rates in each of the activities. Session video analysis encompassing participants' behavioral, interaction and communication aspects revealed differences in sustained attention, visuospatial and temporal perception, and self-regulation, favoring the virtual robot. The study shows that virtual robots are a viable alternative to the use of physical robots for assessing children's cognitive skills, with the potential of overcoming limitations of physical robots such as cost, reliability and the need for on-site technical support. Virtual robots can provide a vehicle for children to demonstrate cognitive understanding. Virtual and physical robots can be used as augmentative manipulation tools allowing children with disabilities to actively participate in play, educational and therapeutic activities. Virtual robots have the potential of overcoming limitations of physical robots such as cost, reliability and the need for on-site technical support.

  2. Using a cloud to replenish parched groundwater modeling efforts.

    PubMed

    Hunt, Randall J; Luchette, Joseph; Schreuder, Willem A; Rumbaugh, James O; Doherty, John; Tonkin, Matthew J; Rumbaugh, Douglas B

    2010-01-01

    Groundwater models can be improved by introduction of additional parameter flexibility and simultaneous use of soft-knowledge. However, these sophisticated approaches have high computational requirements. Cloud computing provides unprecedented access to computing power via the Internet to facilitate the use of these techniques. A modeler can create, launch, and terminate "virtual" computers as needed, paying by the hour, and save machine images for future use. Such cost-effective and flexible computing power empowers groundwater modelers to routinely perform model calibration and uncertainty analysis in ways not previously possible.

  3. Are virtual planning and guided surgery for head and neck reconstruction economically viable?

    PubMed

    Zweifel, Daniel Fritz; Simon, Christian; Hoarau, Remy; Pasche, Philippe; Broome, Martin

    2015-01-01

    Virtual planning and guided surgery with or without prebent or milled plates are becoming more and more common for mandibular reconstruction with fibular free flaps (FFFs). Although this excellent surgical option is being used more widely, the question of the additional cost of planning and cutting-guide production has to be discussed. In capped payment systems such additional costs have to be offset by other savings if there are no special provisions for extra funding. Our study was designed to determine whether using virtual planning and guided surgery resulted in time saved during surgery and whether this time gain resulted in self-funding of such planning through the time saved. All consecutive cases of FFF surgery were evaluated during a 2-year period. Institutional data were used to determine the price of 1 minute of operative time. The time for fibula molding, plate adaptation, and insetting was recorded. During the defined period, we performed 20 mandibular reconstructions using FFFs, 9 with virtual planning and guided surgery and 11 freehand cases. One minute of operative time was calculated to cost US $47.50. Multiplying this number by the time saved, we found that the additional cost of virtual planning was reduced from US $5,098 to US $1,231.50 with a prebent plate and from US $6,980 to US $3,113.50 for a milled plate. Even in capped health care systems, virtual planning and guided surgery including prebent or milled plates are financially viable. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.

    PubMed

    Shinbane, Jerold S; Saxon, Leslie A

    Advances in imaging technology have led to a paradigm shift from planning of cardiovascular procedures and surgeries requiring the actual patient in a "brick and mortar" hospital to utilization of the digitalized patient in the virtual hospital. Cardiovascular computed tomographic angiography (CCTA) and cardiovascular magnetic resonance (CMR) digitalized 3-D patient representation of individual patient anatomy and physiology serves as an avatar allowing for virtual delineation of the most optimal approaches to cardiovascular procedures and surgeries prior to actual hospitalization. Pre-hospitalization reconstruction and analysis of anatomy and pathophysiology previously only accessible during the actual procedure could potentially limit the intrinsic risks related to time in the operating room, cardiac procedural laboratory and overall hospital environment. Although applications are specific to areas of cardiovascular specialty focus, there are unifying themes related to the utilization of technologies. The virtual patient avatar computer can also be used for procedural planning, computational modeling of anatomy, simulation of predicted therapeutic result, printing of 3-D models, and augmentation of real time procedural performance. Examples of the above techniques are at various stages of development for application to the spectrum of cardiovascular disease processes, including percutaneous, surgical and hybrid minimally invasive interventions. A multidisciplinary approach within medicine and engineering is necessary for creation of robust algorithms for maximal utilization of the virtual patient avatar in the digital medical center. Utilization of the virtual advanced cardiac imaging patient avatar will play an important role in the virtual health care system. Although there has been a rapid proliferation of early data, advanced imaging applications require further assessment and validation of accuracy, reproducibility, standardization, safety, efficacy, quality, cost effectiveness, and overall value to medical care. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  5. Detection and quantification of creep strain using process compensated resonance testing (PCRT) sorting modules trained with modeled resonance spectra

    NASA Astrophysics Data System (ADS)

    Heffernan, Julieanne; Biedermann, Eric; Mayes, Alexander; Livings, Richard; Jauriqui, Leanne; Goodlet, Brent; Aldrin, John C.; Mazdiyasni, Siamack

    2018-04-01

    Process Compensated Resonant Testing (PCRT) is a full-body nondestructive testing (NDT) method that measures the resonance frequencies of a part and correlates them to the part's material and/or damage state. PCRT testing is used in the automotive, aerospace, and power generation industries via automated PASS/FAIL inspections to distinguish parts with nominal process variation from those with the defect(s) of interest. Traditional PCRT tests are created through the statistical analysis of populations of "good" and "bad" parts. However, gathering a statistically significant number of parts can be costly and time-consuming, and the availability of defective parts may be limited. This work uses virtual databases of good and bad parts to create two targeted PCRT inspections for single crystal (SX) nickel-based superalloy turbine blades. Using finite element (FE) models, populations were modeled to include variations in geometric dimensions, material properties, crystallographic orientation, and creep damage. Model results were verified by comparing the frequency variation in the modeled populations with the measured frequency variations of several physical blade populations. Additionally, creep modeling results were verified through the experimental evaluation of coupon geometries. A virtual database of resonance spectra was created from the model data. The virtual database was used to create PCRT inspections to detect crystallographic defects and creep strain. Quantification of creep strain values using the PCRT inspection results was also demonstrated.

  6. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.

    PubMed

    Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.

  7. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis

    PubMed Central

    Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560

  8. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit

    PubMed Central

    Antolín, Diego; Calvo, Belén; Martínez, Pedro A.

    2017-01-01

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units—characterization and modelling—are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions. PMID:28777330

  9. Graph wavelet alignment kernels for drug virtual screening.

    PubMed

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-06-01

    In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.

  10. A Dynamic Programming Approach to Identifying the Shortest Path in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Fazlollahtabar, Hamed

    2008-01-01

    E-learning has been widely adopted as a promising solution by many organizations to offer learning-on-demand opportunities to individual employees (learners) in order to reduce training time and cost. While successful information systems models have received much attention among researchers, little research has been conducted to assess the success…

  11. How much can a single webcam tell to the operation of a water system?

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero

    2017-04-01

    Recent advances in environmental monitoring are making a wide range of hydro-meteorological data available with a great potential to enhance understanding, modelling and management of environmental processes. Despite this progress, continuous monitoring of highly spatiotemporal heterogeneous processes is not well established yet, especially in inaccessible sites. In this context, the unprecedented availability of user-generated data on the web might open new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this work, we focus on snow and contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. The operational value of the obtained virtual snow indexes is then assessed for a real-world water-management problem, where we use these indexes for informing the daily control of a regulated lake supplying water for multiple purposes. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available.

  12. Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire - fractional flow reserve.

    PubMed

    Papafaklis, Michail I; Muramatsu, Takashi; Ishibashi, Yuki; Lakkas, Lampros S; Nakatani, Shimpei; Bourantas, Christos V; Ligthart, Jurgen; Onuma, Yoshinobu; Echavarria-Pinto, Mauro; Tsirka, Georgia; Kotsia, Anna; Nikas, Dimitrios N; Mogabgab, Owen; van Geuns, Robert-Jan; Naka, Katerina K; Fotiadis, Dimitrios I; Brilakis, Emmanouil S; Garcia-Garcia, Héctor M; Escaned, Javier; Zijlstra, Felix; Michalis, Lampros K; Serruys, Patrick W

    2014-09-01

    To develop a simplified approach of virtual functional assessment of coronary stenosis from routine angiographic data and test it against fractional flow reserve using a pressure wire (wire-FFR). Three-dimensional quantitative coronary angiography (3D-QCA) was performed in 139 vessels (120 patients) with intermediate lesions assessed by wire-FFR (reference standard: ≤0.80). The 3D-QCA models were processed with computational fluid dynamics (CFD) to calculate the lesion-specific pressure gradient (ΔP) and construct the ΔP-flow curve, from which the virtual functional assessment index (vFAI) was derived. The discriminatory power of vFAI for ischaemia- producing lesions was high (area under the receiver operator characteristic curve [AUC]: 92% [95% CI: 86-96%]). Diagnostic accuracy, sensitivity and specificity for the optimal vFAI cut-point (≤0.82) were 88%, 90% and 86%, respectively. Virtual-FAI demonstrated superior discrimination against 3D-QCA-derived % area stenosis (AUC: 78% [95% CI: 70- 84%]; p<0.0001 compared to vFAI). There was a close correlation (r=0.78, p<0.0001) and agreement of vFAI compared to wire-FFR (mean difference: -0.0039±0.085, p=0.59). We developed a fast and simple CFD-powered virtual haemodynamic assessment model using only routine angiography and without requiring any invasive physiology measurements/hyperaemia induction. Virtual-FAI showed a high diagnostic performance and incremental value to QCA for predicting wire-FFR; this "less invasive" approach could have important implications for patient management and cost.

  13. Using a Virtual Store As a Research Tool to Investigate Consumer In-store Behavior.

    PubMed

    Ploydanai, Kunalai; van den Puttelaar, Jos; van Herpen, Erica; van Trijp, Hans

    2017-07-24

    People's responses to products and/or choice environments are crucial to understanding in-store consumer behaviors. Currently, there are various approaches (e.g., surveys or laboratory settings) to study in-store behaviors, but the external validity of these is limited by their poor capability to resemble realistic choice environments. In addition, building a real store to meet experimental conditions while controlling for undesirable effects is costly and highly difficult. A virtual store developed by virtual reality techniques potentially transcends these limitations by offering the simulation of a 3D virtual store environment in a realistic, flexible, and cost-efficient way. In particular, a virtual store interactively allows consumers (participants) to experience and interact with objects in a tightly controlled yet realistic setting. This paper presents the key elements of using a desktop virtual store to study in-store consumer behavior. Descriptions of the protocol steps to: 1) build the experimental store, 2) prepare the data management program, 3) run the virtual store experiment, and 4) organize and export data from the data management program are presented. The virtual store enables participants to navigate through the store, choose a product from alternatives, and select or return products. Moreover, consumer-related shopping behaviors (e.g., shopping time, walking speed, and number and type of products examined and bought) can also be collected. The protocol is illustrated with an example of a store layout experiment showing that shelf length and shelf orientation influence shopping- and movement-related behaviors. This demonstrates that the use of a virtual store facilitates the study of consumer responses. The virtual store can be especially helpful when examining factors that are costly or difficult to change in real life (e.g., overall store layout), products that are not presently available in the market, and routinized behaviors in familiar environments.

  14. Virtual Learning Is Becoming Reality.

    ERIC Educational Resources Information Center

    Jancek, Richard L.

    Once a school district decides to offer students virtual classes, it has to recognize the costs associated with the implementation, the logistical needs, the staff that will be needed to assist students, and the maintenance of the technology. Adapting the philosophy of virtual education is only the beginning. The role of the traditional teacher…

  15. Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks

    ERIC Educational Resources Information Center

    Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita

    2017-01-01

    More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…

  16. Virtual Teams and Synchronous Presentations: An Online Class Experience

    ERIC Educational Resources Information Center

    Adkins, Joni K.

    2013-01-01

    Global expansion, cost containment, and technology advances have all played a role in the increase of virtual teams in today's workplace. Virtual teams in an online graduate information technology management class prepared and presented synchronous presentations over a business or non-profit sector case. This paper includes a brief literature…

  17. Virtual Grower 3: A powerful decision support tool for greenhouse systems

    USDA-ARS?s Scientific Manuscript database

    Several years ago, Virtual Grower software was released to the public. Initially designed to help greenhouse growers determine heating costs and do simple simulations to figure out where heat savings could be achieved, it has slowly added features. Now, Virtual Grower can help not only identify he...

  18. Virtualization for Cost-Effective Teaching of Assembly Language Programming

    ERIC Educational Resources Information Center

    Cadenas, José O.; Sherratt, R. Simon; Howlett, Des; Guy, Chris G.; Lundqvist, Karsten O.

    2015-01-01

    This paper describes a virtual system that emulates an ARM-based processor machine, created to replace a traditional hardware-based system for teaching assembly language. The virtual system proposed here integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language…

  19. Virtualization for the LHCb Online system

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, Enrico; Brarda, Loic; Moine, Gary; Neufeld, Niko

    2011-12-01

    Virtualization has long been advertised by the IT-industry as a way to cut down cost, optimise resource usage and manage the complexity in large data-centers. The great number and the huge heterogeneity of hardware, both industrial and custom-made, has up to now led to reluctance in the adoption of virtualization in the IT infrastructure of large experiment installations. Our experience in the LHCb experiment has shown that virtualization improves the availability and the manageability of the whole system. We have done an evaluation of available hypervisors / virtualization solutions and find that the Microsoft HV technology provides a high level of maturity and flexibility for our purpose. We present the results of these comparison tests, describing in detail, the architecture of our virtualization infrastructure with a special emphasis on the security for services visible to the outside world. Security is achieved by a sophisticated combination of VLANs, firewalls and virtual routing - the cost and benefits of this solution are analysed. We have adapted our cluster management tools, notably Quattor, for the needs of virtual machines and this allows us to migrate smoothly services on physical machines to the virtualized infrastructure. The procedures for migration will also be described. In the final part of the document we describe our recent R&D activities aiming to replacing the SAN-backend for the virtualization by a cheaper iSCSI solution - this will allow to move all servers and related services to the virtualized infrastructure, excepting the ones doing hardware control via non-commodity PCI plugin cards.

  20. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    PubMed

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A novel framework for virtual prototyping of rehabilitation exoskeletons.

    PubMed

    Agarwal, Priyanshu; Kuo, Pei-Hsin; Neptune, Richard R; Deshpande, Ashish D

    2013-06-01

    Human-worn rehabilitation exoskeletons have the potential to make therapeutic exercises increasingly accessible to disabled individuals while reducing the cost and labor involved in rehabilitation therapy. In this work, we propose a novel human-model-in-the-loop framework for virtual prototyping (design, control and experimentation) of rehabilitation exoskeletons by merging computational musculoskeletal analysis with simulation-based design techniques. The framework allows to iteratively optimize design and control algorithm of an exoskeleton using simulation. We introduce biomechanical, morphological, and controller measures to quantify the performance of the device for optimization study. Furthermore, the framework allows one to carry out virtual experiments for testing specific "what-if" scenarios to quantify device performance and recovery progress. To illustrate the application of the framework, we present a case study wherein the design and analysis of an index-finger exoskeleton is carried out using the proposed framework.

  2. Identification of DNA primase inhibitors via a combined fragment-based and virtual screening

    NASA Astrophysics Data System (ADS)

    Ilic, Stefan; Akabayov, Sabine R.; Arthanari, Haribabu; Wagner, Gerhard; Richardson, Charles C.; Akabayov, Barak

    2016-11-01

    The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.

  3. Blade runner. Blade server and virtualization technology can help hospitals save money--but they are far from silver bullets.

    PubMed

    Lawrence, Daphne

    2009-03-01

    Blade servers and virtualization can reduce infrastructure, maintenance, heating, electric, cooling and equipment costs. Blade server technology is evolving and some elements may become obsolete. There is very little interoperability between blades. Hospitals can virtualize 40 to 60 percent of their servers, and old servers can be reused for testing. Not all applications lend themselves to virtualization--especially those with high memory requirements. CIOs should engage their vendors in virtualization discussions.

  4. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  5. Software forecasting as it is really done: A study of JPL software engineers

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann; Hihn, Jairus M.; Bruno, Kristin J.; Fouser, Thomas J.; Tausworthe, Robert C.

    1993-01-01

    This paper presents a summary of the results to date of a Jet Propulsion Laboratory internally funded research task to study the costing process and parameters used by internally recognized software cost estimating experts. Protocol Analysis and Markov process modeling were used to capture software engineer's forecasting mental models. While there is significant variation between the mental models that were studied, it was nevertheless possible to identify a core set of cost forecasting activities, and it was also found that the mental models cluster around three forecasting techniques. Further partitioning of the mental models revealed clustering of activities, that is very suggestive of a forecasting lifecycle. The different forecasting methods identified were based on the use of multiple-decomposition steps or multiple forecasting steps. The multiple forecasting steps involved either forecasting software size or an additional effort forecast. Virtually no subject used risk reduction steps in combination. The results of the analysis include: the identification of a core set of well defined costing activities, a proposed software forecasting life cycle, and the identification of several basic software forecasting mental models. The paper concludes with a discussion of the implications of the results for current individual and institutional practices.

  6. Are early cannulation arteriovenous grafts (ecAVG) a viable alternative to tunnelled central venous catheters (TCVCs)? An observational "virtual study" and budget impact analysis.

    PubMed

    Aitken, Emma; Iqbal, Kashfa; Thomson, Peter; Kasthuri, Ram; Kingsmore, David

    2016-05-07

    Early cannulation arteriovenous grafts (ecAVGs) are advocated as an alternative to tunnelled central venous catheters (TCVCs). A real-time observational "virtual study" and budget impact model was performed to evaluate a strategy of ecAVG as a replacement to TCVC as a bridge to definitive access creation. Data on complications and access-related bed days was collected prospectively for all TCVCs inserted over a six-month period (n = 101). The feasibility and acceptability of an alternative strategy (ecAVGs) was also evaluated. A budget impact model comparing the two strategies was performed. Autologous access in the form of native fistula was the goal wherever possible. We found 34.7% (n = 35) of TCVCs developed significant complications (including 17 culture-proven bacteraemia and one death from line sepsis). Patients spent an average of 11.9 days/patient/year in hospital as a result of access-related complications. The wait for TCVC insertion delayed discharge in 35 patients (median: 6 days). The ecAVGs were a practical and acceptable alternative to TCVCs in over 80% of patients. Over a 6-month period, total treatment costs per patient wereGBP5882 in the TCVC strategy and GBP4954 in the ecAVG strategy, delivering potential savings ofGBP927 per patient. The ecAVGs had higher procedure and re-intervention costs (GBP3014 vs. GBP1836); however, these were offset by significant reductions in septicaemia treatment costs (GBP1322 vs. GBP2176) and in-patient waiting time bed costs (GBP619 vs. GBP1870). Adopting ecAVGs as an alternative to TCVCs in patients requiring immediate access for haemodialysis may provide better individual patient care and deliver cost savings to the hospital.

  7. Virtual Visits and Patient-Centered Care: Results of a Patient Survey and Observational Study.

    PubMed

    McGrail, Kimberlyn Marie; Ahuja, Megan Alyssa; Leaver, Chad Andrew

    2017-05-26

    Virtual visits are clinical interactions in health care that do not involve the patient and provider being in the same room at the same time. The use of virtual visits is growing rapidly in health care. Some health systems are integrating virtual visits into primary care as a complement to existing modes of care, in part reflecting a growing focus on patient-centered care. There is, however, limited empirical evidence about how patients view this new form of care and how it affects overall health system use. Descriptive objectives were to assess users and providers of virtual visits, including the reasons patients give for use. The analytic objective was to assess empirically the influence of virtual visits on overall primary care use and costs, including whether virtual care is with a known or a new primary care physician. The study took place in British Columbia, Canada, where virtual visits have been publicly funded since October 2012. A survey of patients who used virtual visits and an observational study of users and nonusers of virtual visits were conducted. Comparison groups included two groups: (1) all other BC residents, and (2) a group matched (3:1) to the cohort. The first virtual visit was used as the intervention and the main outcome measures were total primary care visits and costs. During 2013-2014, there were 7286 virtual visit encounters, involving 5441 patients and 144 physicians. Younger patients and physicians were more likely to use and provide virtual visits (P<.001), with no differences by sex. Older and sicker patients were more likely to see a known provider, whereas the lowest socioeconomic groups were the least likely (P<.001). The survey of 399 virtual visit patients indicated that virtual visits were liked by patients, with 372 (93.2%) of respondents saying their virtual visit was of high quality and 364 (91.2%) reporting their virtual visit was "very" or "somewhat" helpful to resolve their health issue. Segmented regression analysis and the corresponding regression parameter estimates suggested virtual visits appear to have the potential to decrease primary care costs by approximately Can $4 per quarter (Can -$3.79, P=.12), but that benefit is most associated with seeing a known provider (Can -$8.68, P<.001). Virtual visits may be one means of making the health system more patient-centered, but careful attention needs to be paid to how these services are integrated into existing health care delivery systems. ©Kimberlyn Marie McGrail, Megan Alyssa Ahuja, Chad Andrew Leaver. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 26.05.2017.

  8. Enhancing a Low-Cost Virtual Reality Application through Constructivist Approach: The Case of Spatial Training of Middle Graders

    ERIC Educational Resources Information Center

    Samsudin, Khairulanuar; Rafi, Ahmad; Mohamad Ali, Ahmad Zamzuri; Abd. Rashid, Nazre

    2014-01-01

    The aim of this study is to develop and to test a low-cost virtual reality spatial trainer in terms of its effectiveness in spatial training. The researchers adopted three features deriving from the constructivist perspective to guide the design of the trainer, namely interaction, instruction, and support. The no control pre test post test…

  9. A Vision for Future Virtual Training

    DTIC Science & Technology

    2006-06-15

    Future Virtual Training. In Virtual Media for Military Applications (pp. KN2-1 – KN2-12). Meeting Proceedings RTO-MP-HFM-136, Keynote 2. Neuilly-sur...Spin Out. By 2017 , the FCS program will meet Full Operation Capability (FOC). The force structure of the Army at this time will include two BCTs...training environment, allowing them to meet preparatory training proficiency objectives virtually while minimizing the use of costly live ammunition. In

  10. Telemedicine as an innovative model for rebuilding medical systems in developing countries through multipartnership collaboration: the case of Albania.

    PubMed

    Latifi, Rifat; Dasho, Erion; Shatri, Zhaneta; Tilley, Elizabeth; Osmani, Kalterina L; Doarn, Charles R; Dogjani, Agron; Olldashi, Fatos; Koçiraj, Agim; Merrell, Ronald C

    2015-06-01

    The U.S. Government and other developed nations provide billions of dollars annually in relief assistance to countries around the world. The long-term benefits of this aid, however, are often difficult to elucidate. The aim of this article is to present a model of a multipartnership collaboration among U.S. governmental, nongovernmental organizations, and academia to rebuild medical systems using telemedicine as a sustainable model of foreign aid. The International Virtual e-Hospital implemented the "initiate-build-operate-transfer" strategy to establish an effective telemedicine system in Albania that includes the National Telemedicine Center and 12 regional telemedicine centers. This nationwide telemedicine network has active clinical programs, virtual educational programs, and an electronic library that has substantially improved the access to care while advancing medical education. We propose that telemedicine is an optimal, sustainable, low-cost model for rebuilding medical systems of developing countries when implemented through a multipartnership approach.

  11. Forward and Spot Prices in Multi-Settlement Wholesale Electricity Markets

    NASA Astrophysics Data System (ADS)

    Larrieu, Jeremy

    In organized wholesale electricity markets, power is sold competitively in a multi-unit multi-settlement single-price auction comprised of a forward and a spot market. This dissertation attempts to understand the structure of the forward premium in these markets, and to identify the factors that may lead forward and spot prices to converge or diverge. These markets are unique in that the forward demand is price-sensitive, while spot residual demand is perfectly inelastic and must be met in full, a crucial design feature the literature often glosses over. An important contribution of this dissertation is the explicit modeling of each market separately in order to understand how generation and load choose to act in each one, and the consequences of these actions on equilibrium prices and quantities given that firms maximize joint profits over both markets. In the first essay, I construct a two-settlement model of electricity prices in which firms that own asymmetric capacity-constrained units facing convex costs compete to meet demand from consumers, first in quantities, then in prices. I show that the forward premium depends on the costliness of spot production relative to firms' ability to exercise market power by setting quantities in the forward market. In the second essay, I test the model from the first essay with unit-level capacity and marginal cost data from the California Independent System Operator (CAISO). I show that the model closely replicates observed price formation in the CAISO. In the third essay, I estimate a time series model of the CAISO forward premium in order to measure the impact that virtual bidding has had on forward and spot price convergence in California between April 2009 and March 2014. I find virtual bidding to have caused forward and spot prices to diverge due to the large number of market participants looking to hedge against - or speculate on - the occurrence of infrequent but large spot price spikes by placing virtual demand bids.

  12. Declarative Knowledge Acquisition in Immersive Virtual Learning Environments

    ERIC Educational Resources Information Center

    Webster, Rustin

    2016-01-01

    The author investigated the interaction effect of immersive virtual reality (VR) in the classroom. The objective of the project was to develop and provide a low-cost, scalable, and portable VR system containing purposely designed and developed immersive virtual learning environments for the US Army. The purpose of the mixed design experiment was…

  13. Communication Skills to Develop Trusting Relationships on Global Virtual Engineering Capstone Teams

    ERIC Educational Resources Information Center

    Zaugg, Holt; Davies, Randall S.

    2013-01-01

    As universities seek to provide cost-effective, cross-cultural experiences using global virtual (GV) teams, the "soft" communication skills typical of all teams, increases in importance for GV teams. Students need to be taught how to navigate through cultural issues and virtual tool issues to build strong trusting relationships with…

  14. Assessing Student Learning in a Virtual Laboratory Environment

    ERIC Educational Resources Information Center

    Wolf, T.

    2010-01-01

    Laboratory experience is a key factor in technical and scientific education. Virtual laboratories have been proposed to reduce cost and simplify maintenance of lab facilities while still providing students with access to real systems. It is important to determine if such virtual labs are still effective for student learning. In the assessment of a…

  15. The Potential for Scientific Collaboration in Virtual Ecosystems

    ERIC Educational Resources Information Center

    Magerko, Brian

    2010-01-01

    This article explores the potential benefits of creating "virtual ecosystems" from real-world data. These ecosystems are intended to be realistic virtual representations of environments that may be costly or difficult to access in person. They can be constructed as 3D worlds rendered from stereo video data, augmented with scientific data, and then…

  16. An Investigation into Cooperative Learning in a Virtual World Using Problem-Based Learning

    ERIC Educational Resources Information Center

    Parson, Vanessa; Bignell, Simon

    2017-01-01

    Three-dimensional multi-user virtual environments (MUVEs) have the potential to provide experiential learning qualitatively similar to that found in the real world. MUVEs offer a pedagogically-driven immersive learning opportunity for educationalists that is cost-effective and enjoyable. A family of digital virtual avatars was created within…

  17. An Effective Mechanism for Virtual Machine Placement using Aco in IAAS Cloud

    NASA Astrophysics Data System (ADS)

    Shenbaga Moorthy, Rajalakshmi; Fareentaj, U.; Divya, T. K.

    2017-08-01

    Cloud computing provides an effective way to dynamically provide numerous resources to meet customer demands. A major challenging problem for cloud providers is designing efficient mechanisms for optimal virtual machine Placement (OVMP). Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. In order to provide appropriate resources to the clients an optimal virtual machine placement algorithm is proposed. Virtual machine placement is NP-Hard problem. Such NP-Hard problem can be solved using heuristic algorithm. In this paper, Ant Colony Optimization based virtual machine placement is proposed. Our proposed system focuses on minimizing the cost spending in each plan for hosting virtual machines in a multiple cloud provider environment and the response time of each cloud provider is monitored periodically, in such a way to minimize delay in providing the resources to the users. The performance of the proposed algorithm is compared with greedy mechanism. The proposed algorithm is simulated in Eclipse IDE. The results clearly show that the proposed algorithm minimizes the cost, response time and also number of migrations.

  18. Virtual aluminum castings: An industrial application of ICME

    NASA Astrophysics Data System (ADS)

    Allison, John; Li, Mei; Wolverton, C.; Su, Xuming

    2006-11-01

    The automotive product design and manufacturing community is continually besieged by Hercule an engineering, timing, and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing engine performance requirements coupled with stringent weight and packaging constraints are pushing aluminum alloys to the limits of their capabilities. To provide high-quality blocks and heads at the lowest possible cost, manufacturing process engineers are required to find increasingly innovative ways to cast and heat treat components. Additionally, to remain competitive, products and manufacturing methods must be developed and implemented in record time. To bridge the gaps between program needs and engineering reality, the use of robust computational models in up-front analysis will take on an increasingly important role. This article describes just such a computational approach, the Virtual Aluminum Castings methodology, which was developed and implemented at Ford Motor Company and demonstrates the feasibility and benefits of integrated computational materials engineering.

  19. Computer animation for minimally invasive surgery: computer system requirements and preferred implementations

    NASA Astrophysics Data System (ADS)

    Pieper, Steven D.; McKenna, Michael; Chen, David; McDowall, Ian E.

    1994-04-01

    We are interested in the application of computer animation to surgery. Our current project, a navigation and visualization tool for knee arthroscopy, relies on real-time computer graphics and the human interface technologies associated with virtual reality. We believe that this new combination of techniques will lead to improved surgical outcomes and decreased health care costs. To meet these expectations in the medical field, the system must be safe, usable, and cost-effective. In this paper, we outline some of the most important hardware and software specifications in the areas of video input and output, spatial tracking, stereoscopic displays, computer graphics models and libraries, mass storage and network interfaces, and operating systems. Since this is a fairly new combination of technologies and a new application, our justification for our specifications are drawn from the current generation of surgical technology and by analogy to other fields where virtual reality technology has been more extensively applied and studied.

  20. Virtual day of the midwife: a global 'pyjama party'.

    PubMed

    Stewart, Sarah

    2014-06-01

    The Virtual International Day of the Midwife (VIDM) (www.vidm.org) is an annual online conference designed to break down traditional barriers to continuing professional development (CPD); provide online opportunities for international midwifery networking; and model open access communication and collaboration practices. Whilst the VIDM is designed to reach midwives all around the world, issues of access to the Internet, language and cultural differences prevent some midwives from attending, especially those who live in resource-poor countries. Nevertheless, the VIDM has successfully demonstrated how CPD can be delivered to midwives in a flexible and cost-effective way, as well as bring them together in a truly global open and collaborative environment.

  1. Low-Cost, Portable, Multi-Wall Virtual Reality

    NASA Technical Reports Server (NTRS)

    Miller, Samuel A.; Misch, Noah J.; Dalton, Aaron J.

