Science.gov

Sample records for cotton fibers evidence

  1. Cotton fiber tips have diverse morphologies and show evidence of apical cell wall synthesis

    PubMed Central

    Stiff , Michael R.; Haigler, Candace H.

    2016-01-01

    Cotton fibers arise through highly anisotropic expansion of a single seed epidermal cell. We obtained evidence that apical cell wall synthesis occurs through examining the tips of young elongating Gossypium hirsutum (Gh) and G. barbadense (Gb) fibers. We characterized two tip types in Gh fiber (hemisphere and tapered), each with distinct apical diameter, central vacuole location, and distribution of cell wall components. The apex of Gh hemisphere tips was enriched in homogalacturonan epitopes, including a relatively high methyl-esterified form associated with cell wall pliability. Other wall components increased behind the apex including cellulose and the α-Fuc-(1,2)-β-Gal epitope predominantly found in xyloglucan. Gb fibers had only one narrow tip type featuring characters found in each Gh tip type. Pulse-labeling of cell wall glucans indicated wall synthesis at the apex of both Gh tip types and in distal zones. Living Gh hemisphere and Gb tips ruptured preferentially at the apex upon treatment with wall degrading enzymes, consistent with newly synthesized wall at the apex. Gh tapered tips ruptured either at the apex or distantly. Overall, the results reveal diverse cotton fiber tip morphologies and support primary wall synthesis occurring at the apex and discrete distal regions of the tip. PMID:27301434

  2. New definitions for cotton fiber maturity ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber maturity affects fiber physical, mechanical, and chemical properties, as well as the processability and qualities of yarn and fabrics. New definitions of cotton fiber maturity ratio are introduced. The influences of sampling, sample preparation, measurement method, and correlations am...

  3. Estimation of ovular fiber production in cotton

    DOEpatents

    Van`t Hof, J.

    1998-09-01

    The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means. 4 figs.

  4. Estimation of ovular fiber production in cotton

    DOEpatents

    Van't Hof, Jack

    1998-09-01

    The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means.

  5. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  6. Cotton-Fiber-Filled Rubber Insulation

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Carbonization of fibers at high temperatures improves strength and erosion resistance. Cotton linters tested as replacement for asbestos filler currently used in rubber insulation in solid rocket motors. Cotton-filled rubber insulation has industrial uses; in some kinds of chemical- or metal-processing equipment, hoses, and protective clothing.

  7. Fiber quality challenges facing the cotton industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cotton industry is in the midst of an exciting time with increased domestic consumption, but also facing pressure from other crops and the global marketplace. In order to ensure the US cotton crop remains the fiber of choice for the world it is important to keep an eye on the challenges to fibe...

  8. Triarylmethane Dyes for Artificial Repellent Cotton Fibers.

    PubMed

    Montagut, Ana Maria; Gálvez, Erik; Shafir, Alexandr; Sebastián, Rosa María; Vallribera, Adelina

    2017-03-17

    Families of new hydrophobic and/or oleophobic triarylmethane dyes possessing long hydrocarbon or polyfluorinated chains have been prepared. When covalently grafted on to cotton fabric, these dyes give rise to a new type of colored superhydrophobic fibers.

  9. The Cotton Kinesin-Like Calmodulin-Binding Protein Associates with Cortical Microtubles in Cotton Fibers

    SciTech Connect

    Preuss, Mary L.; Delmar, Deborah P.; Liu, Bo

    2003-05-01

    Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP was detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus the results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.

  10. Cotton fiber moisture measurements: a comparative evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A commonly used standard method for measuring cotton fiber moisture is the oven drying method (moisture content equal weight loss). However, several commercial instruments are available for measuring fiber moisture content. A comparative evaluation program was implemented to determine the capabili...

  11. Molecular development of the mid-stage elongating cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is one of the leading natural textile fibers and is the leading value added crop in the USA. The annual business revenue from the cotton industry exceeds $120 billion. The growth of the cotton fiber is divided into four unique, yet overlapping stages; initiation, elongation, secondary w...

  12. Coloration of cotton fibers using nano chitosan.

    PubMed

    Wijesena, Ruchira N; Tissera, Nadeeka D; de Silva, K M Nalin

    2015-12-10

    A method of coloration of cotton fabrics with nano chitosan is proposed. Nano chitosan were prepared using crab shell chitin nanofibers through alkaline deacetylation process. Average nano fiber diameters of nano chitosan were 18 nm to 35 nm and the lengths were in the range of 0.2-1.3 μm according to the atomic force microscope study. The degree of deacetylation of the material was found to be 97.3%. The prepared nano chitosan dyed using acid blue 25 (2-anthraquinonesulfonic acid) and used as the coloration agent for cotton fibers. Simple wet immersion method was used to color the cotton fabrics by nano chitosan dispersion followed by acid vapor treatment. Scanning electron microscope and atomic force microscope study of the treated cotton fiber revealed that the nano chitosan were consistently deposited on the cotton fiber surface and transformed in to a thin polymer layer upon the acid vapor treatment. The color strength of the dyed fabrics could be changed by changing the concentration of dyed nano chitosan dispersion.

  13. Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    El-Nahhal, Issa M.; Zourab, Shehata M.; Kodeh, Fawzi S.; Selmane, Mohamed; Genois, Isabelle; Babonneau, Florence

    2012-07-01

    Copper oxide nanoparticles were prepared and subsequently deposited onto surface of the cotton fibers by ultrasonic irradiation. The structure and morphology of the coated and un-coated cottons were examined by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray analysis. These methods revealed that of CuO nanoparticles are crystalline and corresponds to monoclinic phase, and that these nanoparticles are physically adsorbed onto the cotton fiber surface. They have an average crystallite size of 10 nm; the physical and chemical properties of the treated cotton fibers are markedly different from those of the untreated cotton fibers. The CuO-cotton fiber nanocomposites were tested against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) cultures and showed a significant antimicrobial activity; whereas its analogous CuS-coated cotton material formed by the reaction CuO-coated cotton fibers with H2S showed no activity.

  14. Cotton fibers: characteristics, uses and performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton, one of the most important and widely grown crops in the world, is a well-traded agricultural commodity primarily for textile fiber purpose. It is a type of natural cellulose I (ß 1'4 linked glucose residues), and its growth or development is considered to include at least four overlapping bu...

  15. Application of near infrared spectroscopy in cotton fiber micronaire measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term “micronaire” describes an important cotton fiber property by characterizing the fiber maturity and fineness. In practice, micronaire is regularly measured in laboratories with well established high volume instrumentation (HVITM) protocol. Most often, cotton breeders/geneticists sent cotton ...

  16. Tracking cotton fiber quality throughout a stipper harvester: Part II

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber quality begins to degrade naturally with the opening of the boll and mechanical harvesting processes are perceived to exacerbate fiber degradation. Previous research indicates that stripper harvested cotton generally has lower fiber quality and higher foreign matter content than picker ...

  17. Tracking cotton fiber quality throughout a stripper harvester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that cotton fiber quality begins to degrade with the opening of the boll. Mechanical harvesting processes are perceived to aid in fiber degradation. Previous research indicates that stripper harvested cotton generally has lower fiber quality and higher foreign matter content than picker ...

  18. Developing Accurate Spatial Maps of Cotton Fiber Quality Parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Awareness of the importance of cotton fiber quality (Gossypium, L. sps.) has increased as advances in spinning technology require better quality cotton fiber. Recent advances in geospatial information sciences allow an improved ability to study the extent and causes of spatial variability in fiber p...

  19. Regulation of auxin on secondary cell wall cellulose biosynthesis in developing cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) fibers are unicellular trichomes that differentiate from epidermal cells of developing cotton ovules. Mature fibers exhibit thickened secondary walls composed of nearly pure cellulose. Cotton fiber development is divided into four overlapping phases, 1) initiation sta...

  20. Genomic landscape of fiber genes in fibered and non-fibered cottons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is the largest single cell in the plant kingdom. It is the best model to study cell function, differentiation, maturation, and cell death. Cotton fiber transcriptome can be clustered into two types of regions: conservative areas and recombination hotspots. This study was to investig...

  1. Glycoproteome of Elongating Cotton Fiber Cells*

    PubMed Central

    Kumar, Saravanan; Kumar, Krishan; Pandey, Pankaj; Rajamani, Vijayalakshmi; Padmalatha, Kethireddy Venkata; Dhandapani, Gurusamy; Kanakachari, Mogilicherla; Leelavathi, Sadhu; Kumar, Polumetla Ananda; Reddy, Vanga Siva

    2013-01-01

    Cotton ovule epidermal cell differentiation into long fibers primarily depends on wall-oriented processes such as loosening, elongation, remodeling, and maturation. Such processes are governed by cell wall bound structural proteins and interacting carbohydrate active enzymes. Glycosylation plays a major role in the structural, functional, and localization aspects of the cell wall and extracellular destined proteins. Elucidating the glycoproteome of fiber cells would reflect its wall composition as well as compartmental requirement, which must be system specific. Following complementary proteomic approaches, we have identified 334 unique proteins comprising structural and regulatory families. Glycopeptide-based enrichment followed by deglycosylation with PNGase F and A revealed 92 unique peptides containing 106 formerly N-linked glycosylated sites from 67 unique proteins. Our results showed that structural proteins like arabinogalactans and carbohydrate active enzymes were relatively more abundant and showed stage- and isoform-specific expression patterns in the differentiating fiber cell. Furthermore, our data also revealed the presence of heterogeneous and novel forms of structural and regulatory glycoproteins. Comparative analysis with other plant glycoproteomes highlighted the unique composition of the fiber glycoproteome. The present study provides the first insight into the identity, abundance, diversity, and composition of the glycoproteome within single celled cotton fibers. The elucidated composition also indirectly provides clues about unicellular compartmental requirements underlying single cell differentiation. PMID:24019148

  2. Fiber and seed loss from seed cotton cleaning machinery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber and seed loss from seed cotton cleaning equipment in cotton gins occurs, but the quantity of material lost, factors affecting fiber and seed loss, and the mechanisms that cause material loss are not well understood. Two experiments were conducted to evaluate the effects of different factors on...

  3. Properties study of cotton stalk fiber/gypsum composite

    SciTech Connect

    Li Guozhong; Yu Yanzhen; Zhao Zhongjian; Li Jianquan; Li Changchun

    2003-01-01

    This manuscript addresses treating cotton stalk fiber surface with styrene acrylic emulsion, which improves the interfacial combined state of cotton stalk fiber/gypsum composite effectively and improves its mechanical properties notably. Mixes less slag, ordinary Portland cement, etc., to modify gypsum base. The electron microscope was utilized to analyze and research on the effect on composite properties of the abovementioned mixtures.

  4. Improving NIR model for the prediction of cotton fiber strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber strength is an important quality characteristic that is directly related to the manufacturing of quality consumer goods. Currently, two types of instruments have been implemented to assess cotton fiber strength, namely, the automation oriented high volume instrument (HVI) and the labora...

  5. 7 CFR 28.601 - Official cotton standards for fiber fineness and maturity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Official cotton standards for fiber fineness and... Cotton Standards of the United States for Fiber Fineness and Maturity § 28.601 Official cotton standards for fiber fineness and maturity. The official cotton standards of the United States for fiber...

  6. 7 CFR 28.601 - Official cotton standards for fiber fineness and maturity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Official cotton standards for fiber fineness and... Cotton Standards of the United States for Fiber Fineness and Maturity § 28.601 Official cotton standards for fiber fineness and maturity. The official cotton standards of the United States for fiber...

  7. Comparison of two reference methods for detemining cotton fiber moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture is an important quality and processing property for the cotton industry. The standard reference method for determining the moisture content in cotton fiber is the ASTM oven method (gravimetric weight loss). Several concerns have expressed on its ability to measure the actual moisture cont...

  8. Predicting cotton stelometer fiber strength by fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strength of cotton fibers is one of several important end-use characteristics. In routine programs, it has been mostly assessed by automation-oriented high volume instrument (HVI) system. An alternative method for cotton strength is near infrared (NIR) spectroscopy. Although previous NIR models ...

  9. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2009-07-01

    Natural cellulose fibers have been obtained from the bark of cotton stalks and the fibers have been used to develop composites. Cotton stalks are rich in cellulose and account for up to 3 times the quantity of cotton fiber produced per acre. Currently, cotton stalks have limited use and are mostly burned on the ground. Natural cellulose fibers obtained from cotton stalks are composed of approximately 79% cellulose and 13.7% lignin. The fibers have breaking tenacity of 2.9 g per denier and breaking elongation of 3% and modulus of 144 g per denier, between that of cotton and linen. Polypropylene composites reinforced with cotton stalk fibers have flexural, tensile and impact resistance properties similar to jute fiber reinforced polypropylene composites. Utilizing cotton stalks as a source for natural cellulose fibers provides an opportunity to increase the income from cotton crops and make cotton crops more competitive to the biofuel crops.

  10. Obtaining Cotton Fiber Length Distribution from Beard Test Method Part 1 - Theoretical Distribution of Cotton Fiber Length

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By testing a tapered fiber beard, certain fiber length parameters can be obtained rapidly. This study is aimed at exploring the possibility to obtain the entire length distribution of a sample from the beard test method. In Part 1, the mathematical function describing cotton fiber length was searc...

  11. Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is a significant agricultural commodity throughout the world that is used primarily for its fibers to manufacture textiles, but with notable secondary value for its seeds. As cotton oil mills began to operate and products other than whole cottonseed became available, the value of cottonseed ...

  12. Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...

  13. Evaluation of modern cotton harvest systems on irrigated cotton: Fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Picker and stripper harvest systems were evaluated on production-scale irrigated cotton on the High Plains of Texas over three harvest seasons. Observations on fiber quality using High Volume Instrument (HVI) and Advanced Fiber Information Systems (AFIS) were made on multiple cultivars harvested fro...

  14. 7 CFR 28.601 - Official cotton standards for fiber fineness and maturity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Official cotton standards for fiber fineness and... STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for Fiber Fineness and Maturity § 28.601 Official cotton...

  15. 7 CFR 28.601 - Official cotton standards for fiber fineness and maturity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Official cotton standards for fiber fineness and... STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for Fiber Fineness and Maturity § 28.601 Official cotton...

  16. 7 CFR 28.601 - Official cotton standards for fiber fineness and maturity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Official cotton standards for fiber fineness and... STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for Fiber Fineness and Maturity § 28.601 Official cotton...

  17. Infrared imaging of cotton fibers using a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy studies can be used to examine the quality and structure of cotton fibers. An emerging area of research relates to the imaging of cotton fibers. Herein, we report the use of a Fourier-transform infrared (FTIR) microscope to image developing cotton fibers. Studies were perfor...

  18. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Stowage of cotton or vegetable fibers with coal... CARRIAGE BY VESSEL Subpart O-Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, Polymeric Beads, and Plastic Molding Compounds § 176.903 Stowage of cotton or vegetable fibers with...

  19. 49 CFR 176.901 - Stowage of cotton or vegetable fibers with rosin or pitch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Stowage of cotton or vegetable fibers with rosin... REGULATIONS CARRIAGE BY VESSEL Subpart O-Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, Polymeric Beads, and Plastic Molding Compounds § 176.901 Stowage of cotton or vegetable fibers with rosin...

  20. 49 CFR 176.901 - Stowage of cotton or vegetable fibers with rosin or pitch.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Stowage of cotton or vegetable fibers with rosin... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, and Asbestos § 176.901 Stowage of cotton or vegetable fibers with rosin or pitch. (a) Unless...

  1. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Stowage of cotton or vegetable fibers with coal... CARRIAGE BY VESSEL Subpart O-Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, Polymeric Beads, and Plastic Molding Compounds § 176.903 Stowage of cotton or vegetable fibers with...

  2. 49 CFR 176.901 - Stowage of cotton or vegetable fibers with rosin or pitch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Stowage of cotton or vegetable fibers with rosin... REGULATIONS CARRIAGE BY VESSEL Subpart O-Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, Polymeric Beads, and Plastic Molding Compounds § 176.901 Stowage of cotton or vegetable fibers with rosin...

  3. 49 CFR 176.901 - Stowage of cotton or vegetable fibers with rosin or pitch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of cotton or vegetable fibers with rosin... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, and Asbestos § 176.901 Stowage of cotton or vegetable fibers with rosin or pitch. (a) Unless...

  4. 49 CFR 176.901 - Stowage of cotton or vegetable fibers with rosin or pitch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of cotton or vegetable fibers with rosin... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, and Asbestos § 176.901 Stowage of cotton or vegetable fibers with rosin or pitch. (a) Unless...

  5. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Stowage of cotton or vegetable fibers with coal... § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported on a vessel may not be stowed in the same hold with coal. They may be stowed in adjacent holds if...

  6. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of cotton or vegetable fibers with coal... § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported on a vessel may not be stowed in the same hold with coal. They may be stowed in adjacent holds if...

  7. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of cotton or vegetable fibers with coal... § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported on a vessel may not be stowed in the same hold with coal. They may be stowed in adjacent holds if...

  8. 49 CFR 176.900 - Packaging and stowage of cotton and vegetable fibers; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fibers; general. 176.900 Section 176.900 Transportation Other Regulations Relating to Transportation... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, and Asbestos § 176.900 Packaging and stowage of cotton and vegetable fibers; general. (a) Cotton, Class 9,...

  9. Fiber moisture content measurements of lint and seed cotton by a small microwave instrument

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The timely and accurate measurement of cotton fiber moisture content is important, as deviations in moisture fiber content can impact the fiber quality and processing of cotton fiber. The Mesdan Aqualab is a small, modular, microwave-based fiber moisture measurement instrument for samples with mode...

  10. De-esterified Pectins in the Cell Walls of Cotton Fiber: A Study of Fiber Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the wild-type cotton (DP 5690), the cell walls of elongating cotton fibers are bilayered, with the outer layer enriched in de-esterified homogalacturonan (HGA), and an inner layer enriched in xyloglucans and cellulose. This bilayer is conspicuously absent in the cell walls of the ovule epidermal...

  11. Variability in cotton fiber yield, fiber quality, and soil properties in a southeastern coastal plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To maximize profitability, cotton (GossypiumhirsutumL.) producers must attempt to control the quality of the crop while maximizing yield. The objective of this research was to measure the intrinsic variability present in cotton fiber yield and quality. The 0.5-ha experimental site was located in a...

  12. Cotton Benzoquinone Reductase: Up-regulation During Early Cotton Fiber Developement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR; EC 1.6.5.7) is an enzyme that catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE comparisons, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage but ...

  13. Electrokinetic and hemostatic profiles of nonwoven cellulosic/ synthetic fiber blends with unbleached cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greige cotton contains waxes and pectin on the outer surface of the fiber that are removed from bleached cotton, but present added potential for wound dressing functionality. Innovations to mechanically clean and sterilize greige cotton (or non-bleached cotton) do not remove these exterior componen...

  14. Cu/Zn superoxide dismutases in developing cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen peroxide (H2O2) and other reactive oxygen species (ROS) are important signaling molecules in diverse physiological processes. Previously, we discovered superoxide dismutase (SOD) activity in extracellular protein preparations from fiber-bearing cotton (Gossypium hirsutum L.) seeds. We sho...

  15. The R3-MYB gene GhCPC negatively regulates cotton fiber elongation.

    PubMed

    Liu, Bingliang; Zhu, Yichao; Zhang, Tianzhen

    2015-01-01

    Cotton (Gossypium spp.) fibers are single-cell trichomes that arise from the outer epidermal layer of seed coat. Here, we isolated a R3-MYB gene GhCPC, identified by cDNA microarray analysis. The only conserved R3 motif and different expression between TM-1 and fuzzless-lintless mutants suggested that it might be a negative regulator in fiber development. Transgenic evidence showed that GhCPC overexpression not only delayed fiber initiation but also led to significant decreases in fiber length. Interestingly, Yeast two-hybrid analysis revealed an interaction complex, in which GhCPC and GhTTG1/4 separately interacted with GhMYC1. In transgenic plants, Q-PCR analysis showed that GhHOX3 (GL2) and GhRDL1 were significantly down regulated in -1-5 DPA ovules and fibers. In addition, Yeast one-hybrid analysis demonstrated that GhMYC1 could bind to the E-box cis-elements and the promoter of GhHOX3. These results suggested that GhHOX3 (GL2) might be downstream gene of the regulatory complex. Also, overexpression of GhCPC in tobacco led to differential loss of pigmentation. Taken together, the results suggested that GhCPC might negatively regulate cotton fiber initiation and early elongation by a potential CPC-MYC1-TTG1/4 complex. Although the fibers were shorter in transgenic cotton lines than in the wild type, no significant difference was detected in stem or leaf trichomes, even in cotton mutants (five naked seed or fuzzless), suggesting that fiber and trichome development might be regulated by two sets of genes sharing a similar model.

  16. Within-plant distribution of cotton aphid (Hemiptera: Aphididae) in cotton cultivars with colored fibers.

    PubMed

    Fernandes, Francisco S; Ramalho, Francisco S; Malaquias, José B; Nascimento Junior, José L; Correia, Ezequias T; Zanuncio, José C

    2012-09-01

    We describe the vertical and horizontal distribution of the cotton aphid Aphis gossypii Glover within a cotton plant in two cotton (Gossypium hirsutum Linnaeus) cultivars (BRS Safira and BRS Rubí) with colored fiber over the time. Measurements of aphid population dynamics and distribution in the cotton plants were recorded in intervals of seven days. The number of apterous or alate aphids and their specific locations were recorded, using as a reference point the location of nodes on the mainstem of the plant and also those on the leaves present on branches and fruit structures. The number of apterous aphids found on the cultivar BRS Safira (56,515 aphids) was greater than that found on BRS Rubí (50,537 aphids). There was no significant difference between the number of alate aphids found on the cultivars BRS Safira (365 aphids/plant) and BRS Rubí (477 aphids/plant). There were interactions between cotton cultivar and plant age, between plant region and plant age, and between cultivar and plant region for apterous aphids. The results of this study are of great importance in improving control strategies for A. gossypii in the naturally-colored cotton cultivars BRS Safira and BRS Rubí.

  17. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome.

    PubMed

    Yoo, Mi-Jeong; Wendel, Jonathan F

    2014-01-01

    The single-celled cotton (Gossypium hirsutum) fiber provides an excellent model to investigate how human selection affects phenotypic evolution. To gain insight into the evolutionary genomics of cotton domestication, we conducted comparative transcriptome profiling of developing cotton fibers using RNA-Seq. Analysis of single-celled fiber transcriptomes from four wild and five domesticated accessions from two developmental time points revealed that at least one-third and likely one-half of the genes in the genome are expressed at any one stage during cotton fiber development. Among these, ~5,000 genes are differentially expressed during primary and secondary cell wall synthesis between wild and domesticated cottons, with a biased distribution among chromosomes. Transcriptome data implicate a number of biological processes affected by human selection, and suggest that the domestication process has prolonged the duration of fiber elongation in modern cultivated forms. Functional analysis suggested that wild cottons allocate greater resources to stress response pathways, while domestication led to reprogrammed resource allocation toward increased fiber growth, possibly through modulating stress-response networks. This first global transcriptomic analysis using multiple accessions of wild and domesticated cottons is an important step toward a more comprehensive systems perspective on cotton fiber evolution. The understanding that human selection over the past 5,000+ years has dramatically re-wired the cotton fiber transcriptome sets the stage for a deeper understanding of the genetic architecture underlying cotton fiber synthesis and phenotypic evolution.

  18. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber

    PubMed Central

    Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  19. Gene-rich islands for fiber development in the cotton genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is an economically important seed trichome and the world's leading natural fiber used in the manufacture of textiles. As a step towards elucidating the genomic organization and distribution of gene networks responsible for cotton fiber development, we investigated the distribution of f...

  20. Effect of microwave radiation on Jayadhar cotton fibers: WAXS studies

    SciTech Connect

    Niranjana, A. R. Mahesh, S. S. Divakara, S. Somashekar, R.

    2014-04-24

    Thermal effect in the form of micro wave energy on Jayadhar cotton fiber has been investigated. Microstructural parameters have been estimated using wide angle x-ray scattering (WAXS) data and line profile analysis program developed by us. Physical properties like tensile strength are correlated with X-ray results. We observe that the microwave radiation do affect significantly many parameters and we have suggested a multivariate analysis of these parameters to arrive at a significant result.

  1. Effect of H2O2 on fiber initiation using fiber retardation initiation mutants in cotton (Gossypium hirsutum).

    PubMed

    Zhang, Dayong; Zhang, Tianzhen; Guo, Wangzhen

    2010-03-15

    Single-celled fibers initiate at anthesis from cotton seed epidermal cells of normal developmental cotton cultivars; however, fiber initiation is retarded in some cotton fiber mutants. In this study, the relationship between genes associated with fiber initiation retardation and fiber initiation development was investigated using three cotton fiber developmental mutants: recessive naked seed n2; dominant naked seed N1; and Xinxiangxiaoji Linted-Fuzzless Mutant (XinFLM); with genetic standard line TM-1 (TM-1) as control. Retardation during fiber initiation development was observed in N1 and XinFLM by scanning electron microscope (SEM) analysis. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of genes related to the fiber initiation development showed that the expression of GhEXP1 and GhMYB25 was lower in N1 and XinFLM than in TM-1 and n2, however, the expression of GhTTG1 and GhTTG3 in XinFLM and n2 was higher than in TM-1 and N1. In vivo and in vitro treatments on ovules demonstrated that 30% hydrogen peroxide (H2O2) could prevent fiber initiation retardation in XinFLM, but no evident effect on N1. To further confirm the relationship between gene expression and the effects of H2O2 in XinFLM, qRT-PCR analysis of four differentially expressed genes was performed using -1d post-anthesis (DPA) ovules of XinFLM treated for 24 and 48h with 30% H2O2 and H2O, respectively, with 0 and 1 DPA untreated ovules from XinFLM and TM-1 as control. The results showed that the expression of GhMYB25 and GhEXP1 showed significant difference in XinFLM after -1 DPA ovule treated for 24h relative to the untreated or H2O-treated ovules, with the expression of GhMYB25 increased significantly and that of GhEXP1 decreased. This implied that H2O2 might be one of the upstream signal molecules affecting the expression of GhMYB25 and GhEXP1 genes. The fiber initiation retardation in XinFLM might be related to the production of reactive oxygen species (ROS).

  2. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome.

    PubMed

    Xu, Zhanyou; Yu, Jing; Kohel, Russell J; Percy, Richard G; Beavis, William D; Main, Dorrie; Yu, John Z

    2015-07-01

    Cotton fiber represents the largest single cell in plants and they serve as models to study cell development. This study investigated the distribution and evolution of fiber Unigenes anchored to recombination hotspots between tetraploid cotton (Gossypium hirsutum) At and Dt subgenomes, and within a parental diploid cotton (Gossypium raimondii) D genome. Comparative analysis of At vs D and Dt vs D showed that 1) the D genome provides many fiber genes after its merger with another parental diploid cotton (Gossypium arboreum) A genome although the D genome itself does not produce any spinnable fiber; 2) similarity of fiber genes is higher between At vs D than between Dt vs D genomic hotspots. This is the first report that fiber genes have higher similarity between At and D than between Dt and D. The finding provides new insights into cotton genomic regions that would facilitate genetic improvement of natural fiber properties.

  3. Fruiting Branch K+ Level Affects Cotton Fiber Elongation Through Osmoregulation

    PubMed Central

    Yang, Jiashuo; Hu, Wei; Zhao, Wenqing; Chen, Binglin; Wang, Youhua; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Potassium (K) deficiency in cotton plants results in reduced fiber length. As one of the primary osmotica, K+ contributes to an increase in cell turgor pressure during fiber elongation. Therefore, it is hypothesized that fiber length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha-1) on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibers were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (Vmax) is the parameter that best reflects the change in fiber elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analyzed accordingly. Statistical analysis showed that K+ was the major osmotic factor affecting fiber length, and malate was likely facilitating K+ accumulation into fibers, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K+ absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fiber length in late season bolls. PMID:26834777

  4. Potential of near infrared spectroscopy in the prediction of cotton fiber strength indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite relatively low correlation between 2 cotton strength readings from the automation oriented HVI and laboratory based Stelometer device, the present study demonstrates the consistence of cotton fiber strength measurements between the two methods if the strength readings were modified by cotton...

  5. Leaf content, seed moisture and module storage time of seed cotton influence cotton fiber quality and aflatoxin contamination of cottonseed in South Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf content, seed moisture and module storage time of seed cotton influence cotton fiber quality and aflatoxin contamination of cottonseed in South Texas. Crop Science ... Cotton is the most important natural fiber used to produce apparel, home furnishing, and industrial products. The quality of th...

  6. Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thickness of cotton fiber cell walls is an important property that partially determines the economic value of cotton. To better understand the physical and chemical manifestations of the genetic variations that regulate the degree of fiber wall thickness, we used a comprehensive set of methods t...

  7. Developing Fiber Specific Promoter-Reporter Transgenic Lines to Study the Effect of Abiotic Stresses on Fiber Development in Cotton

    PubMed Central

    Chen, Junping; Burke, John J.

    2015-01-01

    Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality. PMID:26030401

  8. Measurement comparison of cotton fiber micronaire and its components by portable near infrared spectroscopy instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire is a key cotton fiber classing and quality assessment property, and changes in fiber micronaire can impact downstream fiber processing and dye consistency in the textile manufacturing industry. Micronaire is a function of two fiber components—fiber maturity and fineness. Historically, m...

  9. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling.

    PubMed

    Wang, Lu; Cook, Akiko; Patrick, John W; Chen, Xiao-Ya; Ruan, Yong-Ling

    2014-05-01

    Cotton fibers, the most important source of cellulose for the global textile industry, are single-celled trichomes derived from the ovule epidermis at or just prior to anthesis. Despite progress in understanding cotton fiber elongation and cell-wall biosynthesis, knowledge regarding the molecular basis of fiber cell initiation, the first step of fiber development determining the fiber yield potential, remains elusive. Here, we provide evidence that expression of a vacuolar invertase (VIN) is an early event that is essential for cotton fiber initiation. RNAi-mediated suppression of GhVIN1, a major VIN gene that is highly expressed in wild-type fiber initials, resulted in significant reduction of VIN activity and consequently a fiberless seed phenotype in a dosage dependent manner. The absence of a negative effect on seed development in these fiberless seeds indicates that the phenotype is unlikely to be due to lack of carbon nutrient. Gene expression analyses coupled with in vitro ovule culture experiments revealed that GhVIN1-derived hexose signaling may play an indispensable role in cotton fiber initiation, probably by regulating the transcription of several MYB transcription factors and auxin signaling components that were previously identified as required for fiber initiation. Together, the data represent a significant advance in understanding the mechanisms of cotton fiber initiation, and provide the first indication that VIN-mediated hexose signaling may act as an early event modulating the expression of regulatory genes and hence cell differentiation from the ovule epidermis.

  10. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  11. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers represent the largest single cell in the plant kingdom, and they have been used as a model to study cell function, differentiation, maturation, and cell death. The cotton fiber transcriptome can be clustered into two genomic regions: conserved and recombination hotspots. Genetic link...

  12. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  13. Distribution of fiber development genes and transcription factors between At and Dt subgenomes in tetraploid cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the worlds leading natural material used in the manufacture of textiles, cotton fibers are important seed trichomes derived from individual cells of the epidermal layer of the seed coat. Cotton fiber development is determined by large numbers of genes and transcription factors. However, little ...

  14. Fiber Longitudinal Measurements for Predicting White Speck Contents of Dyed Cotton Fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber Image Analysis System (FIAS) was developed to provide an automatic method for measuring cotton maturity from fiber snippets or cross-sections . An uncombed cotton bundle is chopped and sprayed on a microscopic slide. The snippets are imaged sequentially on an microscope and measured with custo...

