Sample records for costs separating wind

  1. Cost Benefit Analysis of the Installation of a Wind Turbine on a Naval Ship

    DTIC Science & Technology

    2010-09-01

    the ship is going to perform its mission. This area is known in advance and, according to data from meteorological stations, wind power potential and...the wind speed and the point of separation are revealed. Separation occurs about 50 degrees of the bow [1]. Separation and turbulence, however...positioned away from and before the separation point. 4 In summary, a wind turbine should be installed at the upper deck at the bow, before and as

  2. Development of flow separation control system to reduce the vibration of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young; Kim, Ho-Hyun; Han, Jong-Seob; Han, Jae-Hung

    2017-04-01

    The size of wind turbine blade has been continuously increased. Large-scale wind turbine blades induce loud noise, vibration; and maintenance difficulty is also increased. It causes the eventual increases of the cost of energy. The vibration of wind turbine blade is caused by several reasons such as a blade rotation, tower shadow, wind shear, and flow separation of a wind turbine blade. This wind speed variation changes in local angle of attack of the blades and create the vibration. The variation of local angle of attack influences the lift coefficient and causes the large change of the lift. In this study, we focus on the lift coefficient control using a flow control device to reduce the vibration. DU35-A15 airfoil was employed as baseline model. A plasma actuator was installed to generate the upwind jet in order to control the lift coefficient. Wind tunnel experiment was performed to demonstrate of the performance of the plasma actuator. The results show the plasma actuator can induce the flow separation compared with the baseline model. In addition, the actuator can delay the flow separation depending on the input AC frequency with the same actuator configuration.

  3. Measuring ammonia concentrations and emissions from agricultural land and liquid surfaces: a review.

    PubMed

    Shah, Sanjay B; Westerman, Philip W; Arogo, Jactone

    2006-07-01

    Aerial ammonia concentrations (Cg) are measured using acid scrubbers, filter packs, denuders, or optical methods. Using Cg and wind speed or airflow rate, ammonia emission rate or flux can be directly estimated using enclosures or micrometeorological methods. Using nitrogen (N) recovery is not recommended, mainly because the different gaseous N components cannot be separated. Although low cost and replicable, chambers modify environmental conditions and are suitable only for comparing treatments. Wind tunnels do not modify environmental conditions as much as chambers, but they may not be appropriate for determining ammonia fluxes; however, they can be used to compare emissions and test models. Larger wind tunnels that also simulate natural wind profiles may be more useful for comparing treatments than micrometeorological methods because the latter require larger plots and are, thus, difficult to replicate. For determining absolute ammonia flux, the micrometeorological methods are the most suitable because they are nonintrusive. For use with micrometeorological methods, both the passive denuders and optical methods give comparable accuracies, although the latter give real-time Cg but at a higher cost. The passive denuder is wind weighted and also costs less than forced-air Cg measurement methods, but it requires calibration. When ammonia contamination during sample preparation and handling is a concern and separating the gas-phase ammonia and aerosol ammonium is not required, the scrubber is preferred over the passive denuder. The photothermal interferometer, because of its low detection limit and robustness, may hold potential for use in agriculture, but it requires evaluation. With its simpler theoretical basis and fewer restrictions, the integrated horizontal flux (IHF) method is preferable over other micrometeorological methods, particularly for lagoons, where berms and land-lagoon boundaries modify wind flow and flux gradients. With uniform wind flow, the ZINST method requiring measurement at one predetermined height may perform comparably to the IHF method but at a lower cost.

  4. Dispersed storage and generation case studies

    NASA Technical Reports Server (NTRS)

    Bahrami, K.; Stallkamp, J. A.; Walton, A.

    1980-01-01

    Three installations utilizing separate dispersed storage and generation (DSG) technologies were investigated. Each of the systems is described in costs and control. Selected institutional and environmental issues are discussed, including life cycle costs. No unresolved technical, environmental, or institutional problems were encountered in the installations. The wind and solar photovoltaic DSG were installed for test purposes, and appear to be presently uneconomical. However, a number of factors are decreasing the cost of DSG relative to conventional alternatives, and an increased DSG penetration level may be expected in the future.

  5. Use of pultruded reinforced plastics in energy generation and energy related applications

    NASA Astrophysics Data System (ADS)

    Anderson, R.

    Applications of pultrusion-formed fiber-reinforced plastics (FRP) in the wind, oil, and coal derived energy industries are reviewed. FRP is noted to be a viable alternative to wood, aluminum, and steel for reasons of availability, price, and weight. Attention is given to the development of FRP wind turbine blades for the DOE 8 kW low cost, high reliability wind turbine program. The blades feature a NACA 23112 profile with a 15 in. chord on the system which was tested at Rocky Flats, CO. Fabricating the blades involved a plus and minus 45 deg roving orientation, a heavy fiber-glass nose piece to assure blade strength, and a separately manufactured foam core. Additional uses for FRP products have been found in the structural members of coal stack scrubbers using a vinyl ester resin in a fire retardant formulation, and as low cost, light weight sucker rods for deep well oil drilling.

  6. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  7. Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less

  8. Gradient-Based Optimization of Wind Farms with Different Turbine Heights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less

  9. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generallymore » has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.« less

  10. 11 CFR 9034.11 - Winding down costs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 11 Federal Elections 1 2012-01-01 2012-01-01 false Winding down costs. 9034.11 Section 9034.11... MATCHING FUND ENTITLEMENTS § 9034.11 Winding down costs. (a) Winding down costs. Winding down costs are... administrative costs associated with winding down the campaign, including office space rental, staff salaries...

  11. 11 CFR 9034.11 - Winding down costs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 11 Federal Elections 1 2014-01-01 2014-01-01 false Winding down costs. 9034.11 Section 9034.11... MATCHING FUND ENTITLEMENTS § 9034.11 Winding down costs. (a) Winding down costs. Winding down costs are... administrative costs associated with winding down the campaign, including office space rental, staff salaries...

  12. 11 CFR 9034.11 - Winding down costs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 11 Federal Elections 1 2013-01-01 2012-01-01 true Winding down costs. 9034.11 Section 9034.11... MATCHING FUND ENTITLEMENTS § 9034.11 Winding down costs. (a) Winding down costs. Winding down costs are... administrative costs associated with winding down the campaign, including office space rental, staff salaries...

  13. 11 CFR 9034.11 - Winding down costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 11 Federal Elections 1 2011-01-01 2011-01-01 false Winding down costs. 9034.11 Section 9034.11... MATCHING FUND ENTITLEMENTS § 9034.11 Winding down costs. (a) Winding down costs. Winding down costs are... administrative costs associated with winding down the campaign, including office space rental, staff salaries...

  14. 11 CFR 9034.11 - Winding down costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Winding down costs. 9034.11 Section 9034.11... MATCHING FUND ENTITLEMENTS § 9034.11 Winding down costs. (a) Winding down costs. Winding down costs are... administrative costs associated with winding down the campaign, including office space rental, staff salaries...

  15. Flexible reserve markets for wind integration

    NASA Astrophysics Data System (ADS)

    Fernandez, Alisha R.

    The increased interconnection of variable generation has motivated the use of improved forecasting to more accurately predict future production with the purpose to lower total system costs for balancing when the expected output exceeds or falls short of the actual output. Forecasts are imperfect, and the forecast errors associated with utility-scale generation from variable generators need new balancing capabilities that cannot be handled by existing ancillary services. Our work focuses on strategies for integrating large amounts of wind generation under the flex reserve market, a market that would called upon for short-term energy services during an under or oversupply of wind generation to maintain electric grid reliability. The flex reserve market would be utilized for time intervals that fall in-between the current ancillary services markets that would be longer than second-to-second energy services for maintaining system frequency and shorter than reserve capacity services that are called upon for several minutes up to an hour during an unexpected contingency on the grid. In our work, the wind operator would access the flex reserve market as an energy service to correct for unanticipated forecast errors, akin to paying the generators participating in the market to increase generation during a shortfall or paying the other generators to decrease generation during an excess of wind generation. Such a market does not currently exist in the Mid-Atlantic United States. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is the Mid-Atlantic electric grid case study that was used to examine if a flex reserve market can be utilized for integrating large capacities of wind generation in a lowcost manner for those providing, purchasing and dispatching these short-term balancing services. The following work consists of three studies. The first examines the ability of a hydroelectric facility to provide short-term forecast error balancing services via a flex reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.

  16. 11 CFR 9004.11 - Winding down costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Winding down costs. 9004.11 Section 9004.11... FINANCING ENTITLEMENT OF ELIGIBLE CANDIDATES TO PAYMENTS; USE OF PAYMENTS § 9004.11 Winding down costs. (a) Winding down costs. Winding down costs are costs associated with the termination of the candidate's...

  17. 11 CFR 9004.11 - Winding down costs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 11 Federal Elections 1 2014-01-01 2014-01-01 false Winding down costs. 9004.11 Section 9004.11... FINANCING ENTITLEMENT OF ELIGIBLE CANDIDATES TO PAYMENTS; USE OF PAYMENTS § 9004.11 Winding down costs. (a) Winding down costs. Winding down costs are costs associated with the termination of the candidate's...

  18. 11 CFR 9004.11 - Winding down costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 11 Federal Elections 1 2011-01-01 2011-01-01 false Winding down costs. 9004.11 Section 9004.11... FINANCING ENTITLEMENT OF ELIGIBLE CANDIDATES TO PAYMENTS; USE OF PAYMENTS § 9004.11 Winding down costs. (a) Winding down costs. Winding down costs are costs associated with the termination of the candidate's...

  19. 11 CFR 9004.11 - Winding down costs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 11 Federal Elections 1 2013-01-01 2012-01-01 true Winding down costs. 9004.11 Section 9004.11... FINANCING ENTITLEMENT OF ELIGIBLE CANDIDATES TO PAYMENTS; USE OF PAYMENTS § 9004.11 Winding down costs. (a) Winding down costs. Winding down costs are costs associated with the termination of the candidate's...

  20. 11 CFR 9004.11 - Winding down costs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 11 Federal Elections 1 2012-01-01 2012-01-01 false Winding down costs. 9004.11 Section 9004.11... FINANCING ENTITLEMENT OF ELIGIBLE CANDIDATES TO PAYMENTS; USE OF PAYMENTS § 9004.11 Winding down costs. (a) Winding down costs. Winding down costs are costs associated with the termination of the candidate's...

  1. A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Krishnan, Venkat K; Zhang, Jie

    Efficient management of wind ramping characteristics can significantly reduce wind integration costs for balancing authorities. By considering the stochastic dependence of wind power ramp (WPR) features, this paper develops a conditional probabilistic wind power ramp forecast (cp-WPRF) model based on Copula theory. The WPRs dataset is constructed by extracting ramps from a large dataset of historical wind power. Each WPR feature (e.g., rate, magnitude, duration, and start-time) is separately forecasted by considering the coupling effects among different ramp features. To accurately model the marginal distributions with a copula, a Gaussian mixture model (GMM) is adopted to characterize the WPR uncertaintymore » and features. The Canonical Maximum Likelihood (CML) method is used to estimate parameters of the multivariable copula. The optimal copula model is chosen based on the Bayesian information criterion (BIC) from each copula family. Finally, the best conditions based cp-WPRF model is determined by predictive interval (PI) based evaluation metrics. Numerical simulations on publicly available wind power data show that the developed copula-based cp-WPRF model can predict WPRs with a high level of reliability and sharpness.« less

  2. Benchmarking U.S. Small Wind Costs with the Distributed Wind Taxonomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Poehlman, Eric A.

    The objective of this report is to benchmark costs for small wind projects installed in the United States using a distributed wind taxonomy. Consequently, this report is a starting point to help expand the U.S. distributed wind market by informing potential areas for small wind cost-reduction opportunities and providing a benchmark to track future small wind cost-reduction progress.

  3. C3Winds: A Novel 3D Wind Observing System to Characterize Severe Weather Events

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Wu, D. L.; Yee, J. H.; Boldt, J.; Demajistre, R.; Reynolds, E.; Tripoli, G. J.; Oman, L.; Prive, N.; Heidinger, A. K.; Wanzong, S.

    2015-12-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to resolve high-resolution 3D dynamic structures of severe wind events. Rapid evolution of severe weather events highlights the need for high-resolution mesoscale wind observations. Yet mesoscale observations of severe weather dynamics are quite rare, especially over the ocean where extratropical and tropical cyclones (ETCs and TCs) can undergo explosive development. Measuring wind velocity at the mesoscale from space remains a great challenge, but is critically needed to understand and improve prediction of severe weather and tropical cyclones. Based on compact, visible/IR imagers and a mature stereoscopic technique, C3Winds has the capability to measure high-resolution (~2 km) cloud motion vectors and cloud geometric heights accurately by tracking cloud features from two formation-flying CubeSats, separated by 5-15 minutes. Complementary to lidar wind measurements from space, C3Winds will provide high-resolution wind fields needed for detailed investigations of severe wind events in occluded ETCs, rotational structures inside TC eyewalls, and ozone injections associated with tropopause folding events. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with the potential for increased diurnal sampling via CubeSat constellation.

  4. Poynting Vector in High-Temperature Superconducting Transformers with a Separate Excitation Winding

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2017-12-01

    The HTSC transformer with a separate winding for excitation of the mutual magnetic flux is considered; the windings of the transformer are performed of first- or second-generation HTSC wires. The article presents the design and the electrical circuit of the transformer, the equations of electromagnetic balance, and the total resistance of the primary and secondary power windings and the separate excitation winding. The transfer of the electromagnetic field energy is considered in a single-phase HTSC transformer with the separate excitation winding using the Poynting vector. The temporal change in the reactive and active components of the Poynting vector and the decrease in the leakage energy flux of the separate excitation winding are shown, which causes an increase in the critical current density of the HTSC power windings, a decrease in the energy losses in the latter, and an increase the in the specific power of the HTSC transformer.

  5. The Distributed Wind Cost Taxonomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsyth, Trudy; Jimenez, Tony; Preus, Robert

    To date, there has been no standard method or tool to analyze the installed and operational costs for distributed wind turbine systems. This report describes the development of a classification system, or taxonomy, for distributed wind turbine project costs. The taxonomy establishes a framework to help collect, sort, and compare distributed wind cost data that mirrors how the industry categorizes information. The taxonomy organizes costs so they can be aggregated from installers, developers, vendors, and other sources without losing cost details. Developing a peer-reviewed taxonomy is valuable to industry stakeholders because a common understanding the details of distributed wind turbinemore » costs and balance of station costs is a first step to identifying potential high-value cost reduction opportunities. Addressing cost reduction potential can help increase distributed wind's competitiveness and propel the U.S. distributed wind industry forward. The taxonomy can also be used to perform cost comparisons between technologies and track trends for distributed wind industry costs in the future. As an initial application and piloting of the taxonomy, preliminary cost data were collected for projects of different sizes and from different regions across the contiguous United States. Following the methods described in this report, these data are placed into the established cost categories.« less

  6. Experimental study of separator effect and shift angle on crossflow wind turbine performance

    NASA Astrophysics Data System (ADS)

    Fahrudin, Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    This paper present experimental test results of separator and shift angle influence on Crossflow vertical axis wind turbine. Modification by using a separator and shift angle is expected to improve the thrust on the blade so as to improve the efficiency. The design of the wind turbine is tested at different wind speeds. There are 2 variations of crossflow turbine design which will be analyzed using an experimental test scheme that is, 3 stage crossflow and 2 stage crossflow with the shift angle. Maximum power coefficient obtained as Cpmax = 0.13 at wind speed 4.05 m/s for 1 separator and Cpmax = 0.12 for 12° shear angle of wind speed 4.05 m/s. In this study, power characteristics of the crossflow rotor with separator and shift angle have been tested. The experimental data was collected by variation of 2 separator and shift angle 0°, 6°, 12° and wind speed 3.01 - 4.85 m/s.

  7. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  8. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an arraymore » of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.« less

  9. Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.

    PubMed

    Hoppock, David C; Patiño-Echeverri, Dalia

    2010-11-15

    The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

  10. IEA Wind Task 26. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007–2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitina, Aisma; Lüers, Silke; Wallasch, Anna-Kathrin

    The International Energy Agency Implementing Agreement for cooperation in Research, Development, and Deployment of Wind Energy Systems (IEA Wind) Task 26—The Cost of Wind Energy represents an international collaboration dedicated to exploring past, present and future cost of wind energy. This report provides an overview of recent trends in wind plant technology, cost, and performance in those countries that are currently represented by participating organizations in IEA Wind Task 26: Denmark, Germany, Ireland, Norway, and the United States as well as the European Union.

  11. Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind Generation

    DOE PAGES

    Siohansi, Ramteen

    2010-05-01

    One of the costs associated with integrating wind generation into a power system is the cost of redispatching the system in real-time due to day-ahead wind resource forecast errors. One possible way of reducing these redispatch costs is to introduce demand response in the form of real-time pricing (RTP), which could allow electricity demand to respond to actual real-time wind resource availability using price signals. A day-ahead unit commitment model with day-ahead wind forecasts and a real-time dispatch model with actual wind resource availability is used to estimate system operations in a high wind penetration scenario. System operations are comparedmore » to a perfect foresight benchmark, in which actual wind resource availability is known day-ahead. The results show that wind integration costs with fixed demands can be high, both due to real-time redispatch costs and lost load. It is demonstrated that introducing RTP can reduce redispatch costs and eliminate loss of load events. Finally, social surplus with wind generation and RTP is compared to a system with neither and the results demonstrate that introducing wind and RTP into a market can result in superadditive surplus gains.« less

  12. Distributed Wind Soft Costs: A Beginning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Tony; Forsyth,Trudy; Preus, Robert

    2016-06-14

    Tony Jimenez presented this overview of distributed wind soft costs at the 2016 Small Wind Conference in Stevens Point, Wisconsin, on June 14, 2016. Soft costs are any non-hardware project costs, such as costs related to permitting fees, installer/developer profit, taxes, transaction costs, permitting, installation, indirect corporate costs, installation labor, and supply chain costs. This presentation provides an overview of soft costs, a distributed wind project taxonomy (of which soft costs are a subset), an alpha data set project demographics, data summary, and future work in this area.

  13. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  14. Horizontal geometrical reaction time model for two-beam nacelle LiDARs

    NASA Astrophysics Data System (ADS)

    Beuth, Thorsten; Fox, Maik; Stork, Wilhelm

    2015-06-01

    Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.

  15. A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015-2030

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Stehly, Tyler

    The potential for cost reduction and economic viability for offshore wind varies considerably within the United States. This analysis models the cost impact of a range of offshore wind locational cost variables across more than 7,000 potential coastal sites in the United States' offshore wind resource area. It also assesses the impact of over 50 technology innovations on potential future costs between 2015 and 2027 (Commercial Operation Date) for both fixed-bottom and floating wind systems. Comparing these costs to an initial assessment of local avoided generating costs, this analysis provides a framework for estimating the economic potential for offshore wind.more » Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The findings from the original report indicate that under the modeled scenario, offshore wind can be expected to achieve significant cost reductions and may approach economic viability in some parts of the United States within the next 15 years.« less

  16. Benefit-cost methodology study with example application of the use of wind generators

    NASA Technical Reports Server (NTRS)

    Zimmer, R. P.; Justus, C. G.; Mason, R. M.; Robinette, S. L.; Sassone, P. G.; Schaffer, W. A.

    1975-01-01

    An example application for cost-benefit methodology is presented for the use of wind generators. The approach adopted for the example application consisted of the following activities: (1) surveying of the available wind data and wind power system information, (2) developing models which quantitatively described wind distributions, wind power systems, and cost-benefit differences between conventional systems and wind power systems, and (3) applying the cost-benefit methodology to compare a conventional electrical energy generation system with systems which included wind power generators. Wind speed distribution data were obtained from sites throughout the contiguous United States and were used to compute plant factor contours shown on an annual and seasonal basis. Plant factor values (ratio of average output power to rated power) are found to be as high as 0.6 (on an annual average basis) in portions of the central U. S. and in sections of the New England coastal area. Two types of wind power systems were selected for the application of the cost-benefit methodology. A cost-benefit model was designed and implemented on a computer to establish a practical tool for studying the relative costs and benefits of wind power systems under a variety of conditions and to efficiently and effectively perform associated sensitivity analyses.

  17. A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015–2030

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Musial, Walter; Smith, Aaron

    This report describes a comprehensive effort undertaken by the National Renewable Energy Laboratory (NREL) to understand the cost of offshore wind energy for markets in the United States. The study models the cost impacts of a range of offshore wind locational cost variables for more than 7,000 potential coastal sites in U.S. offshore wind resource areas. It also assesses the impact of more than 50 technology innovations on potential future costs for both fixed-bottom and floating wind systems. Comparing these costs to an initial site-specific assessment of local avoided generating costs, the analysis provides a framework for estimating the economicmore » potential for offshore wind. The analysis is intended to inform a broad set of stakeholders and enable an assessment of offshore wind as part of energy development and energy portfolio planning. It provides information that federal and state agencies and planning commissions could use to inform initial strategic decisions about offshore wind developments in the United States.« less

  18. Surface flow visualization of separated flows on the forebody of an F-18 aircraft and wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Richwine, David M.; Banks, Daniel W.

    1988-01-01

    A method of in-flight surface flow visualization similar to wind-tunnel-model oil flows is described for cases where photo-chase planes or onboard photography are not practical. This method, used on an F-18 aircraft in flight at high angles of attack, clearly showed surface flow streamlines in the fuselage forebody. Vortex separation and reattachment lines were identified with this method and documented using postflight photography. Surface flow angles measured at the 90 and 270 degrees meridians show excellent agreement with the wind tunnel data for a pointed tangent ogive with an aspect ratio of 3.5. The separation and reattachment line locations were qualitatively similar to the F-18 wind-tunnel-model oil flows but neither the laminar separation bubble nor the boundary-layer transition on the wind tunnel model were evident in the flight surface flows. The separation and reattachment line locations were in fair agreement with the wind tunnel data for the 3.5 ogive. The elliptical forebody shape of the F-18 caused the primary separation lines to move toward the leeward meridian. Little effect of angle of attack on the separation locations was noted for the range reported.

  19. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  20. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  1. Terminal Area Productivity Airport Wind Analysis and Chicago O'Hare Model Description

    NASA Technical Reports Server (NTRS)

    Hemm, Robert; Shapiro, Gerald

    1998-01-01

    This paper describes two results from a continuing effort to provide accurate cost-benefit analyses of the NASA Terminal Area Productivity (TAP) program technologies. Previous tasks have developed airport capacity and delay models and completed preliminary cost benefit estimates for TAP technologies at 10 U.S. airports. This task covers two improvements to the capacity and delay models. The first improvement is the completion of a detailed model set for the Chicago O'Hare (ORD) airport. Previous analyses used a more general model to estimate the benefits for ORD. This paper contains a description of the model details with results corresponding to current conditions. The second improvement is the development of specific wind speed and direction criteria for use in the delay models to predict when the Aircraft Vortex Spacing System (AVOSS) will allow use of reduced landing separations. This paper includes a description of the criteria and an estimate of AVOSS utility for 10 airports based on analysis of 35 years of weather data.

  2. A preliminary benefit-cost study of a Sandia wind farm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlen, Mark Andrew; Griffin, Taylor; Loose, Verne W.

    In response to federal mandates and incentives for renewable energy, Sandia National Laboratories conducted a feasibility study of installing an on-site wind farm on Sandia National Laboratories and Kirtland Air Force Base property. This report describes this preliminary analysis of the costs and benefits of installing and operating a 15-turbine, 30-MW-capacity wind farm that delivers an estimated 16 percent of 2010 onsite demand. The report first describes market and non-market economic costs and benefits associated with operating a wind farm, and then uses a standard life-cycle costing and benefit-cost framework to estimate the costs and benefits of a wind farm.more » Based on these 'best-estimates' of costs and benefits and on factor, uncertainty and sensitivity analysis, the analysis results suggest that the benefits of a Sandia wind farm are greater than its costs. The analysis techniques used herein are applicable to the economic assessment of most if not all forms of renewable energy.« less

  3. 2010 Cost of Wind Energy Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.; Hand, M.; Maples, B.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  4. 2010 Cost of Wind Energy Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.; Hand, M.; Maples, B.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  5. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  6. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  7. 2013 Cost of Wind Energy Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mone, C.; Smith, A.; Maples, B.

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  8. Engineering innovation to reduce wind power COE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammerman, Curtt Nelson

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  9. 77 FR 3440 - Utility Scale Wind Towers From the People's Republic of China and the Socialist Republic of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Exhibit II-12. Petitioner determined labor costs using the labor consumption rates of the Wind Tower... natural gas costs using the natural gas consumption rates derived from the Wind Tower Producer's.... Petitioner determined labor costs using the labor consumption rates of the Wind Tower Producer. See Volume IV...

  10. Energy Analysis of Offshore Systems | Wind | NREL

    Science.gov Websites

    successful research to understand and improve the cost of wind generation technology. As a research approaches used to estimate direct and indirect economic impacts of offshore wind. Chart of cost data for report on cost trends. Recent studies include: Analysis of capital cost trends for planned and installed

  11. Three essays on the effect of wind generation on power system planning and operations

    NASA Astrophysics Data System (ADS)

    Davis, Clay Duane

    While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.

  12. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  13. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Graf, P.; Scott, G.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less

  14. Optimization of monitoring and inspections in the life-cycle of wind turbines

    NASA Astrophysics Data System (ADS)

    Hanish Nithin, Anu; Omenzetter, Piotr

    2016-04-01

    The past decade has witnessed a surge in the offshore wind farm developments across the world. Although this form of cleaner and greener energy is beneficial and eco-friendly, the production of wind energy entails high life-cycle costs. The costs associated with inspections, monitoring and repairs of wind turbines are primary contributors to the high costs of electricity produced in this way and are disadvantageous in today's competitive economic environment. There is limited research being done in the probabilistic optimization of life-cycle costs of offshore wind turbines structures and their components. This paper proposes a framework for assessing the life cycle cost of wind turbine structures subject to damage and deterioration. The objective of the paper is to develop a mathematical probabilistic cost assessment framework which considers deterioration, inspection, monitoring, repair and maintenance models and their uncertainties. The uncertainties are etched in the accuracy and precision of the monitoring and inspection methods and can be considered through the probability of damage detection of each method. Schedules for inspection, monitoring and repair actions are demonstrated using a decision tree. Examples of a generalised deterioration process integrated with the cost analysis using a decision tree are shown for a wind turbine foundation structure.

  15. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte.

    PubMed

    Zhao, Yu; Ding, Yu; Song, Jie; Li, Gang; Dong, Guangbin; Goodenough, John B; Yu, Guihua

    2014-10-06

    The large-scale, cost-effective storage of electrical energy obtained from the growing deployment of wind and solar power is critically needed for the integration into the grid of these renewable energy sources. Rechargeable batteries having a redox-flow cathode represent a viable solution for either a Li-ion or a Na-ion battery provided a suitable low-cost redox molecule soluble in an aprotic electrolyte can be identified that is stable for repeated cycling and does not cross the separator membrane to the anode. Here we demonstrate an environmentally friendly, low-cost ferrocene/ferrocenium molecular redox couple that shows about 95% energy efficiency and about 90% capacity retention after 250 full charge/discharge cycles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Expert elicitation survey on future wind energy costs

    DOE PAGES

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; ...

    2016-09-12

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends - in part - on the future costs of both onshore and offshore wind. In this paper, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions bymore » 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R & D and industry strategy.« less

  17. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    NASA Astrophysics Data System (ADS)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  18. Expert elicitation survey on future wind energy costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends -- in part -- on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 andmore » 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.« less

  19. Expert elicitation survey on future wind energy costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends - in part - on the future costs of both onshore and offshore wind. In this paper, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions bymore » 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R & D and industry strategy.« less

  20. Energy Storage on the Grid and the Short-term Variability of Wind

    NASA Astrophysics Data System (ADS)

    Hittinger, Eric Stephen

    Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated by the current generation and demand-side response mix but, as deployment of variable resources increases, the resulting variability becomes increasingly difficult and costly to mitigate. In Chapter 2, we model a co-located power generation/energy storage block composed of wind generation, a gas turbine, and fast-ramping energy storage. A scenario analysis identifies system configurations that can generate power with 30% of energy from wind, a variability of less than 0.5% of the desired power level, and an average cost around $70/MWh. While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. The analysis in chapter 3 uses engineering-economic models of four emerging fast-ramping energy storage technologies to determine which storage properties have the greatest effect on cost-of-service. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. In some systems with a large amount of wind power, the costs of wind integration have become significant and market rules have been slowly changing in order to internalize or control the variability of wind generation. Chapter 4 examines several potential market strategies for mitigating the effects of wind variability and estimate the effect that each strategy would have on the operation and profitability of wind farms. We find that market scenarios using existing price signals to motivate wind to reduce variability allow wind generators to participate in variability reduction when the market conditions are favorable, and can reduce short-term (30-minute) fluctuations while having little effect on wind farm revenue.

  1. Assessment of wind energy potential and cost estimation of wind-generated electricity at hilltops surrounding the city of Maroua in Cameroon

    NASA Astrophysics Data System (ADS)

    Kaoga, Dieudonné Kidmo; Bogno, Bachirou; Aillerie, Michel; Raidandi, Danwe; Yamigno, Serge Doka; Hamandjoda, Oumarou; Tibi, Beda

    2016-07-01

    In this work, 28 years of wind data, measured at 10m above ground level (AGL), from Maroua meteorological station is utilized to assess the potential of wind energy at exposed ridges tops of mountains surrounding the city of Maroua. The aim of this study is to estimate the cost of wind-generated electricity using six types of wind turbines (50 to 2000 kW). The Weibull distribution function is employed to estimate Weibull shape and scale parameters using the energy pattern factor method. The considered wind shear model to extrapolate Weibull parameters and wind profiles is the empirical power law correlation. The results show that hilltops in the range of 150-350m AGL in increments of 50, fall under Class 3 or greater of the international system of wind classification and are deemed suitable to outstanding for wind turbine applications. A performance of the selected wind turbines is examined as well as the costs of wind-generated electricity at the considered hilltops. The results establish that the lowest costs per kWh are obtained using YDF-1500-87 (1500 kW) turbine while the highest costs are delivered by P-25-100 (90 kW). The lowest costs (US) per kWh of electricity generated are found to vary between a minimum of 0.0294 at hilltops 350m AGL and a maximum of 0.0366 at hilltops 150m AGL, with corresponding energy outputs that are 6,125 and 4,932 MWh, respectively. Additionally, the matching capacity factors values are 38.05% at hilltops 150m AGL and 47.26% at hilltops 350m AGL. Furthermore, YDF-1500-87 followed by Enercon E82-2000 (2000 kW) wind turbines provide the lowest cost of wind generated electricity and are recommended for use for large communities. Medium wind turbine P-15-50 (50 kW), despite showing the best coefficients factors (39.29% and 48.85% at hilltops 150 and 350m AGL, in that order), generates electricity at an average higher cost/kWh of US0.0547 and 0.0440 at hilltops 150 and 350m AGL, respectively. P-15-50 is deemed a more advantageous option for off-grid electrification of small and remote communities.

  2. Systems Engineering | Wind | NREL

    Science.gov Websites

    platform to leverage its research capabilities toward integrating wind energy engineering and cost models achieve a better understanding of how to improve system-level performance and achieve system-level cost research capabilities to: Integrate wind plant engineering performance and cost software modeling to enable

  3. Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les

    NASA Astrophysics Data System (ADS)

    Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.

    2005-02-01

    Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developedmore » to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.« less

  5. Colorado Public Utility Commission's Xcel Wind Decision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehr, R. L.; Nielsen, J.; Andrews, S.

    2001-09-20

    In early 2001 the Colorado Public Utility Commission ordered Xcel Energy to undertake good faith negotiations for a wind plant as part of the utility's integrated resource plan. This paper summarizes the key points of the PUC decision, which addressed the wind plant's projected impact on generation cost and ancillary services. The PUC concluded that the wind plant would cost less than new gas-fired generation under reasonable gas cost projections.

  6. Costs of solar and wind power variability for reducing CO2 emissions.

    PubMed

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  7. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    NASA Technical Reports Server (NTRS)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  8. Complex behaviour in complex terrain - Modelling bird migration in a high resolution wind field across mountainous terrain to simulate observed patterns.

    PubMed

    Aurbach, Annika; Schmid, Baptiste; Liechti, Felix; Chokani, Ndaona; Abhari, Reza

    2018-06-03

    Crossing of large ecological barriers, such as mountains, is in terms of energy considered to be a demanding and critical step during bird migration. Besides forming a geographical barrier, mountains have a profound impact on the resulting wind flow. We use a novel framework of mathematical models to investigate the influences of wind and topography on nocturnal passerine bird behaviour, and to assess the energy costs for different flight strategies for crossing the Jura Mountains. The mathematical models include three biological models of bird behaviour: i) wind drift compensation; ii) adaptation of flight height for favourable winds; and, iii) avoidance of obstacles (cross over and/or circumvention of an obstacle following a minimum energy expenditure strategy), which are assessed separately and in combination. Further, we use a mesoscale weather model for high-resolution predictions of the wind fields. We simulate the broad front nocturnal passerine migration for autumn nights with peak migration intensities. The bird densities retrieved from a weather radar are used as the initial intensities and to specify the vertical distributions of the simulated birds. It is shown that migration over complex terrain represents the most expensive flight option in terms of energy expenditure, and wind is seen to be the main factor that influences the energy expenditure in the bird's preferred flight direction. Further, the combined effects of wind and orography lead to a high concentration of migratory birds within the favourable wind conditions of the Swiss lowlands and north of the Jura Mountains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Maples, B.; Meadows, B.

    2012-09-01

    With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on themore » new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW and offshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from US offshore wind plants.« less

  10. Modeling and Optimization of Coordinative Operation of Hydro-wind-photovoltaic Considering Power Generation and Output Fluctuation

    NASA Astrophysics Data System (ADS)

    Wang, Xianxun; Mei, Yadong

    2017-04-01

    Coordinative operation of hydro-wind-photovoltaic is the solution of mitigating the conflict of power generation and output fluctuation of new energy and conquering the bottleneck of new energy development. Due to the deficiencies of characterizing output fluctuation, depicting grid construction and disposal of power abandon, the research of coordinative mechanism is influenced. In this paper, the multi-object and multi-hierarchy model of coordinative operation of hydro-wind-photovoltaic is built with the aim of maximizing power generation and minimizing output fluctuation and the constraints of topotaxy of power grid and balanced disposal of power abandon. In the case study, the comparison of uncoordinative and coordinative operation is carried out with the perspectives of power generation, power abandon and output fluctuation. By comparison from power generation, power abandon and output fluctuation between separate operation and coordinative operation of multi-power, the coordinative mechanism is studied. Compared with running solely, coordinative operation of hydro-wind-photovoltaic can gain the compensation benefits. Peak-alternation operation reduces the power abandon significantly and maximizes resource utilization effectively by compensating regulation of hydropower. The Pareto frontier of power generation and output fluctuation is obtained through multiple-objective optimization. It clarifies the relationship of mutual influence between these two objects. When coordinative operation is taken, output fluctuation can be markedly reduced at the cost of a slight decline of power generation. The power abandon also drops sharply compared with operating separately. Applying multi-objective optimization method to optimize the coordinate operation, Pareto optimal solution set of power generation and output fluctuation is achieved.

  11. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains Through Integrated Design Approaches: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Quick, Julian; Guo, Yi

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this papermore » we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.« less

  12. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains through Integrated Design Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Quick, Julian; Guo, Yi

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this papermore » we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.« less

  13. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016.

    PubMed

    Wohland, Jan; Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability.

  14. Role of Computational Fluid Dynamics and Wind Tunnels in Aeronautics R and D

    NASA Technical Reports Server (NTRS)

    Malik, Murjeeb R.; Bushnell, Dennis M.

    2012-01-01

    The purpose of this report is to investigate the status and future projections for the question of supplantation of wind tunnels by computation in design and to intuit the potential impact of computation approaches on wind-tunnel utilization all with an eye toward reducing the infrastructure cost at aeronautics R&D centers. Wind tunnels have been closing for myriad reasons, and such closings have reduced infrastructure costs. Further cost reductions are desired, and the work herein attempts to project which wind-tunnel capabilities can be replaced in the future and, if possible, the timing of such. If the possibility exists to project when a facility could be closed, then maintenance and other associated costs could be rescheduled accordingly (i.e., before the fact) to obtain an even greater infrastructure cost reduction.