    2005-01-01

    Virtual reality systems make compelling outreach displays, but some such systems, like the CAVE, have design features that make their use for that purpose inconvenient. In the case of the CAVE, the equipment is difficult to disassemble, transport, and reassemble, and typically CAVEs can only be afforded by large-budget research facilities. We implemented a system like the CAVE that costs less than $30,000, weighs about 500 pounds, and fits into a fifteen-passenger van. A team of six people have unpacked, assembled, and calibrated the system in less than two hours. This cost reduction versus similar virtual-reality systems stems from the unique approach we took to stereoscopic projection. We used an assembly of optical chopper wheels and commodity LCD projectors to create true active stereo at less than a fifth of the cost of comparable active-stereo technologies. The screen and frame design also optimized portability; the frame assembles in minutes with only two fasteners, and both it and the screen pack into small bundles for easy and secure shipment.

  2. TU-A-17A-02: In Memoriam of Ben Galkin: Virtual Tools for Validation of X-Ray Breast Imaging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, K; Bakic, P; Abbey, C

    2014-06-15

    This symposium will explore simulation methods for the preclinical evaluation of novel 3D and 4D x-ray breast imaging systems – the subject of AAPM taskgroup TG234. Given the complex design of modern imaging systems, simulations offer significant advantages over long and costly clinical studies in terms of reproducibility, reduced radiation exposures, a known reference standard, and the capability for studying patient and disease subpopulations through appropriate choice of simulation parameters. Our focus will be on testing the realism of software anthropomorphic phantoms and virtual clinical trials tools developed for the optimization and validation of breast imaging systems. The symposium willmore » review the stateof- the-science, as well as the advantages and limitations of various approaches to testing realism of phantoms and simulated breast images. Approaches based upon the visual assessment of synthetic breast images by expert observers will be contrasted with approaches based upon comparing statistical properties between synthetic and clinical images. The role of observer models in the assessment of realism will be considered. Finally, an industry perspective will be presented, summarizing the role and importance of virtual tools and simulation methods in product development. The challenges and conditions that must be satisfied in order for computational modeling and simulation to play a significantly increased role in the design and evaluation of novel breast imaging systems will be addressed. Learning Objectives: Review the state-of-the science in testing realism of software anthropomorphic phantoms and virtual clinical trials tools; Compare approaches based upon the visual assessment by expert observers vs. the analysis of statistical properties of synthetic images; Discuss the role of observer models in the assessment of realism; Summarize the industry perspective to virtual methods for breast imaging.« less

  3. 3D Printing of Biomolecular Models for Research and Pedagogy

    PubMed Central

    Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel

    2017-01-01

    The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology. PMID:28362403

  4. Working Group Reports and Presentations: Virtual Worlds and Virtual Exploration

    NASA Technical Reports Server (NTRS)

    LAmoreaux, Claudia

    2006-01-01

    Scientists and engineers are continually developing innovative methods to capitalize on recent developments in computational power. Virtual worlds and virtual exploration present a new toolset for project design, implementation, and resolution. Replication of the physical world in the virtual domain provides stimulating displays to augment current data analysis techniques and to encourage public participation. In addition, the virtual domain provides stakeholders with a low cost, low risk design and test environment. The following document defines a virtual world and virtual exploration, categorizes the chief motivations for virtual exploration, elaborates upon specific objectives, identifies roadblocks and enablers for realizing the benefits, and highlights the more immediate areas of implementation (i.e. the action items). While the document attempts a comprehensive evaluation of virtual worlds and virtual exploration, the innovative nature of the opportunities presented precludes completeness. The authors strongly encourage readers to derive additional means of utilizing the virtual exploration toolset.

  5. Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low- Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public ...DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per

  6. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  7. Virtual reality training for surgical trainees in laparoscopic surgery.

    PubMed

    Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R

    2013-08-27

    Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared virtual reality training versus box-trainer training. There were no trials that compared different forms of virtual reality training. All the trials were at high risk of bias. Operating time and operative performance were the only outcomes reported in the trials. The remaining outcomes such as mortality, morbidity, quality of life (the primary outcomes of this review) and hospital stay (a secondary outcome) were not reported. Virtual reality training versus no supplementary training: The operating time was significantly shorter in the virtual reality group than in the no supplementary training group (3 trials; 49 participants; MD -11.76 minutes; 95% CI -15.23 to -8.30). Two trials that could not be included in the meta-analysis also showed a reduction in operating time (statistically significant in one trial). The numerical values for operating time were not reported in these two trials. The operative performance was significantly better in the virtual reality group than the no supplementary training group using the fixed-effect model (2 trials; 33 participants; SMD 1.65; 95% CI 0.72 to 2.58). The results became non-significant when the random-effects model was used (2 trials; 33 participants; SMD 2.14; 95% CI -1.29 to 5.57). One trial could not be included in the meta-analysis as it did not report the numerical values. The authors stated that the operative performance of virtual reality group was significantly better than the control group. Virtual reality training versus box-trainer training: The only trial that reported operating time did not report the numerical values. In this trial, the operating time in the virtual reality group was significantly shorter than in the box-trainer group. Of the two trials that reported operative performance, only one trial reported the numerical values. The operative performance was significantly better in the virtual reality group than in the box-trainer group (1 trial; 19 participants; SMD 1.46; 95% CI 0.42 to 2.50). In the other trial that did not report the numerical values, the authors stated that the operative performance in the virtual reality group was significantly better than the box-trainer group. Virtual reality training appears to decrease the operating time and improve the operative performance of surgical trainees with limited laparoscopic experience when compared with no training or with box-trainer training. However, the impact of this decreased operating time and improvement in operative performance on patients and healthcare funders in terms of improved outcomes or decreased costs is not known. Further well-designed trials at low risk of bias and random errors are necessary. Such trials should assess the impact of virtual reality training on clinical outcomes.

  8. Simulating video-assisted thoracoscopic lobectomy: a virtual reality cognitive task simulation.

    PubMed

    Solomon, Brian; Bizekis, Costas; Dellis, Sophia L; Donington, Jessica S; Oliker, Aaron; Balsam, Leora B; Zervos, Michael; Galloway, Aubrey C; Pass, Harvey; Grossi, Eugene A

    2011-01-01

    Current video-assisted thoracoscopic surgery training models rely on animals or mannequins to teach procedural skills. These approaches lack inherent teaching/testing capability and are limited by cost, anatomic variations, and single use. In response, we hypothesized that video-assisted thoracoscopic surgery right upper lobe resection could be simulated in a virtual reality environment with commercial software. An anatomy explorer (Maya [Autodesk Inc, San Rafael, Calif] models of the chest and hilar structures) and simulation engine were adapted. Design goals included freedom of port placement, incorporation of well-known anatomic variants, teaching and testing modes, haptic feedback for the dissection, ability to perform the anatomic divisions, and a portable platform. Preexisting commercial models did not provide sufficient surgical detail, and extensive modeling modifications were required. Video-assisted thoracoscopic surgery right upper lobe resection simulation is initiated with a random vein and artery variation. The trainee proceeds in a teaching or testing mode. A knowledge database currently includes 13 anatomic identifications and 20 high-yield lung cancer learning points. The "patient" is presented in the left lateral decubitus position. After initial camera port placement, the endoscopic view is displayed and the thoracoscope is manipulated via the haptic device. The thoracoscope port can be relocated; additional ports are placed using an external "operating room" view. Unrestricted endoscopic exploration of the thorax is allowed. An endo-dissector tool allows for hilar dissection, and a virtual stapling device divides structures. The trainee's performance is reported. A virtual reality cognitive task simulation can overcome the deficiencies of existing training models. Performance scoring is being validated as we assess this simulator for cognitive and technical surgical education. Copyright © 2011. Published by Mosby, Inc.

  9. A Study of the Relationship of Communication Technology Configurations in Virtual Research Environments and Effectiveness of Collaborative Research

    ERIC Educational Resources Information Center

    Ahmed, Iftekhar

    2009-01-01

    Virtual Research Environments (VRE) are electronic meeting places for interaction among scientists created by combining software tools and computer networking. Virtual teams are enjoying increased importance in the conduct of scientific research because of the rising cost of traditional scientific scholarly communication, the growing importance of…

  10. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).

  11. The evolution of diagnosis-related groups (DRGs): from its beginnings in case-mix and resource use theory, to its implementation for payment and now for its current utilization for quality within and outside the hospital.

    PubMed

    Goldfield, Norbert

    2010-01-01

    Policymakers are searching for ways to control health care costs and improve quality. Diagnosis-related groups (DRGs) are by far the most important cost control and quality improvement tool that governments and private payers have implemented. This article reviews why DRGs have had this singular success both in the hospital sector and, over the past 10 years, in ambulatory and managed care settings. Last, the author reviews current trends in the development and implementation of tools that have the key ingredients of DRG success: categorical clinical model, separation of the clinical model from payment weights, separate payment adjustments for nonclinical factors, and outlier payments. Virtually all current tools used to manage health care costs and improve quality do not have these characteristics. This failure explains a key reason for the failure, for example, of the Medicare Advantage program to control health care costs. This article concludes with a discussion of future developments for DRG-type models outside the hospital sector.

  12. The Economic Benefits of Elk Viewing at the Jewell Meadows Wildlife Area in Oregon

    Treesearch

    Geoffrey Donovan; Patricia Champ

    2009-01-01

    In this study, a travel cost model is used to estimate the value of elk viewing at the Jewell Meadows Wildlife Area in Oregon. Jewell Meadows was originally established to provide winter browse and supplemental feeding for elk to reduce damage to nearby agricultural and forest land. However, because visitors are virtually guaranteed the opportunity to see large numbers...

  13. Virtual reality hardware for use in interactive 3D data fusion and visualization

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher S.; Abidi, Mongi A.

    1997-09-01

    Virtual reality has become a tool for use in many areas of research. We have designed and built a VR system for use in range data fusion and visualization. One major VR tool is the CAVE. This is the ultimate visualization tool, but comes with a large price tag. Our design uses a unique CAVE whose graphics are powered by a desktop computer instead of a larger rack machine making it much less costly. The system consists of a screen eight feet tall by twenty-seven feet wide giving a variable field-of-view currently set at 160 degrees. A silicon graphics Indigo2 MaxImpact with the impact channel option is used for display. This gives the capability to drive three projectors at a resolution of 640 by 480 for use in displaying the virtual environment and one 640 by 480 display for a user control interface. This machine is also the first desktop package which has built-in hardware texture mapping. This feature allows us to quickly fuse the range and intensity data and other multi-sensory data. The final goal is a complete 3D texture mapped model of the environment. A dataglove, magnetic tracker, and spaceball are to be used for manipulation of the data and navigation through the virtual environment. This system gives several users the ability to interactively create 3D models from multiple range images.

  14. Graphic and haptic simulation system for virtual laparoscopic rectum surgery.

    PubMed

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2011-09-01

    Medical simulators with vision and haptic feedback techniques offer a cost-effective and efficient alternative to the traditional medical trainings. They have been used to train doctors in many specialties of medicine, allowing tasks to be practised in a safe and repetitive manner. This paper describes a virtual-reality (VR) system which will help to influence surgeons' learning curves in the technically challenging field of laparoscopic surgery of the rectum. Data from MRI of the rectum and real operation videos are used to construct the virtual models. A haptic force filter based on radial basis functions is designed to offer realistic and smooth force feedback. To handle collision detection efficiently, a hybrid model is presented to compute the deformation of intestines. Finally, a real-time cutting technique based on mesh is employed to represent the incision operation. Despite numerous research efforts, fast and realistic solutions of soft tissues with large deformation, such as intestines, prove extremely challenging. This paper introduces our latest contribution to this endeavour. With this system, the user can haptically operate with the virtual rectum and simultaneously watch the soft tissue deformation. Our system has been tested by colorectal surgeons who believe that the simulated tactile and visual feedbacks are realistic. It could replace the traditional training process and effectively transfer surgical skills to novices. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Air Education and Training Command: Education and Training Technology Application (ETTAP) Program

    DTIC Science & Technology

    2007-05-15

    benefit  vs  cost)  •  Measurable  •  Completed within approximately 18 months  •  Of potential use across AETC  •  Cost ≈ $200K ­ $700K  •  Current...Airbase Sim  MAXWELL  Intelligence Tutoring  KEESLER  Ultimate Virtual  Classroom   TYNDALL  Airborne Warning & Control System  Stand­alone Training...LACKLAND  Tablet  PCs w/Dog Training  LUKE  Barry Goldwater Range  Live Virtual Data Link  LAUGHLIN  Virtual Interactive Pattern  Environment & Radio

  16. Virtual Reality Enhanced Instructional Learning

    ERIC Educational Resources Information Center

    Nachimuthu, K.; Vijayakumari, G.

    2009-01-01

    Virtual Reality (VR) is a creation of virtual 3D world in which one can feel and sense the world as if it is real. It is allowing engineers to design machines and Educationists to design AV [audiovisual] equipment in real time but in 3-dimensional hologram as if the actual material is being made and worked upon. VR allows a least-cost (energy…

  17. Possibilities and Determinants of Using Low-Cost Devices in Virtual Education Applications

    ERIC Educational Resources Information Center

    Bun, Pawel Kazimierz; Wichniarek, Radoslaw; Górski, Filip; Grajewski, Damian; Zawadzki, Przemyslaw; Hamrol, Adam

    2017-01-01

    Virtual reality (VR) may be used as an innovative educational tool. However, in order to fully exploit its potential, it is essential to achieve the effect of immersion. To more completely submerge the user in a virtual environment, it is necessary to ensure that the user's actions are directly translated into the image generated by the…

  18. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    PubMed Central

    Xia, Yong; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957

  19. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.

    PubMed

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  20. Energy-aware virtual network embedding in flexi-grid networks.

    PubMed

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng

    2017-11-27

    Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.

  1. Models and algorithm of optimization launch and deployment of virtual network functions in the virtual data center

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2017-10-01

    The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.

  2. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  3. Combining virtual reality and multimedia techniques for effective maintenance training

    NASA Astrophysics Data System (ADS)

    McLin, David M.; Chung, James C.

    1996-02-01

    This paper describes a virtual reality (VR) system developed for use as part of an integrated, low-cost, stand-alone, multimedia trainer. The trainer is used to train National Guard personnel in maintenance and trouble-shooting tasks for the M1A1 Abrams tank, the M2A2 Bradley fighting vehicle and the TOW II missile system. The VR system features a modular, extensible, object-oriented design which consists of a training monitor component, a VR run time component, a model loader component, and a set of domain-specific object behaviors which mimic the behavior of objects encountered in the actual vehicles. The VR system is built from a combination of off-the-shelf commercial software and custom software developed at RTI.

  4. Endovascular training with animals versus virtual reality systems: an economic analysis.

    PubMed

    Berry, Max; Hellström, Mikael; Göthlin, Jan; Reznick, Richard; Lönn, Lars

    2008-02-01

    To assess the relative costs of a virtual reality (VR) laboratory and an animal laboratory for endovascular skills training. Cost data extracted from a previous experiment was used to perform a financial analysis according to the guidelines published by the National Institutes of Health. The analysis compared the purchase or rental of a Procedicus Vascular Interventional System Trainer to the rental of an animal laboratory. The VR laboratory course cost $3,434 per trainee versus $4,634 in the animal laboratory according to the purchase-versus-rental analysis. The cost ratio was 0.74 in favor of the VR laboratory. Cost ratio sensitivity analysis ranged from 0.25 in favor of the VR laboratory to 2.22 in favor of the animal laboratory. The first-year potential savings were $62,410 assuming exclusive use of the VR laboratory. The 5-year training savings totaled $390,376, excluding the $60,000 residual value of the simulator. Simulator rental reduced the course price to $1,076 per trainee and lowered the cost ratio to 0.23 in favor of the VR laboratory. Findings of sensitivity analysis ranged from 0.08 to 0.70 in favor of the VR laboratory. The first-year and 5-year potential national savings increased to $185,026 and $1,013,238, respectively. Although evidence remains sparse that the training of interventional skills in artificial environments translates to better performance in human procedures, there are good pedagogic grounds on which to believe that such training will become increasingly important. The present comparison of the direct costs of two such models suggests that VR training is less expensive than live animal training.

  5. Practical Issues in Delivery of Clinician-to-Patient Telemental Health in an Academic Medical Center.

    PubMed

    Abrams, Jessica; Sossong, Sarah; Schwamm, Lee H; Barsanti, Lauren; Carter, Michael; Kling, Naomi; Kotarski, Meghan; Leddy, Jaclyn; Meller, Benjamin; Simoni, Marcy; Sullivan, Michael; Wozniak, Janet

    In the age of online communication, psychiatric care can now be provided via videoconferencing technologies. While virtual visits as a part of telepsychiatry and telemental health provide a highly efficient and beneficial modality of care, the implementation of virtual visits requires attention to quality and safety issues. As practitioners continue to utilize this technology, issues of clinician licensing, treatment outcomes of virtual visits versus in-person visits, and cost offset require ongoing study. This review provides an overview of the topics of technology, legal and regulatory issues, clinical issues, and cost savings as they relate to practicing psychiatry and psychology via virtual visits in an academic medical center. We review the telepsychiatry/telemental health effectiveness literature from 2013 to the present. Our literature searches used the following terms: telemental health effective, telepsychiatry effective, telepsychiatry efficacy, and telemental health efficacy. These searches produced 58 articles, reduced to 16 when including only articles that address effectiveness of clinician-to-patient services. The technological, legal, and regulatory issues vary from state to state and over time. The emerging research addressing diverse populations and disorders provides strong evidence for the effectiveness of telepsychiatry. Cost savings are difficult to precisely determine and depend on the scope of the cost and benefit measured. Establishing a telepsychiatry program requires a comprehensive approach with up-to-date legal and technological considerations.

  6. Column generation algorithms for virtual network embedding in flexi-grid optical networks.

    PubMed

    Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe

    2018-04-16

    Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.

  7. Computational Modeling as a Design Tool in Microelectronics Manufacturing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Plans to introduce pilot lines or fabs for 300 mm processing are in progress. The IC technology is simultaneously moving towards 0.25/0.18 micron. The convergence of these two trends places unprecedented stringent demands on processes and equipments. More than ever, computational modeling is called upon to play a complementary role in equipment and process design. The pace in hardware/process development needs a matching pace in software development: an aggressive move towards developing "virtual reactors" is desirable and essential to reduce design cycle and costs. This goal has three elements: reactor scale model, feature level model, and database of physical/chemical properties. With these elements coupled, the complete model should function as a design aid in a CAD environment. This talk would aim at the description of various elements. At the reactor level, continuum, DSMC(or particle) and hybrid models will be discussed and compared using examples of plasma and thermal process simulations. In microtopography evolution, approaches such as level set methods compete with conventional geometric models. Regardless of the approach, the reliance on empricism is to be eliminated through coupling to reactor model and computational surface science. This coupling poses challenging issues of orders of magnitude variation in length and time scales. Finally, database development has fallen behind; current situation is rapidly aggravated by the ever newer chemistries emerging to meet process metrics. The virtual reactor would be a useless concept without an accompanying reliable database that consists of: thermal reaction pathways and rate constants, electron-molecule cross sections, thermochemical properties, transport properties, and finally, surface data on the interaction of radicals, atoms and ions with various surfaces. Large scale computational chemistry efforts are critical as experiments alone cannot meet database needs due to the difficulties associated with such controlled experiments and costs.

  8. Relative Panoramic Camera Position Estimation for Image-Based Virtual Reality Networks in Indoor Environments

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.

    2017-09-01

    Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  9. The virtual dissecting room: Creating highly detailed anatomy models for educational purposes.

    PubMed

    Zilverschoon, Marijn; Vincken, Koen L; Bleys, Ronald L A W

    2017-01-01

    Virtual 3D models are powerful tools for teaching anatomy. At the present day, there are a lot of different digital anatomy models, most of these commercial applications are based on a 3D model of a human body reconstructed from images with a 1mm intervals. The use of even smaller intervals may result in more details and more realistic appearances of 3D anatomy models. The aim of this study was to create a realistic and highly detailed 3D model of the hand and wrist based on small interval cross-sectional images, suitable for undergraduate and postgraduate teaching purposes with the possibility to perform a virtual dissection in an educational application. In 115 transverse cross-sections from a human hand and wrist, segmentation was done by manually delineating 90 different structures. With the use of Amira the segments were imported and a surface model/polygon model was created, followed by smoothening of the surfaces in Mudbox. In 3D Coat software the smoothed polygon models were automatically retopologied into a quadrilaterals formation and a UV map was added. In Mudbox, the textures from 90 structures were depicted in a realistic way by using photos from real tissue and afterwards height maps, gloss and specular maps were created to add more level of detail and realistic lightning on every structure. Unity was used to build a new software program that would support all the extra map features together with a preferred user interface. A 3D hand model has been created, containing 100 structures (90 at start and 10 extra structures added along the way). The model can be used interactively by changing the transparency, manipulating single or grouped structures and thereby simulating a virtual dissection. This model can be used for a variety of teaching purposes, ranging from undergraduate medical students to residents of hand surgery. Studying the hand and wrist anatomy using this model is cost-effective and not hampered by the limited access to real dissecting facilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Virtualizing Resources for the Application Services and Framework Team

    NASA Technical Reports Server (NTRS)

    Varner, Justin T.; Crawford, Linda K.

    2010-01-01

    Virtualization is an emerging technology that will undoubtedly have a major impact on the future of Information Technology. It allows for the centralization of resources in an enterprise system without the need to make any changes to the host operating system, file system, or registry. In turn, this significantly reduces cost and administration, and provides a much greater level of security, compatibility, and efficiency. This experiment examined the practicality, methodology, challenges, and benefits of implementing the technology for the Launch Control System (LCS), and more specifically the Application Services (AS) group of the National Aeronautics and Space Administration (NASA) at the Kennedy Space Center (KSC). In order to carry out this experiment, I used several tools from the virtualization company known as VMWare; these programs included VMWare ThinApp, VMWare Workstation, and VMWare ACE. Used in conjunction, these utilities provided the engine necessary to virtualize and deploy applications in a desktop environment on any Windows platform available. The results clearly show that virtualization is a viable technology that can, when implemented properly, dramatically cut costs, enhance stability and security, and provide easier management for administrators.

  11. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets.

    PubMed

    Wasko, Michael J; Pellegrene, Kendy A; Madura, Jeffry D; Surratt, Christopher K

    2015-01-01

    Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for "growing" the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  12. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets

    PubMed Central

    Wasko, Michael J.; Pellegrene, Kendy A.; Madura, Jeffry D.; Surratt, Christopher K.

    2015-01-01

    Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for “growing” the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies. PMID:26441817

  13. A cost-effective approach to establishing a surgical skills laboratory.

    PubMed

    Berg, David A; Milner, Richard E; Fisher, Carol A; Goldberg, Amy J; Dempsey, Daniel T; Grewal, Harsh

    2007-11-01

    Recent studies comparing inexpensive low-fidelity box trainers to expensive computer-based virtual reality systems demonstrate similar acquisition of surgical skills and transferability to the clinical setting. With new mandates emerging that all surgical residency programs have access to a surgical skills laboratory, we describe our cost-effective approach to teaching basic and advanced open and laparoscopic skills utilizing inexpensive bench models, box trainers, and animate models. Open models (basic skills, bowel anastomosis, vascular anastomosis, trauma skills) and laparoscopic models (basic skills, cholecystectomy, Nissen fundoplication, suturing and knot tying, advanced in vivo skills) are constructed using a combination of materials found in our surgical research laboratories, retail stores, or donated by industry. Expired surgical materials are obtained from our hospital operating room and animal organs from food-processing plants. In vivo models are performed in an approved research facility. Operation, maintenance, and administration of the surgical skills laboratory are coordinated by a salaried manager, and instruction is the responsibility of all surgical faculty from our institution. Overall, the cost analyses of our initial startup costs and operational expenditures over a 3-year period revealed a progressive decrease in yearly cost per resident (2002-2003, $1,151; 2003-2004, $1,049; and 2004-2005, $982). Our approach to surgical skills education can serve as a template for any surgery program with limited financial resources.

  14. Infrastructure Suitability Assessment Modeling for Cloud Computing Solutions

    DTIC Science & Technology

    2011-09-01

    Virtualization vs . Para-Virtualization .......................................................10 Figure 4. Modeling alternatives in relation to model...the conceptual difference between full virtualization and para-virtualization. Figure 3. Full Virtualization vs . Para-Virtualization 2. XEN...Besides Microsoft’s own client implementations, dubbed “Remote Desktop Con- nection Client” for Windows® and Apple ® operating systems, various open

  15. Quantum probability ranking principle for ligand-based virtual screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  16. Quantum probability ranking principle for ligand-based virtual screening

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  17. Progressive Damage and Failure Analysis of Composite Laminates

    NASA Astrophysics Data System (ADS)

    Joseph, Ashith P. K.

    Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis tool is validated by comparing the simulations against experiments for a selected number of quasi-static loading cases.

  18. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    NASA Technical Reports Server (NTRS)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  19. Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brust, Frederick W.; Punch, Edward F.; Twombly, Elizabeth Kurth

    This report summarizes the final product developed for the US DOE Small Business Innovation Research (SBIR) Phase II grant made to Engineering Mechanics Corporation of Columbus (Emc 2) between April 16, 2014 and August 31, 2016 titled ‘Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures’. Many US companies have moved fabrication and production facilities off shore because of cheaper labor costs. A key aspect in bringing these jobs back to the US is the use of technology to render US-made fabrications more cost-efficient overall with higher quality. One significant advantage thatmore » has emerged in the US over the last two decades is the use of virtual design for fabrication of small and large structures in weld fabrication industries. Industries that use virtual design and analysis tools have reduced material part size, developed environmentally-friendly fabrication processes, improved product quality and performance, and reduced manufacturing costs. Indeed, Caterpillar Inc. (CAT), one of the partners in this effort, continues to have a large fabrication presence in the US because of the use of weld fabrication modeling to optimize fabrications by controlling weld residual stresses and distortions and improving fatigue, corrosion, and fracture performance. This report describes Emc 2’s DOE SBIR Phase II final results to extend an existing, state-of-the-art software code, Virtual Fabrication Technology (VFT®), currently used to design and model large welded structures prior to fabrication - to a broader range of products with widespread applications for small and medium-sized enterprises (SMEs). VFT® helps control distortion, can minimize and/or control residual stresses, control welding microstructure, and pre-determine welding parameters such as weld-sequencing, pre-bending, thermal-tensioning, etc. VFT® uses material properties, consumable properties, etc. as inputs. Through VFT®, manufacturing companies can avoid costly design changes after fabrication. This leads to the concept of joint design/fabrication where these important disciplines are intimately linked to minimize fabrication costs. Finally service performance (such as fatigue, corrosion, and fracture/damage) can be improved using this product. Emc 2’s DOE SBIR Phase II effort successfully adapted VFT® to perform efficiently in an HPC environment independent of commercial software on a platform to permit easy and cost effective access to the code. This provides the key for SMEs to access this sophisticated and proven methodology that is quick, accurate, cost effective and available “on-demand” to address weld-simulation and fabrication problems prior to manufacture. In addition, other organizations, such as Government agencies and large companies, may have a need for spot use of such a tool. The open source code, WARP3D, a high performance finite element code used in fracture and damage assessment of structures, was significantly modified so computational weld problems can be solved efficiently on multiple processors and threads with VFT®. The thermal solver for VFT®, based on a series of closed form solution approximations, was extensively enhanced for solution on multiple processors greatly increasing overall speed. In addition, the graphical user interface (GUI) was re-written to permit SMEs access to an HPC environment at the Ohio Super Computer Center (OSC) to integrate these solutions with WARP3D. The GUI is used to define all weld pass descriptions, number of passes, material properties, consumable properties, weld speed, etc. for the structure to be modeled. The GUI was enhanced to make it more user-friendly so that non-experts can perform weld modeling. Finally, an extensive outreach program to market this capability to fabrication companies was performed. This access will permit SMEs to perform weld modeling to improve their competitiveness at a reasonable cost.« less

  20. The Virtual Dental Home: Implications for Policy and Strategy

    PubMed Central

    Glassman, Paul; Harrington, Maureen; Mertz, Elizabeth; Namakian, Maysa

    2012-01-01

    Widely recognized problems with the U.S. health care system, including rapidly increasing costs and disparities in access and outcomes also exist in oral health. If oral health systems are to meet the “Triple Aim” of improving the experience of care, improving the health of populations, and reducing per capita costs of health care, new and innovative strategies will be needed including new regulatory, delivery, and financing systems. The virtual dental home is one such system. PMID:22916382

  1. Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting

    NASA Astrophysics Data System (ADS)

    Kurtz, Benjamin Bernard

    In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.

  2. VLSI Design of Trusted Virtual Sensors.

    PubMed

    Martínez-Rodríguez, Macarena C; Prada-Delgado, Miguel A; Brox, Piedad; Baturone, Iluminada

    2018-01-25

    This work presents a Very Large Scale Integration (VLSI) design of trusted virtual sensors providing a minimum unitary cost and very good figures of size, speed and power consumption. The sensed variable is estimated by a virtual sensor based on a configurable and programmable PieceWise-Affine hyper-Rectangular (PWAR) model. An algorithm is presented to find the best values of the programmable parameters given a set of (empirical or simulated) input-output data. The VLSI design of the trusted virtual sensor uses the fast authenticated encryption algorithm, AEGIS, to ensure the integrity of the provided virtual measurement and to encrypt it, and a Physical Unclonable Function (PUF) based on a Static Random Access Memory (SRAM) to ensure the integrity of the sensor itself. Implementation results of a prototype designed in a 90-nm Complementary Metal Oxide Semiconductor (CMOS) technology show that the active silicon area of the trusted virtual sensor is 0.86 mm 2 and its power consumption when trusted sensing at 50 MHz is 7.12 mW. The maximum operation frequency is 85 MHz, which allows response times lower than 0.25 μ s. As application example, the designed prototype was programmed to estimate the yaw rate in a vehicle, obtaining root mean square errors lower than 1.1%. Experimental results of the employed PUF show the robustness of the trusted sensing against aging and variations of the operation conditions, namely, temperature and power supply voltage (final value as well as ramp-up time).