  15. A comparative study on cotton fiber length parameters’ effects on modeling yarn property

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber length is one of the key properties of cotton and has important influences on yarn production and yarn quality. Various parameters have been developed to characterize cotton fiber length in the past decades. This study was carried out to investigate the effects of these parameters and their ...

  16. Preliminary study of relating cotton fiber tenacity and elongation with crystallinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fundamental understanding of the relationship between cotton fiber strength (or tenacity) / elongation and structure is important, as cotton breeders could modify their varieties for enhancing end-use qualities. In this study, the Stelometer instrument was employed to measure bundle fiber tenacity a...

  17. Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the suitability of using residual plant fibers from agricultural waste streams as reinforcement in thermoplastic composites. Three groups of plant fibers evaluated included cotton burrs, sticks, and linters from cotton gin waste (CGW), guayule whole plant, and gu...

  18. Polysaccharide and glycoprotein distribution in the epidermis of cotton ovules during early fiber initiation and growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cotton fiber is a model system to study cell wall biosynthesis because the fiber cell elongates (~3 cm in ~20 days) without mitosis. In this study, developing cotton ovules, examined from 1 day before anthesis (DBA) to 2 days post-anthesis (DPA), that would be difficult to investigate via class...

  19. In vitro inhibition of pigmentation and fiber development in colored cotton.

    PubMed

    Yuan, Shu-na; Malik, Waqas; Hua, Shui-jin; Bibi, Noreen; Wang, Xue-de

    2012-06-01

    Colored cotton has naturally pigmented fibers. The mechanism of pigmentation in cotton fiber is not well documented. This experiment was conducted to study the effects of respiratory chain inhibitors, i.e., rotenone and thiourea, on pigmentation and fiber development in colored cotton. After 1 d post-anthesis, ovaries were harvested and developing ovules were cultured on the liquid medium containing different concentrations of rotenone and thiourea for 30 d. The results demonstrate that both respiratory inhibitors reduced fiber length and ovule development under ovule culture conditions, and the inhibition efficiency of rotenone was much higher than that of thiourea. Rotenone and thiourea also showed significant effects on fiber pigment (color) development in colored cotton. In green cotton fiber, rotenone advanced fiber pigment development by 7 d at 200 μmol/L, while thiourea inhibited fiber pigmentation at all treatment levels (400, 600, 800, 1000, and 2000 μmol/L). Both respiratory inhibitors, however, had no significant effects on pigmentation of brown cotton fibers. The activities of cytochrome c oxidase (COX) and polyphenol oxidase (PPO) decreased significantly with increasing levels of both respiratory inhibitors. It is suggested that both respiratory inhibitors have important roles in deciphering the mechanism of pigmentation and fiber development in colored cotton.

  20. Genetic variation for agronomic and fiber quality traits in a population derived from high-quality cotton germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic improvement of fiber quality is necessary to meet the requirements of processors and users of cotton fiber. To foster genetic improvement of cotton fiber quality, adequate genetic variation for the quantitatively inherited physical properties of cotton is required. Additionally, knowledge of...

  1. Identification of cotton fiber quality quantitative trait loci using intraspecific crosses derived from two near-isogenic lines differing in fiber bundle strength.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber properties are very important to the yarn quality. Modern high-speed textile operations around the world require long, strong and fine cotton fibers. The objective of this research was to identify stable fiber quantitative trait loci (QTL) that could be used in cotton breeding through m...

  2. Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers

    PubMed Central

    Mujahid, Hana; Pendarvis, Ken; Reddy, Joseph S.; Nallamilli, Babi Ramesh Reddy; Reddy, K. R.; Nanduri, Bindu; Peng, Zhaohua

    2016-01-01

    The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation, cytoskeleton development and carbohydrate metabolism among other functional categories in four fiber developmental stages were identified. Our studies provide protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile of cotton fiber development. PMID:28248216

  3. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Individual fiber strength is an important quality attribute that greatly influences the strength of the yarn spun from cotton fibers. Fiber strength is usually measured from bundles of fibers due to the difficulty of reliably measuring strength from individual cotton fibers. However, bun...

  4. The green adsorption of chitosan tripolyphosphate nanoparticles on cotton fiber surfaces.

    PubMed

    Wang, Mingxi; She, Yuanbin; Xiao, Zuobing; Hu, Jing; Zhou, Rujun; Zhang, Jia

    2014-01-30

    Chitosan nanoparticles (chitosan NP) were effectively incorporated onto cotton fiber surfaces during a green adsorption without any cross-linking agents in this work. The interactions between cotton fibers and chitosan NP during the green adsorption were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric-derivative thermogravimetry (TG-DTG) and scanning electron microscopy (SEM) in detail. The results indicated that the intermolecular hydrogen bond interactions exited between the hydroxyl groups of cotton fibers and the amino groups of chitosan NP, and progressively enhanced with the increase in chitosan NP mass concentrations. After chitosan NP adsorption, the acidity of fibers augmented and the crystallinity index of fibers declined owing to the increasing interactions. In addition, the hydrophobic interactions occurred between chitosan NP and crystalline cotton fibers, thereby resulting in the preferential adsorption onto the hydrophobic (200) crystallographic plane.

  5. Gibberellin Overproduction Promotes Sucrose Synthase Expression and Secondary Cell Wall Deposition in Cotton Fibers

    PubMed Central

    Zhao, Juan; Song, Shui-Qing; Hu, Lin; Zeng, Jian-Yan; Li, Xian-Bi; Hou, Lei; Luo, Ming; Li, De-Mou; Pei, Yan

    2014-01-01

    Bioactive gibberellins (GAs) comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression. PMID:24816840

  6. The effect of cellulases on the biodegradation and morphology of naturally colored cotton fibers

    SciTech Connect

    Evans, B.R.; Lee, I.; Woodward, J.; Fox, S.V.

    1997-12-31

    We have investigated the effect of cellulases on the biodegradation and structure of natural colored cotton (Foxfibre{reg_sign}). Compared to the white cotton and palo verde (sage green) varieties, buffalo (mocha brown) and coyote (reddish brown) varieties were quite resistant to hydrolysis by Trichoderma reesei celluclast and purified cellobiohydrolase I (CBH I) under the conditions of the assay, but binding of CBH I to buffalo cotton was unaffected. Sodium hydroxide extracts of all the colored cotton varieties were found to be strong inhibitors of cellulase activity and the buffalo cotton was labile in that the inhibitory effect decreased over time in the presence of cellulase; incubation of {beta}-glucosidase with the extract also decreased the inhibition. The chemical composition of the inhibitor is currently under investigation. Atomic force microscopy of the colored cotton fibers with bound cellulase components should prove useful in the context of elucidating the effect of binding on the morphology of cellulose fibers.

  7. Mechanical interlocking of cotton fibers on slightly textured surfaces of metallic cylinders

    NASA Astrophysics Data System (ADS)

    Zhang, Youqiang; Tian, Yu; Meng, Yonggang

    2016-05-01

    Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been achieved. It is found that the locking or sliding of the cotton fibers on the metallic cylinder depends on the friction coefficient and the ratio of cotton fiber diameter, 2r, to the height of the rough peaks, h, of metal surfaces. When the critical ratio h/r exceeds 1, the cotton fibers could tightly attach to the metallic surface through mechanical interlocking. This work provided a convenient and universal method for the control of interlocking or sliding of fiber-based materials on textured surfaces.

  8. Mechanical interlocking of cotton fibers on slightly textured surfaces of metallic cylinders

    PubMed Central

    Zhang, Youqiang; Tian, Yu; Meng, Yonggang

    2016-01-01

    Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been achieved. It is found that the locking or sliding of the cotton fibers on the metallic cylinder depends on the friction coefficient and the ratio of cotton fiber diameter, 2r, to the height of the rough peaks, h, of metal surfaces. When the critical ratio h/r exceeds 1, the cotton fibers could tightly attach to the metallic surface through mechanical interlocking. This work provided a convenient and universal method for the control of interlocking or sliding of fiber-based materials on textured surfaces. PMID:27156720

  9. Cotton fiber cell wall development for three cultivars: an Fourier transform infrared spectroscopy examination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An examination of FT-IR vibrational band development in spectra of cotton fiber at different developmental dates (18 – 40 days post-anthesis; DPA) will be presented in this talk. Results from three cotton cultivars will be presented. Two of the cultivars are nearly identical genetic lines, which ha...

  10. Effect of cotton fiber properties on properties of hydroentangled nonwoven fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven mechanically pre-cleaned greige cottons of significantly different fiber length, length uniformity or micronaire were processed into nonwoven fabrics using a commercial-grade hydroentanglement system of fabric formation. Results have shown that the pre-cleaned greige cotton of considerably di...

  11. Test cross evaluation of upland cotton accessions for selected fiber properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texas A&M AgriLife Research released several upland cotton (Gossypium hirsutum L.) germplasm lines that exhibit near extra-long and extra-long staple (ELS) upper half mean length (UHML) fibers, similar to those produced by pima cotton (Gossypium barbadense L.) and significantly longer than those of ...

  12. Comparison of NIR and FT-IR spectral models in the prediction of cotton fiber strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strength quality in cotton fibers is one of several important end-use characteristics. In routine programs, it has been mostly assessed by automation-oriented high volume instrument (HVI) system. An alternative method for cotton strength is near infrared (NIR) spectroscopy. Although previous NIR mod...

  13. The Involvement of Hydrogen Peroxide in the Differentiation of Secondary Walls in Cotton Fibers1

    PubMed Central

    Potikha, Tamara S.; Collins, Cheryl C.; Johnson, Douglas I.; Delmer, Deborah P.; Levine, Alex

    1999-01-01

    H2O2 is a widespread molecule in many biological systems. It is created enzymatically in living cells during various oxidation reactions and by leakage of electrons from the electron transport chains. Depending on the concentration H2O2 can induce cell protective responses, programmed cell death, or necrosis. Here we provide evidence that H2O2 may function as a developmental signal in the differentiation of secondary walls in cotton (Gossypium hirsutum) fibers. Three lines of evidence support this conclusion: (a) the period of H2O2 generation coincided with the onset of secondary wall deposition, (b) inhibition of H2O2 production or scavenging the available H2O2 from the system prevented the wall differentiation process, and (c) exogenous addition of H2O2 prematurely promoted secondary wall formation in young fibers. Furthermore, we provide support for the concept that H2O2 generation could be mediated by the expression of the small GTPase Rac, the accumulation of which was shown previously to be strongly induced during the onset of secondary wall differentiation. In support of Rac's role in the activation of NADPH oxidase and the generation of reactive oxygen species, we transformed soybean (Glycine max) and Arabidopsis cells with mutated Rac genes. Transformation with a dominantly activated cotton Rac13 gene resulted in constitutively higher levels of H2O2, whereas transformation with the antisense and especially with dominant-negative Rac constructs decreased the levels of H2O2. PMID:10069824

  14. Use of FTIR spectroscopy technique in the determination of cotton fiber maturity and crystallinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber consists of natural cellulose I component and its end-use qualities depend on the amount of cellulose deposited during the growth. The term fiber maturity has been used to describe the degree of cellulosic development or the secondary cell wall thickening of fibers. Useful information a...

  15. Genetics of Cotton Fiber Initiation: Inheritance Studies on Three Fiberless Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber initiation, or the protuberate expansion of individual cells in the epidermis of cotton ovules, is a key component of lint percentage. Ovular trichomes are classified as either lint or fuzz based on the timing of fiber initiation. Initiation of lint fiber begins at anthesis and continues for ...

  16. Preliminary study of linear density, tenacity, and crystallinity of cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An investigation of the relationships among fiber linear density, tenacity, and structure is important to help cotton breeders modify varieties for enhanced fiber end-use qualities. This study employed the Stelometer instrument, which is the traditional fiber tenacity reference method and might stil...

  17. A cotton fiber associated cyclin-dependent kinase A gene: Characterization and chromosomal location

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cotton fiber cell normally originates and elongates as a single ovular epidermal cell. The cessation of fiber cell division and ensuing elongation imply that the cell cycle is differentially regulated in fiber cells. Cyclin-dependent kinases (CDKs) play a central role in the regulation of cell cy...

  18. MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development

    PubMed Central

    Wang, Min; Sun, Runrun; Li, Chao; Wang, Qinglian; Zhang, Baohong

    2017-01-01

    The role of microRNAs (miRNAs) during cotton fiber development remains unclear. Here, a total of 54 miRNAs belonging to 39 families were selected to characterize miRNA regulatory mechanism in eight different fiber development stages in upland cotton cv BM-1. Among 54 miRNAs, 18 miRNAs were involved in cotton fiber initiation and eight miRNAs were related to fiber elongation and secondary wall biosynthesis. Additionally, 3,576 protein-coding genes were candidate target genes of these miRNAs, which are potentially involved in cotton fiber development. We also investigated the regulatory network of miRNAs and corresponding targets in fiber initiation and elongation, and secondary wall formation. Our Gene Ontology-based term classification and KEGG-based pathway enrichment analyses showed that the miRNA targets covered 220 biological processes, 67 molecular functions, 45 cellular components, and 10 KEGG pathways. Three of ten KEGG pathways were involved in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important roles in fiber development. Overall, our study shows the potential regulatory roles of miRNAs in cotton fiber development and the importance of miRNAs in regulating different cell types. This is helpful to design miRNA-based biotechnology for improving fiber quality and yield. PMID:28327647

  19. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development.

    PubMed

    Ma, Jun; Liu, Fang; Wang, Qinglian; Wang, Kunbo; Jones, Don C; Zhang, Baohong

    2016-02-09

    TCP proteins are plant-specific transcription factors implicated to perform a variety of physiological functions during plant growth and development. In the current study, we performed for the first time the comprehensive analysis of TCP gene family in a diploid cotton species, Gossypium arboreum, including phylogenetic analysis, chromosome location, gene duplication status, gene structure and conserved motif analysis, as well as expression profiles in fiber at different developmental stages. Our results showed that G. arboreum contains 36 TCP genes, distributing across all of the thirteen chromosomes. GaTCPs within the same subclade of the phylogenetic tree shared similar exon/intron organization and motif composition. In addition, both segmental duplication and whole-genome duplication contributed significantly to the expansion of GaTCPs. Many these TCP transcription factor genes are specifically expressed in cotton fiber during different developmental stages, including cotton fiber initiation and early development. This suggests that TCP genes may play important roles in cotton fiber development.

  20. Field Comparison of the Sampling Efficacy of Two Smear Media: Cotton Fiber and Kraft Paper

    SciTech Connect

    Hogue, M.G.

    2002-02-07

    Two materials were compared in field tests at the Defense Waste Processing Facility: kraft paper (a strong, brown paper made from wood pulp prepared with a sodium sulfate solution) and cotton fiber. Based on a sampling of forty-six pairs of smears, the cotton fiber smears provide a greater sensitivity. The cotton fiber smears collected an average of forty-four percent more beta activity than the kraft paper smears and twenty-nine percent more alpha activity. Results show a greater sensitivity with cotton fiber over kraft paper at the 95 percent confidence level. Regulatory requirements for smear materials are vague. The data demonstrate that the difference in sensitivity of smear materials could lead to a large difference in reported results that are subsequently used for meeting shipping regulations or evaluating workplace contamination levels.

  1. Enrichment of a set of microRNAs during the cotton fiber development

    PubMed Central

    Kwak, Pieter Bas; Wang, Qin Qin; Chen, Xu Sheng; Qiu, Cheng Xiang; Yang, Zhi Min

    2009-01-01

    Background Cotton (Gossypium hirsutum) is one of the most important economic crops and provides excellent fibers for textile manufacture. In addition to its industrial and agricultural importance, the fiber cell (plant trichome) also is a biological model system for exploring gene expression and regulation. Small RNAs regulate many aspects of plant growth and development. However, whether small RNAs are involved in regulation of fiber cell development is unknown. Results We adopted a deep sequencing approach developed by Solexa (Illumina Inc.) to investigate global expression and complexity of small RNAs during cotton fiber initiation and development. We constructed two small RNA libraries prepared from wild type (WT) and fuzz/lintless (fl Mutant in the WT background) cotton ovules, respectively. Each library was sequenced individually and generated more than 6-7 million short sequences, resulting in a total of over 13 million sequence reads. At least 22 conserved candidate miRNA families including 111 members were identified. Seven families make up the vast majority of expressed miRNAs in developing cotton ovules. In total 120 unique target genes were predicted for most of conserved miRNAs. In addition, we identified 2 cell-type-specific novel miRNA candidates in cotton ovules. Our study has demonstrated significant differences in expression abundance of miRNAs between the wild-type and mutant, and suggests that these differentially expressed miRNAs potentially regulate transcripts distinctly involved in cotton fiber development. Conclusion The present study is the first to deep sequence the small RNA population of G. hirsutum ovules where cotton fibers initiate and develop. Millions of unique miRNA sequences ranging from 18~28 nt in length were detected. Our results support the importance of miRNAs in regulating the development of different cell types and indicate that identification of a comprehensive set of miRNAs in cotton fiber cells would facilitate our

  2. Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for...

  3. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  4. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant reveal that fiber cell wall development is associated with sensitivity to stress.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cotton fiber maturity refers the degree of fiber cell wall development and is an important factor for determining commercial value of cotton. The molecular mechanism regulating the fiber cell wall development has not been well characterized. Microscopic image analysis of the cross-sect...

  5. Characterization of developmental immature fiber (im) mutant and Texas Marker-1 (TM-1) cotton fibers by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The immature fiber (im) mutant is one type of cotton fiber mutants with unique characteristics of non-fluffy cotton bolls. Compared to its near-isogenic wild type Texas Marker-1 (TM-1), im fiber has thin secondary cell wall and is less mature. In this work, we applied the previously proposed princip...

  6. Unravel the key genes potentially related to high strength of cotton fiber by comparative phenotypic and genomic analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand of high strength of cotton fibers has been increased dramatically with the advent of modern high speed spinning technology for producing yarn. Bundle fiber strength is affected by fiber-to-fiber interactions in addition to the individual fiber strength. The bundle fiber strength is not al...

  7. Molecular evolution and phylogenetic analysis of genes related to cotton fibers development from wild and domesticated cotton species in Gossypium.

    PubMed

    Zhu, Huayu; Lv, Junhong; Zhao, Liang; Tong, Xiangchao; Zhou, Baoliang; Zhang, Tianzhen; Guo, Wangzhen

    2012-06-01

    The domestication of both diploid and tetraploid cotton species was carried out for fiber utilization. To understand the origin and domestication of fibers, 18 genes related to fiber development were individually cloned and sequenced from 22 different cotton species. Their structures, phylogenetic relationship and molecular evolution were further studied. In the orthologous and homeologous loci of the 18 genes, the sequence and structure of 72.22% were conserved and 27.78% were diverse. Tree topologies constructed based on the combined sequences showed that all 13 D-genome species were congruent with Fryxell's subsection taxonomy, the A- and D-subgenomes independently evolved in the allopolyploid after polyploid formation, and Gossypium raimondii had the closest relationship with all allotetraploids of D-subgenomes. The molecular evolutionary rates revealed approximately equivalent rates among different D-genome species, and purifying selection acted on all genes in the wild D-genome species. Among orthologs and homeologs, the D-subgenomes had higher evolutionary rates than the A-subgenomes in tetraploid cotton species, and the cultivars had higher evolutionary rates than either the semi-domesticated or wild species. Our study revealed that human domestication altered the molecular evolutionary pattern of genes related to fiber development, and Gossypium hirsutum endured greater selective pressures than Gossypium barbadense during the domestication process.

  8. Comparisons of minicard ratings to ion chromatography sugar profiles in cotton fiber water extract and minicard sticky spot material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific levels and ratios of the carbohydrates melezitose and trehalulose deposited on the surface of cotton fibers are indicators of whitefly or aphid contamination. These deposits could cause stickiness problems during cotton ginning and textile processing. The concept of cotton stickiness is hi...

  9. Influence of seed cotton extractors and cleaning rate on gin turnout and fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texas High Plains cotton has improved over the last ten years with regard to yield and high volume instrument (HVI) fiber quality. Harvesting and ginning practices are needed which preserve fiber quality and maximize return to the producer. The objective of this work is to investigate the influence ...

  10. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable aqueous suspensions of cellulose nano-crystals (CNCs) were fabricated from both native and mercerized cotton fibers by sulfuric acid hydrolysis, followed by high-pressure homogenization. Fourier Transform Infrared Spectrometry and Wide-angle X-Ray Diffraction data showed that the fibers had b...

  11. Cotton fiber properties relative humidity and its effect on flat bundle strength elongation and fracture morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well known that cotton fibers readily exchange moisture content with their surrounding atmosphere. As moisture exchange progresses, several physical properties of the fiber are significantly affected. In this study, the effects of relative humidity (RH), a factor that affects the atmospheric m...

  12. Linkage Map Construction and QTL Analysis of Agronomic and Fiber Quality Traits in Cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The superior fiber properties of Gossypium barbadense L. serve as a source of novel variation for improving fiber quality in Upland cotton (G. hirsutum L.), but introgression from G. barbadense has been largely unsuccessful due to hybrid breakdown and a lack of genetic and genomic resources. In an e...

  13. USING PARTIAL LEAST SQUARES REGRESSION TO OBTAIN COTTON FIBER LENGTH DISTRIBUTIONS FROM THE BEARD TESTING METHOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The beard testing method for measuring cotton fiber length is based on the fibrogram theory. However, in the instrumental implementations, the engineering complexity alters the original fiber length distribution observed by the instrument. This causes challenges in obtaining the entire original le...

  14. Comparative relationship of fiber strength and yarn tenacity in four cotton cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High volume instrumentation (HVITM) measurement is a primary and routine tool of providing fiber properties to cotton researchers. There have been considerable studies designed to derive yarn quality from acquired fiber quality data by various means, including HVI. There is also of desired informati...

  15. Divergent selection for fiber length and bundle strength and correlated responses in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton breeders must develop cultivars to meet the demand for longer, stronger, and more uniform fibers. In the current study, two cycles of divergent selection for fiber upper-half mean length (UHML) and bundle strength (Str) were conducted within five diverse parental combinations selected based o...

  16. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    PubMed

    Avci, Utku; Pattathil, Sivakumar; Singh, Bir; Brown, Virginia L; Hahn, Michael G; Haigler, Candace H

    2013-01-01

    Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  17. Surface nanomodification of cotton fiber for flame retardant application.

    PubMed

    Paosawatyanyong, Boonchoat; Jermsutjarit, Piyarat; Bhanthumnavin, Worawan

    2012-01-01

    This paper presents efficient surface modification methodology to increase fire resistance properties of cotton by radio frequency (RF) plasma-induced graft copolymerization of vinyl phosphate ester as nanometer residue structure onto cotton surface. Methacryloyloxyethyl diphenyl phosphate (MEDP) monomer was synthesized and grafted onto the surface of cotton fabric by argon RF plasma at ambient temperature. Under optimum RF power (30 W), amounts of MEDP and N,N methylenebisacrylamide cross linking agent were varied to obtain optimum graft copolymerization conditions. Untreated and treated cotton were characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy to investigate their functional group characteristics. This showed a strong covalent attachment between the surface of cotton and flame retardant material as the carbonyl functionality of the MEDP was clearly observed in the spectra. Scanning electron microscopic (SEM) analysis also showed grafted material as nanometer residue on cotton surface. Thermogravimetric analysis (TGA) revealed that the decomposition of phosphorus compound which occurs at lower temperature than the cotton itself resulted in the formation of char which covers cotton surface. This protects the fabric surface from further burning, therefore, higher amounts of remaining materials were observed as char in all cases. Furthermore, limiting oxygen index (LOI) had increased from 19 in untreated to 28 in grafted cotton. Detailed analysis on structural and thermal properties as well as surface grafting efficiency are presented.

  18. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development

    PubMed Central

    Balasubramanian, Vimal Kumar; Rai, Krishan Mohan; Thu, Sandi Win; Hii, Mei Mei; Mendu, Venugopal

    2016-01-01

    The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality. PMID:27679939

  19. Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength.

    PubMed

    Wang, YouHua; Feng, Ying; Xu, NaiYin; Chen, BingLin; Ma, RongHui; Zhou, ZhiGuo

    2009-11-01

    To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0, 240 and 480 kgN/hm(2), signifying optimum and excessive nitrogen application levels were applied. The activities and the gene expressions of the key enzymes were affected by N, and the characteristics of cellulose accumulation and fiber strength changed as the N rate varied. Beta-1,3-glucanase activity in cotton fiber declined from 9 DPA till boll opening, and the beta-1, 3-glucanase coding gene expression also followed a unimodal curve in 12-24 DPA. In 240 kgN/hm(2) condition, the characteristics of enzyme activity and gene expression manner for sucrose synthase and beta-1,3-glucanase in developing cotton fiber were more favorable for forming a longer and more steady cellulose accumulation process, and for high strength fiber development.

  20. Protein expression changes during cotton fiber elongation in response to drought stress and recovery.

    PubMed

    Zheng, Mi; Meng, Yali; Yang, Changqin; Zhou, Zhiguo; Wang, Youhua; Chen, Binglin

    2014-08-01

    An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought-responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells.

  1. Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection

    PubMed Central

    Su, Junji; Li, Libei; Pang, Chaoyou; Wei, Hengling; Wang, Caixiang; Song, Meizhen; Wang, Hantao; Zhao, Shuqi; Zhang, Chi; Mao, Guangzhi; Huang, Long; Wang, Chengshe; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Fiber quality is one of the most important agronomic traits of cotton, and understanding the genetic basis of its target traits will accelerate improvements to cotton fiber quality. In this study, a panel comprising 355 upland cotton accessions was used to perform genome-wide association studies (GWASs) of five fiber quality traits in four environments. A total of 16, 10 and 7 SNPs were associated with fiber length (FL), fiber strength (FS) and fiber uniformity (FU), respectively, based on the mixed linear model (MLM). Most importantly, two major genomic regions (MGR1 and MGR2) on chromosome Dt7 and four potential candidate genes for FL were identified. Analyzing the geographical distribution of favorable haplotypes (FHs) among these lines revealed that two favorable haplotype frequencies (FHFs) were higher in accessions from low-latitude regions than in accessions from high-latitude regions. However, the genetic diversity of lines from the low-latitude regions was lower than the diversity of lines from the high-latitude regions in China. Furthermore, the FHFs differed among cultivars developed during different breeding periods. These results indicate that FHs have undergone artificial selection during upland cotton breeding in recent decades in China and provide a foundation for the further improvement of fiber quality traits. PMID:27924947

  2. Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents.

    PubMed

    Deschamps, Gerald; Caruel, Herve; Borredon, Marie-Elisabeth; Bonnin, Christophe; Vignoles, Christian

    2003-03-01

    Hydrophobic cotton fibers, obtained by acylation of cellulose with fatty acid using microwaves radiations, have a high selective affinity for vegetable or mineral oil, fuel, and petroleum, in aqueous medium. Their sorption capacity (SC) (weight of liquid picked up by a given weight of sorbent) is about 20 g/g, after draining. They are reusable after simple squeezing, and their SC reaches a constant value, ca. 12 g/g. Moreover, this product is stable in water, whereas raw cotton can develop molds, after oil sorption. Besides, it is also biodegradable.

  3. Chemical imaging of secondary cell wall development in cotton fibers using a mid-infrared focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Market demands for cotton varieties with improved fiber properties also call for the development of fast, reliable analytical methods for monitoring fiber development and measuring their properties. Currently, cotton breeders rely on instrumentation that can require significant amounts of sample, w...

  4. 19 CFR 10.609 - Transshipment of non-originating cotton or man-made fiber apparel goods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Transshipment of non-originating cotton or man-made fiber apparel goods. 10.609 Section 10.609 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... Level § 10.609 Transshipment of non-originating cotton or man-made fiber apparel goods. (a) General....

  5. 19 CFR 10.609 - Transshipment of non-originating cotton or man-made fiber apparel goods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Transshipment of non-originating cotton or man-made fiber apparel goods. 10.609 Section 10.609 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... Level § 10.609 Transshipment of non-originating cotton or man-made fiber apparel goods. (a) General....

  6. 19 CFR 10.609 - Transshipment of non-originating cotton or man-made fiber apparel goods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Transshipment of non-originating cotton or man-made fiber apparel goods. 10.609 Section 10.609 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... Level § 10.609 Transshipment of non-originating cotton or man-made fiber apparel goods. (a) General....

  7. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall sythesis, represses lignification, and prolongs elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber morphogenesis reflects extreme elongation and staged cell wall differentiation in an easily isolated single cell. Uncovering the cellular control mechanisms can lead to strategies for producing improved cotton fiber for textiles and other uses. To identify potential controls of the high...

  8. 19 CFR 10.609 - Transshipment of non-originating cotton or man-made fiber apparel goods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Transshipment of non-originating cotton or man-made fiber apparel goods. 10.609 Section 10.609 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... Level § 10.609 Transshipment of non-originating cotton or man-made fiber apparel goods. (a) General....

  9. 19 CFR 10.609 - Transshipment of non-originating cotton or man-made fiber apparel goods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Transshipment of non-originating cotton or man-made fiber apparel goods. 10.609 Section 10.609 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... Level § 10.609 Transshipment of non-originating cotton or man-made fiber apparel goods. (a) General....

  10. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation.

    PubMed

    Kawai, M; Aotsuka, S; Uchimiya, H

    1998-12-01

    The cDNA encoding CAP (adenylyl cyclase-associated protein) was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA (GhCAP) contained an open reading frame that encoded 471 amino acid residues. RNA blot analysis showed that the cotton CAP gene was expressed mainly in young fibers.

  11. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutan...

  12. Novel hydrophobic cotton fibers adsorbent for the removal of nitrobenzene in aqueous solution.

    PubMed

    Wu, Yanchen; Qi, Houjuan; Li, Beizhan; Zhanhua, Huang; Li, Wei; Liu, Shouxin

    2017-01-02

    In order to improve the superhydrophobic and oil-wet properties of raw cotton fibers come from Jiangsu province, China. A novel adsorbent, hydrophobic cotton fibers (HCF) with an excellent superhydrophobic and larger length was synthesized via modified sol-gel method and examined for the removal of nitrobenzene in aqueous solution. Results show that the treated raw cotton fibers exhibited outstanding non-wettability with the WCA of 152° and the larger length of 0.2-0.4cm, which offers an opportunity to separation in for the removal of nitrobenzene. It was found that adsorption isotherm and kinetics of nitrobenzene onto HCF were well described by the Freundlich and pseudo-second-order kinetic models, respectively. The thermodynamic data showed that the nitrobenzene adsorption onto HCF was a spontaneous, endothermic and physisorption reaction. The monolayer adsorption capacity of nitrobenzene was found to be 16.85mg/g at 30°C.

  13. Biodegradability and process characterization of nonwovens formed from cotton and cellulose acetate fibers

    NASA Astrophysics Data System (ADS)

    Suh, Hageun

    A possible candidate as an environmentally friendly nonwoven fabric is one which can be formed from the thermal calendering of a cotton/cellulose acetate blend. The results presented have focused on biodegradable properties of the fibers, physical properties of the fabric, and process optimization of the thermal calendering. Biodegradation of cellulose has been intensively studied, and cellulose is believed to be readily biodegraded by many microorganisms due to the activity of cellulase enzymes. However, the biodegradability of cellulose acetate (CA) is less than certain. To determine a semi-quantitative measure of the biodegradation of CA fibers, the AATCC test method 30-1988 was selected. After a 12-week soil burial test, evidence of microbial attack on CA fabric was obtained on the basis of 27% strength loss. As a more reliable method, the ASTM test method D5209-91, an aerobic sludge test, was adopted, in which the amount of COsb2 evolved from the decomposition of CA, cotton and fiber blends was measured. The biodegradability of CA fibers was confirmed by showing COsb2 evolution, and the synergistic effects of multi-enzyme systems between cellulase and esterase were suggested based on the increased biodegradation rates in fiber blends. Opening, blending, carding, and thermal calendering processes were used in the fabrication of the nonwovens. Pretreatment with solvent vapors was introduced for modifying the softening temperatures of the cellulose acetate and for lowering the calendering temperatures required otherwise. The success of the solvent-assisted thermal calendering is demonstrated in enhanced tensile strengths of the nonwoven obtained with lower calendering temperatures. For process optimization, the experiment was designed for a 3-way factorial design with the following factors: bonding temperature, blend ratio and solvent treatment time. The effects of the factors on 18 physical properties were determined by analysis of variance, least

  14. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F

    2013-10-01

    Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution.