  15. Responses of insect herbivores and their food plants to wind exposure and the importance of predation risk.

    PubMed

    Chen, Cong; Biere, Arjen; Gols, Rieta; Halfwerk, Wouter; van Oers, Kees; Harvey, Jeffrey A

    2018-04-19

    Wind is an important abiotic factor that influences an array of biological processes, but it is rarely considered in studies on plant-herbivore interactions. Here, we tested whether wind exposure could directly or indirectly affect the performance of two insect herbivores, Plutella xylostella and Pieris brassicae, feeding on Brassica nigra plants. In a greenhouse study using a factorial design, B. nigra plants were exposed to different wind regimes generated by fans before and after caterpillars were introduced on plants in an attempt to separate the effects of direct and indirect wind exposure on herbivores. Wind exposure delayed flowering, decreased plant height and increased leaf concentrations of amino acids and glucosinolates. Plant-mediated effects of wind on herbivores, that is effects of exposure of plants to wind prior to herbivore feeding, were generally small. However, development time of both herbivores was extended and adult body mass of P. xylostella was reduced when they were directly exposed to wind. By contrast, wind-exposed adult P. brassicae butterflies were significantly larger, revealing a trade-off between development time and adult size. Based on these results, we conducted a behavioural experiment to study preference by an avian predator, the great tit (Parus major) for last instar P. brassicae caterpillars on plants that were exposed to either control (no wind) or wind (fan-exposed) treatments. Tits captured significantly more caterpillars on still than on wind-exposed plants. Our results suggest that P. brassicae caterpillars are able to perceive the abiotic environment and to trade off the costs of extended development time against the benefits of increased size depending on the perceived risk of predation mediated by wind exposure. Such adaptive phenotypic plasticity in insects has not yet been described in response to wind exposure. © 2018 The Author. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  16. Joint High-Order Synchrosqueezing Transform and Multi-Taper Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions.

    PubMed

    Hu, Yue; Tu, Xiaotong; Li, Fucai; Meng, Guang

    2018-01-07

    Wind turbines usually operate under nonstationary conditions, such as wide-range speed fluctuation and time-varying load. Its critical component, the planetary gearbox, is prone to malfunction or failure, which leads to downtime and repair costs. Therefore, fault diagnosis and condition monitoring for the planetary gearbox in wind turbines is a vital research topic. Meanwhile, the signals measured by the vibration sensors mounted in the gearbox exhibit time-varying and nonstationary features. In this study, a novel time-frequency method based on high-order synchrosqueezing transform (SST) and multi-taper empirical wavelet transform (MTEWT) is proposed for the wind turbine planetary gearbox under nonstationary conditions. The high-order SST uses accurate instantaneous frequency approximations to obtain a sharper time-frequency representation (TFR). As the acquired signal consists of many components, like the meshing and rotating components of the gear and bearing, the fault component may be masked by other unrelated components. The MTEWT is used to separate the fault feature from the masking components. A variety of experimental signals of the wind turbine planetary gearbox under nonstationary conditions have been analyzed to demonstrate the effectiveness and robustness of the proposed method. Results show that the proposed method is effective in diagnosing both gear and bearing faults.

  17. Joint High-Order Synchrosqueezing Transform and Multi-Taper Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions

    PubMed Central

    Li, Fucai; Meng, Guang

    2018-01-01

    Wind turbines usually operate under nonstationary conditions, such as wide-range speed fluctuation and time-varying load. Its critical component, the planetary gearbox, is prone to malfunction or failure, which leads to downtime and repair costs. Therefore, fault diagnosis and condition monitoring for the planetary gearbox in wind turbines is a vital research topic. Meanwhile, the signals measured by the vibration sensors mounted in the gearbox exhibit time-varying and nonstationary features. In this study, a novel time-frequency method based on high-order synchrosqueezing transform (SST) and multi-taper empirical wavelet transform (MTEWT) is proposed for the wind turbine planetary gearbox under nonstationary conditions. The high-order SST uses accurate instantaneous frequency approximations to obtain a sharper time-frequency representation (TFR). As the acquired signal consists of many components, like the meshing and rotating components of the gear and bearing, the fault component may be masked by other unrelated components. The MTEWT is used to separate the fault feature from the masking components. A variety of experimental signals of the wind turbine planetary gearbox under nonstationary conditions have been analyzed to demonstrate the effectiveness and robustness of the proposed method. Results show that the proposed method is effective in diagnosing both gear and bearing faults. PMID:29316668

  18. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    NASA Astrophysics Data System (ADS)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  19. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, K.; Wan, Y. H.; Wiener, G.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'),more » or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.« less

  20. IEA Wind Task 26. Wind Technology, Cost and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States. 2007 - 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitina, Aisma; Luers, Silke; Wallasch, Anna-Kathrin

    This report builds from a similar previous analysis (Schwabe et al., 2011) exploring the differences in cost of wind energy in 2008 among countries participating in IEA Wind Task 26 at that time. The levelized cost of energy (LCOE) is a widely recognized metric for understanding how technology, capital investment, operations, and financing impact the life-cycle cost of building and operating a wind plant. Schwabe et al. (2011) apply a spreadsheet-based cash flow model developed by the Energy Research Centre of the Netherlands (ECN) to estimate LCOE. This model is a detailed, discounted cash flow model used to represent themore » various cost structures in each of the participating countries from the perspective of a financial investor in a domestic wind energy project. This model is used for the present analysis as well, and comparisons are made for those countries who contributed to both reports, Denmark, Germany, and the United States.« less

  1. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  2. 2015 Cost of Wind Energy Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mone, Christopher; Hand, Maureen; Bolinger, Mark

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2015. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections,more » goals, and improvement opportunities.« less

  3. 2014 Cost of Wind Energy Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mone, Christopher; Stehly, Tyler; Maples, Ben

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections,more » goals, and improvement opportunities.« less

  4. An algorithm for minimum-cost set-point ordering in a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, J. S.

    1981-01-01

    An algorithm for minimum cost ordering of set points in a cryogenic wind tunnel is developed. The procedure generates a matrix of dynamic state transition costs, which is evaluated by means of a single-volume lumped model of the cryogenic wind tunnel and the use of some idealized minimum-costs, which is evaluated by means of a single-volume lumped model of the cryogenic wind tunnel and the use of some idealized minimum-cost state-transition control strategies. A branch and bound algorithm is employed to determine the least costly sequence of state transitions from the transition-cost matrix. Some numerical results based on data for the National Transonic Facility are presented which show a strong preference for state transitions that consume to coolant. Results also show that the choice of the terminal set point in an open odering can produce a wide variation in total cost.

  5. Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2012-06-01

    As with any industrial-scale technology, wind power has impacts. As wind technology deployment becomes more widespread, a defined opposition will form as a result of fear of change and competing energy technologies. As the easy-to-deploy sites are developed, the costs of developing at sites with deployment barriers will increase, therefore increasing the total cost of power. This presentation provides an overview of wind development stakeholders and related stakeholder engagement questions, Energy Department activities that provide wind project deployment information, and the quantification of deployment barriers and costs in the continental United States.

  6. A Framework for Statewide Analysis of Site Suitability, Energy Estimation, Life Cycle Costs, Financial Feasibility and Environmental Assessment of Wind Farms: A Case Study of Indiana

    NASA Astrophysics Data System (ADS)

    Kumar, Indraneel

    In the last decade, Midwestern states including Indiana have experienced an unprecedented growth in utility scale wind energy farms. For example, by end of 2013, Indiana had 1.5 GW of wind turbines installed, which could provide electrical energy for as many as half-a-million homes. However, there is no statewide systematic framework available for the evaluation of wind farm impacts on endangered species, required necessary setbacks and proximity standards to infrastructure, and life cycle costs. This research is guided to fill that gap and it addresses the following questions. How much land is suitable for wind farm siting in Indiana given the constraints of environmental, ecological, cultural, settlement, physical infrastructure and wind resource parameters? How much wind energy can be obtained? What are the life cycle costs and economic and financial feasibility? Is wind energy production and development in a state an emission free undertaking? The framework developed in the study is applied to a case study of Indiana. A fuzzy logic based AHP (Analytic Hierarchy Process) spatial site suitability analysis for wind energy is formulated. The magnitude of wind energy that could be sited and installed comprises input for economic and financial feasibility analysis for 20-25 years life cycle of wind turbines in Indiana. Monte Carlo simulation is used to account for uncertainty and nonlinearity in various costs and price parameters. Impacts of incentives and cost variables such as production tax credits, costs of capital, and economies of scale are assessed. Further, an economic input-output (IO) based environmental assessment model is developed for wind energy, where costs from financial feasibility analysis constitute the final demand vectors. This customized model for Indiana is used to assess emissions for criteria air pollutants, hazardous air pollutants and greenhouse gases (GHG) across life cycle events of wind turbines. The findings of the case study include that, Indiana has adequate suitable land area available to locate wind farms with installed capacity between 11 and 51 GW if 100 meters high turbines are used. For a 1.5 MW standard wind turbine, financial feasibility analysis shows that production tax credits and property tax abatements are helpful for financial success in Indiana. Also, the wind energy is not entirely emission free if life cycle events of wind turbine manufacturing, production, installation, construction and decommissioning are considered. The research developed a replicable and integrated framework for statewide life cycle analysis of wind energy production accounting for uncertainty into the analyses. Considering the complexity of life cycle analysis and lack of state specific data on performance of wind turbines and wind farms, this study should be considered an intermediate step.

  7. 11 CFR 9008.10 - Documentation of disbursements; net outstanding convention expenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... convention; plus (iii) An estimate of necessary winding down costs; less (2) The total of: (i) Cash on hand... of how the lesser amount or full write-off was determined. (7) Winding down costs. The term winding... value of capital assets may be considered to be the total original cost of such items when acquired less...

  8. 11 CFR 9008.10 - Documentation of disbursements; net outstanding convention expenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... convention; plus (iii) An estimate of necessary winding down costs; less (2) The total of: (i) Cash on hand... of how the lesser amount or full write-off was determined. (7) Winding down costs. The term winding... value of capital assets may be considered to be the total original cost of such items when acquired less...

  9. 11 CFR 9008.10 - Documentation of disbursements; net outstanding convention expenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... convention; plus (iii) An estimate of necessary winding down costs; less (2) The total of: (i) Cash on hand... of how the lesser amount or full write-off was determined. (7) Winding down costs. The term winding... value of capital assets may be considered to be the total original cost of such items when acquired less...

  10. 11 CFR 9008.10 - Documentation of disbursements; net outstanding convention expenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... convention; plus (iii) An estimate of necessary winding down costs; less (2) The total of: (i) Cash on hand... of how the lesser amount or full write-off was determined. (7) Winding down costs. The term winding... value of capital assets may be considered to be the total original cost of such items when acquired less...

  11. Wind energy developments in the 20th century

    NASA Technical Reports Server (NTRS)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  12. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation

    PubMed Central

    Rodriguez Salazar, Leopoldo; Cobano, Jose A.; Ollero, Anibal

    2016-01-01

    This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz. Predictions show a convergence time with a 95% confidence interval of approximately 30 s. PMID:28025531

  13. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation.

    PubMed

    Rodriguez Salazar, Leopoldo; Cobano, Jose A; Ollero, Anibal

    2016-12-23

    This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz . Predictions show a convergence time with a 95% confidence interval of approximately 30 s .

  14. The economics and environmental impacts of large-scale wind power in a carbon constrained world

    NASA Astrophysics Data System (ADS)

    Decarolis, Joseph Frank

    Serious climate change mitigation aimed at stabilizing atmospheric concentrations of CO2 will require a radical shift to a decarbonized energy supply. The electric power sector will be a primary target for deep reductions in CO2 emissions because electric power plants are among the largest and most manageable point sources of emissions. With respect to new capacity, wind power is currently one of the most inexpensive ways to produce electricity without CO2 emissions and it may have a significant role to play in a carbon constrained world. Yet most research in the wind industry remains focused on near term issues, while energy system models that focus on century-long time horizons undervalue wind by imposing exogenous limits on growth. This thesis fills a critical gap in the literature by taking a closer look at the cost and environmental impacts of large-scale wind. Estimates of the average cost of wind generation---now roughly 4¢/kWh---do not address the cons arising from the spatial distribution and intermittency of wind. This thesis develops a theoretical framework for assessing the intermittency cost of wind. In addition, an economic characterization of a wind system is provided in which long-distance electricity transmission, storage, and gas turbines are used to supplement variable wind power output to meet a time-varying load. With somewhat optimistic assumptions about the cost of wind turbines, the use of wind to serve 50% of demand adds ˜1--2¢/kWh to the cost of electricity, a cost comparable to that of other large-scale low carbon technologies. This thesis also explores the environmental impacts posed by large-scale wind. Though avian mortality and noise caused controversy in the early years of wind development, improved technology and exhaustive siting assessments have minimized their impact. The aesthetic valuation of wind farms can be improved significantly with better design, siting, construction, and maintenance procedures, but opposition may increase as wind is developed on a large scale. Finally, this thesis summarizes collaborative work utilizing general circulation models to determine whether wind turbines have an impact of climate. The results suggest that the climatic impact is non-negligible at continental scales, but further research is warranted.

  15. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  16. SimWIND: A Geospatial Infrastructure Model for Wind Energy Production and Transmission

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Phillips, B. R.; Bielicki, J. M.

    2009-12-01

    Wind is a clean, enduring energy resource with a capacity to satisfy 20% or more of the electricity needs in the United States. A chief obstacle to realizing this potential is the general paucity of electrical transmission lines between promising wind resources and primary load centers. Successful exploitation of this resource will therefore require carefully planned enhancements to the electric grid. To this end, we present the model SimWIND for self-consistent optimization of the geospatial arrangement and cost of wind energy production and transmission infrastructure. Given a set of wind farm sites that satisfy meteorological viability and stakeholder interest, our model simultaneously determines where and how much electricity to produce, where to build new transmission infrastructure and with what capacity, and where to use existing infrastructure in order to minimize the cost for delivering a given amount of electricity to key markets. Costs and routing of transmission line construction take into account geographic and social factors, as well as connection and delivery expenses (transformers, substations, etc.). We apply our model to Texas and consider how findings complement the 2008 Electric Reliability Council of Texas (ERCOT) Competitive Renewable Energy Zones (CREZ) Transmission Optimization Study. Results suggest that integrated optimization of wind energy infrastructure and cost using SimWIND could play a critical role in wind energy planning efforts.

  17. Wind tunnel tests of the dynamic characteristics of the fluidic rudder

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1976-01-01

    The fourth phase is given of a continuing program to develop the means to stabilize and control aircraft without moving parts or a separate source of power. Previous phases have demonstrated the feasibility of (1) generating adequate control forces on a standard airfoil, (2) controlling those forces with a fluidic amplifier and (3) cascading non-vented fluidic amplifiers operating on ram air supply pressure. The foremost objectives of the fourth phase covered under Part I of this report were to demonstrate a complete force-control system in a wind tunnel environment and to measure its static and dynamic control characteristics. Secondary objectives, covered under Part II, were to evaluate alternate configurations for lift control. The results demonstrate an overall response time of 150 msec, confirming this technology as a viable means for implementing low-cost reliable flight control systems.

  18. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016

    PubMed Central

    Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability. PMID:29329349

  19. A 200-kW wind turbine generator conceptual design study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A conceptual design study was conducted to define a 200 kW wind turbine power system configuration for remote applications. The goal was to attain an energy cost of 1 to 2 cents per kilowatt-hour at a 14-mph site (mean average wind velocity at an altitude of 30 ft.) The costs of the Clayton, New Mexico, Mod-OA (200-kW) were used to identify the components, subsystems, and other factors that were high in cost and thus candidates for cost reduction. Efforts devoted to developing component and subsystem concepts and ideas resulted in a machine concept that is considerably simpler, lighter in weight, and lower in cost than the present Mod-OA wind turbines. In this report are described the various innovations that contributed to the lower cost and lighter weight design as well as the method used to calculate the cost of energy.

  20. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.

  1. Analysis of Ideal Towers for Tall Wind Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less

  2. Analysis of Ideal Towers for Tall Wind Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less

  3. Structural Health and Prognostics Management for Offshore Wind Turbines: Sensitivity Analysis of Rotor Fault and Blade Damage with O&M Cost Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrent, Noah J.; Barrett, Natalie C.; Adams, Douglas E.

    2014-07-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling and simulation approach developed in prior work is used to identify how the underlying physics of the system are affected by themore » presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Sensitivity analyses were carried out for the detection strategies of rotor imbalance and shear web disbond developed in prior work by evaluating the robustness of key measurement parameters in the presence of varying wind speeds, horizontal shear, and turbulence. Detection strategies were refined for these fault mechanisms and probabilities of detection were calculated. For all three fault mechanisms, the probability of detection was 96% or higher for the optimized wind speed ranges of the laminar, 30% horizontal shear, and 60% horizontal shear wind profiles. The revised cost model provided insight into the estimated savings in operations and maintenance costs as they relate to the characteristics of the SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.« less

  4. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  5. Some extemporaneous comments on our experiences with towers for wind generators

    NASA Technical Reports Server (NTRS)

    Hutter, U.

    1973-01-01

    A wind generator tower must be designed to withstand fatigue forces and gust winds loads. Optimum tower height depends on the energy cost to the customer because an increase in height results in an increase in the cost of the plant. It is suggested that costs are minimum for the shortest tower possible and that the rotor should be as large as possible.

  6. Long-term implications of sustained wind power growth in the United States: Direct electric system impacts and costs

    DOE PAGES

    Lantz, Eric; Mai, Trieu; Wiser, Ryan H.; ...

    2016-07-22

    This paper evaluates potential changes in the power system associated with sustained growth in wind generation in the United States to 35% of end-use demand by 2050; Wiser et al. (forthcoming) evaluates societal benefits and other impacts for this same scenario. Under reference or central conditions, the analysis finds cumulative wind capacity of 404 GW would be required to reach this level and drive 2050 incremental electricity rate and cumulative electric sector savings of 2% and 3%, respectively, relative to a scenario with no new wind capacity additions. Greater savings are estimated under higher fossil fuel costs or with greatermore » advancements in wind technologies. Conversely, incremental costs are found when fossil fuel costs are lower than central assumptions or wind technology improvements are more-limited. Through 2030 the primary generation sources displaced by new wind capacity include natural gas and coal-fired generation. By 2050 wind could displace other renewables. Incremental new transmission infrastructure totaling 29 million MW-miles is estimated to be needed by 2050. In conjunction with related societal benefits, this work demonstrates that 35% wind energy by 2050 is plausible, could support enduring benefits, and could result in long-term consumer savings, if nearer-term (pre-2030) cost barriers are overcome; at the same time, these opportunities are not anticipated to be realized in their full form under “business-as-usual” conditions.« less

  7. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    ERIC Educational Resources Information Center

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  8. Distributed Wind Competitiveness Improvement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. Thismore » fact sheet describes the CIP and funding awarded as part of the project.ufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.« less

  9. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Bothmore » turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.« less

  10. Advanced Performance Hydraulic Wind Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  11. A Novel Approach of Battery Energy Storage for Improving Value of Wind Power in Deregulated Markets

    NASA Astrophysics Data System (ADS)

    Nguyen, Y. Minh; Yoon, Yong Tae

    2013-06-01

    Wind power producers face many regulation costs in deregulated environment, which remarkably lowers the value of wind power in comparison with the conventional sources. One of these costs is associated with the real-time variation of power output and being paid in frequency control market according to the variation band. In this regard, this paper presents a new approach to the scheduling and operation of battery energy storage installed in wind generation system. This approach depends on the statistic data of wind generation and the prediction of frequency control market prices to determine the optimal charging and discharging of batteries in real-time, which ultimately gives the minimum cost of frequency regulation for wind power producers. The optimization problem is formulated as the trade-off between the decrease in regulation payment and the increase in the cost of using battery energy storage. The approach is illustrated in the case study and the results of simulation show its effectiveness.

  12. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.

    PubMed

    Masden, Elizabeth A; Haydon, Daniel T; Fox, Anthony D; Furness, Robert W

    2010-07-01

    Proposals for wind farms in areas of known importance for breeding seabirds highlight the need to understand the impacts of these structures. Using an energetic modelling approach, we examine the effects of wind farms as barriers to movement on seabirds of differing morphology. Additional costs, expressed in relation to typical daily energetic expenditures, were highest per unit flight for seabirds with high wing loadings, such as cormorants. Taking species-specific differences into account, costs were relatively higher in terns, due to the high daily frequency of foraging flights. For all species, costs of extra flight to avoid a wind farm appear much less than those imposed by low food abundance or adverse weather, although such costs will be additive to these. We conclude that adopting a species-specific approach is essential when assessing the impacts of wind farms on breeding seabird populations, to fully anticipate the effects of avoidance flights. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The costmore » of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.« less

  14. Solar- and wind-powered irrigation systems

    NASA Astrophysics Data System (ADS)

    Enochian, R. V.

    1982-02-01

    Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.

  15. The Unitary Plan Wind Tunnel(UPWT) Test 1891 Space Launch System

    NASA Image and Video Library

    2014-10-15

    Stage Separation Test of the Space Launch System(SLS) in the Langley Unitary Plan Wind Tunnel (UPWT). The model used High Pressure air blown through the solid rocket boosters. (SRB) to simulate the booster separation motors (BSM) firing.

  16. The Unitary Plan Wind Tunnel(UPWT) Test 1891 Space Launch System

    NASA Image and Video Library

    2014-10-14

    Stage Separation Test of the Space Launch System(SLS) in the Langley Unitary Plan Wind Tunnel (UPWT). The model used High Pressure air blown through the solid rocket boosters. (SRB) to simulate the booster separation motors (BSM) firing.

  17. Wind Fins: Novel Lower-Cost Wind Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David C. Morris; Dr. Will D. Swearingen

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less

  18. Advanced wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, P.M.; Jaffrey, A.

    1995-09-01

    Garrad Hassan have a project in progress funded by the UK Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced wind turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a wind turbine system to operate in effect with variable rotor diameter augmenting energy capture in light winds and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of wind generated electricity may be possible.

  19. Advanced wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, P.M.; Jaffrey, A.

    1997-11-01

    Garrad Hassan have a project in progress funded by the U.K. Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced wind turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a wind turbine system to operate in effect with variable rotor diameter augmenting energy capture in light winds and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of wind-generated electricity may be possible.

  20. The design of low cost structures for extensive ground arrays

    NASA Technical Reports Server (NTRS)

    Franklin, H. A.; Leonard, R. S.

    1980-01-01

    The development of conceptual designs of solar array support structures and their foundations including considerations of the use of concrete, steel, aluminum, or timber are reported. Some cost trends were examined by varying selected parameters to determine optimum configurations. Detailed civil/structural design criteria were developed. Using these criteria, eight detailed designs for support structures and foundations were developed and cost estimates were made. As a result of the study wind was identified as the major loading experienced by these low height structures, whose arrays are likely to extend over large tracts of land. Proper wind load estimating is considered essential to developing realistic structural designs and achieving minimum cost support structures. Wind tunnel testing of a conceptual array field was undertaken and some of the resulting wind design criteria are presented. The SPS rectenna system designs may be less sensitive to wind load estimates, but consistent design criteria remain important.

  1. On the relationship between hurricane cost and the integrated wind profile

    NASA Astrophysics Data System (ADS)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  2. Wind farm topology-finding algorithm considering performance, costs, and environmental impacts.

    PubMed

    Tazi, Nacef; Chatelet, Eric; Bouzidi, Youcef; Meziane, Rachid

    2017-06-05

    Optimal power in wind farms turns to be a modern problem for investors and decision makers; onshore wind farms are subject to performance and economic and environmental constraints. The aim of this work is to define the best installed capacity (best topology) with maximum performance and profits and consider environmental impacts as well. In this article, we continue the work recently done on wind farm topology-finding algorithm. The proposed resolution technique is based on finding the best topology of the system that maximizes the wind farm performance (availability) under the constraints of costs and capital investments. Global warming potential of wind farm is calculated and taken into account in the results. A case study is done using data and constraints similar to those collected from wind farm constructors, managers, and maintainers. Multi-state systems (MSS), universal generating function (UGF), wind, and load charge functions are applied. An economic study was conducted to assess the wind farm investment. Net present value (NPV) and levelized cost of energy (LCOE) were calculated for best topologies found.

  3. The value of compressed air energy storage with wind in transmission-constrained electric power systems

    DOE PAGES

    Denholm, Paul; Sioshansi, Ramteen

    2009-05-05

    In this paper, we examine the potential advantages of co-locating wind and energy storage to increase transmission utilization and decrease transmission costs. Co-location of wind and storage decreases transmission requirements, but also decreases the economic value of energy storage compared to locating energy storage at the load. This represents a tradeoff which we examine to estimate the transmission costs required to justify moving storage from load-sited to wind-sited in three different locations in the United States. We examined compressed air energy storage (CAES) in three “wind by wire” scenarios with a variety of transmission and CAES sizes relative to amore » given amount of wind. In the sites and years evaluated, the optimal amount of transmission ranges from 60% to 100% of the wind farm rating, with the optimal amount of CAES equal to 0–35% of the wind farm rating, depending heavily on wind resource, value of electricity in the local market, and the cost of natural gas.« less

  4. Large horizontal axis wind turbine development

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.

    1979-01-01

    An overview of the NASA activities concerning ongoing wind systems oriented toward utility application is presented. First-generation-technology large wind turbines were designed and are in operation at selected utility sites. In order to make a significant energy impact, costs of 2 to 3 cents per kilowatt hour must be achieved. The federal program continues to fund the development by industry of wind turbines which can meet the cost goals of 2 to 3 cents per kilowatt hour. Lower costs are achieved through the incorporation of new technology and innovative system design to reduce weight and increase energy capture.

  5. 2011 Cost of Wind Energy Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.; Lantz, E.; Hand, M.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  6. Climate refugia: The physical, hydrologic and disturbance basis

    NASA Astrophysics Data System (ADS)

    Holden, Z. A.; Maneta, M. P.; Forthofer, J.

    2015-12-01

    Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia. Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.

  7. Measuring tropospheric wind with microwave sounders

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  8. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007 - 2012; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, Maureen

    This presentation provides a summary of IEA Wind Task 26 report on Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007-2012

  9. Microbiology of Wind-eroded Sediments: Current Knowledge and Future Research Directions

    USDA-ARS?s Scientific Manuscript database

    Wind erosion is a threat to the sustainability and productivity of soils that takes place at local, regional, and global scales. Current estimates of cost of wind erosion have not included the costs associated with the loss of soil biodiversity and reduced ecosystem functions. Microorganisms carrie...

  10. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  11. Technical, economic and legal aspects of wind energy utilization

    NASA Astrophysics Data System (ADS)

    Obermair, G. M.; Jarass, L.

    Potentially problematical areas of the implementation of wind turbines for electricity production in West Germany are identified and briefly discussed. Variations in wind generator output due to source variability may cause power regulation difficulties in the grid and also raise uncertainties in utility capacity planning for new construction. Catastrophic machine component failures, such as a thrown blade, are hazardous to life and property, while lulls in the resource can cause power regulation capabilities only when grid penetration has reached significant levels. Economically, the lack of actual data from large scale wind projects is cited as a barrier to accurate cost comparisons of wind-derived power relative to other generating sources, although breakeven costs for wind power have been found to be $2000/kW installed capacity, i.e., a marginal cost of $0.10/kW.

  12. Gaseous isotope separation using solar wind phenomena.

    PubMed

    Wang, C G

    1980-12-01

    A large evacuated drum-like chamber fitted with supersonic nozzles in the center, with the chamber and the nozzles corotating, can separate gaseous fluids according to their molecular weights. The principle of separation is essentially the same as that of the solar wind propagation, in which components of the plasma fluid are separated due to their difference in the time-of-flight. The process can inherently be very efficient, serving as a pump as well as a separator, and producing well over 10(5) separative work units (kg/year) for the hydrogen/deuterium mixture at high-velocity flows.

  13. Use of a grid simulation model for longer-term analysis of wind energy integration

    NASA Astrophysics Data System (ADS)

    Bossanyi, E.

    A simulation model of an electricity generating system is used to study the integration of wind energy onto the system. Most of the system cost savings achieved are due to the savings of fossil fuels, but in the long term additional savings result from re-optimization of the plant mix. Break-even costs are calculated for wind turbines to become economically viable as fossil fuel savers. This allows the optimum economic penetration level for wind turbines of any given cost to be derived. Break-even costs up to reasonably large penetrations appear to be within reach with modern technology. Results are also given with scenarios of increasing fossil fuel prices and increased nuclear capacity.

  14. Determination of Extrapolation Distance With Pressure Signatures Measured at Two to Twenty Span Lengths From Two Low-Boom Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Kuhn, Neil S.

    2006-01-01

    A study was performed to determine a limiting separation distance for the extrapolation of pressure signatures from cruise altitude to the ground. The study was performed at two wind-tunnel facilities with two research low-boom wind-tunnel models designed to generate ground pressure signatures with "flattop" shapes. Data acquired at the first wind-tunnel facility showed that pressure signatures had not achieved the desired low-boom features for extrapolation purposes at separation distances of 2 to 5 span lengths. However, data acquired at the second wind-tunnel facility at separation distances of 5 to 20 span lengths indicated the "limiting extrapolation distance" had been achieved so pressure signatures could be extrapolated with existing codes to obtain credible predictions of ground overpressures.

  15. Wind utilization in remote regions: An economic study. [for comparison with diesel engines

    NASA Technical Reports Server (NTRS)

    Vansant, J. H.

    1973-01-01

    A wind driven generator was considered as a supplement to a diesel group, for the purpose of economizing fuel when wind power is available. A specific location on Hudson's Bay, Povognituk, was selected. Technical and economic data available for a wind machine of 10-kilowatt nominal capacity and available wind data for that region were used for the study. After subtracting the yearly wind machine costs from savings in fuel costs, a net savings of $1400 per year is realized. These values are approximate, but are though to be highly conservative.

  16. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  17. Considerations of solar wind dynamics in mapping of Jupiter's auroral features to magnetospheric sources

    NASA Astrophysics Data System (ADS)

    Gyalay, S.; Vogt, M.; Withers, P.

    2015-12-01

    Previous studies have mapped locations from the magnetic equator to the ionosphere in order to understand how auroral features relate to magnetospheric sources. Vogt et al. (2011) in particular mapped equatorial regions to the ionosphere by using a method of flux equivalence—requiring that the magnetic flux in a specified region at the equator is equal to the magnetic flux in the region to which it maps in the ionosphere. This is preferred to methods relying on tracing field lines from global Jovian magnetic field models, which are inaccurate beyond 30 Jupiter radii from the planet. That previous study produced a two-dimensional model—accounting for changes with radial distance and local time—of the normal component of the magnetic field in the equatorial region. However, this two-dimensional fit—which aggregated all equatorial data from Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Ulysses, and Galileo—did not account for temporal variability resulting from changing solar wind conditions. Building off of that project, this study aims to map the Jovian aurora to the magnetosphere for two separate cases: with a nominal magnetosphere, and with a magnetosphere compressed by high solar wind dynamic pressure. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, intervals of high solar wind dynamic pressure were separated from intervals of low solar wind dynamic pressure—thus creating two datasets of magnetometer measurements to be used for two separate 2D fits, and two separate mappings.

  18. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  19. Offshore Wind Resource, Cost, and Economic Potential in the State of Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, Walter D.

    This report provides information for decision-makers about floating offshore wind technologies in the state of Maine. It summarizes research efforts performed at the National Renewable Energy Laboratory between 2015 and 2017 to analyze the resource potential, cost of offshore wind, and economic potential of offshore wind from four primary reports: Musial et al. (2016); Beiter et al. (2016, 2017); and Mone et al. (unpublished). From Musial et al. (2016), Maine's technical offshore wind resource potential ranked seventh in the nation overall with more than 411 terawatt-hours/year of offshore resource generating potential. Although 90% of this wind resource is greater thanmore » 9.0-meters-per-second average velocity, most of the resource is over deep water, where floating wind technology is needed. Levelized cost of energy and levelized avoided cost of energy were computed to estimate the unsubsidized 'economic potential' for Maine in the year 2027 (Beiter et al. 2016, 2017). The studies found that Maine may have 65 gigawatts of economic potential by 2027, the highest of any U.S. state. Bottom-line costs for the Aqua Ventus project, which is part of the U.S. Department of Energy's Advanced Technology Demonstration project, were released from a proprietary report written by NREL in 2016 for the University of Maine (Mone et al. unpublished). The report findings were that economies of scale and new technology advancements lowered the cost from $300/megawatt-hour (MWh) for the two-turbine 12-megawatt (MW) Aqua Ventus 1 project, to $126/MWh for the commercial-scale, 498-MW Aqua Ventus-2 project. Further cost reductions to $77/MWh were found when new technology advancements were applied for the 1,000-MW Aqua Ventus-3 project in 2030. No new analysis was conducted for this report.« less

  20. Mercury Capsule Separation Tests

    NASA Image and Video Library

    1960-04-01

    Mercury capsule separation from Redstone booster in the Altitude Wind Tunnel (AWT): NASA Lewis conducted full-scale separation tests of the posigrade rockets that were fired after the Redstone rockets burned out. The researchers studied the effect of the posigrade rockets firing on the Redstone booster and retrograde package. This film shows the Mercury capsule being mounted to the Redstone missile model in the Altitude Wind Tunnel. The capsule's engines are fired and it horizontally separates from the Atlas. After firing the capsule swings from an overhead crane.

  1. Comparative Study Between Wind and Photovoltaic (PV) Systems

    NASA Astrophysics Data System (ADS)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  2. Wind tunnel technology for the development of future commercial aircraft

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  3. Atmosphere to Electrons (A2e): Enabling the Wind Plant of Tomorrow

    ScienceCinema

    Zayas, Jose; Derby, Mike; Ralston, Kiersten; Clark, Charlton; Brake, Dan; Johnson, Nick

    2018-01-16

    Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future wind plants are sited, built, and operated in a way that produces the most cost-effective, usable electric power.

  4. Science-Driven Innovation Can Reduce Wind Energy Costs by 50% by 2030 |

    Science.gov Websites

    -technology innovations, the unsubsidized cost of wind energy could drop to 50% of current levels, equivalent resulting innovations enabled by advances in science will impact the levelized cost of energy (defined as the total cost of installing and operating a project per kilowatt-hour of electricity generated by the

  5. 2016 Cost of Wind Energy Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stehly, Tyler J.; Heimiller, Donna M.; Scott, George N.

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind power plants in the United States. Data and results detailed here are derived from 2016 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. This report is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the country. This publication represents the sixth installment of this annual report.

  6. 2015 Cost of Wind Energy Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moné, Christopher; Hand, Maureen; Bolinger, Mark

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind plants in the United States. Data and results detailed here are derived from 2015 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. It is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the industry. This publication reflects the fifth installment of this annual report.

  7. Coaxial Compound Helicopter for Confined Urban Operations

    DTIC Science & Technology

    2016-01-22

    climb or descent power for the aircraft) is obtained from the wind axis drag force and rotor velocity: ! Pp = "XV . The induced power is...speed. The induced and profile power cannot be measured separately in a wind tunnel or flight test, only the sum is available from ! P i + P o = P...XV (if the rotor wind -axis drag force ! X is measured or estimated). Therefore analysis is used to separate induced and profile power. In this

  8. Performance Prediction and Validation: Data, Frameworks, and Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinnesand, Heidi

    2017-05-19

    Improving the predictability and reliability of wind power generation and operations will reduce costs and potentially establish a framework to attract new capital into the distributed wind sector, a key cost reduction requirement highlighted in results from the distributed wind future market assessment conducted with dWind. Quantifying and refining the accuracy of project performance estimates will also directly address several of the key challenges identified by industry stakeholders in 2015 as part of the distributed wind resource assessment workshop and be cross-cutting for several other facets of the distributed wind portfolio. This presentation covers the efforts undertaken in 2016 tomore » address these topics.« less

  9. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  10. Optimal Locations for Siting Wind Energy Projects: Technical Challenges, Economics, and Public Preferences

    NASA Astrophysics Data System (ADS)

    Lamy, Julian V.

    Increasing the percentage of wind power in the United States electricity generation mix would facilitate the transition towards a more sustainable, low-pollution, and environmentally-conscious electricity grid. However, this effort is not without cost. Wind power generation is time-variable and typically not synchronized with electricity demand (i.e., load). In addition, the highest-output wind resources are often located in remote locations, necessitating transmission investment between generation sites and load. Furthermore, negative public perceptions of wind projects could prevent widespread wind development, especially for projects close to densely-populated communities. The work presented in my dissertation seeks to understand where it's best to locate wind energy projects while considering these various factors. First, in Chapter 2, I examine whether energy storage technologies, such as grid-scale batteries, could help reduce the transmission upgrade costs incurred when siting wind projects in distant locations. For a case study of a hypothetical 200 MW wind project in North Dakota that delivers power to Illinois, I present an optimization model that estimates the optimal size of transmission and energy storage capacity that yields the lowest average cost of generation and transmission (/MWh). I find that for this application of storage to be economical, energy storage costs would have to be 100/kWh or lower, which is well below current costs for available technologies. I conclude that there are likely better ways to use energy storage than for accessing distant wind projects. Following from this work, in Chapter 3, I present an optimization model to estimate the economics of accessing high quality wind resources in remote areas to comply with renewable energy policy targets. I include temporal aspects of wind power (variability costs and correlation to market prices) as well as total wind power produced from different farms. I assess the goal of providing 40 TWh of new wind generation in the Midwestern transmission system (MISO) while minimizing system costs. Results show that building wind farms in North/South Dakota (windiest states) compared to Illinois (less windy, but close to population centers) would only be economical if the incremental transmission costs to access them were below 360/kW of wind capacity (break-even value). Historically, the incremental transmission costs for wind development in North/South Dakota compared to in Illinois are about twice this value. However, the break-even incremental transmission cost for wind farms in Minnesota/Iowa (also windy states) is 250/kW, which is consistent with historical costs. I conclude that for the case in MISO, building wind projects in more distant locations (i.e., Minnesota/Iowa) is most economical. My two final chapters use semi-structured interviews (Chapter 4) and conjoint-based surveys (Chapter 5) to understand public perceptions and preferences for different wind project siting characteristics such as the distance between the project and a person's home (i.e., "not-in-my-backyard" or NIMBY) and offshore vs. onshore locations. The semi-structured interviews, conducted with members of a community in Massachusetts, revealed that economic benefit to the community is the most important factor driving perceptions about projects, along with aesthetics, noise impacts, environmental benefits, hazard to wildlife, and safety concerns. In Chapter 5, I show the results from the conjoint survey. The study's sample included participants from a coastal community in Massachusetts and a U.S.-wide sample from Amazon's Mechanical Turk. Results show that participants in the U.S.-wide sample perceived a small reduction in utility, equivalent to $1 per month, for living within 1 mile of a project. Surprisingly, I find no evidence of this effect for participants in the coastal community. The most important characteristic to both samples was the economic benefits from the project - both to their community through increased tax revenue, and to individuals through reduced monthly energy bills. Further, participants in both samples preferred onshore to offshore projects, but that preference was much stronger in the coastal community. I also find that participants from the coastal community preferred expanding an existing wind projects rather than building an entirely new one, whereas those in the U.S.-wide sample were indifferent, and equally supportive of the two options. These differences are likely driven by the prior positive experience the coastal community has had with an existing onshore wind project as well as their strong cultural identity that favors ocean views. I conclude that preference for increased distance from a wind project (NIMBY) is likely small or non-existent and that offshore wind projects within 5 miles from shore could cause large welfare losses to coastal communities. Finally, in Chapter 6, I provide a discussion and policy recommendations from my work. Importantly, I recommend that future research should combine the various topics throughout my chapters (i.e., transmission requirements, hourly power production, variability impacts to the grid, and public preferences) into a comprehensive model that identifies optimal locations for wind projects across the United States.