  3. VLSI Design of Trusted Virtual Sensors

    PubMed Central

    2018-01-01

    This work presents a Very Large Scale Integration (VLSI) design of trusted virtual sensors providing a minimum unitary cost and very good figures of size, speed and power consumption. The sensed variable is estimated by a virtual sensor based on a configurable and programmable PieceWise-Affine hyper-Rectangular (PWAR) model. An algorithm is presented to find the best values of the programmable parameters given a set of (empirical or simulated) input-output data. The VLSI design of the trusted virtual sensor uses the fast authenticated encryption algorithm, AEGIS, to ensure the integrity of the provided virtual measurement and to encrypt it, and a Physical Unclonable Function (PUF) based on a Static Random Access Memory (SRAM) to ensure the integrity of the sensor itself. Implementation results of a prototype designed in a 90-nm Complementary Metal Oxide Semiconductor (CMOS) technology show that the active silicon area of the trusted virtual sensor is 0.86 mm2 and its power consumption when trusted sensing at 50 MHz is 7.12 mW. The maximum operation frequency is 85 MHz, which allows response times lower than 0.25 μs. As application example, the designed prototype was programmed to estimate the yaw rate in a vehicle, obtaining root mean square errors lower than 1.1%. Experimental results of the employed PUF show the robustness of the trusted sensing against aging and variations of the operation conditions, namely, temperature and power supply voltage (final value as well as ramp-up time). PMID:29370141

  4. Towards Transparent Throughput Elasticity for IaaS Cloud Storage: Exploring the Benefits of Adaptive Block-Level Caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolae, Bogdan; Riteau, Pierre; Keahey, Kate

    Storage elasticity on IaaS clouds is a crucial feature in the age of data-intensive computing, especially when considering fluctuations of I/O throughput. This paper provides a transparent solution that automatically boosts I/O bandwidth during peaks for underlying virtual disks, effectively avoiding over-provisioning without performance loss. The authors' proposal relies on the idea of leveraging short-lived virtual disks of better performance characteristics (and thus more expensive) to act during peaks as a caching layer for the persistent virtual disks where the application data is stored. Furthermore, they introduce a performance and cost prediction methodology that can be used both independently tomore » estimate in advance what trade-off between performance and cost is possible, as well as an optimization technique that enables better cache size selection to meet the desired performance level with minimal cost. The authors demonstrate the benefits of their proposal both for microbenchmarks and for two real-life applications using large-scale experiments.« less

  5. The Relationship of Endoscopic Proficiency to Educational Expense for Virtual Reality Simulator Training Amongst Surgical Trainees.

    PubMed

    Raque, Jessica; Goble, Adam; Jones, Veronica M; Waldman, Lindsey E; Sutton, Erica

    2015-07-01

    With the introduction of Fundamentals of Endoscopic Surgery, training methods in flexible endoscopy are being augmented with simulation-based curricula. The investment for virtual reality simulators warrants further research into its training advantage. Trainees were randomized into bedside or simulator training groups (BED vs SIM). SIM participated in a proficiency-based virtual reality curriculum. Trainees' endoscopic skills were rated using the Global Assessment of Gastrointestinal Endoscopic Skills (GAGES) in the patient care setting. The number of cases to reach 90 per cent of the maximum GAGES score and calculated costs of training were compared. Nineteen residents participated in the study. There was no difference in the average number of cases required to achieve 90 per cent of the maximum GAGES score for esophagogastroduodenoscopy, 13 (SIM) versus11 (BED) (P = 0.63), or colonoscopy 21 (SIM) versus 4 (BED) (P = 0.34). The average per case cost of training for esophagogastroduodenoscopy was $35.98 (SIM) versus $39.71 (BED) (P = 0.50), not including the depreciation costs associated with the simulator ($715.00 per resident over six years). Use of a simulator appeared to increase the cost of training without accelerating the learning curve or decreasing faculty time spent in instruction. The importance of simulation in endoscopy training will be predicated on more cost-effective simulators.

  6. [Treatment of attention deficit hyperactivity disorder in adults using virtual reality through a mindfulness programme].

    PubMed

    Serra-Pla, J F; Pozuelo, M; Richarte, V; Corrales, M; Ibanez, P; Bellina, M; Vidal, R; Calvo, E; Casas, M; Ramos-Quiroga, J A

    2017-02-24

    Attention deficit hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder, which presents a high comorbidity with anxiety and affective signs and symptoms. It has repercussions on the functioning of those suffering from it, who also have low therapy compliance and generate a significant cost both at a personal level and for society. Mindfulness is a psychological treatment that has proved to be effective for ADHD. Virtual reality is widely used as treatment in cases of phobias and other pathologies, with positive results. To develop the first treatment for ADHD in adults based on virtual reality and mindfulness, while also resulting in increased treatment adherence and reduced costs. We conducted a pilot study with 25 patients treated by means of virtual reality, in four 30-minute sessions, and 25 treated with psychostimulants. Measures will be taken pre-treatment, post-treatment and at 3 and 12 months post-treatment, to evaluate both ADHD and also depression, anxiety, functionality and quality of life. Data will be later analysed with the SPSS v. 20 statistical program. An ANOVA of independent groups will be performed to see the differences between treatments and also a test-retest to detect whether the changes will be maintained. It is necessary to use treatments that are effective, reduce costs and increase therapy adherence. Treatment with virtual reality is an interesting alternative to the classical treatments, and is shorter and more attractive for patients.

  7. Learning Application of Astronomy Based Augmented Reality using Android Platform

    NASA Astrophysics Data System (ADS)

    Maleke, B.; Paseru, D.; Padang, R.

    2018-02-01

    Astronomy is a branch of science involving observations of celestial bodies such as stars, planets, nebular comets, star clusters, and galaxies as well as natural phenomena occurring outside the Earth’s atmosphere. The way of learning of Astronomy is quite varied, such as by using a book or observe directly with a telescope. But both ways of learning have shortcomings, for example learning through books is only presented in the form of interesting 2D drawings. While learning with a telescope requires a fairly expensive cost to buy the equipment. This study will present a more interesting way of learning from the previous one, namely through Augmented Reality (AR) application using Android platform. Augmented Reality is a combination of virtual world (virtual) and real world (real) made by computer. Virtual objects can be text, animation, 3D models or videos that are combined with the actual environment so that the user feels the virtual object is in his environment. With the use of the Android platform, this application makes the learning method more interesting because it can be used on various Android smartphones so that learning can be done anytime and anywhere. The methodology used in making applications is Multimedia Lifecycle, along with C # language for AR programming and flowchart as a modelling tool. The results of research on some users stated that this application can run well and can be used as an alternative way of learning Astronomy with more interesting.

  8. Putting humans in the loop: Using crowdsourced snow information to inform water management

    NASA Astrophysics Data System (ADS)

    Fedorov, Roman; Giuliani, Matteo; Castelletti, Andrea; Fraternali, Piero

    2016-04-01

    The unprecedented availability of user generated data on the Web due to the advent of online services, social networks, and crowdsourcing, is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatio-temporally dense, possibly contributing to our ability of making better decisions. In this work, we contribute a novel crowdsourcing procedure for computing virtual snow indexes from public web images, either produced by users or generated by touristic webcams, which is based on a complex architecture designed for automatically crawling content from multiple web data sources. The procedure retains only geo-tagged images containing a mountain skyline, identifies the visible peaks in each image using a public online digital terrain model, and classifies the mountain image pixels as snow or no-snow. This operation yields a snow mask per image, from which it is possible to extract time series of virtual snow indexes representing a proxy of the snow covered area. The value of the obtained virtual snow indexes is estimated in a real world water management problem. We consider the snow-dominated catchment of Lake Como, a regulated lake in Northern Italy, where snowmelt represents the most important contribution to seasonal lake storage, and we used the virtual snow indexes for informing the daily operation of the lake's dam. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  9. Virtual Seismometers for Induced Seismicity Monitoring and Full Moment Tensor Inversion

    NASA Astrophysics Data System (ADS)

    Morency, C.; Matzel, E.

    2016-12-01

    Induced seismicity is associated with subsurface fluid injection, and puts at risk efforts to develop geologic carbon sequestration and enhanced geothermal systems. We are developing methods to monitor the microseismically active zone so that we can ultimately identify faults at risk of slipping. The virtual seismometer method (VSM) is an interferometric technique that is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. VSM works by virtually placing seismometers inside a micro events cloud, where we can focus on properties directly between induced micro events, and effectively replacing each earthquake with a virtual seismometer recording all the others. Here, we show that the cross-correlated signals from seismic wavefields triggered by two events and recorded at the surface are a combination of the strain field between these two sources times a moment tensor. Based on this relationship, we demonstrate how we can use these measured cross-correlated signals to invert for full moment tensor. The advantage of VSM is to allow to considerably reduce the modeled numerical domain to the region directly around the micro events cloud, which lowers computational cost, permits to reach higher frequency resolution, and suppresses the impact of the Earth structural model uncertainties outside the micro events cloud. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Virtual rapid response: the next evolution of tele-ICU.

    PubMed

    Hawkins, Carrie L

    2012-01-01

    The first of its kind in the Veterans Affairs (VA) system, the Denver VA Medical Center's tele-intensive care unit (ICU) program is unique because it is entirely nurse driven. A nontraditional tele-ICU model, the program was tailored to meet the needs of rural veterans by using critical care nursing expertise in Denver, Colorado. An experienced CCRN-certified nurse manages the system 24 hours a day, 7 days a week, from Eastern Colorado Health Care System. The virtual ICU provides rapid response interventions through virtual technology. This tele-ICU technology allows for a "virtual handshake" by nursing staff at the start of the shift and a report on potential patient issues. Clinical relationships have been strengthened between all 5 VA facilities in the Rocky Mountain Region, increasing the likelihood of early consultation at the onset of clinical decline of a patient. In addition, the tele-ICU nurse is available for immediate nursing consultation and support, coordinates point-to-point virtual consultation between physicians at the rural sites and specialists in Denver, and assists in expediting critical care transfers. The primary objectives for the tele-ICU program include improving quality and access of care to critical care services in rural sites, reducing community fee basis costs and frequency of transfers, and increasing collaboration and collegiality among nursing and medical staff in all Region 19's medical centers.

  11. Control of repulsive force in a virtual environment using an electrorheological haptic master for a surgical robot application

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain.

  12. Virtual healthcare delivery: defined, modeled, and predictive barriers to implementation identified.

    PubMed

    Harrop, V M

    2001-01-01

    Provider organizations lack: 1. a definition of "virtual" healthcare delivery relative to the products, services, and processes offered by dot.coms, web-compact disk healthcare content providers, telemedicine, and telecommunications companies, and 2. a model for integrating real and virtual healthcare delivery. This paper defines virtual healthcare delivery as asynchronous, outsourced, and anonymous, then proposes a 2x2 Real-Virtual Healthcare Delivery model focused on real and virtual patients and real and virtual provider organizations. Using this model, provider organizations can systematically deconstruct healthcare delivery in the real world and reconstruct appropriate pieces in the virtual world. Observed barriers to virtual healthcare delivery are: resistance to telecommunication integrated delivery networks and outsourcing; confusion over virtual infrastructure requirements for telemedicine and full-service web portals, and the impact of integrated delivery networks and outsourcing on extant cultural norms and revenue generating practices. To remain competitive provider organizations must integrate real and virtual healthcare delivery.

  13. Virtual healthcare delivery: defined, modeled, and predictive barriers to implementation identified.

    PubMed Central

    Harrop, V. M.

    2001-01-01

    Provider organizations lack: 1. a definition of "virtual" healthcare delivery relative to the products, services, and processes offered by dot.coms, web-compact disk healthcare content providers, telemedicine, and telecommunications companies, and 2. a model for integrating real and virtual healthcare delivery. This paper defines virtual healthcare delivery as asynchronous, outsourced, and anonymous, then proposes a 2x2 Real-Virtual Healthcare Delivery model focused on real and virtual patients and real and virtual provider organizations. Using this model, provider organizations can systematically deconstruct healthcare delivery in the real world and reconstruct appropriate pieces in the virtual world. Observed barriers to virtual healthcare delivery are: resistance to telecommunication integrated delivery networks and outsourcing; confusion over virtual infrastructure requirements for telemedicine and full-service web portals, and the impact of integrated delivery networks and outsourcing on extant cultural norms and revenue generating practices. To remain competitive provider organizations must integrate real and virtual healthcare delivery. PMID:11825189

  14. Feasibility of incorporating functionally relevant virtual rehabilitation in sub-acute stroke care: perception of patients and clinicians.

    PubMed

    Demers, Marika; Chan Chun Kong, Daniel; Levin, Mindy F

    2018-03-11

    To determine user satisfaction and safety of incorporating a low-cost virtual rehabilitation intervention as an adjunctive therapeutic option for cognitive-motor upper limb rehabilitation in individuals with sub-acute stroke. A low-cost upper limb virtual rehabilitation application incorporating realistic functionally-relevant unimanual and bimanual tasks, specifically designed for cognitive-motor rehabilitation was developed for patients with sub-acute stroke. Clinicians and individuals with stroke interacted with the intervention for 15-20 or 20-45 minutes, respectively. The study had a mixed-methods convergent parallel design that included a focus group interview with clinicians working in a stroke program and semi-structured interviews and standardized assessments (Borg Perceived Exertion Scale, Short Feedback Questionnaire) for participants with sub-acute stroke undergoing rehabilitation. The occurrence of adverse events was also noted. Three main themes emerged from the clinician focus group and patient interviews: Perceived usefulness in rehabilitation, satisfaction with the virtual reality intervention and aspects to improve. All clinicians and the majority of participants with stroke were highly satisfied with the intervention and perceived its usefulness to decrease arm motor impairment during functional tasks. No participants experienced major adverse events. Incorporation of this type of functional activity game-based virtual reality intervention in the sub-acute phase of rehabilitation represents a way to transfer skills learned early in the clinical setting to real world situations. This type of intervention may lead to better integration of the upper limb into everyday activities. Implications for Rehabilitation • Use of a cognitive-motor low-cost virtual reality intervention designed to remediate arm motor impairments in sub-acute stroke is feasible, safe and perceived as useful by therapists and patients for stroke rehabilitation.    • Input from end-users (therapists and individuals with stroke) is critical for the development and implementation of a virtual reality intervention.

  15. A Review of Virtual Character's Emotion Model

    NASA Astrophysics Data System (ADS)

    Liu, Zhen

    2008-11-01

    Emotional virtual characters are essential to digital entertainment, an emotion is related to virtual environment and a virtual character's inner variables, emotion model of virtual character is a hot topic in many fields, domain knowledge is very important for modeling emotion, and the current research of emotion expression in the world was also summarized, and some new research directions of emotion model are presented.

  16. SCM: A method to improve network service layout efficiency with network evolution.

    PubMed

    Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.

  17. Developing a Cognitive Model of Expert Performance for Ship Navigation Maneuvers in an Intelligent Tutoring System

    DTIC Science & Technology

    2010-03-01

    nature of ship navigation and the requirements for the intelligent tutor presented unique challenges for development. This paper describes how the...the context of improving training. 1. Project Overview The Conning Officer Virtual Environment (COVE) is a ship-handling simulation system used...Corporation, 2009), is used to provide students with ship-handling training without the cost or risk to equipment of at-sea exercises. One downside

  18. Desktop Virtualization: Applications and Considerations

    ERIC Educational Resources Information Center

    Hodgman, Matthew R.

    2013-01-01

    As educational technology continues to rapidly become a vital part of a school district's infrastructure, desktop virtualization promises to provide cost-effective and education-enhancing solutions to school-based computer technology problems in school systems locally and abroad. This article outlines the history of and basic concepts behind…

  19. An IPv6 routing lookup algorithm using weight-balanced tree based on prefix value for virtual router

    NASA Astrophysics Data System (ADS)

    Chen, Lingjiang; Zhou, Shuguang; Zhang, Qiaoduo; Li, Fenghua

    2016-10-01

    Virtual router enables the coexistence of different networks on the same physical facility and has lately attracted a great deal of attention from researchers. As the number of IPv6 addresses is rapidly increasing in virtual routers, designing an efficient IPv6 routing lookup algorithm is of great importance. In this paper, we present an IPv6 lookup algorithm called weight-balanced tree (WBT). WBT merges Forwarding Information Bases (FIBs) of virtual routers into one spanning tree, and compresses the space cost. WBT's average time complexity and the worst case time complexity of lookup and update process are both O(logN) and space complexity is O(cN) where N is the size of routing table and c is a constant. Experiments show that WBT helps reduce more than 80% Static Random Access Memory (SRAM) cost in comparison to those separation schemes. WBT also achieves the least average search depth comparing with other homogeneous algorithms.

  20. VirSSPA- a virtual reality tool for surgical planning workflow.

    PubMed

    Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T

    2009-03-01

    A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.

  1. Use of Virtual Mission Operations Center Technology to Achieve JPDO's Virtual Tower Vision

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.

    2006-01-01

    The Joint Program Development Office has proposed that the Next Generation Air Transportation System (NGATS) consolidate control centers. NGATS would be managed from a few strategically located facilities with virtual towers and TRACONS. This consolidation is about combining the delivery locations for these services not about decreasing service. By consolidating these locations, cost savings in the order of $500 million have been projected. Evolving to spaced-based communication, navigation, and surveillance offers the opportunity to reduce or eliminate much of the ground-based infrastructure cost. Dynamically adjusted airspace offers the opportunity to reduce the number of sectors and boundary inconsistencies; eliminate or reduce "handoffs;" and eliminate the distinction between Towers, TRACONS, and Enroute Centers. To realize a consolidation vision for air traffic management there must be investment in networking. One technology that holds great potential is the use of Virtual Mission Operations Centers to provide secure, automated, intelligent management of the NGATS. This paper provides a conceptual framework for incorporating VMOC into the NGATS.

  2. Scheduling Multilevel Deadline-Constrained Scientific Workflows on Clouds Based on Cost Optimization

    DOE PAGES

    Malawski, Maciej; Figiela, Kamil; Bubak, Marian; ...

    2015-01-01

    This paper presents a cost optimization model for scheduling scientific workflows on IaaS clouds such as Amazon EC2 or RackSpace. We assume multiple IaaS clouds with heterogeneous virtual machine instances, with limited number of instances per cloud and hourly billing. Input and output data are stored on a cloud object store such as Amazon S3. Applications are scientific workflows modeled as DAGs as in the Pegasus Workflow Management System. We assume that tasks in the workflows are grouped into levels of identical tasks. Our model is specified using mathematical programming languages (AMPL and CMPL) and allows us to minimize themore » cost of workflow execution under deadline constraints. We present results obtained using our model and the benchmark workflows representing real scientific applications in a variety of domains. The data used for evaluation come from the synthetic workflows and from general purpose cloud benchmarks, as well as from the data measured in our own experiments with Montage, an astronomical application, executed on Amazon EC2 cloud. We indicate how this model can be used for scenarios that require resource planning for scientific workflows and their ensembles.« less

  3. Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Braun, J.

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less

  4. Optimum Vehicle Component Integration with InVeST (Integrated Vehicle Simulation Testbed)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, W; Paddack, E; Aceves, S

    2001-12-27

    We have developed an Integrated Vehicle Simulation Testbed (InVeST). InVeST is based on the concept of Co-simulation, and it allows the development of virtual vehicles that can be analyzed and optimized as an overall integrated system. The virtual vehicle is defined by selecting different vehicle components from a component library. Vehicle component models can be written in multiple programming languages running on different computer platforms. At the same time, InVeST provides full protection for proprietary models. Co-simulation is a cost-effective alternative to competing methodologies, such as developing a translator or selecting a single programming language for all vehicle components. InVeSTmore » has been recently demonstrated using a transmission model and a transmission controller model. The transmission model was written in SABER and ran on a Sun/Solaris workstation, while the transmission controller was written in MATRIXx and ran on a PC running Windows NT. The demonstration was successfully performed. Future plans include the applicability of Co-simulation and InVeST to analysis and optimization of multiple complex systems, including those of Intelligent Transportation Systems.« less

  5. Cost effectiveness of virtual reality graded exposure therapy with physiological monitoring for the treatment of combat related post traumatic stress disorder.

    PubMed

    Wood, Dennis Patrick; Murphy, Jennifer; McLay, Robert; Koffman, Robert; Spira, James; Obrecht, Robert E; Pyne, Jeff; Wiederhold, Brenda K

    2009-01-01

    Virtual Reality Graded Exposure Therapy (VRGET) is an effective treatment for combat-related PTSD. We summarize the outcomes of a VRGET pilot study with 12 participants who completed one to multiple combat tours in support of the War on Terrorism and who were subsequently diagnosed with combat-related PTSD. Details of the collaborative program amongst the Virtual Reality Medical Center (VRMC), Office of Naval Research, the Naval Medical Center San Diego (NMCSD) and the Navy Hospital Camp Pendleton are discussed as is the VRGET outcomes of significant reductions in PTSD symptoms severity. We also described the estimated cost-effectiveness of VRGET for the treatment of combat-related PTSD, as contrasted to Treatment as Usual (TAU) for combat-related PTSD.

  6. Efficient Generation and Selection of Virtual Populations in Quantitative Systems Pharmacology Models.

    PubMed

    Allen, R J; Rieger, T R; Musante, C J

    2016-03-01

    Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed "virtual patients." In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations.

  7. Does It Matter Where You Work? A Comparison of How Three Work Venues (Traditional Office, Virtual Office, and Home Office) Influence Aspects of Work and Personal/Family Life.

    ERIC Educational Resources Information Center

    Hill, E. Jeffrey; Ferris, Maria; Martinson, Vjollca

    2003-01-01

    A comparison was made of IBM employees in traditional offices (n=4,316), virtual offices (n=767), and home offices (n=441). Home office teleworking helped balance work and family and enhanced business performance with cost savings. Virtual office teleworking was associated with less work-family balance and less successful personal/family life.…

  8. Educational Uses of Virtual Reality Technology.

    DTIC Science & Technology

    1998-01-01

    technology. It is affordable in that a basic level of technology can be achieved on most existing personal computers at either no cost or some minimal...actually present in a virtual environment is termed "presence" and is an artifact of being visually immersed in the computer -generated virtual world...Carolina University, VREL Teachers 1996 onward £ CO ■3 u VR in Education University of Illinois, National Center for Super- computing Applications

  9. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less

  10. Virtual reality for emergency training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altinkemer, K.

    1995-12-31

    Virtual reality is a sequence of scenes generated by a computer as a response to the five different senses. These senses are sight, sound, taste, touch, smell. Other senses that can be used in virtual reality include balance, pheromonal, and immunological senses. Many application areas include: leisure and entertainment, medicine, architecture, engineering, manufacturing, and training. Virtual reality is especially important when it is used for emergency training and management of natural disasters including earthquakes, floods, tornados and other situations which are hard to emulate. Classical training methods for these extraordinary environments lack the realistic surroundings that virtual reality can provide.more » In order for virtual reality to be a successful training tool the design needs to include certain aspects; such as how real virtual reality should be and how much fixed cost is entailed in setting up the virtual reality trainer. There are also pricing questions regarding the price per training session on virtual reality trainer, and the appropriate training time length(s).« less

  11. A Novel Approach for Efficient Pharmacophore-based Virtual Screening: Method and Applications

    PubMed Central

    Dror, Oranit; Schneidman-Duhovny, Dina; Inbar, Yuval; Nussinov, Ruth; Wolfson, Haim J.

    2009-01-01

    Virtual screening is emerging as a productive and cost-effective technology in rational drug design for the identification of novel lead compounds. An important model for virtual screening is the pharmacophore. Pharmacophore is the spatial configuration of essential features that enable a ligand molecule to interact with a specific target receptor. In the absence of a known receptor structure, a pharmacophore can be identified from a set of ligands that have been observed to interact with the target receptor. Here, we present a novel computational method for pharmacophore detection and virtual screening. The pharmacophore detection module is able to: (i) align multiple flexible ligands in a deterministic manner without exhaustive enumeration of the conformational space, (ii) detect subsets of input ligands that may bind to different binding sites or have different binding modes, (iii) address cases where the input ligands have different affinities by defining weighted pharmacophores based on the number of ligands that share them, and (iv) automatically select the most appropriate pharmacophore candidates for virtual screening. The algorithm is highly efficient, allowing a fast exploration of the chemical space by virtual screening of huge compound databases. The performance of PharmaGist was successfully evaluated on a commonly used dataset of G-Protein Coupled Receptor alpha1A. Additionally, a large-scale evaluation using the DUD (directory of useful decoys) dataset was performed. DUD contains 2950 active ligands for 40 different receptors, with 36 decoy compounds for each active ligand. PharmaGist enrichment rates are comparable with other state-of-the-art tools for virtual screening. Availability The software is available for download. A user-friendly web interface for pharmacophore detection is available at http://bioinfo3d.cs.tau.ac.il/PharmaGist. PMID:19803502

  12. Technically Speaking: Why Should You Use Virtual Grower?

    USDA-ARS?s Scientific Manuscript database

    Virtual Grower is a free, easy-to-use software program that every grower who heats their greenhouse should install on their computer. The program enables growers to simulate their own greenhouse and predict how changes or investments could impact the growing environment, heating costs, and crop res...

  13. Perspectives of IT Professionals on Employing Server Virtualization Technologies

    ERIC Educational Resources Information Center

    Sligh, Darla

    2010-01-01

    Server virtualization enables a physical computer to support multiple applications logically by decoupling the application from the hardware layer, thereby reducing operational costs and competitive in delivering IT services to their enterprise organizations. IT organizations continually examine the efficiency of their internal IT systems and…

  14. 78 FR 25627 - Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ...-fired furnaces, Underwriters Laboratories (UL) Standard 727-1994, ``Standard for Safety for Oil-Fired... supplementary method called a catalog teardown (or ``virtual teardown'') uses published manufacturer catalogs... similar products and in manufacturer literature and information, to estimate the costs using virtual...

  15. Future Libraries: Dreams, Madness, & Reality.

    ERIC Educational Resources Information Center

    Crawford, Walt; Gorman, Michael

    Policymakers and library administrators are being drawn to the idea of the "virtual library" and the "library without walls," the webs of electronic resources that supposedly will displace books, physical libraries, and most library staff, and are believing the virtual library to be imminent, adequate, and cost-effective. This…

  16. Desktop Virtualization in Action: Simplicity Is Power

    ERIC Educational Resources Information Center

    Fennell, Dustin

    2010-01-01

    Discover how your institution can better manage and increase access to instructional applications and desktops while providing a blended learning environment. Receive practical insight into how academic computing virtualization can be leveraged to enhance education at your institution while lowering Total Cost of Ownership (TCO) and reducing the…

  17. Establishing a Virtual Community of Practice in Simulation: The Value of Social Media.

    PubMed

    Thoma, Brent; Brazil, Victoria; Spurr, Jesse; Palaganas, Janice; Eppich, Walter; Grant, Vincent; Cheng, Adam

    2018-04-01

    Professional development opportunities are not readily accessible for most simulation educators, who may only connect with simulation experts at periodic and costly conferences. Virtual communities of practice consist of individuals with a shared passion who communicate via virtual media to advance their own learning and that of others. A nascent virtual community of practice is developing online for healthcare simulation on social media platforms. Simulation educators should consider engaging on these platforms for their own benefit and to help develop healthcare simulation educators around the world. Herein, we describe this developing virtual community of practice and offer guidance to assist educators to engage, learn, and contribute to the growth of the community.

  18. Cost-analysis of teledentistry in residential aged care facilities.

    PubMed

    Mariño, Rodrigo; Tonmukayakul, Utsana; Manton, David; Stranieri, Andrew; Clarke, Ken

    2016-09-01

    The purpose of this research was to conduct a cost-analysis, from a public healthcare perspective, comparing the cost and benefits of face-to-face patient examination assessments conducted by a dentist at a residential aged care facility (RACF) situated in rural areas of the Australian state of Victoria, with two teledentistry approaches utilizing virtual oral examination. The costs associated with implementing and operating the teledentistry approach were identified and measured using 2014 prices in Australian dollars. Costs were measured as direct intervention costs and programme costs. A population of 100 RACF residents was used as a basis to estimate the cost of oral examination and treatment plan development for the traditional face-to-face model vs. two teledentistry models: an asynchronous review and treatment plan preparation; and real-time communication with a remotely located oral health professional. It was estimated that if 100 residents received an asynchronous oral health assessment and treatment plan, the net cost from a healthcare perspective would be AU$32.35 (AU$27.19-AU$38.49) per resident. The total cost of the conventional face-to-face examinations by a dentist would be AU$36.59 ($30.67-AU$42.98) per resident using realistic assumptions. Meanwhile, the total cost of real-time remote oral examination would be AU$41.28 (AU$34.30-AU$48.87) per resident. Teledental asynchronous patient assessments were the lowest cost service model. Access to oral health professionals is generally low in RACFs; however, the real-time consultation could potentially achieve better outcomes due to two-way communication between the nurse and a remote oral health professional via health promotion/disease prevention delivered in conjunction with the oral examination. © The Author(s) 2015.

  19. Improved Virtual Planning for Bimaxillary Orthognathic Surgery.

    PubMed

    Hatamleh, Muhanad; Turner, Catherine; Bhamrah, Gurprit; Mack, Gavin; Osher, Jonas

    2016-09-01

    Conventional model surgery planning for bimaxillary orthognathic surgery can be laborious, time-consuming and may contain potential errors; hence three-dimensional (3D) virtual orthognathic planning has been proven to be an efficient, reliable, and cost-effective alternative. In this report, the 3D planning is described for a patient presenting with a Class III incisor relationship on a Skeletal III base with pan facial asymmetry complicated by reverse overjet and anterior open bite. A combined scan data of direct cone beam computer tomography and indirect dental scan were used in the planning. Additionally, a new method of establishing optimum intercuspation by scanning dental casts in final occlusion and positioning it to the composite-scans model was shown. Furthermore, conventional model surgery planning was carried out following in-house protocol. Intermediate and final intermaxillary splints were produced following the conventional method and 3D printing. Three-dimensional planning showed great accuracy and treatment outcome and reduced laboratory time in comparison with the conventional method. Establishing the final dental occlusion on casts and integrating it in final 3D planning enabled us to achieve the best possible intercuspation.

  20. In-Silico Screening of Ligand Based Pharmacophore, Database Mining and Molecular Docking on 2, 5-Diaminopyrimidines Azapurines as Potential Inhibitors of Glycogen Synthase Kinase-3β.