  15. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.

    PubMed

    Asaadi, Shirin; Hummel, Michael; Hellsten, Sanna; Härkäsalmi, Tiina; Ma, Yibo; Michud, Anne; Sixta, Herbert

    2016-11-23

    A new chemical recycling method for waste cotton is presented that allows the production of virgin textile fibers of substantially higher quality than that from the mechanical recycling methods that are used currently. Cotton postconsumer textile wastes were solubilized fully in the cellulose-dissolving ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to be processed into continuous filaments. As a result of the heterogeneous raw material that had a different molar mass distribution and degree of polymerization, pretreatment to adjust the cellulose degree of polymerization by acid hydrolysis, enzyme hydrolysis, or blending the waste cotton with birch prehydrolyzed kraft pulp was necessary to ensure spinnability. The physical properties of the spun fibers and the effect of the processing parameters on the ultrastructural changes of the fibers were measured. Fibers with a tenacity (tensile strength) of up to 58 cN tex(-1) (870 MPa) were prepared, which exceeds that of native cotton and commercial man-made cellulosic fibers.

  16. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species Gossypium barbadense.

    PubMed

    Liu, H W; Shi, R F; Wang, X F; Pan, Y X; Zang, G Y; Ma, Z Y

    2012-09-25

    Sea Island cotton (Gossypium barbadense) is highly valued for its superior fiber qualities, especially fiber strength. Based on a transcript-derived fragment originated from transcriptome QTL mapping, a fiber strength related candidate gene of phosphatidylinositol 4-kinase cDNA, designated as GbPI4K, was first cloned, and its expression was characterized in the secondary cell wall thickening stage of G. barbadense fibers. The ORF of GbPI4K was found to be 1926 bp in length and encoded a predicted protein of 641 amino acid residues. The putative protein contained a clear PI3/4K kinase catalytic domain and fell into the plant type II PI4K cluster in phylogenetic analysis. In this study, the expression of cotton PI4K protein was also induced in Escherichia coli BL21 (DE3) as a fused protein. Semi-quantitative RT-PCR analysis showed that the gene expressed in the root, hypocotyl and leaf of the cotton plants. Real-time RT-PCR indicated that this gene in Sea Island cotton fibers expressed 10 days longer than that in Upland cotton fibers, and the main expression difference of PI4K between Sea Island cotton and Upland cotton in fibers was located in the secondary cell wall thickening stage of the fiber. Further analysis indicated that PI4K is a crucial factor in the ability of Rac proteins to regulate phospholipid signaling pathways.

  17. Variations and relationship of quality and NIR spectral characteristics of cotton fibers collected from multi-location field performance trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High volume instrumentation (HVITM) and advanced fiber information system (AFIS) measurements are increasingly being utilized as primary and routine means of acquiring fiber quality data by cotton breeders and fiber processors. There is amount of information regarding fiber and yarn qualities, but l...

  18. Rapid measurement of cotton fiber maturity and fineness by image analysis microscopy using the Cottonscope®

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two of the important cotton fiber quality and processing parameters are fiber maturity and fineness. Fiber maturity is the degree of development of the fiber’s secondary wall, and fiber fineness is a measure of the fiber’s linear density and can be expressed as mass per unit length. A well-known m...

  19. Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum).

    PubMed

    Zou, Changsong; Wang, Qiaolian; Lu, Cairui; Yang, Wencui; Zhang, Youping; Cheng, Hailiang; Feng, Xiaoxu; Prosper, Mtawa Andrew; Song, Guoli

    2016-02-01

    Long noncoding RNAs (lncRNAs) play important roles in various biological regulatory processes in yeast, mammals, and plants. However, no systematic identification of lncRNAs has been reported in Gossypium arboreum. In this study, the strand-specific RNA sequencing (ssRNA-seq) of samples from cotton fibers and leaves was performed, and lncRNAs involved in fiber initiation and elongation processes were systematically identified and analyzed. We identified 5,996 lncRNAs, of which 3,510 and 2,486 can be classified as long intergenic noncoding RNAs (lincRNAs) and natural antisense transcripts (lncNAT), respectively. LincRNAs and lncNATs are similar in many aspects, but have some differences in exon number, exon length, and transcript length. Expression analysis revealed that 51.9% of lincRNAs and 54.5% of lncNATs transcripts were preferentially expressed at one stage of fiber development, and were significantly highly expressed than protein-coding transcripts (21.7%). During the fiber and rapid elongation stages, rapid and dynamic changes in lncRNAs may contribute to fiber development in cotton. This work describes a set of lncRNAs that are involved in fiber development. The characterization and expression analysis of lncRNAs will facilitate future studies on their roles in fiber development in cotton.

  20. Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines

    PubMed Central

    Zhang, Shu-Wen; Zhu, Xie-Fei; Feng, Liu-Chun; Gao, Xiang; Yang, Biao; Zhang, Tian-Zhen; Zhou, Bao-Liang

    2016-01-01

    Fiber quality improvement is a driving force for further cotton domestication and breeding. Here, QTLs for fiber quality were mapped in 115 introgression lines (ILs) first developed from two intraspecific populations of cultivated and feral cotton landraces. A total of 60 QTLs were found, which explained 2.03–16.85% of the phenotypic variance found in fiber quality traits. A total of 36 markers were associated with five fiber traits, 33 of which were found to be associated with QTLs in multiple environments. In addition, nine pairs of common QTLs were identified; namely, one pair of QTLs for fiber elongation, three pairs for fiber length, three pairs for fiber strength and two pairs for micronaire (qMICs). All common QTLs had additive effects in the same direction in both IL populations. We also found five QTL clusters, allowing cotton breeders to focus their efforts on regions of QTLs with the highest percentages of phenotypic variance. Our results also reveal footprints of domestication; for example, fourteen QTLs with positive effects were found to have remained in modern cultivars during domestication, and two negative qMICs that had never been reported before were found, suggesting that the qMICs regions may be eliminated during artificial selection. PMID:27549323

  1. Characterization of PROFILIN genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors and expression analysis in cotton genotypes differing in fiber characteristics.

    PubMed

    Argiriou, Anagnostis; Kalivas, Apostolos; Michailidis, Georgios; Tsaftaris, Athanasios

    2012-04-01

    The actin-binding protein profilin (PRF) plays an important role in cell growth and expansion by regulating the organization of the actin filaments. Recent studies have reported association between fiber elongation in cultivated cotton (Gossypium hirsutum) and PRF expression. In the present study, we cloned four genomic clones from allotetraploid cotton (G. hirsutum) and its putative diploid progenitors (G. arboreum and G. raimondii) designated GhPRF1_A, GhPRF1_D, GaPRF1, and GrPRF1 encoding cotton PRF and characterized their genomic structure, phylogenetic relationships and promoter structure. Sequence analysis of the coding regions of all clones resulted in a single protein product which revealed more than 80% similarity to most plant PRFs and a typical organization with an actin-binding and a polybasic phospholipid binding motif at the carboxy terminus. DNA blot hybridization suggested that PRF gene is present with more than one copy in the allotetraploid species G. hirsutum. Expression analysis performed in various organs of cultivated cotton revealed that the PRF gene was preferentially expressed in cotton fibers. Very low levels of expression were observed in whole flowers, while PRF transcripts were not detected in other organs examined. Furthermore, higher levels of expression were observed at the early stages of cotton fiber development (at 10 days post anthesis), indicative that this gene may play a major role in the early stages of cotton fiber development. Quantitation of the expression by real-time PCR revealed higher expression levels in a G. hirsutum variety with higher fiber percentage compared to a variety with lower percentage. In addition, higher levels of expression were found in cultivated allotetraploid G. barbadense cotton species with higher fiber length in comparison to cultivated allotetraploid G. hirsutum.

  2. Bt cotton and farmer suicides in India: an evidence-based assessment.

    PubMed

    Gruère, Guillaume; Sengupta, Debdatta

    2011-01-01

    Bt cotton is accused of being responsible for an increase of farmer suicides in India. In this article, we provide a comprehensive review of evidence on Bt cotton and farmer suicides. Available data show no evidence of a 'resurgence' of farmer suicides. Moreover, Bt cotton technology has been very effective overall in India. Nevertheless, in specific districts and years, Bt cotton may have indirectly contributed to farmer indebtedness, leading to suicides, but its failure was mainly the result of the context or environment in which it was planted.

  3. Comparison of nir methods for measuring cotton fiber maturity and fineness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maturity and fineness are important cotton fiber properties, as they can impact the fiber’s downstream processability and dye performance. Maturity and fineness are often indicated indirectly by the fiber’s micronaire. Maturity and fineness can be measured directly, but most available methods are ...

  4. Synthesis of silver nanoparticles in textile finish aqueous system and their antimicrobial properties on cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver nanoparticles (NPs) were synthesized by a simple and environmentally benign procedure using poly (ethylene glycol) (PEG) as reducing agent and stabilizer in the textile finish aqueous system, and their antimicrobial properties on greige (mechanically cleaned) and bleached cotton fibers were i...

  5. Association of SSR markers with important fiber traits in Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this research are to: 1) report on the diversity in agronomic and fiber traits of the selected cotton germplasm released by the public breeders and private industries, 2) detect the genetic diversity among these lines using SSR markers, and 3) identify the SSR markers association w...

  6. FT-IR examination of the development of secondary cell wall in cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The secondary cell wall development of cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering was examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. Generally, a progressive intensity increase for bands assigned to cellulose Iß was ...

  7. Near-infrared spectroscopy in the assessment of cotton fiber qualities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is one of the most important agricultural commodities in the world. Its production and profitability are determined by at least three main factors including genotype, environment, and production practices that interact to one another and ultimately affects the yield and quality of cotto...

  8. Natural resistance of raw cotton fiber to heat evidenced by the suppressed depolymerization of cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanically purified raw cotton fiber finds a growing range of applications in support of environmental sustainability, but its unique thermal stability, which is important in processes and utilization, is little known. This study shows that at low temperatures (< 300 'C), the accelerated dehydrati...

  9. 2D FT-IR Study of Compositional and Structural Change in Developing Cotton Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of immature and mature cotton fibers. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity of 660 cm-1 to ...

  10. 49 CFR 176.900 - Packaging and stowage of cotton and vegetable fibers; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS... bale of cotton or vegetable fibers which is saturated with water may not be transported by vessel. (c... carbon dioxide or overhead water sprinkler system or other approved fixed extinguishing system....

  11. 49 CFR 176.900 - Packaging and stowage of cotton and vegetable fibers; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS... deck space, and not overstowed. Any bale of cotton or vegetable fibers which is saturated with water... or compartment must be equipped with a carbon dioxide or overhead water sprinkler system or...

  12. 49 CFR 176.900 - Packaging and stowage of cotton and vegetable fibers; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS... deck space, and not overstowed. Any bale of cotton or vegetable fibers which is saturated with water... or compartment must be equipped with a carbon dioxide or overhead water sprinkler system or...

  13. 49 CFR 176.900 - Packaging and stowage of cotton and vegetable fibers; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS... bale of cotton or vegetable fibers which is saturated with water may not be transported by vessel. (c... carbon dioxide or overhead water sprinkler system or other approved fixed extinguishing system....

  14. Harvester-based sensing system for cotton fiber-quality mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture in cotton production attempts to maximize profitability by exploiting information on field spatial variability to optimize the fiber yield and quality. For precision agriculture to be economically viable, collection of spatial variability data within a field must be automated a...

  15. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.).

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Pathak, Dharminder; Chen, Sixue; Wendel, Jonathan F

    2014-12-01

    Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.

  16. Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2007-08-01

    We report the production and characteristics of natural cellulose fibers obtained from the leaves and stems of switchgrass. In this paper, the composition, structure and properties of fibers obtained from the leaves and stem of switchgrass have been studied in comparison to the common natural cellulose fibers, such as cotton, linen and kenaf. The leaves and stems of switchgrass have tensile properties intriguingly similar to that of linen and cotton, respectively. Fibers were obtained from the leaves and stems of switchgrass using a simple alkaline extraction and the structure and properties of the fibers were studied. Fibers obtained from switchgrass leaves have crystallinity of 51%, breaking tenacity of 5.5 g per denier (715 MPa) and breaking elongation of 2.2% whereas the corresponding values for fibers obtained from switchgrass stems are 46%, 2.7 g per denier and 6.8%, respectively. Switchgrass is a relatively easy to grow and high yield biomass crop that can be source to partially substitute the natural and synthetic fibers currently in use. We hope that this research will stimulate interests in using switchgrass as a novel fiber crop in addition to being promoted as a potential source for biofuels.

  17. Use of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy in direct, non-destructive, and rapid assessment of developmental cotton fibers grown in planta and in culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are routinely harvested from cotton plants (in planta), and their end-use qualities depend on their development stages. Cotton fibers are also cultured at controlled laboratory environments, so that cotton researchers can investigate many aspects of experimental protocols in cotton bre...

  18. Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene.

    PubMed

    Wang, Chunhui; Li, Yibin; He, Xiaodong; Ding, Yujie; Peng, Qingyu; Zhao, Wenqi; Shi, Enzheng; Wu, Shiting; Cao, Anyuan

    2015-05-07

    Three-dimensional graphene-based structures such as graphene aerogels or foams have shown applications in energy, environmental matters, and many other areas. Here, we present a method to convert raw cotton into functional aerogels containing a significant amount of nitrogen-doped graphene (N-graphene) sheets grafted on carbonized cellulose fibers. Urea was introduced into raw cotton as a molecular template as well as a nitrogen source to synthesize mushroom-like N-graphene sheets strongly attached to cotton skeletons. The excellent processability of raw cotton allows us to configure bulk or meter-long fiber shaped aerogels, with high porosity and flexibility. Synergistic effects stemming from the integration of N-graphene and carbonized cotton skeletons promise potential applications as conductive electrodes for supercapacitors, with a measured specific capacitance of 107.5 F g(-1) in a two-electrode system. Our results indicate a low-cost and scalable approach toward high-performance graphene-based aerogels and electrodes via biomass templating.

  19. Laboratory ginning and blending impacts on cotton fiber micronaire measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire, a critical cotton quality parameter, is normally measured in a conditioned laboratory, but increasing interest has been shown in new technologies that can measure micronaire both in and outside of the laboratory. Near Infrared (NIR) technology has demonstrated its ability to measure cot...

  20. Measurements of seed coat fragments in cotton fibers and fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed coat fragments (SCF) are parts of a seed coat that have been broken from the surface of either mature or immature seeds during mechanical processing. SCF can cause spinning problems and fabric defects, which ultimately cause losses to the cotton industry. The objective of this study was to dev...

  1. Relationships of cotton fiber properties to ring-spun yarn quality on selected High Plains cottons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to evaluate the adequacy of High Volume Instruement (HVI) and Advanced Fiber Information System (AFIS) fiber quality parameters for predicting quality parameters of ring-spun yarns considering differences in harvest method. Fiber properties measured using the HVI (...

  2. Effects of harvesting methods on foreign matter content, fiber quality, and yarn quality from irrigated cotton on the high plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvest treatments were compared for a variety of cotton commonly grown on the High Plains of Texas. Foreign matter, fiber quality, and yarn quality were compared for cotton harvested using a spindle picker, a brush-roll stripper with a field cleaner, and the same stripper harvester without a field ...

  3. Performance of the Cottonscan Instrument for Measuring the Average Fiber Linear Density (Fineness) of Cotton Lint Samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper explores the CottonscanTM instrument, a new technology designed for routine measurement of the average linear density (fineness) of cotton fiber. A major international inter-laboratory trial of the CottonscanTM system is presented. This expands the range of cottons and laboratories fro...

  4. Utility assessment of published microsatellite markers for fiber length and bundle strength QTL in a cotton breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marker-assisted selection (MAS) may help mitigate some of the current challenges regarding the genetic improvement of cotton fiber quality, such as low genetic diversity and the negative association between fiber quality and lint yield. A multitude of quantitative trait loci (QTL) for fiber length a...

  5. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers.

    PubMed

    Han, Li-Bo; Li, Yuan-Bao; Wang, Hai-Yun; Wu, Xiao-Min; Li, Chun-Li; Luo, Ming; Wu, Shen-Jie; Kong, Zhao-Sheng; Pei, Yan; Jiao, Gai-Li; Xia, Gui-Xian

    2013-11-01

    LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase-box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits.

  6. Elevated growing degree days influence transition stage timing during cotton (Gossypium hirsutum L.) fiber development and result in increased fiber strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing degree days required for cotton (Gossypium hirsutum L.) growth and development were recorded for four growing seasons and compared with fiber quality measurements and gene expression data indicative of different stages of fiber development. Comparative fiber bundle strength differences betw...

  7. Understanding the cotton fiber elongation process using short fiber mutants, the Ligon lintless-1 (Li1) and -2 (Li2) as an experiment model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The length of cotton fiber is an important agronomic trait that directly affects the quality of yarn and fabric. Understanding the molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon lintless-1 (Li1) and Ligon lintless-2 (Li2) are monogenic and dominant m...

  8. Modification and characterization of cellulosic cotton fibers for efficient immobilization of urease.

    PubMed

    Monier, M; El-Sokkary, A M A

    2012-01-01

    Cotton fibers were first grafted by polyacrylonitril in the presence of KMnO(4) and oxalic acid as a combined redox initiator. Moreover, modification of the grafted cotton fibers was done by changing the nitrile group (-CN) into hydrazidine group through the reaction with hydrazine hydrate, then the fibers were activated by glutaraldehyde to introduce free aldehyde groups which were able to react with amino groups of urease to form Schiff's base, and result in cotton fibers immobilized urease. The efficiency of the immobilization was evaluated by examining the relative enzymatic activity of enzyme before and after the immobilization of urease. The results showed that the optimum temperature of immobilized urease was 35°C, which was higher than that of the free enzyme (30°C), and the immobilized urease exhibited a higher relative activity than that of free urease over 35°C. The optimal pH for immobilized urease was 6.5, which was lower than that of the free urease (pH 7.0), and the immobilization resulted in stabilization of enzyme over a wider pH range. The kinetic constant value (K(m)) of immobilized urease was higher than that of the free urease. However, the thermal and operational stabilities of immobilized urease have been improved greatly.

  9. A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics

    NASA Astrophysics Data System (ADS)

    Zhou, Qianlong; Jia, Chunyang; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan

    2016-09-01

    At present, the topic of building high-performance, miniaturized and mechanically flexible energy storage modules which can be directly integrated into textile based wearable electronics is a hotspot in the wearable technology field. In this paper, we reported a highly flexible fiber-shaped electrode fabricated through a one-step convenient hydrothermal process. The prepared graphene hydrogels/multi-walled carbon nanotubes-cotton thread derived from natural cotton thread is electrochemically active and mechanically strong. Fiber-shaped supercapacitor based on the prepared fiber electrodes and polyvinyl alcohol-H3PO4 gel electrolyte exhibits good capacitive performance (97.73 μF cm-1 at scan rate of 2 mV s-1), long cycle life (95.51% capacitance retention after 8000 charge-discharge cycles) and considerable stability (90.75% capacitance retention after 500 continuous bending cycles). Due to its good mechanical and electrochemical properties, the graphene hydrogels/multi-walled carbon nanotubes-cotton thread based all-solid fiber-shaped supercapacitor can be directly knitted into fabrics and maintain its original capacitive performance. Such a low-cost textile thread based versatile energy storage device may hold great potential for future wearable electronics applications.

  10. Functional Characterization of a Dihydroflavanol 4-Reductase from the Fiber of Upland Cotton (Gossypium hirsutum).

    PubMed

    Wang, Le; Zhu, Yue; Wang, Peng; Fan, Qiang; Wu, Yao; Peng, Qing-Zhong; Xia, Gui-Xian; Wu, Jia-He

    2016-01-26

    Dihydroflavanol 4-reductase (DFR) is a key later enzyme involved in two polyphenols' (anthocyanins and proanthocyanidins (PAs)) biosynthesis, however it is not characterized in cotton yet. In present reports, a DFR cDNA homolog (designated as GhDFR1) was cloned from developing fibers of upland cotton. Silencing GhDFR1 in cotton by virus-induced gene silencing led to significant decrease in accumulation of anthocyanins and PAs. More interestingly, based on LC-MS analysis, two PA monomers, (-)-epicatachin and (-)-epigallocatachin, remarkably decreased in content in fibers of GhDFR1-silenced plants, but two new monomers, (-)-catachin and (-)-gallocatachin were present compared to the control plants infected with empty vector. The ectopic expression of GhDFR1 in an Arabidopsis TT3 mutant allowed for reconstruction of PAs biosynthesis pathway and led to accumulation of PAs in seed coat. Taken together, these data demonstrate that GhDFR1 contributes to the biosynthesis of anthocyanins and PAs in cotton.

  11. [Quantitative analysis on the relationships between cotton fiber quality and meteorological factors].

    PubMed

    Ma, Fuyu; Cao, Weixing; Li, Shaokun; Zhu, Yan; Zhou, Zhiguo; Zheng, Zhong; Yang, Jianrong

    2005-11-01

    With the method of planting cotton by stages at the sites from Yangtze valley to north Xinjiang, this paper studied the effects of air temperature and sunlight on cotton fiber quality in 2002 approximately 2003. The results showed that with increasing latitude, fiber length increased, while micronaire value and soluble sugar content (SSC) decreased. An ecological model describing the relationships of fiber strength, micronaire value and SSC with air temperature and sunlight was built to determine the optimal range and critical value of air temperature during boll development period. If a high quality fiber (length > or = 27 mm) was targeted, the daily mean temperature (DMT) and minimum temperature (Tmin) during this period should be 21.3 approximately 29.7 and 10.7 approximately 21.3 degrees C, respectively, and the daily temperature difference (DTD) should not be > 15.2 degrees C. Fiber length was the longest when the DMT was 25.4 degrees C. If the lowest fiber length was > or = 25 mm, DMT and Tmin should not be lower than 15.5 and 10.7 degrees C, respectively, and DTD should not be over 17.9 degrees C during boll development period.

  12. Yield and fiber quality of five pairs of near-isogenic cotton (Gossypium hirsutum L.) lines expressing the fuzzless/linted and fuzzy/linted seed phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fuzzless cotton often has traits desirable to the cotton industry, including longer fibers, reduced short fiber content, fewer neps, and improved ginning efficiency. This two-year field study described yield and fiber properties of five pairs of fuzzy and fuzzless near-isogenic lines, developed from...

  13. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 (Li2) mutant cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li2) and results in extremely shortened lint fibers on mature ...

  14. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candi...

  15. Amino-functionalized cotton fiber for enhanced adsorption of active brilliant red X-3B from aqueous solution.

    PubMed

    Deng, Hui; Ning, JiaHong; Wang, XiaoNing

    2016-12-01

    An amino-functionalized sorbent (ACF) was prepared by grafting amine group onto cotton fiber (CF) using tetraethylenepentamine (TEPA). The resulting composite was characterized using various instrumental techniques such as scanning electron microscopy (SEM), Fourier transformed infrared (FTIR) and pHpzc analysis. FTIR spectrum and pHpzc analysis illustrated the involvement of amine groups in the X-3B sorption process. ACF sorbent was tested for its ability to remove X-3B from an aqueous solution in batch experiments. The adsorption efficiency of ACF was 100% in comparison with 5.52% of raw cotton fiber when initial concentration of active brilliant red X-3B was 30 mg/l. Results suggested that solution pH hardly affected the removal of X-3B, and ACF remained stable sorption efficiency in the pH range of 3.0-12.0. High values of correlation coefficients indicated the adsorption kinetics could best described by the pseudo-second-order kinetic equation. The sorption isotherm of ACF fitted the Langmuir equilibrium model, with the maximum adsorption capacity of 270.27 mg/g at 293K. The obtained thermodynamic parameters showed that the adsorption of X-3B onto the adsorbent was spontaneous and exothermic. The excellent regeneration performance provided strong evidence of the potential of ACF for technological applications of dye removal.

  16. Effect of Waterlogging on Carbohydrate Metabolism and the Quality of Fiber in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Kuai, Jie; Chen, Yinglong; Wang, Youhua; Meng, Yali; Chen, Binglin; Zhao, Wenqing; Zhou, Zhiguo

    2016-01-01

    Transient waterlogging occurs frequently in the Yangtze River and adversely affects cotton fiber quality. However, the carbohydrate metabolic mechanism that affects fiber quality after waterlogging remains undescribed. Here, the effects of five waterlogging levels (0, 3, 6, 9, and 12 days) were assessed during flowering and boll formation to characterize the carbohydrates, enzymes and genes that affect the fiber quality of cotton after waterlogging. The cellulose and sucrose contents of cotton fibers were significantly decreased after waterlogging for 6 (WL6), 9 (WL9), and 12 d (WL12), although these properties were unaffected after 3 (WL3) and 6 days at the fruiting branch 14–15 (FB14–15). Sucrose phosphate synthase (SPS) was the most sensitive to waterlogging among the enzymes tested. SPS activity was decreased by waterlogging at FB6–7, whereas it was significantly enhanced under WL3–6 at FB10–15. Waterlogging down-regulated the expression of fiber invertase at 10 days post anthesis (DPA), whereas that of expansin, β-1,4-glucanase and endoxyloglucan transferase (XET) was up-regulated with increasing waterlogging time. Increased mRNA levels and activities of fiber SuSy at each fruiting branch indicated that SuSy was the main enzyme responsible for sucrose degradation because it was markedly induced by waterlogging and was active even when waterlogging was discontinued. We therefore concluded that the reduction in fiber sucrose and down-regulation of invertase at 10 DPA led to a markedly shorter fiber length under conditions WL6–12. Significantly decreased fiber strength at FB6–11 for WL6–12 was the result of the inhibition of cellulose synthesis and the up-regulation of expansin, β-1,4-glucanase and XET, whereas fiber strength increased under WL3–6 at FB14–15 due to the increased cellulose content of the fibers. Most of the indictors tested revealed that WL6 resulted in the best compensatory performance, whereas exposure to waterlogged

  17. Adsorption behaviour of direct yellow 50 onto cotton fiber: equilibrium, kinetic and thermodynamic profile.

    PubMed

    Ismail, L F M; Sallam, H B; Abo Farha, S A; Gamal, A M; Mahmoud, G E A

    2014-10-15

    This study investigated the adsorption of direct yellow 50 onto cotton fiber from aqueous solution by using parameters, such as pH, temperature, contact time, initial dye concentration and the effect of sodium sulphate, tetrasodium edate and trisodium citrate. The extent of dye adsorption increased with increasing contact time, temperature and solution concentration. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. The results show that the presence of SE and SC significantly enhance the dye adsorption onto cotton fiber. In addition, the adsorption data obtained at different temperatures of DY50 onto cotton fiber were applied to pseudo first-order, pseudo second-order and intraparticle diffusion models. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation. Also, free energy of adsorption (ΔG(#)), enthalpy (ΔH(#)), and entropy (ΔS(#)) changes were determined to predict the nature of adsorption. The positive value of the enthalpy change indicated that the adsorption is endothermic process. The activation energy, Ea, is ranged between 1.9 and 3.9kJmol(-1) indicated that the adsorption process is a physisorption. This low value of Ea generally indicates diffusion controlled process.

  18. Adsorption behaviour of direct yellow 50 onto cotton fiber: Equilibrium, kinetic and thermodynamic profile

    NASA Astrophysics Data System (ADS)

    Ismail, L. F. M.; Sallam, H. B.; Abo Farha, S. A.; Gamal, A. M.; Mahmoud, G. E. A.

    2014-10-01

    This study investigated the adsorption of direct yellow 50 onto cotton fiber from aqueous solution by using parameters, such as pH, temperature, contact time, initial dye concentration and the effect of sodium sulphate, tetrasodium edate and trisodium citrate. The extent of dye adsorption increased with increasing contact time, temperature and solution concentration. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. The results show that the presence of SE and SC significantly enhance the dye adsorption onto cotton fiber. In addition, the adsorption data obtained at different temperatures of DY50 onto cotton fiber were applied to pseudo first-order, pseudo second-order and intraparticle diffusion models. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation. Also, free energy of adsorption (ΔG#), enthalpy (ΔH#), and entropy (ΔS#) changes were determined to predict the nature of adsorption. The positive value of the enthalpy change indicated that the adsorption is endothermic process. The activation energy, Ea, is ranged between 1.9 and 3.9 kJ mol-1 indicated that the adsorption process is a physisorption. This low value of Ea generally indicates diffusion controlled process.

  19. In situ synthesis of ordered mesoporous silica materials embedded in cotton fiber and their CO2 capture properties.

    PubMed

    Ma, Li; Han, Kun-Kun; Ding, Xiao-Hua; Chun, Yuan; Zhu, Jian-Hua

    2011-05-01

    Mesoporous silica/cotton fiber composite materials have been prepared in situ by using pluronics P123 (EO20PO70EO20) as template, tetraethyl orthosilicate as silica source and degreasing cotton as supporter. In order to avoid the hydrolysis of cotton fiber in a strong acidic media during the hydrothermal treatment, two kinds of methods were used to control the acidity of the reaction media. One was to adjust the pH to 5 after self-assembly in a strong acidic media; the other was a two-step route containing the pre-hydrolysis of TEOS and self-assembly in a weak acidic media. The resulting shaped composite materials presented the morphology of cotton fiber, and the silica particles mainly covered the surfaces of cotton fibers. These silica particles possessed a slightly ordered pore structure or a well ordered SBA-15 structure according to the difference in the synthetic methods. After modification with tetraethylenepentamine, these shaped composite materials exhibited considerable CO2 adsorption capacity. The use of cotton fiber has the advantages of shaping the powdery materials, dispersing the silica particles and avoiding the formation of moisture and sticky solid surfaces by overloaded tetraethylenepentamine.

  20. Preparations of Meiotic Pachytene Chromosomes and Extended DNA Fibers from Cotton Suitable for Fluorescence In Situ Hybridization

    PubMed Central

    Liu, Fang; Ling, Jian; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2012-01-01

    Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established

  1. Preliminary evidence of oxidation in standard oven drying of cotton: attenuated total reflectance/ Fourier transform spectroscopy, colorimetry, and particulate matter formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture is paramount to cotton fiber properties dictating harvesting, ginning, storage and spinning as well as others. Currently, oven drying in air is often utilized to generate the percentage of moisture in cotton fibers. Karl Fischer Titration another method for cotton moisture, has been compa...

  2. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs.

    PubMed

    John, M E; Crow, L J

    1992-07-01

    Cotton, an important natural fiber, is a differentiated epidermal cell. The number of genes that are active in fiber cells is similar to those in leaf, ovule, or root tissues. Through differential screening of a fiber cDNA library, we isolated five cDNA clones that are preferentially expressed in fiber. One of the cDNA clones, pCKE6, corresponded to an abundant mRNA in fiber. Transcripts for E6 were detected throughout the development of the fiber. Immunoprecipitation of in vitro translation products and Western blot analysis of fiber proteins showed two polypeptides in the range of 30-32 kDa as the products of E6 mRNA. Sequence analysis and hybrid-selected RNA translation also suggest that E6 mRNAs encode two polypeptides. Concentrations of E6 mRNA and protein are highest during the late primary cell wall and early secondary cell wall synthesis stages. Sequence comparison of E6 with other known eukaryotic and prokaryotic genes reveals no significant homology (GenBank; December 1991). E6 or a homologous gene(s) is conserved in several members of Malvaceae as well as in one other fiber-producing plant, kapok, but is not found in several other plants examined or in Acetobacter xylinum. A genomic clone corresponding to pCKE6 was isolated, and the promoter element of the E6 gene was shown to direct the expression of a carrot extensin mRNA in a tissue-specific and developmentally regulated fashion in transgenic cotton plants.