  11. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, volume 2

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The fabrication, installation, and checkout of 100-kW 17 meter vertical axis wind turbines is described. Turbines are Darrieus-type VAWIs with rotors 17 meters and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18-mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable. Contract results are documented.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric; Mai, Trieu; Wiser, Ryan H.

    This paper evaluates potential changes in the power system associated with sustained growth in wind generation in the United States to 35% of end-use demand by 2050; Wiser et al. (2016) evaluate societal benefits and other impacts for this same scenario. Under reference or central conditions, the analysis finds cumulative wind capacity of 404 gigawatts (GW) would be required to reach this level and drive 2050 incremental electricity rate and cumulative electric sector savings of 2% and 3% respectively, relative to a scenario with no new wind capacity additions. Greater savings are estimated under higher fossil fuel costs or withmore » greater advancements in wind technologies. Conversely, incremental costs are found when fossil fuel costs are lower than central assumptions or wind technology improvements are more-limited. Through 2030, the primary generation sources displaced by new wind capacity include natural gas and coal-fired generation. By 2050, wind could displace other renewables. Incremental new transmission infrastructure totaling 29 million megawatt-miles is estimated to be needed by 2050. In conjunction with related societal benefits, this work demonstrates that 35% wind energy by 2050 is plausible, could support enduring benefits, and could result in long-term consumer savings, if nearer-term (pre-2030) cost barriers are overcome; at the same time, these opportunities are not anticipated to be realized in their full form under 'business-as-usual' conditions.« less

  13. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    NASA Technical Reports Server (NTRS)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  14. 11 CFR 9004.9 - Net outstanding qualified campaign expenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the necessary winding down costs, as defined under 11 CFR 9004.4(a)(4), submitted in the format... amount submitted as an estimate of necessary winding down costs under paragraph (a)(1)(iii) of this... shall include estimated costs for office space rental, staff salaries, legal expenses, accounting...

  15. 11 CFR 9004.9 - Net outstanding qualified campaign expenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the necessary winding down costs, as defined under 11 CFR 9004.4(a)(4), submitted in the format... amount submitted as an estimate of necessary winding down costs under paragraph (a)(1)(iii) of this... shall include estimated costs for office space rental, staff salaries, legal expenses, accounting...

  16. 11 CFR 9004.9 - Net outstanding qualified campaign expenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the necessary winding down costs, as defined under 11 CFR 9004.4(a)(4), submitted in the format... amount submitted as an estimate of necessary winding down costs under paragraph (a)(1)(iii) of this... shall include estimated costs for office space rental, staff salaries, legal expenses, accounting...

  17. 11 CFR 9004.9 - Net outstanding qualified campaign expenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the necessary winding down costs, as defined under 11 CFR 9004.4(a)(4), submitted in the format... amount submitted as an estimate of necessary winding down costs under paragraph (a)(1)(iii) of this... shall include estimated costs for office space rental, staff salaries, legal expenses, accounting...

  18. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fullenkamp, Patrick H; Holody, Diane S

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assessmore » U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers’ readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.« less

  19. Ocean Surface Winds Drive Dynamics of Transoceanic Aerial Movements

    PubMed Central

    Felicísimo, Ángel M.; Muñoz, Jesús; González-Solis, Jacob

    2008-01-01

    Global wind patterns influence dispersal and migration processes of aerial organisms, propagules and particles, which ultimately could determine the dynamics of colonizations, invasions or spread of pathogens. However, studying how wind-mediated movements actually happen has been hampered so far by the lack of high resolution global wind data as well as the impossibility to track aerial movements. Using concurrent data on winds and actual pathways of a tracked seabird, here we show that oceanic winds define spatiotemporal pathways and barriers for large-scale aerial movements. We obtained wind data from NASA SeaWinds scatterometer to calculate wind cost (impedance) models reflecting the resistance to the aerial movement near the ocean surface. We also tracked the movements of a model organism, the Cory's shearwater (Calonectris diomedea), a pelagic bird known to perform long distance migrations. Cost models revealed that distant areas can be connected through “wind highways” that do not match the shortest great circle routes. Bird routes closely followed the low-cost “wind-highways” linking breeding and wintering areas. In addition, we found that a potential barrier, the near surface westerlies in the Atlantic sector of the Intertropical Convergence Zone (ITCZ), temporally hindered meridional trans-equatorial movements. Once the westerlies vanished, birds crossed the ITCZ to their winter quarters. This study provides a novel approach to investigate wind-mediated movements in oceanic environments and shows that large-scale migration and dispersal processes over the oceans can be largely driven by spatiotemporal wind patterns. PMID:18698354

  20. Ocean surface winds drive dynamics of transoceanic aerial movements.

    PubMed

    Felicísimo, Angel M; Muñoz, Jesús; González-Solis, Jacob

    2008-08-13

    Global wind patterns influence dispersal and migration processes of aerial organisms, propagules and particles, which ultimately could determine the dynamics of colonizations, invasions or spread of pathogens. However, studying how wind-mediated movements actually happen has been hampered so far by the lack of high resolution global wind data as well as the impossibility to track aerial movements. Using concurrent data on winds and actual pathways of a tracked seabird, here we show that oceanic winds define spatiotemporal pathways and barriers for large-scale aerial movements. We obtained wind data from NASA SeaWinds scatterometer to calculate wind cost (impedance) models reflecting the resistance to the aerial movement near the ocean surface. We also tracked the movements of a model organism, the Cory's shearwater (Calonectris diomedea), a pelagic bird known to perform long distance migrations. Cost models revealed that distant areas can be connected through "wind highways" that do not match the shortest great circle routes. Bird routes closely followed the low-cost "wind-highways" linking breeding and wintering areas. In addition, we found that a potential barrier, the near surface westerlies in the Atlantic sector of the Intertropical Convergence Zone (ITCZ), temporally hindered meridional trans-equatorial movements. Once the westerlies vanished, birds crossed the ITCZ to their winter quarters. This study provides a novel approach to investigate wind-mediated movements in oceanic environments and shows that large-scale migration and dispersal processes over the oceans can be largely driven by spatiotemporal wind patterns.

  1. Large wind turbine generators. [NASA program status and potential costs

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The large wind turbine portion of the Federal Wind Energy Program consists of two major project efforts: (1) the Mod-0 test bed project for supporting research technology, and (2) the large experimental wind turbines for electric utility applications. The Mod-0 has met its primary objective of providing the entire wind energy program with early operations and performance data. The large experimental wind turbines to be tested in utility applications include three of the Mod-0A (200 kW) type, one Mod-1 (2000 kW), and possibly several of the Mod-2 (2500 kW) designs. This paper presents a description of these wind turbine systems, their programmatic status, and a summary of their potential costs.

  2. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  3. Ion Layer Separation and Equilibrium Zonal Winds in Midlatitude Sporadic E

    NASA Technical Reports Server (NTRS)

    Earle, G. D.; Kane, T. J.; Pfaff, R. F.; Bounds, S. R.

    2000-01-01

    In-situ observations of a moderately strong mid-latitude sporadic-E layer show a separation in altitude between distinct sublayers composed of Fe(+), Mg(+), and NO(+). From these observations it is possible to estimate the zonal wind field consistent with diffusive equilibrium near the altitude of the layer. The amplitude of the zonal wind necessary to sustain the layer against diffusive effects is less than 10 meters per second, and the vertical wavelength is less than 10 km.

  4. Mixed H2/H∞ pitch control of wind turbine with a Markovian jump model

    NASA Astrophysics Data System (ADS)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei; Niu, Yuguang

    2018-01-01

    This paper proposes a Markovian jump model and the corresponding H2/H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional operating points of wind turbine can be divided into separate subregions correspondingly, where the model parameters and the control mode can be fixed in each mode. Then, the mixed H2/H∞ control problem is discussed for such a class of Markovian jump wind turbine working above the rated wind speed to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.

  5. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions

    DTIC Science & Technology

    2016-12-22

    investigated air-sea fluxes characterized by strong air flow separation over a very steep wave field. We first investigated propagating steep wave...mechanisms for flow separation over rigid surfaces compared with unsteady surfaces with a boundary slip velocity. We investigated passive scalar fluxes. In...turbulent flow over steep stationary roughness, the primary mechanism for momentum flux is via pressure drag resulting from flow separation. However

  6. Land Use by System Technology | Energy Analysis | NREL

    Science.gov Websites

    compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility 5.5 0.7 Photovoltaics 1 10 MW 6.1 1.7 Wind <10 kW 30 n/a Wind 10 100 kW 30 n/a Wind 100- 1000 kW 30 n/a Wind 1 10 MW 44.7 25.0 Biomass Combustion Combined Heat & Power 3.5 1.9 Technology Type Size

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayas, Jose; Derby, Mike; Ralston, Kiersten

    Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future wind plants are sited, built, and operated in a way that produces the most cost-effective, usable electric power.

  8. U.S. Balance-of-Station Cost Drivers and Sensitivities (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maples, B.

    2012-10-01

    With balance-of-system (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOSmore » model, an analysis to understand the non‐turbine costs has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from U.S. offshore wind plants.« less

  9. Development of FAST.Farm: A New Multiphysics Engineering Tool for Wind Farm Design and Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    2017-01-01

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  10. Potential Offshore Wind Energy Areas in California: An Assessment of Locations, Technology, and Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, Walter; Beiter, Philipp; Tegen, Suzanne

    This report summarizes a study of possible offshore wind energy locations, technologies, and levelized cost of energy in the state of California between 2015 and 2030. The study was funded by the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), the federal agency responsible for regulating renewable energy development on the Outer Continental Shelf. It is based on reference wind energy areas where representative technology and performance characteristics were evaluated. These reference areas were identified as sites that were suitable to represent offshore wind cost and technology based on physical site conditions, wind resource quality, known existingmore » site use, and proximity to necessary infrastructure. The purpose of this study is to assist energy policy decision-making by state utilities, independent system operators, state government officials and policymakers, BOEM, and its key stakeholders. The report is not intended to serve as a prescreening exercise for possible future offshore wind development.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  12. Hybrid RANS-LES using high order numerical methods

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  13. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  14. Aerodynamic study of a small wind turbine with emphasis on laminar and transition flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Crunteanu, D. E.

    2016-06-01

    The wind energy is huge but unfortunately, wind turbines capture only a little part of this enormous green energy. Furthermore, it is impossible to put multi megawatt wind turbines in the cities because they generate a lot of noise and discomfort. Instead, it is possible to install small Darrieus and horizontal-axis wind turbines with low tip speed ratios in order to mitigate the noise as much as possible. Unfortunately, the flow around this wind turbine is quite complex because the run at low Reynolds numbers. Therefore, this flow is usually a mixture of laminar, transition and laminar regimes with bubble laminar separation that is very difficult to simulate from the numerical point of view. Usually, transition and laminar regimes with bubble laminar separation are ignored. For this reason, this paper deals with laminar and transition flows in order to provide some brightness in this field.

  15. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to demonstrate our operational-planning framework and economic justification for different storage applications. A new reliability model is proposed for security and adequacy assessment of power networks containing renewable resources and energy storage systems. The proposed model is used in combination with the operational-planning framework to enhance the reliability and operability of wind integration. The proposed framework optimally utilizes the storage capacity for reliability applications of wind integration. This is essential for justification of storage deployment within regulated utilities where the absence of market opportunities limits the economic advantage of storage technologies over gas-fired generators. A control strategy is also proposed to achieve the maximum reliability using energy storage systems. A cost-benefit analysis compares storage technologies and conventional alternatives to reliably and efficiently integrate different wind penetrations and determines the most economical design. Our simulation results demonstrate the necessity of optimal storage placement for different wind applications. This dissertation also proposes a new stochastic framework to optimally charge and discharge electric vehicles (EVs) to mitigate the effects of wind power uncertainties. Vehicle-to-grid (V2G) service for hedging against wind power imbalances is introduced as a novel application for EVs. This application enhances the predictability of wind power and reduces the power imbalances between the scheduled output and actual power. An Auto Regressive Moving Average (ARMA) wind speed model is developed to forecast the wind power output. Driving patterns of EVs are stochastically modeled and the EVs are clustered in the fleets of similar daily driving patterns. Monte Carlo Simulation (MCS) simulates the system behavior by generating samples of system states using the wind ARMA model and EVs driving patterns. A Genetic Algorithm (GA) is used in combination with MCS to optimally coordinate the EV fleets for their V2G services and minimize the penalty cost associated with wind power imbalances. The economic characteristics of automotive battery technologies and costs of V2G service are incorporated into a cost-benefit analysis which evaluates the economic justification of the proposed V2G application. Simulation results demonstrate that the developed algorithm enhances wind power utilization and reduces the penalty cost for wind power under-/over-production. This offers potential revenues for the wind producer. Our cost-benefit analysis also demonstrates that the proposed algorithm will provide the EV owners with economic incentives to participate in V2G services. The proposed smart scheduling strategy develops a sustainable integrated electricity and transportation infrastructure.

  16. The Oregon State University wind studies. [economic feasibility of windpowered generators

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1973-01-01

    The economic feasibility of commercial use of wind generated power in selected areas of Oregon is assessed. A number of machines for generating power have been examined. These include the Savonius rotor, translators, conventional wind turbines, the circulation controlled rotor and the vertical axis winged turbine. Of these machines, the conventional wind turbine and the vertical axis winged turbine show the greatest promise on the basis of the power developed per unit of rotor blade area. Attention has been focused on the structural and fatigue analysis of rotors since the economics of rotary winged, wind generated power depends upon low cost, long lifetime rotors. Analysis of energy storage systems and tower design has also been undertaken. An economic means of energy storage has not been found to date. Tower design studies have produced cost estimates that are in general agreement with the cost of the updated Putnam 110-foot tower.

  17. Wind turbines for electric utilities: Development status and economics

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.; Donovan, R. M.

    1979-01-01

    The technology and economics of the large, horizontal-axis wind turbines currently in the Federal Wind Energy Program are presented. Wind turbine technology advancements made in the last several years are discussed. It is shown that, based on current projections of the costs of these machines when produced in quantity, they should be attractive for utility application. The cost of electricity (COE) produced at the busbar is shown to be a strong function of the mean wind speed at the installation site. The breakeven COE as a fuel saver is discussed and the COE range that would be generally attractive to utilities is indicated.

  18. Wind turbines for electric utilities - Development status and economics

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.; Donovan, R. M.

    1979-01-01

    The technology and economics of the large, horizontal-axis wind turbines currently in the Federal Wind Energy Program are presented. Wind turbine technology advancements made in the last several years are discussed. It is shown that, based on current projections of the costs of these machines when produced in quantity, they should be attractive for utility application. The cost of electricity (COE) produced at the busbar is shown to be a strong function of the mean wind speed at the installation site. The breakeven COE as a 'fuel saver' is discussed and the COE range that would be generally attractive to utilities is indicated.

  19. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    NASA Astrophysics Data System (ADS)

    Quick, J.; Dykes, K.; Graf, P.; Zahle, F.

    2016-09-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  20. Systems Engineering Workshop 2017 | Wind | NREL

    Science.gov Websites

    Energy for Wind Systems Today Cost and Value of Wind Power-Implications of Wind Turbine Design, János Aaron Smith, PPI Session II: Uncertainty Impacts on Wind Turbine Design and Performance Mitigation of Wind Turbine Design Load Uncertainties, Anand Natarajan, DTU Wind Energy Uncertainty in the Wind

  1. Wind turbine fault detection and classification by means of image texture analysis

    NASA Astrophysics Data System (ADS)

    Ruiz, Magda; Mujica, Luis E.; Alférez, Santiago; Acho, Leonardo; Tutivén, Christian; Vidal, Yolanda; Rodellar, José; Pozo, Francesc

    2018-07-01

    The future of the wind energy industry passes through the use of larger and more flexible wind turbines in remote locations, which are increasingly offshore to benefit stronger and more uniform wind conditions. The cost of operation and maintenance of offshore wind turbines is approximately 15-35% of the total cost. Of this, 80% goes towards unplanned maintenance issues due to different faults in the wind turbine components. Thus, an auspicious way to contribute to the increasing demands and challenges is by applying low-cost advanced fault detection schemes. This work proposes a new method for detection and classification of wind turbine actuators and sensors faults in variable-speed wind turbines. For this purpose, time domain signals acquired from the operating wind turbine are represented as two-dimensional matrices to obtain grayscale digital images. Then, the image pattern recognition is processed getting texture features under a multichannel representation. In this work, four types of texture characteristics are used: statistical, wavelet, granulometric and Gabor features. Next, the most significant ones are selected using the conditional mutual criterion. Finally, the faults are detected and distinguished between them (classified) using an automatic classification tool. In particular, a 10-fold cross-validation is used to obtain a more generalized model and evaluates the classification performance. Coupled non-linear aero-hydro-servo-elastic simulations of a 5 MW offshore type wind turbine are carried out in several fault scenarios. The results show a promising methodology able to detect and classify the most common wind turbine faults.

  2. A comparison of Loon balloon observations and stratospheric reanalysis products

    NASA Astrophysics Data System (ADS)

    Friedrich, Leon S.; McDonald, Adrian J.; Bodeker, Gregory E.; Cooper, Kathy E.; Lewis, Jared; Paterson, Alexander J.

    2017-01-01

    Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s-1 and meridional biases of less than 0.08 m s-1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s-1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon-reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.

  3. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-02

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation lengthmore » $$\\xi $$ that falls at least as fast as $${{\\tau }^{-1}}$$ . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.« less

  4. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    NASA Astrophysics Data System (ADS)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation length ξ that falls at least as fast as {{τ }-1} . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.

  5. Wind energy in electric power production, preliminary study

    NASA Astrophysics Data System (ADS)

    Lento, R.; Peltola, E.

    1984-01-01

    The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics estimates on the available wind energy were also made. Eight hundred wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics included is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions caused extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects to birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of the plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.

  6. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less

  7. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less

  8. Aerodynamic results of wind tunnel tests on a 0.010-scale model (32-QTS) space shuttle integrated vehicle in the AEDC VKF-40-inch supersonic wind tunnel (IA61)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.

    1976-01-01

    Plotted and tabulated aerodynamic coefficient data from a wind tunnel test of the integrated space shuttle vehicle are presented. The primary test objective was to determine proximity force and moment data for the orbiter/external tank and solid rocket booster (SRB) with and without separation rockets firing for both single and dual booster runs. Data were obtained at three points (t = 0, 1.25, and 2.0 seconds) on the nominal SRB separation trajectory.

  9. Distributed Wind Competitiveness Improvement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-05-01

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.

  10. Towers for Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kurian, V. J.; Narayanan, S. P.; Ganapathy, C.

    2010-06-01

    Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings, for better efficiency, turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate, the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today, more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines, offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases, the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore, turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

  11. Economics of online structural health monitoring of wind turbines: Cost benefit analysis

    NASA Astrophysics Data System (ADS)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Operations and maintenance (O&M) costs have an average share over the lifetime of the turbine of approximately 20%-25% of the total levelized cost per kWh of electricity produced. Online structural health monitoring (OSHM) and condition-based maintenance (CBM) of wind turbine blades has the potential to reduce O&M costs and hence reduce the overall cost of wind energy. OSHM and CBM offer the potential to improve turbine blade life cycle management, limit the number of physical inspections, and reduce the potential for missed significant defects. An OSHM system would reduce the need for physical inspections, and have inspections occur only after problem detection takes place. In the economics of wind energy, failures and unplanned outages can cause significant downtime, particularly while waiting for the manufacturing and shipping of major parts. This paper will report a review and assessment of SHM technologies and a cost benefit analysis, which will examine whether the added costs associated with an OSHM system will give an adequate return on the investment. One method in which OSHM reduces costs is, in part, by converting corrective maintenance to preventative maintenance. This paper shows that under both best and worse conditions implementing an OSHM system is cost effective in more than 50% of the trials, which have been performed. Opportunities appear to exist to improve the economic justification for implementing OSHM.

  12. Blast and Impact Resistant Composite Structures for Navy Ships

    DTIC Science & Technology

    2013-03-15

    Navy cargo ships, Air Force tactical shelters, Air Force runway matting, vehicular bridge decks, railcar floors and wind turbine blades. The US Army...bridge decks, railcar floors and wind turbine blades. NAVY RELEVANCE Producing stronger, safer and more cost-effective platforms for the new generation...floors and wind turbine blades. 32 NAVY RELEVANCE Producing stronger, safer and more cost-effective platforms for the new generation naval ships

  13. Measurement campaign for wind power potential in west Greenland

    NASA Astrophysics Data System (ADS)

    Rønnow Jakobsen, Kasper

    2013-04-01

    Experiences and results from a wind resource exploring campaign 2003- in west Greenland. Like many other countries, Greenland is trying to reduce its dependency of fossil fuel by implementing renewable energy. The main challenge is that the people live on the coast in scattered settlements, without power infrastructure. Based on this a wind power potential project was established in 2002, funded by the Greenlandic government and the Technical University of Denmark. We present results and experiences of the campaign. 1 Field campaign There were only a few climate stations in or close to settlements and due to their positioning and instrumentation, they were not usable for wind resource estimation. To establish met stations in Arctic areas with complex topography, there are some challenges to face; mast positioning in complex terrain, severe weather conditions, instrumentation, data handling, installation and maintenance budget. The terrain in the ice free and populated part, mainly consists of mountains of different heights and shapes, separated by deep fjords going from the ice cap to the sea. With a generally low wind resource the focus was on the most exposed positions close to the settlements. Data from the nearest existing climate stations was studied for background estimations of predominant wind directions and extreme wind speeds, and based on that the first 10m masts were erected in 2003. 2 Instruments The first installations used standard NRG systems with low cost NRG instruments. For most of the sites this low cost setup did a good job, but there were some problems with the first design, including instrument and boom strains. In subsequent years, the systems were updated several times to be able to operate in the extreme conditions. Different types of instruments, data logger and boom systems were tested to get better data quality and reliability. Today 11 stations with heights ranging from 10-50m are installed and equipped according to the IEC standard. During the first years, the influence of instrument icing was not considered, but recently one of the sites was equipped with an ice rate sensor and a heated ultrasonic anemometer to study the ice influence. 3 Results The predominant wind direction for most sites is away from the ice cap at the center of the continent, but for some coastal sites it is north or south. The north-south wind pattern is expected from the synoptic patterns and the barrier effect of the ice cap. The sites where the predominant wind direction is away from the inland ice are dominated by katabatic wind systems from the ice cap and form valley systems. These sites also seem to have the highest wind resource and will be studied further. A good example of the influence of katabatic and thermal wind systems can be seen in the measurement data from Sarfannguit and Nanortalik 66 and 60 degrees northern latitude respectively. In future work, these katabatic flows and their impact on the wind resource will be studied using mesoscale modelling and microscale downscaling.

  14. The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu T; Lantz, Eric J; Mowers, Matthew

    Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less

  15. A review of wind turbine-oriented active flow control strategies

    NASA Astrophysics Data System (ADS)

    Aubrun, Sandrine; Leroy, Annie; Devinant, Philippe

    2017-10-01

    To reduce the levelized cost of energy, the energy production, robustness and lifespan of horizontal axis wind turbines (HAWTs) have to be improved to ensure optimal energy production and operational availability during periods longer than 15-20 years. HAWTs are subject to unsteady wind loads that generate combinations of unsteady mechanical loads with characteristic time scales from seconds to minutes. This can be reduced by controlling the aerodynamic performance of the wind turbine rotors in real time to compensate the overloads. Mitigating load fluctuations and optimizing the aerodynamic performance at higher time scales need the development of fast-response active flow control (AFC) strategies located as close as possible to the torque generation, i.e., directly on the blades. The most conventional actuators currently used in HAWTs are mechanical flaps/tabs (similar to aeronautical accessories), but some more innovative concepts based on fluidic and plasma actuators are very promising since they are devoid of mechanical parts, have a fast response and can be driven in unsteady modes to influence natural instabilities of the flow. In this context, the present paper aims at giving a state-of-the-art review of current research in wind turbine-oriented flow control strategies applied at the blade scale. It provides an overview of research conducted in the last decade dealing with the actuators and devices devoted to developing AFC on rotor blades, focusing on the flow phenomena that they cause and that can lead to aerodynamic load increase or decrease. After providing some general background on wind turbine blade aerodynamics and on the atmospheric flows in which HAWTs operate, the review focuses on flow separation control and circulation control mainly through experimental investigations. It is followed by a discussion about the overall limitations of current studies in the wind energy context, with a focus on a few studies that attempt to provide a global efficiency assessment and wind energy-oriented energy balance.

  16. Analyzing the requirements for mass production of small wind turbine generators

    NASA Astrophysics Data System (ADS)

    Anuskiewicz, T.; Asmussen, J.; Frankenfield, O.

    Mass producibility of small wind turbine generators to give manufacturers design and cost data for profitable production operations is discussed. A 15 kW wind turbine generator for production in annual volumes from 1,000 to 50,000 units is discussed. Methodology to cost the systems effectively is explained. The process estimate sequence followed is outlined with emphasis on the process estimate sheets compiled for each component and subsystem. These data enabled analysts to develop cost breakdown profiles crucial in manufacturing decision-making. The appraisal also led to various design recommendations including replacement of aluminum towers with cost effective carbon steel towers. Extensive cost information is supplied in tables covering subassemblies, capital requirements, and levelized energy costs. The physical layout of the plant is depicted to guide manufacturers in taking advantage of the growing business opportunity now offered in conjunction with the national need for energy development.

  17. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, phase 2. Volume 3: Design, fabrication, and site drawing

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.

  18. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGES

    Xu, Yan; Wei, Yanli; Fang, Xin; ...

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  19. Changing vessel routes could significantly reduce the cost of future offshore wind projects.

    PubMed

    Samoteskul, Kateryna; Firestone, Jeremy; Corbett, James; Callahan, John

    2014-08-01

    With the recent emphasis on offshore wind energy Coastal and Marine Spatial Planning (CMSP) has become one of the main frameworks used to plan and manage the increasingly complex web of ocean and coastal uses. As wind development becomes more prevalent, existing users of the ocean space, such as commercial shippers, will be compelled to share their historically open-access waters with these projects. Here, we demonstrate the utility of using cost-effectiveness analysis (CEA) to support siting decisions within a CMSP framework. In this study, we assume that large-scale offshore wind development will take place in the US Mid-Atlantic within the next decades. We then evaluate whether building projects nearshore or far from shore would be more cost-effective. Building projects nearshore is assumed to require rerouting of the commercial vessel traffic traveling between the US Mid-Atlantic ports by an average of 18.5 km per trip. We focus on less than 1500 transits by large deep-draft vessels. We estimate that over 29 years of the study, commercial shippers would incur an additional $0.2 billion (in 2012$) in direct and indirect costs. Building wind projects closer to shore where vessels used to transit would generate approximately $13.4 billion (in 2012$) in savings. Considering the large cost savings, modifying areas where vessels transit needs to be included in the portfolio of policies used to support the growth of the offshore wind industry in the US. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Wind Turbine Wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Christopher Lee; Maniaci, David Charles; Resor, Brian R.

    2015-10-01

    The total energy produced by a wind farm depends on the complex interaction of many wind turbines operating in proximity with the turbulent atmosphere. Sometimes, the unsteady forces associated with wind negatively influence power production, causing damage and increasing the cost of producing energy associated with wind power. Wakes and the motion of air generated by rotating blades need to be better understood. Predicting wakes and other wind forces could lead to more effective wind turbine designs and farm layouts, thereby reducing the cost of energy, allowing the United States to increase the installed capacity of wind energy. The Windmore » Energy Technologies Department at Sandia has collaborated with the University of Minnesota to simulate the interaction of multiple wind turbines. By combining the validated, large-eddy simulation code with Sandia’s HPC capability, this consortium has improved its ability to predict unsteady forces and the electrical power generated by an array of wind turbines. The array of wind turbines simulated were specifically those at the Sandia Scaled Wind Farm Testbed (SWiFT) site which aided the design of new wind turbine blades being manufactured as part of the National Rotor Testbed project with the Department of Energy.« less

  1. Estimating the Economic Potential of Offshore Wind in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, P.; Musial, W.; Smith, A.

    The potential for cost reduction and market deployment for offshore wind varies considerably within the United States. This analysis estimates the future economic viability of offshore wind at more than 7,000 sites under a variety of electric sector and cost reduction scenarios. Identifying the economic potential of offshore wind at a high geospatial resolution can capture the significant variation in local offshore resource quality, costs, and revenue potential. In estimating economic potential, this article applies a method initially developed in Brown et al. (2015) to offshore wind and estimates the sensitivity of results under a variety of most likely electricmore » sector scenarios. For the purposes of this analysis, a theoretical framework is developed introducing a novel offshore resource classification system that is analogous to established resource classifications from the oil and gas sector. Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The results of this analysis are intended to inform the development of the U.S. Department of Energy's offshore wind strategy.« less

  2. A quantitative correlational investigation of the definition of key decision variables used for the determination of wind energy systems' feasibility

    NASA Astrophysics Data System (ADS)

    Kelly, Kathleen M.

    Several factors are critical in determining if a wind farm has a high probability of success. These factors include wind energy potential or wind class, sales price, cost of the wind energy generated, market for selling the wind, capacity factor or efficiency of the turbines, capital investment cost, debt and financing, and governmental factors such as taxes and incentives. This research studied the critical factors of thirty-three land based wind farms in the United States with over 20 mega-watts (MW) of capacity that have become operational since 1999. The goal was to develop a simple yet effective decision model using the critical factors to predict an internal rate of return (IRR) and the impact of having a tax credit to supplement the revenue stream. The study found that there are five critical factors that are significantly correlated with the internal rate of return (IRR) of a wind farm project. The critical factors are wind potential or wind class, cost of the wind energy generated, capacity factor or efficiency of the wind turbines, cost of capital investment, and the existence of a federal production tax credit (PTC). The decision model was built using actual wind farm data and industry standards whereby a score from zero to one hundred was coded for each of values except for the production tax credit. Since all the projects qualified for the production tax credit prior to their start up, it was no longer a variable. However, without the presence of this tax credit, the data imply that the projects would not be profitable within the first ten to fifteen years of operation. The scores for each of the categories were totaled and regressed against a calculated internal rate of return. There was ninety-seven percent correlation which was supported by simulation analysis. While this model is not intended to supplant rigorous accounting and financial study, it will help quickly determine if a site has potential and save many hours of analytical work.

  3. Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses.

    PubMed

    Thorne, L H; Conners, M G; Hazen, E L; Bograd, S J; Antolos, M; Costa, D P; Shaffer, S A

    2016-06-01

    Changes to patterns of wind and ocean currents are tightly linked to climate change and have important implications for cost of travel and energy budgets in marine vertebrates. We evaluated how El Niño-Southern Oscillation (ENSO)-driven wind patterns affected breeding Laysan and black-footed albatross across a decade of study. Owing to latitudinal variation in wind patterns, wind speed differed between habitat used during incubation and brooding; during La Niña conditions, wind speeds were lower in incubating Laysan (though not black-footed) albatross habitat, but higher in habitats used by brooding albatrosses. Incubating Laysan albatrosses benefited from increased wind speeds during El Niño conditions, showing increased travel speeds and mass gained during foraging trips. However, brooding albatrosses did not benefit from stronger winds during La Niña conditions, instead experiencing stronger cumulative headwinds and a smaller proportion of trips in tailwinds. Increased travel costs during brooding may contribute to the lower reproductive success observed in La Niña conditions. Furthermore, benefits of stronger winds in incubating habitat may explain the higher reproductive success of Laysan albatross during El Niño conditions. Our findings highlight the importance of considering habitat accessibility and cost of travel when evaluating the impacts of climate-driven habitat change on marine predators. © 2016 The Author(s).

  4. Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses

    PubMed Central

    Thorne, L. H.; Conners, M. G.; Hazen, E. L.; Bograd, S. J.; Antolos, M.; Costa, D. P.; Shaffer, S. A.

    2016-01-01

    Changes to patterns of wind and ocean currents are tightly linked to climate change and have important implications for cost of travel and energy budgets in marine vertebrates. We evaluated how El Niño-Southern Oscillation (ENSO)-driven wind patterns affected breeding Laysan and black-footed albatross across a decade of study. Owing to latitudinal variation in wind patterns, wind speed differed between habitat used during incubation and brooding; during La Niña conditions, wind speeds were lower in incubating Laysan (though not black-footed) albatross habitat, but higher in habitats used by brooding albatrosses. Incubating Laysan albatrosses benefited from increased wind speeds during El Niño conditions, showing increased travel speeds and mass gained during foraging trips. However, brooding albatrosses did not benefit from stronger winds during La Niña conditions, instead experiencing stronger cumulative headwinds and a smaller proportion of trips in tailwinds. Increased travel costs during brooding may contribute to the lower reproductive success observed in La Niña conditions. Furthermore, benefits of stronger winds in incubating habitat may explain the higher reproductive success of Laysan albatross during El Niño conditions. Our findings highlight the importance of considering habitat accessibility and cost of travel when evaluating the impacts of climate-driven habitat change on marine predators. PMID:27278360

  5. 2016 Offshore Wind Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, Walter; Beiter, Philipp; Schwabe, Paul

    The 2016 Offshore Wind Technologies Market Report is intended to provide stakeholders with quantitative information about the offshore wind market, technology, and cost trends in the United States and worldwide.

  6. 11 CFR 9004.4 - Use of payments; examples of qualified campaign expenses and non-qualified campaign expenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to the beginning of the expenditure report period; (4) To defray winding down costs pursuant to 11 CFR 9004.11; (5) To defray costs associated with the candidate's general election campaign paid after... payable pursuant to paragraph (a)(5) of this section and winding down costs pursuant to 11 CFR 9004.11...

  7. 11 CFR 9004.4 - Use of payments; examples of qualified campaign expenses and non-qualified campaign expenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to the beginning of the expenditure report period; (4) To defray winding down costs pursuant to 11 CFR 9004.11; (5) To defray costs associated with the candidate's general election campaign paid after... payable pursuant to paragraph (a)(5) of this section and winding down costs pursuant to 11 CFR 9004.11...

  8. 11 CFR 9004.4 - Use of payments; examples of qualified campaign expenses and non-qualified campaign expenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to the beginning of the expenditure report period; (4) To defray winding down costs pursuant to 11 CFR 9004.11; (5) To defray costs associated with the candidate's general election campaign paid after... payable pursuant to paragraph (a)(5) of this section and winding down costs pursuant to 11 CFR 9004.11...

  9. 11 CFR 9004.4 - Use of payments; examples of qualified campaign expenses and non-qualified campaign expenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to the beginning of the expenditure report period; (4) To defray winding down costs pursuant to 11 CFR 9004.11; (5) To defray costs associated with the candidate's general election campaign paid after... payable pursuant to paragraph (a)(5) of this section and winding down costs pursuant to 11 CFR 9004.11...

  10. 11 CFR 9004.4 - Use of payments; examples of qualified campaign expenses and non-qualified campaign expenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to the beginning of the expenditure report period; (4) To defray winding down costs pursuant to 11 CFR 9004.11; (5) To defray costs associated with the candidate's general election campaign paid after... payable pursuant to paragraph (a)(5) of this section and winding down costs pursuant to 11 CFR 9004.11...

  11. Estimating the implied cost of carbon in future scenarios using a CGE model: The Case of Colorado

    DOE PAGES

    Hannum, Christopher; Cutler, Harvey; Iverson, Terrence; ...