    PubMed

    Mishra, Pooja; Kesar, Seema; Paliwal, Sarvesh K; Chauhan, Monika; Madan, Kirtika

    2018-05-29

    Glycogen synthase kinase-3β plays a significant role in the regulation of various pathological pathways relating to central nervous system (CNS). Dysregulation of Glycogen synthase kinase 3 (GSK-3) activity gives a rise to numerous neuroinflammation and neurodegenerative related disorders that affect the whole central nervous system. By the sequential application of in-silico tools, efforts have been attempted to design the novel GSK-3β inhibitors. Owing to the potential role of GSK-3β in nervous disorders, we have attempted to develop the quantitative four featured pharmacophore model comprising two hydrogen bond acceptors (HBA), one ring aromatic (RA), and one hydrophobe (HY), which were further affirmed by cost-function analysis, rm2 matrices, internal and external test set validation and Güner-Henry (GH) scoring analysis. Validated pharmacophoric model was used for virtual screening and out of 345 compounds, two potential virtual hits were finalized that were on the basis of fit value, estimated activity and Lipinski's violation. The chosen compounds were subjected to dock within the active site of GSK-3β Result: Four essential features, i.e., two hydrogen bond acceptors(HBA), one ring aromatic(RA), and one hydrophobe(HY), were subjected to build the pharmacophoric model and showed good correlation coefficient, RMSD and cost difference values of 0.91, 0.94 and 42.9 respectively and further model was validated employing cost-function analysis, rm2-matrices, internal and external test set prediction with r2 value of 0.77 and 0.84. Docked conformations showed potential interactions in between the features of the identified hits (NCI 4296, NCI 3034) and the amino acids present in the active site. In line with the overhead discussion, and through our stepwise computational approaches, we have identified novel, structurally diverse glycogen synthase kinase inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. A VM-shared desktop virtualization system based on OpenStack

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie

    2018-04-01

    With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.

  2. Efficient Generation and Selection of Virtual Populations in Quantitative Systems Pharmacology Models

    PubMed Central

    Rieger, TR; Musante, CJ

    2016-01-01

    Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed “virtual patients.” In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations. PMID:27069777

  3. Using crowdsourced web content for informing water systems operations in snow-dominated catchments

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero

    2016-12-01

    Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  4. The Role of Virtual Rehabilitation in Total Knee and Hip Arthroplasty.

    PubMed

    Chughtai, Morad; Newman, Jared M; Sultan, Assem A; Khlopas, Anton; Navarro, Sergio M; Bhave, Anil; Mont, Michael A

    2018-06-01

    Virtual rehabilitation therapies have been developed to focus on improving care for those suffering from various musculoskeletal disorders. There has been evidence suggesting that real-time virtual rehabilitation may be equivalent to conventional methods for adherence, improvement of function, and relief of pain seen in these conditions. This study specifically evaluated the use of a virtual physical therapy/rehabilitation platform for use during the postoperative period after total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of this technology has the potential benefits that allow for patient adherence, cost reductions, and coordination of care.

  5. Current limitations into the application of virtual reality to mental health research.

    PubMed

    Huang, M P; Alessi, N E

    1998-01-01

    Virtual Reality (VR) environments have significant potential as a tool in mental health research, but are limited by technical factors and by mental health research factors. Technical difficulties include cost and complexity of virtual environment creation. Mental health research difficulties include current inadequacy of standards to specify needed details for virtual environment design. Technical difficulties are disappearing with technological advances, but the mental health research difficulties will take a concerted effort to overcome. Some of this effort will need to be directed at the formation of collaborative projects and standards for how such collaborations should proceed.

  6. New Desktop Virtual Reality Technology in Technical Education

    ERIC Educational Resources Information Center

    Ausburn, Lynna J.; Ausburn, Floyd B.

    2008-01-01

    Virtual reality (VR) that immerses users in a 3D environment through use of headwear, body suits, and data gloves has demonstrated effectiveness in technical and professional education. Immersive VR is highly engaging and appealing to technically skilled young Net Generation learners. However, technical difficulty and very high costs have kept…

  7. Evaluation of Virtual Laboratory Package on Nigerian Secondary School Physics Concepts

    ERIC Educational Resources Information Center

    Falode, Oluwole Caleb; Gambari, Amosa Isiaka

    2017-01-01

    The study evaluated accessibility, flexibility, cost and learning effectiveness of researchers-developed virtual laboratory package for Nigerian secondary school physics. Based on these issues, four research questions were raised and answered. The study was a quantitative-based evaluation research. Sample for the study included 24 physics…

  8. Distance Education and Virtual Reference: Where Are We Headed?

    ERIC Educational Resources Information Center

    Coffman, Steve

    2001-01-01

    Discusses changes in distance education and considers the resulting need for new types of library services. Topics include new Web-based contact center software; how to conduct virtual reference interviews; online reference service; the role of the physical library; staffing changes; and future possibilities, including impacts on costs of library…

  9. PCMHs, ACOs, and medication management: lessons learned from early research partnerships.

    PubMed

    Schnur, Evan S; Adams, Alex J; Klepser, Donald G; Doucette, William R; Scott, David M

    2014-02-01

    The Patient Protection and Affordable Care Act has greatly accelerated the formation of team-based models of care delivery, primarily accountable care organizations (ACOs) and patient-centered medical homes (PCMHs).  Many have written about the need to incorporate medication management services into these systems in order to improve care and reduce total health care costs. Two primary ways of doing so have emerged: (1) an embedded model, whereby pharmacists are employed directly by a physician practice, or (2) a "virtual care team" model, whereby a PCMH or ACO develops an arrangement with external pharmacists in community settings to provide coordinated services.

  10. Cognitive training on stroke patients via virtual reality-based serious games.

    PubMed

    Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa

    2017-02-01

    Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.

  11. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  12. Developing Flexible Networked Lighting Control Systems

    Science.gov Websites

    , Bluetooth, ZigBee and others are increasingly used for building control purposes. Low-cost computation : Bundling digital intelligence at the sensors and lights adds virtually no incremental cost. Coupled with cost. Research Goals and Objectives This project "Developing Flexible, Networked Lighting Control

  13. The electronic-commerce-oriented virtual merchandise model

    NASA Astrophysics Data System (ADS)

    Fang, Xiaocui; Lu, Dongming

    2004-03-01

    Electronic commerce has been the trend of commerce activities. Providing with Virtual Reality interface, electronic commerce has better expressing capacity and interaction means. But most of the applications of virtual reality technology in EC, 3D model is only the appearance description of merchandises. There is almost no information concerned with commerce information and interaction information. This resulted in disjunction of virtual model and commerce information. So we present Electronic Commerce oriented Virtual Merchandise Model (ECVMM), which combined a model with commerce information, interaction information and figure information of virtual merchandise. ECVMM with abundant information provides better support to information obtainment and communication in electronic commerce.

  14. Cost-Effectiveness of Chemoprevention with Proton Pump Inhibitors in Barrett’s Esophagus

    PubMed Central

    Freedberg, Daniel E.; Abrams, Julian A.; Wang, Y. Claire

    2015-01-01

    Background Proton pump inhibitors (PPIs) may reduce the risk of esophageal adenocarcinoma (EAC) in patients with Barrett’s esophagus. PPIs are prescribed for virtually all patients with Barrett’s esophagus, irrespective of the presence of reflux symptoms, and represent a de facto chemopreventive agent in this population. However, long-term PPI use has been associated with several adverse effects, and the cost-effectiveness of chemoprevention with PPIs has not been evaluated. Aim The purpose of this study was to assess the cost-effectiveness of PPIs for the prevention of EAC in Barrett’s esophagus without reflux. Methods We designed a state-transition Markov micro-simulation model of a hypothetical cohort of 50-year-old white men with Barrett’s esophagus. We modeled chemoprevention with PPIs or no chemoprevention, with endoscopic surveillance for all treatment arms. Outcome measures were life-years, quality-adjusted life years (QALYs), incident EAC cases and deaths, costs, and incremental cost-effectiveness ratios. Results Assuming 50 % reduction in EAC, chemoprevention with PPIs was a cost-effective strategy compared to no chemoprevention. In our model, administration of PPIs cost $23,000 per patient and resulted in a gain of 0.32 QALYs for an incremental cost-effectiveness ratio of $12,000/QALY. In sensitivity analyses, PPIs would be cost-effective at $50,000/QALY if they reduce EAC risk by at least 19 %. Conclusions Chemoprevention with PPIs in patients with Barrett’s esophagus without reflux is cost-effective if PPIs reduce EAC by a minimum of 19 %. The identification of subgroups of Barrett’s esophagus patients at increased risk for progression would lead to more cost-effective strategies for the prevention of esophageal adenocarcinoma. PMID:24795040

  15. Air Force Medical Modeling and Simulation: Bringing Virtual Reality to Reality

    DTIC Science & Technology

    2011-01-26

    OMB control number. 1. REPORT DATE 26 JAN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4 . TITLE AND SUBTITLE Air Force...7 Over $ 4 billion added to Medicare health care cost! 2011 MHS Conference One Decade Later… 8 •10% increase inpatient deaths from medication errors in...Conference “Hub & Spoke” Simulation Network Facilities grouped into 4 -tiered system based on training requirements and simulation capability Category

  16. Modeling and Accuracy Assessment for 3D-VIRTUAL Reconstruction in Cultural Heritage Using Low-Cost Photogrammetry: Surveying of the "santa MARÍA Azogue" Church's Front

    NASA Astrophysics Data System (ADS)

    Robleda Prieto, G.; Pérez Ramos, A.

    2015-02-01

    Sometimes it could be difficult to represent "on paper" an architectural idea, a solution, a detail or a newly created element, depending on the complexity what it want be conveyed through its graphical representation but it may be even harder to represent the existing reality. (a building, a detail,...), at least with an acceptable degree of definition and accuracy. As a solution to this hypothetical problem, this paper try to show a methodology to collect measure data by combining different methods or techniques, to obtain the characteristic geometry of architectonic elements, especially in those highly decorated and/or complex geometry, as well as to assess the accuracy of the results obtained, but in an accuracy level enough and not very expensive costs. In addition, we can obtain a 3D recovery model that allows us a strong support, beyond point clouds obtained through another more expensive methods as using laser scanner, to obtain orthoimages. This methodology was used in the study case of the 3D-virtual reconstruction of a main medieval church façade because of the geometrical complexity in many elements as the existing main doorway with archivolts and many details, as well as the rose window located above it so it's inaccessible due to the height.

  17. The role of intellectual property in creating, sharing and repurposing virtual patients.

    PubMed

    Campbell, Gabrielle; Miller, Angela; Balasubramaniam, Chara

    2009-08-01

    Medical schools are integrating more technology into the training of health care practitioners. Electronic Virtual Patients (VPs) provide interactive simulations to facilitate learning. The time, cost and effort required to create robust VPs on an individual school basis are significant; sharing of VPs by medical schools allows for access to a broad range of VPs across a variety of disciplines with lower investment. When this digital content is shared with other schools and distributed widely, digital copyright issues come into play. Unless all intellectual property rights (IPRs) and plans of the authors regarding the VP are confirmed upfront, the ability of the school to share the VP may be inhibited. Schools should also identify under what licensing/sharing model they plan to distribute the VPs - how do you plan to share the VPs and what will allow users to do with the VPs in the context of IPRs? This article highlights the role of IPRs in VPs and discusses a case-study of a European Virtual Patient collaboration to demonstrate how IPRs were managed.

  18. Introduction on performance analysis and profiling methodologies for KVM on ARM virtualization

    NASA Astrophysics Data System (ADS)

    Motakis, Antonios; Spyridakis, Alexander; Raho, Daniel

    2013-05-01

    The introduction of hardware virtualization extensions on ARM Cortex-A15 processors has enabled the implementation of full virtualization solutions for this architecture, such as KVM on ARM. This trend motivates the need to quantify and understand the performance impact, emerged by the application of this technology. In this work we start looking into some interesting performance metrics on KVM for ARM processors, which can provide us with useful insight that may lead to potential improvements in the future. This includes measurements such as interrupt latency and guest exit cost, performed on ARM Versatile Express and Samsung Exynos 5250 hardware platforms. Furthermore, we discuss additional methodologies that can provide us with a deeper understanding in the future of the performance footprint of KVM. We identify some of the most interesting approaches in this field, and perform a tentative analysis on how these may be implemented in the KVM on ARM port. These take into consideration hardware and software based counters for profiling, and issues related to the limitations of the simulators which are often used, such as the ARM Fast Models platform.

  19. Distributed Web-Based Expert System for Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar

    2005-01-01

    The simulation and modeling of launch operations is based on a representation of the organization of the operations suitable to experiment of the physical, procedural, software, hardware and psychological aspects of space flight operations. The virtual test bed consists of a weather expert system to advice on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, and the risk impact on human health. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  20. Low-cost replicable plastic HUD combiner element

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Raulot, Victorien; St. Hilaire, Pierre; Meyrueis, Patrick

    2009-05-01

    We present a novel technique to fabricate low cost mass replicable plastic HUDs for the transportation industry. HUD are implemented in numerous sectors today (in avionics, automobile, military, machinery,...). Typical implementations include an optical combiner which produces the desired virtual image while leaving the field mostly unaffected by the optics. Such combiners optics are usually implemented as cumbersome catadioptric devices in automobile, dichroic coated curved plates, or expensive volume holograms in commercial and military aviation. We propose a novel way to design, model and fabricate combiner masters which can be replicated in mass by UV casting in plastic. We review the various design techniques required for such elements and the novel mastering technology.

  1. Utility Computing: Reality and Beyond

    NASA Astrophysics Data System (ADS)

    Ivanov, Ivan I.

    Utility Computing is not a new concept. It involves organizing and providing a wide range of computing-related services as public utilities. Much like water, gas, electricity and telecommunications, the concept of computing as public utility was announced in 1955. Utility Computing remained a concept for near 50 years. Now some models and forms of Utility Computing are emerging such as storage and server virtualization, grid computing, and automated provisioning. Recent trends in Utility Computing as a complex technology involve business procedures that could profoundly transform the nature of companies' IT services, organizational IT strategies and technology infrastructure, and business models. In the ultimate Utility Computing models, organizations will be able to acquire as much IT services as they need, whenever and wherever they need them. Based on networked businesses and new secure online applications, Utility Computing would facilitate "agility-integration" of IT resources and services within and between virtual companies. With the application of Utility Computing there could be concealment of the complexity of IT, reduction of operational expenses, and converting of IT costs to variable `on-demand' services. How far should technology, business and society go to adopt Utility Computing forms, modes and models?

  2. Investigation on Consumers’ Behaviour towards Energy Saving through Utilisation of Virtual SED (Smart Energy Displays) in Residential Building

    NASA Astrophysics Data System (ADS)

    Adlisia Puspa Harani, Sandhika

    2018-05-01

    The study is conducted by gathering data from interviews an in-home experiment, to examine the impacts of both virtual and physical SED toward user engagement. Business opportunity and benefits of virtual SED for stake holders are also discussed in this study. The research was conducted by interviewing method to respondens in Nottingham, UK. By comparing consumers’ energy saving behaviour from physical and virtual SED users, virtual SED shows similar level of effectiveness as physical SED, but there is no evidence that the virtual versions are better than the physical ones in terms of reducing energy consumption. Nevertheless, virtual SED can be more beneficial for consumers who can get easier access. They also help educating users to be more concern about energy issue. Energy suppliers get benefits by having virtual versions of SED, in which they can reduce production and distribution costs, as well as diminishing waste from physical SED.

  3. Evaluation of procedural learning transfer from a virtual environment to a real situation: a case study on tank maintenance training.

    PubMed

    Ganier, Franck; Hoareau, Charlotte; Tisseau, Jacques

    2014-01-01

    Virtual reality opens new opportunities for operator training in complex tasks. It lowers costs and has fewer constraints than traditional training. The ultimate goal of virtual training is to transfer knowledge gained in a virtual environment to an actual real-world setting. This study tested whether a maintenance procedure could be learnt equally well by virtual-environment and conventional training. Forty-two adults were divided into three equally sized groups: virtual training (GVT® [generic virtual training]), conventional training (using a real tank suspension and preparation station) and control (no training). Participants then performed the procedure individually in the real environment. Both training types (conventional and virtual) produced similar levels of performance when the procedure was carried out in real conditions. Performance level for the two trained groups was better in terms of success and time taken to complete the task, time spent consulting job instructions and number of times the instructor provided guidance.

  4. Virtual Training and Coaching of Health Behavior: Example from Mindfulness Meditation Training

    PubMed Central

    Hudlicka, Eva

    2014-01-01

    Objective Computer-based virtual coaches are increasingly being explored for patient education, counseling, and health behavior training and coaching. The objective of this research was to develop and evaluate a Virtual Mindfulness Coach for training and coaching in mindfulness meditation. Method The coach was implemented as an embodied conversational character, providing mindfulness training and coaching via mixed initiative, text-based, natural language dialogue with the student, and emphasizing affect-adaptive interaction. (The term ‘mixed initiative dialog’ refers to a human-machine dialogue where either can initiate a conversation or a change in the conversation topic.) Results Findings from a pilot evaluation study indicate that the coach-based training is more effective in helping students establish a regular practice than self-administered training using written and audio materials. The coached group also appeared to be in more advanced stages of change in terms of the transtheoretical model, and have a higher sense of self-efficacy regarding establishment of a regular mindfulness practice. Conclusion These results suggest that virtual coach-based training of mindfulness is both feasible, and potentially more effective, than a self-administered program. Of particular interest is the identification of the specific coach features that contribute to its effectiveness. Practice Implications Virtual coaches could provide easily-accessible and cost-effective customized training for a range of health behaviors. The affect-adaptive aspect of these coaches is particularly relevant for helping patients establish long-term behavior changes. PMID:23809167

  5. Virtual training and coaching of health behavior: example from mindfulness meditation training.

    PubMed

    Hudlicka, Eva

    2013-08-01

    Computer-based virtual coaches are increasingly being explored for patient education, counseling, and health behavior training and coaching. The objective of this research was to develop and evaluate a Virtual Mindfulness Coach for training and coaching in mindfulness meditation. The coach was implemented as an embodied conversational character, providing mindfulness training and coaching via mixed initiative, text-based, natural language dialog with the student, and emphasizing affect-adaptive interaction. (The term 'mixed initiative dialog' refers to a human-machine dialog where either can initiate a conversation or a change in the conversation topic.) Findings from a pilot evaluation study indicate that the coach-based training is more effective in helping students establish a regular practice than self-administered training using written and audio materials. The coached group also appeared to be in more advanced stages of change in terms of the transtheoretical model, and have a higher sense of self-efficacy regarding establishment of a regular mindfulness practice. These results suggest that virtual coach-based training of mindfulness is both feasible, and potentially more effective, than a self-administered program. Of particular interest is the identification of the specific coach features that contribute to its effectiveness. Virtual coaches could provide easily accessible and cost-effective customized training for a range of health behaviors. The affect-adaptive aspect of these coaches is particularly relevant for helping patients establish long-term behavior changes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The development of a collaborative virtual environment for finite element simulation

    NASA Astrophysics Data System (ADS)

    Abdul-Jalil, Mohamad Kasim

    Communication between geographically distributed designers has been a major hurdle in traditional engineering design. Conventional methods of communication, such as video conferencing, telephone, and email, are less efficient especially when dealing with complex design models. Complex shapes, intricate features and hidden parts are often difficult to describe verbally or even using traditional 2-D or 3-D visual representations. Virtual Reality (VR) and Internet technologies have provided a substantial potential to bridge the present communication barrier. VR technology allows designers to immerse themselves in a virtual environment to view and manipulate this model just as in real-life. Fast Internet connectivity has enabled fast data transfer between remote locations. Although various collaborative virtual environment (CVE) systems have been developed in the past decade, they are limited to high-end technology that is not accessible to typical designers. The objective of this dissertation is to discover and develop a new approach to increase the efficiency of the design process, particularly for large-scale applications wherein participants are geographically distributed. A multi-platform and easily accessible collaborative virtual environment (CVRoom), is developed to accomplish the stated research objective. Geographically dispersed designers can meet in a single shared virtual environment to discuss issues pertaining to the engineering design process and to make trade-off decisions more quickly than before, thereby speeding the entire process. This 'faster' design process will be achieved through the development of capabilities to better enable the multidisciplinary and modeling the trade-off decisions that are so critical before launching into a formal detailed design. The features of the environment developed as a result of this research include the ability to view design models, use voice interaction, and to link engineering analysis modules (such as Finite Element Analysis module, such as is demonstrated in this work). One of the major issues in developing a CVE system for engineering design purposes is to obtain any pertinent simulation results in real-time. This is critical so that the designers can make decisions based on these results quickly. For example, in a finite element analysis, if a design model is changed or perturbed, the analysis results must be obtained in real-time or near real-time to make the virtual meeting environment realistic. In this research, the finite difference-based Design Sensitivity Analysis (DSA) approach is employed to approximate structural responses (i.e. stress, displacement, etc), so as to demonstrate the applicability of CVRoom for engineering design trade-offs. This DSA approach provides for fast approximation and is well-suited for the virtual meeting environment where fast response time is required. The DSA-based approach is tested on several example test problems to show its applicability and limitations. This dissertation demonstrates that an increase in efficiency and reduction of time required for a complex design processing can be accomplished using the approach developed in this dissertation research. Several implementations of CVRoom by students working on common design tasks were investigated. All participants confirmed the preference of using the collaborative virtual environment developed in this dissertation work (CVRoom) over other modes of interactions. It is proposed here that CVRoom is representative of the type of collaborative virtual environment that will be used by most designers in the future to reduce the time required in a design cycle and thereby reduce the associated cost.

  7. NREL, EPRI Validate Advanced Microgrid Controller with ESIF's Virtual

    Science.gov Websites

    Microgrid Controller with ESIF's Virtual Microgrid Model NREL, EPRI Validate Advanced Microgrid Controller with ESIF's Virtual Microgrid Model NREL is working with the Electric Power Research Institute (EPRI Energy Systems Integration Facility, by connecting it to a virtual model of a microgrid. NREL researchers

  8. University Library Virtual Reference Services: Best Practices and Continuous Improvement

    ERIC Educational Resources Information Center

    Shaw, Kate; Spink, Amanda

    2009-01-01

    The inclusion or not of chat services within Virtual Reference (VR) is an important topic for university libraries. Increasingly, email supported by a Frequently Asked Questions (FAQ) database is suggested in the scholarly literature as the preferred, cost-effective means for providing university VR services. This paper examines these issues and…

  9. "Pack[superscript2]": VM Resource Scheduling for Fine-Grained Application SLAs in Highly Consolidated Environment

    ERIC Educational Resources Information Center

    Sukwong, Orathai

    2013-01-01

    Virtualization enables the ability to consolidate multiple servers on a single physical machine, increasing the infrastructure utilization. Maximizing the ratio of server virtual machines (VMs) to physical machines, namely the consolidation ratio, becomes an important goal toward infrastructure cost saving in a cloud. However, the consolidation…

  10. Effective Design of Educational Virtual Reality Applications for Medicine Using Knowledge-Engineering Techniques

    ERIC Educational Resources Information Center

    Górski, Filip; Bun, Pawel; Wichniarek, Radoslaw; Zawadzki, Przemyslaw; Hamrol, Adam

    2017-01-01

    Effective medical and biomedical engineering education is an important problem. Traditional methods are difficult and costly. That is why Virtual Reality is often used for that purpose. Educational medical VR is a well-developed IT field, with many available hardware and software solutions. Current solutions are prepared without methodological…

  11. Colonel Mustard in the Library with the Knife...Experiencing Virtual Teaming.

    ERIC Educational Resources Information Center

    Roebuck, Deborah Britt

    Virtual teaming has come to stay in the fast developing world of communication as it brings more value to customers, saves costs, accelerates competence, and leverages organizational learning. Therefore, students need to be educated about this new type of team and the tools that are available to facilitate communication and to enhance…

  12. Routine clinical application of virtual reality in abdominal surgery.

    PubMed

    Sampogna, Gianluca; Pugliese, Raffaele; Elli, Marco; Vanzulli, Angelo; Forgione, Antonello

    2017-06-01

    The advantages of 3D reconstruction, immersive virtual reality (VR) and 3D printing in abdominal surgery have been enunciated for many years, but still today their application in routine clinical practice is almost nil. We investigate their feasibility, user appreciation and clinical impact. Fifteen patients undergoing pancreatic, hepatic or renal surgery were studied realizing a 3D reconstruction of target anatomy. Then, an immersive VR environment was developed to import 3D models, and some details of the 3D scene were printed. All the phases of our workflow employed open-source software and low-cost hardware, easily implementable by other surgical services. A qualitative evaluation of the three approaches was performed by 20 surgeons, who filled in a specific questionnaire regarding a clinical case for each organ considered. Preoperative surgical planning and intraoperative guidance was feasible for all patients included in the study. The vast majority of surgeons interviewed scored their quality and usefulness as very good. Despite extra time, costs and efforts necessary to implement these systems, the benefits shown by the analysis of questionnaires recommend to invest more resources to train physicians to adopt these technologies routinely, even if further and larger studies are still mandatory.

  13. Portable Virtual Training Units

    NASA Technical Reports Server (NTRS)

    Malone, Reagan; Johnston, Alan

    2015-01-01

    The Mission Operations Lab initiated a project to design, develop, deliver, test, and validate a unique training system for astronaut and ground support personnel. In an effort to keep training costs low, virtual training units (VTUs) have been designed based on images of actual hardware and manipulated by a touch screen style interface for ground support personnel training. This project helped modernized the training system and materials by integrating them with mobile devices for training when operators or crew are unavailable to physically train in the facility. This project also tested the concept of a handheld remote device to control integrated trainers using International Space Station (ISS) training simulators as a platform. The portable VTU can interface with the full-sized VTU, allowing a trainer co-located with a trainee to remotely manipulate a VTU and evaluate a trainee's response. This project helped determine if it is useful, cost effective, and beneficial for the instructor to have a portable handheld device to control the behavior of the models during training. This project has advanced NASA Marshall Space Flight Center's (MSFC's) VTU capabilities with modern and relevant technology to support space flight training needs of today and tomorrow.

  14. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    NASA Astrophysics Data System (ADS)

    Gonizzi Barsanti, S.; Caruso, G.; Micoli, L. L.; Covarrubias Rodriguez, M.; Guidi, G.

    2015-08-01

    Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab.

  15. Virtual Induction Loops Based on Cooperative Vehicular Communications

    PubMed Central

    Gramaglia, Marco; Bernardos, Carlos J.; Calderon, Maria

    2013-01-01

    Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop), a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces. PMID:23348033

  16. Average male and female virtual dummy model (BioRID and EvaRID) simulations with two seat concepts in the Euro NCAP low severity rear impact test configuration.

    PubMed

    Linder, Astrid; Holmqvist, Kristian; Svensson, Mats Y

    2018-05-01

    Soft tissue neck injuries, also referred to as whiplash injuries, which can lead to long term suffering accounts for more than 60% of the cost of all injuries leading to permanent medical impairment for the insurance companies, with respect to injuries sustained in vehicle crashes. These injuries are sustained in all impact directions, however they are most common in rear impacts. Injury statistics have since the mid-1960s consistently shown that females are subject to a higher risk of sustaining this type of injury than males, on average twice the risk of injury. Furthermore, some recently developed anti-whiplash systems have revealed they provide less protection for females than males. The protection of both males and females should be addresses equally when designing and evaluating vehicle safety systems to ensure maximum safety for everyone. This is currently not the case. The norm for crash test dummies representing humans in crash test laboratories is an average male. The female part of the population is not represented in tests performed by consumer information organisations such as NCAP or in regulatory tests due to the absence of a physical dummy representing an average female. Recently, the world first virtual model of an average female crash test dummy was developed. In this study, simulations were run with both this model and an average male dummy model, seated in a simplified model of a vehicle seat. The results of the simulations were compared to earlier published results from simulations run in the same test set-up with a vehicle concepts seat. The three crash pulse severities of the Euro NCAP low severity rear impact test were applied. The motion of the neck, head and upper torso were analysed in addition to the accelerations and the Neck Injury Criterion (NIC). Furthermore, the response of the virtual models was compared to the response of volunteers as well as the average male model, to that of the response of a physical dummy model. Simulations with the virtual male and female dummy models revealed differences in dynamic response related to the crash severity, as well as between the two dummies in the two different seat models. For the comparison of the response of the virtual models to the response of the volunteers and the physical dummy model, the peak angular motion of the first thoracic vertebra as found in the volunteer tests and mimicked by the physical dummy were not of the same magnitude in the virtual models. The results of the study highlight the need for an extended test matrix that includes an average female dummy model to evaluate the level of occupant protection different seats provide in vehicle crashes. This would provide developers with an additional tool to ensure that both male and female occupants receive satisfactory protection and promote seat concepts that provide the best possible protection for the whole adult population. This study shows that using the mathematical models available today can provide insights suitable for future testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An information model for a virtual private optical network (OVPN) using virtual routers (VRs)

    NASA Astrophysics Data System (ADS)

    Vo, Viet Minh Nhat

    2002-05-01

    This paper describes a virtual private optical network architecture (Optical VPN - OVPN) based on virtual router (VR). It improves over architectures suggested for virtual private networks by using virtual routers with optical networks. The new things in this architecture are necessary changes to adapt to devices and protocols used in optical networks. This paper also presents information models for the OVPN: at the architecture level and at the service level. These are extensions to the DEN (directory enable network) and CIM (Common Information Model) for OVPNs using VRs. The goal is to propose a common management model using policies.

  18. Health Cost Containment, Wellness, and the 1990s.

    ERIC Educational Resources Information Center

    Stasica, Edward R.

    Virtually every employer has it in their power to reduce their employee health care costs by 10-20 percent or more. The solution to the rising health care costs problem is a total health care system. Most cost savings potential will be centered in three areas: control of wasteful and often harmful use of the health care system; provider price…

  19. Armagh Observatory - Historic Building Information Modelling for Virtual Learning in Building Conservation

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Chenaux, A.; Keenaghan, G.; GIbson, V..; Butler, J.; Pybusr, C.

    2017-08-01

    In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts.

  20. Empirical cost models for estimating power and energy consumption in database servers

    NASA Astrophysics Data System (ADS)

    Valdivia Garcia, Harold Dwight

    The explosive growth in the size of data centers, coupled with the widespread use of virtualization technology has brought power and energy consumption as major concerns for data center administrators. Provisioning decisions must take into consideration not only target application performance but also the power demands and total energy consumption incurred by the hardware and software to be deployed at the data center. Failure to do so will result in damaged equipment, power outages, and inefficient operation. Since database servers comprise one of the most popular and important server applications deployed in such facilities, it becomes necessary to have accurate cost models that can predict the power and energy demands that each database workloads will impose in the system. In this work we present an empirical methodology to estimate the power and energy cost of database operations. Our methodology uses multiple-linear regression to derive accurate cost models that depend only on readily available statistics such as selectivity factors, tuple size, numbers columns and relational cardinality. Moreover, our method does not need measurement of individual hardware components, but rather total power and energy consumption measured at a server. We have implemented our methodology, and ran experiments with several server configurations. Our experiments indicate that we can predict power and energy more accurately than alternative methods found in the literature.