  3. Molecular analysis of late-stage fiber development in upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is the world's most important textile and the number one value-added crop. It plays a crucial role in the economy of Texas – supporting close to 50,000 jobs and supplying $2 billion to the state economy. Its role is even more evident in the South Plains of Texas, which supplies approximately...

  4. Effect of Late Planting and Shading on Cellulose Synthesis during Cotton Fiber Secondary Wall Development

    PubMed Central

    Chen, Ji; Lv, Fengjuan; Liu, Jingran; Ma, Yina; Wang, Youhua; Chen, Binglin; Meng, Yali; Zhou, Zhiguo; Oosterhuis, Derrick M.

    2014-01-01

    Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP) and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L.) cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June) each with three shading levels (normal light, declined 20% and 40% PAR). Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%–25.5%) produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%–20.9%) was greater than shading (decreased cellulose content by 0.7%–5.6%). The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38–45 days post-anthesis). The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase. PMID:25133819

  5. Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development.

    PubMed

    Chen, Ji; Lv, Fengjuan; Liu, Jingran; Ma, Yina; Wang, Youhua; Chen, Binglin; Meng, Yali; Zhou, Zhiguo; Oosterhuis, Derrick M

    2014-01-01

    Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP) and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L.) cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June) each with three shading levels (normal light, declined 20% and 40% PAR). Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%-25.5%) produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%-20.9%) was greater than shading (decreased cellulose content by 0.7%-5.6%). The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38-45 days post-anthesis). The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase.

  6. Recent progress in Fourier Transform Infrared (FTIR) spectroscopy study of compositional, structural, and physical attributes of developmental cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are natural plant products and their end-use qualities depend on their stages of development. In general, the quantity of natural fiber cellulose I (ß 1'4 linked glucose residues) increases rapidly, thus it leads to compositional, structural, and physical attribute variations among the...

  7. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  8. Precision of the upgraded cottonscan instrument for measuring the average fiber linear density (fineness) of cotton lint samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An inter-laboratory trial was conducted to validate the operation of the CottonscanTM technology as useful technique for determining the average fiber linear density of cotton. A significant inter-laboratory trial was completed and confirmed that the technology is quite acceptable. For fibers fin...

  9. Assessment of the level of microbial contamination in cotton and synthetic fibers destined for the use in nonwoven applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial burden measurements are crucial for certain converter uses of nonwoven materials. Currently, the microbial burden of natural fibers such as cotton have not been quantified and little consideration has been given to the potential contamination introduced by synthetic fibers during the proc...

  10. Assessment of the level of microbial combination in cotton and synthetic fibers destined for the use in nonwoven applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial burden measurements are crucial for certain converter uses of nonwoven materials. Currently, the microbial burden of natural fibers such as cotton have not been quantified and little consideration has been given to the potential contamination introduced by synthetic fibers during the proc...

  11. Removal and recovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers.

    PubMed

    Qu, Rongjun; Sun, Changmei; Ma, Fang; Zhang, Ying; Ji, Chunnuan; Xu, Qiang; Wang, Chunhua; Chen, Hou

    2009-08-15

    Two types of chitosan-coated cotton fibers (SCCH and RCCH) were applied to remove and recover Hg(II) ions in aqueous solution. The adsorption kinetics and isotherms of the two fibers for Hg(II) were investigated at different temperatures. The results revealed that the adsorption kinetic processes of SCCH and RCCH fibers for Hg(II) followed the pseudo second-order model at lower temperatures and the pseudo first-order model at higher temperatures. Both the Langmuir and Freundlich models well described the adsorption isotherms of SCCH and RCCH fibers for Hg(II) in the temperature range studied. SCCH and RCCH fibers selectively adsorbed Hg(II) from binary ion systems in the presence of Pb(II), Cu(II), Ni(II), Cd(II), Zn(II), Co(II), Mn(II) and Ag(I). Increased temperature was beneficial to adsorption. The recovery of Hg(II) from aqueous solutions was also studied as a function of sample flow rate and volume, concentration and volume of eluent, elution rate, quantity of adsorbents added and concomitant ions. The results showed that the two fibers efficiently enriched and recovered Hg(II) in the presence of alkali and alkaline earth metals and some heavy metals under optimum conditions. The RCCH fiber exhibited better stability than the SCCH fiber following repeated use.

  12. Molecular characterization of cotton 14-3-3L gene preferentially expressed during fiber elongation.

    PubMed

    Shi, Haiyan; Wang, Xiulan; Li, Dengdi; Tang, Wenkai; Wang, Hong; Xu, Wenliang; Li, Xuebao

    2007-02-01

    The 14-3-3 protein, highly conserved in all eukaryotic cells, is an important regulatory protein. It plays an important role in the growth, amplification, apoptosis, signal transduction, and other crucial life activities of cells. A cDNA encoding a putative 14-3-3 protein was isolated from cotton fiber cDNA library. The cDNA, designated as Gh14-3-3L (Gossypium hirsutum 14-3-3-like), is 1,029 bp in length (including a 762 bp long open reading frame and 5'-/3'-untranslated regions) and deduced a protein with 253 amino acids. The Gh14-3-3L shares higher homology with the known plant 14-3-3 proteins, and possesses the basic structure of 14-3-3 proteins: one dimeric domain, one phosphoralated-serine rich motif, four CC domains, and one EF Hand motif. Northern blotting analysis showed that Gh14-3-3L was predominantly expressed during early fiber development, and reached to the peak of expression in 10 days post anthers (DPA) fiber cells, suggesting that the gene may be involved in regulating fiber elongation. The gene is also expressed at higher level in both ovule and petal, but displays lower or undetectable level of activity in other tissues of cotton.

  13. High photocatalytic activity of immobilized TiO2 nanorods on carbonized cotton fibers.

    PubMed

    Wang, Bin; Karthikeyan, Rengasamy; Lu, Xiao-Ying; Xuan, Jin; Leung, Michael K H

    2013-12-15

    In this study, TiO2 nanorods were successfully immobilized on carbon fibers by a facile pyrolysis of natural cotton in nitrogen atmosphere followed by a one-pot hydrothermal method. Carbonized cotton fibers (CCFs) and TiO2-CCFs composites were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffractometer (XRD), diffuse reflectance UV-vis spectroscopy (DRS) and photoluminescence (PL) spectroscopy. Results implied that the band gap narrowing of TiO2 was achieved after integration of CCFs. Dye adsorption isotherm indicated that the maximum dye adsorption capacity (qm) of CCFs-1000 (13.4 mg/g) was 2 times higher than that of cotton fibers and qm of TiO2-CCFs-1000 (9.0mg/g) was 6-7 times higher than that of TiO2 nanorods. Photocatalytic activity of TiO2 nanorods prepared with 3 mL Ti(OBu)4 showed the highest photocatalytic activity. TiO2-CCFs-1000 exhibited higher activity than TiO2 immobilized on CCFs-400, CCFs-600 and CCFs-800. Good photostability of TiO2-CCFs-1000 was found for dye degradation under visible light irradiation. The enhancement of photocatalytic dye degradation was due to the high adsorptivity of dye molecules, enhanced light adsorption and effective separation of electron-hole pairs. This work provides a low-cost and sustainable approach to immobilize nanostructured TiO2 on carbon fibers for environmental remediation.

  14. Genetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their Backcross Populations in Upland Cotton

    PubMed Central

    Shang, Lianguang; Wang, Yumei; Wang, Xiaocui; Liu, Fang; Abduweli, Abdugheni; Cai, Shihu; Li, Yuhua; Ma, Lingling; Wang, Kunbo; Hua, Jinping

    2016-01-01

    Cotton fiber, a raw natural fiber material, is widely used in the textile industry. Understanding the genetic mechanism of fiber traits is helpful for fiber quality improvement. In the present study, the genetic basis of fiber quality traits was explored using two recombinant inbred lines (RILs) and corresponding backcross (BC) populations under multiple environments in Upland cotton based on marker analysis. In backcross populations, no significant correlation was observed between marker heterozygosity and fiber quality performance and it suggested that heterozygosity was not always necessarily advantageous for the high fiber quality. In two hybrids, 111 quantitative trait loci (QTL) for fiber quality were detected using composite interval mapping, in which 62 new stable QTL were simultaneously identified in more than one environment or population. QTL detected at the single-locus level mainly showed additive effect. In addition, a total of 286 digenic interactions (E-QTL) and their environmental interactions [QTL × environment interactions (QEs)] were detected for fiber quality traits by inclusive composite interval mapping. QE effects should be considered in molecular marker-assisted selection breeding. On average, the E-QTL explained a larger proportion of the phenotypic variation than the main-effect QTL did. It is concluded that the additive effect of single-locus and epistasis with few detectable main effects play an important role in controlling fiber quality traits in Upland cotton. PMID:27342735

  15. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.

    PubMed

    Zhang, Tianzhen; Hu, Yan; Jiang, Wenkai; Fang, Lei; Guan, Xueying; Chen, Jiedan; Zhang, Jinbo; Saski, Christopher A; Scheffler, Brian E; Stelly, David M; Hulse-Kemp, Amanda M; Wan, Qun; Liu, Bingliang; Liu, Chunxiao; Wang, Sen; Pan, Mengqiao; Wang, Yangkun; Wang, Dawei; Ye, Wenxue; Chang, Lijing; Zhang, Wenpan; Song, Qingxin; Kirkbride, Ryan C; Chen, Xiaoya; Dennis, Elizabeth; Llewellyn, Danny J; Peterson, Daniel G; Thaxton, Peggy; Jones, Don C; Wang, Qiong; Xu, Xiaoyang; Zhang, Hua; Wu, Huaitong; Zhou, Lei; Mei, Gaofu; Chen, Shuqi; Tian, Yue; Xiang, Dan; Li, Xinghe; Ding, Jian; Zuo, Qiyang; Tao, Linna; Liu, Yunchao; Li, Ji; Lin, Yu; Hui, Yuanyuan; Cao, Zhisheng; Cai, Caiping; Zhu, Xiefei; Jiang, Zhi; Zhou, Baoliang; Guo, Wangzhen; Li, Ruiqiang; Chen, Z Jeffrey

    2015-05-01

    Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.

  16. Laboratory and outside the laboratory measurements of ginned and ot ginned cotton for fiber micronaire and maturity by portable Near Infrared (NIR) Instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire is a key cotton quality assessment property, impacting downstream fiber processing and dye consistency. A component of micronaire is fiber maturity (degree of secondary wall development). Historically, micronaire and maturity are measured in a laboratory under tight environmental condit...

  17. Synthesis and characterization of selective thiourea modified Hg(II) ion-imprinted cellulosic cotton fibers.

    PubMed

    Monier, M; Kenawy, I M; Hashem, M A

    2014-06-15

    In the present study, Hg(2+) ion-imprinted chelating fibers based on thiourea modified natural cellulosic cotton fibers (Hg-C-TU) were synthesized and characterized using some instrumental techniques such as elemental analysis, scanning electron microscopy (SEM), FTIR, wide angle X-ray and XPS spectroscopy. The modified Hg-C-TU fibers were employed for selective removal of Hg(2+) from aqueous solution. Effect of some essential parameters such as pH, temperature, adsorption times and adsorbate concentration were examined to evaluate the optimum adsorption condition. The adsorption kinetics followed the second-order kinetic model indicating that the chemical adsorption is the rate limiting step. Also, the adsorption isotherm experiments showed the best fit with Langmuir model with maximum adsorption capacities 110.3 and 61.8 mg/g for both Hg-C-TU and NI-C-TU, respectively.

  18. 19 CFR 10.425 - Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods. 10.425 Section 10.425 Customs Duties U.S. CUSTOMS AND... § 10.425 Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel...

  19. 19 CFR 10.425 - Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods. 10.425 Section 10.425 Customs Duties U.S. CUSTOMS AND... § 10.425 Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel...

  20. 19 CFR 10.425 - Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods. 10.425 Section 10.425 Customs Duties U.S. CUSTOMS AND... § 10.425 Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel...

  1. 19 CFR 10.425 - Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods. 10.425 Section 10.425 Customs Duties U.S. CUSTOMS AND... § 10.425 Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel...

  2. 19 CFR 10.425 - Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods. 10.425 Section 10.425 Customs Duties U.S. CUSTOMS AND... § 10.425 Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel...

  3. Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation.

    PubMed

    Deng, Shasha; Wei, Ting; Tan, Kunling; Hu, Mingyu; Li, Fang; Zhai, Yunlan; Ye, Shue; Xiao, Yuehua; Hou, Lei; Pei, Yan; Luo, Ming

    2016-02-01

    Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tridemorph, a sterol biosynthetic inhibitor. The inhibition of phytosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phytosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher concentrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, during the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cotton fiber development, and particularly in fiber elongation.

  4. The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.).

    PubMed

    Naoumkina, Marina; Thyssen, Gregory; Fang, David D; Hinchliffe, Doug J; Florane, Christopher; Yeater, Kathleen M; Page, Justin T; Udall, Joshua A

    2014-01-01

    Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G. raimondii) for homeologous gene expression analysis. The majority of homeologous genes, 83.6% according to the reference genome, were expressed during fiber elongation. Our results revealed: 1) approximately two times more genes were induced in the AT subgenome comparing to the DT subgenome in wild type and mutant fiber; 2) the subgenome expression bias was significantly reduced in the Li2 fiber transcriptome; 3) Li2 had a significantly greater effect on the DT than on the AT subgenome. Transcriptional regulators and cell wall homeologous genes significantly affected by the Li2 mutation were reviewed in detail. This is the first report to explore the effects of a single mutation on homeologous gene expression in allotetraploid cotton. These results provide deeper insights into the evolution of allotetraploid cotton gene expression and cotton fiber development.

  5. The Li2 Mutation Results in Reduced Subgenome Expression Bias in Elongating Fibers of Allotetraploid Cotton (Gossypium hirsutum L.)

    PubMed Central

    Naoumkina, Marina; Thyssen, Gregory; Fang, David D.; Hinchliffe, Doug J.; Florane, Christopher; Yeater, Kathleen M.; Page, Justin T.; Udall, Joshua A.

    2014-01-01

    Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G. raimondii) for homeologous gene expression analysis. The majority of homeologous genes, 83.6% according to the reference genome, were expressed during fiber elongation. Our results revealed: 1) approximately two times more genes were induced in the AT subgenome comparing to the DT subgenome in wild type and mutant fiber; 2) the subgenome expression bias was significantly reduced in the Li2 fiber transcriptome; 3) Li2 had a significantly greater effect on the DT than on the AT subgenome. Transcriptional regulators and cell wall homeologous genes significantly affected by the Li2 mutation were reviewed in detail. This is the first report to explore the effects of a single mutation on homeologous gene expression in allotetraploid cotton. These results provide deeper insights into the evolution of allotetraploid cotton gene expression and cotton fiber development. PMID:24598808

  6. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality.

    PubMed

    Jiang, Yanjie; Guo, Wangzhen; Zhu, Huayu; Ruan, Yong-Ling; Zhang, Tianzhen

    2012-04-01

    Cotton (Gossypium spp.) is an important economic crop and the largest source of textile fiber in the world. However, to date, only a few genes have been identified that exhibit critical roles in fiber development, and few has shown positive effects on fiber yield and quality in transgenic cotton. Here, we report the characterization of a novel sucrose synthase (SusA1) gene from a superior quality fiber germplasm line 7235 in Gossypium hirsutum. By association analysis, GhSusA1 was highly correlated with fiber qualities in (7235× TM-1) recombinant inbred lines based on polymorphism of GhSusA1 between 7235 and TM-1. Subsequently, based on an interspecific population of 141 BC₁ individuals generated from the cross between TM-1 and Gossypium barbadense line, Hai7124, we further mapped GhSusA1 genes on homeologous chromosomes A8 (chro.8) and D8 (chro.24). Suppression of GhSusA1 in transgenic cotton reduced fiber quality and decreased the boll size and seed weight. Importantly, overexpression of this gene increased fiber length and strength, with the latter indicated by the enhanced thickening of cell wall during secondary wall formation stage. Moreover, increasing GhSusA1 transcript abundance in vegetative tissues led to elevated seedling biomass. Together, these findings identified GhSusA1 as a key regulator of sink strength in cotton, which is tightly associated with productivity, and hence a promising candidate gene that can be developed to increase cotton fiber yield and quality.

  7. Small RNA sequencing and degradome analysis of developing fibers of short fiber mutants Ligon-lintles-1 (Li1) and -2 (Li2) revealed a role for miRNAs and their targets in cotton fiber elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The length of cotton fiber is an important agronomic trait that directly affects the quality of yarn and fabric. Understanding the molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon-lintless-1 (Li1) and -2 (Li2) are monogenic and dominant mutations that ...

  8. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum).

    PubMed

    Nazeer, W; Ahmad, S; Mahmood, K; Tipu, A L; Mahmood, A; Zhou, B

    2014-02-21

    Cotton leaf curl virus disease is a major hurdle for successful cotton production in Pakistan. There has been considerable economic loss due to this disease during the last decade. It would be desirable to have cotton varieties resistant to this disease. We explored the possibility of transferring virus resistant genes from the wild species Gossypium stocksii into MNH-786, a cultivar of G. hirsutum. Hybridization was done under field condition at the Cotton Research Station, Multan, during 2010-11. Boll shedding was controlled by application of exogenous hormones. F1 seeds were treated with 0.03% colchicine solution for 6 h and germinated. Cytological observations at peak squaring/flowering stage showed that these plants were hexaploid, having 2n = 6x = 78 chromosomes. The F1 plants showed intermediate expression for leaf size, leaf area, petiole length, bracteole number and size, bracteole area, bracteole dentation, flower size, pedicel size, and petal number and size. Moreover it possessed high fiber strength of 54.4 g/tex, which is 54% greater than that of the check variety, i.e. MNH-786 (G. hirsutum). The F1 population did not show any symptom of CLCuVD in the field, tested by grafting with CLCuVD susceptible rootstock (var. S12). We conclude that it is possible to transfer CLCuVD resistance and high fiber strength from G. stocksii to G. hirsutum.

  9. Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton (Gossypium hirsutum L.).

    PubMed

    Thyssen, Gregory N; Song, Xianliang; Naoumkina, Marina; Kim, Hee-Jin; Fang, David D

    2014-07-01

    The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary independently between different cell types and developmental stages. Our objective was to determine the relationship between mitochondrial gene copy number and transcript abundance in the elongating fiber cells of Upland cotton (Gossypium hirsutum L.). We compared RNA and DNA from cotton fiber cells at five developmental time points from early elongation through secondary cell wall thickening from the Ligon-lintless 2 (Li2) short fiber mutant and its wild type near isogenic line (NIL) DP5690. Mitochondrial gene copy number decreased from 3 to 8-DPA in the developing cotton fiber cells while transcript levels remained low. As secondary cell wall biosynthesis began in developing fibers, the expression levels and copy numbers of mitochondrial genes involved in energy production and respiration were up-regulated in wild type cotton DP5690. However, the short fiber mutant Li2, failed to increase expression of these genes, which include three subunits of ATP synthase, atp1, atp8 and atp9 and two cytochrome genes cox1 and cob. At the same time, Li2 failed to increase the copy numbers of these highly expressed genes. Surprisingly, we found that when mitochondrial genes were highly transcribed, they also had very high copy numbers. This observation suggests that in developing cotton fibers, increased mitochondrial sublimon replication may support increases in gene transcription.

  10. Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions.

    PubMed

    Monier, M; Akl, M A; Ali, Wael M

    2014-05-01

    In this work, native cellulose cotton fibers were first modified through graft copolymerization of polyacrylonitrile (PAN) and then by insertion of phenyl thiosemicarbazide moieties to finally produce C-PTS chelating fibers, which were fully characterized using various instrumental techniques such as SEM, FTIR, EDX and XRD spectra. The obtained C-PTS were employed in removal and extraction of Au(3+), Pd(2+) and Ag(+) precious metal ions from their aqueous solutions using batch experiments. The kinetic studies showed that the pseudo-second-order model exhibited the best fit for the experimental data. In addition, the adsorption isotherm studies indicated that the adsorption follows the Langmuir model and the maximum adsorption capacities for Au(3+), Pd(2+) and Ag(+) were 198.31, 87.43 and 71.14 mg/g respectively.

  11. Electrokinetic and Hemostatic Profiles of Nonwoven Cellulosic/Synthetic Fiber Blends with Unbleached Cotton

    PubMed Central

    Edwards, J. Vincent; Graves, Elena; Bopp, Alvin; Prevost, Nicolette; Santiago, Michael; Condon, Brian

    2014-01-01

    Greige cotton contains waxes and pectin on the outer surface of the fiber that are removed when bleached, but these components present potential wound dressing functionality. Cotton nonwovens blended with hydrophobic and hydrophilic fibers including viscose, polyester, and polypropylene were assessed for clotting activity with thromboelastography (TEG) and thrombin production. Clotting was evaluated based on TEG measurements: R (time to initiation of clot formation), K (time from end of R to a 20 mm clot), α (rate of clot formation according to the angle tangent to the curve as K is reached), and MA (clot strength). TEG values correlate to material surface polarity as measured with electrokinetic parameters (ζplateau, Δζ and swell ratio). The material surface polarity (ζplateau) varied from −22 to −61 mV. K values and thrombin concentrations were found to be inversely proportional to ζplateau with an increase in material hydrophobicity. An increase in the swell ratios of the materials correlated with decreased K values suggesting that clotting rates following fibrin formation increase with increasing material surface area due to swelling. Clot strength (MA) also increased with material hydrophobicity. Structure/function implications from the observed clotting physiology induced by the materials are discussed. PMID:25459983

  12. Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk.

    PubMed

    Li, Kunquan; Zheng, Zheng; Feng, Jingwei; Zhang, Jibiao; Luo, Xingzhang; Zhao, Guohua; Huang, Xingfa

    2009-07-30

    Activated carbon fiber prepared from cotton stalk was used as an adsorbent for the removal of p-nitroaniline (PNA) from aqueous solutions. Liquid phase adsorption experiments were conducted and the maximum adsorptive capacity was determined. The effect of experimental parameters such as pH, salinity and temperature on the adsorption was studied. The obtained experimental data were then fitted with the Langmuir, Freundlich and Redlich-Peterson models to describe the equilibrium isotherms. The kinetics rates were modeled by using the pseudo-first-order and pseudo-second-order equations. The results indicated that cotton stalk activated carbon fiber (CS-ACF) is an effective adsorbent for the removal of PNA from aqueous solutions. The maximum adsorption capacity of 406 mg g(-1) was achieved at the initial PNA concentration of 200 mg L(-1). The optimum pH for the removal of PNA was found to be 7.6. The presence of ammonium chloride proved to be favorable for the process of adsorption. The adsorption amount decreased with increasing temperature. The Redlich-Peterson model was found to best represent the equilibrium data. The kinetic data followed closely the pseudo-second-order equation. Thermodynamic study showed the adsorption was a spontaneous exothermic physical process.

  13. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste

    NASA Astrophysics Data System (ADS)

    Jieying Zheng; Zhao, Quanlin; Ye, Zhengfang

    2014-04-01

    In this study, the activated carbon fibers (ACFs) were prepared using cotton woven waste as precursor. The cotton woven waste was first partly dissolved by 80% phosphoric acid and then was pre-soaked in 7.5% diammonium hydrogen phosphate solution. Finally, carbonization and activation were proceeded to get ACF. The optimum preparation conditions, including carbonization temperature, carbonization time, activation temperature and activation time, were chosen by orthogonal design. Nitrogen adsorption/desorption test was conducted to characterize the prepared ACF's pore structure. Fourier transform infrared spectroscopy (FTIR) analysis, X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscope (ESEM) were employed to characterize its chemical properties and morphology. Adsorption of oilfield wastewater was used to evaluate its adsorption properties. The results show that the prepared ACF is in the form of fiber, with the sectional diameters of 11.7 × 2.6 μm and the surface area of 789 m2/g. XPS results show that carbon concentration of the prepared ACF is higher than that of the commercial ACF. When the prepared ACF dosage is 6 g/L, over 80% of COD and over 70% of chrominance can be removed after 24 h of adsorption at 18 °C.

  14. Ultrasound-assisted synthesis of CuO nanostructures templated by cotton fibers

    SciTech Connect

    Zou, Yunling; Li, Yan; Guo, Ying; Zhou, Qingjun; An, Dongmin

    2012-11-15

    Highlights: ► Flower-like and corn-like CuO nanostructures were synthesized by a simple method. ► Cotton fibers purchased from commercially are used as template. ► The concentration of Cu(NO{sub 3}){sub 2} solution is an important parameter. -- Abstract: Flower-like and corn-like CuO nanostructures composed of CuO nanoparticles were successfully synthesized via ultrasound-assisted template method, respectively, by controlling the initial concentration of Cu(NO{sub 3}){sub 2} solution. Here, cotton fibers were used as template agent. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy (EDS), respectively. The results demonstrated that the initial concentration of Cu(NO{sub 3}){sub 2} solution was an important parameter for determining whether CuO nanoparticles assembled into flower-like structures or corn-like structures. The mechanism of forming different nanostructures of CuO was discussed.

  15. Molecular markers associated with the immature fiber (im) gene affecting the degree of fiber cell wall thickening in cotton (Gossypium hirsutum L.).

    PubMed

    Kim, Hee Jin; Moon, Hong S; Delhom, Christopher D; Zeng, Linghe; Fang, David D

    2013-01-01

    Cotton fiber fineness and maturity measured indirectly as micronaire (MIC) are important properties of determining fiber grades in the textile market. To understand the genetic control and molecular mechanisms of fiber fineness and maturity, we studied two near isogenic lines, Gossypium hirsutum, Texas Marker-1 wild type (TM-1) and immature fiber (im) mutant showing a significant difference in MIC values. The fibers from im mutant plants were finer and less mature with lower MIC values than those from the recurrent parent, TM-1. A comprehensive fiber property analysis of TM-1 and im mutant showed that the lower MIC of fibers in im mutant was due to the lower degree of fiber cell wall thickening as compared to the TM-1 fibers. Using an F(2) population comprising 366 progenies derived from a cross between TM-1 and im mutant, we confirmed that the immature fiber phenotype present in a mutant plant was controlled by one single recessive gene im. Furthermore, we identified 13 simple sequence repeat markers that were closely linked to the im gene located on chromosome 3. Molecular markers associated with the im gene will lay the foundation to further investigate genetic information required for improving cotton fiber fineness and maturity.

  16. Characterization of Developmental Immature Fiber ( im) Mutant and Texas Marker-1 (TM-1) Cotton Fibers Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    PubMed

    Liu, Yongliang; Kim, Hee-Jin

    2017-01-01

    The immature fiber ( im) mutant is one type of cotton fiber mutant with unique characteristics of non-fluffy cotton bolls. Compared to its near-isogenic wild type Texas Marker-1 (TM-1), im fiber has a thin secondary cell wall and is less mature. In this work, we applied the previously proposed principal component analysis (PCA) and simple algorithms to analyze the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectra of developmental im and TM-1 fibers. The results from these approaches could not effectively and consistently indicate the inherent difference between TM-1 and im fibers at the same developmental stage. The difference between TM-1 and corresponding im fibers was detected when comparing the normalized intensity variations of the 730 cm(-1) bands. The 730 cm(-1) band intensities in developmental im fibers are temporally lower than those in developmental TM-1 fibers although they became similar when the TM-1 and im fibers are fully mature. The observation might imply the likelihood of temporal reduction of amorphous regions in developmental im fibers rather than in developmental TM-1 fibers.

  17. The immature fiber mutant phenotype of cotton (Gossypium hirsutum) is linked to a 22-bp frame-shift deletion in a mitochondria targeted pentatricopeptide repeat gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton seed trichomes are the globally most important source of natural fibers. The major fiber thickness properties influence the price of the raw material and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process...

  18. Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta.

    PubMed

    Kim, Hee Jin; Hinchliffe, Doug J; Triplett, Barbara A; Chen, Z Jeffrey; Stelly, David M; Yeater, Kathleen M; Moon, Hong S; Gilbert, Matthew K; Thyssen, Gregory N; Turley, Rickie B; Fang, David D

    2015-01-01

    The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta.

  19. The effects of fruiting positions on cellulose synthesis and sucrose metabolism during cotton (Gossypium hirsutum L.) fiber development.

    PubMed

    Ma, Yina; Wang, Youhua; Liu, Jingran; Lv, Fengjuan; Chen, Ji; Zhou, Zhiguo

    2014-01-01

    Cotton (Gossypium hirsutum L.) boll positions on a fruiting branch vary in their contribution to yield and fiber quality. Fiber properties are dependent on deposition of cellulose in the fiber cell wall, but information about the enzymatic differences in sucrose metabolism between these fruiting positions is lacking. Therefore, two cotton cultivars with different sensitivities to low temperature were tested in 2010 and 2011 to quantify the effect of fruit positions (FPs) on fiber quality in relation to sucrose content, enzymatic activities and sucrose metabolism. The indices including sucrose content, sucrose transformation rate, cellulose content, and the activities of the key enzymes, sucrose phosphate synthase (SPS), acid invertase (AI) and sucrose synthase (SuSy) which inhibit cellulose synthesis and eventually affect fiber quality traits in cotton fiber, were determined. Results showed that as compared with those of FP1, cellulose content, sucrose content, and sucrose transformation rate of FP3 were all decreased, and the variations of cellulose content and sucrose transformation rate caused by FPs in Sumian 15 were larger than those in Kemian 1. Under FP effect, activities of SPS and AI in sucrose regulation were decreased, while SuSy activity in sucrose degradation was increased. The changes in activities of SuSy and SPS in response to FP effect displayed different and large change ranges between the two cultivars. These results indicate that restrained cellulose synthesis and sucrose metabolism in distal FPs are mainly attributed to the changes in the activities of these enzymes. The difference in fiber quality, cellulose synthesis and sucrose metabolism in response to FPs in fiber cells for the two cotton cultivars was mainly determined by the activities of both SuSy and SPS.

  20. Comparative transcriptome analysis of short fiber mutants Ligon-lintless 1 and 2 reveals common mechanisms pertinent to fiber elongation in cotton (Gossypium hirsutum L.).

    PubMed

    Gilbert, Matthew K; Kim, Hee Jin; Tang, Yuhong; Naoumkina, Marina; Fang, David D

    2014-01-01

    Understanding the molecular processes affecting cotton (Gossypium hirsutum) fiber development is important for developing tools aimed at improving fiber quality. Short fiber cotton mutants Ligon-lintless 1 (Li1) and Ligon-lintless 2 (Li2) are naturally occurring, monogenic mutations residing on different chromosomes. Both mutations cause early cessation in fiber elongation. These two mutants serve as excellent model systems to elucidate molecular mechanisms relevant to fiber length development. Previous studies of these mutants using transcriptome analysis by our laboratory and others had been limited by the fact that very large numbers of genes showed altered expression patterns in the mutants, making a targeted analysis difficult or impossible. In this research, a comparative microarray analysis was conducted using these two short fiber mutants and their near isogenic wild type (WT) grown under both field and greenhouse environments in order to identify key genes or metabolic pathways common to fiber elongation. Analyses of three transcriptome profiles obtained from different growth conditions and mutant types showed that most differentially expressed genes (DEGs) were affected by growth conditions. Under field conditions, short fiber mutants commanded higher expression of genes related to energy production, manifested by the increasing of mitochondrial electron transport activity or responding to reactive oxygen species when compared to the WT. Eighty-eight DEGs were identified to have altered expression patterns common to both short fiber mutants regardless of growth conditions. Enrichment, pathway and expression analyses suggested that these 88 genes were likely involved in fiber elongation without being affected by growth conditions.