    2017-01-07

    We develop a state-level computable general equilibrium (CGE) model that reflects the roles of coal, natural gas, wind, solar, and hydroelectricity in supplying electricity, using Colorado as a case study. Also, we focus on the economic impact of implementing Colorado's existing Renewable Portfolio Standard, updated in 2013. This requires that 25% of state generation come from qualifying renewable sources by 2020. We evaluate the policy under a variety of assumptions regarding wind integration costs and assumptions on the persistence of federal subsidies for wind. Specifically, we estimate the implied price of carbon as the carbon price at which a state-levelmore » policy would pass a state-level cost-benefit analysis, taking account of estimated greenhouse gas emission reductions and ancillary benefits from corresponding reductions in criteria pollutants. Our findings suggest that without the Production Tax Credit (federal aid), the state policy of mandating renewable power generation (RPS) is costly to state actors, with an implied cost of carbon of about $17 per ton of CO 2 with a 3% discount rate. Federal aid makes the decision between natural gas and wind nearly cost neutral for Colorado.« less

  12. Estimating the implied cost of carbon in future scenarios using a CGE model: The Case of Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, Christopher; Cutler, Harvey; Iverson, Terrence

    We develop a state-level computable general equilibrium (CGE) model that reflects the roles of coal, natural gas, wind, solar, and hydroelectricity in supplying electricity, using Colorado as a case study. Also, we focus on the economic impact of implementing Colorado's existing Renewable Portfolio Standard, updated in 2013. This requires that 25% of state generation come from qualifying renewable sources by 2020. We evaluate the policy under a variety of assumptions regarding wind integration costs and assumptions on the persistence of federal subsidies for wind. Specifically, we estimate the implied price of carbon as the carbon price at which a state-levelmore » policy would pass a state-level cost-benefit analysis, taking account of estimated greenhouse gas emission reductions and ancillary benefits from corresponding reductions in criteria pollutants. Our findings suggest that without the Production Tax Credit (federal aid), the state policy of mandating renewable power generation (RPS) is costly to state actors, with an implied cost of carbon of about $17 per ton of CO 2 with a 3% discount rate. Federal aid makes the decision between natural gas and wind nearly cost neutral for Colorado.« less

  13. Analysis of Remote Site Energy Storage and Generation Systems

    DTIC Science & Technology

    1979-07-01

    Identify by block numIber) Wind Turbines Solar Energy Energy Wheels Solar Cells Wind Energy Hydrogen Energy Storage The rmion ics Energy Storage...using two separate nominal eight kilowatt wind turbine modules in con- * DD JAN 73 1473 UNCLASSIFIED41 SECURITY CLASSIFICATION OF THIS PAGE (When Dot...2. 1.3 Advanced Wind Energy Converters 28 2. 1. 3. 1 Cyclogyro 28 2. 1.3.2 Diffuser Augmented Wind Turbine (DAWT) 28 2.1.3.3 Vortex Augmenter Wind

  14. Low-cost composite blades for the Mod-0A wind turbines

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1982-01-01

    Low cost approaches to the design and fabrication of blades for a two-bladed 200 kW wind turbine were identified and the applicability of the techniques to larger and smaller blades was assessed. Blade tooling was designed and fabricated. Two complete blades and a partial blade for tool tryout were built. The patented TFT process was used to wind the entire blade. This process allows rapid winding of an axially oriented composite onto a tapered mandrel, with tapered wall thickness. The blade consists of a TFT glass-epoxy airfoil structure filament wound onto a steel root end fitting. The fitting is, in turn, bolted to a conical steel adapter section to provide for mounting attachment to the hub. Structural analysis, blade properties, and cost and weight analysis are described.

  15. Assessments of Wind-Energy Potential in Selected Sites from Three Geopolitical Zones in Nigeria: Implications for Renewable/Sustainable Rural Electrification

    PubMed Central

    Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin

    2015-01-01

    Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested. PMID:25879063

  16. Assessments of wind-energy potential in selected sites from three geopolitical zones in Nigeria: implications for renewable/sustainable rural electrification.

    PubMed

    Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin

    2015-01-01

    Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested.

  17. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes.

    PubMed

    Jacobson, Mark Z; Delucchi, Mark A; Cameron, Mary A; Frew, Bethany A

    2015-12-08

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050-2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide.

  18. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes

    PubMed Central

    Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Frew, Bethany A.

    2015-01-01

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050–2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide. PMID:26598655

  19. Perpetual factors involved in performance of air traffic controllers using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gershzohn, G.

    1978-01-01

    The task involved the control of two simulated aircraft targets per trial, in a 37.0 -km radius terminal area, by means of conventional radar vectoring and/or speed control. The goal was to insure that the two targets crossed the Missed Approach Point (MAP) at the runway threshold exactly 60 sec apart. The effects on controller performance of the MLS configuration under wind and no-wind conditions were examined. The data for mean separation time between targets at the MAP and the range about that mean were analyzed by appropriate analyses of variance. Significant effects were found for mean separation times as a result of the configuration of the MLS and for interaction between the configuration and wind conditions. The analysis of variance for range indicated significantly poorer performance under the wind condition. These findings are believed to be a result of certain perceptual factors involved in radar air traffic control (ATC) using the MLS with separation of targets in time.

  20. Reattachment Zone Characterisation Under Offshore Winds With Flow Separation On The Lee Side Of Coastal Dunes

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, I.; Jackson, D.; Cooper, J. A.; Baas, A. C.; Lynch, K.; Beyers, M.

    2010-12-01

    Airflow separation, lee-side eddies and secondary flows play an essential role on the formation and maintenance of sand dunes. Downstream from dune crests the flow surface layer detaches from the ground and generates an area characterised by turbulent eddies in the dune lee slope (the wake). At some distance downstream from the dune crest, flow separates into a reversed component directed toward the dune toe and an offshore “re-attached” component. This reattachment zone (RZ) has been documented in fluvial and desert environments, wind tunnel experiments and numerical simulations, but not yet characterised in coastal dunes. This study examines the extent and temporal evolution of the RZ and its implications for beach-dune interaction at Magilligan, Northern Ireland. Wind parameters were measured over a profile extending from an 11 m height dune crest towards the beach, covering a total distance of 65 m cross-shore. Data was collected using an array of nine ultrasonic anemometers (UAs) deployed in April-May 2010, as part of a larger experiment to capture airflow data under a range of incident wind velocities and offshore directions. UAs were located along the profile (5 m tower spacing) over the beach, which allowed a detailed examination of the RZ with empirical data. Numerical modelling using Computational Fluid Dynamics (CFD) software was also conducted with input data from anemometer field measurements, running over a surface mesh generated from LiDAR and DGPS surveys. Results demonstrate that there is a wind threshold of approximately 5-6 ms-1 under which no flow separation exists with offshore winds. As wind speed increases over the threshold, a flow reversal area is quickly formed, with the maximum extent of the RZ at approximately 3.5 dune heights (h). The maximum extent of the RZ increases up to 4.5h with stronger wind speeds of 8-10 ms-1 and remains relatively constant as wind speed further increases. This suggests that the spatial extent of the RZ is independent of incident wind speed and is located between 4-5h. The magnitude of the maximum extent of the RZ is similar to that simulated using CFD and is consistent with previous studies conducted in desert dunes and wind tunnel simulations for offshore winds blowing over tall and sharp-crested dunes. Ongoing analyses are being conducted to evaluate the effect of changing wind direction, dune height and shape.

  1. Feasibility of Floating Platform Systems for Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, W.; Butterfield, S.; Boone, A.

    This paper provides a general technical description of several types of floating platforms for wind turbines. Platform topologies are classified into multiple- or single-turbine floaters and by mooring method. Platforms using catenary mooring systems are contrasted to vertical mooring systems and the advantages and disadvantages are discussed. Specific anchor types are described in detail. A rough cost comparison is performed for two different platform architectures using a generic 5-MW wind turbine. One platform is a Dutch study of a tri-floater platform using a catenary mooring system, and the other is a mono-column tension-leg platform developed at the National Renewable Energymore » Laboratory. Cost estimates showed that single unit production cost is $7.1 M for the Dutch tri-floater, and $6.5 M for the NREL TLP concept. However, value engineering, multiple unit series production, and platform/turbine system optimization can lower the unit platform costs to $4.26 M and $2.88 M, respectively, with significant potential to reduce cost further with system optimization. These foundation costs are within the range necessary to bring the cost of energy down to the DOE target range of $0.05/kWh for large-scale deployment of offshore floating wind turbines.« less

  2. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, Andrew; Fleming, Paul; Schlipf, David

    The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation ofmore » an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.« less

  3. Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor

    NASA Astrophysics Data System (ADS)

    PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu

    2018-03-01

    In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.

  4. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, J.; Dykes, K.; Graf, P.

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. Lastly, if there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtainedmore » with increasing risk aversion on the part of the designer.« less

  5. Optimization under Uncertainty of Site-Specific Turbine Configurations: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Dykes, Katherine; Graf, Peter

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained withmore » increasing risk aversion on the part of the designer.« less

  6. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    NASA Astrophysics Data System (ADS)

    Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.

    2014-05-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  7. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    DOE PAGES

    Quick, J.; Dykes, K.; Graf, P.; ...

    2016-10-03

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. Lastly, if there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtainedmore » with increasing risk aversion on the part of the designer.« less

  8. Vibration Based Wind Turbine Tower Foundation Design Utilizing Soil-Foundation-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Al Satari, P. E. Mohamed; Hussain, S. E. Saif

    2008-07-01

    Wind turbines have been used to generate electricity as an alternative energy source to conventional fossil fuels. This case study is for multiple wind towers located at different villages in Alaska where severe arctic weather conditions exist. The towers are supported by two different types of foundations; large mat or deep piles foundations. Initially, a Reinforced Concrete (RC) mat foundation was utilized to provide the system with vertical and lateral support. Where soil conditions required it, a pile foundation solution was devised utilizing a 30″ thick RC mat containing an embedded steel grillage of W18 beams supported by 20″-24″ grouted or un-grouted piles. The mixing and casting of concrete in-situ has become the major source of cost and difficulty of construction at these remote Alaska sites. An all-steel foundation was proposed for faster installation and lower cost, but was found to impact the natural frequencies of the structural system by significantly softening the foundation system. The tower-foundation support structure thus became near-resonant with the operational frequencies of the wind turbine leading to a likelihood of structural instability or even collapse. A detailed 3D Finite-Element model of the original tower-foundation-pile system with RC foundation was created using SAP2000. Soil springs were included in the model based on soil properties obtained from the geotechnical consultant. The natural frequency from the model was verified against the tower manufacturer analytical and the experimental values. Where piles were used, numerous iterations were carried out to eliminate the need for the RC and optimize the design. An optimized design was achieved with enough separation between the natural and operational frequencies to prevent damage to the structural system eliminating the need for any RC encasement to the steel foundation or grouting to the piles.

  9. Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines

    PubMed Central

    McLaren, James D.

    2012-01-01

    A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival. PMID:22936843

  10. Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Bouten, Willem

    2012-09-01

    A migrating bird's response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.

  11. Engineering and fabrication cost considerations for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Boykin, R. M., Jr.; Davenport, J. B., Jr.

    1983-01-01

    Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.

  12. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    1982-01-01

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  13. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring.

    PubMed

    Elliott, Kyle Hamish; Chivers, Lorraine S; Bessey, Lauren; Gaston, Anthony J; Hatch, Scott A; Kato, Akiko; Osborne, Orla; Ropert-Coudert, Yan; Speakman, John R; Hare, James F

    2014-01-01

    Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms(?1) (murres) and 10.6 ms(?1) (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved.

  14. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ning, A.; Dykes, K.

    2014-06-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.

  15. Explaining technological change of wind power in China and the United States: Roles of energy policies, technological learning, and collaboration

    NASA Astrophysics Data System (ADS)

    Tang, Tian

    The following dissertation explains how technological change of wind power, in terms of cost reduction and performance improvement, is achieved in China and the US through energy policies, technological learning, and collaboration. The objective of this dissertation is to understand how energy policies affect key actors in the power sector to promote renewable energy and achieve cost reductions for climate change mitigation in different institutional arrangements. The dissertation consists of three essays. The first essay examines the learning processes and technological change of wind power in China. I integrate collaboration and technological learning theories to model how wind technologies are acquired and diffused among various wind project participants in China through the Clean Development Mechanism (CDM)--an international carbon trade program, and empirically test whether different learning channels lead to cost reduction of wind power. Using pooled cross-sectional data of Chinese CDM wind projects and spatial econometric models, I find that a wind project developer's previous experience (learning-by-doing) and industrywide wind project experience (spillover effect) significantly reduce the costs of wind power. The spillover effect provides justification for subsidizing users of wind technologies so as to offset wind farm investors' incentive to free-ride on knowledge spillovers from other wind energy investors. The CDM has played such a role in China. Most importantly, this essay provides the first empirical evidence of "learning-by-interacting": CDM also drives wind power cost reduction and performance improvement by facilitating technology transfer through collaboration between foreign turbine manufacturers and local wind farm developers. The second essay extends this learning framework to the US wind power sector, where I examine how state energy policies, restructuring of the electricity market, and learning among actors in wind industry lead to performance improvement of wind farms. Unlike China, the restructuring of the US electricity market created heterogeneity in transmission network governance across regions. Thus, I add transmission network governance to my learning framework to test the impacts of different transmission network governance models. Using panel data of existing utility-scale wind farms in US during 2001-2012 and spatial models, I find that the performance of a wind project is improved through more collaboration among project participants (learning-by-interacting), and this improvement is even greater if the wind project is interconnected to a regional transmission network coordinated by an independent system operator or a regional transmission organization (ISO/RTO). In the third essay, I further explore how different transmission network governance models affect wind power integration through a comparative case study. I compare two regional transmission networks, which represent two major transmission network governance models in the US: the ISO/RTO-governance model and the non-RTO model. Using archival data and interviews with key network participants, I find that a centralized transmission network coordinated through an ISO/RTO is more effective in integrating wind power because it allows resource pooling and optimal allocating of the resources by the central network administrative agency (NAO). The case study also suggests an alternative path to improved network effectiveness for a less cohesive network, which is through more frequent resource exchange among subgroups within a large network. On top of that, this essay contributes to the network governance literature by providing empirical evidence on the coexistence of hierarchy, market, and collaboration in complex service delivery networks. These coordinating mechanisms complement each other to provide system flexibility and stability, particularly when the network operates in a turbulent environment with changes and uncertainties.

  16. For wind turbines in complex terrain, the devil is in the detail

    NASA Astrophysics Data System (ADS)

    Lange, Julia; Mann, Jakob; Berg, Jacob; Parvu, Dan; Kilpatrick, Ryan; Costache, Adrian; Chowdhury, Jubayer; Siddiqui, Kamran; Hangan, Horia

    2017-09-01

    The cost of energy produced by onshore wind turbines is among the lowest available; however, onshore wind turbines are often positioned in a complex terrain, where the wind resources and wind conditions are quite uncertain due to the surrounding topography and/or vegetation. In this study, we use a scale model in a three-dimensional wind-testing chamber to show how minor changes in the terrain can result in significant differences in the flow at turbine height. These differences affect not only the power performance but also the life-time and maintenance costs of wind turbines, and hence, the economy and feasibility of wind turbine projects. We find that the mean wind, wind shear and turbulence level are extremely sensitive to the exact details of the terrain: a small modification of the edge of our scale model, results in a reduction of the estimated annual energy production by at least 50% and an increase in the turbulence level by a factor of five in the worst-case scenario with the most unfavorable wind direction. Wind farm developers should be aware that near escarpments destructive flows can occur and their extent is uncertain thus warranting on-site field measurements.

  17. Wind | NREL

    Science.gov Websites

    Facilities Support Innovation and Collaboration Take a Tour of a Wind Turbine Featured Publications 2017 Recommended Practices Lidar-Enhanced Wind Turbine Control: Past, Present, and Future Development of a 5 MW wind turbine science and lowering the cost of wind-generated electricity alongside our partners. We

  18. Global Wind Map

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    This brief article describes a new global wind-power map that has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent…

  19. Estimating the impacts of wind power on power systems—summary of IEA Wind collaboration

    NASA Astrophysics Data System (ADS)

    Holttinen, Hannele

    2008-04-01

    Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power.

  20. Onshore Wind Farms: Value Creation for Stakeholders in Lithuania

    NASA Astrophysics Data System (ADS)

    Burinskienė, Marija; Rudzkis, Paulius; Kanopka, Adomas

    With the costs of fossil fuel consistently rising worldwide over the last decade, the development of green technologies has become a major goal in many countries. Therefore the evaluation of wind power projects becomes a very important task. To estimate the value of the technologies based on renewable resources also means taking into consideration social, economic, environmental, and scientific value of such projects. This article deals with economic evaluation of electricity generation costs of onshore wind farms in Lithuania and the key factors that have influence on wind power projects and offer a better understanding of social-economic context behind wind power projects. To achieve these goals, this article makes use of empirical data of Lithuania's wind power farms as well as data about the investment environment of the country.Based on empirical data of wind power parks, the research investigates the average wind farm generation efficiency in Lithuania. Employing statistical methods the return on investments of wind farms in Lithuania is calculated. The value created for every party involved and the total value of the wind farm is estimated according to Stakeholder theory.

  1. 11 CFR 116.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... costs associated with winding down a campaign or winding down committee activities, including office... committee that is winding down its political activities in preparation for filing a termination report, and.... A political committee will be considered to be winding down its political activities if it has...

  2. 11 CFR 116.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... costs associated with winding down a campaign or winding down committee activities, including office... committee that is winding down its political activities in preparation for filing a termination report, and.... A political committee will be considered to be winding down its political activities if it has...

  3. 11 CFR 116.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... costs associated with winding down a campaign or winding down committee activities, including office... committee that is winding down its political activities in preparation for filing a termination report, and.... A political committee will be considered to be winding down its political activities if it has...

  4. 11 CFR 116.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... costs associated with winding down a campaign or winding down committee activities, including office... committee that is winding down its political activities in preparation for filing a termination report, and.... A political committee will be considered to be winding down its political activities if it has...

  5. 11 CFR 116.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... costs associated with winding down a campaign or winding down committee activities, including office... committee that is winding down its political activities in preparation for filing a termination report, and.... A political committee will be considered to be winding down its political activities if it has...

  6. Revolution…Now The Future Arrives for Five Clean Energy Technologies – 2015 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 2013, the U.S. Department of Energy (DOE) released the Revolution Now report, highlighting four transformational technologies: land-based wind power, silicon photovoltaic (PV) solar modules, light-emitting diodes (LEDs), and electric vehicles (EVs). That study and its 2014 update showed how dramatic reductions in cost are driving a surge in consumer, industrial, and commercial adoption for these clean energy technologies—as well as yearly progress. In addition to presenting the continued progress made over the last year in these areas, this year’s update goes further. Two separate sections now cover large, central, utility-scale PV plants and smaller, rooftop, distributed PV systems tomore » highlight how both have achieved significant deployment nationwide, and have done so through different innovations, such as easier access to capital for utility-scale PV and reductions of non-hardware costs and third-party ownership for distributed PV. Along with these core technologies« less

  7. Effects of turbine technology and land use on wind power resource potential

    NASA Astrophysics Data System (ADS)

    Rinne, Erkka; Holttinen, Hannele; Kiviluoma, Juha; Rissanen, Simo

    2018-06-01

    Estimates of wind power potential are relevant for decision-making in energy policy and business. Such estimates are affected by several uncertain assumptions, most significantly related to wind turbine technology and land use. Here, we calculate the technical and economic onshore wind power potentials with the aim to evaluate the impact of such assumptions using the case-study area of Finland as an example. We show that the assumptions regarding turbine technology and land use policy are highly significant for the potential estimate. Modern turbines with lower specific ratings and greater hub heights improve the wind power potential considerably, even though it was assumed that the larger rotors decrease the installation density and increase the turbine investment costs. New technology also decreases the impact of strict land use policies. Uncertainty in estimating the cost of wind power technology limits the accuracy of assessing economic wind power potential.

  8. Large wind-turbine projects in the United States wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Robbins, W. H.

    1980-01-01

    The technological development of large, horizontal-axis wind turbines (100 kW-2500 kW) is surveyed with attention to prototype projects managed by NASA. Technical feasibility has been demonstrated in utility service for systems with a rated power of up to 200 kW and a rotor diameter of 125 ft (Mod-OA). Current designs of large wind turbines such as the 2500 kW Mod-2 are projected to be cost competitive for utility applications when produced in quantity, with capital costs of 600 to 700 dollars per kW (in 1977 dollars).

  9. Vortex Advisory System Safety Analysis : Volume 1. Analytical Model

    DOT National Transportation Integrated Search

    1978-09-01

    The Vortex Advisory System (VAS) is based on wind criterion--when the wind near the runway end is outside of the criterion, all interarrival Instrument Flight Rules (IFR) aircraft separations can be set at 3 nautical miles. Five years of wind data ha...

  10. Vortex Advisory System : Volume 1. Effectiveness for Selected Airports.

    DOT National Transportation Integrated Search

    1980-05-01

    The Vortex Advisory System (VAS) is based on wind criterion--when the wind near the runway end is outside of the criterion, all interarrival Instrument Flight Rules (IFR) aircraft separations can be set at 3 nautical miles. Five years of wind data ha...

  11. Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.

    2017-01-01

    Spatial separation of HR rawinsonde data is directly correlated with climatological tropospheric wind environment over ER. Stronger winds in the winter result in further downrange drift. Lighter winds in the summer result in the less horizontal drift during ascent. Maximum downrange distance can exceed 200 km during winter months. Data could misrepresent the environment the vehicle will experience during ascent. PRESTO uses all available data sources to produce the best representative, vertically complete atmosphere for launch vehicle DOL operations. Capability planned for use by NASA Space Launch System vehicle's first flight scheduled for Fall 2018.

  12. Offshore wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Elkinton, Christopher Neil

    Offshore wind energy technology is maturing in Europe and is poised to make a significant contribution to the U.S. energy production portfolio. Building on the knowledge the wind industry has gained to date, this dissertation investigates the influences of different site conditions on offshore wind farm micrositing---the layout of individual turbines within the boundaries of a wind farm. For offshore wind farms, these conditions include, among others, the wind and wave climates, water depths, and soil conditions at the site. An analysis tool has been developed that is capable of estimating the cost of energy (COE) from offshore wind farms. For this analysis, the COE has been divided into several modeled components: major costs (e.g. turbines, electrical interconnection, maintenance, etc.), energy production, and energy losses. By treating these component models as functions of site-dependent parameters, the analysis tool can investigate the influence of these parameters on the COE. Some parameters result in simultaneous increases of both energy and cost. In these cases, the analysis tool was used to determine the value of the parameter that yielded the lowest COE and, thus, the best balance of cost and energy. The models have been validated and generally compare favorably with existing offshore wind farm data. The analysis technique was then paired with optimization algorithms to form a tool with which to design offshore wind farm layouts for which the COE was minimized. Greedy heuristic and genetic optimization algorithms have been tuned and implemented. The use of these two algorithms in series has been shown to produce the best, most consistent solutions. The influences of site conditions on the COE have been studied further by applying the analysis and optimization tools to the initial design of a small offshore wind farm near the town of Hull, Massachusetts. The results of an initial full-site analysis and optimization were used to constrain the boundaries of the farm. A more thorough optimization highlighted the features of the area that would result in a minimized COE. The results showed reasonable layout designs and COE estimates that are consistent with existing offshore wind farms.

  13. Wind turbine generator rotor blade concepts with low cost potential

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Cahill, T. P.; Griffee, D. G., Jr.; Gewehr, H. W.

    1977-01-01

    Four processed for producing blades are examined. Two use filament winding techniques and two involve filling a mold or form to produce all or part of a blade. The processes are described and a comparison is made of cost, material properties, design and free vibration characteristics. Conclusions are made regarding the feasibility of each process to produce low cost, structurally adequate blades.

  14. Wind-turbine-generator rotor-blade concepts with low-cost potential

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Cahill, T. P.; Griffee, D. G., Jr.; Gewehr, H. W.

    1978-01-01

    Four processes for producing blades are examined. Two use filament winding techniques and two involve filling a mold or form to produce all or part of a blade. The processes are described and a comparison is made of costs, material properties, designs and free vibration characteristics. Conclusions are made regarding the feasibility of each process to produce low-cost, structurally adequate blades.

  15. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Kumar, N.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less

  16. Flow separation on wind turbines blades

    NASA Astrophysics Data System (ADS)

    Corten, G. P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine blades could be controlled fully, the generation efficiency and thus the energy production would increase by 9%. Power Control To avoid damage to wind turbines, they are cut out above 10 Beaufort (25 m/s) on the wind speed scale. A turbine could be designed in such a way that it converts as much power as possible in all wind speeds, but then it would have to be to heavy. The high costs of such a design would not be compensated by the extra production in high winds, since such winds are rare. Therefore turbines usually reach maximum power at a much lower wind speed: the rated wind speed, which occurs at about 6 Beaufort (12.5 m/s). Above this rated speed, the power intake is kept constant by a control mechanism. Two different mechanisms are commonly used. Active pitch control, where the blades pitch to vane if the turbine maximum is exceeded or, passive stall control, where the power control is an implicit property of the rotor. Stall Control The flow over airfoils is called "attached" when it flows over the surface from the leading edge to the trailing edge. However, when the angle of attack of the flow exceeds a certain critical angle, the flow does not reach the trailing edge, but leaves the surface at the separation line. Beyond this line the flow direction is reversed, i.e. it flows from the trailing edge backward to the separation line. A blade section extracts much less energy from the flow when it separates. This property is used for stall control. Stall controlled rotors always operate at a constant rotation speed. The angle of attack of the flow incident to the blades is determined by the blade speed and the wind speed. Since the latter is variable, it determines the angle of attack. The art of designing stall rotors is to make the separated area on the blades extend in such a way, that the extracted power remains precisely constant, independent of the wind speed, while the power in the wind at cut-out exceeds the maximum power of the turbine by a factor of 8. Since the stall behaviour is influenced by many parameters, this demand cannot be easily met. However, if it can be met, the advantage of stall control is its passive operation, which is reliable and cheap. Problem Definition In practical application, stall control is not very accurate and many stall-controlled turbines do not meet their specifications. Deviations of the design-power in the order of tens of percent are regular. In the nineties, the aerodynamic research on these deviations focussed on: profile aerodynamics, computational fluid dynamics, rotational effects on separation and pressure measurements on test turbines. However, this did not adequately solve the actual problems with stall turbines. In this thesis, we therefore formulated the following as the essential question: "Does the separated blade area really extend with the wind speed, as we predict?" To find the answer a measurement technique was required, which 1) was applicable on large commercial wind turbines, 2) could follow the dynamic changes of the stall pattern, 3) was not influenced by the centrifugal force and 4) did not disturb the flow. Such a technique was not available, therefore we decided to develop it. Stall Flag Method For this method, a few hundred indicators are fixed to the rotor blades in a special pattern. These indicators, called "stall flags" are patented by the Netherlands Energy Research Foundation (ECN). They have a retro-reflective area which, depending on the flow direction, is or is not covered. A powerful light source in the field up to 500m behind the turbine illuminates the swept rotor area. The uncovered reflectors reflect the light to the source, where a digital video camera records the dynamic stall patterns. The images are analysed by image processing software that we developed. The program extracts the stall pattern, the blade azimuth angles and the rotor speed from the stall flags. It also measures the yaw error and the wind speed from the optical signals of other sensors, which are recorded simultaneously. We subsequently characterise the statistical stall behaviour from the sequences of thousands of analysed images. For example, the delay in the stall angle by vortex generators can be measured within 1° of accuracy from the stall flag signals. Properties of the Stall Flag The new indicators are compared to the classic tufts. Stall flags are pressure driven while tufts are driven by frictional drag, which means that they have more drag. The self-excited motion of tufts, due to the Kelvin-Helmholtz instability, complicates the interpretation and gives more drag. We designed stall flags in such a way that this instability is avoided. An experiment with a 65cm diameter propeller confirms the independence of stall flags from the centrifugal force and that stall flags respond quickly to changes in the flow. We developed an optical model of the method to find an optimum set-up. With the present system, we can take measurements on turbines of all actual diameters. The stall flag responds to separated flow with an optical signal. The contrast of this signal exceeds that of tuft-signals by a factor of at least 1000. To detect the stall flag signal we need a factor of 25 fewer pixels of the CCD chip than is necessary for tufts. Stall flags applied on fast moving objects may show light tracks due to motion blur, which in fact yields even more information. In the case of tuft visualisations, even a slight motion blur is fatal. Principal Results In dealing with the fundamental theory of wind turbines, we found a new aspect of the conversion efficiency of a wind turbine, which also concerns the stall behaviour. Another new aspect concerns the effects of rotation on stall. By using the stall flag method, we were able to clear up two practical problems that seriously threatened the performance of stall turbines. These topics will be described briefly. 1. Inherent Heat Generation The classic result for an actuator disk representing a wind turbine is that the power extracted equals the kinetic power transferred. This is a consequence of disregarding the flow around the disk. When this flow is included, we need to introduce a heat generation term in the energy balance. This has the practical consequence that an actuator disk at the Lanchester-Betz limit transfers 50% more kinetic energy than it extracts. This surplus is dissipated in heat. Using this new argument, together with a classic argument on induction, we see no reason to introduce the concept of edge-forces on the tips of the rotor blades (Van Kuik, 1991). We rather recommend following the ideas of Lanchester (1915) on the edge of the actuator disk and on the wind speed at the disc. We analyse the concept induction, and show that correcting for the aspect ratio, for induced drag and application of Blade Element Momentum Theory all have the same significance for a wind turbine. Such corrections are sometimes made twice (Viterna & Corrigan, 1981). 2. Rotational Effects on Flow Separation In designing wind turbine rotors, one uses the aerodynamic characteristics measured in the wind tunnel on fixed aerodynamic profiles. These characteristics are corrected for the effects of rotation and subsequently used for wind turbine rotors. Such a correction was developed by Snel (1990-1999). This correction is based on boundary layer theory, the validity of which we question in regard to separated flow. We estimated the effects of rotation on flow separation by arguing that the separation layer is thick so the velocity gradients are small and viscosity can be neglected. We add the argument that the chord-wise speed and its derivative normal to the wall is zero at the separation line, which causes the terms with the chord-wise speed or accelerations to disappear. The conclusion is that the chord-wise pressure gradient balances the Coriolis force. By doing so we obtain a simple set of equations that can be solved analytically. Subsequently, our model predicts that the convective term with the radial velocity (vrvr/r) is dominant in the equation for the r-direction, precisely the term that was neglected in Snel's analysis. 3. Multiple Power Levels Several large commercial wind turbines demonstrate drops in maximum power levels up to 45%, under apparently equal conditions. Earlier studies attempting to explain this effect by technical malfunctioning, aerodynamic instabilities and blade contamination effects estimated with computational fluid dynamics, have not yet yielded a plausible result. We formulated many hypotheses, three of which were useful. By taking stall flag measurements and making two other crucial experiments, we could confirm one of those three hypotheses: the insect hypothesis. Insects only fly in low wind, impacting upon the blades at specific locations. In these conditions, the insectual remains are located at positions where roughness has little influence on the profile performance, so that the power is not affected. In high winds however, the flow around the blades has changed. As a result, the positions at which the insects have impacted at low winds are very sensitive to contamination. So the contamination level changes at low wind when insects fly and this level determines the power in high winds when insects do not fly. As a consequence we get discrete power levels in high winds. The other two hypotheses, which did not cause the multiple power levels for the case we studied, gave rise to two new insights. First, we expect the power to depend on the wind direction at sites where the shape of the terrain concentrates the wind. In this case the power level of all turbine types, including pitch regulated ones, will be affected. Second, we infer heuristically that the stalled area on wind turbine blades will adapt continuously to wind variations. Therefore, the occurrence of strong bi-stable stall-hysteresis, which most blade sections demonstrate in the wind tunnel, is lost. This has been confirmed by taking special stall flag measurements. 4. Deviation of Specifications The maximum power of stall controlled wind turbines often shows large systematic deviations from the design. We took stall flag measurements on a rotor, the maximum power of which was 30% too high, so that the turbine had to be cut out far below the designed cut-out wind speed. We immediately observed the blade areas with deviating stall behaviour. Some areas that should have stalled did not and caused the excessive power. We adapted those areas by shifting the vortex generators. In this way we obtained a power curve that met the design much more closely and we realised a production increase of 8%.

  17. Study and evaluation of ferro-cement for use in wind tunnel construction

    NASA Technical Reports Server (NTRS)

    Larsen, H. J., Jr. (Compiler)

    1972-01-01

    The structural suitability and cost effectiveness of ferro-cement for large subsonic wind tunnel structures is investigated. This investigation was carried out in the following four main categories: (1) a state-of-the-art survey into the uses, properties, and costs of ferro-cement; (2) an evaluation of those ferro-cement properties critical to construction of large, subsonic wind tunnels, which have not been adequately established to date; (3) a laboratory testing program to determine preliminary values for those properties; and (4) a study to establish cost factors for ferro-cement as related to a preliminary construction scheme for a nacelle and shroud unit.

  18. Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges

    DTIC Science & Technology

    2016-08-15

    aerospace engineering research. These include dynamic stall in wind turbines and helicopter rotors, and flapping-wing vehicle (micro-air vehicle) design...and Robinson, M., “Blade Three-Dimensional Dynamic Stall Response to Wind Turbine Operating Condition,” Journal of Solar Energy Engineering , Vol...Snapshots of TEV shedding in vortex ring representation. . . . . . . . . . . . . . . . 57 7.3 Schematic description of separated tip flow model

  19. Grid impacts of wind power: a summary of recent studies in the United States

    NASA Astrophysics Data System (ADS)

    Parsons, Brian; Milligan, Michael; Zavadil, Bob; Brooks, Daniel; Kirby, Brendan; Dragoon, Ken; Caldwell, Jim

    2004-04-01

    Several detailed technical investigations of grid ancillary service impacts of wind power plants in the United States have recently been performed. These studies were applied to Xcel Energy (in Minnesota) and PacifiCorp and the Bonneville Power Administration (both in the northwestern United States). Although the approaches vary, three utility time frames appear to be most at issue: regulation, load following and unit commitment. This article describes and compares the analytic frameworks from recent analysis and discusses the implications and cost estimates of wind integration. The findings of these studies indicate that relatively large-scale wind generation will have an impact on power system operation and costs, but these impacts and costs are relatively low at penetration rates that are expected over the next several years. Published in 2004 by John Wiley & Sons, Ltd.

  20. Evaluation of feasibility of prestressed concrete for use in wind turbine blades

    NASA Technical Reports Server (NTRS)

    Leiblein, S.; Londahl, D. S.; Furlong, D. B.; Dreier, M. E.

    1979-01-01

    A preliminary evaluation of the feasibility of the use of prestressed concrete as a material for low cost blades for wind turbines was conducted. A baseline blade design was achieved for an experimental wind turbine that met aerodynamic and structural requirements. Significant cost reductions were indicated for volume production. Casting of a model blade section showed no fabrication problems. Coupled dynamic analysis revealed that adverse rotor tower interactions can be significant with heavy rotor blades.

  1. Wind turbines: current status, obstacles, trends and technologies

    NASA Astrophysics Data System (ADS)

    Konstantinidis, E. I.; Botsaris, P. N.

    2016-11-01

    The last decade the installation of wind farms around the world is spreading rapidly and wind energy has become a significant factor for promoting sustainable development. The scope of the present study is to indicate the present status of global wind power expansion as well as the current state of the art in the field of wind turbine technology. The RAM (reliability/availability/maintenance) section is also examined and the Levelized Cost of Energy for onshore/ offshore electricity production is presented. Negative consequences that go with the rapid expansion of wind power like accidents, environmental effects, etc. are highlighted. Especially visual impact to the landscape and noise pollution are some factors that provoke social reactions. Moreover, the complicated and long permitted process of a wind power plant, the high capital cost of the investment and the grid instability due to the intermittent nature of wind, are also significant obstacles in the development of the wind energy production. The current trends in the field of research and development of onshore and offshore wind power production are analyzed. Finally the present study is trying to achieve an estimation of where the wind industry targets for the years to come.

  2. Impact of Financing Instruments and Strategies on the Wind Power Production Costs: A Case of Lithuania

    NASA Astrophysics Data System (ADS)

    Bobinaite, V.; Konstantinaviciute, I.

    2018-04-01

    The paper aims at demonstrating the relevance of financing instruments, their terms and financing strategies in relation to the cost of wind power production and the ability of wind power plant (PP) to participate in the electricity market in Lithuania. The extended approach to the Levelized Cost of Energy (LCOE) is applied. The feature of the extended approach lies in considering the lifetime cost and revenue received from the support measures. The research results have substantiated the relevance of financing instruments, their terms and strategies in relation to their impact on the LCOE and competitiveness of wind PP. It has been found that financing of wind PP through the traditional financing instruments (simple shares and bank loans) makes use of venture capital and bonds coming even in the absence of any support. It has been estimated that strategies consisting of different proportions of hard and soft loans, bonds, own and venture capital result in the average LCOE of 5.1-5.7 EURct/kWh (2000 kW), when the expected electricity selling price is 5.4 EURct/kWh. The financing strategies with higher shares of equity could impact by around 6 % higher LCOE compared to the strategies encompassing higher shares of debt. However, seeking to motivate venture capitalists, bond holders or other new financiers entering the wind power sector, support measures (feed-in tariff or investment subsidy) are relevant in case of 250 kW wind PP. It has been estimated that under the unsupported financing strategies, the average LCOE of 250 kW wind PP will be 7.8-8.8 EURct/kWh, but it will reduce by around 50 % if feed-in tariff or 50 % investment subsidy is applied.