  1. Segmental Mirroring: Does It Eliminate the Need for Intraoperative Readjustment of the Virtually Pre-Bent Reconstruction Plates and Is It Economically Valuable?

    PubMed

    Khalifa, Ghada Amin; Abd El Moniem, Nahed Adly; Elsayed, Shadia Abd-ElHameed; Qadry, Yara

    2016-03-01

    The aim of this study was to compare segmental mirroring with mirroring of the entire unaffected side to determine which method obviates intraoperative readjustment of virtually planned pre-bent plates and to evaluate the effect on costs. Patients eligible for inclusion in this prospective study had unilateral mandibular discontinuity defects. Patients were randomly divided into 2 groups. In group I, models were constructed by mirroring the entire unaffected side of the mandible at the midsagittal plane. In group II, only the resected segments were cut and replaced by the corresponding mirrored healthy segments. The lesions were resected, and their sites were reconstructed using pre-bent reconstruction plates. The need for intraoperative plate readjustment, plate placement time, operation time, and operation costs were reviewed. Fifty patients were enrolled in this study. All but 5 plates in group I required readjustment. In group II, plates were placed without intraoperative handling. Average operating times were 4.20 ± 0.56 hours in group I and 3.186 ± 0.28 hours in group II (P = .00002). Mean times for plate placement were 33.36 ± 8.20 and 21.88 ± 5.73 minutes in groups I and II, respectively. The difference resulted in an average time gain of 11.48 minutes. Average personal costs per minute were US$740.77 for group I and US$560.87 for group II. The difference resulted in an average saving of approximately US$179.90. Segmental mirroring is superior in reflecting the bone anatomy in 3-dimensional models, thus eliminating intraoperative plate readjustment and providing better plate adaptation with better contour. It decreases operating time and costs and thus can be recommended for lesions that do not cross the midline. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Haptic Technologies for MEMS Design

    NASA Astrophysics Data System (ADS)

    Calis, Mustafa; Desmulliez, Marc P. Y.

    2006-04-01

    This paper presents for the first time a design methodology for MEMS/NEMS based on haptic sensing technologies. The software tool created as a result of this methodology will enable designers to model and interact in real time with their virtual prototype. One of the main advantages of haptic sensing is the ability to bring unusual microscopic forces back to the designer's world. Other significant benefits for developing such a methodology include gain productivity and the capability to include manufacturing costs within the design cycle.

  3. Virtual terrain: a security-based representation of a computer network

    NASA Astrophysics Data System (ADS)

    Holsopple, Jared; Yang, Shanchieh; Argauer, Brian

    2008-03-01

    Much research has been put forth towards detection, correlating, and prediction of cyber attacks in recent years. As this set of research progresses, there is an increasing need for contextual information of a computer network to provide an accurate situational assessment. Typical approaches adopt contextual information as needed; yet such ad hoc effort may lead to unnecessary or even conflicting features. The concept of virtual terrain is, therefore, developed and investigated in this work. Virtual terrain is a common representation of crucial information about network vulnerabilities, accessibilities, and criticalities. A virtual terrain model encompasses operating systems, firewall rules, running services, missions, user accounts, and network connectivity. It is defined as connected graphs with arc attributes defining dynamic relationships among vertices modeling network entities, such as services, users, and machines. The virtual terrain representation is designed to allow feasible development and maintenance of the model, as well as efficacy in terms of the use of the model. This paper will describe the considerations in developing the virtual terrain schema, exemplary virtual terrain models, and algorithms utilizing the virtual terrain model for situation and threat assessment.

  4. Cloud Computing with iPlant Atmosphere.

    PubMed

    McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos

    2013-10-15

    Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.

  5. Architectural Heritage Documentation by Using Low Cost Uav with Fisheye Lens: Otag-I Humayun in Istanbul as a Case Study

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Özerdem, Ö. Z.

    2017-11-01

    The digital documentation of architectural heritage is important for monitoring, preserving, managing as well as 3B BIM modelling, time-space VR (virtual reality) applications. The unmanned aerial vehicles (UAVs) have been widely used in these application thanks to rapid developments in technology which enable the high resolution images with resolutions in millimeters. Moreover, it has become possible to produce highly accurate 3D point clouds with structure from motion (SfM) and multi-view stereo (MVS), to obtain a surface reconstruction of a realistic 3D architectural heritage model by using high-overlap images and 3D modeling software such as Context capture, Pix4Dmapper, Photoscan. In this study, digital documentation of Otag-i Humayun (The Ottoman Empire Sultan's Summer Palace) located in Davutpaşa, Istanbul/Turkey is aimed using low cost UAV. The data collections have been made with low cost UAS 3DR Solo UAV with GoPro Hero 4 with fisheye lens. The data processing was accomplished by using commercial Pix4D software. The dense point clouds, a true orthophoto and 3D solid model of the Otag-i Humayun were produced results. The quality check of the produced point clouds has been performed. The obtained result from Otag-i Humayun in Istanbul proved that, the low cost UAV with fisheye lens can be successfully used for architectural heritage documentation.

  6. Medial compartment knee osteoarthritis: age-stratified cost-effectiveness of total knee arthroplasty, unicompartmental knee arthroplasty, and high tibial osteotomy.

    PubMed

    Smith, William B; Steinberg, Joni; Scholtes, Stefan; Mcnamara, Iain R

    2017-03-01

    To compare the age-based cost-effectiveness of total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and high tibial osteotomy (HTO) for the treatment of medial compartment knee osteoarthritis (MCOA). A Markov model was used to simulate theoretical cohorts of patients 40, 50, 60, and 70 years of age undergoing primary TKA, UKA, or HTO. Costs and outcomes associated with initial and subsequent interventions were estimated by following these virtual cohorts over a 10-year period. Revision and mortality rates, costs, and functional outcome data were estimated from a systematic review of the literature. Probabilistic analysis was conducted to accommodate these parameters' inherent uncertainty, and both discrete and probabilistic sensitivity analyses were utilized to assess the robustness of the model's outputs to changes in key variables. HTO was most likely to be cost-effective in cohorts under 60, and UKA most likely in those 60 and over. Probabilistic results did not indicate one intervention to be significantly more cost-effective than another. The model was exquisitely sensitive to changes in utility (functional outcome), somewhat sensitive to changes in cost, and least sensitive to changes in 10-year revision risk. HTO may be the most cost-effective option when treating MCOA in younger patients, while UKA may be preferred in older patients. Functional utility is the primary driver of the cost-effectiveness of these interventions. For the clinician, this study supports HTO as a competitive treatment option in young patient populations. It also validates each one of the three interventions considered as potentially optimal, depending heavily on patient preferences and functional utility derived over time.

  7. A fast simulation method for radiation maps using interpolation in a virtual environment.

    PubMed

    Li, Meng-Kun; Liu, Yong-Kuo; Peng, Min-Jun; Xie, Chun-Li; Yang, Li-Qun

    2018-05-10

    In nuclear decommissioning, virtual simulation technology is a useful tool to achieve an effective work process by using virtual environments to represent the physical and logical scheme of a real decommissioning project. This technology is cost-saving and time-saving, with the capacity to develop various decommissioning scenarios and reduce the risk of retrofitting. The method utilises a radiation map in a virtual simulation as the basis for the assessment of exposure to a virtual human. In this paper, we propose a fast simulation method using a known radiation source. The method has a unique advantage over point kernel and Monte Carlo methods because it generates the radiation map using interpolation in a virtual environment. The simulation of the radiation map including the calculation and the visualisation were realised using UNITY and MATLAB. The feasibility of the proposed method was tested on a hypothetical case and the results obtained are discussed in this paper.

  8. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…

  9. Online virtual cases to teach resource stewardship.

    PubMed

    Zhou, Linghong Linda; Tait, Gordon; Sandhu, Sharron; Steiman, Amanda; Lake, Shirley

    2018-06-11

    As health care costs rise, medical education must focus on high-value clinical decision making. To teach and assess efficient resource use in rheumatology, online virtual interactive cases (VICs) were developed to simulate real patient encounters to increase price transparency and reinforce cost consciousness. To teach and assess efficient resource use in rheumatology, online virtual interactive cases (VICs) were developed METHODS: The VIC modules were distributed to a sample of medical students and internal medicine residents, who were required to assess patients, order appropriate investigations, develop differential diagnoses and formulate management plans. Each action was associated with a time and price, with the totals compared against ideals. Trainees were evaluated not only on their diagnosis and patient management, but also on the total time, cost and value of their selected workup. Trainee responses were tracked anonymously, with opportunity to provide feedback at the end of each case. Seventeen medical trainees completed a total of 48 VIC modules. On average, trainees spent CAN $227.52 and 68 virtual minutes on each case, which was lower than expected. This may have been the result of a low management score of 52.4%, although on average 92.0% of participants in each case achieved the correct diagnosis. In addition, 85.7% felt more comfortable working up similar cases, and 57.1% believed that the modules increased their ability to appropriately order cost-conscious rheumatology investigations. Our initial assessment of the VIC rheumatology modules was positive, supporting their role as an effective tool in teaching an approach to rheumatology patients, with an emphasis on resource stewardship. Future directions include the expansion of cases, based on feedback, wider dissemination and an evaluation of learning retention. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  10. Design and implementation of a reliable and cost-effective cloud computing infrastructure: the INFN Napoli experience

    NASA Astrophysics Data System (ADS)

    Capone, V.; Esposito, R.; Pardi, S.; Taurino, F.; Tortone, G.

    2012-12-01

    Over the last few years we have seen an increasing number of services and applications needed to manage and maintain cloud computing facilities. This is particularly true for computing in high energy physics, which often requires complex configurations and distributed infrastructures. In this scenario a cost effective rationalization and consolidation strategy is the key to success in terms of scalability and reliability. In this work we describe an IaaS (Infrastructure as a Service) cloud computing system, with high availability and redundancy features, which is currently in production at INFN-Naples and ATLAS Tier-2 data centre. The main goal we intended to achieve was a simplified method to manage our computing resources and deliver reliable user services, reusing existing hardware without incurring heavy costs. A combined usage of virtualization and clustering technologies allowed us to consolidate our services on a small number of physical machines, reducing electric power costs. As a result of our efforts we developed a complete solution for data and computing centres that can be easily replicated using commodity hardware. Our architecture consists of 2 main subsystems: a clustered storage solution, built on top of disk servers running GlusterFS file system, and a virtual machines execution environment. GlusterFS is a network file system able to perform parallel writes on multiple disk servers, providing this way live replication of data. High availability is also achieved via a network configuration using redundant switches and multiple paths between hypervisor hosts and disk servers. We also developed a set of management scripts to easily perform basic system administration tasks such as automatic deployment of new virtual machines, adaptive scheduling of virtual machines on hypervisor hosts, live migration and automated restart in case of hypervisor failures.

  11. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  12. Digital Documentation and Archiving Low Cost: la Habana Vieja in Cuba

    NASA Astrophysics Data System (ADS)

    Morganti, C.; Bartolomei, C.

    2017-11-01

    This article deepens the subject of photo-modelling applied to architecture, on a medium and large scale and it shows all the possibilities to apply the last technologies of augmented reality and virtual reality to the historical and architectural contest of Havana City in Cuba. The context was quite unsuitable to our project because of different and complex reasons. The need to minimize the size of the tools, their weight and cost. Minimize the time of survey and photographic shot on site. To face the difficulties given by the continuing presence of a chaotic influx of people disturbing the work. Not least the difficulty of having a limited number of daily hours available to carry out photographic shots that requires special lighting conditions. This article describes the necessary steps to obtain a 3D dimensional textured model from reality through a photographic set.

  13. Cloud Computing for radiologists

    PubMed Central

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  14. Observational learning of fly casting using traditional and virtual modeling with and without authority figure.

    PubMed

    Kernodle, Michael W; McKethan, Robert N; Rabinowitz, Erik

    2008-10-01

    Traditional and virtual modeling were compared during learning of a multiple degree-of-freedom skill (fly casting) to assess the effect of the presence or absence of an authority figure on observational learning via virtual modeling. Participants were randomly assigned to one of four groups: Virtual Modeling with an authority figure present (VM-A) (n = 16), Virtual Modeling without an authority figure (VM-NA) (n = 16), Traditional Instruction (n = 17), and Control (n = 19). Results showed significant between-group differences on Form and Skill Acquisition scores. Except for one instance, all three learning procedures resulted in significant learning of fly casting. Virtual modeling with or without an authority figure present was as effective as traditional instruction; however, learning without an authority figure was less effective with regard to Accuracy scores.

  15. Examining Effects of Virtual Machine Settings on Voice over Internet Protocol in a Private Cloud Environment

    ERIC Educational Resources Information Center

    Liao, Yuan

    2011-01-01

    The virtualization of computing resources, as represented by the sustained growth of cloud computing, continues to thrive. Information Technology departments are building their private clouds due to the perception of significant cost savings by managing all physical computing resources from a single point and assigning them to applications or…

  16. Virtual Reality on a Desktop Hailed as New Tool in Distance Education.

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2000-01-01

    Describes college and university educational applications of desktop virtual reality to provide a more human touch to interactive distance education programs and impress the brain with more vivid images. Critics suggest the technology is too costly and time consuming and may even distract students from the content of an online course. (DB)

  17. Next Stop: OpenSim!

    ERIC Educational Resources Information Center

    Korolov, Maria

    2011-01-01

    Unhappy with conditions in Second Life, educators are migrating to a developing virtual world that offers them greater autonomy and a safer platform for their students at far less a cost. OpenSimulator is an open source virtual world platform that schools can run for free on their own servers or can get cheaply and quickly--the space can be up and…

  18. Study of the modifications needed for effective operation NASTRAN on IBM virtual storage computers

    NASA Technical Reports Server (NTRS)

    Mccormick, C. W.; Render, K. H.

    1975-01-01

    The necessary modifications were determined to make NASTRAN operational under virtual storage operating systems (VS1 and VS2). Suggested changes are presented which will make NASTRAN operate more efficiently under these systems. Estimates of the cost and time involved in design, coding, and implementation of all suggested modifications are included.

  19. The World Wide Web and Higher Education: The Promise of Virtual Universities and Online Libraries.

    ERIC Educational Resources Information Center

    Barnard, John

    1997-01-01

    While many universities and colleges are emphasizing distance education as a way to reach working adults and control costs associated with maintaining campus infrastructures, the World Wide Web is beginning to provide a medium for offering courses to students anywhere in the world. Discusses virtual universities which combine the Web with other…

  20. Conceptual Framework for Therapeutic Training with Biofeedback in Virtual Reality: First Evaluation of a Relaxation Simulator

    ERIC Educational Resources Information Center

    Fominykh, Mikhail; Prasolova-Førland, Ekaterina; Stiles, Tore C.; Krogh, Anne Berit; Linde, Mattias

    2018-01-01

    This paper presents a concept for designing low-cost therapeutic training with biofeedback and virtual reality. We completed the first evaluation of a prototype--a mobile learning application for relaxation training, primarily for adolescents suffering from tension-type headaches. The system delivers visual experience on a head-mounted display. A…

  1. Immersive Virtual Reality in the Psychology Classroom: What Purpose Could it Serve?

    ERIC Educational Resources Information Center

    Coxon, Matthew

    2013-01-01

    Virtual reality is by no means a new technology, yet it is increasingly being used, to different degrees, in education, training, rehabilitation, therapy, and home entertainment. Although the exact reasons for this shift are not the subject of this short opinion piece, it is possible to speculate that decreased costs, and increased performance, of…

  2. Mentoring in the Virtual Organization: Keys to Building Successful Schools and Businesses

    ERIC Educational Resources Information Center

    Colky, Deborah Lavin; Young, William H.

    2006-01-01

    Mentoring can take on a whole new perspective when people have a common goal but are in different physical locations. The benefits of virtual mentoring, in other words, mentoring when the mentor and mentee are not geographically co-located, and which occurs mainly by electronic communication, can be substantial. They include lowered costs,…

  3. Comparing Physical, Virtual, and Hybrid Flipped Labs for General Education Biology

    ERIC Educational Resources Information Center

    Son, Ji Y.

    2016-01-01

    The purpose of this study was to examine the impact on learning, attitudes, and costs in a redesigned general education undergraduate biology course that implemented web-based virtual labs (VLs) to replace traditional physical labs (PLs). Over an academic year, two new modes of VL instruction were compared to the traditional PL offering: (1) all…

  4. Analysing the Suitability of Virtual Worlds for Direct Instruction and Individual Learning Activities

    ERIC Educational Resources Information Center

    Zarraonandia, Telmo; Francese, Rita; Passero, Ignazio; Diaz, Paloma; Tortora, Genoveffa

    2014-01-01

    Despite several researchers reporting evidence that 3D Virtual Worlds can be used to effectively support educational processes in recent years, the integration of this technology in real learning processes is not as commonplace as in other educational technologies. Instructional designers have to balance the cost associated with the development of…

  5. Photorealistic virtual anatomy based on Chinese Visible Human data.

    PubMed

    Heng, P A; Zhang, S X; Xie, Y M; Wong, T T; Chui, Y P; Cheng, C Y

    2006-04-01

    Virtual reality based learning of human anatomy is feasible when a database of 3D organ models is available for the learner to explore, visualize, and dissect in virtual space interactively. In this article, we present our latest work on photorealistic virtual anatomy applications based on the Chinese Visible Human (CVH) data. We have focused on the development of state-of-the-art virtual environments that feature interactive photo-realistic visualization and dissection of virtual anatomical models constructed from ultra-high resolution CVH datasets. We also outline our latest progress in applying these highly accurate virtual and functional organ models to generate realistic look and feel to advanced surgical simulators. (c) 2006 Wiley-Liss, Inc.

  6. Monte Carlo verification of radiotherapy treatments with CloudMC.

    PubMed

    Miras, Hector; Jiménez, Rubén; Perales, Álvaro; Terrón, José Antonio; Bertolet, Alejandro; Ortiz, Antonio; Macías, José

    2018-06-27

    A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance. CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes. Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%. Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.

  7. New protocol for construction of eyeglasses-supported provisional nasal prosthesis using CAD/CAM techniques.

    PubMed

    Ciocca, Leonardo; Fantini, Massimiliano; De Crescenzio, Francesca; Persiani, Franco; Scotti, Roberto

    2010-01-01

    A new protocol for making an immediate provisional eyeglasses-supported nasal prosthesis is presented that uses laser scanning, computer-aided design/computer-aided manufacturing procedures, and rapid prototyping techniques, reducing time and costs while increasing the quality of the final product. With this protocol, the eyeglasses were digitized, and the relative position of the nasal prosthesis was planned and evaluated in a virtual environment without any try-in appointment. This innovative method saves time, reduces costs, and restores the patient's aesthetic appearance after a disfiguration caused by ablation of the nasal pyramid better than conventional restoration methods. Moreover, the digital model of the designed nasal epithesis can be used to develop a definitive prosthesis anchored to osseointegrated craniofacial implants.

  8. The clinical and cost effectiveness of a virtual fracture clinic service

    PubMed Central

    Imbuldeniya, A. M.

    2017-01-01

    Objectives To assess the clinical and cost-effectiveness of a virtual fracture clinic (VFC) model, and supplement the literature regarding this service as recommended by The National Institute for Health and Care Excellence (NICE) and the British Orthopaedic Association (BOA). Methods This was a retrospective study including all patients (17 116) referred to fracture clinics in a London District General Hospital from May 2013 to April 2016, using hospital-level data. We used interrupted time series analysis with segmented regression, and direct before-and-after comparison, to study the impact of VFCs introduced in December 2014 on six clinical parameters and on local Clinical Commissioning Group (CCG) spend. Student’s t-tests were used for direct comparison, whilst segmented regression was employed for projection analysis. Results There were statistically significant reductions in numbers of new patients seen face-to-face (140.4, sd 39.6 versus 461.6, sd 61.63, p < 0.0001), days to first orthopaedic review (5.2, sd 0.66 versus 10.9, sd 1.5, p < 0.0001), discharges (33.5, sd 3.66 versus 129.2, sd 7.36, p < 0.0001) and non-attendees (14.82, sd 1.48 versus 60.47, sd 2.68, p < 0.0001), in addition to a statistically significant increase in number of patients seen within 72-hours (46.4% 3873 of 8345 versus 5.1% 447 of 8771, p < 0.0001). There was a non-significant increase in consultation time of 1 minute 9 seconds (14 minutes 53 seconds sd 106 seconds versus 13 minutes 44 seconds sd 128 seconds, p = 0.0878). VFC saved the local CCG £67 385.67 in the first year and is set to save £129 885.67 annually thereafter. Conclusions We have shown VFCs are clinically and cost-effective, with improvement across several clinical performance parameters and substantial financial savings for CCGs. To our knowledge this is the largest study addressing clinical practice implications of VFCs in England, using robust methodology to adjust for pre-existing trends. Further studies are required to appreciate whether our results are reproducible with local variations in the VFC model and payment tariffs. Cite this article: A. McKirdy, A. M. Imbuldeniya. The clinical and cost effectiveness of a virtual fracture clinic service: An interrupted time series analysis and before-and-after comparison. Bone Joint Res 2017;6:–269. DOI: 10.1302/2046-3758.65.BJR-2017-0330.R1. PMID:28473333

  9. Virtual Reality Used to Serve the Glenn Engineering Community

    NASA Technical Reports Server (NTRS)

    Carney, Dorothy V.

    2001-01-01

    There are a variety of innovative new visualization tools available to scientists and engineers for the display and analysis of their models. At the NASA Glenn Research Center, we have an ImmersaDesk, a large, single-panel, semi-immersive display device. This versatile unit can interactively display three-dimensional images in visual stereo. Our challenge is to make this virtual reality platform accessible and useful to researchers. An example of a successful application of this computer technology is the display of blade out simulations. NASA Glenn structural dynamicists, Dr. Kelly Carney and Dr. Charles Lawrence, funded by the Ultra Safe Propulsion Project under Base R&T, are researching blade outs, when turbine engines lose a fan blade during operation. Key objectives of this research include minimizing danger to the aircraft via effective blade containment, predicting destructive loads due to the imbalance following a blade loss, and identifying safe, cost-effective designs and materials for future engines.

  10. BEYOND THE PRINT—VIRTUAL PALEONTOLOGY IN SCIENCE PUBLISHING, OUTREACH, AND EDUCATION

    PubMed Central

    LAUTENSCHLAGER, STEPHAN; RÜCKLIN, MARTIN

    2015-01-01

    Virtual paleontology unites a variety of computational techniques and methods for the visualization and analysis of fossils. Due to their great potential and increasing availability, these methods have become immensely popular in the last decade. However, communicating the wealth of digital information and results produced by the various techniques is still exacerbated by traditional methods of publication. Transferring and processing three-dimensional information, such as interactive models or animations, into scientific publications still poses a challenge. Here, we present different methods and applications to communicate digital data in academia, outreach and education. Three-dimensional PDFs, QR codes, anaglyph stereo imaging, and rapid prototyping—methods routinely used in the engineering, entertainment, or medical industries—are outlined and evaluated for their potential in science publishing and public engagement. Although limitations remain, these are simple, mostly cost-effective, and powerful tools to create novel and innovative resources for education, public engagement, or outreach. PMID:26306051

  11. SPOT-ligand 2: improving structure-based virtual screening by binding-homology search on an expanded structural template library.

    PubMed

    Litfin, Thomas; Zhou, Yaoqi; Yang, Yuedong

    2017-04-15

    The high cost of drug discovery motivates the development of accurate virtual screening tools. Binding-homology, which takes advantage of known protein-ligand binding pairs, has emerged as a powerful discrimination technique. In order to exploit all available binding data, modelled structures of ligand-binding sequences may be used to create an expanded structural binding template library. SPOT-Ligand 2 has demonstrated significantly improved screening performance over its previous version by expanding the template library 15 times over the previous one. It also performed better than or similar to other binding-homology approaches on the DUD and DUD-E benchmarks. The server is available online at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. The production route selection algorithm in virtual manufacturing networks

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2017-08-01

    The increasing requirements and competition in the global market are challenges for the companies profitability in production and supply chain management. This situation became the basis for construction of virtual organizations, which are created in response to temporary needs. The problem of the production flow planning in virtual manufacturing networks is considered. In the paper the algorithm of the production route selection from the set of admissible routes, which meets the technology and resource requirements and in the context of the criterion of minimum cost is proposed.

  13. Virtualization in education: Information Security lab in your hands

    NASA Astrophysics Data System (ADS)

    Karlov, A. A.

    2016-09-01

    The growing demand for qualified specialists in advanced information technologies poses serious challenges to the education and training of young personnel for science, industry and social problems. Virtualization as a way to isolate the user from the physical characteristics of computing resources (processors, servers, operating systems, networks, applications, etc.), has, in particular, an enormous influence in the field of education, increasing its efficiency, reducing the cost, making it more widely and readily available. The study of Information Security of computer systems is considered as an example of use of virtualization in education.

  14. Optical augmented reality assisted navigation system for neurosurgery teaching and planning

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Qun; Geng, Xing-Yun; Wang, Li; Zhang, Yuan-Peng; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng

    2013-07-01

    This paper proposed a convenient navigation system for neurosurgeon's pre-operative planning and teaching with augmented reality (AR) technique, which maps the three-dimensional reconstructed virtual anatomy structures onto a skull model. This system included two parts, a virtual reality system and a skull model scence. In our experiment, a 73 year old right-handed man initially diagnosed with astrocytoma was selected as an example to vertify our system. His imaging data from different modalities were registered and the skull soft tissue, brain and inside vessels as well as tumor were reconstructed. Then the reconstructed models were overlayed on the real scence. Our findings showed that the reconstructed tissues were augmented into the real scence and the registration results were in good alignment. The reconstructed brain tissue was well distributed in the skull cavity. The probe was used by a neurosurgeon to explore the surgical pathway which could be directly posed into the tumor while not injuring important vessels. In this way, the learning cost for students and patients' education about surgical risks reduced. Therefore, this system could be a selective protocol for image guided surgery(IGS), and is promising for neurosurgeon's pre-operative planning and teaching.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hao; Garzoglio, Gabriele; Ren, Shangping

    FermiCloud is a private cloud developed in Fermi National Accelerator Laboratory to provide elastic and on-demand resources for different scientific research experiments. The design goal of the FermiCloud is to automatically allocate resources for different scientific applications so that the QoS required by these applications is met and the operational cost of the FermiCloud is minimized. Our earlier research shows that VM launching overhead has large variations. If such variations are not taken into consideration when making resource allocation decisions, it may lead to poor performance and resource waste. In this paper, we show how we may use an VMmore » launching overhead reference model to minimize VM launching overhead. In particular, we first present a training algorithm that automatically tunes a given refer- ence model to accurately reflect FermiCloud environment. Based on the tuned reference model for virtual machine launching overhead, we develop an overhead-aware-best-fit resource allocation algorithm that decides where and when to allocate resources so that the average virtual machine launching overhead is minimized. The experimental results indicate that the developed overhead-aware-best-fit resource allocation algorithm can significantly improved the VM launching time when large number of VMs are simultaneously launched.« less

  16. D Survey and Augmented Reality for Cultural Heritage. The Case Study of Aurelian Wall at Castra Praetoria in Rome

    NASA Astrophysics Data System (ADS)

    Canciani, M.; Conigliaro, E.; Del Grasso, M.; Papalini, P.; Saccone, M.

    2016-06-01

    The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets) and shareware software (in the case presented "Augment") it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic), are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image recognition. On the other hand, to show the results also during the graduation day, the same application has been created in off-site condition using a poster.

  17. Investing in sustainability at Coral World

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, O.

    Now open and operational for several years, Coral World offers a unique environmental model for other tourism-related facilities throughout the Caribbean and beyond. The extensive energy conservation program has yielded a 40 to 50% reduction in energy use and costs. The facility's unique on-site storm water absorption system virtually eliminates silt runoff to the coastal waters. The innovative, highly cost-effective series of renewable energy installations include a photovoltaic-powered restaurant kitchen, solar hot water systems and one of the world's first hydroelectric systems that uses wastewater drainage for turbine source waters. The extensive marine environmental conservation program protects fragile local ecosystemsmore » while also protecting the owners' investment in tourism. By investing aggressively in sustainability, Coral World's owners are reaping the benefits not only in reduced operating costs and improved profitability, but also in increased visitor volume and satisfaction.« less

  18. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    PubMed Central

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  19. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    PubMed

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  20. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality.

    PubMed

    Lange, Belinda; Koenig, Sebastian; Chang, Chien-Yen; McConnell, Eric; Suma, Evan; Bolas, Mark; Rizzo, Albert

    2012-01-01

    This paper details a brief history and rationale for the use of virtual reality (VR) technology for clinical research and intervention, and then focuses on game-based VR applications in the area of rehabilitation. An analysis of the match between rehabilitation task requirements and the assets available with VR technology is presented. Low-cost camera-based systems capable of tracking user behavior at sufficient levels for game-based virtual rehabilitation activities are currently available for in-home use. Authoring software is now being developed that aims to provide clinicians with a usable toolkit for leveraging this technology. This will facilitate informed professional input on software design, development and application to ensure safe and effective use in the rehabilitation context. The field of rehabilitation generally stands to benefit from the continual advances in VR technology, concomitant system cost reductions and an expanding clinical research literature and knowledge base. Home-based activity within VR systems that are low-cost, easy to deploy and maintain, and meet the requirements for "good" interactive rehabilitation tasks could radically improve users' access to care, adherence to prescribed training and subsequently enhance functional activity in everyday life in clinical populations.

  1. Scalable Multi-Platform Distribution of Spatial 3d Contents

    NASA Astrophysics Data System (ADS)

    Klimke, J.; Hagedorn, B.; Döllner, J.

    2013-09-01

    Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.

  2. A Machine-Learning-Driven Sky Model.

    PubMed

    Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt

    2017-01-01

    Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.

  3. Prediction of dynamic strains on a monopile offshore wind turbine using virtual sensors

    NASA Astrophysics Data System (ADS)

    Iliopoulos, A. N.; Weijtjens, W.; Van Hemelrijck, D.; Devriendt, C.

    2015-07-01

    The monitoring of the condition of the offshore wind turbine during its operational states offers the possibility of performing accurate assessments of the remaining life-time as well as supporting maintenance decisions during its entire life. The efficacy of structural monitoring in the case of the offshore wind turbine, though, is undermined by the practical limitations connected to the measurement system in terms of cost, weight and feasibility of sensor mounting (e.g. at muddline level 30m below the water level). This limitation is overcome by reconstructing the full-field response of the structure based on the limited number of measured accelerations and a calibrated Finite Element Model of the system. A modal decomposition and expansion approach is used for reconstructing the responses at all degrees of freedom of the finite element model. The paper will demonstrate the possibility to predict dynamic strains from acceleration measurements based on the aforementioned methodology. These virtual dynamic strains will then be evaluated and validated based on actual strain measurements obtained from a monitoring campaign on an offshore Vestas V90 3 MW wind turbine on a monopile foundation.