  1. Comparative genetic analysis of lint yield and fiber quality among single, three-way, and double crosses in upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decisions on the appropriate crossing systems to employ for genetic improvement of quantitative traits are critical in cotton breeding. Determination of genetic variance for lint yield and fiber quality in three different crossing schemes, i.e., single cross (SC), three-way cross (TWC), and double ...

  2. Fabrication of boronate-decorated polyhedral oligomeric silsesquioxanes grafted cotton fiber for the selective enrichment of nucleosides in urine.

    PubMed

    Gao, Li; Wei, Yinmao

    2016-06-01

    Various cotton fiber based boronate-affinity adsorbents are recently developed for the sample pretreatment of cis-diol-containing biomolecules, but most do not have efficient capacity due to limited binding sites on the surface of cotton fibers. To increase the density of boronate groups on the surface of cotton fiber, polyhedral oligomeric silsesquioxanes were used to modify cotton fiber to provide plentiful reactive sites for subsequent functionalization with 4-formylphenylboronic acid. The new adsorbent showed special recognition ability towards cis-diols and high adsorption capacity (175 μg/g for catechol, 250 μg/g for dopamine, 400 μg/g for adenosine). The in-pipette-tip solid-phase extraction was investigated under different conditions, including pH and ionic strength of solution, adsorbent amount, pipette times, washing solvent, and elution solvent. The in-pipette-tip solid-phase extraction coupled with high-performance liquid chromatography was used to analyze four nucleosides in urine samples. Under the optimal extraction conditions, the detection limits were determined to be between 5.1 and 6.1 ng/mL (S/N  =  3), and the linearity ranged from 20 to 500 ng/mL for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of analytes in real urine samples with recoveries varying from 83 to 104% (RSD = 3.9-10.2%, n = 3).

  3. Facile preparation of biocompatible sulfhydryl cotton fiber-based sorbents by "thiol-ene" click chemistry for biological analysis.

    PubMed

    He, Xiao-Mei; Zhu, Gang-Tian; Zhu, Yuan-Yuan; Chen, Xi; Zhang, Zheng; Wang, Shao-Ting; Yuan, Bi-Feng; Feng, Yu-Qi

    2014-10-22

    Sulfhydryl cotton fiber (SCF) has been widely used as adsorbent for a variety of metal ions since 1971. Thanks to the abundant thiols on SCF, in this study, we reported a universal method for the facile preparation of SCF-based materials using "thiol-ene" click chemistry for the first time. With the proposed method, two types of SCF-based materials, phenylboronic acid grafted sulfhydryl cotton fiber (SCF-PBA) and zirconium phosphonate-modified sulfhydryl cotton fiber (SCF-pVPA-Zr(4+)), were successfully prepared. The grafted functional groups onto the thiol group of SCF were demonstrated by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). The prepared fibrous materials exhibited excellent fiber strength, good stability in aqueous or nonaqueous solutions, and great biocompatibility. Moreover, we developed filter-free in-pipet-tip SPE using these SCF-based materials as adsorbent for the enrichment of ribonucleosides, glycopeptides and phosphopeptides. Our results showed that SCF-PBA adsorbent can selectively capture ribonucleosides and glycopeptides from complex biological samples. And SCF-pVPA-Zr(4+) adsorbent exhibited high selectivity and capacity in the enrichment of phosphopeptides from the digestion mixture of β-casein and bovine serum albumin (BSA), as well as human serum and nonfat milk digest. Generally, the preparation strategy can be a universal method for the synthesis of other functionalized cotton-based adsorbents with special requirement in microscale biological analysis.

  4. The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 librari...

  5. Two-dimensional attenuated total reflection infrared correlation spectroscopy study of desorption process of water-soaked cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of native cotton fibers with various water contents. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity ...

  6. Micronaire measurements on seedcotton and cotton fiber, in and outside of laboratory using micro nir-infrared instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire is a key quality parameter in cotton fiber. NIR-spectroscopy has the ability to measure micronaire in and out of the laboratory. New very small micronaire instruments have recently been introduced. A program was established to measure micronaire in and outside the laboratory on seed cotto...

  7. Preliminary evaluation of feeder and lint slide moisture addition on ginning, fiber quality, and textile processing of western cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effects of moisture addition at the gin stand feeder conditioning hopper and/or the battery condenser slide on gin performance and Western cotton fiber quality and textile processing. The test treatments included no moisture addition, feeder hopper hum...

  8. Involvement of Extracellular Cu/Zn Superoxide Dismutase in Cotton Fiber Primary and Secondary Cell Wall Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extracellular Cu/Zn superoxide dismutases (CSDs) that catalyze the conversion of superoxide to hydrogen peroxide have been suggested to be involved in lignification of secondary walls in spinach, pine and aspen. In cotton fibers, hydrogen peroxide was proposed to be involved in the induction of seco...

  9. Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. × G. barbadense L.) RIL population.

    PubMed

    Yu, John Z; Ulloa, Mauricio; Hoffman, Steven M; Kohel, Russell J; Pepper, Alan E; Fang, David D; Percy, Richard G; Burke, John J

    2014-12-01

    A quantitative trait locus (QTL) mapping was conducted to better understand the genetic control of plant architecture (PA), yield components (YC), and fiber properties (FP) in the two cultivated tetraploid species of cotton (Gossypium hirsutum L. and G. barbadense L.). One hundred and fifty-nine genomic regions were identified on a saturated genetic map of more than 2,500 SSR and SNP markers, constructed with an interspecific recombinant inbred line (RIL) population derived from the genetic standards of the respective cotton species (G. hirsutum acc. TM-1 × G. barbadense acc. 3-79). Using the single nonparametric and MQM QTL model mapping procedures, we detected 428 putative loci in the 159 genomic regions that confer 24 cotton traits in three diverse production environments [College Station F&B Road (FB), TX; Brazos Bottom (BB), TX; and Shafter (SH), CA]. These putative QTL loci included 25 loci for PA, 60 for YC, and 343 for FP, of which 3, 12, and 60, respectively, were strongly associated with the traits (LOD score ≥ 3.0). Approximately 17.7 % of the PA putative QTL, 32.9 % of the YC QTL, and 48.3 % of the FP QTL had trait associations under multiple environments. The At subgenome (chromosomes 1-13) contributed 72.7 % of loci for PA, 46.2 % for YC, and 50.4 % for FP while the Dt subgenome (chromosomes 14-26) contributed 27.3 % of loci for PA, 53.8 % for YC, and 49.6 % for FP. The data obtained from this study augment prior evidence of QTL clusters or gene islands for specific traits or biological functions existing in several non-homoeologous cotton chromosomes. DNA markers identified in the 159 genomic regions will facilitate further dissection of genetic factors underlying these important traits and marker-assisted selection in cotton.

  10. Effect of harvesting methods on fiber and yarn quality from irrigated cotton on the High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over a fourth of the cotton bales produced in the United States since 2002 have been produced in Texas, with most of that cotton coming from the stripper harvested High Plains region, and in recent years, Texas cotton production has represented almost half of all the US cotton production. As irrigat...

  11. Quantitative analysis of the binding strength and adsorption capacity of zinc oxide nanoparticles onto unmodified and modified cotton fiber

    NASA Astrophysics Data System (ADS)

    Printz, Stephen Robert

    Risk of bacterial infection is always a concern in hospitals, so it is important to find ways to minimize this risk. One method for reducing the risk of infection is by using textiles with antimicrobial properties. Zinc oxide nanoparticles have antimicrobial properties, and can be adsorbed onto cotton fibers to pass these properties to the cloth. However, the binding of the zinc oxide nanoparticles to cotton is weak, so the particles desorb from the cloth after repeated washings. The goal of this project was to quantify the binding strength of zinc oxide nanoparticles onto different types of cotton fiber. The cotton was modified by grafting cyclodextrin onto it with citric acid as a crosslinking agent. Adsorption was tested with desized, unbleached cotton print cloth; desized, bleached cotton print cloth; and desized, bleached, mercerized cotton print cloth. As expected, adsorption to unmodified cloth was poor. Unbleached cloth had the highest adsorption capacity (Q 0 = 22 +/- 4 mg ZnO/g cloth), and bleached cloth had the lowest adsorption capacity (Q0 = 17 +/- 4 mg ZnO=g cloth). Mercerized cloth had the lowest strength (b = 0.010 +/- 0.003 ppm-1), and bleached cloth had the highest binding strength (b = 0.04 +/- 0.01 ppm-1). Modification with alpha-cyclodextrin increased adsorption capacity over unmodified cloth by 61, 80, and 70% for mercerized/bleached cloth, bleached cloth, and unbleached cloth, respectively, and increased b by 1601, 126, and 90% respectively. Modification with beta-cyclodextrin increased adsorption capacities by 80, 94, and 112%, respectively, and increased b by 2027, 427, and 46%. As a result, beta-CD modified unbleached cloth had the highest adsorption capacity and one of the lowest binding strengths. However, beta-cyclodextrin modified mercerized cloth has both a high adsorption capacity and a high binding strength, and would likely be the best candidate for use in antimicrobial textiles.

  12. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation.

    PubMed

    Michailidis, Georgios; Argiriou, Anagnostis; Darzentas, Nikos; Tsaftaris, Athanasios

    2009-03-01

    Multiple cellular pathways have been shown to be involved during fiber initiation and elongation stages in the cultivated allotetraploid cotton (Gossypium hirsutum). The cell wall enzymes xyloglucan endotransglycosylase/hydrolases (XTH) have been reported to be associated with the biosynthesis of the cell wall and the growth of cotton fibers, probably regulating the plasticity of the primary cell wall. Among various cotton fiber cDNAs found to be preferentially expressed in cotton fibers, a xyloglucan endotransglycosylase (XTH) cDNA was significantly up-regulated during the elongation stage of cotton fiber development. In the present study, we isolated and characterized genomic clones encoding cotton XTH from cultivated cotton (Gossypium hirsutum) and its diploid progenitors (Gossypium arboreum and Gossypium raimondii), designated GhXTH1-1, GhXTH1-2, GaXTH1 and GrXTH, respectively. In addition, we isolated and characterized, by in silico methods, the putative promoter of XTH1 from Gossypium hirsutum. Sequence analysis revealed more than 50% homology to XTH's at the protein level. DNA gel blot hybridization indicated that at least two copies of GhXTH1 are present in Gossypium hirsutum whereas the diploid progenitor species Gossypium arboreum and Gossypium raimondii has only a single copy. Quantitative real-time PCR and high-resolution melting experiments indicated that in Gossypium hirsutum cultivars, in cotton fibers during early stages of fiber elongation specifically expressing only the GhXTH1-1 gene and expression levels of GhXTH1-1 in fibers varies among cultivars differing in fiber percentage and fiber length.

  13. Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development

    PubMed Central

    Hernandez-Gomez, Mercedes C.; Runavot, Jean-Luc; Guo, Xiaoyuan; Bourot, Stéphane; Benians, Thomas A.S.; Willats, William G.T.; Meulewaeter, Frank; Knox, J. Paul

    2015-01-01

    The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparative analyses on cotton fibers at selected days post-anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. In contrast, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition, and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum and G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing. PMID:26187898

  14. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis.

    PubMed

    Wang, Lushan; Zhang, Yuzhong; Gao, Peiji; Shi, Dongxia; Liu, Hongwen; Gao, Hongjun

    2006-02-20

    An extended enzymatic hydrolysis of cotton fibers by crude cellulase from Trichoderma pseudokoningii S-38 is described with characterization of both the enzyme changes of activities and cellulose structure. The hydrolysis rates declined drastically during the early stage and then slowly and steadily throughout the whole hydrolysis process the same trend could be seen during the following re-hydrolysis process. Morphological and structural changes to the fibers, such as swelling, frequent surface erosion, and variation in the packing and orientation of microfibrils, were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Observation of X-ray diffraction and IR spectra suggests that the hydrolysis process results in a gradual increase in the relative intensity of the hydrogen bond network, and a gradual decrease in the apparent crystal size of cellulose. The I(alpha) crystal phase was hydrolyzed more easily than was the I(beta) crystal phase. Apart from the inactivation of CBHs activity, changes in the packing and arrangement of microfibrils and the structural heterogeneity of cellulose during hydrolysis could be responsible for the reduction in the rate of reaction, especially in its later stages. The results indicate that the enzymatic hydrolysis of cellulose occurs on the outer layer of the fiber surface and that, following this, the process continues in a sub-layer manner.

  15. Titanium-Dioxide Nano-Fiber-Cotton Targets for Efficient Multi-keV X-Ray Generation

    SciTech Connect

    Tanabe, M; Nishimura, H; Fujioka, S; Nagai, K; Yamamoto, N; Gu, Z; Pan, C; Girard, F; Primout, M; Villette, B; Brebion, D; Fournier, K B; Fujishima, A; Mima, K

    2008-06-12

    Multi-keV x-ray generation from low-density (27 {+-} 7 mg/cc) nano-fiber-cotton targets composed of titanium-dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency (3.7 {+-} 0.5%) from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that (1.4 {+-} 0.9%) for a planar Ti-foil target.

  16. A transcript profiling approach reveals an abscisic acid specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed i...

  17. Synthesis, Characterization and Applications of Cotton-made Activated Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Chiu, Ka Lok

    Activated carbon (AC) is an important functional material due to its outstanding adsorption ability. Activated carbon fiber (ACF) has many advantages over other types of AC: It mainly possesses micropores and has large surface area. Its fibrous structure assures fast intraparticle adsorption kinetics. Finally, it can be made into felt and fabric forms, which would not hinder gas flow and could be easily recollected after use. However, ACF is expensive due to the lack of low cost precursor so its application is restricted. This work aims to use low cost cotton fiber as an ACF precursor. In this work, ACF was successfully synthesized by using raw cotton via ZnCl2 activation. The effects of the sintering temperature during activation, the ZnCl2 concentration during infiltration and the post-treatment after activation on our samples were studied. Our ACF products were characterized via various methods. It was found that our samples retained the fibrous structure of cotton. They contained trace of carbon-oxygen surface groups and were mainly composed of micropores. Their BET surface area (SBET) and pore volume (Vpore) were up to ˜2050 m2/g and 1 cm3/g, respectively. The adsorption kinetics and adsorption isotherm of our samples in the Methylene blue (MB) adsorption were studied. The adsorption was very fast and almost reached equilibrium after an hour. Because of their high SBET, the saturated MB capacity in our ACF was found to be 597 mg/g and higher than other commercial AC. The effect of solution pH value on MB adsorption capacity was studied. We found that the basic condition favored MB adsorption while acidic condition lowered the adsorption ability. Adsorption kinetics, saturated adsorption volume (Vads) and desorption process of moisture, ethanol vapor, methanol vapor and acetone vapor by our samples were also evaluated. The adsorption of methanol vapor, ethanol vapor and acetone vapor reached equilibrium within 10 minutes. Our sample also adsorbed moisture

  18. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes.

    PubMed

    Jin, Xiang; Wang, Limin; He, Liping; Feng, Weiqiang; Wang, Xuchu

    2016-02-01

    Proteomic analysis of upland cotton was performed to profile the global detectable proteomes of ovules and fibers using two-dimensional electrophoresis (2DE). A total of 1,203 independent protein spots were collected from representative 2DE gels, which were digested with trypsin and identified by matrix-assisted laser desorption and ionization-time-offlight/ time-of-flight (MALDI-TOF/TOF) mass spectrometry. The mass spectrometry or tandem mass spectrometry (MS or MS/MS) data were then searched against a local database constructed from Gossypium hirsutum genome sequences, resulting in successful identification of 975 protein spots (411 for ovules and 564 for fibers). Functional annotation analysis of the 975 identified proteins revealed that ovule-specific proteins were mainly enriched in functions related to fatty acid elongation, sulfur amino acid metabolism and post-replication repair, while fiber-specific proteins were enriched in functions related to root hair elongation, galactose metabolism and D-xylose metabolic processes. Further annotation analysis of the most abundant protein spots showed that 28.96% of the total proteins in the ovule were mainly located in the Golgi apparatus, endoplasmic reticulum, mitochondrion and ribosome, whereas in fibers, 27.02% of the total proteins were located in the cytoskeleton, nuclear envelope and cell wall. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of the ovule-specific protein spots P61, P93 and P198 and fiber-specific protein spots 230, 477 and 511 were performed to validate the proteomics data. Protein-protein interaction network analyses revealed very different network cluster patterns between ovules and fibers. This work provides the largest protein identification dataset of 2DE-detectable proteins in cotton ovules and fibers and indicates potentially important roles of tissue-specific proteins, thus providing insights into the cotton ovule and fiber proteomes on a global scale.

  19. Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis.

    PubMed

    Huang, Junfeng; Chen, Feng; Wu, Siyu; Li, Juan; Xu, Wenliang

    2016-02-01

    The secondary cell wall in mature cotton fibers contains over 90% cellulose with low quantities of xylan and lignin. However, little is known regarding the regulation of secondary cell wall biosynthesis in cotton fibers. In this study, we characterized an R2R3-MYB transcription factor, GhMYB7, in cotton. GhMYB7 is expressed at a high level in developing fibers and encodes a MYB protein that is targeted to the cell nucleus and has transcriptional activation activity. Ectopic expression of GhMYB7 in Arabidopsis resulted in small, curled, dark green leaves and also led to shorter inflorescence stems. A cross-sectional assay of basal stems revealed that cell wall thickness of vessels and interfascicular fibers was higher in transgenic lines overexpressing GhMYB7 than in the wild type. Constitutive expression of GhMYB7 in Arabidopsis activated the expression of a suite of secondary cell wall biosynthesis-related genes (including some secondary cell wall-associated transcription factors), leading to the ectopic deposition of cellulose and lignin. The ectopic deposition of secondary cell walls may have been initiated before the cessation of cell expansion. Moreover, GhMYB7 was capable of binding to the promoter regions of AtSND1 and AtCesA4, suggesting that GhMYB7 may function upstream of NAC transcription factors. Collectively, these findings suggest that GhMYB7 is a potential transcriptional activator, which may participate in regulating secondary cell wall biosynthesis of cotton fibers.

  20. Documentation of the endotoxins present in the ambient air of cotton fiber textile mills in Québec.

    PubMed

    Marchand, Geneviève; Lalonde, Michèle; Beaudet, Yves; Boivin, Gilles; Villeneuve, Sylvie; Pépin, Carole

    2007-08-01

    Cotton workers are recognized as being at risk of developing occupational lung diseases. Some researchers have identified endotoxins as being a potential etiologic agent for some of the respiratory problems. This study wants to document the concentration of endotoxins found in the ambient air of textile mills where cotton fibers are handled and to identify the processing steps where the highest endotoxins concentrations in the air were found and the one where the relative limit values (RLVs) are exceeded. The 4 mills studied process cotton fibers. All the air samples were analyzed using the chromogenic Limulus Amoebocytes lysate LAL method using a kinetic detection principle based on the IRSST's standard method. In this study, a large variability in the concentrations of endotoxins in the air was observed, depending on the mill, the processing step, and the time. Despite these variations, some processes can be identified as being major generators of endotoxins in the ambient air of the mills. The highest concentrations were measured in the weaving and drawing processes and reached 10,000 EU m(-3) of air. The opening, cleaning, carding, spinning and drawing processes are the other major endotoxins generating processes with concentrations from 24 to 8,700 EU m(-3) of air. The endotoxins concentrations exceeded the RLVs for 55% of the workstations in this project. This study demonstrated that endotoxins levels in the cotton industry are high and appropriate control measures are needed.

  1. Effect of harvesting method on fiber and yarn quality from irrigated cotton on the High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, Texas cotton production has represented almost half of all the US cotton production, with most of that production coming from the High Plains. Due to the harsh weather conditions, most cotton on the High Plains is of more storm-proof varieties that are harvested using stripper harve...

  2. Near infrared measurment of cotton fiber micronaire by portable near infrared instrumentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton production and usage is a global enterprise, and the export of U.S. cotton has increased dramatically. In the U.S., cotton is classed (and its primary quality parameters determined) by the Uster® High Volume Instrument (HVI), which must be maintained under tightly controlled laboratory envir...

  3. RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li1) and – 2 (Li2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is the most prevalent natural raw material used in the textile industry. The length of the fiber is one of the most important characteristics and affects spinning efficiency and the quality of the resulting yarn. The identification of the genes that control fiber elongation is importa...

  4. Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.).

    PubMed

    Fang, Xiaomei; Liu, Xueying; Wang, Xiaoqin; Wang, Wenwen; Liu, Dexin; Zhang, Jian; Liu, Dajun; Teng, Zhonghua; Tan, Zhaoyun; Liu, Fang; Zhang, Fengjiao; Jiang, Maochao; Jia, Xiuling; Zhong, Jianwei; Yang, Jinghong; Zhang, Zhengsheng

    2017-04-01

    KEY MESSAGE: qFS07.1 controlling fiber strength was fine-mapped to a 62.6-kb region containing four annotated genes. RT-qPCR and sequence of candidate genes identified an LRR RLK gene as the most likely candidate. Fiber strength is an important component of cotton fiber quality and is associated with other properties, such as fiber maturity, fineness, and length. Stable QTL qFS07.1, controlling fiber strength, had been identified on chromosome 7 in an upland cotton recombinant inbred line (RIL) population from a cross (CCRI35 × Yumian1) described in our previous studies. To fine-map qFS07.1, an F2 population with 2484 individual plants from a cross between recombinant line RIL014 and CCRI35 was established. A total of 1518 SSR primer pairs, including 1062, designed from chromosome 1 of the Gossypium raimondii genome and 456 from chromosome 1 of the G. arboreum genome (corresponding to the QTL region) were used to fine-map qFS07.1, and qFS07.1 was mapped into a 62.6-kb genome region which contained four annotated genes on chromosome A07 of G. hirsutum. RT-qPCR and comparative analysis of candidate genes revealed a leucine-rich repeat protein kinase (LRR RLK) family protein to be a promising candidate gene for qFS07.1. Fine mapping and identification of the candidate gene for qFS07.1 will play a vital role in marker-assisted selection (MAS) and the study of mechanism of cotton fiber development.

  5. Natural cotton fibers as adsorbent for solid-phase extraction of polycyclic aromatic hydrocarbons in water samples.

    PubMed

    Wang, Jianping; Liu, Shengquan; Chen, Chunyan; Zou, Ying; Hu, Huiping; Cai, Qingyun; Yao, Shouzhuo

    2014-07-21

    A natural material, cotton fiber, has been applied as a solid-phase extraction (SPE) adsorbent for sample preparation for the analysis of polycyclic aromatic hydrocarbons (PAH) in water samples using high-performance liquid chromatography. The cotton fiber was used directly without any chemical modifications, which avoided a complex synthesis process and consumption of a large volume of organic solvent. The conditions affecting the extraction efficiency were optimized to achieve high detection sensitivity, and included elution solvent, ultrasonic elution time, extraction time, sample volume, salt concentration and organic modifier addition. Under the optimal conditions, the detection limits for seven PAH compounds could reach up to 0.1-2.0 ng L(-1). The method accuracy was evaluated using recovery measurements in standard spiked samples and good recoveries of 70.69-110.04% with relative standard deviations of less than 10% have been achieved. Consequently, the method developed was successfully applied for determining PAH in environmental samples: snow water, metal-fabrication factory wastewater and Xiangjiang River water, with PAH contents ranging from 13.2 to 83.1 ng L(-1). Therefore, using cotton fiber as a new SPE adsorbent, was easy to prepare, had a low cost and great reusability, and this implies it is a promising method for sample preparation.

  6. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste

    NASA Astrophysics Data System (ADS)

    Zheng, Jieying; Zhao, Quanlin; Ye, Zhengfang

    2014-04-01

    In this study, the activated carbon fibers (ACFs) were prepared using cotton woven waste as precursor. The cotton woven waste was first partly dissolved by 80% phosphoric acid and then was pre-soaked in 7.5% diammonium hydrogen phosphate solution. Finally, carbonization and activation were proceeded to get ACF. The optimum preparation conditions, including carbonization temperature, carbonization time, activation temperature and activation time, were chosen by orthogonal design. Nitrogen adsorption/desorption test was conducted to characterize the prepared ACF's pore structure. Fourier transform infrared spectroscopy (FTIR) analysis, X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscope (ESEM) were employed to characterize its chemical properties and morphology. Adsorption of oilfield wastewater was used to evaluate its adsorption properties. The results show that the prepared ACF is in the form of fiber, with the sectional diameters of 11.7 × 2.6 μm and the surface area of 789 m2/g. XPS results show that carbon concentration of the prepared ACF is higher than that of the commercial ACF. When the prepared ACF dosage is 6 g/L, over 80% of COD and over 70% of chrominance can be removed after 24 h of adsorption at 18 °C. We demonstrated the catalytic growth of m-axial InxGa1-xN (0.10 ≤ x ≤ 0.17) nanocolumn arrays with high crystallinity on silicon substrates using metal-organic chemical vapor deposition with trimethylindium (TMIn), triethylgallium (TEGa), and ammonia as precursors. The high quality of InGaN nanocolumns (NCs) were believed to be due to the utilization of TEGa that achieved less carbon impurities and offered more comparable vapor pressure with that of TMIn at low temperature. In addition, these NCs were grown in non-polar m-axis, which the internal electric field of the InGaN that often deteriorates the device performances might be able to be eliminated. Furthermore, the bandgap of this InGaN can be modulated from

  7. Association analysis of fiber quality traits and exploration of elite alleles in Upland cotton cultivars/accessions (Gossypium hirsutum L.).

    PubMed

    Cai, Caiping; Ye, Wenxue; Zhang, Tianzhen; Guo, Wangzhen

    2014-01-01

    Exploring the elite alleles and germplasm accessions related to fiber quality traits will accelerate the breeding of cotton for fiber quality improvement. In this study, 99 Gossypium hirsutum L. accessions with diverse origins were used to perform association analysis of fiber quality traits using 97 polymorphic microsatellite marker primer pairs. A total of 107 significant marker-trait associations were detected for three fiber quality traits under three different environments, with 70 detected in two or three environments and 37 detected in only one environment. Among the 70 significant marker-trait associations, 52.86% were reported previously, implying that these are stable loci for target traits. Furthermore, we detected a large number of elite alleles associated simultaneously with two or three traits. These elite alleles were mainly from accessions collected in China, introduced to China from the United States, or rare alleles with a frequency of less than 5%. No one cultivar contained more than half of the elite alleles, but 10 accessions were collected from China and the two introduced from the United States did contain more than half of these alleles. Therefore, there is great potential for mining elite alleles from germplasm accessions for use in fiber quality improvement in modern cotton breeding.

  8. Cellulose synthase catalytic subunit (CesA) genes associated with primary or secondary wall biosynthesis in developing cotton fibers (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are unicellular seed trichomes and consist of almost pure cellulose. During the transition from elongation growth to secondary wall thickening, the rate of cellulose biosynthesis in fibers rises nearly 100-fold. Although the first two cellulose synthase catalytic subunits (CesAs) wer...

  9. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders’ ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed t...

  10. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    PubMed Central

    Thyssen, Gregory N.; Fang, David D.; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D.; Condon, Tracy L.; Li, Ping; Kim, Hee Jin

    2016-01-01

    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. PMID:27172184

  11. Assessment of fennel aphids (Hemiptera: Aphididae) and their predators in fennel intercropped with cotton with colored fibers.

    PubMed

    Ramalho, F S; Fernandes, F S; Nascimento, A R B; Nascimento Júnior, J L; Malaquias, J B; Silva, C A D

    2012-02-01

    The fennel aphid, Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) is a major pest of fennel, Foeniculum vulgare Miller in northeast region of Brazil. We hypothesize that intercropping can be used as an alternative pest management strategy to reduce aphid yield loss in fennel. Thus, we investigated the severity of fennel plant damage in relation to infestation by the fennel aphid and predation by Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) (spotless lady beetle), green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and Scymnus spp. (Coleoptera: Coccinellidae) in sole fennel plots and plots of fennel intercropped with cotton with colored fibers. The fennel aphid populations in nontreated plots were significantly larger in sole fennel plots than in intercropped plots. The highest densities of C. sanguinea, green lacewings and Scymnus spp., associated with the suppression of fennel aphid populations was found in fennel in the intercropping systems. Fennel aphids reduced the fennel seed yield by 80% in the sole fennel plots compared with approximately 30% for all intercropping systems. The results obtained in this research are of practical significance for designing appropriate strategies for fennel aphid control in fennel-cotton intercropping systems. In summary, intercropping fennel with cotton with colored fibers apparently promoted biocontrol of fennel aphid in fennel.

  12. Preparation of the porphyrin-functionalized cotton fiber for the chromogenic detection and efficient adsorption of Cd(2+) ions.

    PubMed

    Liu, Changkun; Liang, Xiaoyan; Liu, Ji'an; Lei, Xiaobin; Zhao, Xinzhen

    2017-02-15

    In this study, a porphyrin functionalized cotton fiber was prepared and investigated for the visual detection and efficient adsorption of cadmium (Cd(2+)) ions in aqueous solutions. The pristine cotton fiber was first grafted with poly (3-sulfopropyl methacrylate potassium salt) (PSMP) via the surface-initiated atom transfer radical polymerization (SI-ATRP), and subsequently immobilized with 5,10,15,20-tetrakis(1-methy-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP), to form the CPT (Cotton-PSMP-TMPyP) material. The CPT was characterized by SEM, FTIR, XPS and elemental analysis, and examined for the detection and adsorption of cadmium ions. The influencing factors such as pH and the initial cadmium ion concentrations on the adsorption performances were investigated. Results showed that the cadmium ion adsorption isotherm was best fitted with the Langmuir isotherm model, with the derived maximum adsorption capacity of 0.8638mmol/g. The thermodynamic study showed the endothermic nature of the adsorption process. In addition, the adsorption kinetics was fast with over 90% of the total cadmium ions adsorbed within 2min. Furthermore, the distinctive color response of the CPT to the cadmium ions in aqueous solutions was clearly displayed. A linear relationship between the light absorbance of CPT-Cd (CPT adsorbed with cadmium ions) and the initial concentrations of cadmium ions was successfully established, which could be used for the fast determination of the cadmium ion concentrations in aqueous solutions.

  13. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Rong, Zhang; Li, Ye; Li, Cheng; Zheng, Zheng

    Cotton-stalk activated carbon fibers (CSCFs) with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB) was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area.

  14. Nickel(II)-immobilized sulfhydryl cotton fiber for selective binding and rapid separation of histidine-tagged proteins.

    PubMed

    He, Xiao-Mei; Zhu, Gang-Tian; Lu, Wei; Yuan, Bi-Feng; Wang, Hong; Feng, Yu-Qi

    2015-07-31

    In the current study, a novel nickel(II)-immobilized sulfhydryl cotton fiber (SCF-Ni(2+)) was prepared in a simple way based on the coordination effect between Ni(2+) and thiol group on the surface of SCF. The composition and element mapping of SCF-Ni(2+) fibers were demonstrated by energy-dispersive X-ray (EDX) spectroscopy. Based on the high affinity of Ni(2+) to 6×His on histidine-tagged (His-tagged) proteins, SCF-Ni(2+) fibers were then further used as an immobilized metal ion affinity chromatography (IMAC) adsorbent for selective binding and rapid separation of His-tagged proteins using an in- pipette-tip SPE format. Our results showed that SCF-Ni(2+) adsorbent can selectively capture His-tagged proteins from protein mixture and Escherichia coli cell lysates. Taken together, the developed method provides a rapid, convenient and efficient approach for the purification of His-tagged proteins.

  15. Seed-Coat Fragment Fiber and Fabric Quality in World Cottons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed coat fragments (SCF) can be neps that can cause spinning problems and fabric defects, which ultimately cause losses to the cotton industry. 12 US and 10 International cottons were processed with AFIS and compared to the fabric samples. Fabrics were tested on the new Autorate (for dark specks)...