  3. The Geography of Wind Energy: Problem Solving Activities.

    ERIC Educational Resources Information Center

    Lahart, David E.; Allen, Rodney F.

    1985-01-01

    Today there are many attempts to use wind machines to confront the increasing costs of electricity. Described are activities to help secondary students understand wind energy, its distribution, applications, and limitations. (RM)

  4. Soil nutrients losses by wind erosion in a citrus crop at southeast Spain

    NASA Astrophysics Data System (ADS)

    Segovia, C.; Gómez, J. D.; Gallardo, P.; Lozano, F. J.; Asensio, C.

    2017-06-01

    The purpose of this study was to analyze the influence of wind erosion on the productivity of citric crops over gypsiric Fluvisols in Gador area (Almeria, SE Spain) by blowing air through a wind tunnel. Wind erosion varies considerably depending on time since the last tillage. This is because a physical crust forms after tilling which protects the soil from wind. Crust formation in the study area is strongly favored by dew, which causes them to form in around a week. The repeated measurements ANOVA, as a nonparametric alternative to the ANOVA, using the Geiiser method and the Friedman test shows significant differences ( P ≤ 0.05) in the fractions of very fine sand and coarse silt, which confirmed that very fine sand and coarse silt are the fractions most susceptible to loss from wind. The same statistical analysis for fertility showed smaller differences in organic carbon and K2O content, while N and P2O5 increased. Nutrients lost from wind imply an additional fertilization cost for a crop to be economically feasible. The cost of this restoration of nutrients lost from the soil because of wind erosion was based on experimental data taken in crusted soil and immediately after tilling. Losses in organic matter (O.M.), N, P2O5 and K2O were estimated based on the cost of fertilizers most commonly used in the area.

  5. Cape Blanco Wind Farm Feasibility Study : Technical Report, No. 2, Civil Engineering.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    1986-09-01

    An investigation of the feasibility of developing a wind farm near Cape Blanco, Oregon, requires a plan for civil engineering and preliminary site construction activities. In this report, plans for such activities and related cost estimates are presented for a wind farm using either a Boeing MOD-2 or FloWind 170 wind turbine generator.

  6. CATCHING THE WIND: A LOW COST METHOD FOR WIND POWER SITE ASSESSMENT

    EPA Science Inventory

    Our Phase I successes involve the installation of a wind monitoring station in Humboldt County, the evaluation of four different measure-correlate-predict methods for wind site assessment, and the creation of SWEET, an open source software package implementing the prediction ...

  7. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.

    This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner inmore » which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.« less

  8. Design study of wind turbines 50 kW to 3000 kW for electric utility applications. Volume 2: Analysis and design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    All possible overall system configurations, operating modes, and subsystem concepts for a wind turbine configuration for cost effective generation of electrical power were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The various design features and components evaluated are described, and the rationale employed to select the final design configuration is given. All pertinent technical performance data and component cost data is included. The costs of all major subassemblies are estimated and the resultant energy costs for both the 500 kW and 1500 kW units are calculated.

  9. Implementation of rooftop reciculation parameterization into the QUIC fast response urban wind model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagal, N.; Singh, B.; Pardyjak, E. R.

    2004-01-01

    The QUIC (Quick Urban & Industrial Complex) dispersion modeling system has been developed to provide high-resolution wind and concentration fields in cities. The fast response 3D urban wind model QUIC-URB explicitly solves for the flow field around buildings using a suite of empirical parameterizations and mass conservation. This procedure is based on the work of Rockle (1990). The current Rockle (1990) model does not capture the rooftop recirculation region associated with flow separation from the leading edge of an isolated building. According to Banks et al. (2001), there are two forms of separation depending on the incident wind angle. Formore » an incident wind angle within 20{sup o} of perpendicular to the front face of the building, 'bubble separation' occurs in which cylindrical vortices whose axis are orthogonal to the flow are generated along the rooftop surface (see Fig. 1). For a 'corner wind' flow or incident wind angle of 30{sup o} to 70{sup o} of perpendicular to the front face of the building, 'conical' or 'delta wing' vortices form along the roof surface (Fig. 3). In this work, a model for rooftop recirculation is implemented into the QUIC- URB model for the two incident wind angle regimes described above. The parameterizations for the length and height of the recirculation region are from Wilson (1979) for the case of flow perpendicular or near perpendicular to the building and from Banks et al. (2000) for the case of off-angle flow. In this paper, we describe the rooftop algorithms and show how the model results are improved through comparisons to experimental data (Snyder and Lawson 1994).« less

  10. Large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The development associated with large wind turbine systems is briefly described. The scope of this activity includes the development of several large wind turbines ranging in size from 100 kW to several megawatt levels. A description of the wind turbine systems, their programmatic status and a summary of their potential costs is included.

  11. Low-cost wind tunnel for aerosol inhalation studies.

    PubMed

    Chung, I P; Dunn-Rankin, D; Phalen, R F; Oldham, M J

    1992-04-01

    A low-cost wind tunnel for aerosol studies has been designed, constructed, and evaluated for aerosol uniformity with 2- and 0.46-micron particles. A commercial nebulizer was used to produce the suspended test particles, and a custom-made, four-hole injector was used to introduce the aerosol into the wind tunnel. A commercially available optical particle counter measured the particle concentration. Performance tests of the velocity profile and particle concentration distribution at two flow rates showed that the system performs well for small particles.

  12. An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Musial, Walter; Kilcher, Levi

    This study describes an assessment of the spatial variation of levelized cost of energy (LCOE) and levelized avoided cost of energy to understand the economic viability of fixed-bottom and floating offshore wind technologies across major U.S. coastal areas between 2015 and 2030. In particular, this study offers insights into the available offshore wind resource by region at different levels of LCOE and an assessment of the economically viable resource capacity in the United States.

  13. An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030

    DOE Data Explorer

    Beiter, Philipp; Musial, Walter; Kilcher, Levi; Maness, Michael; Smith, Aaron

    2017-05-24

    Output data from an NREL report entitled "An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030" (NREL/TP-6A20-67675), which analyzes the spatial variation of levelized cost of energy (LCOE) and levelized avoided cost of energy (LACE) to understand the economic potential of fixed-bottom and floating offshore wind technologies across more than 7,000 U.S. coastal sites between 2015 and 2030.

  14. Fusion of a FBG-based health monitoring system for wind turbines with a fiber-optic lightning detection system

    NASA Astrophysics Data System (ADS)

    Krämer, Sebastian G. M.; Wiesent, Benjamin; Müller, Mathias S.; Puente León, Fernando; Méndez Hernández, Yarú

    2008-04-01

    Wind turbine blades are made of composite materials and reach a length of more than 42 meters. Developments for modern offshore turbines are working on about 60 meters long blades. Hence, with the increasing height of the turbines and the remote locations of the structures, health monitoring systems are becoming more and more important. Therefore, fiber-optic sensor systems are well-suited, as they are lightweight, immune against electromagnetic interference (EMI), and as they can be multiplexed. Based on two separately existing concepts for strain measurements and lightning detection on wind turbines, a fused system is presented. The strain measurement system is based on a reflective fiber-Bragg-grating (FBG) network embedded in the composite structure of the blade. For lightning detection, transmissive &fiber-optic magnetic field sensors based on the Faraday effect are used to register the lightning parameters and estimate the impact point. Hence, an existing lightning detection system will be augmented, due to the fusion, by the capability to measure strain, temperature and vibration. Load, strain, temperature and impact detection information can be incorporated into the turbine's monitoring or SCADA system and remote controlled by operators. Data analysis techniques allow dynamic maintenance scheduling to become a reality, what is of special interest for the cost-effective maintenance of large offshore or badly attainable onshore wind parks. To prove the feasibility of this sensor fusion on one optical fiber, interferences between both sensor systems are investigated and evaluated.

  15. Battery Fault Detection with Saturating Transformers

    NASA Technical Reports Server (NTRS)

    Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)

    2013-01-01

    A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.

  16. Dynamic Distortion in a Short S-Shaped Subsonic Diffuser with Flow Separation. [Lewis 8 by 6 foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stumpf, R.; Neumann, H. E.; Giamati, C. C.

    1983-01-01

    An experimental investigation of the time varying distortion at the diffuser exit of a subscale HiMAT forebody and inlet was conducted at Mach 0.9 in the Lewis 8 by 6 foot Supersonic Wind Tunnel. A transitory separation was detected within the subsonic diffuser. Vortex generators were installed to eliminate the flow separation. Results from a study of the instantaneous pressure variations at the diffuser exit are presented. The time unsteady total pressures at the diffuser exit are computer interpolated and presented in the form of a movie showing the transitory separation. Limited data showing the instantaneous distortion levels is also presented.

  17. Systems Engineering Models and Tools | Wind | NREL

    Science.gov Websites

    (tm)) that provides wind turbine and plant engineering and cost models for holistic system analysis turbine/component models and wind plant analysis models that the systems engineering team produces. If you integrated modeling of wind turbines and plants. It provides guidance for overall wind turbine and plant

  18. IEA Wind Task 26: Offshore Wind Farm Baseline Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, Gavin; Smith, Aaron; Warner, Ethan

    This document has been produced to provide the definition and rationale for the Baseline Offshore Wind Farm established within IEA Wind Task 26--Cost of Wind Energy. The Baseline has been developed to provide a common starting point for country comparisons and sensitivity analysis on key offshore wind cost and value drivers. The baseline project reflects an approximate average of the characteristics of projects installed between 2012 and 2014, with the project life assumed to be 20 years. The baseline wind farm is located 40 kilometres (km) from construction and operations and maintenance (O&M) ports and from export cable landfall. Themore » wind farm consists of 100 4-megawatt (MW) wind turbines mounted on monopile foundations in an average water depth of 25 metres (m), connected by 33-kilovolt (kV) inter-array cables. The arrays are connected to a single offshore substation (33kV/220kV) mounted on a jacket foundation, with the substation connected via a single 220kV export cable to an onshore substation, 10km from landfall. The wind farm employs a port-based O&M strategy using crew-transfer vessels.« less

  19. Towards a mature offshore wind energy technology - guidelines from the opti-OWECS project

    NASA Astrophysics Data System (ADS)

    Kühn, M.; Bierbooms, W. A. A. M.; van Bussel, G. J. W.; Cockerill, T. T.; Harrison, R.; Ferguson, M. C.; Göransson, B.; Harland, L. A.; Vugts, J. H.; Wiecherink, R.

    1999-01-01

    The article reviews the main results of the recent European research project Opti-OWECS (Structural and Economic Optimisation of Bottom-Mounted Offshore Wind Energy Converters'), which has significantly improved the understanding of the requirements for a large-scale utilization of offshore wind energy. An integrated design approach was demonstrated for a 300 MW offshore wind farm at a demanding North Sea site. Several viable solutions were obtained and one was elaborated to include the design of all major components. Simultaneous structural and economic optimization took place during the different design stages. An offshore wind energy converter founded on a soft-soft monopile was tailored with respect to the distinct characteristics of dynamic wind and wave loading. The operation and maintenance behaviour of the wind farm was analysed by Monte Carlo simulations. With an optimized maintenance strategy and suitable hardware a high availability was achieved. Based upon the experience from the structural design, cost models for offshore wind farms were developed and linked to a European database of the offshore wind energy potential. This enabled the first consistent estimate of cost of offshore wind energy for entire European regions.

  20. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, G.; Venkataraman, S.

    The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveragingmore » the results of WWSIS Phase 1 study.« less

  1. Design and fabrication of a low cost Darrieus vertical axis wind turbine system: Phase 2, volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1983-03-01

    Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.

  2. Design and calibration of the carousel wind tunnel

    NASA Technical Reports Server (NTRS)

    Leach, R. N.; Greeley, R.; Iversen, J.; White, B.; Marshall, J. R.

    1986-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with interparticle forces but the two terms are not separable. A wind tunnel that would permit variable gravity would allow separation of the forces and aid greatly in understanding planetary aeolian processes. The design Carousel Wind Tunnel (CWT) allows for a long flow distance in a small sized tunnel since the test section is a continuo us circuit and allows for a variable pseudo gravity. A prototype design was built and calibrated to gain some understanding of the characteristics of the design and the results presented.

  3. Design and calibration of the carousel wind tunnel

    NASA Technical Reports Server (NTRS)

    Leach, R. N.; Greeley, Ronald; Iversen, James D.; White, Bruce R.; Marshall, John R.

    1987-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with interparticle forces but the two terms are not separable. A wind tunnel that would permit variable gravity would allow separation of the forces and aid greatly in understanding planetary aeolian processes. The design of the Carousel Wind Tunnel (CWT) allows for a long flow distance in a small sized tunnel since the test section is a continuous circuit and allows for a variable pseudo-gravity. A prototype design was built and calibrated to gain some understanding of the characteristics of the design and the results presented.

  4. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight

    NASA Astrophysics Data System (ADS)

    Hu, Weifei; Park, Dohyun; Choi, DongHoon

    2013-12-01

    A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.

  5. Wind power as an electrical energy source in Illinois

    NASA Astrophysics Data System (ADS)

    Wendland, W. M.

    1982-03-01

    A preliminary estimate of the total wind power available in Illinois was made using available historical data, and projections of cost savings due to the presence of wind-generated electricity were attempted. Wind data at 10 m height were considered from nine different sites in the state, with three years data nominally being included. Wind-speed frequency histograms were developed for day and night periods, using a power law function to extrapolate the 10 m readings to 20 m. Wind speeds over the whole state were found to average over 8 mph, the cut-in point for most wind turbines, for from 40-63% of the time. A maximum of 75% run-time was determined for daylight hours in April-May. A reference 1.8 kW windpowered generator was used in annual demand projections for a reference one family home, using the frequency histograms. The small generator was projected to fulfill from 25-53% of the annual load, and, based on various cost assumptions, exhibited paybacks taking from 14-27 yr.

  6. IEA Wind TCP Task 26: Impacts of Wind Turbine Technology on the System Value of Wind in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric J.; Riva, Alberto D.; Hethey, Janos

    This report analyzes the impact of different land-based wind turbine designs on grid integration and related system value and cost. This topic has been studied in a number of previous publications, showing the potential benefits of wind turbine technologies that feature higher capacity factors. Building on the existing literature, this study aims to quantify the effects of different land-based wind turbine designs in the context of a projection of the European power system to 2030. This study contributes with insights on the quantitative effects in a likely European market setup, taking into account the effect of existing infrastructure on bothmore » existing conventional and renewable generation capacities. Furthermore, the market effects are put into perspective by comparing cost estimates for deploying different types of turbine design. Although the study focuses on Europe, similar considerations and results can be applied to other power systems with high wind penetration.« less

  7. Cost analysis of DAWT innovative wind energy systems

    NASA Astrophysics Data System (ADS)

    Foreman, K. M.

    The results of a diffuser augmented wind turbine (DAWT) preliminary design study of three constructional material approaches and cost analysis of DAWT electrical energy generation are presented. Costs are estimated assuming a limited production run (100 to 500 units) of factory-built subassemblies and on-site final assembly and erection within 200 miles of regional production centers. It is concluded that with the DAWT the (busbar) cost of electricity (COE) can range between 2.0 and 3.5 cents/kW-hr for farm and REA cooperative end users, for sites with annual average wind speeds of 16 and 12 mph respectively, and 150 kW rated units. No tax credit incentives are included in these figures. For commercial end users of the same units and site characteristics, the COE ranges between 4.0 and 6.5 cents/kW-hr.

  8. 75 FR 42434 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ..., LLC, Foote Creek II, LLC, Foote Creek IV, LLC, Ridge Crest Wind Partners, LLC, Oak Creek Wind Power... submits tariff filing per 35.12: Baseline Cost-Based Rates Tariff of Florida Power Corporation to be...: Baseline Cost-Based Rates Tariff of Carolina Power and Light Company to be effective 7/13/2010. Filed Date...

  9. NASA presentation. [wind energy conversion systems planning

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.

  10. 2015 Key Wind Program and National Laboratory Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in improvements to wind plant design, technology development, and operation as well as developing tools to identify the highest quality wind resources, the Wind Program serves as a leader in making wind energy technologies more competitive with traditional sources of energy and a larger part of our nation’s renewable energy portfolio.

  11. WindWaveFloat (WWF): Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alla Weinstein; Roddier, Dominique; Banister, Kevin

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided thatmore » the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.« less

  12. A Comparison of the Impacts of Wind Energy and Unconventional Gas Development on Land-use and Ecosystem Services: An Example from the Anadarko Basin of Oklahoma, USA.

    PubMed

    Davis, Kendall M; Nguyen, Michael N; McClung, Maureen R; Moran, Matthew D

    2018-05-01

    The United States energy industry is transforming with the rapid development of alternative energy sources and technological advancements in fossil fuels. Two major changes include the growth of wind turbines and unconventional oil and gas. We measured land-use impacts and associated ecosystem services costs of unconventional gas and wind energy development within the Anadarko Basin of the Oklahoma Woodford Shale, an area that has experienced large increases in both energy sectors. Unconventional gas wells developed three times as much land compared to wind turbines (on a per unit basis), resulting in higher ecosystem services costs for gas. Gas wells had higher impacts on intensive agricultural lands (i.e., row crops) compared to wind turbines that had higher impacts on natural grasslands/pastures. Because wind turbines produced on average less energy compared to gas wells, the average land-use-related ecosystem cost per gigajoule of energy produced was almost the same. Our results demonstrate that both unconventional gas and wind energy have substantial impacts on land use, which likely affect wildlife populations and land-use-related ecosystem services. Although wind energy does not have the associated greenhouse gas emissions, we suggest that the direct impacts on ecosystems in terms of land use are similar to unconventional fossil fuels. Considering the expected rapid global expansion of these two forms of energy production, many ecosystems are likely to be at risk.

  13. Model for the techno-economic analysis of common work of wind power and CCGT power plant to offer constant level of power in the electricity market

    NASA Astrophysics Data System (ADS)

    Tomsic, Z.; Rajsl, I.; Filipovic, M.

    2017-11-01

    Wind power varies over time, mainly under the influence of meteorological fluctuations. The variations occur on all time scales. Understanding these variations and their predictability is of key importance for the integration and optimal utilization of wind in the power system. There are two major attributes of variable generation that notably impact the participation on power exchanges: Variability (the output of variable generation changes and resulting in fluctuations in the plant output on all time scales) and Uncertainty (the magnitude and timing of variable generation output is less predictable, wind power output has low levels of predictability). Because of these variability and uncertainty wind plants cannot participate to electricity market, especially to power exchanges. For this purpose, the paper presents techno-economic analysis of work of wind plants together with combined cycle gas turbine (CCGT) plant as support for offering continues power to electricity market. A model of wind farms and CCGT plant was developed in program PLEXOS based on real hourly input data and all characteristics of CCGT with especial analysis of techno-economic characteristics of different types of starts and stops of the plant. The Model analyzes the followings: costs of different start-stop characteristics (hot, warm, cold start-ups and shutdowns) and part load performance of CCGT. Besides the costs, the technical restrictions were considered such as start-up time depending on outage duration, minimum operation time, and minimum load or peaking capability. For calculation purposes, the following parameters are necessary to know in order to be able to economically evaluate changes in the start-up process: ramp up and down rate, time of start time reduction, fuel mass flow during start, electricity production during start, variable cost of start-up process, cost and charges for life time consumption for each start and start type, remuneration during start up time regarding expected or unexpected starts, the cost and revenues for balancing energy (important when participating in electricity market), and the cost or revenues for CO2-certificates. Main motivation for this analysis is to investigate possibilities to participate on power exchanges by offering continues guarantied power from wind plants by backing-up them with CCGT power plant.

  14. THE WIND ENERGY RESEARCH PROGRAM (WERP): DESIGN AND CONSTRUCTION OF A WIND TURBINE TO FACILITATE EDUCATION AND RESEARCH IN SUSTAINABLE TECHNOLOGIES

    EPA Science Inventory

    The United States currently generates a majority of its electrical power from finite natural resources: an unsustainable practice. The Wind Energy Research Program (WERP) seeks to expand knowledge and awareness of wind power while further decreasing the cost of implem...

  15. WindPACT Reference Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Rinker, Jennifer

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor tomore » NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.« less

  16. Objective classification of historical tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  17. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.

  18. Hemispheric-scale wind selection facilitates bar-tailed godwit circum-migration of the Pacific

    USGS Publications Warehouse

    Gill, Robert E.; Douglas, David C.; Handel, Colleen M.; Tibbitts, T. Lee; Hufford, Gary; Piersma, Theunis

    2014-01-01

    The annual 29 000 km long migration of the bar-tailed godwit, Limosa lapponica baueri, around the Pacific Ocean traverses what is arguably the most complex and seasonally structured atmospheric setting on Earth. Faced with marked variation in wind regimes and storm conditions across oceanic migration corridors, individuals must make critical decisions about when and where to fly during nonstop flights of a week's duration or longer. At a minimum, their decisions will affect wind profitability and thus reduce energetic costs of migration; in the extreme, poor decisions or unpredictable weather events will risk survival. We used satellite telemetry to track the annual migration of 24 bar-tailed godwits and analysed their flight performance relative to wind conditions during three major migration legs between nonbreeding grounds in New Zealand and breeding grounds in Alaska. Because flight altitudes of birds en route were unknown, we modelled flight efficiency at six geopotential heights across each migratory segment. Birds selected departure dates when atmospheric conditions conferred the greatest wind assistance both at departure and throughout their flights. This behaviour suggests that there exists a cognitive mechanism, heretofore unknown among migratory birds, that allows godwits to assess changes in weather conditions that are linked (i.e. teleconnected) across widely separated atmospheric regions. Godwits also showed adaptive flexibility in their response not only to cues related to seasonal changes in macrometeorology, such as spatial shifting of storm tracks and temporal periods of cyclogenesis, but also to cues associated with stochastic events, especially at departure sites. Godwits showed limits to their response behaviours, however, especially relative to rapidly developing stochastic events while en route. We found that flight efficiency depended significantly upon altitude and hypothesize that godwits exhibit further adaptive flexibility by varying flight altitude en route to optimize flight efficiency.

  19. Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Lantz, Eric; Ho, Jonathan

    Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less

  20. Numerical modeling of the wind flow over a transverse dune

    PubMed Central

    Araújo, Ascânio D.; Parteli, Eric J. R.; Pöschel, Thorsten; Andrade, José S.; Herrmann, Hans J.

    2013-01-01

    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee — the separation bubble — displays a surprisingly strong dependence on the wind shear velocity, u*: it is nearly independent of u* for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u* for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u* is larger than approximately 0.39 m/s, whereas a larger value of u* (about 0.49 m/s) is required to initiate this reverse transport. PMID:24091456

  1. Wind farm optimization using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Ituarte-Villarreal, Carlos M.

    In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a variable number of system components and wind turbines with different operating characteristics and sizes, to have a more heterogeneous model that can deal with changes in the layout and in the power generation requirements over the time. Moreover, the approach evaluates the impact of the wind-wake effect of the wind turbines upon one another to describe and evaluate the power production capacity reduction of the system depending on the layout distribution of the wind turbines.

  2. Wind energy - A utility perspective

    NASA Astrophysics Data System (ADS)

    Fung, K. T.; Scheffler, R. L.; Stolpe, J.

    1981-03-01

    Broad consideration is given to the siting, demand, capital and operating cost and wind turbine design factors involved in a utility company's incorporation of wind powered electrical generation into existing grids. With the requirements of the Southern California Edison service region in mind, it is concluded that although the economic and legal climate for major investments in windpower are favorable, the continued development of large only wind turbine machines (on the scale of NASA's 2.5 MW Mod-2 design) is imperative in order to reduce manpower and maintenance costs. Stress is also put on the use of demonstration projects for both vertical and horizontal axis devices, in order to build up operational experience and confidence.

  3. NREL Offshore Balance-of-System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maness, Michael; Maples, Benjamin; Smith, Aaron

    The U.S. Department of Energy (DOE) has investigated the potential for 20% of nationwide electricity demand to be generated from wind by 2030 and, more recently, 35% by 2050. Achieving this level of wind power generation may require the development and deployment of offshore wind technologies. DOE (2008) has indicated that reaching these 2030 and 2050 scenarios could result in approximately 10% and 20%, respectively, of wind energy generation to come from offshore resources. By the end of 2013, 6.5 gigawatts of offshore wind were installed globally. The first U.S. project, the Block Island Wind Farm off the coast ofmore » Rhode Island, has recently begun operations. One of the major reasons that offshore wind development in the United States is lagging behind global trends is the high capital expenditures required. An understanding of the costs and associated drivers of building a commercial-scale offshore wind plant in the United States will inform future research and help U.S. investors feel more confident in offshore wind development. In an effort to explain these costs, the National Renewable Energy Laboratory has developed the Offshore Balance-of-System model.« less

  4. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 3: Project cost estimates

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) cost modeling activities were initiated in phase 1 to establish the ground rules and cost model that would apply to both phase 1 and phase 2 cost analyses. The primary emphasis in phase 1 was development of a cost model for a LAWS instrument for the Japanese Polar Orbiting Platform (JPOP). However, the Space Station application was also addressed in this model, and elements were included, where necessary, to account for Space Station unique items. The cost model presented in the following sections defines the framework for all LAWS cost modeling. The model is consistent with currently available detail, and can be extended to account for greater detail as the project definition progresses.

  5. Wind loading on solar concentrators: some general considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roschke, E. J.

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results onmore » heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.« less

  6. FINAL TECHNICAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fargione, Joseph

    2012-02-24

    The United States has abundant wind resources, such that only about 3% of the resource would need to be developed to achieve the goal of producing 20% of electricity in the United States by 2030. Inappropriately sited wind development may result in conflicts with wildlife that can delay or derail development projects, increase projects costs, and may degrade important conservation values. The most cost-effective approach to reducing such conflicts is through landscape-scale siting early in project development. To support landscape scale siting that avoids sensitive areas for wildlife, we compiled a database on species distributions, wind resource, disturbed areas, andmore » land ownership. This database can be viewed and obtained via http://wind.tnc.org/awwi. Wind project developers can use this web tool to identify potentially sensitive areas and areas that are already disturbed and are therefore likely to be less sensitive to additional impacts from wind development. The United States goal of producing 20% of its electricity from wind energy by the year 2030 would require 241 GW of terrestrial nameplate capacity. We analyzed whether this goal could be met by using lands that are already disturbed, which would minimize impacts to wildlife. Our research shows that over 14 times the DOE goal could be produced on lands that are already disturbed (primarily cropland and oil and gas fields), after taking into account wind resource availability and areas that would be precluded from wind development because of existing urban development or because of development restrictions. This work was published in the peer reviewed science journal PLoS ONE (a free online journal) and can be viewed here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017566. Even projects that are sited appropriately may have some impacts on wildlife habitat that can be offset with offsite compensatory mitigation. We demonstrate one approach to mapping and quantifying mitigation costs, using the state of Kansas as a case study. Our approach considers a range of conservation targets (species and habitat) and calculates mitigation costs based on actual costs of the conservation actions (protection and restoration) that would be needed to fully offset impacts. This work was published in the peer reviewed science journal PLoS ONE (a free online journal) and can be viewed here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0026698.« less

  7. Design and evaluation of low-cost laminated wood composite blades for intermediate size wind turbines: Blade design, fabrication concept, and cost analysis

    NASA Technical Reports Server (NTRS)

    Lieblein, S.; Gaugeon, M.; Thomas, G.; Zueck, M.

    1982-01-01

    As part of a program to reduce wind turbine costs, an evaluation was conducted of a laminated wood composite blade for the Mod-OA 200 kW wind turbine. The effort included the design and fabrication concept for the blade, together with cost and load analyses. The blade structure is composed of laminated Douglas fir veneers for the primary spar and nose sections, and honeycomb cored plywood panels for the trailing edges sections. The attachment of the wood blade to the rotor hub was through load takeoff studs bonded into the blade root. Tests were conducted on specimens of the key structural components to verify the feasibility of the concept. It is concluded that the proposed wood composite blade design and fabrication concept is suitable for Mod-OA size turbines (125-ft diameter rotor) at a cost that is very competitive with other methods of manufacture.

  8. Pump control system for windmills

    DOEpatents

    Avery, Don E.

    1983-01-01

    A windmill control system having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  9. Space Launch System Booster Separation Aerodynamic Testing in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Pinier, Jeremy T.; Chan, David T.; Crosby, William A.

    2016-01-01

    A wind-tunnel investigation of a 0.009 scale model of the Space Launch System (SLS) was conducted in the NASA Langley Unitary Plan Wind Tunnel to characterize the aerodynamics of the core and solid rocket boosters (SRBs) during booster separation. High-pressure air was used to simulate plumes from the booster separation motors (BSMs) located on the nose and aft skirt of the SRBs. Force and moment data were acquired on the core and SRBs. These data were used to corroborate computational fluid dynamics (CFD) calculations that were used in developing a booster separation database. The SRBs could be remotely positioned in the x-, y-, and z-direction relative to the core. Data were acquired continuously while the SRBs were moved in the axial direction. The primary parameters varied during the test were: core pitch angle; SRB pitch and yaw angles; SRB nose x-, y-, and z-position relative to the core; and BSM plenum pressure. The test was conducted at a free-stream Mach number of 4.25 and a unit Reynolds number of 1.5 million per foot.

  10. A Comparison Study of Offshore Wind Support Structures with Monopiles and Jackets for U.S. Waters: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick; Dykes, Katherine; Scott, George

    2016-08-01

    U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yield significant levelized cost of energy (LCOE) savings. For projects in U.S. waters, multimember, lattice structures (also known as jackets) can render required stiffness for transitional water depths at potentially lower costs than monopiles (MPs). In this study, we used a systems engineering approach tomore » evaluate the LCOE of prototypical wind power plants at six locations along the eastern seaboard and the Gulf of Mexico for both types of support structures. Using a reference wind turbine and actual metocean conditions for the selected sites, we calculated loads for a parked and an operational situation, and we optimized the MP- and jacket-based support structures to minimize their overall mass. Using a suite of cost models, we then computed their associated LCOE. For all water depths, the MP-based configurations were heavier than their jacket counterparts, but the overall costs for the MPs were less than they were for jackets up to depths of slightly less than 30 m. When the associated manufacturing and installation costs were included, jackets resulted in lower LCOE for depths greater than 40 m. These results can be used by U.S. stakeholders to understand the potential for different technologies at different sites, but the methodology illustrated in this study can be further employed to analyze the effects of innovations and design choices throughout wind power plant systems.« less

  11. A comparison study of offshore wind support structures with monopiles and jackets for U.S. waters

    NASA Astrophysics Data System (ADS)

    Damiani, R.; Dykes, K.; Scott, G.

    2016-09-01

    U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yield significant levelized cost of energy (LCOE) savings. For projects in U.S. waters, multimember lattice structures (also known as jackets) can render required stiffness for transitional water depths at potentially lower costs than monopiles (MPs). In this study, we used a systems engineering approach to evaluate the LCOE of prototypical wind power plants at six locations along the eastern seaboard and the Gulf of Mexico for both types of support structures. Using a reference wind turbine and actual metocean conditions for the selected sites, we calculated loads for a parked and an operational situation, and we optimized the MP- and jacket-based support structures to minimize their overall mass. Using a suite of cost models, we then computed their associated LCOE. For all water depths, the MP-based configurations were heavier than their jacket counterparts, but the overall costs for the MPs were less than they were for jackets up to depths of slightly less than 30m. When the associated manufacturing and installation costs were included, jackets resulted in lower LCOE for depths greater than 40m. These results can be used by U.S. stakeholders to understand the potential for different technologies at different sites, but the methodology illustrated in this study can be further employed to analyze the effects of innovations and design choices throughout wind power plant systems.

  12. 11 CFR 9034.5 - Net outstanding campaign obligations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... surety bond under 11 CFR 9038.5. (2) The amount submitted as estimated necessary winding down costs under...'s date of ineligibility as determined under 11 CFR 9033.5, plus estimated necessary winding down costs as defined under 11 CFR 9034.4(a)(3), less (2) The total of: (i) Cash on hand as of the close of...

  13. 11 CFR 9034.5 - Net outstanding campaign obligations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... surety bond under 11 CFR 9038.5. (2) The amount submitted as estimated necessary winding down costs under...'s date of ineligibility as determined under 11 CFR 9033.5, plus estimated necessary winding down costs as defined under 11 CFR 9034.4(a)(3), less (2) The total of: (i) Cash on hand as of the close of...

  14. 11 CFR 9034.5 - Net outstanding campaign obligations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... surety bond under 11 CFR 9038.5. (2) The amount submitted as estimated necessary winding down costs under...'s date of ineligibility as determined under 11 CFR 9033.5, plus estimated necessary winding down costs as defined under 11 CFR 9034.4(a)(3), less (2) The total of: (i) Cash on hand as of the close of...

  15. 11 CFR 9034.5 - Net outstanding campaign obligations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... surety bond under 11 CFR 9038.5. (2) The amount submitted as estimated necessary winding down costs under...'s date of ineligibility as determined under 11 CFR 9033.5, plus estimated necessary winding down costs as defined under 11 CFR 9034.4(a)(3), less (2) The total of: (i) Cash on hand as of the close of...

  16. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine

    NASA Astrophysics Data System (ADS)

    Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself and also due to high repair downtime. In order to detect faults as fast as possible to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters. The results in this paper show how the diagnostic scheme can detect change with desired false alarm and detection probabilities.

  17. Integration of Wind Turbines with Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Arsie, I.; Marano, V.; Rizzo, G.; Moran, M.

    2009-08-01

    Some of the major limitations of renewable energy sources are represented by their low power density and intermittent nature, largely depending upon local site and unpredictable weather conditions. These problems concur to increase the unit costs of wind power, so limiting their diffusion. By coupling storage systems with a wind farm, some of the major limitations of wind power, such as a low power density and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air Energy Storage (CAES) is analyzed, and the state of art on such systems is discussed. A Matlab/Simulink model of a hybrid power plant consisting of a wind farm coupled with CAES is then presented. The model has been successfully validated starting from the operating data of the McIntosh CAES Plant in Alabama. Time-series neural network-based wind speed forecasting are employed to determine the optimal daily operation strategy for the storage system. A detailed economic analysis has been carried out: investment and maintenance costs are estimated based on literature data, while operational costs and revenues are calculated according to energy market prices. As shown in the paper, the knowledge of the expected available energy is a key factor to optimize the management strategies of the proposed hybrid power plant, allowing to obtain environmental and economic benefits.

  18. Conceptual design of a fixed-pitch wind turbine generator system rated at 400 kilowatts

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Kasuba, R.; Spring, J.

    1984-01-01

    The design and cost aspects of a fixed pitch, 400 kW Wind Turbine Generator (WTG) concept are presented. Improvements in reliability and cost reductions were achieved with fixed pitch operation and by incorporating recent advances in WTG technology. The specifications for this WTG concept were as follows: (1) A fixed pitch, continuous wooden rotor was to be provided by the Gougeon Bros. Co. (2) An 8 leg hyperboloid tower that showed promise as a low cost structure was to be used. (3) Only commercially available components and parts that could be easily fabricated were to be considered. (4) Design features deemed desirable based on recent NASA research efforts were to be incorporated. Detailed costs and weight estimates were prepared for the second machine and a wind farm of 12 WTG's. The calculated cost of energy for the fixed pitch, twelve unit windfarm is 11.5 cents/kW hr not including the cost of land and access roads. The study shows feasibility of fixed pitch, intermediate power WTG operation.

  19. An inventory of aeronautical ground research facilities. Volume 1: Wind tunnels

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    A survey of wind tunnel research facilities in the United States is presented. The inventory includes all subsonic, transonic, and hypersonic wind tunnels operated by governmental and private organizations. Each wind tunnel is described with respect to size, mechanical operation, construction, testing capabilities, and operating costs. Facility performance data are presented in charts and tables.

  20. Policies to Support Wind Power Deployment: Key Considerations and Good Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie; Tegen, Suzanne; Baring-Gould, Ian

    2015-05-19

    Policies have played an important role in scaling up wind deployment and increasing its economic viability while also supporting country-specific economic, social, and environmental development goals. Although wind power has become cost-competitive in several contexts, challenges to wind power deployment remain. Within the context of country-specific goals and challenges, policymakers are seeking

  1. Complex Flow: Workshop Report; January 17-18, 2012, University of Colorado, Boulder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-06-01

    The Department of Energy's Wind Program organized a two-day workshop designed to examine complex wind flow into and out of the wind farm environment and the resulting impacts on the mechanical workings of individual wind turbines. An improved understanding of these processes will subsequently drive down the risk involved for wind energy developers, financiers, and owner/operators, thus driving down the cost of energy.

  2. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    NASA Astrophysics Data System (ADS)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered,more » with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).« less

  4. Research of low cost wind generator rotors

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Ross, R. S.