  4. The Virtual Anemia Trial: An Assessment of Model-Based In Silico Clinical Trials of Anemia Treatment Algorithms in Patients With Hemodialysis.

    PubMed

    Fuertinger, Doris H; Topping, Alice; Kappel, Franz; Thijssen, Stephan; Kotanko, Peter

    2018-04-01

    In silico approaches have been proposed as a novel strategy to increase the repertoire of clinical trial designs. Realistic simulations of clinical trials can provide valuable information regarding safety and limitations of treatment protocols and have been shown to assist in the cost-effective planning of clinical studies. In this report, we present a blueprint for the stepwise integration of internal, external, and ecological validity considerations in virtual clinical trials (VCTs). We exemplify this approach in the context of a model-based in silico clinical trial aimed at anemia treatment in patients undergoing hemodialysis (HD). Hemoglobin levels and subsequent anemia treatment were simulated on a per patient level over the course of a year and compared to real-life clinical data of 79,426 patients undergoing HD. The novel strategies presented here, aimed to improve external and ecological validity of a VCT, significantly increased the predictive power of the discussed in silico trial. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  5. A 360° Vision for Virtual Organizations Characterization and Modelling: Two Intentional Level Aspects

    NASA Astrophysics Data System (ADS)

    Priego-Roche, Luz-María; Rieu, Dominique; Front, Agnès

    Nowadays, organizations aiming to be successful in an increasingly competitive market tend to group together into virtual organizations. Designing the information system (IS) of such virtual organizations on the basis of the IS of those participating is a real challenge. The IS of a virtual organization plays an important role in the collaboration and cooperation of the participants organizations and in reaching the common goal. This article proposes criteria allowing virtual organizations to be identified and classified at an intentional level, as well as the information necessary for designing the organizations’ IS. Instantiation of criteria for a specific virtual organization and its participants, will allow simple graphical models to be generated in a modelling tool. The models will be used as bases for the IS design at organizational and operational levels. The approach is illustrated by the example of the virtual organization UGRT (a regional stockbreeders union in Tabasco, Mexico).

  6. Direct energy recovery from primary and secondary sludges by supercritical water oxidation.

    PubMed

    Svanström, M; Modell, M; Tester, J

    2004-01-01

    Supercritical water oxidation (SCWO) oxidizes organic and biological materials virtually completely to benign products without the need for stack gas scrubbing. Heavy metals are recovered as stabilized solid, along with the sand and clay that is present in the feed. The technology has been under development for twenty years. The major obstacle to commercialization has been developing reactors that are not clogged by inorganic solid deposits. That problem has been solved by using tubular reactors with fluid velocities that are high enough to keep solids in suspension. Recently, system designs have been created that reduce the cost of processing sewage sludges below that of incineration. At 10 wt- % dry solids, sludge can be oxidized with virtually complete recovery of the sludge heating value as hot water or high-pressure steam. Liquid carbon dioxide of high purity can be recovered from the gaseous effluent and excess oxygen can be recovered for recycle. The net effect is to reduce the stack to a harmless vent with minimal flow rate of a clean gas. Complete simulations have been developed using physical property models that accurately simulate the thermodynamic properties of sub- and supercritical water in mixtures with O2, N2, CO2, and organics. Capital and operating cost estimates are given for sewage sludge treatment, which are less costly than incineration. The scenario of direct recovery of energy from sludges has inherent benefits compared to other gasification or liquefaction options.

  7. Low-Cost Virtual Laboratory Workbench for Electronic Engineering

    ERIC Educational Resources Information Center

    Achumba, Ifeyinwa E.; Azzi, Djamel; Stocker, James

    2010-01-01

    The laboratory component of undergraduate engineering education poses challenges in resource constrained engineering faculties. The cost, time, space and physical presence requirements of the traditional (real) laboratory approach are the contributory factors. These resource constraints may mitigate the acquisition of meaningful laboratory…

  8. Paying to Get Paid.

    PubMed

    Sorrel, Amy Lynn

    2015-12-01

    Some health plans and third-party vendors that process plan payments are moving to virtual credit cards, without warning and without much explanation of fees or opt-out procedures. Physician practices don't have to accept the financial and administrative costs associated with virtual cards. TMA officials say doctors have a choice and the right to demand that their payers issue payments via direct deposit.

  9. A Systematic Review of Virtual Reality in Education

    ERIC Educational Resources Information Center

    Kavanagh, Sam; Luxton-Reilly, Andrew; Wuensche, Burkhard; Plimmer, Beryl

    2017-01-01

    Virtual reality has existed in the realm of education for over half a century. However, its widespread adoption is still yet to occur. This is a result of a myriad of limitations to both the technologies themselves, and the costs and logistics required to deploy them. In order to gain a better understanding of what these issues are, and what it is…

  10. "Language Is a Costly and Complicating Factor": A Diachronic Study of Language Policy in the Virtual Public Sector

    ERIC Educational Resources Information Center

    Berezkina, Maimu

    2018-01-01

    This article examines language policy in the virtual linguistic landscape (VLL) in Norway and its development over time. The analysis is based on diachronic website data and interviews with state employees concerning the presence or absence of different languages on the websites of three central state institutions. The article reveals a linguistic…

  11. Cost-effectiveness of community versus hospital eye service follow-up for patients with quiescent treated age-related macular degeneration alongside the ECHoES randomised trial.

    PubMed

    Violato, M; Dakin, H; Chakravarthy, U; Reeves, B C; Peto, T; Hogg, R E; Harding, S P; Scott, L J; Taylor, J; Cappel-Porter, H; Mills, N; O'Reilly, D; Rogers, C A; Wordsworth, S

    2016-10-24

    To assess the cost-effectiveness of optometrist-led follow-up monitoring reviews for patients with quiescent neovascular age-related macular degeneration (nAMD) in community settings (including high street opticians) compared with ophthalmologist-led reviews in hospitals. A model-based cost-effectiveness analysis with a 4-week time horizon, based on a 'virtual' non-inferiority randomised trial designed to emulate a parallel group design. A virtual internet-based clinical assessment, conducted at community optometry practices, and hospital ophthalmology clinics. Ophthalmologists with experience in the age-related macular degeneration service; fully qualified optometrists not participating in nAMD shared care schemes. The participating optometrists and ophthalmologists classified lesions from vignettes and were asked to judge whether any retreatment was required. Vignettes comprised clinical information, colour fundus photographs and optical coherence tomography images. Participants' classifications were validated against experts' classifications (reference standard). Resource use and cost information were attributed to these retreatment decisions. Correct classification of whether further treatment is needed, compared with a reference standard. The mean cost per assessment, including the subsequent care pathway, was £411 for optometrists and £397 for ophthalmologists: a cost difference of £13 (95% CI -£18 to £45). Optometrists were non-inferior to ophthalmologists with respect to the overall percentage of lesions correctly assessed (difference -1.0%; 95% CI -4.5% to 2.5%). In the base case analysis, the slightly larger number of incorrect retreatment decisions by optometrists led to marginally and non-significantly higher costs. Sensitivity analyses that reflected different practices across eye hospitals indicate that shared care pathways between optometrists and ophthalmologists can be identified which may reduce demands on scant hospital resources, although in light of the uncertainty around differences in outcome and cost it remains unclear whether the differences between the 2 care pathways are significant in economic terms. ISRCTN07479761; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; DeFanti, Thomas A.; Dawe, Greg; Prudhomme, Andrew; Schulze, Jurgen P.; Cutchin, Steve

    2011-03-01

    Researchers at the University of California, San Diego, have created a new, relatively low-cost augmented reality system that enables users to touch the virtual environment they are immersed in. The Heads-Up Virtual Reality device (HUVR) couples a consumer 3D HD flat screen TV with a half-silvered mirror to project any graphic image onto the user's hands and into the space surrounding them. With his or her head position optically tracked to generate the correct perspective view, the user maneuvers a force-feedback (haptic) device to interact with the 3D image, literally 'touching' the object's angles and contours as if it was a tangible physical object. HUVR can be used for training and education in structural and mechanical engineering, archaeology and medicine as well as other tasks that require hand-eye coordination. One of the most unique characteristics of HUVR is that a user can place their hands inside of the virtual environment without occluding the 3D image. Built using open-source software and consumer level hardware, HUVR offers users a tactile experience in an immersive environment that is functional, affordable and scalable.

  13. An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint.

    PubMed

    Kim, Dae-Seung; Woo, Sang-Yoon; Yang, Hoon Joo; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Hwang, Soon Jung; Yi, Won-Jin

    2014-12-01

    Accurate surgical planning and transfer of the planning in orthognathic surgery are very important in achieving a successful surgical outcome with appropriate improvement. Conventionally, the paper surgery is performed based on a 2D cephalometric radiograph, and the results are expressed using cast models and an articulator. We developed an integrated orthognathic surgery system with 3D virtual planning and image-guided transfer. The maxillary surgery of orthognathic patients was planned virtually, and the planning results were transferred to the cast model by image guidance. During virtual planning, the displacement of the reference points was confirmed by the displacement from conventional paper surgery at each procedure. The results of virtual surgery were transferred to the physical cast models directly through image guidance. The root mean square (RMS) difference between virtual surgery and conventional model surgery was 0.75 ± 0.51 mm for 12 patients. The RMS difference between virtual surgery and image-guidance results was 0.78 ± 0.52 mm, which showed no significant difference from the difference of conventional model surgery. The image-guided orthognathic surgery system integrated with virtual planning will replace physical model surgical planning and enable transfer of the virtual planning directly without the need for an intermediate splint. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. A Cost-Effective Virtual Environment for Simulating and Training Powered Wheelchairs Manoeuvres.

    PubMed

    Headleand, Christopher J; Day, Thomas; Pop, Serban R; Ritsos, Panagiotis D; John, Nigel W

    2016-01-01

    Control of a powered wheelchair is often not intuitive, making training of new users a challenging and sometimes hazardous task. Collisions, due to a lack of experience can result in injury for the user and other individuals. By conducting training activities in virtual reality (VR), we can potentially improve driving skills whilst avoiding the risks inherent to the real world. However, until recently VR technology has been expensive and limited the commercial feasibility of a general training solution. We describe Wheelchair-Rift, a cost effective prototype simulator that makes use of the Oculus Rift head mounted display and the Leap Motion hand tracking device. It has been assessed for face validity by a panel of experts from a local Posture and Mobility Service. Initial results augur well for our cost-effective training solution.

  15. The distributed agent-based approach in the e-manufacturing environment

    NASA Astrophysics Data System (ADS)

    Sękala, A.; Kost, G.; Dobrzańska-Danikiewicz, A.; Banaś, W.; Foit, K.

    2015-11-01

    The deficiency of a coherent flow of information from a production department causes unplanned downtime and failures of machines and their equipment, which in turn results in production planning process based on incorrect and out-of-date information. All of these factors entail, as the consequence, the additional difficulties associated with the process of decision-making. They concern, among other, the coordination of components of a distributed system and providing the access to the required information, thereby generating unnecessary costs. The use of agent technology significantly speeds up the flow of information within the virtual enterprise. This paper includes the proposal of a multi-agent approach for the integration of processes within the virtual enterprise concept. The presented concept was elaborated to investigate the possible solutions of the ways of transmission of information in the production system taking into account the self-organization of constituent components. Thus it implicated the linking of the concept of multi-agent system with the system of managing the production information, based on the idea of e-manufacturing. The paper presents resulting scheme that should be the base for elaborating an informatics model of the target virtual system. The computer system itself is intended to be developed next.

  16. Dynamic virtual optical network embedding in spectral and spatial domains over elastic optical networks with multicore fibers

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.

    2016-08-01

    Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.

  17. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy

    PubMed Central

    Borojeni, Azadeh A.T.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.; Garcia, Guilherme J. M.

    2016-01-01

    Virtual surgery planning based on computational fluid dynamics (CFD) simulations has the potential to improve surgical outcomes for nasal airway obstruction (NAO) patients, but the benefits of virtual surgery planning must outweigh the risks of radiation exposure. Cone beam computed tomography (CBCT) scans represent an attractive imaging modality for virtual surgery planning due to lower costs and lower radiation exposures compared with conventional CT scans. However, to minimize the radiation exposure, the CBCT sinusitis protocol sometimes images only the nasal cavity, excluding the nasopharynx. The goal of this study was to develop an idealized nasopharynx geometry for accurate representation of outlet boundary conditions when the nasopharynx geometry is unavailable. Anatomically-accurate models of the nasopharynx created from thirty CT scans were intersected with planes rotated at different angles to obtain an average geometry. Cross sections of the idealized nasopharynx were approximated as ellipses with cross-sectional areas and aspect ratios equal to the average in the actual patient-specific models. CFD simulations were performed to investigate whether nasal airflow patterns were affected when the CT-based nasopharynx was replaced by the idealized nasopharynx in 10 NAO patients. Despite the simple form of the idealized geometry, all biophysical variables (nasal resistance, airflow rate, and heat fluxes) were very similar in the idealized vs. patient-specific models. The results confirmed the expectation that the nasopharynx geometry has a minimal effect in the nasal airflow patterns during inspiration. The idealized nasopharynx geometry will be useful in future CFD studies of nasal airflow based on medical images that exclude the nasopharynx. PMID:27525807

  18. How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach.

    PubMed

    Ichikawa, Daisuke; Saito, Toki; Ujita, Waka; Oyama, Hiroshi

    2016-12-01

    Our purpose was to develop a new machine-learning approach (a virtual health check-up) toward identification of those at high risk of hyperuricemia. Applying the system to general health check-ups is expected to reduce medical costs compared with administering an additional test. Data were collected during annual health check-ups performed in Japan between 2011 and 2013 (inclusive). We prepared training and test datasets from the health check-up data to build prediction models; these were composed of 43,524 and 17,789 persons, respectively. Gradient-boosting decision tree (GBDT), random forest (RF), and logistic regression (LR) approaches were trained using the training dataset and were then used to predict hyperuricemia in the test dataset. Undersampling was applied to build the prediction models to deal with the imbalanced class dataset. The results showed that the RF and GBDT approaches afforded the best performances in terms of sensitivity and specificity, respectively. The area under the curve (AUC) values of the models, which reflected the total discriminative ability of the classification, were 0.796 [95% confidence interval (CI): 0.766-0.825] for the GBDT, 0.784 [95% CI: 0.752-0.815] for the RF, and 0.785 [95% CI: 0.752-0.819] for the LR approaches. No significant differences were observed between pairs of each approach. Small changes occurred in the AUCs after applying undersampling to build the models. We developed a virtual health check-up that predicted the development of hyperuricemia using machine-learning methods. The GBDT, RF, and LR methods had similar predictive capability. Undersampling did not remarkably improve predictive power. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM

    DTIC Science & Technology

    2013-12-01

    UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Stefano Wahono Aerospace...Georgia Institute of Technology. The OpenFOAM predicted result was also shown to compare favourably with ANSYS Fluent predictions. RELEASE...UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Executive Summary The Infrared

  20. [Virtual reality therapy in anxiety disorders].

    PubMed

    Mitrousia, V; Giotakos, O

    2016-01-01

    During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he wishes and under the supervision of the therapist. The technique takes place in the therapist's office which ensures confidentiality and privacy. The therapist is able to control unpredicted events that can occur during patient's exposure in real environments. Mainly the therapist can control the intensity of exposure and adapt it to the patient's needs. Virtual reality can be proven particularly useful in some specific psychological states. For instance, patients with post-traumatic stress disorder (PTSD) who prone to avoid the reminders of the traumatic events. Exposure in virtual reality can solve this problem providing to the patient a large number of stimuli that activate the senses causing the necessary physiological and psychological anxiety reactions, regardless of his willingness or ability to recall in his imagination the traumatic event.

  1. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    ERIC Educational Resources Information Center

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  2. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality room known as a Cave Automatic Virtual Environment (CAVE), enables the scientist to stand in data three-dimensional dataset while taking measurements. The CAVE involves three or more projection surfaces arranged as walls in a room. Stereo projectors combined with a motion tracking system and immersion recreates the experience of carrying out research in the field. This high-end system provides significant advantages for scientists working with complex volumetric data. The interactive tools also work on low-cost platforms that provide stereo views and the potential for interactivity such as a Geowall or a 3D enabled TV. The Geowall is also a well-established tool for education, and in combination with the tools we have developed, enables the rapid transfer of research data and new knowledge to the classroom. The interactive visualization tools can also be used on a desktop or laptop with or without stereo capability. Further information about the Virtual Reality User Interface (VRUI), the 3DVisualizer, the Virtual mapping tools, and the LIDAR viewer, can be found on the KeckCAVES website, www.keckcaves.org.

  3. A simple cost-effective design for construction of a laparoscopic trainer.

    PubMed

    Ricchiuti, Daniel; Ralat, Dane Arends; Evancho-Chapman, Michelle; Wyneski, Holly; Cerone, Jeffrey; Wegryn, John D

    2005-10-01

    Laparoscopic trainers have been shown to be effective tools for transitioning residents in surgical fields into live laparoscopic techniques. There have been few reports of homemade trainers, but each of these reports provides only scant detail about their construction, making production a novel task to those interested in employing this equipment. Virtual-reality trainers are gaining popularity and are exceptional modalities in the re-creation of laparoscopic surgery. In their present state, however, such trainers are very costly, making them unattainable by most urology residency programs. Numerous commercial non-virtual trainers are also available; however, these trainers are often cost-prohibitive or overly simplistic. We describe a detailed design template for creation of a laparoscopic trainer based on modifications of previous designs. This trainer can be made easily at a cost of approximately US$275.00 and may be used in conjunction with existing laparoscopic equipment. The methods described herein can be followed by any local machinist to create this trainer. The relatively low total cost, ready material availability, and ease of construction make this trainer an appropriate option for the training of residents in laparoscopic procedures.

  4. Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment.

    PubMed

    De Leo, Gianluca; Diggs, Leigh A; Radici, Elena; Mastaglio, Thomas W

    2014-02-01

    Virtual-reality solutions have successfully been used to train distributed teams. This study aimed to investigate the correlation between user characteristics and sense of presence in an online virtual-reality environment where distributed teams are trained. A greater sense of presence has the potential to make training in the virtual environment more effective, leading to the formation of teams that perform better in a real environment. Being able to identify, before starting online training, those user characteristics that are predictors of a greater sense of presence can lead to the selection of trainees who would benefit most from the online simulated training. This is an observational study with a retrospective postsurvey of participants' user characteristics and degree of sense of presence. Twenty-nine members from 3 Air Force National Guard Medical Service expeditionary medical support teams participated in an online virtual environment training exercise and completed the Independent Television Commission-Sense of Presence Inventory survey, which measures sense of presence and user characteristics. Nonparametric statistics were applied to determine the statistical significance of user characteristics to sense of presence. Comparing user characteristics to the 4 scales of the Independent Television Commission-Sense of Presence Inventory using Kendall τ test gave the following results: the user characteristics "how often you play video games" (τ(26)=-0.458, P<0.01) and "television/film production knowledge" (τ(27)=-0.516, P<0.01) were significantly related to negative effects. Negative effects refer to adverse physiologic reactions owing to the virtual environment experience such as dizziness, nausea, headache, and eyestrain. The user characteristic "knowledge of virtual reality" was significantly related to engagement (τ(26)=0.463, P<0.01) and negative effects (τ(26)=-0.404, P<0.05). Individuals who have knowledge about virtual environments and experience with gaming environments report a higher sense of presence that indicates that they will likely benefit more from online virtual training. Future research studies could include a larger population of expeditionary medical support, and the results obtained could be used to create a model that predicts the level of presence based on the user characteristics. To maximize results and minimize costs, only those individuals who, based on their characteristics, are supposed to have a higher sense of presence and less negative effects could be selected for online simulated virtual environment training.

  5. Analyzing the costs to deliver medication therapy management services.

    PubMed

    Rupp, Michael T

    2011-01-01

    To provide pharmacy managers and consultant pharmacists with a step-by-step approach for analyzing of the costs of delivering medication therapy management (MTM) services and to describe use of a free online software application for determining costs of delivering MTM. The process described is applicable to community pharmacies and consultant pharmacists who provide MTM services from nonpharmacy settings. The PharmAccount Service Cost Calculator is an Internet- based software application that uses a guided online interview to collect information needed to conduct a comprehensive cost analysis of any specialized pharmacy service. In addition to direct variable and fixed costs, the software automatically allocates indirect and overhead costs to the service and generates an itemized report that details the components of service delivery costs. The service cost calculator is sufficiently flexible to support the analysis of virtually any specialized pharmacy service, irrespective of whether the service is being delivered from a physical pharmacy. The software application allows users to perform sensitivity analysis to quickly determine the potential impact that alternate scenarios would have on service delivery cost. It is therefore particularly well suited to assist in the design and planning of a new pharmacy service. Good management requires that the cost implications of service delivery decisions are known and considered. Analyzing the cost of an MTM service is an important step in developing a sustainable business model.

  6. Pricing of common cosmetic surgery procedures: local economic factors trump supply and demand.

    PubMed

    Richardson, Clare; Mattison, Gennaya; Workman, Adrienne; Gupta, Subhas

    2015-02-01

    The pricing of cosmetic surgery procedures has long been thought to coincide with laws of basic economics, including the model of supply and demand. However, the highly variable prices of these procedures indicate that additional economic contributors are probable. The authors sought to reassess the fit of cosmetic surgery costs to the model of supply and demand and to determine the driving forces behind the pricing of cosmetic surgery procedures. Ten plastic surgery practices were randomly selected from each of 15 US cities of various population sizes. Average prices of breast augmentation, mastopexy, abdominoplasty, blepharoplasty, and rhytidectomy in each city were compared with economic and demographic statistics. The average price of cosmetic surgery procedures correlated substantially with population size (r = 0.767), cost-of-living index (r = 0.784), cost to own real estate (r = 0.714), and cost to rent real estate (r = 0.695) across the 15 US cities. Cosmetic surgery pricing also was found to correlate (albeit weakly) with household income (r = 0.436) and per capita income (r = 0.576). Virtually no correlations existed between pricing and the density of plastic surgeons (r = 0.185) or the average age of residents (r = 0.076). Results of this study demonstrate a correlation between costs of cosmetic surgery procedures and local economic factors. Cosmetic surgery pricing cannot be completely explained by the supply-and-demand model because no association was found between procedure cost and the density of plastic surgeons. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  7. Using a 3D Virtual Supermarket to Measure Food Purchase Behavior: A Validation Study

    PubMed Central

    Jiang, Yannan; Steenhuis, Ingrid Hendrika Margaretha; Ni Mhurchu, Cliona

    2015-01-01

    Background There is increasing recognition that supermarkets are an important environment for health-promoting interventions such as fiscal food policies or front-of-pack nutrition labeling. However, due to the complexities of undertaking such research in the real world, well-designed randomized controlled trials on these kinds of interventions are lacking. The Virtual Supermarket is a 3-dimensional computerized research environment designed to enable experimental studies in a supermarket setting without the complexity or costs normally associated with undertaking such research. Objective The primary objective was to validate the Virtual Supermarket by comparing virtual and real-life food purchasing behavior. A secondary objective was to obtain participant feedback on perceived sense of “presence” (the subjective experience of being in one place or environment even if physically located in another) in the Virtual Supermarket. Methods Eligible main household shoppers (New Zealand adults aged ≥18 years) were asked to conduct 3 shopping occasions in the Virtual Supermarket over 3 consecutive weeks, complete the validated Presence Questionnaire Items Stems, and collect their real supermarket grocery till receipts for that same period. Proportional expenditure (NZ$) and the proportion of products purchased over 18 major food groups were compared between the virtual and real supermarkets. Data were analyzed using repeated measures mixed models. Results A total of 123 participants consented to take part in the study. In total, 69.9% (86/123) completed 1 shop in the Virtual Supermarket, 64.2% (79/123) completed 2 shops, 60.2% (74/123) completed 3 shops, and 48.8% (60/123) returned their real supermarket till receipts. The 4 food groups with the highest relative expenditures were the same for the virtual and real supermarkets: fresh fruit and vegetables (virtual estimate: 14.3%; real: 17.4%), bread and bakery (virtual: 10.0%; real: 8.2%), dairy (virtual: 19.1%; real: 12.6%), and meat and fish (virtual: 16.5%; real: 16.8%). Significant differences in proportional expenditures were observed for 6 food groups, with largest differences (virtual – real) for dairy (in expenditure 6.5%, P<.001; in items 2.2%, P=.04) and fresh fruit and vegetables (in expenditure: –3.1%, P=.04; in items: 5.9%, P=.002). There was no trend of overspending in the Virtual Supermarket and participants experienced a medium-to-high presence (88%, 73/83 scored medium; 8%, 7/83 scored high). Conclusions Shopping patterns in the Virtual Supermarket were comparable to those in real life. Overall, the Virtual Supermarket is a valid tool to measure food purchasing behavior. Nevertheless, it is important to improve the functionality of some food categories, in particular fruit and vegetables and dairy. The results of this validation will assist in making further improvements to the software and with optimization of the internal and external validity of this innovative methodology. PMID:25921185

  8. Using a 3D virtual supermarket to measure food purchase behavior: a validation study.

    PubMed

    Waterlander, Wilma Elzeline; Jiang, Yannan; Steenhuis, Ingrid Hendrika Margaretha; Ni Mhurchu, Cliona

    2015-04-28

    There is increasing recognition that supermarkets are an important environment for health-promoting interventions such as fiscal food policies or front-of-pack nutrition labeling. However, due to the complexities of undertaking such research in the real world, well-designed randomized controlled trials on these kinds of interventions are lacking. The Virtual Supermarket is a 3-dimensional computerized research environment designed to enable experimental studies in a supermarket setting without the complexity or costs normally associated with undertaking such research. The primary objective was to validate the Virtual Supermarket by comparing virtual and real-life food purchasing behavior. A secondary objective was to obtain participant feedback on perceived sense of "presence" (the subjective experience of being in one place or environment even if physically located in another) in the Virtual Supermarket. Eligible main household shoppers (New Zealand adults aged ≥18 years) were asked to conduct 3 shopping occasions in the Virtual Supermarket over 3 consecutive weeks, complete the validated Presence Questionnaire Items Stems, and collect their real supermarket grocery till receipts for that same period. Proportional expenditure (NZ$) and the proportion of products purchased over 18 major food groups were compared between the virtual and real supermarkets. Data were analyzed using repeated measures mixed models. A total of 123 participants consented to take part in the study. In total, 69.9% (86/123) completed 1 shop in the Virtual Supermarket, 64.2% (79/123) completed 2 shops, 60.2% (74/123) completed 3 shops, and 48.8% (60/123) returned their real supermarket till receipts. The 4 food groups with the highest relative expenditures were the same for the virtual and real supermarkets: fresh fruit and vegetables (virtual estimate: 14.3%; real: 17.4%), bread and bakery (virtual: 10.0%; real: 8.2%), dairy (virtual: 19.1%; real: 12.6%), and meat and fish (virtual: 16.5%; real: 16.8%). Significant differences in proportional expenditures were observed for 6 food groups, with largest differences (virtual - real) for dairy (in expenditure 6.5%, P<.001; in items 2.2%, P=.04) and fresh fruit and vegetables (in expenditure: -3.1%, P=.04; in items: 5.9%, P=.002). There was no trend of overspending in the Virtual Supermarket and participants experienced a medium-to-high presence (88%, 73/83 scored medium; 8%, 7/83 scored high). Shopping patterns in the Virtual Supermarket were comparable to those in real life. Overall, the Virtual Supermarket is a valid tool to measure food purchasing behavior. Nevertheless, it is important to improve the functionality of some food categories, in particular fruit and vegetables and dairy. The results of this validation will assist in making further improvements to the software and with optimization of the internal and external validity of this innovative methodology.

  9. Virtual Reality Exploration and Planning for Precision Colorectal Surgery.

    PubMed

    Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco

    2018-06-01

    Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could contribute to improve safety in colorectal surgery.

  10. On the Complexity of the Asymmetric VPN Problem

    NASA Astrophysics Data System (ADS)

    Rothvoß, Thomas; Sanità, Laura

    We give the first constant factor approximation algorithm for the asymmetric Virtual Private Network (textsc{Vpn}) problem with arbitrary concave costs. We even show the stronger result, that there is always a tree solution of cost at most 2·OPT and that a tree solution of (expected) cost at most 49.84·OPT can be determined in polynomial time.

  11. Forecasting the impact of virtual environment technology on maintenance training

    NASA Technical Reports Server (NTRS)

    Schlager, Mark S.; Boman, Duane; Piantanida, Tom; Stephenson, Robert

    1993-01-01

    To assist NASA and the Air Force in determining how and when to invest in virtual environment (VE) technology for maintenance training, we identified possible roles for VE technology in such training, assessed its cost-effectiveness relative to existing technologies, and formulated recommendations for a research agenda that would address instructional and system development issues involved in fielding a VE training system. In the first phase of the study, we surveyed VE developers to forecast capabilities, maturity, and estimated costs for VE component technologies. We then identified maintenance tasks and their training costs through interviews with maintenance technicians, instructors, and training developers. Ten candidate tasks were selected from two classes of maintenance tasks (seven aircraft maintenance and three space maintenance) using five criteria developed to identify types of tasks most likely to benefit from VE training. Three tasks were used as specific cases for cost-benefit analysis. In formulating research recommendations, we considered three aspects of feasibility: technological considerations, cost-effectiveness, and anticipated R&D efforts. In this paper, we describe the major findings in each of these areas and suggest research efforts that we believe will help achieve the goal of a cost-effective VE maintenance training system by the next decade.

  12. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models.

    PubMed

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients.

  13. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models

    PubMed Central

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A.

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients. PMID:25374542

  14. Utilization of Virtual Server Technology in Mission Operations

    NASA Technical Reports Server (NTRS)

    Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  15. Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello; Walter, Ulrich

    2015-05-01

    This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.

  16. Virtualization in the Operations Environments

    NASA Technical Reports Server (NTRS)

    Pitts, Lee; Lankford, Kim; Felton, Larry; Pruitt, Robert

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  17. Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Pretto, N.; Poiesi, F.

    2017-11-01

    We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.

  18. [Virtual reality in medical education].