  16. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is the world’s most important natural textile fibre and a significant oilseed crop. Upland cotton (Gossypium hirsutum L.), an allotetraploid derived from A- and D-genome progenitors, accounts for >95% of world production. Here, we sequenced and assembled 88% of the 2.5-gigabase genome of the ...

  17. Piperazine-phosphonate derivatives: their flame retardant and thermal degradation properties on cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been known that phosphorus-nitrogen system shows greater flame resistance in cotton textiles at a lower level than phosphorus used alone. This research aims to compare the effectiveness of Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) as a flame retardant (FR) for cotton fabric to a prev...

  18. Application of an Australian model to predict fiber characteristics of cotton grown in Texas.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature varies continuously and is a pervasive influence on virtually all aspects of cotton growth and development. Variation in cotton yield and quality can be broadly correlated with seasonal temperature patterns. Within-season temperature variation correlates with yield and quality variation...

  19. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination

    PubMed Central

    Bhardwaj, Abhishek K.; Shukla, Abhishek; Mishra, Rohit K.; Singh, S. C.; Mishra, Vani; Uttam, K. N.; Singh, Mohan P.; Sharma, Shivesh; Gopal, R.

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages. PMID:28316594

  20. Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework.

    PubMed

    Lange, Laura E; Obendorf, S Kay

    2015-02-25

    A combination of a Keggin-type polyoxometalate (POM), [CuPW11O39](5-), with a Cu3(BTC)2 metal-organic framework (MOF-199/HKUST-1; where BTC is benzene-1,3,5-tricarboxylate), was successfully self-assembled on a cellulose substrate (cotton) with a room-temperature process. Cotton fibers were functionalized by partial etherification. Cu3(BTC)2 metal-organic framework and polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework were self-assembled on the carboxymethylate ion sites initiated with copper nitrate using ethanol and water as solvents. Octahedral crystals were observed on both MOF-cotton and POM-MOF-cotton; both contained copper while the POM-MOF-cotton also contained tungsten. Occupancy of POM in MOF cages was calculated to be about 13%. Moisture content remained at 3 to 4 wt % similar to that of untreated cotton. Reactivity to both hydrogen sulfide and methyl parathion was higher for POM-MOF-cotton due to the Keggin polyoxometalate and the extra-framework cations Cu(2+) ions compensating the charges of the encapsulated Keggins. The POM-MOF material was found to effectively remove 0.089 mg of methyl parathion per mg of MOF from a hexane solution while MOF-cotton removed only 0.054 mg of methyl parathion per mg of MOF.

  1. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    PubMed

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.

  2. EcoTILLING revealed SNPs in GhSus genes that are associated with fiber- and seed-related traits in upland cotton

    PubMed Central

    Zeng, Yan-Da; Sun, Jun-Ling; Bu, Su-Hong; Deng, Kang-Sheng; Tao, Tao; Zhang, Yuan-Ming; Zhang, Tian-Zhen; Du, Xiong-Ming; Zhou, Bao-Liang

    2016-01-01

    Cotton is the most important textile crop in the world due to its cellulose-enriched fibers. Sucrose synthase genes (Sus) play pivotal roles in cotton fiber and seed development. To mine and pyramid more favorable alleles for cotton molecular breeding, single nucleotide polymorphisms (SNPs) of GhSus family genes were investigated across 277 upland cotton accessions by EcoTILLING. As a result, a total of 24 SNPs in the amplified regions of eight GhSus genes were identified. These SNPs were significantly associated with at least one fiber- or seed-related trait measured in Nanjing, Anyang and Kuche in 2007–2009. Four main-effect quantitative trait nucleotides (QTNs) and five epistatic QTNs, with 0.76–3.56% of phenotypic variances explained by each QTN (PVE), were found to be associated with yield-related traits; six epistatic QTNs, with the 0.43–3.48% PVE, were found to be associated with fiber quality-related traits; and one main-effect QTN and one epistatic QTN, with the PVE of 1.96% and 2.53%, were found to be associated with seed oil content and protein content, respectively. Therefore, this study provides new information for molecular breeding in cotton. PMID:27385639

  3. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments.

    PubMed

    Fang, Lei; Tian, Ruiping; Chen, Jiedan; Wang, Sen; Li, Xinghe; Wang, Peng; Zhang, Tianzhen

    2014-01-01

    Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs) that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs) were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes), glycolysis/gluconeogenesis (122 genes), phenylpropanoid biosynthesis (101 genes), and oxidative phosphorylation (87 genes), etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.

  4. Comparative proteomic and biochemical analyses reveal different molecular events occurring in the process of fiber initiation between wild-type allotetraploid cotton and its fuzzless-lintless mutant.

    PubMed

    Yao, Yuan; Zhang, Bing; Dong, Chun-Juan; Du, Ying; Jiang, Lin; Liu, Jin-Yuan

    2015-01-01

    To explore lint fiber initiation-related proteins in allotetraploid cotton (Gossypium hirsutum L.), a comparative proteomic analysis was performed between wild-type cotton (Xu-142) and its fuzzless-lintless mutant (Xu-142-fl) at five developmental time points for lint fiber initiation from -3 to +3 days post-anthesis (dpa). Using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS) analyses, 91 differentially accumulated protein (DAP) species that are related to fiber initiation were successfully identified, of which 58 preferentially accumulated in the wild-type and 33 species in the fl mutant. These DAPs are involved in various cellular and metabolic processes, mainly including important energy/carbohydrate metabolism, redox homeostasis, amino acid and fatty acid biosynthesis, protein quality control, cytoskeleton dynamics, and anthocyanidin metabolism. Further physiological and biochemical experiments revealed dynamic changes in the carbohydrate flux and H2O2 levels in the cotton fiber initiation process. Compared with those in the fl mutant, the contents of glucose and fructose in wild-type ovules sharply increased after anthesis with a relatively higher rate of amino acid biosynthesis. The relative sugar starvation and lower rate of amino acid biosynthesis in the fl mutant ovules may impede the carbohydrate/energy supply and cell wall synthesis, which is consistent with the proteomic results. However, the H2O2 burst was only observed in the wild-type ovules on the day of anthesis. Cotton boll injection experiments in combination with electron microscope observation collectively indicated that H2O2 burst, which is negatively regulated by ascorbate peroxidases (APx), plays an important role in the fiber initiation process. Taken together, our study demonstrates a putative network of DAP species related to fiber initiation in cotton ovules and provides a foundation for future studies on the specific functions of these proteins in fiber

  5. Cotton fibers nano-TiO{sub 2} composites prepared by as-assembly process and the photocatalytic activities

    SciTech Connect

    Xia, J.H.; Hsu, C.T.; Qin, D.D.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► TiO{sub 2} nanoparticles self-assemble process under the assistant of carboxylic group. ► The carboxylic group was introduced by displacement reaction. ► The loading amount of nano-TiO{sub 2} was depended on the displacement degree of C-6-OH. ► UV–Vis experiments showed these fibers had efficient photocatalysis. ► The degradation reaction Rhodamine 6G under UV light obeys zero-order rate law. -- Abstract: This paper describes photocatalytic cotton fibers produced by a TiO{sub 2} nanoparticle self-assembly process with the assistance of carboxylic groups. The carboxylic group was introduced by a displacement reaction, the molecular structure of the glucose unit was studied by utilizing solid {sup 13}C NMR. The appearance of the prepared fibers was observed by scanning electron microscopy, it was found that nano-TiO{sub 2} coated uniformly on the fiber surface. The loading amount of nano-TiO{sub 2} was depended on the displacement degree of C-6-OH. UV–Vis experiments showed these coated fibers undergo photocatalysis efficiently. The degradation reaction of Rhodamine 6G under UV light obeys the zero-order rate law.

  6. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    NASA Astrophysics Data System (ADS)

    Abu-Thabit, Nedal Y.; Basheer, Rafil A.

    2014-09-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.

  7. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Zhen; Li, Junwen; Muhammad, Jamshed; Cai, Juan; Jia, Fei; Shi, Yuzhen; Gong, Juwu; Shang, Haihong; Liu, Aiying; Chen, Tingting; Ge, Qun; Palanga, Koffi Kibalou; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Li, Wei; Sun, Linyang; Gong, Wankui; Yuan, Youlu

    2015-01-01

    Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  8. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Cai, Juan; Jia, Fei; Shi, Yuzhen; Gong, Juwu; Shang, Haihong; Liu, Aiying; Chen, Tingting; Ge, Qun; Palanga, Koffi Kibalou; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Li, Wei; Sun, Linyang; Gong, Wankui; Yuan, Youlu

    2015-01-01

    Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0–153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0–153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0–153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%–11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection. PMID:26262992

  9. Whiteness and absorbency of hydroentangled cotton-based nonwoven fabrics of different constituent fibers and fiber blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript reports result of the research efforts devoted to the exploration and development of greige (non-bleached) cotton-containing nonwoven fabrics that likely could be made optimally competitive in cost, quality and performance to existing products that presently and predominantly use man...

  10. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton.

    PubMed

    Samuel Yang, S; Cheung, Foo; Lee, Jinsuk J; Ha, Misook; Wei, Ning E; Sze, Sing-Hoi; Stelly, David M; Thaxton, Peggy; Triplett, Barbara; Town, Christopher D; Jeffrey Chen, Z

    2006-09-01

    Gene expression during the early stages of fiber cell development and in allopolyploid crops is poorly understood. Here we report computational and expression analyses of 32 789 high-quality ESTs derived from Gossypium hirsutum L. Texas Marker-1 (TM-1) immature ovules (GH_TMO). The ESTs were assembled into 8540 unique sequences including 4036 tentative consensus sequences (TCs) and 4504 singletons, representing approximately 15% of the unique sequences in the cotton EST collection. Compared with approximately 178 000 existing ESTs derived from elongating fibers and non-fiber tissues, GH_TMO ESTs showed a significant increase in the percentage of genes encoding putative transcription factors such as MYB and WRKY and genes encoding predicted proteins involved in auxin, brassinosteroid (BR), gibberellic acid (GA), abscisic acid (ABA) and ethylene signaling pathways. Cotton homologs related to MIXTA, MYB5, GL2 and eight genes in the auxin, BR, GA and ethylene pathways were induced during fiber cell initiation but repressed in the naked seed mutant (N1N1) that is impaired in fiber formation. The data agree with the known roles of MYB and WRKY transcription factors in Arabidopsis leaf trichome development and the well-documented phytohormonal effects on fiber cell development in immature cotton ovules cultured in vitro. Moreover, the phytohormonal pathway-related genes were induced prior to the activation of MYB-like genes, suggesting an important role of phytohormones in cell fate determination. Significantly, AA sub-genome ESTs of all functional classifications including cell-cycle control and transcription factor activity were selectively enriched in G. hirsutum L., an allotetraploid derived from polyploidization between AA and DD genome species, a result consistent with the production of long lint fibers in AA genome species. These results suggest general roles for genome-specific, phytohormonal and transcriptional gene regulation during the early stages of fiber

  11. Characterization of attenuated total reflection infrared spectral intensity variations of immature and mature cotton fibers by two-dimensional correlation analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of immature and mature cotton fibers. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity of 660 cm-1 to ...

  12. Adsorption isotherms of cellulose-based polymers onto cotton fibers determined by means of a direct method of fluorescence spectroscopy.

    PubMed

    Hoffmann, Ingo; Oppel, Claudia; Gernert, Ulrich; Barreleiro, Paula; von Rybinski, Wolfgang; Gradzielski, Michael

    2012-05-22

    We present a novel method for the measurement of polymer adsorption on fibers by employing fluorescently labeled polymers. The method itself can be used for any compound that either shows fluorescence or can be labeled with a fluorescent dye, which renders it ubiquitously applicable for adsorption studies. The main advantage of the method is that the choice of adsorbent is not limited to flat surfaces, thereby allowing the investigation of fibrous and porous systems. As an example of high interest for application we determined the adsorption isotherms of various polysaccharide-based polymers with different charges and different substituents on cotton fibers. These experiments show that the extent of adsorption depends not only on the charge conditions but also very much on the specific interactions between the polymer and fiber. For instance, the cationic hydroxyethyl cellulose can become bound to an extent similar to that of the anionic alginate, while the anionic carboxymethyl cellulose of similar charge density adsorbs much less under these conditions. This shows that the adsorption of polymers depends subtly on the details of the interaction between the polymer and fiber but can be determined with good precision with our direct fluorescence method.

  13. A and D genomes spatial separation at somatic metaphase in tetraploid cotton: evidence for genomic disposition in a polyploid plant.

    PubMed

    Han, Jinlei; Zhou, Baoliang; Shan, Wenbo; Yu, Liying; Wu, Weiren; Wang, Kai

    2015-12-01

    Chromosomal dispositions were analyzed on the metaphase plate of tetraploid cotton (AADD). At metaphase, the two subgenomes, A and D, were separated in a radial pattern in which the small D subgenome chromosomes tended to concentrate at the center and the large A subgenome chromosomes were scattered about the periphery on the metaphase plate. Although the ordered chromosome arrangement was disturbed in an artificial hexaploid (AADDGG), the separation pattern could be recovered after the majority of the additional genome (GG) chromosomes were removed by backcrossing the artificial hexaploid with the tetraploid cotton (AADD). A similar genome separation phenomenon was also found in synthesized tetraploid cotton (AAGG). These results indicate that the genome separation pattern could be established immediately after tetraploid cotton formation and could be stably inherited in tetraploid cotton. Given the evidence of parental genome separation in other plants and animals, we speculated that genome separation might be a normal phenomenon in diploid and polyploid species. These finding will shed light on the chromosome conformation in plant cells.

  14. Status of the global cotton germplasm resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cultivated Gossypium spp. (cotton) represents the single most important, natural fiber crop in the world. In addition to its fiber, the oil and protein portion of the cottonseed also represents significant economic value. To protect the world-wide economic value of cotton fiber and cotton byprod...

  15. Long-term storage of polyethylene film wrapped cotton bales and effects on fiber and textile quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton bales are stored for various lengths of time after ginning in any given year depending on crop size as well as market demand. Storage of cotton bales in covered warehouses is the general industry practice for most of the U.S. cotton belt. However, some cotton bales are stored in outside hol...

  16. Alleles conferring improved fiber quality from EMS mutagenesis of elite cotton genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elite gene pool of cotton (Gossypium spp.) has less diversity than those of most other major crops, making identification of novel alleles important to ongoing crop improvement. A total of 3,164 M5 lines resulting from ethyl methanesulfonate mutagenesis of two G. hirsutum breeding lines, TAM 94L...

  17. Thermal and flame retardant behaviors of cotton fiber treated with phosphoramidate derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this research, two phosphoramidate derivatives EHP Diethyl 3-hydroxypropylphos phoramidate and MHP Dimethyl 3-hydroxypropylphos phoramidate were prepared in very high yield and purity by one step procedure and the cotton fabrics treated with them at different levels of add-on (5 - 20 wt %) were c...

  18. Nitrogen fertilizer sources and tillage effects on cotton growth, yield, and fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in urea-ammonium sulfate (UAS) as a N fertilizer is increasing due, in part, to increased restriction on ammonium nitrate. This has resulted in UAS being marketed as an alternative fertilizer source; however, UAS has not been widely tested. A cotton (Gossypium hirsutum L.) field study was c...

  19. Water use, yield, and fiber quality differences of diverse cotton (gossypium spp.) genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining levels of available water for irrigation use in the Ogallala, TX, San Joaquin Valley, CA, and other aquifers has led to the need to identify and develop cotton (Gossypium spp.) cultivars that can more efficiently use available soil water. Elite upland (G. hirsutum L.) commercial cultivars,...

  20. Relationship of Cotton Fiber Calcium and Magnesium Contents on Dye Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton from a single bale was processed into knit fabrics and prepared for dyeing. Following scouring, fabrics were soaked in either a metal sequestering solution or a water solution, bleached and dyed using 5 dye shades from both reatice and direct dye classes. Results indicate that removal of re...

  1. Simultaneous measurements of Cotton fiber maturity, fineness, ribbon width, and micronaire

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maturity (degree of secondary wall development) and fineness (linear density) are important cotton quality and processing properties, but their direct measurement is often difficult and/or expensive to perform. An indirect but critical measurement of maturity and fineness is micronaire, which is on...

  2. Natural fire-defense of raw white and brown cotton fibers evidenced by suppressed unzipping depolymerization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pre-cleaned (scoured or scoured/bleached), cotton-based materials, whose utilization has greatly been enhanced in support of environmental sustainability, burn rapidly, causing a difficulty in controlling the spread of fire. This high burning rate is primarily associated with the unzipping depolymer...

  3. Cotton AnnGh3 encoding an annexin protein is preferentially expressed in fibers and promotes initiation and elongation of leaf trichomes in transgenic Arabidopsis.

    PubMed

    Li, Bing; Li, Deng-Di; Zhang, Jie; Xia, Hui; Wang, Xiu-Lan; Li, Ying; Li, Xue-Bao

    2013-10-01

    The annexins are a multifamily of calcium-regulated phospholipid-binding proteins. To investigate the roles of annexins in fiber development, four genes encoding putative annexin proteins were isolated from cotton (Gossypium hirsutum) and designated AnnGh3, AnnGh4, AnnGh5, and AnnGh6. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results indicated that AnnGh3, AnnGh4, and AnnGh5 were preferentially expressed in fibers, while the transcripts of AnnGh6 were predominantly accumulated in roots. During fiber development, the transcripts of AnnGh3/4/5 genes were mainly accumulated in rapidly elongating fibers. With fiber cells further developed, their expression activity was dramatically declined to a relatively low level. In situ hybridization results indicated that AnnGh3 and AnnGh5 were expressed in initiating fiber cells (0-2 DPA). Additionally, their expression in fibers was also regulated by phytohormones and [Ca(2+)]. Subcellular localization analysis discovered that AnnGh3 protein was localized in the cytoplasm. Overexpression of AnnGh3 in Arabidopsis resulted in a significant increase in trichome density and length on leaves of the transgenic plants, suggesting that AnnGh3 may be involved in fiber cell initiation and elongation of cotton.

  4. A Novel Isoform of Sucrose Synthase Is Targeted to the Cell Wall during Secondary Cell Wall Synthesis in Cotton Fiber[C][W][OA

    PubMed Central

    Brill, Elizabeth; van Thournout, Michel; White, Rosemary G.; Llewellyn, Danny; Campbell, Peter M.; Engelen, Steven; Ruan, Yong-Ling; Arioli, Tony; Furbank, Robert T.

    2011-01-01

    Sucrose (Suc) synthase (Sus) is the major enzyme of Suc breakdown for cellulose biosynthesis in cotton (Gossypium hirsutum) fiber, an important source of fiber for the textile industry. This study examines the tissue-specific expression, relative abundance, and temporal expression of various Sus transcripts and proteins present in cotton. A novel isoform of Sus (SusC) is identified that is expressed at high levels during secondary cell wall synthesis in fiber and is present in the cell wall fraction. The phylogenetic relationships of the deduced amino acid sequences indicate two ancestral groups of Sus proteins predating the divergence of monocots and dicots and that SusC sequences form a distinct branch in the phylogeny within the dicot-specific clade. The subcellular location of the Sus isoforms is determined, and it is proposed that cell wall-localized SusC may provide UDP-glucose for cellulose and callose synthesis from extracellular sugars. PMID:21757635

  5. Surface ion-imprinted amino-functionalized cellulosic cotton fibers for selective extraction of Cu(II) ions.

    PubMed

    Monier, M; Ibrahim, Amr A; Metwally, M M; Badawy, D S

    2015-11-01

    Surface ion-imprinted amino-functionalized cellulosic fibers (Cu-ABZ) were manufactured for efficient selective adsorption of Cu(2+) ions. The chemical modification steps had been characterized utilizing elemental analysis; Fourier transforms infrared (FTIR) along with wide angle X-ray diffraction (XRD) spectroscopy. Also, the morphological structure of the ion-imprinted and the non-imprinted (NI-ABZ) fibers were visualized and compared with that of the native cotton fibers using scanning electron microscope (SEM). In addition, the coordination mode by which the Cu(2+) ions bonded to the active sites were examined by both FTIR and X-ray photo electron spectra (XPS). Both Cu-ABZ and NI-ABZ were implemented in batch experiments for optimizing the conditions by which the Cu(2+) ions can be selectively removal from aqueous medium and pH 5 was the optimum for the metal ion extraction. Moreover, the kinetics and isotherm studies revealed that the adsorption data fitted with pseudo-second-order kinetic and Langmuir models with estimated maximum adsorption capacity 93.6mg/g. Also, the reusability studies indicated that the prepared ion-imprinted adsorbent maintains more than 95% of its original activity after fifth generation cycle.

  6. Mapping-by-sequencing of Ligon-lintless-1 (Li1) reveals a cluster of neighboring genes with correlated expression in developing fibers of Upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ligon-lintless-1 (Li1) mutant of cotton (Gossypium hirsutum L.) has been studied as a model for cotton fiber development since its identification in 1929; however, the causative mutation has not been identified yet. Here we report the fine genetic mapping of the mutation to a 255-kb region that...

  7. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1.

  8. Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers.

    PubMed

    Athauda, Thushara J; Hari, Parameswar; Ozer, Ruya R

    2013-07-10

    This article reports the first systematic study on the quantitative relationship between the process parameters of solution concentration ratio, structure, and physical and optical properties of ZnO nanowires grown on cotton surfaces. To develop a fundamental understanding concerning the process-structure-activity relations, we grew a series of well-defined, radially oriented, highly dense, and uniform single-crystalline ZnO nanorods and nanoneedles on cotton surfaces by a simple and inexpensive two-step optimized hydrothermal process at a relatively low temperature. This process involves seed treatment of a cotton substrate with ZnO nanocrystals that will serve as the nucleation sites for subsequent anisotropic growth of single crystalline ZnO nanowires. All of the ZnO nanowires exhibit wurtzite crystal structure oriented along the c-axis. For investigating structure-controlled properties, seed-to-growth solutions concentrations ratio ([S]/[G]) of the synthesis process was varied over six different values. Superhydrophobicity was achieved for all morphologies after 1-dodecanethiol modification, which was highly durable after prolonged UV irradiation. Durability of the ZnO materials under laundry condition was also verified. Variation of the [S]/[G] ratio resulted in a morphological transform from nanorods to needle-like structures in conjunction with a drastic change in the physical and optical properties of the ZnO modified cotton surfaces. Higher [S]/[G] ratios yielded formation of ZnO nanoneedles with high degree of crystallinity and higher aspect ratio compared to nanorods. Increasing [S]/[G] ratio resulted in the amount of ZnO grown on the cotton surface to drop significantly, which also caused a decrease in the surface hydrophobicity and UV absorption. In addition, room temperature photoluminescence measurements revealed that the band gap of ZnO widened and the structural defects were reduced as the morphology changed from nanorods to nanoneedles. A similar

  9. Two-Dimensional Gel Electrophoresis-Based Proteomic Analysis Reveals N-terminal Truncation of the Hsc70 Protein in Cotton Fibers In Vivo

    PubMed Central

    Tao, Chengcheng; Jin, Xiang; Zhu, Liping; Li, Hongbin

    2016-01-01

    On two-dimensional electrophoresis gels, six protein spots from cotton ovules and fibers were identified as heat shock cognate 70 kD protein (Hsc70). Three spots corresponded to an experimental molecular weight (MW) of 70 kD (spots 1, 2 and 3), and the remaining three spots corresponded to an experimental MW slightly greater than 45 kD (spots 4, 5 and 6). Protein spots 1, 2 and 3 were abundant on gels of 0-day (the day of anthesis) wild-type (WT) ovules, 0-day fuzzless-lintless mutant ovules and 10-day WT ovules but absent from gels of 10-day WT fibers. Three individual transcripts encoding these six protein spots were obtained by using rapid amplification of cDNA ends (RACE). Edman degradation and western blotting confirmed that the three 45 kD Hsc70 protein spots had the same N-terminal, which started from the T271 amino acid in the intact Hsc70 protein. Furthermore, quadrupole time-of-flight mass spectrometry analysis identified a methylation modification on the arginine at position 475 for protein spots 4 and 5. Our data demonstrate that site-specific in vivo N-terminal truncation of the Hsc70 protein was particularly prevalent in cotton fibers, indicating that post-translational regulation might play an important role in cotton fiber development. PMID:27833127

  10. Study and Realization of Image Segmentation on the Cotton Foreign Fibers

    NASA Astrophysics Data System (ADS)

    Zheng, Wenxiu; Wang, Jinxing; Liu, Shuangxi; Wei, Xinhua

    A method of foreign fibers image segmentation based on Mean shift, dilation and filtering algorithm is presented. For the representative gray images of hair, chicken feather and mixed foreign fibers, the Mean shift algorithm is used to carry on image segmentation; then dilation and filtering process is carried on to the divided image element. In this way the precise image segmentation of foreign fibers is realized. It’s proved by experiments that the image segmentation method proposed by this article can suppress the noise well, and the segmentation results are satisfied for all kinds of foreign fibers image.

  11. Study and Realization of Image Segmentation on the Cotton Foreign Fibers

    NASA Astrophysics Data System (ADS)

    Zheng, Wenxiu; Wang, Jinxing; Liu, Shuangxi; Wei, Xinhua

    A method of foreign fibers image segmentation based on Mean shift, dilation and filtering algorithm is presented. For the representative gray images of hair, chicken feather and mixed foreign fibers, the Mean shift algorithm is used to carry on image segmentation; then dilation and filtering process is carried on to the divided image element. In this way the precise image segmentation of foreign fibers is realized. It's proved by experiments that the image segmentation method proposed by this article can suppress the noise well, and the segmentation results are satisfied for all kinds of foreign fibers image.

  12. Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population

    PubMed Central

    Li, Cong; Dong, Yating; Zhao, Tianlun; Li, Ling; Li, Cheng; Yu, En; Mei, Lei; Daud, M. K.; He, Qiuling; Chen, Jinhong; Zhu, Shuijin

    2016-01-01

    It is of significance to discover genes related to fiber quality and yield traits and tightly linked markers for marker-assisted selection (MAS) in cotton breeding. In this study, 188 F8 recombinant inbred lines (RILs), derived from a intraspecific cross between HS46 and MARCABUCAG8US-1-88 were genotyped by the cotton 63K single nucleotide polymorphism (SNP) assay. Field trials were conducted in Sanya, Hainan Province, during the 2014–2015 cropping seasons under standard conditions. Results revealed significant differences (P < 0.05) among RILs, environments and replications for fiber quality and yield traits. Broad-sense heritabilities of all traits including fiber length, fiber uniformity, micronaire, fiber elongation, fiber strength, boll weight, and lint percentage ranged from 0.26 to 0.66. A 1784.28 cM (centimorgans) linkage map, harboring 2618 polymorphic SNP markers, was constructed, which had 0.68 cM per marker density. Seventy-one quantitative trait locus (QTLs) for fiber quality and yield traits were detected on 21 chromosomes, explaining 4.70∼32.28% phenotypic variance, in which 16 were identified as stable QTLs across two environments. Meanwhile, 12 certain regions were investigated to be involved in the control of one (hotspot) or more (cluster) traits, mainly focused on Chr05, Chr09, Chr10, Chr14, Chr19, and Chr20. Nineteen pairs of epistatic QTLs (e-QTLs) were identified, of which two pairs involved in two additive QTLs. These additive QTLs, e-QTLs, and QTL clusters were tightly linked to SNP markers, which may serve as target regions for map-based cloning, gene discovery, and MAS in cotton breeding. PMID:27660632

  13. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-01-01

    Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.

  14. Cotton moisture – its importance, measurements and impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton moisture impacts cotton from field to fabric. The proper control, and measurement to allow for control, of cotton moisture is essential to maintaining and preserving fiber quality. Cotton color, length and strength; as well as other properties, are all impacted by cotton moisture content. ...

  15. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  16. Protein and fiber profiles of cottonseed from upland cotton with different fertilizations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole cottonseed and its derived products can be used as human food, animal feed, and industrial raw material. Chemical composition of cottonseed is one of the critical parameters for evaluating its quality and potential end use. Especially, protein and dietary fibers are two desirable nutritional ...

  17. A novel filler for natural fiber polymer composites from cotton gin waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural fiber polymer composites market has significantly grown in the last decade. The majority of these composites are manufactured using wood flour as a principal component. The price and availability of quality wood flour is uncertain in several markets, therefore there is a great potential ...

  18. Evidence of intraguild predation on a key member of the cotton predator complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding trophic level interactions of arthropods is vital for identifying the biological control services provided by the predator complex. A polymerase chain reaction (PCR) assay was developed to examine the gut contents of the cotton predator community for the presence of the DNA of green l...

  19. The Control of Single-Celled Cotton Fiber Elongation by Developmentally Reversible Gating of Plasmodesmata and Coordinated Expression of Sucrose and K+ Transporters and Expansin

    PubMed Central

    Ruan, Yong-Ling; Llewellyn, Danny J.; Furbank, Robert T.

    2001-01-01

    Each cotton fiber is a single cell that elongates to 2.5 to 3.0 cm from the seed coat epidermis within ∼16 days after anthesis (DAA). To elucidate the mechanisms controlling this rapid elongation, we studied the gating of fiber plasmodesmata and the expression of the cell wall–loosening gene expansin and plasma membrane transporters for sucrose and K+, the major osmotic solutes imported into fibers. Confocal imaging of the membrane-impermeant fluorescent solute carboxyfluorescein (CF) revealed that the fiber plasmodesmata were initially permeable to CF (0 to 9 DAA), but closed at ∼10 DAA and re-opened at 16 DAA. A developmental switch from simple to branched plasmodesmata was also observed in fibers at 10 DAA. Coincident with the transient closure of the plasmodesmata, the sucrose and K+ transporter genes were expressed maximally in fibers at 10 DAA with sucrose transporter proteins predominately localized at the fiber base. Consequently, fiber osmotic and turgor potentials were elevated, driving the rapid phase of elongation. The level of expansin mRNA, however, was high at the early phase of elongation (6 to 8 DAA) and decreased rapidly afterwards. The fiber turgor was similar to the underlying seed coat cells at 6 to 10 DAA and after 16 DAA. These results suggest that fiber elongation is initially achieved largely by cell wall loosening and finally terminated by increased wall rigidity and loss of higher turgor. To our knowledge, this study provides an unprecedented demonstration that the gating of plasmodesmata in a given cell is developmentally reversible and is coordinated with the expression of solute transporters and the cell wall–loosening gene. This integration of plasmodesmatal gating and gene expression appears to control fiber cell elongation. PMID:11158528

  20. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    SciTech Connect

    Chen,X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B.; Chu, B.

    2006-01-01

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.

  1. Cotton breeding-challenges and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Competition with synthetic fibers is one of the greatest challenges facing today’s cotton industry. Improved fiber quality is essential to increase US cotton’s competitiveness in the global market place. Enhanced fiber quality also offers an opportunity to capture more value from cotton production. ...

  2. DNA Sequence Evolution and Rare Homoeologous Conversion in Tetraploid Cotton

    PubMed Central

    Page, Justin T.; Liechty, Zach S.; Clemons, Kimberly; Hulse-Kemp, Amanda M.; Van Deynze, Allen; Stelly, David M.

    2016-01-01

    Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants) with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of homoeologous regions in the AT- and DT-genomes and especially the phenomenon of conversion between genomes. We did not find any compelling evidence for homoeologous conversion between genomes. These findings are very different from other recent reports of frequent conversion events between genomes. We also identified several distinct regions of the genome that have been introgressed between G. hirsutum and G. barbadense, which presumably resulted from breeding efforts targeting associated beneficial alleles. Finally, the genotypic data resulting from this study provides access to a wealth of diversity sorely needed in the narrow germplasm of cotton cultivars. PMID:27168520

  3. Integrating genomics and phenomics to improve abiotic stress tolerance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to meet the global demand for natural cotton fiber and clothe an ever-growing population, world cotton production systems must increase productivity. Simultaneously, cotton production systems must also improve the structural properties of cotton fiber to meet fiber quality demands of global...