    1978-01-01

    A feasibility program determined that it would be possible to significantly reduce the cost of manufacturing wind generator rotors by making them of cast urethane. Several high modulus urethanes which were structurally tested were developed. A section of rotor was also cast and tested showing the excellent aerodynamic surface which results. A design analysis indicated that a cost reduction of almost ten to one can be achieved with a small weight increase to achieve the same structural integrity as expected of current rotor systems.

  5. Design and evaluation of low-cost stainless steel fiberglass foam blades for large wind driven generating systems

    NASA Technical Reports Server (NTRS)

    Eggert, W. S.

    1982-01-01

    A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables.

  6. Cost effective use of liquid nitrogen in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Mcintosh, Glen E.; Lombard, David S.; Martindale, David L.; Dunn, Robert P.

    1987-01-01

    A method of reliquefying from 12 to 19% of the nitrogen exhaust gas from a cryogenic wind tunnel has been developed. Technical feasibility and cost effectiveness of the system depends on performance of an innovative positive displacement expander which requires scale model testing to confirm design studies. The existing cryogenic system at the 0.3-m transonic cryogenic tunnel has been surveyed and extensive upgrades proposed. Upgrades are generally cost effective and may be implemented immediately since they are based on established technology.

  7. Design and evaluation of low-cost stainless steel fiberglass foam blades for large wind driven generating systems

    NASA Astrophysics Data System (ADS)

    Eggert, W. S.

    1982-10-01

    A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables.

  8. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  9. An investigation of the unsteady flow associated with plume induced flow separation

    NASA Technical Reports Server (NTRS)

    Boggess, A. L., Jr.

    1972-01-01

    A wind tunnel study of the basic nature of plume induced flow separation is reported with emphasis on the unsteady aspects of the flow. Testing was conducted in a 6 inch by 6 inch blow-down supersonic wind tunnel. A cone-cylinder model with a pluming jet was used as the test model. Tests were conducted with a systematic variation in Mach number and plume pressure. Results of the tests are presented in the form of root-mean-squared surface pressure levels, power spectral densities, photographs of the flow field from which shock angles and separation lengths were taken, and time-averaged surface pressure profiles.

  10. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  11. Optimal design of wind barriers using 3D computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fang, H.; Wu, X.; Yang, X.

    2017-12-01

    Desertification is a significant global environmental and ecological problem that requires human-regulated control and management. Wind barriers are commonly used to reduce wind velocity or trap drifting sand in arid or semi-arid areas. Therefore, optimal design of wind barriers becomes critical in Aeolian engineering. In the current study, we perform 3D computational fluid dynamics (CFD) simulations for flow passing through wind barriers with different structural parameters. To validate the simulation results, we first inter-compare the simulated flow field results with those from both wind-tunnel experiments and field measurements. Quantitative analyses of the shelter effect are then conducted based on a series of simulations with different structural parameters (such as wind barrier porosity, row numbers, inter-row spacing and belt schemes). The results show that wind barriers with porosity of 0.35 could provide the longest shelter distance (i.e., where the wind velocity reduction is more than 50%) thus are recommended in engineering designs. To determine the optimal row number and belt scheme, we introduce a cost function that takes both wind-velocity reduction effects and economical expense into account. The calculated cost function show that a 3-row-belt scheme with inter-row spacing of 6h (h as the height of wind barriers) and inter-belt spacing of 12h is the most effective.

  12. Four essays on offshore wind power potential, development, regulatory framework, and integration

    NASA Astrophysics Data System (ADS)

    Dhanju, Amardeep

    Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the coastal states to harness the resource, particularly in states adjacent to the Mid-Atlantic Bight where the shallow continental shelf allows installation of wind turbines using the existing foundation technology. But the promise of bountiful clean energy from offshore wind could be delayed or forestalled due to policy and regulatory challenges. This dissertation is an effort to identify and address some of the important challenges. Focusing on Delaware as a case study it calculates the extent of the wind resource; considers one means to facilitate resource development---the establishment of statewide and regional public power authorities; analyzes possible regulatory frameworks to manage the resource in state-controlled waters; and assesses the use of distributed storage to manage intermittent output from wind turbines. In order to cover a diversity of topics, this research uses a multi-paper format with four essays forming the body of work. The first essay lays out an accessible methodology to calculate offshore wind resource potential using publicly available data, and uses this methodology to access wind resources off Delaware. The assessment suggests a wind resource approximately four times the average electrical load in Delaware. The second essay examines the potential role of a power authority, a quasi-public institution, in lowering the cost of capital, reducing financial risk of developing and operating a wind farm, and enhancing regional collaboration on resource development and management issues. The analysis suggests that a power authority can lower the cost of offshore wind power by as much as 1/3, thereby preserving the ability to pursue cost-competitive development even if the current federal incentives are removed. The third essay addresses the existing regulatory void in state-controlled waters of Delaware. It outlines a regulatory framework touching on key elements such as the leasing system, length of tenure, and financial terms for allocating property rights. In addition, the framework also provides recommendations on environmental assessment that would be required prior to lease issuance. The fourth essay analyzes offshore wind power integration using electric thermal storage in housing units. It presents a model of wind generation, heating load and wind driven thermal storage to assess the potential of storage to buffer wind intermittency. The analysis suggests that thermal load matches the seasonal excess of offshore wind during winter months, and that electric thermal storage could provide significant temporal, spatial, and cost advantages for balancing output from offshore wind generation, while also converting a major residential load (space heating) now met by fossil fuels to low carbon energy resources. Together, the four essays provide new analyses of policy, regulatory, and system integration issues that could impede resource development, and also analyze and recommend strategies to manage these issues.

  13. Estimating the costs of drug-related hospital separations in Australia.

    PubMed

    Riddell, Steven; Shanahan, Marian; Degenhardt, Louisa; Roxburgh, Amanda

    2008-04-01

    To estimate the total hospital costs of drug-related separations in Australia from 1999/2000 to 2004/05, and separate costs for the following illicit drug classes: opioids, amphetamine, cannabis and cocaine. Australian hospital separations between 1999/2000 to 2004/05 from the National Hospital Morbidity Dataset (NHMD) with a principal diagnosis of opioids, amphetamine, cannabis or cocaine were included, as were indirect estimates of additional 'drug-caused' separations using aetiological fractions. The costs were estimated using the year-specific case weights and costs for each respective Diagnostic Related Group (DRG). Total constant costs decreased from $50.8 million in 1999/2000 to $43.8 million in 2002/03 then increased to $46.7 million in 2004/05. The initial decrease was driven by a decline in numbers of opioid-related separations (with costs decreasing by $11.5 million) between 1999/2000 and 2001/02. Decreases were evident in separations within the opioid use, dependence and poisoning DRGs. Increases in costs were observed between 1999/00 and 2004/05 for amphetamine (an increase of $2.4 million), cannabis ($1.8 million) and cocaine ($330,000) related separations. Several uncommon but very expensive drug-related separations constituted 12.7% of the total drug-related separations. Overall, the costs of drug-related hospital separations have decreased by $4.1 million between 1999 and 2005, which is primarily attributable to fewer opioid-related separations. Small reductions in the number of costly separations through harm reduction strategies have the potential to significantly reduce drug-related hospital costs.

  14. The Ultimate Flow Controlled Wind Turbine Blade Airfoil

    NASA Astrophysics Data System (ADS)

    Seifert, Avraham; Dolgopyat, Danny; Friedland, Ori; Shig, Lior

    2015-11-01

    Active flow control is being studied as an enabling technology to enhance and maintain high efficiency of wind turbine blades also with contaminated surface and unsteady winds as well as at off-design operating conditions. The study is focused on a 25% thick airfoil (DU91-W2-250) suitable for the mid blade radius location. Initially a clean airfoil was fabricated and tested, as well as compared to XFoil predictions. From these experiments, the evolution of the separation location was identified. Five locations for installing active flow control actuators are available on this airfoil. It uses both Piezo fluidic (``Synthetic jets'') and the Suction and Oscillatory Blowing (SaOB) actuators. Then we evaluate both actuation concepts overall energy efficiency and efficacy in controlling boundary layer separation. Since efficient actuation is to be found at low amplitudes when placed close to separation location, distributed actuation is used. Following the completion of the baseline studies the study has focused on the airfoil instrumentation and extensive wind tunnel testing over a Reynolds number range of 0.2 to 1.5 Million. Sample results will be presented and outline for continued study will be discussed.

  15. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, M.; Holttinen, H.; Soder, L.

    2012-09-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, whichmore » may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.« less

  16. Alcoa wind turbines

    NASA Technical Reports Server (NTRS)

    Ai, D. K.

    1979-01-01

    An overview of Alcoa's wind energy program is given with emphasis on the the development of a low cost, reliable Darrieus Vertical Axis Wind Turbine System. The design layouts and drawings for fabrication are now complete, while fabrication and installation to utilize the design are expected to begin shortly.

  17. Fatigue testing of low-cost fiberglass composite wind turbine blade materials

    NASA Technical Reports Server (NTRS)

    Hofer, K. E.; Bennett, L. C.

    1981-01-01

    The static and fatigue behavior of transverse filament tape (TFT) fiberglass/epoxy and TFT/polyester composites was established by the testing of specimens cut from panels fabricated by a filament winding process used for the construction of large experimental wind turbine blades.

  18. A Physicochemical Method for Separating Rare Earths: Addressing an Impending Shortfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schelter, Eric

    2017-03-14

    There are currently zero operating suppliers of critical rare earth elements La–Lu, Sc, Y (REs), in the western hemisphere. REs are critical materials due to their importance in clean energy and defense applications, including permanent magnets in wind turbines and phosphors in energy efficient lighting. It is not economically viable to produce pure REs in the U.S. given current separations technology. REs production is dominated by suppliers in the People’s Republic of China (PRC) because of their capacity in liquid­liquid solvent extraction (SX) used to purify mixtures. Weak environmental regulations in the PRC also contribute to a competitive advantage. SXmore » is a cost, time, solvent and waste intensive process but is highly optimized and scalable. The low efficiency of SX derives from the small thermodynamic differences in solvation enthalpy between the RE3+ cations. To foster stable domestic RE production there is a critical need for fundamentally new REs chemistry that contributes to disruptive technologies in RE separations. The overall goal of this project was to develop new thermodynamic bases, and apply them, for the solution separation of rare earth metals. We have developed the chemistry of rare earth metals: La–Lu, Sc and Y, with redox active ligands. Our hypothesis for the project was that electron­hole coupling in complexes of certain lanthanide metals with redox active ligands can be used to manifest chemical distinctiveness and affect separations. We also developed separations based on unique solution equilibria from tailored ligands.« less

  19. Flow interaction of diffuser augmented wind turbines

    NASA Astrophysics Data System (ADS)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  20. Wind Alliance for the Sustainable Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho, Damarys Gonzalez

    2012-09-30

    The Puerto Rico Energy Affairs Administration (PREAA) is actively engaged in the implementation of existing public policy for the conservation of energy and promotion of renewable energy to reduce consumer’s costs and reduce environmental impact. Puerto Rico is an island in where no own reserves of gas, oil or coal exists. This severe dependence in on foreign oil is reflected in the higher cost of electricity in Puerto Rico, which is significantly higher than most of the United States. Therefore, public energy policy of Puerto Rico places emphasis on diversification of energy sources and the use of renewable energy technologies.more » The Wind energy Alliance for the Sustainable Development project focused on the formation of a wind energy working group to educate and promote wind energy technologies; at the same time the evaluating the viability of wind energy in Puerto Rico. The educational outreach was performed through a series of wind energy workshops where interested parties such as, installers, sellers, engineers, general public even opposing groups participate from the activities.« less

  1. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India’s Electric Grid, Vol. I. National Study. Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palchak, David; Cochran, Jaquelin; Deshmukh, Ranjit

    The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established an installed capacity target of 175 gigawatts (GW) RE by 2022 that includes 60 GW of wind and 100 GW of solar, up from current capacities of 29 GW wind and 9 GW solar. India’s contribution to global efforts on climate mitigation extends this ambition to 40% non-fossil-based generation capacity by 2030. Global experience demonstrates that power systems can integrate wind and solar at this scale; however, evidence-based planning is important tomore » achieve wind and solar integration at least cost. The purpose of this analysis is to evaluate the operation of India’s power grid with 175 GW of RE in order to identify potential cost and operational concerns and actions needed to efficiently integrate this level of wind and solar generation.« less

  2. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    NASA Astrophysics Data System (ADS)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  3. Monitoring Wind Turbine Loading Using Power Converter Signals

    NASA Astrophysics Data System (ADS)

    Rieg, C. A.; Smith, C. J.; Crabtree, C. J.

    2016-09-01

    The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.

  4. Wind Energy Finance in the United States: Current Practice and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, Paul D.; Feldman, David J.; Settle, Donald E.

    In the United States, investment in wind energy has averaged nearly $13.6 billion annually since 2006 with more than $140 billion invested cumulatively over that period (BNEF 2017). This sizable investment activity demonstrates the persistent appeal of wind energy and its increasing role in the U.S electricity generation portfolio. Despite its steady investment levels over the last decade, some investors still consider wind energy as a specialized asset class. Limited familiarity with the asset class both limit the pool of potential investors and drive up costs for investors. This publication provides an overview of the wind project development process, capitalmore » sources and financing structures commonly used, and traditional and emerging procurement methods. It also provides a high-level demonstration of how financing rates impact a project's all-in cost of energy. The goal of the publication is to provide a representative and wide-ranging resource for the wind development and financing processes.« less

  5. Rotary Transformer Seals Power In

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Paulkovich, J.

    1982-01-01

    Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.

  6. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    NASA Astrophysics Data System (ADS)

    Wang, Avery Li-Chun

    This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters which require a small fraction of the computational power of conventional FIR implementations. This design strategy is based on truncated and stabilized IIR filters. These signal-processing methods have been applied to the problem of auditory source separation, resulting in voice separation from complex music that is significantly better than previous results at far lower computational cost.

  7. Design and simulation of 532nm Rayleigh-Mie Doppler wind Lidar system

    NASA Astrophysics Data System (ADS)

    Peng, Zhuang; Xie, Chenbo; Wang, Bangxin; Shen, Fahua; Tan, Min; Li, Lu; Zhang, Zhanye

    2018-02-01

    Wind is one of the most significant parameter in weather forecast and the research of climate.It is essential for the weather forecast seasonally to yearly ,atmospheric dynamics,study of thermodynamics and go into the water, chemistry and aerosol which are have to do with global climate statusto measure three-dimensional troposphericwind field accurately.Structure of the doppler wind lidar system which based on Fabry-Perot etalon is introduced detailedly. In this section,the key parameters of the triple Fabry-Perot etalon are optimized and this is the key point.The results of optimizing etalon are as follows:the FSR is 8GHz,the FWHM is1GHz,3.48 GHz is the separation distance between two edge channels,and the separation distance between locking channel and the left edge channel is 1.16 GHz. In this condition,the sensitivity of wind velocity of Mie scattering and Rayleigh scattering is both 0.70%/(m/s) when the temperature is 255K in the height of 5Km and there is no wind. The simulation to this system states that in+/-50m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 0.15m/s from 5 to 50km altitude.

  8. Wind Turbine Optimization with WISDEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Graf, Peter A

    This presentation for the Fourth Wind Energy Systems Engineering Workshop explains the NREL wind energy systems engineering initiative-developed analysis platform and research capability to capture important system interactions to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. Topics include Wind-Plant Integrated System Design and Engineering Model (WISDEM) and multidisciplinary design analysis and optimization.

  9. Chapter 15: Reliability of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen; O'Connor, Ryan

    The global wind industry has witnessed exciting developments in recent years. The future will be even brighter with further reductions in capital and operation and maintenance costs, which can be accomplished with improved turbine reliability, especially when turbines are installed offshore. One opportunity for the industry to improve wind turbine reliability is through the exploration of reliability engineering life data analysis based on readily available data or maintenance records collected at typical wind plants. If adopted and conducted appropriately, these analyses can quickly save operation and maintenance costs in a potentially impactful manner. This chapter discusses wind turbine reliability bymore » highlighting the methodology of reliability engineering life data analysis. It first briefly discusses fundamentals for wind turbine reliability and the current industry status. Then, the reliability engineering method for life analysis, including data collection, model development, and forecasting, is presented in detail and illustrated through two case studies. The chapter concludes with some remarks on potential opportunities to improve wind turbine reliability. An owner and operator's perspective is taken and mechanical components are used to exemplify the potential benefits of reliability engineering analysis to improve wind turbine reliability and availability.« less

  10. Three-Dimensional Magnetohydrodynamic Modeling of the Solar Wind Including Pickup Protons and Turbulence Transport

    NASA Technical Reports Server (NTRS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.

    2012-01-01

    To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.

  11. Final Technical Report Power through Policy: "Best Practices" for Cost-Effective Distributed Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt

    2012-02-28

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Windmore » Policy Comparison Tool, found at www.windpolicytool.org, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when necessary. The ranking of distributed wind state policy and economic environments summarized in the attached report, based on the Policy Tool's default COE results, highlights favorable market opportunities for distributed wind growth as well as market conditions ripe for improvement. Best practices for distributed wind state policies are identified through an evaluation of their effect on improving the bottom line of project investments. The case studies and state rankings were based on incentives, power curves, and turbine pricing as of 2010, and may not match the current results from the Policy Tool. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets. In providing a simple and easy-to-use policy comparison tool that estimates financial performance, the Policy Tool and guidebook are expected to enhance market expansion by the small wind industry by increasing and refining the understanding of distributed wind costs, policy best practices, and key market opportunities in all 50 states. This comprehensive overview and customized software to quickly calculate and compare policy scenarios represent a fundamental step in allowing policymakers to see how their decisions impact the bottom line for distributed wind consumers, while estimating the relative advantages of different options available in their policy toolboxes. Interested stakeholders have suggested numerous ways to enhance and expand the initial effort to develop an even more user-friendly Policy Tool and guidebook, including the enhancement and expansion of the current tool, and conducting further analysis. The report and the project's Guidebook include further details on possible next steps. NREL Report No. BK-5500-53127; DOE/GO-102011-3453.« less

  12. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reductionmore » in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.« less

  13. An effective wind speed for models of fire spread

    Treesearch

    Ralph M. Nelson

    2002-01-01

    In previous descriptions of wind-slope interaction and the spread rate of wildland fires it is assumed that the separate effects of wind and slope are independent and additive and that corrections for these effects may be applied to spread rates computed from existing rate of spread models. A different approach is explored in the present paper in which the upslope...

  14. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappala, D.; Tavner, P.; Crabtree, C.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data representmore » one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.« less

  15. Reducing Wind Curtailment through Transmission Expansion in a Wind Vision Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Jennie; Mai, Trieu; Brinkman, Greg

    The Department of Energy's 2015 Wind Vision study, which analyzed an ambitious scenario where wind power served 35% of U.S. electricity consumption in 2050, showed the potential for wind energy to provide substantial health, environmental, and economic benefits. Using a commercial unit commitment and economic dispatch model, we build on this research by assessing the hourly operational feasibility of a similar high wind future in the Western United States. Our detailed simulations found no hours of unmet load or reserve violations with more than 35% potential wind (and 12% potential solar) available on the system, which highlights the technical possibilitymore » of integrating large amounts of wind energy. However, absent significant changes to the western grid, we find that substantial wind curtailment could be an issue, as it could degrade the potential for wind power to reduce fuel costs and lowering the emission benefits. To assess the value of transmission to mitigate wind curtailment, we model a suite of transmission expansion scenarios. We find that wind curtailment could be reduced by approximately half under a scenario where new transmission is based only on proposed projects. This avoided wind curtailment could lower annual production costs and reduce carbon dioxide emissions substantially. Greater transmission expansion was found to yield further benefits, although the marginal benefits of these new lines were found to decline. Overall, these results suggest that power systems operation can be realized with more than 35% wind penetration, but that transmission expansion is likely to play a vital role.« less

  16. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2005-01-01

    Predictive modeling for Escherichia coli concentrations at effluent-dominated beaches may be a favorable alternative to current, routinely criticized monitoring standards. The ability to model numerous beaches simultaneously and provide real-time data decreases cost and effort associated with beach monitoring. In 2004, five Lake Michigan beaches and the nearby Little Calumet River outfall were monitored for E. coli 7 days a week; on nine occasions, samples were analyzed for coliphage to indicate a sewage source. Ambient lake, river, and weather conditions were measured or obtained from independent monitoring sources. Positive tests for coliphage analysis indicated sewage was present in the river and on bathing beaches following heavy rainfall. Models were developed separately for days with prevailing onshore and offshore winds due to the strong influence of wind direction in determining the river's impact on the beaches. Using regression modeling, it was determined that during onshore winds, E. coli   could be adequately predicted using wave height, lake chlorophyll and turbidity, and river turbidity (R2=0.635, N=94); model performance decreased for offshore winds using wave height, wave period, and precipitation (R2=0.320, N=124). Variation was better explained at individual beaches. Overall, the models only failed to predict E. coli levels above the EPA closure limit (235 CFU/100 ml) on five of eleven occasions, indicating that the model is a more reliable alternative to the monitoring approach employed at most recreational beaches.

  17. Computational Study of the Effect of Slot Orientation on Synthetic Jet-Based Separation Control

    DTIC Science & Technology

    2012-01-01

    Wind Turbine Blades,” Journal of Wind Energy, Vol. 13, Issue 2-3, 2009, pp. 221 – 237. [10] Crook, A. and Wood, N. J., “Measurements and...by these hairpin structures could be desirable for separation control. Roll-up of jets into vortex ring followed by tilting and stretching occurred...at an intermediate Reynolds number and velocity ratio. By increasing these two flow parameters, rapid penetration of the tilted vortex ring up to the

  18. Redundant speed control for brushless Hall effect motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1973-01-01

    A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.

  19. Wind tunnel investigations of glider fuselages with different waistings and wing arrangements

    NASA Technical Reports Server (NTRS)

    Radespiel, R.

    1983-01-01

    The parameters fuselage pinch glider wing arrangement and fuselage leading edge radius of nine glider configurations were investigated in wind tunnel tests. Laminar separation bubbles were found on strongly recessed fuselages. These separations in the juncture between fuselage and wing are essential in the prevention of harmful aerodynamic drag. Drag reduction was measured with increasing pinch and the wing arrangement in the rear. These results are only valid for laminar flow on the fuselage leading edge.

  20. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    NASA Astrophysics Data System (ADS)

    Xu, Peifeng; Shi, Kai; Sun, Yuxin; Zhua, Huangqiu

    2017-05-01

    Dual rotor permanent magnet (DRPM) wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF), cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA). The results show that the slot and pole number combinations have an important impact on the generator properties.

  1. Converting Wind Energy to Ammonia at Lower Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malmali, Mahdi; Reese, Michael; McCormick, Alon V.

    Renewable wind energy can be used to make ammonia. However, wind-generated ammonia costs about twice that made from a traditional fossil-fuel driven process. To reduce the production cost, we replace the conventional ammonia condensation with a selective absorber containing metal halides, e.g., calcium chloride, operating at near synthesis temperatures. With this reaction-absorption process, ammonia can be synthesized at 20 bar from air, water, and wind-generated electricity, with rates comparable to the conventional process running at 150–300 bar. In our reaction-absorption process, the rate of ammonia synthesis is now controlled not by the chemical reaction but largely by the pump usedmore » to recycle the unreacted gases. The results suggest an alternative route to distributed ammonia manufacture which can locally supply nitrogen fertilizer and also a method to capture stranded wind energy as a carbon-neutral liquid fuel.« less

  2. Development of a low cost test rig for standalone WECS subject to electrical faults.

    PubMed

    Himani; Dahiya, Ratna

    2016-11-01

    In this paper, a contribution to the development of low-cost wind turbine (WT) test rig for stator fault diagnosis of wind turbine generator is proposed. The test rig is developed using a 2.5kW, 1750 RPM DC motor coupled to a 1.5kW, 1500 RPM self-excited induction generator interfaced with a WT mathematical model in LabVIEW. The performance of the test rig is benchmarked with already proven wind turbine test rigs. In order to detect the stator faults using non-stationary signals in self-excited induction generator, an online fault diagnostic technique of DWT-based multi-resolution analysis is proposed. It has been experimentally proven that for varying wind conditions wavelet decomposition allows good differentiation between faulty and healthy conditions leading to an effective diagnostic procedure for wind turbine condition monitoring. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Converting Wind Energy to Ammonia at Lower Pressure

    DOE PAGES

    Malmali, Mahdi; Reese, Michael; McCormick, Alon V.; ...

    2017-11-07

    Renewable wind energy can be used to make ammonia. However, wind-generated ammonia costs about twice that made from a traditional fossil-fuel driven process. To reduce the production cost, we replace the conventional ammonia condensation with a selective absorber containing metal halides, e.g., calcium chloride, operating at near synthesis temperatures. With this reaction-absorption process, ammonia can be synthesized at 20 bar from air, water, and wind-generated electricity, with rates comparable to the conventional process running at 150–300 bar. In our reaction-absorption process, the rate of ammonia synthesis is now controlled not by the chemical reaction but largely by the pump usedmore » to recycle the unreacted gases. The results suggest an alternative route to distributed ammonia manufacture which can locally supply nitrogen fertilizer and also a method to capture stranded wind energy as a carbon-neutral liquid fuel.« less

  4. Mise en oeuvre et etalonnage d'une soufflerie de recherche sur les couches limites

    NASA Astrophysics Data System (ADS)

    Pioton, Julien

    In order to reproduce a turbulent boundary layer separation bubble in a laboratory at the École de Technologie Supérieure of Montreal, an open-circuit wind tunnel equipped with a blow-down centrifugal fan has been implemented and calibrated for this research project. The methodology for the conception of the wind tunnel components, based on the results obtained from previous experiments, has been validated by the comparison between experimental and theoretical pressure losses along the wind tunnel. Dimensionless mean axial velocity measurements in the working section have showed an irrotational uniform flow zone at the contraction end, which demonstrates the satisfactory performance of the flowconditioning components located upstream from the working section. Mean axial velocity and total pressure measurements along the working section have allowed for estimates of the location of boundary between irrotational and rotational flow at the separation bubble. The maximum mean height of the boundary layer has been estimated at around 15 cm. Oil film visualisations have revealed a mean bubble separation length of approximately 52 cm. Theses oil visualisations, supported by mean lateral velocity measurements in the current configuration of the working section, have indicated important three-dimensional effects and significant dissymmetry in the vicinity of the separation and reattachment zones at the separation bubble.

  5. Renewable energy alternatives to mega hydropower: a case study of Inga 3 for Southern Africa

    NASA Astrophysics Data System (ADS)

    Deshmukh, R.; Mileva, A.; Wu, G. C.

    2018-06-01

    We assess the feasibility and cost-effectiveness of renewable energy alternatives to Inga 3, a 4.8-GW hydropower project on the Congo River, to serve the energy needs of the host country, the Democratic Republic of Congo (DRC), and the main buyer, South Africa. To account for a key uncertainty in the literature regarding the additional economic impacts of managing variable wind and solar electricity, we built a spatially and temporally detailed power system investment model for South Africa. We find that a mix of wind, solar photovoltaics, and some natural gas is more cost-effective than Inga 3 to meet future demand except in scenarios with pessimistic assumptions about wind technology performance. If a low load growth forecast is used, including Inga 3 in the power mix results in higher system cost across all sensitivities. In our scenarios, the effect of Inga 3 deployment on South African power system cost ranges from an increase of ZAR 4300 (US 330) million annually to savings of ZAR 1600 (US 120) million annually by 2035. A cost overrun as low as 20% makes the Inga 3 scenarios more expensive in all sensitivity cases. Including time and cost overruns and losses in transmission from DRC to South Africa make Inga 3 an even less attractive investment. For DRC, through analysis of spatial datasets representing technical, physical, and environmental constraints, we find abundant renewable energy potential: 60 GW of solar photovoltaic and 0.6–2.3 GW of wind located close to transmission infrastructure have levelized costs less than US 0.07 per kWh, or the anticipated cost of Inga 3 to residential consumers.

  6. Multi-time Scale Joint Scheduling Method Considering the Grid of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Zhijun, E.; Wang, Weichen; Cao, Jin; Wang, Xin; Kong, Xiangyu; Quan, Shuping

    2018-01-01

    Renewable new energy power generation prediction error like wind and light, brings difficulties to dispatch the power system. In this paper, a multi-time scale robust scheduling method is set to solve this problem. It reduces the impact of clean energy prediction bias to the power grid by using multi-time scale (day-ahead, intraday, real time) and coordinating the dispatching power output of various power supplies such as hydropower, thermal power, wind power, gas power and. The method adopts the robust scheduling method to ensure the robustness of the scheduling scheme. By calculating the cost of the abandon wind and the load, it transforms the robustness into the risk cost and optimizes the optimal uncertainty set for the smallest integrative costs. The validity of the method is verified by simulation.

  7. Design, performance and economics of the DAF Indal 50 kW and 375 kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Schienbein, L. A.; Malcolm, D. J.

    1982-03-01

    A review of the development and performance of the DAF Indal 50 kW vertical axis Darrieus wind turbines shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. A description is given of a wind-diesel hybrid presently being tested. Details are also presented of a 375 kW VAWT planned for production in late 1982. A discussion of the economics of both the 50 kW and 375 kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance and efficiency. The energy outputs are translated into diesel fuel cost savings for remote communities.

  8. Design study of wind turbines 50 kW to 3000 kW for electric utility applications. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Wind turbine configurations that would lead to generation of electrical power in a cost effective manner were considered. All possible overall system configurationss, operating modes, and sybsystem concepts were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The rationale employed and the key findings are summarized.

  9. Performance test of a low cost roof-mounted wind turbine

    NASA Astrophysics Data System (ADS)

    Figueroa-Espinoza, Bernardo; Quintal, Roberto; Gou, Clément; Aguilar, Alicia

    2013-11-01

    A low cost wind turbine was implemented based on the ideas put forward by Hugh Piggot in his book ``A wind turbine recipe book,'' where such device is developed using materials and manufacturing processes available (as much as possible) in developing countries or isolated communities. The wind turbine is to be mounted on a two stories building roof in a coastal zone of Mexico. The velocity profiles and turbulence intensities for typical wind conditions on top of the building roof were analyzed using numerical simulations (RANS) in order to locate the turbine hub above any recirculation and near the maximum average speed. The coefficient of performance is going to be evaluated experimentally by measuring the electrical power generation and wind characteristics that drive the wind turbine on the field. These experimental results will be applied on the improvement of the wind turbine design, as well as the validation of a numerical simulation model that couples the wind characteristics obtained through CFD with the Blade Element Method (BEM) and an electro-mechanical model of the turbine-shaft-generator ensemble. Special thanks to the Coordinación de Investigación Científica of the Universidad Michoacana de San Nicolás de Hidalgo for their support.

  10. A study of the coherence length of ULF waves in the earth's foreshock

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.

    1990-01-01

    High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.

  11. 2014-2015 Offshore Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Aaron

    2015-11-18

    This presentation provides an overview of progress toward offshore wind cost reduction in Europe and implications for the U.S. market. The presentation covers an overview of offshore wind developments, economic and performance trends, empirical evidence of LCOE reduction, and challenges and opportunities in the U.S. market.

  12. The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications

    NASA Astrophysics Data System (ADS)

    Rose, Randy; Gleason, Scott; Ruf, Chris

    2014-10-01

    Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.

  13. Second-Generation Large Civil Tiltrotor 7- by 10-Foot Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.; Russell, Carl R.; Willink, Gina C.; Pete, Ashley E.; Adibi, Sierra A.; Ewert, Adam; Theuns, Lieselotte; Beierle, Connor

    2016-01-01

    An approximately 6-percent scale model of the NASA Second-Generation Large Civil Tiltrotor (LCTR2) Aircraft was tested in the U.S. Army 7- by 10-Foot Wind Tunnel at NASA Ames Research Center January 4 to April 19, 2012, and September 18 to November 1, 2013. The full model was tested, along with modified versions in order to determine the effects of the wing tip extensions and nacelles; the wing was also tested separately in the various configurations. In both cases, the wing and nacelles used were adopted from the U.S. Army High Efficiency Tilt Rotor (HETR) aircraft, in order to limit the cost of the experiment. The full airframe was tested in high-speed cruise and low-speed hover flight conditions, while the wing was tested only in cruise conditions, with Reynolds numbers ranging from 0 to 1.4 million. In all cases, the external scale system of the wind tunnel was used to collect data. Both models were mounted to the scale using two support struts attached underneath the wing; the full airframe model also used a third strut attached at the tail. The collected data provides insight into the performance of the preliminary design of the LCTR2 and will be used for computational fluid dynamics (CFD) validation and the development of flight dynamics simulation models.

  14. Asynchronous sampled-data approach for event-triggered systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Memon, Azhar M.

    2017-11-01

    While aperiodically triggered network control systems save a considerable amount of communication bandwidth, they also pose challenges such as coupling between control and event-condition design, optimisation of the available resources such as control, communication and computation power, and time-delays due to computation and communication network. With this motivation, the paper presents separate designs of control and event-triggering mechanism, thus simplifying the overall analysis, asynchronous linear quadratic Gaussian controller which tackles delays and aperiodic nature of transmissions, and a novel event mechanism which compares the cost of the aperiodic system against a reference periodic implementation. The proposed scheme is simulated on a linearised wind turbine model for pitch angle control and the results show significant improvement against the periodic counterpart.

  15. Definition and preliminary design of the Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cost estimates for phase C/D of the laser atmospheric wind sounder (LAWS) program are presented. This information provides a framework for cost, budget, and program planning estimates for LAWS. Volume 3 is divided into three sections. Section 1 details the approach taken to produce the cost figures, including the assumptions regarding the schedule for phase C/D and the methodology and rationale for costing the various work breakdown structure (WBS) elements. Section 2 shows a breakdown of the cost by WBS element, with the cost divided in non-recurring and recurring expenditures. Note that throughout this volume the cost is given in 1990 dollars, with bottom line totals also expressed in 1988 dollars (1 dollar(88) = 0.93 1 dollar(90)). Section 3 shows a breakdown of the cost by year. The WBS and WBS dictionary are included as an attachment to this report.

  16. Solar wind deceleration and MHD turbulence in the earth's foreshock region - ISEE 1 and 2 and IMP 8 observations

    NASA Technical Reports Server (NTRS)

    Bonifazi, C.; Moreno, G.; Russell, C. T.; Lazarus, A. J.; Sullivan, J. D.

    1983-01-01

    The interaction of the solar wind with ions backstreaming from the earth's bow shock is investigated using plasma and magnetic field measurements on ISEE 1 and 2 and IMP 8 at widely separated positions in the earth's foreshock. This technique separates temporal and spatial variations within the foreshock. It is found that the solar wind acceleration associated with backstreaming ions is correlated with the amplitude of the MHD turbulence, and that the largest decelerations are seen close to the bow shock. The density of the backstreaming ion beam is strongly correlated with distance from the shock, and decreases by about a factor of three in a distance of about 3R(e).

  17. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Nathan

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  18. Could Wind or Solar Energy Replace Diesel Generators for Aviation Ground Maintenance Operations?

    DTIC Science & Technology

    2013-04-17

    power. Both of these systems depend on the sun to produce energy. Wind turbines depend on wind which results from the uneven heating of the earth...inefficient. In addition to these limitations, both systems are costly and their installation brings a number of challenges. For the wind turbines ...these challenges include: the obstruction created by the height of the turbines near airfields, the amount of land necessary for a 7 turbines wind farm

  19. The resilience of Australian wind energy to climate change

    NASA Astrophysics Data System (ADS)

    Evans, Jason P.; Kay, Merlinde; Prasad, Abhnil; Pitman, Andy

    2018-02-01

    The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negligibly in the future in regions with significant existing installed capacity. Technological developments in wind energy generation more than compensate for projected small reductions in wind, decreasing the LCOE by around 30%. These developments ensure viability for existing wind farms, and enhance the economic viability of proposed wind farms in Western Australian and Tasmania. Wind energy is therefore a resilient source of electricity over most of Australia and technological innovation entering the market will open new regions for energy production in the future.

  20. Plume meander and dispersion in a stable boundary layer

    NASA Astrophysics Data System (ADS)

    Hiscox, April L.; Miller, David R.; Nappo, Carmen J.

    2010-11-01

    Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (<90 s) from the submesoscale (>90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.

  1. A three degree of freedom manipulator used for store separation wind tunnel test

    NASA Astrophysics Data System (ADS)

    Wei, R.; Che, B.-H.; Sun, C.-B.; Zhang, J.; Lu, Y.-Q.

    2018-06-01

    A three degree of freedom manipulator is presented, which is used for store separation wind tunnel test. It is a kind of mechatronics product, have small volume and large moment of torque. The paper researched the design principle of wind tunnel test equipment, also introduced the transmission principle design, physical design, control system design, drive element selection calculation and verification, dynamics computation and static structural computation of the manipulator. To satisfy the design principle of wind tunnel test equipment, some optimization design are made include optimizes the structure of drive element and cable, fairing configuration, overall dimension so that to make the device more suitable for the wind tunnel test. Some tests are made to verify the parameters of the manipulator. The results show that the device improves the load from 100 Nm to 250 Nm, control accuracy from 0.1°to 0.05°in pitch and yaw, also improves load from 10 Nm to 20 Nm, control accuracy from 0.1°to 0.05°in roll.