    PubMed

    Edvardsen, O; Steensrud, T

    1998-02-28

    Virtual reality technology has found new applications in industry over the last few years. Medical literature has for several years predicted a break-through in this technology for medical education. Although there is a great potential for this technology in medical education, there seems to be a wide gap between expectations and actual possibilities at present. State of the technology was explored by participation at the conference "Medicine meets virtual reality V" (San Diego Jan. 22-25 1997) and a visit to one of the leading laboratories on virtual reality in medical education. In this paper we introduce some of the basic terminology and technology, review some of the topics covered by the conference, and describe projects running in one of the leading laboratories on virtual reality technology for medical education. With this information in mind, we discuss potential applications of the current technology in medical education. Current virtual reality systems are judged to be too costly and their usefulness in education too limited for routine use in medical education.

  19. Grid heterogeneity in in-silico experiments: an exploration of drug screening using DOCK on cloud environments.

    PubMed

    Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason

    2010-01-01

    Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time costs were minimal. Despite the increase in overhead, virtual clusters are an ideal solution for Grid heterogeneity. With greater development of virtual cluster technology in Grid environments, the problem of platform heterogeneity may be eliminated through virtualization, allowing greater usage of VS, and will benefit all Grid applications in general.

  20. Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation (La reduction des couts et des delais d’acquisition des vehicules militaires par la modelisation avancee et la simulation de produit virtuel)

    DTIC Science & Technology

    2003-03-01

    nations, a very thorough examination of current practices. Introduction The Applied Vehicle Technology Panel (AVT) of the Research and Technology...the introduction of new information generated by computer codes required it to be timely and presented in appropriate fashion so that it could...military competition between the NATO allies and the Soviet Union. The second was the introduction of commercial, high capacity transonic aircraft and

  1. An assembler for the MOS Technology 6502 microprocessor as implemented in jolt (TM) and KIM-1 (TM)

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1976-01-01

    Design of low-cost, microcomputer-based navigation receivers, and the assembler are described. The development of computer software for microprocessors is materially aided by the assembler program using mnemonic variable names. The flexibility of the environment provided by the IBM's Virtual Machine Facility and the Conversational Monitor System, make possible the convenient assembler access. The implementation of the assembler for the microprocessor chip serves a part of the present need and forms a model for support of other microprocessors.

  2. Malignant tumors of the maxilla: virtual planning and real-time rehabilitation with custom-made R-zygoma fixtures and carbon-graphite fiber-reinforced polymer prosthesis.

    PubMed

    Ekstrand, Karl; Hirsch, Jan-M

    2008-03-01

    Oral cancer is a mutilating disease. Because of the expanding application of computer technology in medicine, new methods are constantly evolving. This project leads into a new technology in maxillofacial reconstructive therapy using a redesigned zygoma fixture. Previous development experiences showed that the procedure was time-consuming and painful for the patients. Frequent episodes of sedation or general anesthetics were required and the rehabilitation is costly. The aim of our new treatment goal was to allow the patients to wake up after tumor surgery with a functional rehabilitation in place. Stereolithographic models were introduced to produce a model from the three-dimensional computed tomography (CT). A guide with the proposed resection was fabricated, and the real-time maxillectomy was performed. From the postoperative CT, a second stereolithographic model was manufactured and in addition, a stent for the optimal position of the implants. Customized zygoma implants were installed (R-zygoma, Integration AB, Göteborg, Sweden). A fixed construction was fabricated by using a new material based on poly(methylacrylate) reinforced with carbon/graphite fibers and attached to the implants. On the same master cast, a separate obturator was fabricated in permanent soft silicon. The result of this project showed that it was possible to create a virtual plan preoperatively to apply during surgery in order for the patient to wake up functionally rehabilitated. From a quality-of-life perspective, it is an advantage to be rehabilitated fast. By using new computer technology, pain and discomfort are less and the total rehabilitation is faster, which in turn reduces days in hospital and thereby total costs.

  3. Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.

    PubMed

    Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P

    2010-12-22

    Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.

  4. Towards Competence-Based Learning Design Driven Remote and Virtual Labs Recommendations for Science Teachers

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Sergis, Stylianos; Sampson, Demetrios G.; Fyskilis, Stefanos

    2015-01-01

    Remote and virtual labs (RVLs) are widely used by science education teachers in their daily teaching practice. This has led to a plethora of RVLs that are offered with or without cost. In order to organise them and facilitate their search and findability, several RVL web-based repositories have been operated. As a result, a key open challenge is…

  5. Digitizing the Facebow: A Clinician/Technician Communication Tool.

    PubMed

    Kalman, Les; Chrapka, Julia; Joseph, Yasmin

    2016-01-01

    Communication between the clinician and the technician has been an ongoing problem in dentistry. To improve the issue, a dental software application has been developed--the Virtual Facebow App. It is an alternative to the traditional analog facebow, used to orient the maxillary cast in mounting. Comparison data of the two methods indicated that the digitized virtual facebow provided increased efficiency in mounting, increased accuracy in occlusion, and lower cost. Occlusal accuracy, lab time, and total time were statistically significant (P<.05). The virtual facebow provides a novel alternative for cast mounting and another tool for clinician-technician communication.

  6. Influence of System Operation Method on CO2 Emissions of PV/Solar Heat/Cogeneration System

    NASA Astrophysics Data System (ADS)

    Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki

    A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation and heat demand following operation. Of these five operations, the former two are virtual operations that are operated with the dynamic programming method, and the latter three are actual operations. Computer simulation is implemented using hourly data of solar radiation intensity, atmospheric temperature, electric, cooling, heating and hot water supply demands for one year, and the life-cycle CO2 emission and the total cost are calculated for every operations. The calculation results show that the virtual two and the actual three operations reduce the life-cycle CO2 emission by 21% and 13% compared with the conventional system, respectively. In regard to both the CO2 emission and the cost, there is no significant difference between the virtual two operation methods or among actual three operation methods.

  7. High-fidelity simulation capability for virtual testing of seismic and acoustic sensors

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Moran, Mark L.; Ketcham, Stephen A.; Lacombe, James; Anderson, Thomas S.; Symons, Neill P.; Aldridge, David F.; Marlin, David H.; Collier, Sandra L.; Ostashev, Vladimir E.

    2005-05-01

    This paper describes development and application of a high-fidelity, seismic/acoustic simulation capability for battlefield sensors. The purpose is to provide simulated sensor data so realistic that they cannot be distinguished by experts from actual field data. This emerging capability provides rapid, low-cost trade studies of unattended ground sensor network configurations, data processing and fusion strategies, and signatures emitted by prototype vehicles. There are three essential components to the modeling: (1) detailed mechanical signature models for vehicles and walkers, (2) high-resolution characterization of the subsurface and atmospheric environments, and (3) state-of-the-art seismic/acoustic models for propagating moving-vehicle signatures through realistic, complex environments. With regard to the first of these components, dynamic models of wheeled and tracked vehicles have been developed to generate ground force inputs to seismic propagation models. Vehicle models range from simple, 2D representations to highly detailed, 3D representations of entire linked-track suspension systems. Similarly detailed models of acoustic emissions from vehicle engines are under development. The propagation calculations for both the seismics and acoustics are based on finite-difference, time-domain (FDTD) methodologies capable of handling complex environmental features such as heterogeneous geologies, urban structures, surface vegetation, and dynamic atmospheric turbulence. Any number of dynamic sources and virtual sensors may be incorporated into the FDTD model. The computational demands of 3D FDTD simulation over tactical distances require massively parallel computers. Several example calculations of seismic/acoustic wave propagation through complex atmospheric and terrain environments are shown.

  8. Risk Reduction and Training using Simulation Based Tools - 12180

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Irin P.

    2012-07-01

    Process Modeling and Simulation (M and S) has been used for many years in manufacturing and similar domains, as part of an industrial engineer's tool box. Traditionally, however, this technique has been employed in small, isolated projects where models were created from scratch, often making it time and cost prohibitive. Newport News Shipbuilding (NNS) has recognized the value of this predictive technique and what it offers in terms of risk reduction, cost avoidance and on-schedule performance of highly complex work. To facilitate implementation, NNS has been maturing a process and the software to rapidly deploy and reuse M and Smore » based decision support tools in a variety of environments. Some examples of successful applications by NNS of this technique in the nuclear domain are a reactor refueling simulation based tool, a fuel handling facility simulation based tool and a tool for dynamic radiation exposure tracking. The next generation of M and S applications include expanding simulation based tools into immersive and interactive training. The applications discussed here take a tool box approach to creating simulation based decision support tools for maximum utility and return on investment. This approach involves creating a collection of simulation tools that can be used individually or integrated together for a larger application. The refueling simulation integrates with the fuel handling facility simulation to understand every aspect and dependency of the fuel handling evolutions. This approach translates nicely to other complex domains where real system experimentation is not feasible, such as nuclear fuel lifecycle and waste management. Similar concepts can also be applied to different types of simulation techniques. For example, a process simulation of liquid waste operations may be useful to streamline and plan operations, while a chemical model of the liquid waste composition is an important tool for making decisions with respect to waste disposition. Integrating these tools into a larger virtual system provides a tool for making larger strategic decisions. The key to integrating and creating these virtual environments is the software and the process used to build them. Although important steps in the direction of using simulation based tools for nuclear domain, the applications described here represent only a small cross section of possible benefits. The next generation of applications will, likely, focus on situational awareness and adaptive planning. Situational awareness refers to the ability to visualize in real time the state of operations. Some useful tools in this area are Geographic Information Systems (GIS), which help monitor and analyze geographically referenced information. Combined with such situational awareness capability, simulation tools can serve as the platform for adaptive planning tools. These are the tools that allow the decision maker to react to the changing environment in real time by synthesizing massive amounts of data into easily understood information. For the nuclear domains, this may mean creation of Virtual Nuclear Systems, from Virtual Waste Processing Plants to Virtual Nuclear Reactors. (authors)« less

  9. Is There a Difference in Cost Between Standard and Virtual Surgical Planning for Orthognathic Surgery?

    PubMed

    Resnick, Cory M; Inverso, Gino; Wrzosek, Mariusz; Padwa, Bonnie L; Kaban, Leonard B; Peacock, Zachary S

    2016-09-01

    Virtual surgical planning (VSP) and 3-dimensional printing of surgical splints are becoming the standard of care for orthognathic surgery, but costs have not been thoroughly evaluated. The purpose of this study was to compare the cost of VSP and 3-dimensional printing of splints ("VSP") versus that of 2-dimensional cephalometric evaluation, model surgery, and manual splint fabrication ("standard planning"). This is a retrospective cohort study including patients planned for bimaxillary surgery from January 2014 to January 2015 at Massachusetts General Hospital. Patients were divided into 3 groups by case type: symmetric, nonsegmental (group 1); asymmetric (group 2); and segmental (group 3). All cases underwent both VSP and standard planning with times for all activities recorded. The primary and secondary predictor variables were method of treatment planning and case type, respectively. Time-driven activity-based micro-costing analysis was used to quantify the differences in cost. Results were analyzed using a paired t test and analysis of variance. The sample included 43 patients (19 in group 1, 17 in group 2, and 7 in group 3). The average times and costs were 194 ± 14.1 minutes and $2,765.94, respectively, for VSP and 540.9 ± 99.5 minutes and $3,519.18, respectively, for standard planning. For the symmetric, nonsegmental group, the average times and costs were 188 ± 17.8 minutes and $2,700.52, respectively, for VSP and 524.4 ± 86.1 minutes and $3,380.17, respectively, for standard planning. For the asymmetric group, the average times and costs were 187.4 ± 10.9 minutes and $2,713.69, respectively, for VSP and 556.1 ± 94.1 minutes and $3,640.00, respectively, for standard planning. For the segmental group, the average times and costs were 208.8 ± 13.5 minutes and $2,883.62, respectively, for VSP and 542.3 ± 118.4 minutes and $3,537.37, respectively, for standard planning. All time and cost differences were statistically significant (P < .001). The results of this study indicate that VSP for bimaxillary orthognathic surgery takes significantly less time and is less expensive than standard planning for the 3 types of cases analyzed. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Statistical virtual eye model based on wavefront aberration

    PubMed Central

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112

  11. Haptic simulation framework for determining virtual dental occlusion.

    PubMed

    Wu, Wen; Chen, Hui; Cen, Yuhai; Hong, Yang; Khambay, Balvinder; Heng, Pheng Ann

    2017-04-01

    The surgical treatment of many dentofacial deformities is often complex due to its three-dimensional nature. To determine the dental occlusion in the most stable position is essential for the success of the treatment. Computer-aided virtual planning on individualized patient-specific 3D model can help formulate the surgical plan and predict the surgical change. However, in current computer-aided planning systems, it is not possible to determine the dental occlusion of the digital models in the intuitive way during virtual surgical planning because of absence of haptic feedback. In this paper, a physically based haptic simulation framework is proposed, which can provide surgeons with the intuitive haptic feedback to determine the dental occlusion of the digital models in their most stable position. To provide the physically realistic force feedback when the dental models contact each other during the searching process, the contact model is proposed to describe the dynamic and collision properties of the dental models during the alignment. The simulated impulse/contact-based forces are integrated into the unified simulation framework. A validation study has been conducted on fifteen sets of virtual dental models chosen at random and covering a wide range of the dental relationships found clinically. The dental occlusions obtained by an expert were employed as a benchmark to compare the virtual occlusion results. The mean translational and angular deviations of the virtual occlusion results from the benchmark were small. The experimental results show the validity of our method. The simulated forces can provide valuable insights to determine the virtual dental occlusion. The findings of this work and the validation of proposed concept lead the way for full virtual surgical planning on patient-specific virtual models allowing fully customized treatment plans for the surgical correction of dentofacial deformities.

  12. Building a virtual ligand screening pipeline using free software: a survey.

    PubMed

    Glaab, Enrico

    2016-03-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. © The Author 2015. Published by Oxford University Press.

  13. Building a virtual ligand screening pipeline using free software: a survey

    PubMed Central

    2016-01-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. PMID:26094053

  14. Virtual water trade and bilateral conflicts

    NASA Astrophysics Data System (ADS)

    De Angelis, Enrico; Metulini, Rodolfo; Bove, Vincenzo; Riccaboni, Massimo

    2017-12-01

    In light of growing water scarcity, virtual water, or the water embedded in key water-intensive commodities, has been an active area of debate among practitioners and academics alike. As of yet, however, there is no consensus on whether water scarcity affects conflict behavior and we still lack empirical research intending to account for the role of virtual water in affecting the odds of militarized disputes between states. Using quantitative methods and data on virtual water trade, we find that bilateral and multilateral trade openness reduce the probability of war between any given pair of countries, which is consistent with the strategic role of this important commodity and the opportunity cost associated with the loss of trade gains. We also find that the substantive effect of virtual water trade is comparable to that of oil and gas, the archetypal natural resources, in determining interstate conflicts' probability.

  15. A haptic interface for virtual simulation of endoscopic surgery.

    PubMed

    Rosenberg, L B; Stredney, D

    1996-01-01

    Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.

  16. Constructing an atomic-resolution model of human P2X7 receptor followed by pharmacophore modeling to identify potential inhibitors.

    PubMed

    Ahmadi, Mehdi; Nowroozi, Amin; Shahlaei, Mohsen

    2015-09-01

    The P2X purinoceptor 7 (P2X7R) is a trimeric ATP-activated ion channel gated by extracellular ATP. P2X7R has important role in numerous diseases including pain, neurodegeneration, and inflammatory diseases such as rheumatoid arthritis and osteoarthritis. In this prospective, the discovery of small-molecule inhibitors for P2X7R as a novel therapeutic target has received considerable attention in recent years. At first, 3D structure of P2X7R was built by using homology modeling (HM) and a 50ns molecular dynamics simulation (MDS). Ligand-based quantitative pharmacophore modeling methodology of P2X7R antagonists were developed based on training set of 49 compounds. The best four-feature pharmacophore model, includes two hydrophobic aromatic, one hydrophobic and one aromatic ring features, has the highest correlation coefficient (0.874), cost difference (368.677), low RMSD (2.876), as well as it shows a high goodness of fit and enrichment factor. Consequently, some hit compounds were introduced as final candidates by employing virtual screening and molecular docking procedure simultaneously. Among these compounds, six potential molecule were identified as potential virtual leads which, as such or upon further optimization, can be used to design novel P2X7R inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    PubMed

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics.

  18. a Framework for Low-Cost Multi-Platform VR and AR Site Experiences

    NASA Astrophysics Data System (ADS)

    Wallgrün, J. O.; Huang, J.; Zhao, J.; Masrur, A.; Oprean, D.; Klippel, A.

    2017-11-01

    Low-cost consumer-level immersive solutions have the potential to revolutionize education and research in many fields by providing virtual experiences of sites that are either inaccessible, too dangerous, or too expensive to visit, or by augmenting in-situ experiences using augmented and mixed reality methods. We present our approach for creating low-cost multi-platform virtual and augmented reality site experiences of real world places for education and research purposes, making extensive use of Structure-from-Motion methods as well as 360° photography and videography. We discuss several example projects, for the Mayan City of Cahal Pech, Iceland's Thrihnukar volcano, the Santa Marta informal settlement in Rio, and for the Penn State Campus, and we propose a framework for creating and maintaining such applications by combining declarative content specification methods with a central linked-data based spatio-temporal information system.

  19. Leveraging Knowledge: Impact on Low Cost Planetary Mission Design.

    ERIC Educational Resources Information Center

    Momjian, Jennifer

    This paper discusses innovations developed by the Jet Propulsion Laboratory (JPL) librarians to reduce the information query cycle time for teams planning low-cost, planetary missions. The first section provides background on JPL and its library. The second section addresses the virtual information environment, including issues of access, content,…

  20. Creating state of the art, next-generation Virtual Reality exposure therapies for anxiety disorders using consumer hardware platforms: design considerations and future directions.

    PubMed

    Lindner, Philip; Miloff, Alexander; Hamilton, William; Reuterskiöld, Lena; Andersson, Gerhard; Powers, Mark B; Carlbring, Per

    2017-09-01

    Decades of research and more than 20 randomized controlled trials show that Virtual Reality exposure therapy (VRET) is effective in reducing fear and anxiety. Unfortunately, few providers or patients have had access to the costly and technical equipment previously required. Recent technological advances in the form of consumer Virtual Reality (VR) systems (e.g. Oculus Rift and Samsung Gear), however, now make widespread use of VRET in clinical settings and as self-help applications possible. In this literature review, we detail the current state of VR technology and discuss important therapeutic considerations in designing self-help and clinician-led VRETs, such as platform choice, exposure progression design, inhibitory learning strategies, stimuli tailoring, gamification, virtual social learning and more. We illustrate how these therapeutic components can be incorporated and utilized in VRET applications, taking full advantage of the unique capabilities of virtual environments, and showcase some of these features by describing the development of a consumer-ready, gamified self-help VRET application for low-cost commercially available VR hardware. We also raise and discuss challenges in the planning, development, evaluation, and dissemination of VRET applications, including the need for more high-quality research. We conclude by discussing how new technology (e.g. eye-tracking) can be incorporated into future VRETs and how widespread use of VRET self-help applications will enable collection of naturalistic "Big Data" that promises to inform learning theory and behavioral therapy in general.

  1. Comparison of the occlusal contact area of virtual models and actual models: a comparative in vitro study on Class I and Class II malocclusion models.

    PubMed

    Lee, Hyemin; Cha, Jooly; Chun, Youn-Sic; Kim, Minji

    2018-06-19

    The occlusal registration of virtual models taken by intraoral scanners sometimes shows patterns which seem much different from the patients' occlusion. Therefore, this study aims to evaluate the accuracy of virtual occlusion by comparing virtual occlusal contact area with actual occlusal contact area using a plaster model in vitro. Plaster dental models, 24 sets of Class I models and 20 sets of Class II models, were divided into a Molar, Premolar, and Anterior group. The occlusal contact areas calculated by the Prescale method and the virtual occlusion by scanning method were compared, and the ratio of the molar and incisor area were compared in order to find any particular tendencies. There was no significant difference between the Prescale results and the scanner results in both the molar and premolar groups (p = 0.083 and 0.053, respectively). On the other hand, there was a significant difference between the Prescale and the scanner results in the anterior group with the scanner results presenting overestimation of the occlusal contact points (p < 0.05). In Molars group, the regression analysis shows that the two variables express linear correlation and has a linear equation with a slope of 0.917. R 2 is 0.930. Groups of Premolars and Anteriors had a week linear relationship and greater dispersion. Difference between the actual and virtual occlusion revealed in the anterior portion, where overestimation was observed in the virtual model obtained from the scanning method. Nevertheless, molar and premolar areas showed relatively accurate occlusal contact area in the virtual model.

  2. Virtual Solar Energy Center: A Case Study of the Use of Advanced Visualization Techniques for the Comprehension of Complex Engineering Products and Processes

    NASA Astrophysics Data System (ADS)

    Ritter, Kenneth August, III

    Industry has a continuing need to train its workforce on recent engineering developments, but many engineering products and processes are hard to explain because of limitations of size, visibility, time scale, cost, and safety. The product or process might be difficult to see because it is either very large or very small, because it is enclosed within an opaque container, or because it happens very fast or very slowly. Some engineering products and processes are also costly or unsafe to use for training purposes, and sometimes the domain expert is not physically available at the training location. All these limitations can potentially be addressed using advanced visualization techniques such as virtual reality. This dissertation describes the development of an immersive virtual reality application using the Six Sigma DMADV process to explain the main equipment and processes used in a concentrating solar power plant. The virtual solar energy center (VEC) application was initially developed and tested in a Cave Automatic Virtual Environment (CAVE) during 2013 and 2014. The software programs used for development were SolidWorks, 3ds Max Design, and Unity 3D. Current hardware and software technologies that could complement this research were analyzed. The NVIDA GRID Visual Computing Appliance (VCA) was chosen as the rendering solution for animating complex CAD models in this application. The MiddleVR software toolkit was selected as the toolkit for VR interactions and CAVE display. A non-immersive 3D version of the VEC application was tested and shown to be an effective training tool in late 2015. An immersive networked version of the VEC allows the user to receive live instruction from a trainer being projected via depth camera imagery from a remote location. Four comparative analysis studies were performed. These studies used the average normalized gain from pre-test scores to determine the effectiveness of the various training methods. With the DMADV approach, solutions were identified and verified during each iteration of the development, which saved valuable time and resulted in better results being achieved in each revision of the application, with the final version having 88% positive responses and same effectiveness as other methods assessed.

  3. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field" Simulator.

    PubMed

    Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R

    2016-04-19

    We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.

  4. A Comprehensive Availability Modeling and Analysis of a Virtualized Servers System Using Stochastic Reward Nets

    PubMed Central

    Kim, Dong Seong; Park, Jong Sou

    2014-01-01

    It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732

  5. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  6. Satellite medical centers project

    NASA Astrophysics Data System (ADS)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  7. Noninvasive computerized scanning method for the correlation between the facial soft and hard tissues for an integrated three-dimensional anthropometry and cephalometry.

    PubMed

    Galantucci, Luigi Maria; Percoco, Gianluca; Lavecchia, Fulvio; Di Gioia, Eliana

    2013-05-01

    The article describes a new methodology to scan and integrate facial soft tissue surface with dental hard tissue models in a three-dimensional (3D) virtual environment, for a novel diagnostic approach.The facial and the dental scans can be acquired using any optical scanning systems: the models are then aligned and integrated to obtain a full virtual navigable representation of the head of the patient. In this article, we report in detail and further implemented a method for integrating 3D digital cast models into a 3D facial image, to visualize the anatomic position of the dentition. This system uses several 3D technologies to scan and digitize, integrating them with traditional dentistry records. The acquisitions were mainly performed using photogrammetric scanners, suitable for clinics or hospitals, able to obtain high mesh resolution and optimal surface texture for the photorealistic rendering of the face. To increase the quality and the resolution of the photogrammetric scanning of the dental elements, the authors propose a new technique to enhance the texture of the dental surface. Three examples of the application of the proposed procedure are reported in this article, using first laser scanning and photogrammetry and then only photogrammetry. Using cheek retractors, it is possible to scan directly a great number of dental elements. The final results are good navigable 3D models that integrate facial soft tissue and dental hard tissues. The method is characterized by the complete absence of ionizing radiation, portability and simplicity, fast acquisition, easy alignment of the 3D models, and wide angle of view of the scanner. This method is completely noninvasive and can be repeated any time the physician needs new clinical records. The 3D virtual model is a precise representation both of the soft and the hard tissue scanned, and it is possible to make any dimensional measure directly in the virtual space, for a full integrated 3D anthropometry and cephalometry. Moreover, the authors propose a method completely based on close-range photogrammetric scanning, able to detect facial and dental surfaces, and reducing the time, the complexity, and the cost of the scanning operations and the numerical elaboration.

  8. Computational fluid dynamics modelling in cardiovascular medicine

    PubMed Central

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019

  9. Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.

    PubMed

    Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth

    2018-04-04

    Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.

  10. Vision-based navigation in a dynamic environment for virtual human

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu

    2004-06-01

    Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.

  11. Human responses to augmented virtual scaffolding models.

    PubMed

    Hsiao, Hongwei; Simeonov, Peter; Dotson, Brian; Ammons, Douglas; Kau, Tsui-Ying; Chiou, Sharon

    2005-08-15

    This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job.

  12. Hybrid 3D reconstruction and image-based rendering techniques for reality modeling

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.

    2000-12-01

    This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.

  13. Evaluating open-source cloud computing solutions for geosciences

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong

    2013-09-01

    Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.

  14. [Urinary tract infections: Economical impact of water intake].

    PubMed

    Bruyère, F; Buendia-Jiménez, I; Cosnefroy, A; Lenoir-Wijnkoop, I; Tack, I; Molinier, L; Daudon, M; Nuijten, M J C

    2015-09-01

    This study aims to estimate the impact of preventing urinary tract infections (UTI), using a strategy of increased water intake, from the payer's perspective in the French health care system. A Markov model enables a comparison of health care costs and outcomes for a virtual cohort of subjects with different levels of daily water intake. The analysis of the budgetary impact was based on a period of 5years. The analysis was based on a 25-year follow-up period to assess the effects of adequate water supply on long-term complications. The authors estimate annual primary incidence of UTI and annual risk of recurrence at 5.3% and 30%, respectively. Risk reduction associated with greater water intake reached 45% and 33% for the general and recurrent populations, respectively. The average total health care cost of a single UTI episode is €1074; for a population of 65 millions, UTI management represents a cost of €3.700 millions for payers. With adequate water intake, the model indicates a potential cost savings of €2.288 millions annually, by preventing 27 million UTI episodes. At the individual level, the potential cost savings is approximately €2915. Preventing urinary tract infections using a strategy of adequate water intake could lead to significant cost savings for a public health care system. Further studies are needed to assess the effectiveness of such an approach. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China.

    PubMed

    Ma, Xiaolei; Ma, Yanji

    2017-05-15

    With the rapid development of economic, water crisis is becoming more and more serious and would be an important obstacle to the sustainable development of society. Virtual water theory and its applications in agriculture can provide important strategies for realizing the reasonable utilization and sustainable development of water resources. Using the Penman-Monteith model and Theil index combining the CROPWAT software, this work takes Jilin Province as study area quantifying the virtual water content of agriculture and livestock husbandry and giving a comprehensive evaluation of their spatiotemporal structure evolution. This study aims to help make clear the water consumption of agriculture and livestock husbandry, and offer advice on rational water utilization and agricultural structure adjustment. The results show that the total virtual water (TVW) proportion of agriculture presents a gradual growth trend while that of livestock husbandry reduces during the study period. In space, central Jilin shows the highest virtual water content of agriculture as well as livestock husbandry, the TVW in central Jilin is about 35.8billionm 3 . The TVW of maize is highest among six studied crops, and the cattle shows the highest TVW in the four kinds of animals. The distribution of TVW calculated by us and the distribution of actual water resources have remarkable difference, which leads to the increase of water consumption and cost of agricultural production. Finally, we discuss the driving force of the spatiotemporal variation of the TVW for agriculture and livestock husbandry, and also give some advises for the planting structural adjustment. This work is helpful for the sustainable development of agricultural and livestock husbandry and realizing efficient utilization of water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  17. Partnering Principal and Teacher Candidates: Exploring a Virtual Coaching Model in Teacher Education

    ERIC Educational Resources Information Center

    Stapleton, Joy; Tschida, Christina; Cuthrell, Kristen

    2017-01-01

    Colleges of education are constantly searching for innovations to develop stronger graduates. This paper describes and shares findings from a study of a virtual coaching partnership model that links a principal candidate with a teacher candidate. Through the use of existing virtual coaching software, this model provides teacher candidates with…

  18. Research on 3D virtual campus scene modeling based on 3ds Max and VRML

    NASA Astrophysics Data System (ADS)

    Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue

    2015-12-01

    With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.

  19. Virtualisation Devices for Student Learning: Comparison between Desktop-Based (Oculus Rift) and Mobile-Based (Gear VR) Virtual Reality in Medical and Health Science Education

    ERIC Educational Resources Information Center

    Moro, Christian; Stromberga, Zane; Stirling, Allan

    2017-01-01

    Consumer-grade virtual reality has recently become available for both desktop and mobile platforms and may redefine the way that students learn. However, the decision regarding which device to utilise within a curriculum is unclear. Desktop-based VR has considerably higher setup costs involved, whereas mobile-based VR cannot produce the quality of…

  20. Towards a Metadata Schema for Characterizing Lesson Plans Supported by Virtual and Remote Labs in School Science Education

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Tsourlidaki, Eleftheria; Sotiriou, Sofoklis; Sampson, Demetrios G.

    2015-01-01

    Technological advancements in the field of World Wide Web have led to a plethora of remote and virtual labs (RVLs) that are currently available online and they are offered with or without cost. However, using a RVL to teach a specific science subject might not be a straightforward task for a science teacher. As a result, science teachers need to…

  1. An Examination of Perceptions of the Use of Virtual Conferences in Organizations: The Organizational Systems Research Association (OSRA) and the Association for Business Communication (ABC) Members Speak Out.

    ERIC Educational Resources Information Center

    Wilkinson, Kelly L.; Hemby, K. Virginia

    2000-01-01

    A survey of 183 members of the Association for Business Communication and 33 members of the Organizational Systems Research Association found that, although virtual conferences reduce costs, professional isolation and lack of human contact are disadvantages. They should supplement but not replace traditional conferences. (Contains 18 references.)…

  2. Harnessing Neuroplasticity to Promote Rehabilitation: CI Therapy for TBI

    DTIC Science & Technology

    2016-10-01

    scheduled plus 33 to be enrolled, because we assume that the proportion of withdrawals will be the same as experienced to date, i.e., 24%. This plan will...period? Victor Mark, Investigator Interactive Immersive Virtual Reality Walking for SCI Neuropathic Pain (Trost) 0.24 calendar months Kim Cerise...Direct Costs: $149,999 This project designs and test an immersive virtual reality treatment method to control neuropathic pain following traumatic spinal

  3. Development of a High Resolution 3D Infant Stomach Model for Surgical Planning

    NASA Astrophysics Data System (ADS)

    Chaudry, Qaiser; Raza, S. Hussain; Lee, Jeonggyu; Xu, Yan; Wulkan, Mark; Wang, May D.