  4. Evidence for Light-Dependent Recycling of Respired Carbon Dioxide by the Cotton Fruit 1

    PubMed Central

    Wullschleger, Stan D.; Oosterhuis, Derrick M.; Hurren, Robert G.; Hanson, Paul J.

    1991-01-01

    Conservation of respired CO2 by an efficient recycling mechanism in fruit could provide a significant source of C for yield productivity. However, the extent to which such a mechanism operates in cotton (Gossypium hirsutum L.) is unknown. Therefore, a combination of CO2 exchange, stable C isotope, and chlorophyll (Chl) fluorescence techniques were used to examine the recycling of respired CO2 in cotton fruit. Respiratory CO2 losses of illuminated fruit were reduced 15 to 20% compared with losses for dark-incubated fruit. This light-dependent reduction in CO2 efflux occurred almost exclusively via the fruit's outer capsule wall. Compared with the photosynthetic activity of leaves, CO2 recycling by the outer capsule wall was 35 to 40% as efficient. Calculation of 14CO2 fixation on a per Chl basis revealed that the rate of CO2 recycling for the capsule wall was 62.2 micromoles 14CO2 per millimole Chl per second compared with an assimilation rate of 64.6 micromoles 14CO2 per millimole Chl per second for leaves. During fruit development, CO2 recycling contributed more than 10% of that C necessary for fruit dry weight growth. Carbon isotope analyses (δ13C) showed significant differences among the organs examined, but the observed isotopic compositions were consistent with a C3 pathway of photosynthesis. Pulse-modulated Chl fluorescence indicated that leaves and fruit were equally efficient in photochemical and nonphotochemical dissipation of light energy. These studies demonstrated that the cotton fruit possesses a highly efficient, light-dependent CO2 recovery mechanism that aids in the net retention of plant C and, therein, contributes to yield productivity. PMID:16668437

  5. Toward cotton molecular breeding: challenges and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium spp) is the leading natural fiber in the global textile market, but progress in the development and applications of molecular tools to improve cotton lags behind other major crop plants. The slow progress is in part due to cotton's large complex allotetraploid genome of 26 partial...

  6. Obtaining Cotton Fiber Length Distributions from the Beard Test Method Part 2 – A New Approach through PLS Regression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fiber length measurement by the rapid method of testing fiber beards instead of testing individual fibers, only the fiber portion projected from the fiber clamp can be measured. The length distribution of the projecting portion is very different from that of the original sample. The Part 1 pape...

  7. Dispersal of the cotton boll weevil (Coleoptera: Curculionidae) in South America: evidence of RAPD analysis.

    PubMed

    Scataglini, M A; Confalonieri, V A; Lanteri, A A

    2000-01-01

    RAPD technique provides useful information on the geographic origin and dispersal of the boll weevil Anthonomus grandis in South America. Nine populations from Argentina, Brazil, Paraguay, Mexico and USA were analyzed. Weevils were captured on native plants (Misiones province, Argentina) and on cotton cultures, except the sample from the United States (USDA laboratory-reared colony). A sample of the 'Peruvian square weevil', A. vestitus, from Ecuador, was included in the analysis in order to compare interspecific variation. The four primers used in the analysis revealed 41 'anonymous loci'. The neighbor-joining tree based on Nei's distances and values of Nm (migrants per generation), indicate that genetic similarity between samples from Tecomán (Mexico) and Puerto Iguazú (Argentina), is higher than among remaining South American populations. This result supports an hypothesis of natural occurrence of the boll weevil in South America, prior to extensive cotton cultivation. Population outbreaks of the species would be associated with increase of agricultural lands.

  8. Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Gao, Baoyu; Li, Qian; Huang, Lihui; Yao, Fujiang; Xu, Xing

    2012-02-15

    The objective of this research is to produce high surface area-activated carbon derived from cotton linter fibers by fused NaOH activation and to examine the feasibility of removing oxytetracycline (OTC) from aqueous solution. The cotton linter fibers activated carbon (CLAC) was characterized by N(2) adsorption/desorption isotherms, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The results showed that CLAC had a predominantly microporous structure with a large surface area of 2143 m(2)/g. The adsorption system followed pseudo-second-order kinetic model, and equilibrium was achieved within 24h. The equilibrium data were described well by Langmuir isotherm. Thermodynamic study showed that the adsorption was exothermic reaction at low concentration and became endothermic nature with the concentration increasing. Competitive adsorption took place in the weakly acidic to neutral conditions. Under the strong acidity or strong alkaline condition, the adsorption of the oxytetracycline was hindered by electrostatic repulsion. The adsorption mechanism depended on the pH of the solutions as well as the pK(a) of the oxytetracycline.

  9. Pollen genotyping in cotton for genetic linkage analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is an important fiber and oil crop and thus makes very important contributions to US agricultural security and sustainable agriculture. Two species are vital for American cotton industry, i.e., Upland cotton (Gossypium hirsutum) and Pima cotton (G. barbadense) that are prized for high yields...

  10. Trends in cotton variety development: Technology in the seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton breeding and variety development are an integral part of the cotton improvement research team. The genetics of a particular cotton variety provide a baseline for the variety’s lint yield and fiber quality potential. Over the last 100 years, the cotton industry has benefited from research focu...

  11. Climate change and cotton production in modern farming systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is used every day in the form of clothing made from cotton fiber and products made from cotton-seed oil. Wild ancestors of cotton are found in arid regions, often with high daytime temperatures and cool nights, and are naturally adapted to surviving long periods of hot dry weather. Modern cul...

  12. Coordination and collaboration to document the global cotton germplasm resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coordinated efforts to collect and maintain cotton genetic resources have increased over the last 100 years to insure the worldwide economic value of cotton fiber and cotton byproducts. The classified genetic resources of cotton are extensive and include five tetraploid species in the primary gene ...

  13. Oil removal from water by sorption on hydrophobic cotton fibers. 2. Study of sorption properties in dynamic mode.

    PubMed

    Deschamps, Gerald; Caruel, Herve; Borredon, Marie-Elisabeth; Albasi, Claire; Riba, Jean-Pierre; Bonnin, Christophe; Vignoles, Christian

    2003-11-01

    The recovery of oil from an oil-in-water emulsion, during a flow through a bed of cotton rendered hydrophobic by acylation of cellulose was defined by sorption and coalescence phenomena. During percolation, the column "hold-up" (difference between injected and rejected oil) became constant at the equilibrium volume, i.e., as soon as the instant oil concentration in the effluent (C) was equal to the oil concentration in the initial emulsion (C0). This equilibrium permitted the measurement of the cotton sorption capacity (SC), which increased with C0 up to the cotton saturation. The oil-water separation improved at a lower temperature, lower flow, a deeper medium, and larger oil drops. The system was modeled as a piston flow-through in order to generalize the results.

  14. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An activated carbon fiber nonwoven (ACF) was manufactured from cotton nonowoven fabric. For the ACF acoustical application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glass fiber ...

  15. At-line cotton color measurements by portable color spectrophotometers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  16. Caging antimicrobial silver nanoparticles inside cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a stable, non-leaching Ag-cotton nanocomposite fiber has been characterized. Siver nanoparticles (Ag NPs) were previously synthesized in the alkali-swollen substructure of cotton fiber; the nano-sized micofibrillar channels allowed diffusion-controlled conditions to produce mono-dispe...

  17. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  18. Registration of five pima cotton germplasm lines (SJ-FR05 - FR09) with improved resistance to fusarium wilt race 4 and good lint yield and fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton breeders continue to need alternative sources of cotton breeding lines for improving Fusarium wilt (FOV race 4) resistance in Pima cotton in California. FOV race 4 is a fungus that has impacted cotton yields in the San Joaquin Valley (SJV) for the last 12 years. For this purpose, the Agricult...

  19. Development of Simple Algorithms in Direct, Non-destructive, and Rapid Determination of Cotton Fiber Maturity from FT-IR/ATR Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FT-IR/ATR spectra of seed and lint cottons were collected to explore the potential for the discrimination of immature cottons from mature ones and also for the determination of actual cotton maturity. Spectral features of immature and mature cottons revealed large differences in the 1200-900 cm-1 re...

  20. Preliminary examinations for the identification of U.S. domestic and international cotton fibers by near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is and has been a large cash crop in the United States and abroad for many years. Part of the widespread interest and utility of this product is due to its attractive chemical and physical properties for use in textiles. The textile industry could benefit from the presentation of a quick rel...

  1. Scanning Electron Microscope Examination of Cotton Linters and Wood Pulp Fibers before and after Nitration and Gun Propellant Manufacture

    DTIC Science & Technology

    1983-03-01

    trichomes formed on the epidermis of the cotton seed? These trichomes are extruded from the seed during the first- stagzs of growth and are covered...nitrocellulose appears fibrous in nature and does not resemble gelatin,but rather a compressed mass of thin, fibrous flakes or sheets. The H3OAI triple base

  2. Development of fiber reactive, non-halogenated flame retardant on cotton fabrics and the enhanced flame retardancy by covalent bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US law requires flame resistant properties on apparel or house hold items to prevent or minimize the fire damage. The objective of this research was to develop a non-halogenated flame retardant for application onto cotton fabrics. These treated fabrics can then be used in clothes or beddings to ...

  3. Relationship between three cotton trash measurements: High Volume Instrumentation (HVI), Shirley Analyzer (SA), and Advanced Fiber Information System (AFIS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presence of non-lint materials (trashes) in commercial cotton bales at various amounts degrades the market values and further influences the end-use qualities. In order to ensure a fair trading, the USDA’s AMS has introduced the high volume instrument (HVI) measurement as a universal standard index....

  4. Cotton thermal defoliation economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvest-aid chemical and application expenses are justified by increased quantity and value of harvested fiber, and decreased harvest costs. Chemical use may be restricted in certain production situations. Harvest preparation costs and producer returns were compared for thermal defoliation ...

  5. Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality

    PubMed Central

    Liu, Jingran; Meng, Yali; Lv, Fengjuan; Chen, Ji; Ma, Yina; Wang, Youhua; Chen, Binglin; Zhang, Lei; Zhou, Zhiguo

    2015-01-01

    To investigate photosynthetic characteristics of the subtending leaf at the 2–3rd and 10–11th fruiting branch (FBN, FB2–3, and FB10–11), and their relationship with cotton yield and quality, field experiments were conducted using two cotton cultivars, Kemian 1 and Sumian 15. The results showed that with FBN increasing, chlorophyll (Chl) components, Pn and non-photochemical quenching (NPQ) in the subtending leaf significantly declined, while soluble sugar, amino acid and their ratio (CSS/CAA) as well as Fv/Fm increased. These results indicated that (1) non-radiative dissipation of excess light energy at FB2–3 was reduced to improve solar energy utilization efficiency to compensate for lower Pn, (2) higher NPQ at FB10−11 played a role in leaf photo-damage avoidance, (3) boll weight was related to the CSS/CAA ratio rather than carbohydrates content alone, (4) with FBN increasing, lint biomass and lint/seed ratio increased significantly, but lint yield decreased due to lower relative amount of bolls, and (5) the decreases in Pn, sucrose content and CSS/CAA in the subtending leaf at FB2–3 resulted in lower boll weight and fiber strength. PMID:26442060

  6. A MADS-box gene is specifically expressed in fibers of cotton (Gossypium hirsutum) and influences plant growth of transgenic Arabidopsis in a GA-dependent manner.

    PubMed

    Zhou, Ying; Li, Bing-Ying; Li, Mo; Li, Xiao-Jie; Zhang, Ze-Ting; Li, Yang; Li, Xue-Bao

    2014-02-01

    In this study, a cDNA, GhMADS14, encoding a typical MADS-box protein with 223 amino acids was isolated from a cotton cDNA library. Fluorescent microscopy indicated that the GhMADS14 protein was localized in the cell nucleus. GhMADS14 was specifically expressed in the elongating fibers, and its expression was gradually enhanced at early stages of fiber elongation and reached its peak in 9-10 DPA fibers. Overexpression of GhMADS14 in Arabidopsis hindered plant growth. Measurement and statistical analysis revealed that hypocotyl length of GhMADS14 transgenic seedlings was significantly reduced, and the height of the mature transgenic plants was remarkably less than that of the wild type. Furthermore, expression of GA 20-oxidase (AtGA20ox1 and AtGA20ox2) and GA 3-oxidase (AtGA3ox1 and AtGA3ox2) genes was remarkably reduced, whereas AtGA2ox1 and AtGA2ox8 were dramatically up-regulated in the transgenic plants, compared with the wild type. These results suggested that overexpression of GhMADS14 in Arabidopsis may alter expression levels of the genes related to GA biosynthetic and metabolic pathways, resulting in the reduction of endogenous GA amounts in cells. As a result, the transgenic plants grew slowly and display a GA-deficient phenotype.

  7. Enhanced attached growth of microalgae Scenedesmus. LX1 through ambient bacterial pre-coating of cotton fiber carriers.

    PubMed

    Zhuang, Lin-Lan; Azimi, Yaldah; Yu, Dawei; Wang, Wen-Long; Wu, Yin-Hu; Dao, Guo-Hua; Hu, Hong-Ying

    2016-10-01

    The role of bacteria/extracellular polymeric substances (EPS) coated carriers on attached microalgae growth in suspended-solid phase photobioreactor (sspBR) was assessed in this study. The results showed that pre-coating cotton with ambient bacteria and their EPS improved the attached microalgal growth by as much as 230% in terms of attached microalgae density. Additionally, the single cell dry weight, chemical composition and oxygen evolving activity of attached microalgae were significantly affected by the presence of bacteria/EPS coating on the cotton carriers. The protein content of microalgae cells cultivated in the ssPBRs with carriers coated by bacteria and sterilized bacteria were on average 26% and 15% more than uncoated carriers, respectively. Through absorbing and immobilizing nutrients from the bulk medium, the bacteria/EPS coating provided the attached microalgae with nitrogen/phosphorus for protein synthesis, especially during the late stages of batch cultivation.

  8. Extended chromatin fibers: evidence from scanning force microscopy studies

    NASA Astrophysics Data System (ADS)

    Leuba, Sanford S.; Yang, Guoliang; Robert, Charles; van Holde, Kensal; Zlatanova, Jordanka; Bustamante, Carlos J.

    1995-03-01

    Unfixed chicken erythrocyte fibers in very low salt have been imaged using the scanning force microscope (SFM) operating in the tapping mode in air at ambient humidity. These images reveal a 3D organization of the fibers. The planar 'zig-zag' conformation is rare, and extended 'beads- on-a-string' fibers are seen only in chromatin depleted of H1 and H5. Glutaraldehyde fixation reveals very similar structures. Fibers fixed in 10 mM salt appear somewhat more compacted. These results, when compared with modeling studies indicate that chromatin fibers may exist as irregular 3D arrays of nucleosomes even at low ionic strength. The basic subunit of chromatin, the nucleosome, is composed of a core particle of 146 bp of DNA wrapping 1.75 left-handed superhelical turns around an octamer of core histones and of DNA connecting consecutive core particles. The linker of lysine-rich histones (H1 family) bind the DNA entering and exiting the nucleosome core particle. We suggest that by binding the entry/exit DNA, histone H1 may fix the entry/exit DNA angle. The fixed entry/exit angle, the rigidity of the linker DNA at low ionic strength, and the natural variability of the linker DNA length determine an irregular 3D fiber of chromatin. Our results emphasize the role of H1 in determining the entry/exit DNA angle, which further helps determine the mutual disposition of adjacent nucleosomes an the packing of the chromatin fiber.

  9. Low-level hydrogen peroxide generation by unbleached cotton nonwovens: implications for wound healing applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  10. Flame retardant antibacterial cotton high-loft nonwoven fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...

  11. Breeding potential of introgressions into cotton: genetic effects and heterosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As new technology in the textile industry demands higher quality fibers, improving cotton fiber quality has become increasingly important. Twelve cotton lines selected from different breeding programs with diverse fiber characteristics were used for this study. These lines and their F2 hybrids were ...

  12. Tensile Properties of Cotton Polyethylene Blends: A Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton historically has been the fiber of choice for many textile applications, especially those for apparel and household fabrics. However, cotton is a relatively weak fiber when compared to today’s most commonly used synthetic fibers, such as polyester and nylon. Consequently, beneficial blending...

  13. Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.

    PubMed

    Zhou, Tao; Zhang, Rui; Yang, Dawei; Guo, Sandui

    2011-06-01

    The clathrin-associated adaptor protein (AP) complexes are the primary clathrin adaptors that contribute to the formation of clathrin-coated vesicles (CCVs). The GhAPm gene (GenBank accession number: GU359054), which encodes the medium subunit of the AP complexes, was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 1590 bp in size and encoded an open reading frame (ORF) of 416 amino acids with a molecular weight of 46 kDa. The GhAPm protein shared 81-85% identity at the amino acid level with the AP complex μ subunits isolated from Vitis vinifera, Glycine max, Populus trichocarpa, Ricinus communis and Arabidopsis thaliana, respectively. The corresponding genomic DNA, containing eight exons and seven introns, was isolated and analyzed. Also, a 5'-flanking region was analyzed, and a group of putative cis-acting elements were identified. DNA gel blot analysis showed that there is only one GhAPm gene in the cotton genome. Real-time RT-PCR analysis revealed that GhAPm is expressed in the root, stem, leaf, petal, ovule, and fiber. However, the interesting finding is that GhAPm expression level was shown to increase steadily as the cotton fiber develops. In 30 DPA fibers, expression increases sharply and arrives at a peak then the expression levels decrease rapidly. Based on these data, we propose that GhAPm has a critical role in cotton membrane trafficking and fiber development.

  14. Fiber length distributions and fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) is grown in Georgia on ~1 million acres by producers as a raw material input for textile mills. Georgia cotton fiber qualities continue to improve through crop management, genetic, and ginning improvements. Competition from synthetic fibers, mill modernization, and g...

  15. Fourier transform infrared imaging of Cotton trash mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is much interest in the identification of trash types comingled with cotton lint. A good understanding of the specific trash types present can lead to the fabrication of new equipment which can identify and sort cotton trash found with cotton fiber. Conventional methods, including the High Vo...

  16. Effects of greige cotton lint properties on hydroentangled nonwoven fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study determined the effects of fiber length, the length uniformity index, micronaire (fineness), and strength of greige cotton lint on properties of nonwoven fabrics. Seven bales of pre-cleaned greige (non-bleached) cotton were procured from a U.S cotton producer and ginner. Each bale primar...

  17. Trends in United States cotton yield productivity since 1980

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is produced in over 30 countries and provides a major fiber source for textile manufacturers. In 2012, the direct market value of 17.0 million bales of U.S. cotton equated to US$ 8.1 billion. The objective of this study was to document trends in U.S. upland cotton yield productivity since 198...

  18. Nonwoven greige cotton for wound healing and hygienic product applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential to use greige (non-bleached) cotton in nonwoven absorbent products has received increased attention. This is due to innovations in cotton cleaning and nonwoven hydroentanglement processes that open and expose the hydrophilic cellulosic component of greige cotton fiber to water absorpt...

  19. Cotton-based nonwovens and their potential scope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the overall use of cotton fiber in modern nonwovens has been limited, certain recent commercial and research developments make the use of cotton and its derivatives more attractive in nonwovens. The commercial developments include the availability of pre-cleaned greige cotton, purified (ble...

  20. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-05

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  1. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    NASA Astrophysics Data System (ADS)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  2. Spindle diameter effects for cotton pickers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is concern that changes to the operating speed and size of spindles on cotton picker harvesters over the years have resulted in a general decrease in cotton fiber quality, especially spindle twists, preparation, and neps. Previous research showed that spindle speeds of 3000 and 4000 rpm had m...

  3. Atypical Ligon Lintless-2 Phenotype in Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mutant Li2 is reported to be a dominant single gene mutation in cotton, Gossypium hirsutum L. It has normal vegetative phenotypic morphology and the phenotype of the seed cotton is reported to be fuzzy seed with short fibers. The objective of this research was to report on atypical phenotypes ob...

  4. Antibacterial flame retardant cotton high loft nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewable resources for raw materials and biodegradability of the product at the end of the useful life is entailing a shift from petroleum-based synthetics to agro based natural fibers such as cotton, especially for producing high specific volume high loft nonwovens. Cotton is highly flammable and ...

  5. Spectroscopic discernment of seed cotton trash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection and identification of foreign material in harvested seed cotton is required for efficient removal by ginning. Trash particles remaining within the cotton fibers can detrimentally impact the quality of resulting textile products. Luminescence has been investigated as a potential tool for su...

  6. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology

    PubMed Central

    Sawicki, Caleigh M.; Livingston, Kara A.; Obin, Martin; Roberts, Susan B.; Chung, Mei; McKeown, Nicola M.

    2017-01-01

    Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1) modulation of colonic microflora; and/or (2) colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%), resistant starch (16%), and chemically synthesized fibers (15%). Short-chain fatty acid concentration (47%) and bacterial composition (88%) were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses. PMID:28208609

  7. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology.

    PubMed

    Sawicki, Caleigh M; Livingston, Kara A; Obin, Martin; Roberts, Susan B; Chung, Mei; McKeown, Nicola M

    2017-02-10

    Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1) modulation of colonic microflora; and/or (2) colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%), resistant starch (16%), and chemically synthesized fibers (15%). Short-chain fatty acid concentration (47%) and bacterial composition (88%) were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses.

  8. Direct, non-destructive, and rapid evaluation of developmental cotton fibers by ATR FT-IR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical, compositional, and structural differences within the fibers at different growth stages have been investigated considerably through a number of methodologies. Due to its direct, non-destructive, and rapid attribute, this study reports the utilization of attenuated total reflection Fourier t...

  9. Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton

    PubMed Central

    Wang, Hantao; Huang, Cong; Zhao, Wenxia; Dai, Baosheng; Shen, Chao; Zhang, Beibei; Li, Dingguo; Lin, Zhongxu

    2016-01-01

    Two immortalized backcross populations (DHBCF1s and JMBCF1s) were developed using a recombinant inbred line (RIL) population crossed with the two parents DH962 and Jimian5 (as the males), respectively. The fiber quality and yield component traits of the two backcross populations were phenotyped at four environments (two locations, two years). One hundred seventy-eight quantitative trait loci (QTL) were detected including 76 for fiber qualities and 102 for yield components, explaining 4.08–17.79% of the phenotypic variation (PV). Among the 178 QTL, 22 stable QTL were detected in more than one environment or population. A stable QTL, qFL-c10-1, was detected in the previous F2 population, a RIL population in 3 environments and the current two BCF1 populations in this study, explaining 5.79–37.09% of the PV. Additionally, 117 and 110 main-effect QTL (M-QTL) and 47 and 191 digenic epistatic QTL (E-QTL) were detected in the DHBCF1s and JMBCF1s populations, respectively. The effect of digenic epistasis played a more important role on lint percentage, fiber length and fiber strength. These results obtained in the present study provided more resources to obtain stable QTL, confirming the authenticity and reliability of the QTL for molecular marker-assisted selection breeding and QTL cloning. PMID:27907098

  10. Relationships of lint yield and fiber quality with ginning rate and net ginning energy in upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of cultivars that gin faster and require lower net ginning energy have been suggested to improve ginning efficiency. The objectives of this study were to investigate the relationships of lint yield and fiber quality with ginning rate and net ginning energy and also determine the effects of s...

  11. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this present study, we evaluated a RI population including 188 RI lines developed from 94 F2-derived families and their two parental lines, ‘HS 46’ and MARCABUCAG8US-1-88 (Gossypium hirsutum L.), at Mississippi State, MS, for two years. Fourteen agronomic and fiber traits were measured. One hundr...

  12. Non-bleaching heather method for improved whiteness of greige cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In accordance with the color space theory known as additive light mixing, the presence of dispersed blue-dyed fiber reduced the overall yellowness of a blended greige fiber and they were perceived as “whiter”. Various intimate blends of blue-dyed cotton fiber in greige cotton fiber were analyzed for...

  13. Fabricating Cotton Analytical Devices.

    PubMed

    Lin, Shang-Chi; Hsu, Min-Yen; Kuan, Chen-Meng; Tseng, Fan-Gang; Cheng, Chao-Min

    2016-08-30

    A robust, low-cost analytical device should be user-friendly, rapid, and affordable. Such devices should also be able to operate with scarce samples and provide information for follow-up treatment. Here, we demonstrate the development of a cotton-based urinalysis (i.e., nitrite, total protein, and urobilinogen assays) analytical device that employs a lateral flow-based format, and is inexpensive, easily fabricated, rapid, and can be used to conduct multiple tests without cross-contamination worries. Cotton is composed of cellulose fibers with natural absorptive properties that can be leveraged for flow-based analysis. The simple but elegant fabrication process of our cotton-based analytical device is described in this study. The arrangement of the cotton structure and test pad takes advantage of the hydrophobicity and absorptive strength of each material. Because of these physical characteristics, colorimetric results can persistently adhere to the test pad. This device enables physicians to receive clinical information in a timely manner and shows great potential as a tool for early intervention.

  14. Potential of near infrared spectroscopy in cotton micronaire determination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire is one of important cotton properties as it reflects fiber maturity and fineness. Automation-based high volume instrumentation (HVITM) measurement has been well established as a primary and routine tool of providing fiber micronaire and other quality properties to cotton breeders and fibe...

  15. Use of near infrared spectroscopy in cotton micronaire assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire is one of important cotton properties as it reflects fiber maturity and fineness. Automation-based high volume instrumentation (HVITM) measurement has been well established as a primary and routine tool of providing fiber micronaire and other quality properties to cotton breeders and fibe...

  16. Optimal Substitution of Cotton Burr and Linters in Thermoplastic Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate various substitutions of cotton burr and linters fractions of cotton gin waste (CGW) as a natural fiber source in ligno-cellulosic polymer composites (LCPC.) Samples were fabricated with approximately 50% natural fiber, 40% of high-density polyethylene (HDPE) powder...

  17. Enrichment of chromosome 17 specific molecular markers of Pima cotton substituted in Upland cotton lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is the primary source of non-synthetic textile fiber, as well as an important source of food, feed, fuel and other products. In the USA cotton is a major crop in 13 states and grown in 17 states on about 5 million hectares, more than all crops except maize, wheat or soybean, with a return of...

  18. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  19. Nanowire-functionalized cotton textiles.

    PubMed

    Zhukovskyi, Maksym; Sanchez-Botero, Lina; McDonald, Matthew P; Hinestroza, Juan; Kuno, Masaru

    2014-02-26

    We show the general functionalization of cotton fabrics using solution-synthesized CdSe and CdTe nanowires (NWs). Conformal coatings onto individual cotton fibers have been achieved through various physical and chemical approaches. Some involve the electrostatic attraction of NWs to cotton charged positively with a Van de Graaff generator or via 2,3-epoxypropyltrimethylammonium chloride treatments. Resulting NW-functionalized textiles consist of dense, conformal coatings and have been characterized for their UV-visible absorption as well as Raman activity. We demonstrate potential uses of these functionalized textiles through two proof-of-concept applications. The first entails barcoding cotton using the unique Raman signature of the NWs. We also demonstrate the surface-enhancement of their Raman signatures using codeposited Au. A second demonstration takes advantage of the photoconductive nature of semiconductor NWs to create cotton-based photodetectors. Apart from these illustrations, NW-functionalized cotton textiles may possess other uses in the realm of medical, anticounterfeiting, and photocatalytic applications.

  20. Fibers under fire: suggestions for improving their use to provide forensic evidence.

    PubMed

    Grieve, M C; Wiggins, K G

    2001-07-01

    The current emphasis on DNA technology in forensic science has led many to believe that trace evidence examinations, including fibers, may be of little value. Reasons are given here to show that this is an erroneous assumption. In the face of this situation, fibers examiners have been challenged to consider ways in which they can improve the services they offer to the Criminal Justice System not only by increasing the efficiency of the examinations, but also by expressing the evidential value of the findings in a clearer way. The separate stages within fibers casework from evidence collection to report writing are critically examined. Suggestions are made on how improvements may be achieved. Areas where particular progress can be made include improving communication and exchange of information between the investigator and the scientist and streamlining analysis by using the latest equipment in conjunction with effective case management. In addition, ways of making better use of existing data pertaining to fiber frequencies, accumulating new data by using the resources of working groups, and improving training procedures with respect to evidence interpretation are discussed.

  1. In vitro hemostatic, hydrogen peroxide production and elastase sequestration properties of nonwoven ultra clean greige cotton dressing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonwoven UltraCleanTM Cotton (highly cleaned and hydroentangled, greige cotton) retains the native wax and pectin content (~2%) of the cotton fiber traditionally removed from scoured and bleached cotton gauze, yet potentially affording wound healing properties. In vitro thromboelastography, hydrog...

  2. A comparison of hemorrhage control and hydrogen peroxide generation in commercial and cotton-based wound dressing materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonwoven UltraCleanTM Cotton (highly cleaned and hydroentangled, greige cotton) retains the native wax and pectin content (~2%) of the cotton fiber traditionally removed from scoured and bleached cotton gauze, yet potentially affording wound healing properties. In vitro thromboelastography, hydrog...

  3. A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.).

    PubMed

    Gilbert, Matthew K; Bland, John M; Shockey, Jay M; Cao, Heping; Hinchliffe, Doug J; Fang, David D; Naoumkina, Marina

    2013-01-01

    Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed in developing fibers of the mutant Ligon lintless-2 was isolated. The predicted amino acid sequence showed ~53% similarity with Arabidopsis UGT73C sub-family members and the UDP-glycosyltransferase was designated as UGT73C14. When expressed in Escherichia coli as a recombinant protein with a maltose binding protein tag, UGT73C14 displayed enzymatic activity toward ABA and utilized UDP-glucose and UDP-galactose as the sugar donors. The recombinant UGT73C14 converted natural occurring isoform (+)-cis, trans-ABA better than (+)-trans, trans-ABA and (-)-cis, trans-ABA. Transgenic Arabidopsis plants constitutively overexpressing UGT73C14 did not show phenotypic changes under standard growth conditions. However, the increased glycosylation of ABA resulted in phenotypic changes in post-germinative growth and seedling establishment, confirming in vivo activity of UGT73C14 for ABA. This suggests that the expression level of UGT73C14 is regulated by the observed elevated levels of ABA in developing fibers of the Li 2 mutant line and may be involved in the regulation of ABA homeostasis.

  4. A Transcript Profiling Approach Reveals an Abscisic Acid-Specific Glycosyltransferase (UGT73C14) Induced in Developing Fiber of Ligon lintless-2 Mutant of Cotton (Gossypium hirsutum L.)