  2. Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark

    Expanding production of the United States’ vast shale gas reserves in recent years has put the country on a path towards greater energy independence, enhanced economic prosperity, and (potentially) reduced emissions of greenhouse gases and other pollutants. The corresponding expansion of gas-fired generation in the power sector – driven primarily by lower natural gas prices – has also made it easier and cheaper to integrate large amounts of variable renewable generation, such as wind power, into the grid. At the same time, however, low natural gas prices have suppressed wholesale power prices across the nation, making it harder for windmore » and other renewable power technologies to compete on cost alone – even despite their recent cost and performance improvements. A near-term softening in policy-driven demand from state-level renewable energy mandates, coupled with a possible phase-out of a key federal tax incentive over time, may exacerbate wind’s challenge in the coming years. As wind power finds it more difficult to compete with gas-fired generation on the basis of near-term cost, it will increasingly need to rely on other attributes, such as its “portfolio” or “hedge” value, as justification for inclusion in the power mix. This article investigates the degree to which wind power can still serve as a cost-effective hedge against rising natural gas prices, given the significant reduction in gas prices in recent years, coupled with expectations that prices will remain low for many years to come. It does so by drawing upon a rich sample of long-term power purchase agreements (“PPAs”) between existing wind generators and electric utilities in the U.S., and comparing the contracted prices at which utilities will be buying wind power from these existing projects for decades to come to a variety of long-term projections of the fuel costs of gas-fired generation modeled by the Energy Information Administration (“EIA”).« less

  3. The welfare effects of integrating renewable energy into electricity markets

    NASA Astrophysics Data System (ADS)

    Lamadrid, Alberto J.

    The challenges of deploying more renewable energy sources on an electric grid are caused largely by their inherent variability. In this context, energy storage can help make the electric delivery system more reliable by mitigating this variability. This thesis analyzes a series of models for procuring electricity and ancillary services for both individuals and social planners with high penetrations of stochastic wind energy. The results obtained for an individual decision maker using stochastic optimization are ambiguous, with closed form solutions dependent on technological parameters, and no consideration of the system reliability. The social planner models correctly reflect the effect of system reliability, and in the case of a Stochastic, Security Constrained Optimal Power Flow (S-SC-OPF or SuperOPF), determine reserve capacity endogenously so that system reliability is maintained. A single-period SuperOPF shows that including ramping costs in the objective function leads to more wind spilling and increased capacity requirements for reliability. However, this model does not reflect the inter temporal tradeoffs of using Energy Storage Systems (ESS) to improve reliability and mitigate wind variability. The results with the multiperiod SuperOPF determine the optimum use of storage for a typical day, and compare the effects of collocating ESS at wind sites with the same amount of storage (deferrable demand) located at demand centers. The collocated ESS has slightly lower operating costs and spills less wind generation compared to deferrable demand, but the total amount of conventional generating capacity needed for system adequacy is higher. In terms of the total system costs, that include the capital cost of conventional generating capacity, the costs with deferrable demand is substantially lower because the daily demand profile is flattened and less conventional generation capacity is then needed for reliability purposes. The analysis also demonstrates that the optimum daily pattern of dispatch and reserves is seriously distorted if the stochastic characteristics of wind generation are ignored.

  4. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.

  5. The reliability of wind power systems in the UK

    NASA Astrophysics Data System (ADS)

    Newton, K.

    A methodology has been developed to evaluate the performance of geographically distributed wind power systems. Results are presented for three widely separated sites based on measured meteorological data obtained over a 17-yr period. The effects of including energy storage were investigated and 150-hr storage found to be a good compromise between store capacity and system performance. When used to provide space heating, the system could have reduced the 17-yr peak demand from conventional sources (smoothed by the storage and geographical separation of sites) by an amount comparable to the mean output of the wind-system, whether or not turbines at the three sites were interconnected by the National Grid. In contrast, the fuel saving capability of the system was found to be comparatively insensitive either to storage period or geographical separation of sites; the system would have been capable of providing up to 90 percent of the total requirement. Results are also given for individual sites to indicate the possible performance of district heating schemes or domestic systems.

  6. Quantifying and Understanding Effects from Wildlife, Radar, and Public Engagement on Future Wind Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    This presentation provides an overview of findings from a report published in 2016 by researchers at the National Renewable Energy Laboratory, An Initial Evaluation of Siting Considerations on Current and Future Wind Deployment. The presentation covers the background for research, the Energy Department's Wind Vision, research methods, siting considerations, the wind project deployment process, and costs associated with siting considerations.

  7. Direct Global Measurements of Tropspheric Winds Employing a Simplified Coherent Laser Radar using Fully Scalable Technology and Technique

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Spiers, Gary D.; Lobl, Elena S.; Rothermel, Jeff; Keller, Vernon W.

    1996-01-01

    Innovative designs of a space-based laser remote sensing 'wind machine' are presented. These designs seek compatibility with the traditionally conflicting constraints of high scientific value and low total mission cost. Mission cost is reduced by moving to smaller, lighter, more off-the-shelf instrument designs which can be accommodated on smaller launch vehicles.

  8. Coastal Ohio Wind Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbinesmore » to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions as fine as 10-minute intervals near turbine height showed that August is the month with the weakest winds while December is the month, which typically has the strongest winds. The ice data suggests that shallow western basin of Lake Erie has higher ice cover duration many times exceeding 90 days during some winters.« less

  9. Potential errors in using one anemometer to characterize the wind power over an entire rotor disk

    NASA Technical Reports Server (NTRS)

    Simon, R. L.

    1982-01-01

    Wind data collected at four levels on a 90-m tower in a prospective wind farm area are used to evaluate how well the 10-m wind speed data with and without intermittent vertical profile measurements compare with the 90-m tower data. If a standard, or even predictable, wind speed profile existed, there would be no need for a large, expensive tower. This cost differential becomes even more significant if several towers are needed to study a prospective wind farm.

  10. Comprehensive Renewable Energy Feasibility Study for the Makah Indian Tribe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RobertLynette; John Wade; Larry Coupe

    The purpose of this project was to determine the technical feasibility, economic viability, and potential impacts of installing and operating a wind power station and/or small hydroelectric generation plants on the Makah reservation. The long-term objective is to supply all or a portion of Tribe's electricity from local, renewable energy sources in order to reduce costs, provide local employment, and reduce power outages. An additional objective was for the Tribe to gain an understanding of the requirements, costs, and benefits of developing and operating such plants on the reservation. The Makah Indian Reservation, with a total land area of forty-sevenmore » square miles, is located on the northwestern tip of the Olympic Peninsula in Washington State. Four major watersheds drain the main Reservation areas and the average rainfall is over one hundred inches per year. The reservation's west side borders the Pacific Ocean, but mostly consists of rugged mountainous terrain between 500 and 1,900 feet in elevation. Approximately 1,200 tribal members live on the Reservation and there is an additional non-Indian residential population of about 300. Electric power is provided by the Clallam County PUD. The annual usage on the reservation is approximately 16,700 mWh. Project Work Wind Energy--Two anemometer suites of equipment were installed on the reservation and operated for a more than a year. An off-site reference station was identified and used to project long-term wind resource characteristics at the two stations. Transmission resources were identified and analyzed. A preliminary financial analysis of a hypothetical wind power station was prepared and used to gauge the economic viability of installation of a multi-megawatt wind power station. Small Hydroelectric--Two potential sites for micro/small-hydro were identified by analysis of previous water resource studies, topographical maps, and conversations with knowledgeable Makah personnel. Field trips were conducted to collect preliminary site data. A report was prepared by Alaska Power & Telephone (Larry Coupe) including preliminary layouts, capacities, potential environmental issues, and projected costs. Findings and Conclusions Wind Energy The average wind resources measured at both sites were marginal, with annual average wind speeds of 13.6-14.0 mph at a 65-meter hub height, and wind shears of 0.08-0.13. Using GE 1.5 MW wind turbines with a hub height of 65 meters, yields a net capacity factor of approximately 0.19. The cost-of-energy for a commercial project is estimated at approximately 9.6 cents per kWh using current costs for capital and equipment prices. Economic viability for a commercial wind power station would require a subsidy of 40-50% of the project capital cost, loans provided at approximately 2% rate of interest, or a combination of grants and loans at substantially below market rates. Recommendations: Because the cost-of-energy from wind power is decreasing, and because there may be small pockets of higher winds on the reservation, our recommendation is to: (1) Leave one of the two anemometer towers, preferably the 50-meter southern unit MCC, in place and continue to collect data from this site. This site would serve as an excellent reference anemometer for the Olympic Peninsula, and, (2) If funds permit, relocate the northern tower (MCB) to a promising small site closer to the transmission line with the hope of finding a more energetic site that is easier to develop. Small Hydroelectric There are a very limited number of sites on the reservation that have potential for economical hydroelectric development, even in conjunction with water supply development. Two sites emerged as the most promising and were evaluated: (1) One utilizing four creeks draining the north side of the Cape Flattery peninsula (Cape Creeks), and (2) One on the Waatch River to the south of Neah Bay. The Cape Creeks site would be a combination water supply and 512 kW power generation facility and would cost a approximately $11,100,000. Annual power generation would be approximately 1,300,000 kWh and the plant would have a cost-of-energy of approximately 65 cents per kWh, substantially above market rates. The Waatch site would also be a combination water supply and power generation facility. It would have a rated capacity of 935 kW and would cost approximately $16,400,000. Annual power generation would be approximately 3,260,000 kWh and the plant would have a cost-of-energy of approximately 38 cents per kWh, also substantially above market rates. Recommendation: Stand-alone hydroelectric development is not commercially viable. The Tribal Council should not pursue development of hydroelectric facilities on the Makah Reservation unless they are an adjunct to a water supply development, and the water supply systems absorbs almost all the capital cost of the project.« less

  11. FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim Manion; Michael Lofting; Wil Sando

    2009-03-30

    Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The studymore » identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.« less

  12. Hurricane risk assessment to rollback or ride out a cost versus loss decision making approach

    NASA Technical Reports Server (NTRS)

    Wohlman, Richard A.

    1992-01-01

    The potential exists that a hurricane striking the Kennedy Space Center while a Space Shuttle is on the pad. Winds in excess of 74.5 knots could cause the failure of the holddown bolts bringing about the catastrophic loss of the entire vehicle. Current plans call for the rollback of the shuttle when winds of that magnitude are forecast to strike the center. As this is costly, a new objective method for making rollback/rideout decisions based upon Bayesian Analysis and economic cost versus loss is presented.

  13. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    The small scale ocean-atmosphere interaction at the water-air interface is one of the most important factors determining the processes of heat, mass, and energy exchange in the boundary layers of both geospheres. Another important aspect of the air-sea interaction is excitation of surface waves. One of the most debated open questions of wave modeling is concerned with the wind input in the wave field, especially for the case of steep and breaking waves. Two physical mechanisms are suggested to describe the excitation of finite amplitude waves. The first one is based on the treatment of the wind-wave interaction in quasi-linear approximation in the frameworks of semi-empirical models of turbulence of the low atmospheric boundary layer. An alternative mechanism is associated with separation of wind flow at the crests of the surface waves. The "separating" and "non-separating" mechanisms of wave generation lead to different dependences of the wind growth rate on the wave steepness: the latter predicts a decrease in the increment with wave steepness, and the former - an increase. In this paper the mechanism of the wind-wave interaction is investigated basing on physical and numerical experiments. In the physical experiment, turbulent airflow over waves was studied using the video-PIV method, based on the application of high-speed video photography. Alternatively to the classical PIV technique this approach provides the statistical ensembles of realizations of instantaneous velocity fields. Experiments were performed in a round wind-wave channel at Institute of Applied Physics, Russian Academy of Sciences. A fan generated the airflow with the centerline velocity 4 m/s. The surface waves were generated by a programmed wave-maker at the frequency of 2.5 Hz with the amplitudes of 0.65 cm, 1.4 cm, and 2 cm. The working area (27.4 × 10.7 cm2) was at a distance of 3 m from the fan. To perform the measurements of the instantaneous velocity fields, spherical polyamide particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the wave slope was retrieved from the DNS results. Similar to the physical experiment the wave growth rate weakly decreased with the wave steepness. The results of physical and numerical experiments were compared with the calculations within the theoretical model of a turbulent boundary layer based on the system of Reynolds equations with the first-order closing hypothesis. Within the model the wind-wave interaction is considered within the quasi-linear approximation and the mean airflow over waves within the model is treated as a non-separated. The calculations within the model represents well profiles of the mean wind velocity, turbulent stress, amplitude and phase of the main harmonics of the wave-induced velocity components and also wave-induced pressure fluctuations and wind wave growth rate obtained both in the physical experiment and DNS. Applicability of the non-separating quasi-linear theory for description of average fields in the airflow over steep and even breaking waves, when the effect of separation is manifested in the instantaneous flow images, can possibly be explained qualitatively by the strongly non-stationary character of the separation process with the typical time being much less than the wave period, and by the small scale of flow heterogeneity in the area of separation. In such a situation small-scale vortices produced within the separation bubble affect the mean flow and wind-induced disturbances as eddy viscosity. Then, the flow turbulence affects the averaged fields as a very viscous fluid, where the effective Reynolds number for the average fields determined by the eddy viscosity was small even for steep waves. It follows from this assumption that strongly nonlinear effects, such as flow separations should not be expected in the flow averaged over turbulent fluctuations, and the main harmonics of the wave-induced disturbances of the averaged flow, which determine the energy flux to surface waves, can be described in the weakly-nonlinear approximation. This paper was supported by a grant from the Government of the Russian Federation under Contract no. 11.G34.31.0048; the European Research Council Advanced Grant, FP7-IDEAS, 227915; RFBF grant 13-05-00865-а, 13-05-12093-ofi-m,15-05-91767.

  14. EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component

    NASA Astrophysics Data System (ADS)

    Amirat, Yassine; Choqueuse, Vincent; Benbouzid, Mohamed

    2013-12-01

    Failure detection has always been a demanding task in the electrical machines community; it has become more challenging in wind energy conversion systems because sustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. Indeed the most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the generator health degeneration, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper provides then an assessment of a failure detection techniques based on the homopolar component of the generator stator current and attempts to highlight the use of the ensemble empirical mode decomposition as a tool for failure detection in wind turbine generators for stationary and non-stationary cases.

  15. Superconducting light generator for large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.

    2014-05-01

    Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.

  16. Benefits of Colocating Concentrating Solar Power and Wind

    DOE PAGES

    Sioshansi, Ramteen; Denholm, Paul

    2013-09-16

    Here, we analyze the potential benefits of colocating wind and concentrating solar power (CSP) plants in the southwestern U.S. Using a location in western Texas as a case study, we demonstrate that such a deployment strategy can improve the capacity factor of the combined plant and the associated transmission investment. This is because of two synergies between wind and CSP: 1) the negative correlation between real-time wind and solar resource availability and 2) the use of low-cost high-efficiency thermal energy storage in CSP. The economic tradeoff between transmission and system performance is highly sensitive to CSP and transmission costs. Finally,more » we demonstrate that a number of deployment configurations, which include up to 67% CSP, yield a positive net return on investment.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energymore » Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.« less

  18. Value of information of repair times for offshore wind farm maintenance planning

    NASA Astrophysics Data System (ADS)

    Seyr, Helene; Muskulus, Michael

    2016-09-01

    A large contribution to the total cost of energy in offshore wind farms is due to maintenance costs. In recent years research has focused therefore on lowering the maintenance costs using different approaches. Decision support models for scheduling the maintenance exist already, dealing with different factors influencing the scheduling. Our contribution deals with the uncertainty in the repair times. Given the mean repair times for different turbine components we make some assumptions regarding the underlying repair time distribution. We compare the results of a decision support model for the mean times to repair and those repair time distributions. Additionally, distributions with the same mean but different variances are compared under the same conditions. The value of lowering the uncertainty in the repair time is calculated and we find that using distributions significantly decreases the availability, when scheduling maintenance for multiple turbines in a wind park. Having detailed information about the repair time distribution may influence the results of maintenance modeling and might help identify cost factors.

  19. Wind energy: Resources, systems, and regional strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubb, M.J.; Meyer, N.I.

    1993-12-31

    Wind power is already cost competitive with conventional modes of electricity generation under certain conditions and could, if widely exploited, meet 20 percent or more of the world`s electricity needs within the next four to five decades. The greatest wind potential exists in North America, the former Soviet Union, Africa, and (to a lesser extent), South America, Australia, southern Asia, and parts of Europe. In all these areas, wind can make a significant contribution to the energy supply. In regions of the developing world and in island communities, wind can operate with storage and displace diesel fuel. In more developedmore » areas, wind-generated electricity can be channeled directly into the grid, providing an environmentally benign alternative to fossil fuels. Indeed, wind power can contribute as much as 25 to 45 percent of a grid`s energy supply before economic penalties become prohibitive; the presence of storage facilities or hydroelectric power would increase wind`s share still further. Despite a promising future, opportunities for wind power development are probably being missed because too little is known about either the resource or the technology. International efforts are badly needed to obtain better data and to disseminate technological information around the world. Even then, the extent to which wind is exploited will depend on public reaction and on the willingness of governments to embrace the technology. Action that governments might take to promote wind include providing strategic incentives to further its deployment, funding research on wind resources, taxing fossil fuels to reflect their social costs, and allowing independent wind generators adequate access to electricity systems. 74 refs., 15 figs., 10 tabs.« less

  20. Wind Generator & Biomass No-draft Gasification Hybrid

    NASA Astrophysics Data System (ADS)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.

  1. The Role of the New Zealand Plateau in the Tasman Sea Circulation and Separation of the East Australian Current

    NASA Astrophysics Data System (ADS)

    Bull, Christopher Y. S.; Kiss, Andrew E.; van Sebille, Erik; Jourdain, Nicolas C.; England, Matthew H.

    2018-02-01

    The East Australian Current (EAC) plays a major role in regional climate, circulation, and ecosystems, but predicting future changes is hampered by limited understanding of the factors controlling EAC separation. While there has been speculation that the presence of New Zealand may be important for the EAC separation, the prevailing view is that the time-mean partial separation is set by the ocean's response to gradients in the wind stress curl. This study focuses on the role of New Zealand, and the associated adjacent bathymetry, in the partial separation of the EAC and ocean circulation in the Tasman Sea. Here utilizing an eddy-permitting ocean model (NEMO), we find that the complete removal of the New Zealand plateau leads to a smaller fraction of EAC transport heading east and more heading south, with the mean separation latitude shifting >100 km southward. To examine the underlying dynamics, we remove New Zealand with two linear models: the Sverdrup/Godfrey Island Rule and NEMO in linear mode. We find that linear processes and deep bathymetry play a major role in the mean Tasman Front position, whereas nonlinear processes are crucial for the extent of the EAC retroflection. Contrary to past work, we find that meridional gradients in the basin-wide wind stress curl are not the sole factor determining the latitude of EAC separation. We suggest that the Tasman Front location is set by either the maximum meridional gradient in the wind stress curl or the northern tip of New Zealand, whichever is furthest north.

  2. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF THE SOLAR WIND INCLUDING PICKUP PROTONS AND TURBULENCE TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov

    2012-07-20

    To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfermore » from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons. We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 Degree-Sign -90 Degree-Sign and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.« less

  3. 40 CFR 63.1044 - Standards-Separator vented to control device.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the separator on... operator shall inspect and monitor the air emission control equipment in accordance with the procedures...

  4. 40 CFR 63.1044 - Standards-Separator vented to control device.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the separator on... operator shall inspect and monitor the air emission control equipment in accordance with the procedures...

  5. 40 CFR 63.1044 - Standards-Separator vented to control device.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the separator on... operator shall inspect and monitor the air emission control equipment in accordance with the procedures...

  6. 40 CFR 63.1044 - Standards-Separator vented to control device.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the separator on... operator shall inspect and monitor the air emission control equipment in accordance with the procedures...

  7. 40 CFR 63.1044 - Standards-Separator vented to control device.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the separator on... operator shall inspect and monitor the air emission control equipment in accordance with the procedures...

  8. Decentralized coordinated control of elastic web winding systems without tension sensor.

    PubMed

    Hou, Hailiang; Nian, Xiaohong; Chen, Jie; Xiao, Dengfeng

    2018-06-26

    In elastic web winding systems, precise regulation of web tension in each span is critical to ensure final product quality, and to achieve low cost by reducing the occurrence of web break or fold. Generally, web winding systems use load cells or swing rolls as tension sensors, which add cost, reduce system reliability and increase the difficulty of control. In this paper, a decentralized coordinated control scheme with tension observers is designed for a three-motor web-winding system. First, two tension observers are proposed to estimate the unwinding and winding tension. The designed observers consider the essential dynamic, radius, and inertial variation effects and only require the modest computational effort. Then, using the estimated tensions as feedback signals, a robust decentralized coordinated controller is adopted to reduce the interaction between subsystems. Asymptotic stabilities of the observer error dynamics and the closed-loop winding systems are demonstrated via Lyapunov stability theory. The observer gains and the controller gains can be obtained by solving matrix inequalities. Finally, some simulations and experiments are performed on a paper winding setup to test the performance of the designed observers and the observer-base DCC method, respectively. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, A.; Ferguson, T.

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysismore » and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.« less

  10. Recent Insights into the Nature of Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvun L.

    2008-01-01

    During the past several years, studies of solar wind turbulence using data from Cluster and other spacecraft, and results from new numerical simulations, have revealed new aspects of solar wind turbulence. I will try to highlight some of that research. At the shortest length scales and highest frequencies, there is renewed interest in determining how the turbulence dissipates, e.g., whether by kinetic Alfven waves or whistler turbulence. Finding observational evidence for exponential damping of solar wind fluctuations has proven challenging. New studies using a combination of flux gate and search coil magnetometer data from Cluster have extended this search (in the spacecraft frame of reference) to more than 10 Hertz. New models and simulations are also being used to study the dissipation. A detailed study of fluctuations in the magnetosheath suggests that turbulent dissipation could be occurring at very thin current sheets as had been suggested by two-dimensional MHD simulations more than 20 years ago. Data from the four Cluster spacecraft, now at their maximum separation of 10,000 km provide new opportunities to investigate the symmetry properties, scale lengths, and the relative proportion of magnetic energy in parallel and perpendicular wave numbers of solar wind turbulence. By utilizing well-calibrated electron data, it has been possible to take advantage of the tetrahedral separation of Cluster in the solar wind near apogee to measure directly the compressibility and vorticity of the solar wind plasma.

  11. Wind energy prospecting: socio-economic value of a new wind resource assessment technique based on a NASA Earth science dataset

    NASA Astrophysics Data System (ADS)

    Vanvyve, E.; Magontier, P.; Vandenberghe, F. C.; Delle Monache, L.; Dickinson, K.

    2012-12-01

    Wind energy is amongst the fastest growing sources of renewable energy in the U.S. and could supply up to 20 % of the U.S power production by 2030. An accurate and reliable wind resource assessment for prospective wind farm sites is a challenging task, yet is crucial for evaluating the long-term profitability and feasibility of a potential development. We have developed an accurate and computationally efficient wind resource assessment technique for prospective wind farm sites, which incorporates innovative statistical techniques and the new NASA Earth science dataset MERRA. This technique produces a wind resource estimate that is more accurate than that obtained by the wind energy industry's standard technique, while providing a reliable quantification of its uncertainty. The focus now is on evaluating the socio-economic value of this new technique upon using the industry's standard technique. Would it yield lower financing costs? Could it result in lower electricity prices? Are there further down-the-line positive consequences, e.g. job creation, time saved, greenhouse gas decrease? Ultimately, we expect our results will inform efforts to refine and disseminate the new technique to support the development of the U.S. renewable energy infrastructure. In order to address the above questions, we are carrying out a cost-benefit analysis based on the net present worth of the technique. We will describe this approach, including the cash-flow process of wind farm financing, how the wind resource assessment factors in, and will present current results for various hypothetical candidate wind farm sites.

  12. CFD Approaches for Simulation of Wing-Body Stage Separation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Gomez, Reynaldo J.; Scallion, William I.

    2004-01-01

    A collection of computational fluid dynamics tools and techniques are being developed and tested for application to stage separation and abort simulation for next-generation launch vehicles. In this work, an overset grid Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of a belly-to-belly wing-body configuration. Steady cases show excellent agreement between Navier-Stokes results, Cartesian grid Euler solutions, and wind tunnel data at Mach 3. Good agreement has been obtained between Navier-Stokes, Euler, and wind tunnel results at Mach 6. An analysis of a dynamic separation at Mach 3 demonstrates that unsteady aerodynamic effects are not important for this scenario. Results provide an illustration of the relative applicability of Euler and Navier-Stokes methods to these types of problems.

  13. Output-Based Adaptive Meshing Applied to Space Launch System Booster Separation Analysis

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.

    2015-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid code with comparisons to Overflow viscous CFD results and a wind tunnel test performed at NASA Langley Research Center's Unitary PlanWind Tunnel. The Space Launch System (SLS) launch vehicle includes two solid-rocket boosters that burn out before the primary core stage and thus must be discarded during the ascent trajectory. The main challenges for creating an aerodynamic database for this separation event are the large number of basis variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by the booster separation motors. The solid-rocket boosters are modified from their form when used with the Space Shuttle Launch Vehicle, which has a rich flight history. However, the differences between the SLS core and the Space Shuttle External Tank result in the boosters separating with much narrower clearances, and so reducing aerodynamic uncertainty is necessary to clear the integrated system for flight. This paper discusses an approach that has been developed to analyze about 6000 wind tunnel simulations and 5000 flight vehicle simulations using Cart3D in adaptive-meshing mode. In addition, a discussion is presented of Overflow viscous CFD runs used for uncertainty quantification. Finally, the article presents lessons learned and improvements that will be implemented in future separation databases.

  14. 7 CFR Appendix A to Part 4280 - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  15. 7 CFR Appendix A to Part 4280 - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  16. Windpower - Assessing the potential

    NASA Astrophysics Data System (ADS)

    1985-09-01

    The development of wind turbine technology in California is discussed. Consideration is given to the large-scale experiments being carried out by the California Energy Commission to investigate the capital costs, and power capacity of a 4000 unit wind turbine 'farm' near Altamont, California. The financial impetus behind wind farm development is also discussed, with attention given to the need for tax incentives and an expanded federal role in financing wind power feasibility studies.

  17. 2014 Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancementsmore » and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.« less

  18. Isotopic separation of He-3/He-4 from solar wind gases evolved from the lunar regolith

    NASA Astrophysics Data System (ADS)

    Wilkes, William R.; Wittenberg, Layton J.

    The potential benefits of He-3 when utilized in a nuclear fusion reactor to provide clean, safe electricity in the 21st century for the world's inhabitants has been documented. Unfortunately, He is scarce on earth. Large quantities of He-3, perhaps a million tons, are embedded in the lunar regolith, presumably implanted by the solar wind together with other elements, notably He-4, H, C, and N. Several studies have suggested processing the lunar regolith and recovering these valuable solar wind gases. Once released, these gases can be separated for use. The separation of helium isotopes is described in this paper. He-3 constitutes only 400 at. ppm of lunar He, too dilute to separate economically by distillation alone. A 'superfluid' separator is being considered to preconcentrate the He-3. The superfluid separator consists of a porous filter in a tube maintained at a temperature of 2.17 K or less. Although the He-4, which is superfluid below 2.17 K, flows readily through the filter, the He is blocked by the filter, and becomes enriched at the feed end. He can be enriched to about 10 percent in such a system. The enriched product from the superfluid separation serves as a feed to a distillation apparatus operating at a pressure of 9 kPa, with a boiler temperature of 2.4 K, and a condenser temperature of 1.6 K. Under constant flow conditions, a 99.9 percent enriched He product can be produced in this apparatus. The heat rejection load of the refrigeration equipment necessary to cool the separation operations would be conducted during the lunar nights.

  19. Composite Nozzle/Thrust Chambers Analyzed for Low-Cost Boosters

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1999-01-01

    The Low Cost Booster Technology Program is an initiative to minimize the cost of future liquid engines by using advanced materials and innovative designs, and by reducing engine complexity. NASA Marshall Space Flight Center s 60K FASTRAC Engine is one example where these design philosophies have been put into practice. This engine burns a liquid kerosene/oxygen mixture. It uses a one-piece, polymer composite thrust chamber/nozzle that is constructed of a tape-wrapped silica phenolic liner, a metallic injector interface ring, and a filament-wound epoxy overwrap. A cooperative effort between NASA Lewis Research Center s Structures Division and Marshall is underway to perform a finite element analysis of the FASTRAC chamber/nozzle under all the loading and environmental conditions that it will experience during its lifetime. The chamber/nozzle is a complex composite structure. Of its three different materials, the two composite components have distinctly different fiber architectures and, consequently, require separate material model descriptions. Since the liner is tape wrapped, it is orthotropic in the nozzle global coordinates; and since the overwrap is filament wound, it is treated as a monoclinic material. Furthermore, the wind angle on the overwrap varies continuously along the length of the chamber/nozzle.

  20. Method for evaluating wind turbine wake effects on wind farm performance

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Spera, D. A.

    1985-01-01

    A method of testing the performance of a cluster of wind turbine units an data analysis equations are presented which together form a simple and direct procedure for determining the reduction in energy output caused by the wake of an upwind turbine. This method appears to solve the problems presented by data scatter and wind variability. Test data from the three-unit Mod-2 wind turbine cluster at Goldendale, Washington, are analyzed to illustrate the application of the proposed method. In this sample case the reduction in energy was found to be about 10 percent when the Mod-2 units were separated a distance equal to seven diameters and winds were below rated.

  1. 76 FR 23230 - Segregation of Lands-Renewable Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... within the wind energy right-of- way application areas in FY 2009 and 2010, we estimate the total cost of... transmission facilities that could be used to carry the power generated from a specific wind or solar energy..., public lands included in a pending or future wind or solar energy generation right-of-way (ROW...

  2. 76 FR 78629 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ...-1928-001; ER10-2720-001; ER10- 1971-004. Applicants: FPL Energy Oklahoma Wind, LLC, FPL Energy Sooner Wind, LLC, Minco Wind, LLC, NextEra Energy Power Marketing, LLC. Description: NextEra Resources... of Cost-Based Power Sales Tariff to be effective 12/10/2011. Filed Date: 12/9/11. Accession Number...

  3. 77 FR 38049 - Idaho Wind Partners 1, LLC; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... avoided cost contracts, whether Idaho Power acts unilaterally or acts pursuant to a schedule or policy... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-74-000] Idaho Wind... CFR 385.207, the Idaho Wind Partners 1, LLC submitted a Petition for Declaratory Order seeking that...

  4. A Fault Recognition System for Gearboxes of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Yang, Zhiling; Huang, Haiyue; Yin, Zidong

    2017-12-01

    Costs of maintenance and loss of power generation caused by the faults of wind turbines gearboxes are the main components of operation costs for a wind farm. Therefore, the technology of condition monitoring and fault recognition for wind turbines gearboxes is becoming a hot topic. A condition monitoring and fault recognition system (CMFRS) is presented for CBM of wind turbines gearboxes in this paper. The vibration signals from acceleration sensors at different locations of gearbox and the data from supervisory control and data acquisition (SCADA) system are collected to CMFRS. Then the feature extraction and optimization algorithm is applied to these operational data. Furthermore, to recognize the fault of gearboxes, the GSO-LSSVR algorithm is proposed, combining the least squares support vector regression machine (LSSVR) with the Glowworm Swarm Optimization (GSO) algorithm. Finally, the results show that the fault recognition system used in this paper has a high rate for identifying three states of wind turbines’ gears; besides, the combination of date features can affect the identifying rate and the selection optimization algorithm presented in this paper can get a pretty good date feature subset for the fault recognition.

  5. The impact of wind power on electricity prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias

    This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-minmore » compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.« less

  6. Development of a VRLA battery with improved separators, and a charge controller, for low cost photovoltaic and wind powered installations

    NASA Astrophysics Data System (ADS)

    Fernandez, M.; Ruddell, A. J.; Vast, N.; Esteban, J.; Estela, F.

    There are many applications and uses for which it is more advantageous to use solar installations than to extend the electrical network and connect to it. This kind of applications are numerous covering from isolated houses to telephone repeaters and the like. These kind of applications share some common characteristics like being located in remote not easy accessible areas, require relatively low power for operation, and being difficult to maintain. Up to now the use of photovoltaic systems, no matter the impressive growth they are experimenting, suffer from some drawbacks, mainly related with the life expectations and reliability of such systems, and as a consequence of the cost of these systems, when calculated on a lifetime basis. To try to contribute to solve these problems, a project partially founded by the European Commission, has been carried out, with the main objective of increasing the life of these systems, and consequently to make them more attractive from the point of view of cost on a lifetime basis for consumers. Presently, the life of PV systems is limited by its weakest component, the battery. Battery failure modes in PV applications, are related with well known phenomena like corrosion, but also due to the special nature of this installations, with other factors like corrosion and growth in the upper part of the group, induced by the development of acid stratification inside the battery, with the more prone standard flooded types now in major use, and to a lesser extent the new valve regulated lead acid (VRLA) types beginning to be used. The main objectives of this project, were: to develop a new glass microfibre separator material, capable of minimizing acid stratification inside the battery. To develop a new VRLA battery, with a life duration of 800 cycles on cycling at 60% DOD and partial state of charge (PSOC) conditions. To develop a new charge regulator, that takes into account the condition of the battery in the near term, to modify its setting charging point. The fourth objective was the design and implementation of a PV/wind demonstration system, to test all the PV components under real conditions. The project has been successful, having achieved a life increase of 50%, moving achievable life from previous 500-750 cycles for the new battery and system.

  7. Characteristics of future Vertical Axis Wind Turbines (VAWTs). [to generate utility grid electric power

    NASA Technical Reports Server (NTRS)

    Kadlec, E. G.

    1979-01-01

    The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.

  8. Costs for integrating wind into the future ERCOT system with related costs for savings in CO2 emissions.

    PubMed

    Lu, Xi; McElroy, Michael B; Sluzas, Nora A

    2011-04-01

    Wind power can make an important contribution to the goal of reducing emissions of CO2. The major problem relates to the intrinsic variability of the source and the difficulty of reconciling the supply of electricity with demand particularly at high levels of wind penetration. This challenge is explored for the case of the ERCOT system in Texas. Demand for electricity in Texas is projected to increase by approximately 60% by 2030. Considering hourly load data reported for 2006, assuming that the pattern of demand in 2030 should be similar to 2006, and adopting as a business as usual (BAU) reference an assumption that the anticipated additional electricity should be supplied by a combination of coal and gas with prices, discounted to 2007 dollars of $2 and $6 per MMBTU respectively, we conclude that the bus-bar price for electricity would increase by about 1.1 ¢/kWh at a wind penetration level of 30%, by about 3.4 ¢/kWh at a penetration level of 80%. Corresponding costs for reductions in CO2 range from $20/ton to $60/ton. A number of possibilities are discussed that could contribute to a reduction in these costs including the impact of an expanded future fleet of electrically driven vehicles.

  9. How to Obtain a 100% Reliable Grid with Clean, Renewable Wind, Water, and Solar Providing 100% of all Raw Energy for All Purposes

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.; Delucchi, M. A.; Cameron, M. A.; Frew, B. A.

    2016-12-01

    The greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid is the high cost of avoiding load loss caused by WWS variability and uncertainty. This talk discusses the recent development of a new grid integration model to address this issue. The model finds low-cost, no-load-loss, non-unique solutions to this problem upon electrification of all U.S. energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time-series data from a 3-D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen); and using demand response. No natural gas, biofuels, or stationary batteries are needed. The resulting 2050-2055 U.S. electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, stable 100% WWS systems should work many places worldwide. The paper this talk is based on was published in PNAS, 112, 15,060-15,065, 2015, doi:10.1073/pnas.1510028112.

  10. Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.

    2010-05-01

    Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.

  11. A methodology to guide the selection of composite materials in a wind turbine rotor blade design process

    NASA Astrophysics Data System (ADS)

    Bortolotti, P.; Adolphs, G.; Bottasso, C. L.