    Medical surgical procedures have not changed much during the past century due to the lack of accurate low-cost workbench for testing any new improvement. The increasingly cheaper and powerful computer technologies have made computer-based surgery planning and training feasible. In our work, we have developed an accurate 3D stomach model, which aims to improve the surgical procedure that treats the infant pediatric and neonatal gastro-esophageal reflux disease (GERD). We generate the 3-D infant stomach model based on in vivo computer tomography (CT) scans of an infant. CT is a widely used clinical imaging modality that is cheap, but with low spatial resolution. To improve the model accuracy, we use the high resolution Visible Human Project (VHP) in model building. Next, we add soft muscle material properties to make the 3D model deformable. Then we use virtual reality techniques such as haptic devices to make the 3D stomach model deform upon touching force. This accurate 3D stomach model provides a workbench for testing new GERD treatment surgical procedures. It has the potential to reduce or eliminate the extensive cost associated with animal testing when improving any surgical procedure, and ultimately, to reduce the risk associated with infant GERD surgery.

  4. Virtual drug discovery: beyond computational chemistry?

    PubMed

    Gilardoni, Francois; Arvanites, Anthony C

    2010-02-01

    This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.

  5. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.

    PubMed

    Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang

    2013-09-01

    Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.

  6. Virtual reality: new method of teaching anorectal and pelvic floor anatomy.

    PubMed

    Dobson, Howard D; Pearl, Russell K; Orsay, Charles P; Rasmussen, Mary; Evenhouse, Ray; Ai, Zhuming; Blew, Gregory; Dech, Fred; Edison, Marcia I; Silverstein, Jonathan C; Abcarian, Herand

    2003-03-01

    A clear understanding of the intricate spatial relationships among the structures of the pelvic floor, rectum, and anal canal is essential for the treatment of numerous pathologic conditions. Virtual-reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereoscopic-vision, viewer-centered perspective, large angles of view, and interactivity. We describe a novel virtual reality-based model designed to teach anorectal and pelvic floor anatomy, pathology, and surgery. A static physical model depicting the pelvic floor and anorectum was created and digitized at 1-mm intervals in a CT scanner. Multiple software programs were used along with endoscopic images to generate a realistic interactive computer model, which was designed to be viewed on a networked, interactive, virtual-reality display (CAVE or ImmersaDesk). A standard examination of ten basic anorectal and pelvic floor anatomy questions was administered to third-year (n = 6) and fourth-year (n = 7) surgical residents. A workshop using the Virtual Pelvic Floor Model was then given, and the standard examination was readministered so that it was possible to evaluate the effectiveness of the Digital Pelvic Floor Model as an educational instrument. Training on the Virtual Pelvic Floor Model produced substantial improvements in the overall average test scores for the two groups, with an overall increase of 41 percent (P = 0.001) and 21 percent (P = 0.0007) for third-year and fourth-year residents, respectively. Resident evaluations after the workshop also confirmed the effectiveness of understanding pelvic anatomy using the Virtual Pelvic Floor Model. This model provides an innovative interactive educational framework that allows educators to overcome some of the barriers to teaching surgical and endoscopic principles based on understanding highly complex three-dimensional anatomy. Using this collaborative, shared virtual-reality environment, teachers and students can interact from locations world-wide to manipulate the components of this model to achieve the educational goals of this project along with the potential for virtual surgery.

  7. Applied Virtual Reality in Reusable Launch Vehicle Design, Operations Development, and Training

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1997-01-01

    Application of Virtual Reality (VR) technology offers much promise to enhance and accelerate the development of Reusable Launch Vehicle (RLV) infrastructure and operations while simultaneously reducing developmental and operational costs. One of the primary cost areas in the RLV concept that is receiving special attention is maintenance and refurbishment operations. To produce and operate a cost effective RLV, turnaround cost must be minimized. Designing for maintainability is a necessary requirement in developing RLVs. VR can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) is beginning to utilize VR for design, operations development, and design analysis for RLVs. A VR applications program has been under development at NASA/MSFC since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. The NASA/MSFC VR capability has also been utilized in several applications. These include: 1) the assessment of the design of the late Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed; 2) a viewing analysis of the Tethered Satellite System's (TSS) "end-of-reel" tether marking options; 3) development of a virtual mockup of the International Space Welding Experiment for science viewing analyses from the Shuttle Remote Manipulator System elbow camera and as a trainer for ground controllers; and 4) teleoperations using VR. This presentation will give a general overview of the MSFC VR Applications Program and describe the use of VR in design analyses, operations development, and training for RLVs.

  8. A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors.

    PubMed

    Hu, Huabin; Xia, Jie; Wang, Dongmei; Wang, Xiang Simon; Wu, Song

    2017-01-18

    Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive "flexible docking", as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way.

  9. A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors

    PubMed Central

    Hu, Huabin; Xia, Jie; Wang, Dongmei; Wang, Xiang Simon; Wu, Song

    2017-01-01

    Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive “flexible docking”, as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way. PMID:28106794

  10. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  11. A practical model for economic evaluation of tissue-engineered therapies.

    PubMed

    Tan, Tien-En; Peh, Gary S L; Finkelstein, Eric A; Mehta, Jodhbir S

    2015-01-01

    Tissue-engineered therapies are being developed across virtually all fields of medicine. Some of these therapies are already in clinical use, while others are still in clinical trials or the experimental phase. Most initial studies in the evaluation of new therapies focus on demonstration of clinical efficacy. However, cost considerations or economic viability are just as important. Many tissue-engineered therapies have failed to be impactful because of shortcomings in economic competitiveness, rather than clinical efficacy. Furthermore, such economic viability studies should be performed early in the process of development, before significant investment has been made. Cost-minimization analysis combined with sensitivity analysis is a useful model for the economic evaluation of new tissue-engineered therapies. The analysis can be performed early in the development process, and can provide valuable information to guide further investment and research. The utility of the model is illustrated with the practical real-world example of tissue-engineered constructs for corneal endothelial transplantation. The authors have declared no conflicts of interest for this article. © 2015 Wiley Periodicals, Inc.

  12. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    PubMed

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  13. On the Resource Efficiency of Virtual Concatenation in SDH/SONET Mesh Transport Networks Bearing Protected Scheduled Connections

    NASA Astrophysics Data System (ADS)

    Kuri, Josu�; Gagnaire, Maurice; Puech, Nicolas

    2005-10-01

    Virtual concatenation (VCAT) is a Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET) network functionality recently standardized by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, Fiber Channel (FC), Enterprise System Connection (ESCON), and other important data traffic signals. In this article, we assess the resources' gain provided by VCAT with respect to contiguous concatenation (CCAT) in SDH/SONET mesh transport networks bearing protected scheduled connection demands (SCDs). As explained later, an SCD is a connection demand for which the set-up and tear-down dates are known in advance. We define mathematical models to quantify the add/drop and transmission resources required to instantiate a set of protected SCDs in VCAT-and CCAT-capable networks. Quantification of transmission resources requires a routing and slot assignment (RSA) problem to be solved. We formulate the RSA problem in VCAT-and CCAT-capable networks as two different combinatorial optimization problems: RSA in VCAT-capable networks (RSAv) and RSA in CCAT-capable networks (RSAc), respectively. Protection of the SCDs is considered in the formulations using a shared backup path protection (SBPP) technique. We propose a simulated annealing (SA)-based meta-heuristic algorithm to compute approximate solutions to these problems (i.e., solutions whose cost approximates the cost of the optimal ones). The gain in transmission resources and the cost structure of add/drop resources making VCAT-capable networks more economical are analyzed for different traffic scenarios.

  14. Comparison and interactions between the long-term pursuit of energy independence and climate policies

    NASA Astrophysics Data System (ADS)

    Jewell, Jessica; Vinichenko, Vadim; McCollum, David; Bauer, Nico; Riahi, Keywan; Aboumahboub, Tino; Fricko, Oliver; Harmsen, Mathijs; Kober, Tom; Krey, Volker; Marangoni, Giacomo; Tavoni, Massimo; van Vuuren, Detlef P.; van der Zwaan, Bob; Cherp, Aleh

    2016-06-01

    Ensuring energy security and mitigating climate change are key energy policy priorities. The recent Intergovernmental Panel on Climate Change Working Group III report emphasized that climate policies can deliver energy security as a co-benefit, in large part through reducing energy imports. Using five state-of-the-art global energy-economy models and eight long-term scenarios, we show that although deep cuts in greenhouse gas emissions would reduce energy imports, the reverse is not true: ambitious policies constraining energy imports would have an insignificant impact on climate change. Restricting imports of all fuels would lower twenty-first-century emissions by only 2-15% against the Baseline scenario as compared with a 70% reduction in a 450 stabilization scenario. Restricting only oil imports would have virtually no impact on emissions. The modelled energy independence targets could be achieved at policy costs comparable to those of existing climate pledges but a fraction of the cost of limiting global warming to 2 ∘C.

  15. Health care globalization: a need for virtual leadership.

    PubMed

    Holland, J Brian; Malvey, Donna; Fottler, Myron D

    2009-01-01

    As health care organizations expand and move into global markets, they face many leadership challenges, including the difficulty of leading individuals who are geographically dispersed. This article provides global managers with guidelines for leading and motivating individuals or teams from a distance while overcoming the typical challenges that "virtual leaders" and "virtual teams" face: employee isolation, confusion, language barriers, cultural differences, and technological breakdowns. Fortunately, technological advances in communications have provided various methods to accommodate geographically dispersed or "global virtual teams." Health care leaders now have the ability to lead global teams from afar by becoming "virtual leaders" with a responsibility to lead a "virtual team." Three models of globalization presented and discussed are outsourcing of health care services, medical tourism, and telerobotics. These models require global managers to lead virtually, and a positive relationship between the virtual leader and the virtual team member is vital in the success of global health care organizations.

  16. Spiritual and Affective Responses to a Physical Church and Corresponding Virtual Model.

    PubMed

    Murdoch, Matt; Davies, Jim

    2017-11-01

    Architectural and psychological theories posit that built environments have the potential to elicit complex psychological responses. However, few researchers have seriously explored this potential. Given the increasing importance and fidelity of virtual worlds, such research should explore whether virtual models of built environments are also capable of eliciting complex psychological responses. The goal of this study was to test these hypotheses, using a church, a corresponding virtual model, and an inclusive measure of state spirituality ("spiritual feelings"). Participants (n = 33) explored a physical church and corresponding virtual model, completing a measure of spiritual feelings after exploring the outside and inside of each version of the church. Using spiritual feelings after exploring the outside of the church as a baseline measure, change in state spirituality was assessed by taking the difference between spiritual feelings after exploring the inside and outside of the church (inside-outside) for both models. Although this change was greater in response to the physical church, there was no significant difference between the two models in eliciting such change in spiritual feelings. Despite the limitations of this exploratory study, these findings indicate that both built environments and corresponding virtual models are capable of evoking complex psychological responses.

  17. A miniature disposable radio (MiDR) for unattended ground sensor systems (UGSS) and munitions

    NASA Astrophysics Data System (ADS)

    Wells, Jeffrey S.; Wurth, Timothy J.

    2004-09-01

    Unattended and tactical sensors are used by the U.S. Army"s Future Combat Systems (FCS) and Objective Force Warrior (OFW) to detect and identify enemy targets on the battlefield. The radios being developed as part of the Networked Sensors for the Objective Force (NSOF) are too costly and too large to deploy in missions requiring throw-away hardware. A low-cost miniature radio is required to satisfy the communication needs for unmanned sensor and munitions systems that are deployed in a disposable manner. A low cost miniature disposable communications suite is leveraged using the commercial off-the-shelf market and employing a miniature universal frequency conversion architecture. Employing the technology of universal frequency architecture in a commercially available communication unit delivers a robust disposable transceiver that can operate at virtually any frequency. A low-cost RF communication radio has applicability in the commercial, homeland defense, military, and other government markets. Specific uses include perimeter monitoring, infrastructure defense, unattended ground sensors, tactical sensors, and border patrol. This paper describes a low-cost radio architecture to meet the requirements of throw-away radios that can be easily modified or tuned to virtually any operating frequency required for the specific mission.

  18. Real engineering in a virtual world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitz, D.

    1995-07-01

    VR technology can be thought of as the next point on a continuum that leads from 1-D data (such as the text and numbers on a finite element analysis printout), through 2-D drawings and 3-D solid models to 4-D digital prototypes that eventually will have texture and weight and can be held in one`s hand. If it lives up to its potential, VR could become just another tool--like 3-D CAD/CAM systems and FEA software--that can be used to pursue continuous improvements in design and manufacturing processes. For example VR could help manufacturers reduce the number of prototypes and engineering changemore » orders (ECOs) generated during the product life cycle. Virtual reality could also be used to promote concurrent engineering. Because realistic virtual models are easier to interpret and interrogate than 2-D drawings or even 3-D solid models, they have the potential to simplify design reviews. They could also make it easier for non-engineers (such as salespeople and potential customers) to contribute to the design process. VR technology still has a way to go before it becomes a standard engineering tool, however. Peripheral devices are still being perfected, and engineers seem to agree that the jury`s still out on which peripherals are most appropriate for which applications. Further, advanced VR applications are largely confined to research and development departments of large corporations or to public and private research centers. Finally, potential users will have to wait a few years before desktop computers are powerful enough to run such applications--and inexpensive enough to survive a cost-benefit analysis.« less

  19. Computer-aided discovery in antimicrobial research: In silico model for virtual screening of potent and safe anti-pseudomonas agents.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, Maria N D S

    2015-01-01

    Resistance of bacteria to current antibiotics is an alarming health problem. In this sense, Pseudomonas represents a genus of Gram-negative pathogens, which has emerged as one of the most dangerous species causing nosocomial infections. Despite the effort of the scientific community, drug resistant strains of bacteria belonging to Pseudomonas spp. prevail. The high costs associated to drug discovery and the urgent need for more efficient antimicrobial chemotherapies envisage the fact that computeraided methods can rationalize several stages involved in the development of a new drug. In this work, we introduce a chemoinformatic methodology devoted to the construction of a multitasking model for quantitative-structure biological effect relationships (mtk-QSBER). The purpose of this model was to perform simultaneous predictions of anti-Pseudomonas activities and ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties of organic compounds. The mtk-QSBER model was created from a large and heterogeneous dataset (more than 54000 cases) and displayed accuracies higher than 90% in both training and prediction sets. In order to demonstrate the applicability of our mtk-QSBER model, we used the investigational antibacterial drug delafloxacin as a case of study, for which experimental results were recently reported. The predictions performed for many biological effects of this drug exhibited a remarkable convergence with the experimental assays, confirming that our model can serve as useful tool for virtual screening of potent and safer anti-Pseudomonas agents.

  20. A Model Supported Interactive Virtual Environment for Natural Resource Sharing in Environmental Education

    ERIC Educational Resources Information Center

    Barbalios, N.; Ioannidou, I.; Tzionas, P.; Paraskeuopoulos, S.

    2013-01-01

    This paper introduces a realistic 3D model supported virtual environment for environmental education, that highlights the importance of water resource sharing by focusing on the tragedy of the commons dilemma. The proposed virtual environment entails simulations that are controlled by a multi-agent simulation model of a real ecosystem consisting…

  1. Analysis of a virtual memory model for maintaining database views

    NASA Technical Reports Server (NTRS)

    Kinsley, Kathryn C.; Hughes, Charles E.

    1992-01-01

    This paper presents an analytical model for predicting the performance of a new support strategy for database views. This strategy, called the virtual method, is compared with traditional methods for supporting views. The analytical model's predictions of improved performance by the virtual method are then validated by comparing these results with those achieved in an experimental implementation.

  2. Assessing the Impact of a Virtual Lab in an Allied Health Program.

    PubMed

    Kay, Robin; Goulding, Helene; Li, Jia

    2018-01-01

    Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.

  3. Development of virtual environment for treating acrophobia.

    PubMed

    Ku, J; Jang, D; Shin, M; Jo, H; Ahn, H; Lee, J; Cho, B; Kim, S I

    2001-01-01

    Virtual Reality (VR) is a new technology that makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. Virtual Reality Therapy (VRT), based on this sophisticated technology, has been recently used in the treatment of subjects diagnosed with acrophobia, a disorder that is characterized by marked anxiety upon exposure to heights, avoidance of heights, and a resulting interference in functioning. Conventional virtual reality system for the treatment of acrophobia has a limitation in scope that it is based on over-costly devices or somewhat unrealistic graphic scene. The goal of this study was to develop a inexpensive and more realistic virtual environment for the exposure therapy of acrophobia. We constructed two types virtual environment. One is constituted a bungee-jump tower in the middle of a city. It includes the open lift surrounded by props beside tower that allowed the patient to feel sense of heights. Another is composed of diving boards which have various heights. It provides a view of a lower diving board and people swimming in the pool to serve the patient stimuli upon exposure to heights.

  4. Training in virtual environments: putting theory into practice.

    PubMed

    Moskaliuk, Johannes; Bertram, Johanna; Cress, Ulrike

    2013-01-01

    Virtual training environments are used when training in reality is challenging because of the high costs, danger, time or effort involved. In this paper we argue for a theory-driven development of such environments, with the aim of connecting theory to practice and ensuring that the training provided fits the needs of the trained persons and their organisations. As an example, we describe the development of VirtualPolice (ViPOL), a training environment for police officers in a federal state of Germany. We provided the theoretical foundation for ViPOL concerning the feeling of being present, social context, learning motivation and perspective-taking. We developed a framework to put theory into practice. To evaluate our framework we interviewed the stakeholders of ViPOL and surveyed current challenges and limitations of virtual training. The results led to a review of a theory-into-practice framework which is presented in the conclusion. Feeling of presence, social context, learning motivation and perspective-taking are relevant for training in virtual environments. The theory-into-practice framework presented here supports developers and trainers in implementing virtual training tools. The framework was validated with an interview study of stakeholders of a virtual training project. We identified limitations, opportunities and challenges.

  5. Virtual experiments in electronics: beyond logistics, budgets, and the art of the possible

    NASA Astrophysics Data System (ADS)

    Chapman, Brian

    1999-09-01

    It is common and correct to suppose that computers support flexible delivery of educational resources by offering virtual experiments that replicate and substitute for experiments traditionally offered in conventional teaching laboratories. However, traditional methods are limited by logistics, costs, and what is physically possible to accomplish on a laboratory bench. Virtual experiments allow experimental approaches to teaching and learning to transcend these limits. This paper analyses recent and current developments in educational software for 1st- year physics, 2nd-year electronics engineering and 3rd-year communication engineering, based on three criteria: (1)Is the virtual experiment possible in a real laboratory? (2)How direct is the link between the experimental manipulation and the reinforcement of theoretical learning? (3) What impact might the virtual experiment have on the learner's acquisition of practical measurement skills? Virtual experiments allow more flexibility in the directness of the link between experimental manipulation and the theoretical message. However, increasing the directness of this link may reduce or even abolish the measurement processes associated with traditional experiments. Virtual experiments thus pose educational challenges: (a) expanding the design of experimentally based curricula beyond traditional boundaries and (b) ensuring that the learner acquires sufficient experience in making practical measurements.

  6. Comparing two types of navigational interfaces for Virtual Reality.

    PubMed

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  7. Monitoring and detection platform to prevent anomalous situations in home care.

    PubMed

    Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F; Corchado, Juan M

    2014-06-05

    Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost.

  8. Impact of spatial variability and sampling design on model performance

    NASA Astrophysics Data System (ADS)

    Schrape, Charlotte; Schneider, Anne-Kathrin; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Many environmental physical and chemical parameters as well as species distributions display a spatial variability at different scales. In case measurements are very costly in labour time or money a choice has to be made between a high sampling resolution at small scales and a low spatial cover of the study area or a lower sampling resolution at the small scales resulting in local data uncertainties with a better spatial cover of the whole area. This dilemma is often faced in the design of field sampling campaigns for large scale studies. When the gathered field data are subsequently used for modelling purposes the choice of sampling design and resulting data quality influence the model performance criteria. We studied this influence with a virtual model study based on a large dataset of field information on spatial variation of earthworms at different scales. Therefore we built a virtual map of anecic earthworm distributions over the Weiherbach catchment (Baden-Württemberg in Germany). First of all the field scale abundance of earthworms was estimated using a catchment scale model based on 65 field measurements. Subsequently the high small scale variability was added using semi-variograms, based on five fields with a total of 430 measurements divided in a spatially nested sampling design over these fields, to estimate the nugget, range and standard deviation of measurements within the fields. With the produced maps, we performed virtual samplings of one up to 50 random points per field. We then used these data to rebuild the catchment scale models of anecic earthworm abundance with the same model parameters as in the work by Palm et al. (2013). The results of the models show clearly that a large part of the non-explained deviance of the models is due to the very high small scale variability in earthworm abundance: the models based on single virtual sampling points on average obtain an explained deviance of 0.20 and a correlation coefficient of 0.64. With increasing sampling points per field, we averaged the measured abundance of the sampling within each field to obtain a more representative value of the field average. Doubling the samplings per field strongly improved the model performance criteria (explained deviance 0.38 and correlation coefficient 0.73). With 50 sampling points per field the performance criteria were 0.91 and 0.97 respectively for explained deviance and correlation coefficient. The relationship between number of samplings and performance criteria can be described with a saturation curve. Beyond five samples per field the model improvement becomes rather small. With this contribution we wish to discuss the impact of data variability at sampling scale on model performance and the implications for sampling design and assessment of model results as well as ecological inferences.

  9. Patient Satisfaction with Virtual Obstetric Care.

    PubMed

    Pflugeisen, Bethann Mangel; Mou, Jin

    2017-07-01

    Introduction The importance of patient satisfaction in US healthcare is increasing, in tandem with the advent of new patient care modalities, including virtual care. The purpose of this study was to compare the satisfaction of obstetric patients who received one-third of their antenatal visits in videoconference ("Virtual-care") compared to those who received 12-14 face-to-face visits in-clinic with their physician/midwife ("Traditional-care"). Methods We developed a four-domain satisfaction questionnaire; Virtual-care patients were asked additional questions about technology. Using a modified Dillman method, satisfaction surveys were sent to Virtual-care (N = 378) and Traditional-care (N = 795) patients who received obstetric services at our institution between January 2013 and June 2015. Chi-squared tests of association, t-tests, logistic regression, and ANOVA models were used to evaluate differences in satisfaction and self-reported demographics between respondents. Results Overall satisfaction was significantly higher in the Virtual-care cohort (4.76 ± 0.44 vs. 4.47 ± 0.59; p < .001). Parity ≥ 1 was the sole significant demographic variable impacting Virtual-care selection (OR = 2.4, 95% CI: 1.5-3.8; p < .001). Satisfaction of Virtual-care respondents was not significantly impacted by the incorporation of videoconferencing, Doppler, and blood pressure monitoring technology into their care. The questionnaire demonstrated high internal consistency as measured by domain-based correlations and Cronbach's alpha. Discussion Respondents from both models were highly satisfied with care, but those who had selected the Virtual-care model reported significantly higher mean satisfaction scores. The Virtual-care model was selected by significantly more women who already have children than those experiencing pregnancy for the first time. This model of care may be a reasonable alternative to traditional care.

  10. Attacker-defender game from a network science perspective

    NASA Astrophysics Data System (ADS)

    Li, Ya-Peng; Tan, Suo-Yi; Deng, Ye; Wu, Jun

    2018-05-01

    Dealing with the protection of critical infrastructures, many game-theoretic methods have been developed to study the strategic interactions between defenders and attackers. However, most game models ignore the interrelationship between different components within a certain system. In this paper, we propose a simultaneous-move attacker-defender game model, which is a two-player zero-sum static game with complete information. The strategies and payoffs of this game are defined on the basis of the topology structure of the infrastructure system, which is represented by a complex network. Due to the complexity of strategies, the attack and defense strategies are confined by two typical strategies, namely, targeted strategy and random strategy. The simulation results indicate that in a scale-free network, the attacker virtually always attacks randomly in the Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs increase with the importance of a target, the defender protects the hub targets with large degrees preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to protecting nodes randomly. Our work provides a new theoretical framework to analyze the confrontations between the attacker and the defender on critical infrastructures and deserves further study.

  11. Web-Based Virtual Patients in Nursing Education: Development and Validation of Theory-Anchored Design and Activity Models

    PubMed Central

    2014-01-01

    Background Research has shown that nursing students find it difficult to translate and apply their theoretical knowledge in a clinical context. Virtual patients (VPs) have been proposed as a learning activity that can support nursing students in their learning of scientific knowledge and help them integrate theory and practice. Although VPs are increasingly used in health care education, they still lack a systematic consistency that would allow their reuse outside of their original context. There is therefore a need to develop a model for the development and implementation of VPs in nursing education. Objective The aim of this study was to develop and evaluate a virtual patient model optimized to the learning and assessment needs in nursing education. Methods The process of modeling started by reviewing theoretical frameworks reported in the literature and used by practitioners when designing learning and assessment activities. The Outcome-Present State Test (OPT) model was chosen as the theoretical framework. The model was then, in an iterative manner, developed and optimized to the affordances of virtual patients. Content validation was performed with faculty both in terms of the relevance of the chosen theories but also its applicability in nursing education. The virtual patient nursing model was then instantiated in two VPs. The students’ perceived usefulness of the VPs was investigated using a questionnaire. The result was analyzed using descriptive statistics. Results A virtual patient Nursing Design Model (vpNDM) composed of three layers was developed. Layer 1 contains the patient story and ways of interacting with the data, Layer 2 includes aspects of the iterative process of clinical reasoning, and finally Layer 3 includes measurable outcomes. A virtual patient Nursing Activity Model (vpNAM) was also developed as a guide when creating VP-centric learning activities. The students perceived the global linear VPs as a relevant learning activity for the integration of theory and practice. Conclusions Virtual patients that are adapted to the nursing paradigm can support nursing students’ development of clinical reasoning skills. The proposed virtual patient nursing design and activity models will allow the systematic development of different types of virtual patients from a common model and thereby create opportunities for sharing pedagogical designs across technical solutions. PMID:24727709

  12. Simulation-based Testing of Control Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozgur; Nutaro, James J.; Sanyal, Jibonananda

    It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulatormore » can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.« less

  13. Digital imaging and remote sensing image generator (DIRSIG) as applied to NVESD sensor performance modeling

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.

    2016-05-01

    The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.

  14. Determining the virtual surface in the thermal evaporation process of magnesium fluoride from a tungsten boat for different deposition rates, to be used in precision optical components

    NASA Astrophysics Data System (ADS)

    Tejada Esteves, A.; Gálvez de la Puente, G.

    2013-11-01

    Vacuum thermal evaporation has, for some time now, been the principal method for the deposition of thin films, given, among other aspects, its simplicity, flexibility, and relatively low cost. Therefore, the development of models attempting to predict the deposition patterns of given thin film materials in different locations of a vacuum evaporation chamber are arguably important. With this in mind, we have designed one of such models for the thermal evaporation process of magnesium fluoride (MgF2), a common material used in optical thin films, originating from a tungsten boat source. For this we took several deposition samples in glass slide substrates at different locations in the vacuum chamber, considering as independent variables the mean deposition rate, and the axial and vertical distances of the source to the substrate. After a careful analysis by matrix method from the spectral transmittance data of the samples, while providing as output data the spectral transmittance, as well as the physical thickness of the films, both as functions of the aforementioned variables, the virtual surface of the source was determined.

  15. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials

    PubMed Central

    Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley

    2017-01-01

    Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality, VR therapy, treatment, and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78–0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness. PMID:28386517

  16. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials.

    PubMed

    Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley; Danovitch, Itai

    2017-01-01

    Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality , VR therapy , treatment , and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78-0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness.

  17. Integration of the virtual 3D model of a control system with the virtual controller

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the operation of the adopted research object. The carried out work allowed foot the integration of the virtual model of the control system of the tunneling machine with the virtual controller, enabling the verification of its operation.

  18. Virtual 3d City Modeling: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3-D City model is a very useful for various kinds of applications such as for planning in Navigation, Tourism, Disasters Management, Transportations, Municipality, Urban Environmental Managements and Real-estate industry. So the Construction of Virtual 3-D city models is a most interesting research topic in recent years.

  19. Surviving at Any Cost: Guilt Expression Following Extreme Ethical Conflicts in a Virtual Setting

    PubMed Central

    Cristofari, Cécile; Guitton, Matthieu J.

    2014-01-01

    Studying human behavior in response to large-scale catastrophic events, particularly how moral challenges would be undertaken under extreme conditions, is an important preoccupation for contemporary scientists and decision leaders. However, researching this issue was hindered by the lack of readily available models. Immersive virtual worlds could represent a solution, by providing ways to test human behavior in controlled life-threatening situations. Using a massively multi-player zombie apocalypse setting, we analysed spontaneously reported feelings of guilt following ethically questionable actions related to survival. The occurrence and magnitude of guilt depended on the nature of the consequences of the action. Furthermore, feelings of guilt predicted long-lasting changes in behavior, displayed as compensatory actions. Finally, actions inflicting immediate harm to others appeared mostly prompted by panic and were more commonly regretted. Thus, extreme conditions trigger a reduction of the impact of ethical norms in decision making, although awareness of ethicality is retained to a surprising extent. PMID:25007261

  20. Surviving at any cost: guilt expression following extreme ethical conflicts in a virtual setting.

    PubMed

    Cristofari, Cécile; Guitton, Matthieu J

    2014-01-01

    Studying human behavior in response to large-scale catastrophic events, particularly how moral challenges would be undertaken under extreme conditions, is an important preoccupation for contemporary scientists and decision leaders. However, researching this issue was hindered by the lack of readily available models. Immersive virtual worlds could represent a solution, by providing ways to test human behavior in controlled life-threatening situations. Using a massively multi-player zombie apocalypse setting, we analysed spontaneously reported feelings of guilt following ethically questionable actions related to survival. The occurrence and magnitude of guilt depended on the nature of the consequences of the action. Furthermore, feelings of guilt predicted long-lasting changes in behavior, displayed as compensatory actions. Finally, actions inflicting immediate harm to others appeared mostly prompted by panic and were more commonly regretted. Thus, extreme conditions trigger a reduction of the impact of ethical norms in decision making, although awareness of ethicality is retained to a surprising extent.

Top