    2016-09-01

    This work is concerned with the development of an optimization methodology for the composite materials used in wind turbine blades. Goal of the approach is to guide designers in the selection of the different materials of the blade, while providing indications to composite manufacturers on optimal trade-offs between mechanical properties and material costs. The method works by using a parametric material model, and including its free parameters amongst the design variables of a multi-disciplinary wind turbine optimization procedure. The proposed method is tested on the structural redesign of a conceptual 10 MW wind turbine blade, its spar caps and shell skin laminates being subjected to optimization. The procedure identifies a blade optimum for a new spar cap laminate characterized by a higher longitudinal Young's modulus and higher cost than the initial one, which however in turn induce both cost and mass savings in the blade. In terms of shell skin, the adoption of a laminate with intermediate properties between a bi-axial one and a tri-axial one also leads to slight structural improvements.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranowski, Ruth; Oteri, Frank; Baring-Gould, Ian

    The wind industry and the U.S. Department of Energy (DOE) are addressing technical challenges to increasing wind energy's contribution to the national grid (such as reducing turbine costs and increasing energy production and reliability), and they recognize that public acceptance issues can be challenges for wind energy deployment. Wind project development decisions are best made using unbiased information about the benefits and impacts of wind energy. In 2014, DOE established six wind Regional Resource Centers (RRCs) to provide information about wind energy, focusing on regional qualities. This document summarizes the status and drivers for U.S. wind energy development on regionalmore » and state levels. It is intended to be a companion to DOE's 2014 Distributed Wind Market Report, 2014 Wind Technologies Market Report, and 2014 Offshore Wind Market and Economic Analysis that provide assessments of the national wind markets for each of these technologies.« less

  13. Numerical simulation of transitional flow on a wind turbine airfoil with RANS-based transition model

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Sun, Zhengzhong; van Zuijlen, Alexander; van Bussel, Gerard

    2017-09-01

    This paper presents a numerical investigation of transitional flow on the wind turbine airfoil DU91-W2-250 with chord-based Reynolds number Rec = 1.0 × 106. The Reynolds-averaged Navier-Stokes based transition model using laminar kinetic energy concept, namely the k - kL - ω model, is employed to resolve the boundary layer transition. Some ambiguities for this model are discussed and it is further implemented into OpenFOAM-2.1.1. The k - kL - ω model is first validated through the chosen wind turbine airfoil at the angle of attack (AoA) of 6.24° against wind tunnel measurement, where lift and drag coefficients, surface pressure distribution and transition location are compared. In order to reveal the transitional flow on the airfoil, the mean boundary layer profiles in three zones, namely the laminar, transitional and fully turbulent regimes, are investigated. Observation of flow at the transition location identifies the laminar separation bubble. The AoA effect on boundary layer transition over wind turbine airfoil is also studied. Increasing the AoA from -3° to 10°, the laminar separation bubble moves upstream and reduces in size, which is in close agreement with wind tunnel measurement.

  14. The large-scale modulation of cosmic rays in mid-1982: Its dependence on heliospheric longitude and radius

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Simpson, J. A.

    1985-01-01

    Near solar maximum, a series of large radial solar wind shocks in June and July 1982 provided a unique opportunity to study the solar modulation of galactic cosmic rays with an array of spacecraft widely separated both in heliocentric radius and longitude. By eliminating hysteresis effects it is possible to begin to separate radial and azimuthal effects in the outer heliosphere. On the large scale, changes in modulation (both the increasing and recovery phases) propagate outward at close to the solar wind velocity, except for the near-term effects of solar wind shocks, which may propagate at a significantly higher velocity. In the outer heliosphere, azimuthal effects are small in comparison with radial effects for large-scale modulation at solar maximum.

  15. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems; a sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to: (1) fossil fuel systems; (2) hydroelectric systems; or (3) dispersing them throughout a large grid network. Wind energy appears to have the potential to meet a significant amount of our energy needs.

  16. Economics of wind energy for irrigation pumping

    NASA Astrophysics Data System (ADS)

    Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.

    1980-07-01

    The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.

  17. Karin Sinclair | NREL

    Science.gov Websites

    effort under the Distributed Wind research portfolio focused on supporting the distributed wind sector to reduce the levelized cost of energy and increase the number of certified turbines for distributed

  18. Large wind turbines: A utility option for the generation of electricity

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.; Baldwin, D. H.

    1980-01-01

    The wind resource is such that wind energy generation has the potential to save 6-7 quads of energy nationally. Thus, the Federal Government is sponsoring and encouraging the development of cost effective and reliable wind turbines. One element of the Federal Wind Energy Programs, Large Horizontal Axis Wind Turbine Development, is managed by the NASA Lewis Research Center for the Department of Energy. There are several ongoing wind system development projects oriented primarily toward utility application within this program element. In addition, a comprehensive technology program supporting the wind turbine development projects is being conducted. An overview is presented of the NASA activities with emphasis on application of large wind turbines for generation of electricity by utility systems.

  19. Viscous and Turbulent Stress Measurements over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, K.; Veron, F.; Buckley, M. P.; Hara, T.; Husain, N.

    2017-12-01

    In recent years, the exchange of momentum and scalars between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of the turbulence in the airflow over surface waves remain scarce. The current incomplete physical understanding of the airflow dynamics impedes further progress in developing physically based parameterizations for improved weather and sea state predictions, particularly in high winds and extreme conditions. Using combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) in the laboratory, we have acquired detailed quantitative measurements of the airflow over wind-driven waves and down to within the viscous sub-layer. Various wind-wave conditions are examined with mean wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-induced velocity fields are then extracted from instantaneous two-dimensional velocity measurements. Individual airflow separation events precipitate abrupt and dramatic along-wave variations in the surface viscous stress. In the bulk flow above the waves, these separation events are a source of intense vorticity. Phase averages of the viscous stress present a pattern of along-wave asymmetry near the surface; it is highest on the upwind of wave crest with its peak value about the crest and its minimum occurs at the middle of the leeward side of waves. The contribution of the viscous stress to the total momentum flux is not negligible particularly for low to moderate wind speeds and this contribution decreases with increasing wind speed. Away from the surface, the distribution of turbulent Reynolds stress forms a negative-positive pattern along the wave crest with a separation-induced maximum above the downwind side of the wave. Our measurements will be discussed in the context of available previous results.

  20. The wind power prediction research based on mind evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina

    2018-04-01

    When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.

  1. Reference Manual for the System Advisor Model's Wind Power Performance Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, J.; Jorgenson, J.; Gilman, P.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface andmore » as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.« less

  2. 2016 Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan H.; Bolinger, Mark

    The U.S. Department of Energy (DOE)’s Wind Technologies Market Report provides an annual overview of trends in the U.S. wind power market. You can find the report, a presentation, and a data file on the Files tab, below. Additionally, several data visualizations are available in the Data Visualizations tab. Highlights of this year’s report include: -Wind power additions continued at a rapid clip in 2016: $13 billion was invested in new wind power plants in 2016. In 2016, wind energy contributed 5.6% of the nation’s electricity supply, more than 10% of total electricity generation in fourteen states, and 29% tomore » 37% in three of those states—Iowa, South Dakota, and Kansas. -Bigger turbines are enhancing wind project performance: Increased blade lengths, in particular, have dramatically increased wind project capacity factors, one measure of project performance. For example, the average 2016 capacity factor among projects built in 2014 and 2015 was 42.6%, compared to an average of 32.1% among projects built from 2004 to 2011 and 25.4% among projects built from 1998 to 2001. -Low wind turbine pricing continues to push down installed project costs: Wind turbine prices have fallen from their highs in 2008, to $800–$1,100/kW. Overall, the average installed cost of wind projects in 2016 was $1,590/kW, down $780/kW from the peak in 2009 and 2010. -Wind energy prices remain low: After topping out at nearly 7¢/kWh for power purchase agreements (PPAs) executed in 2009, the national average price of wind PPAs has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that hail from the lowest-priced Interior region of the country (such as Texas, Iowa, Oklahoma). These prices, which are possible in part due to federal tax support, compare favorably to the projected future fuel costs of gas-fired generation. -The supply chain continued to adjust to swings in domestic demand for wind equipment: Wind sector employment reached a new high of more than 101,000 full-time workers at the end of 2016. For wind projects recently installed in the U.S., domestically manufactured content is highest for nacelle assembly (>90%), towers (65-80%), and blades and hubs (50-70%), but is much lower (<20%) for most components internal to the turbine. -Continued strong growth in wind capacity is anticipated in the near term: With federal tax incentives still available, though declining, various forecasts for the domestic market show expected wind power capacity additions averaging more than 9,000 MW/year from 2017 to 2020.« less

  3. 2015 Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospectsmore » for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes trends in project performance, wind turbine transaction prices, installed project costs, and operations and maintenance (O&M) expenses. It also reviews the prices paid for wind power in the United States and how those prices compare to short-term wholesale electricity prices and forecasts of future natural gas prices. Next, the report examines policy and market factors impacting the domestic wind power market, including federal and state policy drivers as well as transmission and grid integration issues. The report concludes with a preview of possible near-term market developments. This edition of the annual report updates data presented in previous editions while highlighting key trends and important new developments from 2015. The report concentrates on larger, utility-scale wind turbines, defined here as individual turbines that exceed 100 kW in size.« less

  4. A comparison of computer-generated lift and drag polars for a Wortmann airfoil to flight and wind tunnel results

    NASA Technical Reports Server (NTRS)

    Bowers, A. H.; Sandlin, D. R.

    1984-01-01

    Computations of drag polars for a low-speed Wortmann sailplane airfoil are compared to both wind tunnel and flight results. Excellent correlation is shown to exist between computations and flight results except when separated flow regimes were encountered. Wind tunnel transition locations are shown to agree with computed predictions. Smoothness of the input coordinates to the PROFILE airfoil analysis computer program was found to be essential to obtain accurate comparisons of drag polars or transition location to either the flight or wind tunnel results.

  5. Tornado and extreme wind design criteria for nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-12-01

    Nuclear power plant design criteria for tornadoes and extreme winds are presented. Data, formulas, and procedures for determining maximum wind loading on structures and parts of structures are included. Extreme wind loading is applied to structures using methods and procedures consistent with ANSI Building Code A58.1- 1972. The design wind velocities specified generally exceed 100-year recurrent interval winds. Tornado wind loading is applied to structures using procedures paralleling those for extrene winds with additional criteria resulting from the atmospheric pressure change accompanying tornadoes and tornado missile inipact effects. Tornado loading for the 48 contiguous United States is specified for twomore » major zones separated by the Continental Divide. A cross reference listing items related to Atomic Energy Commission Safety Analysis Report format is provided. Development supporting tornado criteria is included. (auth)« less

  6. A Wind-powered Rover for a Low-Cost Venus Mission

    NASA Technical Reports Server (NTRS)

    Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.

    2013-01-01

    Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.

  7. Batteries for storage of wind-generated energy

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  8. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanisms, or tunnel shutdown.

  9. Visual display and alarm system for wind tunnel static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Hanly, Richard D.; Fogarty, James T.

    1987-01-01

    A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanism, or tunnel shutdown.

  10. Utility-sized Madaras wind plants

    NASA Astrophysics Data System (ADS)

    Whitford, D. H.; Minardi, J. E.

    1981-01-01

    An analysis and technological updating were conducted for the Madaras Rotor Power Plant concept, to determine its ability to compete both technically and economically with horizontal axis wind turbine generators currently under development. The Madaras system uses large cylinders rotating vertically atop each regularly spaced flatcar of a train to propel them, by means of Magnus-effect interaction with the wind, along a circular or oval track. Alternators geared to the wheels of each car generate electrical power, which is transmitted to a power station by a trolley system. The study, consisting of electromechanical design, wind tunnel testing, and performance and cost analyses, shows that utility-sized plants greater than 228 MW in capacity and producing 975,000 kWh/year are feasible. Energy costs for such plants are projected to be between 22% lower and 12% higher than horizontal axis turbine plants of comparable output.

  11. Robust optimization-based DC optimal power flow for managing wind generation uncertainty

    NASA Astrophysics Data System (ADS)

    Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn

    2012-11-01

    Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.

  12. Twistact techno-economic analysis for wind turbine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas; Koplow, Jeffrey P.; Vanness, Justin William

    This report is the final deliverable for a techno-economic analysis of the Sandia National Laboratories-developed Twistact rotary electrical conductor. The U.S. Department of Energy Wind Energy Technologies Office supported a team of researchers at Sandia National Laboratories and the National Renewable Energy Laboratory to evaluate the potential of the Twistact technology to serve as a viable replacement to rare-earth materials used in permanent-magnet direct-drive wind turbine generators. This report compares three detailed generator models, two as baseline technologies and a third incorporating the Twistact technology. These models are then used to calculate the levelized cost of energy (LCOE) for threemore » comparable offshore wind plants using the three generator topologies. The National Renewable Energy Laboratorys techno-economic analysis indicates that Twistact technology can be used to design low-maintenance, brush-free, and wire-wound (instead of rare-earth-element (REE) permanent-magnet), direct-drive wind turbine generators without a significant change in LCOE and generation efficiency. Twistact technology acts as a hedge against sources of uncertain costs for direct-drive generators. On the one hand, for permanent-magnet direct-drive (PMDD) generators, the long-term price of REEs may increase due to increases in future demand, from electric vehicles and other technologies, whereas the supply remains limited and geographically concentrated. The potential higher prices in the future adversely affect the cost competitiveness of PMDD generators and may thwart industry investment in the development of the technology for wind turbine applications. Twistact technology can eliminate industry risk around the uncertainty of REE price and availability. Traditional wire-wound direct-drive generators experience reliability issues and higher maintenance costs because of the wear on the contact brushes necessary for field excitation. The brushes experience significant wear and require regular replacement over the lifetime of operation (on the order of a year or potentially less time). For offshore wind applications, the focus of this study, maintenance costs are higher than typical land-based systems due to the added time it often requires to access the site for repairs. Thus, eliminating the need for regular brush replacements reduces the uncertain costs and energy production losses associated with maintenance and replacement of contact brushes. Further, Twistact has a relatively negligible impact on LCOE but hedges risks associated with the current dominant designs for direct-drive generators for PMDD REE price volatility and wire-wound generator contact brush reliability. A final section looks at the overall supply chain of REEs considering the supply-side and demand-side drivers that encourage the risk of depending on these materials to support future deployment of not only wind energy but other industries as well.« less

  13. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  14. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, F. A.; Fleming, P.; Wright, A.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  15. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  16. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  17. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  18. Wind Energy Finance (WEF): An Online Calculator for Economic Analysis of Wind Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-02-01

    This brochure provides an overview of Wind Energy Finance (WEF), a free online cost of energy calculator developed by the National Renewable Energy Laboratory that provides quick, detailed economic evaluation of potential utility-scale wind energy projects. The brochure lists the features of the tool, the inputs and outputs that a user can expect, visuals of the screens and a Cash Flow Results table, and contact information.

  19. Light-Flash Wind-Direction Indicator

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.

    1993-01-01

    Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.

  20. Economic and technological aspects of the market introduction of renewable power technologies

    NASA Astrophysics Data System (ADS)

    Worlen, Christine M.

    Renewable energy, if developed and delivered with appropriate technologies, is cleaner, more evenly distributed, and safer than conventional energy systems. Many countries and several states in the United States promote the development and introduction of technologies for "green" electricity production. This dissertation investigates economic and technological aspects of this process for wind energy. In liberalized electricity markets, policy makers use economic incentives to encourage the adoption of renewables. Choosing from a large range of possible policies and instruments is a multi-criteria decision process. This dissertation evaluates the criteria used and the trade-offs among the criteria, and develops a hierarchical flow scheme that policy makers can use to choose the most appropriate policy for a given situation. Economic incentives and market transformation programs seek to reduce costs through mass deployment in order to make renewable technologies competitive. Cost reduction is measured in "experience curves" that posit negative exponential relationships between cumulative deployment and production cost. This analysis reveals the weaknesses in conventional experience curve analyses for wind turbines, and concludes that the concept is limited by data availability, a weak conceptual foundation, and inappropriate statistical estimation. A revised model specifies a more complete set of economic and technological forces that determine the cost of wind power. Econometric results indicate that experience and upscaling of turbine sizes accounted for the observed cost reduction in wind turbines in the United States, Denmark and Germany between 1983 and 2001. These trends are likely to continue. In addition, future cost reductions will result from economies of scale in production. Observed differences in the performance of theoretically equivalent policy instruments could arise from economic uncertainty. To test this hypothesis, a methodology for the quantitative comparison of economic incentive schemes and their effect on uncertainty and investor behavior in renewable power markets is developed using option value theory of investment. Critical investment thresholds compared with actual benefit-cost ratios for several case studies in Germany indicate that uncertainty in prices for wind power and green certificates would delay investment. In Germany, the fixed-tariff system effectively removes this barrier.

  1. Effect on head-wind profiles and mean head-wind velocity on landing capacity flying constant-airspeed and constant-groundspeed approaches

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Kelley, W. W.

    1979-01-01

    A study was conducted to determine the effect of head-wind profiles and mean head-wind velocities on runway landing capacity for airplanes flying constant-airspeed and constant-groundspeed approaches. It was determined that when the wind profiles were encountered with the currently used constant airspeed approach method, the landing capacity was reduced. The severity of these reductions increased as the mean head-wind value of the profile increased. When constant-groundspeed approaches were made in the same wind profiles, there were no losses in landing capacity. In an analysis of mean head winds, it was determined that in a mean head wind of 35 knots, the landing capacity using constant-airspeed approaches was 13% less than for the no wind condition. There were no reductions in landing capacity with constant-groundspeed approaches for mean head winds less than 35 knots. This same result was observed when the separation intervals between airplanes was reduced.

  2. European shags optimize their flight behavior according to wind conditions.

    PubMed

    Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis

    2016-02-01

    Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.

  3. 76 FR 44000 - Environmental Impact Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ..., NV, Salt Wells Energy Projects, Proposal for Three Separate Geothermal Energy and Transmission...-328-4200. EIS No. 20110233, Draft EIS, BLM, WY, Chokecherry and Sierra Madre Wind Energy Project, Proposes to Construct and Operate a Wind Energy Project, South of Rawlins, Carbon County, WY, Comment...

  4. Design, fabrication, and test of a steel spar wind turbine blade

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Sirocky, P. J., Jr.; Viterna, L. A.

    1979-01-01

    The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

  5. Economic analysis of small wind-energy conversion systems

    NASA Astrophysics Data System (ADS)

    Haack, B. N.

    1982-05-01

    A computer simulation was developed for evaluating the economics of small wind energy conversion systems (SWECS). Input parameters consisted of initial capital investment, maintenance and operating costs, the cost of electricity from other sources, and the yield of electricity. Capital costs comprised the generator, tower, necessity for an inverter and/or storage batteries, and installation, in addition to interest on loans. Wind data recorded every three hours for one year in Detroit, MI was employed with a 0.16 power coefficient to extrapolate up to hub height as an example, along with 10 yr of use variances. A maximum return on investment was found to reside in using all the energy produced on site, rather than selling power to the utility. It is concluded that, based on a microeconomic analysis, SWECS are economically viable at present only where electric rates are inordinately high, such as in remote regions or on islands.

  6. 75 FR 55318 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... Numbers: ER10-1720-001. Applicants: Dry Lake Wind Power II LLC. Description: Dry Lake Wind Power II LLC... tariff filing per 35.12: Compliance filing for WR, NMST and Cost-Based Tariffs to be effective 3/30/2010... Time on Tuesday, September 21, 2010. Docket Numbers: ER10-2504-000. Applicants: Shiloh Wind Project 2...

  7. Wind, Sun and Water: Complexities of Alternative Energy Development in Rural Northern Peru

    ERIC Educational Resources Information Center

    Love, Thomas; Garwood, Anna

    2011-01-01

    Drawing on recent research with NGO-driven projects in rural Cajamarca, Peru, we examine the paradoxes of relying on wind, solar and micro-hydro generation of electricity for rural community development. In spite of cost, vagaries of these energy resources and limited material benefits, especially with wind and solar systems, villagers are eagerly…

  8. Blade design and operating experience on the MOD-OA 200 kW wind turbine at Clayton, New Mexico

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Shaltens, R. K.

    1979-01-01

    Two 60 foot long aluminum wind turbine blades were operated for over 3000 hours on the MOD-OA wind turbine. The first signs of blade structural damage were observed after 400 hours of operation. Details of the blade design, loads, cost, structural damage, and repair are discussed.

  9. Three-Dimensional Venturi Sensor for Measuring Extreme Winds

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.; Perotti, Jose M.; Amis, Christopher; Randazzo, John; Blalock, Norman; Eckhoff, Anthony

    2003-01-01

    A three-dimensional (3D) Venturi sensor is being developed as a compact, rugged means of measuring wind vectors having magnitudes of as much as 300 mph (134 m/s). This sensor also incorporates auxiliary sensors for measuring temperature from -40 to +120 F (-40 to +49 C), relative humidity from 0 to 100 percent, and atmospheric pressure from 846 to 1,084 millibar (85 to 108 kPa). Conventional cup-and-vane anemometers are highly susceptible to damage by both high wind forces and debris, due to their moving parts and large profiles. In addition, they exhibit slow recovery times contributing to an inaccurately high average-speed reading. Ultrasonic and hot-wire anemometers overcome some of the disadvantages of the cup and-vane anemometers, but they have other disadvantageous features, including limited dynamic range and susceptibility to errors caused by external acoustic noise and rain. In contrast, the novel 3D Venturi sensor is less vulnerable to wind damage because of its smaller profile and ruggedness. Since the sensor has no moving parts, it provides increased reliability and lower maintenance costs. It has faster response and recovery times to changing wind conditions than traditional systems. In addition, it offers wide dynamic range and is expected to be relatively insensitive to rain and acoustic energy. The Venturi effect in this sensor is achieved by the mirrored double-inflection curve, which is then rotated 360 to create the desired detection surfaces. The curve is optimized to provide a good balance of pressure difference between sensor ports and overall maximum fluid velocity while in the shape. Four posts are used to separate the two shapes, and their size and location were chosen to minimize effects on the pressure measurements. The 3D Venturi sensor has smart software algorithms to map the wind pressure exerted on the surfaces of the design. Using Bernoulli's equation, the speed of the wind is calculated from the differences among the pressure readings at the various ports. The direction of the wind is calculated from the spatial distribution and magnitude of the pressure readings. All of the pressure port sizes and locations have been optimized to minimize measurement errors and to reside in areas demonstrating a stable pressure reading proportional to the velocity range.

  10. Kalman filter based data fusion for neutral axis tracking in wind turbine towers

    NASA Astrophysics Data System (ADS)

    Soman, Rohan; Malinowski, Pawel; Ostachowicz, Wieslaw; Paulsen, Uwe S.

    2015-03-01

    Wind energy is seen as one of the most promising solutions to man's ever increasing demands of a clean source of energy. In particular to reduce the cost of energy (COE) generated, there are efforts to increase the life-time of the wind turbines, to reduce maintenance costs and to ensure high availability. Maintenance costs may be lowered and the high availability and low repair costs ensured through the use of condition monitoring (CM) and structural health monitoring (SHM). SHM allows early detection of damage and allows maintenance planning. Furthermore, it can allow us to avoid unnecessary downtime, hence increasing the availability of the system. The present work is based on the use of neutral axis (NA) for SHM of the structure. The NA is tracked by data fusion of measured yaw angle and strain through the use of Extended Kalman Filter (EKF). The EKF allows accurate tracking even in the presence of changing ambient conditions. NA is defined as the line or plane in the section of the beam which does not experience any tensile or compressive forces when loaded. The NA is the property of the cross section of the tower and is independent of the applied loads and ambient conditions. Any change in the NA position may be used for detecting and locating the damage. The wind turbine tower has been modelled with FE software ABAQUS and validated on data from load measurements carried out on the 34m high tower of the Nordtank, NTK 500/41 wind turbine.

  11. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Le; MacDonald, Erin

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under twomore » land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.« less

  12. Wind Power Today and Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describemore » the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.« less

  13. Covariance analyses of satellite-derived mesoscale wind fields

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Vonder Haar, T. H.

    1979-01-01

    Statistical structure functions have been computed independently for nine satellite-derived mesoscale wind fields that were obtained on two different days. Small cumulus clouds were tracked at 5 min intervals, but since these clouds occurred primarily in the warm sectors of midlatitude cyclones the results cannot be considered representative of the circulations within cyclones in general. The field structure varied considerably with time and was especially affected if mesoscale features were observed. The wind fields on the 2 days studied were highly anisotropic with large gradients in structure occurring approximately normal to the mean flow. Structure function calculations for the combined set of satellite winds were used to estimate random error present in the fields. It is concluded for these data that the random error in vector winds derived from cumulus cloud tracking using high-frequency satellite data is less than 1.75 m/s. Spatial correlation functions were also computed for the nine data sets. Normalized correlation functions were considerably different for u and v components and decreased rapidly as data point separation increased for both components. The correlation functions for transverse and longitudinal components decreased less rapidly as data point separation increased.

  14. Development and testing of a unique carousel wind tunnel to experimentally determine the effect of gravity and the interparticle force on the physics of wind-blown particles

    NASA Technical Reports Server (NTRS)

    Leach, R. N.; Greeley, Ronald; White, Bruce R.; Iversen, James D.

    1987-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with the interparticle forces but the two are not separable. A wind tunnel that perimits multiphase flow experiments with wind blown particles at variable gravity was built and experiments were conducted at reduced gravity. The equations of particle motion initiation (saltation threshold) with variable gravity were experimentally verified and the interparticle force was separated. A uniquely design Carousel Wind Tunnel (CWT) allows for the long flow distance in a small sized tunnel since the test section if a continuous loop and develops the required turbulent boundary layer. A prototype model of the tunnel where only the inner drum rotates was built and tested in the KC-135 Weightless Wonder 4 zero-g aircraft. Future work includes further experiments with walnut shell in the KC-135 which sharply graded particles of widely varying median sizes including very small particles to see how interparticle force varies with particle size, and also experiments with other aeolian material.

  15. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  16. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  17. 2014 Summer Series - Mark Jacobson - Roadmaps for Transitioning All 50 US States to Wind, Water and Solar Power

    NASA Image and Video Library

    2014-07-08

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of the 50 United States to those powered by 100% wind, water, and sunlight (WWS) for all purposes, namely electricity, transportation, industry, and heating/cooling, after energy efficiency measures have been accounted for. The plans call for all new energy to be WWS by 2020, ~80% conversion of existing energy by 2030, and 100% by 2050 through aggressive policy measures and natural transition. Resource availability, footprint and spacing areas required, jobs created, energy costs, avoided costs from air pollution mortality and morbidity and climate damage, methods of ensuring reliability of the grid, and impacts of offshore wind farms on hurricane dissipation are discussed. Air pollution reductions alone due to the plan would eliminate ~60,000 U.S. premature mortalities, avoiding costs equivalent to 3.2% of the United States GDP. Climate cost reductions are of similar order. The plans stabilize energy prices because fuel costs are zero.

  18. Conference on Low Reynolds Number Airfoil Aerodynamics, Notre Dame, IN, June 16-18, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    Mueller, T. J. (Editor)

    1985-01-01

    Topics of interest in the design, flow modeling and visualization, and turbulence and flow separation effects for low Reynolds number (Re) airfoils are discussed. Design methods are presented for Re from 50,000-500,000, including a viscous-inviscid coupling method and by using a constrained pitching moment. The effects of pressure gradients, unsteady viscous aerodynamics and separation bubbles are investigated, with particular note made of factors which most influence the size and location of separation bubbles and control their effects. Attention is also given to experimentation with low Re airfoils and to numerical models of symmetry breaking and lift hysteresis from separation. Both steady and unsteady flow experiments are reviewed, with the trials having been held in wind tunnels and the free atmosphere. The topics discussed are of interest to designers of RPVs, high altitude aircraft, sailplanes, ultralights and wind turbines.

  19. In-flight flow visualization characteristics of the NASA F-18 high alpha research vehicle at high angles of attack

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Delfrate, John H.; Richwine, David M.

    1991-01-01

    Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results.

  20. Separated Flow over Wind Turbines

    NASA Astrophysics Data System (ADS)

    Brown, David; Lewalle, Jacques

    2015-11-01

    The motion of the separation point on an airfoil under unsteady flow can affect its performance and longevity. Of interest is to understand and control the performance decrease in wind turbines subject to turbulent flow. We examine flow separation on an airfoil at a 19 degree angle of attack under unsteady flow conditions. We are using a DU-96-W180 airfoil of chord length 242 mm. The unsteadiness is generated by a cylinder with diameter 203 mm located 7 diameters upstream of the airfoil's leading edge. The data comes from twenty surface pressure sensors located on the top and bottom of the airfoil as well as on the upstream cylinder. Methods of analysis include Mexican hat transforms, Morlet wavelet transforms, power spectra, and various cross correlations. With this study I will explore how the differences of signals on the pressure and suction sides of an airfoil are related to the motion of the separation point.

  1. Results of an experimental investigation to determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0 AX1318I-1 747) in the Ames Research Center 14-foot wind tunnel (CA23B)

    NASA Technical Reports Server (NTRS)

    Esparza, V.

    1976-01-01

    Aerodynamic separation data obtained from a wind tunnel test of an 0.0125-scale SSV Orbiter model of a VC70-000002 Configuration and a 0.0125-scale 747 model was presented. Separation data was obtained at a Mach number of 0.6 and three incidence angles of 4, 6, and 8 degrees. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0, 2, and 4 degrees while varying the orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 and 10 degrees and horizontal stabilizer deflections of -1 and +5 degrees.

  2. Method for Correcting Control Surface Angle Measurements in Single Viewpoint Photogrammetry

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W. (Inventor); Barrows, Danny A. (Inventor)

    2006-01-01

    A method of determining a corrected control surface angle for use in single viewpoint photogrammetry to correct control surface angle measurements affected by wing bending. First and second visual targets are spaced apart &om one another on a control surface of an aircraft wing. The targets are positioned at a semispan distance along the aircraft wing. A reference target separation distance is determined using single viewpoint photogrammetry for a "wind off condition. An apparent target separation distance is then computed for "wind on." The difference between the reference and apparent target separation distances is minimized by recomputing the single viewpoint photogrammetric solution for incrementally changed values of target semispan distances. A final single viewpoint photogrammetric solution is then generated that uses the corrected semispan distance that produced the minimized difference between the reference and apparent target separation distances. The final single viewpoint photogrammetric solution set is used to determine the corrected control surface angle.

  3. LES/RANS Modeling of Aero-Optical Effects in a Supersonic Cavity Flow

    DTIC Science & Technology

    2016-06-13

    the wind tunnel is not modeled in the cavity simulation, a separate turbulent boundary layer simulation with identical free-stream conditions was...the wind tunnel experiments were provided by Dr. Donald J. Wittich and the testbed geometries were modeled by Mr. Jeremy Stanford. Dr. Maziar Hemati...and an auxiliary flat plate simulation is performed to replicate the effects of the wind - tunnel boundary layer on the computed optical path

  4. The 200-kilowatt wind turbine project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The three 200 kilowatt wind turbines described, compose the first of three separate systems. Proposed wind turbines of the two other systems, although similar in design, are larger in both physical size and rated power generation. The overall objective of the project is to obtain early operation and performance data while gaining initial experience in the operation of large, horizontal-axis wind turbines in typical utility environments. Several of the key issues addressed include the following: (1) impact of the variable power output (due to varying wind speeds) on the utility grid (2) compatibility with utility requirements (voltage and frequency control of generated power) (3) demonstration of unattended, fail-safe operation (4) reliability of the wind turbine system (5) required maintenance and (6) initial public reaction and acceptance.

  5. NGC 3516: Disk Diagnostics from a Windy BLSy1 in a High-State

    NASA Astrophysics Data System (ADS)

    Turner, Tracey Jane

    2005-10-01

    Recent advances have shown X-ray flux to be simply correlated with reflection-signatures from the disk and an associated wind. It appears two things are essential to observe the disk/wind: 1) catch the Seyfert in a high-state where disk/wind features show up strongly and 2) separate out reprocessing from distant gas to allow isolation of disk/wind features. NGC 3516 provides the ideal source for further study in this regard. The source is currently in a very high state, which we predict will lead to observable features from the disk and its wind. We request 210 ks XMM exposure on NGC 3156 with supporting Chandra time to test our prediction of flux-linked disk reflection and wind.

  6. The role of government in the development and diffusion of renewable energy technologies: Wind power in the United States, California, Denmark and Germany, 1970--2000

    NASA Astrophysics Data System (ADS)

    Sawin, Janet Laughlin

    2001-07-01

    This dissertation seeks to determine the role of government policy in advancing the development and diffusion of renewable energy technologies, and to determine if specific policies or policy types are more effective than others in achieving these ends. This study analyzes legislation, regulations, research and development (R&D) programs and their impacts on wind energy in California, the rest of the United States, Denmark and Germany, from 1970 through 2000. These countries (and state) were chosen because each has followed a very different path and has adopted wind energy at different rates. Demand for energy, particularly electricity, is rising rapidly worldwide. Renewable energy technologies could meet much of the world's future demand for electricity without the national security, environmental and social costs of conventional technologies. But renewables now play only a minor role in the electric generation systems of most countries. According to conventional economic theory, renewable energy will achieve greater market penetration once it is cost-competitive with conventional generation. This dissertation concludes, however, that government policy is the most significant causal variable in determining the development and diffusion of wind energy technology. Policy is more important for bringing wind energy to maturity than a nation's wind resource potential, wealth, relative differences in electricity prices, or existing infrastructure. Further, policy is essential for enabling a technology to succeed in the marketplace once it is cost-competitive. Policies can affect a technology's perceived, or real, costs; they can reduce risks or increase the availability and affordability of capital; appropriate and consistent policies can eliminate barriers to wind technology. To be adopted on a large scale, renewables require effective, appropriate and, above all, consistent policies that are legislated with a long-term view toward advancing a technology and an industry. Inconsistent policy is economically costly and creates cycles of boom and bust, making it impossible to build a strong domestic industry. To be effective, policy must place priority on demand creation rather than government R&D; it must create a market, establish turbine standards and siting criteria, require data collection and dissemination, facilitate grid access, establish price guarantees, and enable stakeholder participation.

  7. 40 CFR 63.1042 - Standards-Separator fixed roof.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... interface of the roof edge and the separator wall. (3) Each opening in the fixed roof shall be equipped with... closure devices shall include: organic vapor permeability; the effects of any contact with the liquid and its vapors managed in the separator; the effects of outdoor exposure to wind, moisture, and sunlight...

  8. 40 CFR 63.1042 - Standards-Separator fixed roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... interface of the roof edge and the separator wall. (3) Each opening in the fixed roof shall be equipped with... closure devices shall include: organic vapor permeability; the effects of any contact with the liquid and its vapors managed in the separator; the effects of outdoor exposure to wind, moisture, and sunlight...

  9. 40 CFR 63.1042 - Standards-Separator fixed roof.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... interface of the roof edge and the separator wall. (3) Each opening in the fixed roof shall be equipped with... closure devices shall include: organic vapor permeability; the effects of any contact with the liquid and its vapors managed in the separator; the effects of outdoor exposure to wind, moisture, and sunlight...

  10. 40 CFR 63.1042 - Standards-Separator fixed roof.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... interface of the roof edge and the separator wall. (3) Each opening in the fixed roof shall be equipped with... closure devices shall include: organic vapor permeability; the effects of any contact with the liquid and its vapors managed in the separator; the effects of outdoor exposure to wind, moisture, and sunlight...

  11. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  12. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    NASA Technical Reports Server (NTRS)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected design case, the equations, the process and the simulated time series at multiple vehicle stations are presented.

  13. Large experimental wind turbines: Where we are now

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1976-01-01

    Several large wind turbine projects have been initiated by NASA-Lewis as part of the ERDA wind energy program. The projects consist of progressively large wind turbine ranging from 100 kW with a rotor diameter of 125 feet to 1500 kW with rotor diameters of 200 to 300 feet. Also included is supporting research and technology for large wind turbines and for lowering the costs and increasing the reliability of the major wind turbine components. The results and status of the above projects are briefly discussed in this report. In addition, a brief summary and status of the plans for selecting the utility sites for the experimental wind turbines is also discussed.

  14. Wind loading on solar concentrators: Some general considerations

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.

    1984-01-01

    A survey was completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view. Current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed. Recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly.

  15. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable tomore » larger-scale conventional turbines.« less

  16. Study on the Selection of Equipment Suppliers for Wind Power Generation EPC Project

    NASA Astrophysics Data System (ADS)

    Yang, Yuanyue; Li, Huimin

    2017-12-01

    In the EPC project, the purchase cost of equipments accounted for about 60% of the total project cost, thus, the selection of equipment suppliers has an important influence on the EPC project. This paper, took EPC project for the phase I engineering of Guizhou Huaxi Yunding wind power plant as research background, constructed the evaluation index system for the selection of equipment suppliers for wind power generation EPC project from multiple perspectives, and introduced matter-element extension evaluation model to evaluate the selection of equipment suppliers for this project from the qualitative and quantitative point of view. The result is consistent with the actual situation, which verifies the validity and operability of this method.

  17. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  18. Wind Power Technologies FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-03-01

    The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation’s electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80% by 2050 by reducing costs and increasing performance of wind energy systems.

  19. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  20. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.

    PubMed

    Gibb, Rory; Shoji, Akiko; Fayet, Annette L; Perrins, Chris M; Guilford, Tim; Freeman, Robin

    2017-07-01

    Global wind patterns affect flight strategies in many birds, including pelagic seabirds, many of which use wind-powered soaring to reduce energy costs during at-sea foraging trips and migration. Such long-distance movement patterns are underpinned by local interactions between wind conditions and flight behaviour, but these fine-scale relationships are far less well understood. Here we show that remotely sensed ocean wind speed and direction are highly significant predictors of soaring behaviour in a migratory pelagic seabird, the Manx shearwater ( Puffinus puffinus ). We used high-frequency GPS tracking data (10 Hz) and statistical behaviour state classification to identify two energetic modes in at-sea flight, corresponding to flap-like and soar-like flight. We show that soaring is significantly more likely to occur in tailwinds and crosswinds above a wind speed threshold of around 8 m s -1 , suggesting that these conditions enable birds to reduce metabolic costs by preferentially soaring over flapping. Our results suggest a behavioural mechanism by which wind conditions may shape foraging and migration ecology in pelagic seabirds, and thus indicate that shifts in wind patterns driven by climate change could impact this and other species. They also emphasize the emerging potential of high-frequency GPS biologgers to provide detailed quantitative insights into fine-scale flight behaviour in free-living animals. © 2017 The Author(s).

Top