    PubMed Central

    Gilbert, Matthew K.; Bland, John M.; Shockey, Jay M.; Cao, Heping; Hinchliffe, Doug J.; Fang, David D.; Naoumkina, Marina

    2013-01-01

    Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed in developing fibers of the mutant Ligon lintless-2 was isolated. The predicted amino acid sequence showed ~53% similarity with Arabidopsis UGT73C sub-family members and the UDP-glycosyltransferase was designated as UGT73C14. When expressed in Escherichia coli as a recombinant protein with a maltose binding protein tag, UGT73C14 displayed enzymatic activity toward ABA and utilized UDP-glucose and UDP-galactose as the sugar donors. The recombinant UGT73C14 converted natural occurring isoform (+)-cis, trans-ABA better than (+)-trans, trans-ABA and (-)-cis, trans-ABA. Transgenic Arabidopsis plants constitutively overexpressing UGT73C14 did not show phenotypic changes under standard growth conditions. However, the increased glycosylation of ABA resulted in phenotypic changes in post-germinative growth and seedling establishment, confirming in vivo activity of UGT73C14 for ABA. This suggests that the expression level of UGT73C14 is regulated by the observed elevated levels of ABA in developing fibers of the Li2 mutant line and may be involved in the regulation of ABA homeostasis. PMID:24086489

  5. A 2-Year Field Study Shows Little Evidence That the Long-Term Planting of Transgenic Insect-Resistant Cotton Affects the Community Structure of Soil Nematodes

    PubMed Central

    Li, Xiaogang; Liu, Biao

    2013-01-01

    Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899

  6. Effect of farm management practices in the Bt toxin production by Bt cotton: evidence from farm fields in China.

    PubMed

    Huang, Jikun; Mi, Jianwei; Chen, Ruijian; Su, Honghua; Wu, Kongming; Qiao, Fangbin; Hu, Ruifa

    2014-06-01

    Based on farm field plot level survey data and laboratory test, we examine the determinants of the expression of Bt toxin in China's Bt cotton production. The results show that the expression of Bt toxin differs significantly among varieties. Even for the same variety the expression of Bt toxin also varies substantially among villages and among farmers in the same village. Econometric analyses show that after controlling for the effects of varieties and locations (or villages), farm management, particular applications of phosphate and potash fertilizers, and manure, has significant positive effects on Bt toxin expression in farmer's fields. In contrast to previous studies which showed that nitrogen fertilizer has a positive impact on expression of Bt toxin, this study shows that nitrogen fertilizer has no significant impact on expression of Bt toxin in farmer's fields. On the other hand, the expression of Bt toxin has a positive relationship with phosphate fertilizer, potash fertilizer and manure application.

  7. Evaluation of commercial cotton harvesting systems in the southern high plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton production practices have changed in the Southern High Plains of the US over the last decade resulting in increased yeilds and improved fiber quality. Moreover, the majority of US cotton now competes in a global fiber market that demands higher quality fiber for ring spun yarn than the former...

  8. Physical and combustion properties of nonwoven fabrics produced from conventional and naturally colored cottons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative study was conducted to identify the effects of processing parameters on physical and combustion properties of needlepunched (NP) and hydroentangled (H-E) nonwoven fabrics produced from fibers of a standard Mid-South white fiber cotton and a naturally colored brown fiber cotton. The fl...

  9. High resistance to thermal decomposition in brown cotton is linked to tannis and sodium content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown cotton (Gossypium hirsutum L.) fibers (SA-1 and MC-BL) studied were inferior to white cotton fiber Sure-Grow 747 (SG747) in fiber quality, i.e., shorter length, fewer twists, and lower crystallinity, but exhibited superior thermal properties in thermogravimetry (TG), differential thermogravime...

  10. Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa

    PubMed Central

    Hien, Aristide Sawdetuo; Soma, Dieudonné Diloma; Hema, Omer; Bayili, Bazoma; Namountougou, Moussa; Gnankiné, Olivier; Baldet, Thierry; Diabaté, Abdoulaye; Dabiré, Kounbobr Roch

    2017-01-01

    Many studies have shown the role of agriculture in the selection and spread of resistance of Anopheles gambiae s.l. to insecticides. However, no study has directly demonstrated the presence of insecticides in breeding sources as a source of selection for this resistance. It is in this context that we investigated the presence of pesticide residues in breeding habitats and their formal involvement in vector resistance to insecticides in areas of West Africa with intensive farming. This study was carried out from June to November 2013 in Dano, southwest Burkina Faso in areas of conventional (CC) and biological cotton (BC) growing. Water and sediment samples collected from breeding sites located near BC and CC fields were submitted for chromatographic analysis to research and titrate the residual insecticide content found there. Larvae were also collected in these breeding sites and used in toxicity tests to compare their mortality to those of the susceptible strain, Anopheles gambiae Kisumu. All tested mosquitoes (living and dead) were analyzed by PCR for species identification and characterization of resistance genes. The toxicity analysis of water from breeding sites showed significantly lower mortality rates in breeding site water from biological cotton (WBC) growing sites compared to that from conventional cotton (WCC) sites respective to both An. gambiae Kisumu (WBC: 80.75% vs WCC: 92.75%) and a wild-type strain (49.75% vs 66.5%). The allele frequencies L1014F, L1014S kdr, and G116S ace -1R mutations conferring resistance, respectively, to pyrethroids and carbamates / organophosphates were 0.95, 0.4 and 0.12. Deltamethrin and lambda-cyhalothrin were identified in the water samples taken in October/November from mosquitoes breeding in the CC growing area. The concentrations obtained were respectively 0.0147ug/L and 1.49 ug/L to deltamethrin and lambdacyhalothrin. Our results provided evidence by direct analysis (biological and chromatographic tests) of the role

  11. Cotton Harvesting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvesting is performed in the US using either a spindle picker or brush-roll stripper. This presentation discusses the environmental, economic, geographic, and cultivar specific reasons behind a grower's choice to use either machine. The development of each machine system was discussed. A...

  12. Cotton as a World Crop: Origin, History, and Current Status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Archaeological evidence indicates that cotton has been used by humans for more than 4000 yr. The history of cotton cultivation is at least 3000 yr old. There are four cultivated cotton species, two diploid species and two tetraploid species. In this chapter, the origin and history of these four spec...

  13. Superamphiphobic cotton fabrics with enhanced stability

    NASA Astrophysics Data System (ADS)

    Xu, Bi; Ding, Yinyan; Qu, Shaobo; Cai, Zaisheng

    2015-11-01

    Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H2SO4. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  14. Adverse health effects of fluoro-edenitic fibers: epidemiological evidence and public health priorities.

    PubMed

    Bruno, Caterina; Comba, Pietro; Zona, Amerigo

    2006-09-01

    Subsequent to the detection of a cluster of mesothelioma cases in the Sicilian town of Biancavilla, located at the slopes of Etna volcano, ad hoc epidemiological studies and environmental monitoring suggested an etiological role of an asbestiform fiber present in a stone quarry. The fiber was shown to constitute a new mineral species named fluoro-edenite. Fluoro-edenitic fibers were found in the materials extracted from the quarry and used in the local building industry, as well as in soils. Besides the risk of mesothelioma, residents in Biancavilla showed a significantly increased mortality from chronic obstructive pulmonary disease, which was particularly evident among women. In the light of these findings, Biancavilla was defined a site of national interest for environmental reclamation. The first preventive action involved termination of quarrying activity, covering with asphalt of roads previously paved with local soil materials, and removal of sources of dust in the urban area. Concurrent to the implementation of environmental cleanup, some specific "second generation" studies are now being designed and performed, namely morbidity surveys based on hospital discharge cards, monitoring of fibers in sputum and health surveillance in selected population groups. In this frame, special emphasis is given to the issue of communication, both to the general public and to target groups like family doctors, teachers, and media professionals. This experience could represent a useful basis for the elaboration of a strategy to approach similar environmental issues.

  15. No evidence for change in oviposition behaviour of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) after widespread adoption of transgenic insecticidal cotton.

    PubMed

    Zalucki, M P; Cunningham, J P; Downes, S; Ward, P; Lange, C; Meissle, M; Schellhorn, N A; Zalucki, J M

    2012-08-01

    Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.

  16. Comparison of cotton and cotton/rayon tampons for effect on production of toxic shock syndrome toxin.

    PubMed

    Schlievert, P M

    1995-10-01

    Studies were done to compare tampons made solely of cotton and made of both cotton and rayon for effect on growth of Staphylococcus aureus and production of toxic shock syndrome toxin-1 (TSST-1). Under stationary in vitro conditions in which tampons were either oversaturated or 50% saturated with culture media, the same amount of or more TSST-1 was made with cotton tampons than with cotton/rayon tampons. Similarly, when tested with the tampon sac method, cotton tampons yielded the same amount of or more toxin than did the cotton/rayon tampons. Bacterial cell numbers generally paralleled toxin production. These data indicate that cotton tampons neither prevent TSST-1 production nor significantly adsorb toxin onto the fibers to make toxin unavailable to cause toxic shock syndrome, in contrast to results of a previous study.

  17. Genetic analysis of cottonseed protein and oil in a diverse cotton germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the primary objective of cotton breeding programs was to improve the quantity and quality of cotton fiber. Due to the added value of cottonseed and its many uses, including a feed and human food source, there is interest in developing cotton breeding programs that focus improvement eff...

  18. Integrated genomic and phenomic approaches for improving cotton productivity under water deficit stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the face of changing climatic conditions, water deficit stress is one of the most challenging agricultural issues limiting sustainable cotton production. To meet the global demand for natural cotton fiber and clothe an ever-growing population, world cotton production systems must increase product...

  19. Our experience in processing a pre-cleaned greige cotton lint for certain nonwoven base materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally bleached cotton has been used for the production of nonwoven fabrics. One primary reason for this scenario was that there was no greige cotton fiber alternative that would meet the required cotton cleanliness needs of the nonwovens manufacturers. However, today, there are several vers...

  20. Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 11 diverse Upland cotton cultivars as parents, a random-mated recombinant inbred (RI) population consisting of 550 RI lines was developed after 6 cycles of random-mating and 6 generations of self-pollination. The 550 RILs were planted in triplicates for three years in Mississippi State, MS, US...

  1. Fourier transform infrared macro-imaging of botanical cotton trash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The marketability of cotton fiber is directly tied to the trash comingled with it. Trash can contaminate cotton during harvesting, ginning, and processing. Thus, the removal of trash is important from field to fabric. An ideal prerequisite to removing trash from lint is identifying what trash types...

  2. Determing the feasiblity of chemical imaging of cotton trash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is some interest in the textile community about the identity of cotton trash that has become comingled with cotton lint. Currently, trash is identified visually by human “classers” and instrumentally by the Advanced Fiber Information System (AFIS) and the High Volume Instrument (HVI). Although...

  3. Cost Effective Approaches to Impart Flame Resistance to Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent changes in the flammability laws require improvements in the flame resistance of cotton-containing consumer goods such as upholstered furniture, mattresses, and pillows. Cotton, synthetic fibers, fabrics, and foam are the basic constituents of these goods, often the first to engulf by a fire....

  4. Lessons Learned and Challenges Ahead for Cotton Genome Mapping.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of genetic linkage mapping is to discover genes for improving trait performance. The process of manipulating the cotton genome is complex because the cotton fibers (lint) used in textiles are derived from the seed trichomes (hairs) of four Gossypium species. In just over a decade, our under...

  5. Trends in United States cotton yield productivity since 1980

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is produced in over 30 countries and provides a major fiber source of textile manufacturers. In the U.S., upland cotton is produced along the southern most portion of the country in sixteen states from California to Virginia. In 2012, the direct market value of 17.0 million bales of U.S. cott...

  6. The draft genome of a diploid cotton Gossypium raimondii.

    PubMed

    Wang, Kunbo; Wang, Zhiwen; Li, Fuguang; Ye, Wuwei; Wang, Junyi; Song, Guoli; Yue, Zhen; Cong, Lin; Shang, Haihong; Zhu, Shilin; Zou, Changsong; Li, Qin; Yuan, Youlu; Lu, Cairui; Wei, Hengling; Gou, Caiyun; Zheng, Zequn; Yin, Ye; Zhang, Xueyan; Liu, Kun; Wang, Bo; Song, Chi; Shi, Nan; Kohel, Russell J; Percy, Richard G; Yu, John Z; Zhu, Yu-Xian; Wang, Jun; Yu, Shuxun

    2012-10-01

    We have sequenced and assembled a draft genome of G. raimondii, whose progenitor is the putative contributor of the D subgenome to the economically important fiber-producing cotton species Gossypium hirsutum and Gossypium barbadense. Over 73% of the assembled sequences were anchored on 13 G. raimondii chromosomes. The genome contains 40,976 protein-coding genes, with 92.2% of these further confirmed by transcriptome data. Evidence of the hexaploidization event shared by the eudicots as well as of a cotton-specific whole-genome duplication approximately 13-20 million years ago was observed. We identified 2,355 syntenic blocks in the G. raimondii genome, and we found that approximately 40% of the paralogous genes were present in more than 1 block, which suggests that this genome has undergone substantial chromosome rearrangement during its evolution. Cotton, and probably Theobroma cacao, are the only sequenced plant species that possess an authentic CDN1 gene family for gossypol biosynthesis, as revealed by phylogenetic analysis.

  7. Biodegradation of exploded cotton stalk by Bacillus sp.

    PubMed

    Zheng, Lianshuang; Han, Xiaofang; Du, Yumin

    2003-10-01

    The exploded bast, branch and stem of cotton stalk were degraded by alkalophilic Bacillus NT-19, with weight losses of 24%, 20% and 14%, respectively, after 14 d. Compared with a white-rot fungus (Phanerochaete chrysosporium), Bacillus NT- 19 preferentially degraded the non-cellulose components of cotton stem. The relative degree of crystallinity of bast fibers decreased by 8% and the middle lamella was partially removed from the fiber bundle by the Bacillus.

  8. Comparison of a wire belt conveyor and cross auger conveyor for conveying burr cotton on a stripper harvester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber quality begins to degrade naturally with the opening of the boll, and mechanical harvesting processes are perceived to exacerbate fiber degradation. Previous research indicates that stripper-harvested cotton generally has lower fiber quality including on average lower micronaire, length...

  9. Superhydrophobic and superoleophilic polydimethylsiloxane-coated cotton for oil-water separation process: An evidence of the relationship between its loading capacity and oil absorption ability.

    PubMed

    Jin, Yangxin; Jiang, Peng; Ke, Qingping; Cheng, Feihuan; Zhu, Yinshengnan; Zhang, Yixiang

    2015-12-30

    Developing functional porous materials with highly efficient oil-water separation ability are of great importance due to the global scale of severe water pollution arising from oil spillage and chemical leakage. A solution immersion process was used to fabricate polydimethylsiloxane (PDMS)-coated cotton, which exhibited superhydrophobic and superoleophilic properties. The water contact angle of ∼ 157° and mass of ∼ 1.49 g were retained after 1000 compression cycles, indicating that the PDMS was strongly attached to the cotton fibres. The PDMS-coated cotton absorbed various oils and organic solvents with high selectivity, high absorption capacity (up to 7080 wt.%), and good recyclability (exceeding 500 cycles). Notably, the loading capacity of the PDMS-coated cotton against water exhibited a similar trend to its oil absorption capacity. These findings will further the application of superhydrophobic and superoleophilic porous materials in oil/water separation.

  10. Utilization of pre-cleaned greige cotton in nonwovens: a sensible approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although cotton – a consumer-preferred, naturally sustainable fiber – has been extensively used in traditional textiles for centuries, its utilization in nonwoven fabrics has been minimal (~2% by weight). A major reason thus far for the cotton not being a preferred fiber for modern nonwovens has be...

  11. Expression of genes associated with carbohydrate metabolism in cotton stems and roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L) is an important crop worldwide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. These reserves are not available to produce seed and fiber when cott...

  12. Cotton micronaire measurements by a small potable near infrared (NIR) analyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire is a key quality and processing parameter for cotton fiber. Much interest has been shown in small, portable instruments (e.g., Near Infrared or NIR) that have the potential to monitor cotton fiber micronaire both in the laboratory and in or near the field. A new, small (fits in your han...

  13. Experimental evidence for the formation of divalent ytterbium in the photodarkening process of Yb-doped fiber lasers.

    PubMed

    Rydberg, S; Engholm, M

    2013-03-25

    In this work we present experimental evidence that the valence instability of the ytterbium ion play a key role for the observed photodarkening mechanism in Yb-doped fiber lasers. Luminescence and excitation spectroscopy performed on UV irradiated Yb/Al doped silica glass preforms and near-infrared diode pumped photodarkened fibers show a concentration increase of Yb(2+) ions. A concentration decrease in Yb(3+) could also be observed for the UV irradiated preform. The findings contribute to an increased understanding of the kinetic processes related to photodarkening in Yb-doped high power fiber lasers.

  14. Acoustical evaluation of carbonized and activated cotton nonwovens.

    PubMed

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.

  15. 16 CFR 303.14 - Products containing unknown fibers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... fibers, as for example: 45% Rayon 30% Acetate 25% Miscellaneous scraps of undetermined fiber content. 60.... 50% Polyester 30% Cotton 20% Textile by-products of undetermined fiber content. 50% Rayon...

  16. 16 CFR 303.14 - Products containing unknown fibers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fibers, as for example: 45% Rayon 30% Acetate 25% Miscellaneous scraps of undetermined fiber content. 60.... 50% Polyester 30% Cotton 20% Textile by-products of undetermined fiber content. 50% Rayon...

  17. 16 CFR 303.14 - Products containing unknown fibers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fibers, as for example: 45% Rayon 30% Acetate 25% Miscellaneous scraps of undetermined fiber content. 60.... 50% Polyester 30% Cotton 20% Textile by-products of undetermined fiber content. 50% Rayon...

  18. Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers.

    PubMed

    Zheng, Yingying; Cai, Chao; Zhang, Fuming; Monty, Jonathan; Linhardt, Robert J; Simmons, Trevor J

    2016-02-05

    Natural cotton was dissolved in a room-temperature ionic liquid 1-ethyl-3-methyl acetate and wet-jet electrospun to obtain nanoscale cotton fibers with a substantially reduced diameter-and therefore an increased surface area-relative to natural cotton fibers. The resulting nano-cotton fibers were esterified with trityl-3-mercaptopropionic acid, which after selective de-tritylation afforded nano-cotton fibers containing reactive thiol functionality. Silver nanoparticles that were covalently attached to these sulfhydryl groups were assembled next. The microstructure of the resulting nanocomposite was characterized, and the antibacterial activity of the resulting nano-cotton Ag-nanoparticle composite was also studied. This nanocomposite showed significant activity against both Gram-negative and Gram-positive bacteria.

  19. Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers

    NASA Astrophysics Data System (ADS)

    Zheng, Yingying; Cai, Chao; Zhang, Fuming; Monty, Jonathan; Linhardt, Robert J.; Simmons, Trevor J.

    2016-02-01

    Natural cotton was dissolved in a room-temperature ionic liquid 1-ethyl-3-methyl acetate and wet-jet electrospun to obtain nanoscale cotton fibers with a substantially reduced diameter—and therefore an increased surface area—relative to natural cotton fibers. The resulting nano-cotton fibers were esterified with trityl-3-mercaptopropionic acid, which after selective de-tritylation afforded nano-cotton fibers containing reactive thiol functionality. Silver nanoparticles that were covalently attached to these sulfhydryl groups were assembled next. The microstructure of the resulting nanocomposite was characterized, and the antibacterial activity of the resulting nano-cotton Ag-nanoparticle composite was also studied. This nanocomposite showed significant activity against both Gram-negative and Gram-positive bacteria.

  20. Resistance mechanisms against arthropod herbivores in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton plants from the genus Gossypium are grown on more than 30 million hectares worldwide and are a major source of fiber. The plants possess a wide-range of indirect and direct-defense mechanisms against arthropod pests. Direct defense mechanisms include morphological traits such as trichomes and...

  1. Chemical Modification of Cotton for Industrial Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (cellulose) is a known favorite in the textile industry and is the most used natural fiber-cloth to date. As we move to use more biodegradable, renewable and sustainable resources, cellulose, a natural polymer, is attracting attention and finding application in oil recovery, cosmetics, surfac...

  2. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia

    PubMed Central

    Oaklander, Anne Louise; Herzog, Zeva Daniela; Downs, Heather; Klein, Max M.

    2013-01-01

    Fibromyalgia is a common, disabling, syndrome that includes chronic widespread pain plus other diverse symptoms. No specific objective abnormalities have been identified, precluding definitive testing, disease-modifying treatments, and identification of causes. In contrast, small-fiber polyneuropathy (SFPN), despite causing similar symptoms, is definitionally a disease caused by dysfunction and degeneration of peripheral small-fiber neurons. SFPN has established etiologies, some diagnosable and definitively treatable, e.g., diabetes. To evaluate the hypothesis that some patients labeled with “fibromyalgia” have unrecognized SFPN causing their illness symptoms, we analyzed SFPN-associated symptoms, signs, and pathological and physiological markers in 27 fibromyalgia patients and 30 matched normal controls. Fibromyalgia subjects had to satisfy American College of Rheumatology criteria plus present documented evidence of a physician’s actual fibromyalgia diagnosis. Study instruments comprised the Michigan Neuropathy Screening Instrument (MNSI), the Utah Early Neuropathy Scale (UENS), distal-leg neurodiagnostic skin biopsies, plus autonomic-function testing (AFT). 41% of skin biopsies from fibromyalgia subjects vs. 3% of biopsies from control subjects were diagnostic for SFPN, and MNSI and UENS scores were higher among fibromyalgia than control subjects (all P ≤ 0.001). Abnormal AFTs were equally prevalent suggesting that fibromyalgia-associated SFPN is primarily somatic. Blood tests from all 13 fibromyalgia subjects with SFPN-diagnostic skin biopsies provided insights into etiologies. All glucose tolerance tests were normal, but eight subjects had dysimmune markers, 2 had hepatitis C serologies, and one family had apparent genetic causality. These findings suggest that some patients with chronic pain labeled as “fibromyalgia” have unrecognized small-fiber polyneuropathy, a distinct disease that can be objectively tested for and sometimes definitively

  3. Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials

    PubMed Central

    Edwards, J. Vincent; Prevost, Nicolette T.; Nam, Sunghyun; Hinchliffe, Doug; Condon, Brian; Yager, Dorne

    2017-01-01

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall. The use of unbleached, greige cotton fibers in dressings, has been relatively unexplored. We have recently determined that greige cotton can generate low levels of H2O2 (5–50 micromolar). Because this may provide advantages for the use of greige cotton-based wound dressings, we have begun to examine this in more detail. Both brown and white cotton varieties were examined in this study. Brown cotton was found to have a relatively higher hydrogen peroxide generation and demonstrated different capacities for H2O2 generation, varying from 1 to 35 micromolar. The H2O2 generation capacities of white and brown nonwoven greige cottons were also examined at different process stages with varying chronology and source parameters, from field to nonwoven fiber. The primary cell wall of nonwoven brown cotton appeared very intact, as observed by transmission electron microscopy, and possessed higher pectin levels. The levels of pectin, SOD, and polyphenolics, correlated with H2O2 generation. PMID:28272304

  4. Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials.

    PubMed

    Edwards, J Vincent; Prevost, Nicolette T; Nam, Sunghyun; Hinchliffe, Doug; Condon, Brian; Yager, Dorne

    2017-03-06

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H₂O₂) generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall. The use of unbleached, greige cotton fibers in dressings, has been relatively unexplored. We have recently determined that greige cotton can generate low levels of H₂O₂ (5-50 micromolar). Because this may provide advantages for the use of greige cotton-based wound dressings, we have begun to examine this in more detail. Both brown and white cotton varieties were examined in this study. Brown cotton was found to have a relatively higher hydrogen peroxide generation and demonstrated different capacities for H₂O₂ generation, varying from 1 to 35 micromolar. The H₂O₂ generation capacities of white and brown nonwoven greige cottons were also examined at different process stages with varying chronology and source parameters, from field to nonwoven fiber. The primary cell wall of nonwoven brown cotton appeared very intact, as observed by transmission electron microscopy, and possessed higher pectin levels. The levels of pectin, SOD, and polyphenolics, correlated with H₂O₂ generation.

  5. Smart textiles: Tough cotton

    NASA Astrophysics Data System (ADS)

    Avila, Alba G.; Hinestroza, Juan P.

    2008-08-01

    Cotton is an important raw material for producing soft textiles and clothing. Recent discoveries in functionalizing cotton fibres with nanotubes may offer a new line of tough, wearable, smart and interactive garments.

  6. Comparisons of Cottonscope and AFIS fiber maturity distributions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber maturity and fineness are important fiber properties. The Cottonscope is a new instrument that provides rapid, precise, and accurate measurements of MR and fineness, and much interest has been expressed in its use by cotton breeders and geneticists. In addition to fiber MR, fineness, ...

  7. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm.

    PubMed

    Tabashnik, Bruce E; Wu, Kongming; Wu, Yidong

    2012-07-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  8. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    PubMed

    Wan, Peng; Huang, Yunxin; Tabashnik, Bruce E; Huang, Minsong; Wu, Kongming

    2012-01-01

    In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella) in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera) decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  9. Dictionary of Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dictionary of Cotton has over 2,000 terms and definitions that were compiled by 33 researchers. It reflects the ongoing commitment of the International Cotton Advisory Committee, through its Technical Information Section, to the spread of knowledge about cotton to all those who have an interest ...

  10. Seed cotton unloading systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this article was to review the literature and describe the current technology used by U.S. cotton gins for seed cotton unloading. Unloading systems supply the gin with raw material. Their essential functions are 1) to remove non-cotton materials such as protective covers used duri...

  11. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton

    PubMed Central

    Liu, Nana; Zhang, Xueyan; Sun, Yun; Wang, Ping; Li, Xiancai; Pei, Yakun; Li, Fuguang; Hou, Yuxia

    2017-01-01

    Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon infection, wounding, and treatment with defence hormone and H2O2. Resistance by GhPGIP1 was examined by its virus-induced gene silencing in cotton and overexpression in Arabidopsis. GhPGIP1-silenced cotton was highly susceptible to the infections. GhPGIP1 overexpression in transgenic Arabidopsis conferred resistance to the infection, accompanied by enhanced expression of pathogenesis-related proteins (PRs), isochorismate synthase 1 (ICS1), enhanced disease susceptibility 1 (EDS1), and phytoalexin-deficient 4 (PAD4) genes. Transmission electron microscopy revealed cell wall alteration and cell disintegration in plants inoculated with polygalacturonase (PGs), implying its role in damaging the cell wall. Docking studies showed that GhPGIP1 interacted strongly with C-terminal of V. dahliae PG1 (VdPG1) beyond the active site but weakly interacted with C-terminal of F. oxysporum f. sp. vasinfectum (FovPG1). These findings will contribute towards the understanding of the roles of PGIPs and in screening potential combat proteins with novel recognition specificities against evolving pathogenic factors for countering pathogen invasion. PMID:28079053

  12. Electrokinetic profiles of nonowoven cotton for absorbent incontinence material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper discusses recent work on cotton/synthetic nonwovens, their electrokinetic analysis, and their potential use in incontinence materials. Electrokinetic analysis is useful in exploring fiber surface polarity properties, and it is a useful tool to render a snap shot of the role of fiber char...

  13. Ginning picker and stripper harvested high plains cotton - update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texas High Plains cotton has improved over the last ten years with regard to yield and High Volume Instrument (HVI) fiber quality. Harvesting and ginning practices are needed which preserve fiber quality and maximize return to the producer. The objective of this work is to investigate the influence ...

  14. Ginning picker and stripper harvested High Plains cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements to average fiber length and strength have been observed for Texas High Plains cotton over the last decade due to improved varieties. Varietal improvements have also increased irrigated yields in the region. New harvest methods and ginning practices are needed to better preserve fiber qu...

  15. Comparisons of cotton maturity and fineness measurements (Cottonscope, AFIS, HVI™)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cottonscope, a new instrument for fiber maturity (MR) and fineness, utilizes polarized light microscopy and image analysis to measure longitudinal, weighted fiber snippets in water. Interest has been expressed by the Commercial Standardization of Instrument Testing of Cotton (CSITC) on the pote...

  16. MOISTURE IN COTTON BY THE KARL FISCHER TITRATION REFERENCE METHOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture is a critical parameter that influences many aspects of cotton fiber from harvesting and ginning to various fiber properties. Because of their importance, reference moisture methods that are more accurate than the existing oven-drying techniques and relatively easy to generate results are ...

  17. Evidence-Based Approach to Fiber Supplements and Clinically Meaningful Health Benefits, Part 2

    PubMed Central

    McRorie, Johnson W.

    2015-01-01

    Dietary fiber that is intrinsic and intact in fiber-rich foods (eg, fruits, vegetables, legumes, whole grains) is widely recognized to have beneficial effects on health when consumed at recommended levels (25 g/d for adult women, 38 g/d for adult men). Most (90%) of the US population does not consume this level of dietary fiber, averaging only 15 g/d. In an attempt to bridge this “fiber gap,” many consumers are turning to fiber supplements, which are typically isolated from a single source. Fiber supplements cannot be presumed to provide the health benefits that are associated with dietary fiber from whole foods. Of the fiber supplements on the market today, only a minority possess the physical characteristics that underlie the mechanisms driving clinically meaningful health benefits. In this 2-part series, the first part (previous issue) described the 4 main characteristics of fiber supplements that drive clinical efficacy (solubility, degree/rate of fermentation, viscosity, and gel formation), the 4 clinically meaningful designations that identify which health benefits are associated with specific fibers, and the gel-dependent mechanisms in the small bowel that drive specific health benefits (eg, cholesterol lowering, improved glycemic control). The second part (current issue) of this 2-part series will focus on the effects of fiber supplements in the large bowel, including the 2 mechanisms by which fiber prevents/relieves constipation (insoluble mechanical irritant and soluble gel-dependent water-holding capacity), the gel-dependent mechanism for attenuating diarrhea and normalizing stool form in irritable bowel syndrome, and the combined large bowel/small bowel fiber effects for weight loss/maintenance. The second part will also discuss how processing for marketed products can attenuate efficacy, why fiber supplements can cause gastrointestinal symptoms, and how to avoid symptoms for better long-term compliance. PMID:25972619

  18. Comparative fiber evaluation of the mesdan aqualab microwave moisture measurement instrument

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture is a key cotton fiber parameter, as it can impact the fiber quality and the processing of cotton fiber. The Mesdan Aqualab is a microwave-based fiber moisture measurement instrument for samples with moderate sample size. A program was implemented to determine the capabilities of the Aqual...

  19. Preliminary study of determining cotton trash components in lint cottons by near infrared spectroscopy technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transfer of NIR calibration models for the determination of total trash, leaf trash and non-leaf trash components in cotton fibers was conducted between two sets of samples. These samples to be analyzed are inhomogeneous in a bulky state whereas the samples used as calibrations were much homogen...

  20. Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam.

    PubMed

    Li, Kunquan; Li, Ye; Zheng, Zheng

    2010-06-15

    Activated carbon fibers (ACFs) were prepared for the removal of p-nitroaniline (PNA) from cotton stalk by chemical activation with NH(4)H(2)PO(4) and subsequent physical activation with steam. Surface properties of the prepared ACFs were performed using nitrogen adsorption, FTIR spectroscopy and SEM. The influence of contact time, solution temperature and surface property on PNA adsorption onto the prepared ACFs was investigated by conducting a series of batch adsorption experiments. The kinetic rates at different temperatures were modeled by using the Lagergren-first-order, pseudo-second-order, Morris's intraparticle diffusion and Boyd's film-diffusion models, respectively. It was found that the maximum adsorption of PNA on the ACFs was more than 510 mg/L, and over 60% adsorption occurred in first 25 min. The effect of temperature on the adsorption was related to the contacting time and the micropore structure of the adsorbents. And the increase of micropore surface area favored the adsorption process. Kinetic rates fitted the pseudo-second-order model very well. The pore diffusion played an important role in the entire adsorption period, and intraparticle diffusion was the rate-limiting step in the beginning 20 min. The Freundlich model provided a better data fitting as compared with the Langmuir model. The surface micrograph of the ACF after adsorption showed a distinct roughness with oval patterns. The results revealed that the adsorption was in part with multimolecular layers of coverage.

  1. Evaluation of thermal treatments to improve physical and mechanical properties of bio-composites made from cotton byproducts and other agricultural fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for wood products continues to grow at levels that challenge the available resources. Alternative materials are sought to sustainably supplement the wood fiber industry. Experiments were conducted on composite boards made from agricultural residues. The boards were subjected to thermal tre...

  2. Evaluating cotton stripper field performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton strippers are used primarily in the Southern High Plains due to the specific cotton varieties grown. Typically, cotton strippers cost about two-thirds the price of a cotton picker and range from one-half to one-fourth the horsepower. A cotton stripper also has a higher field and harvesting ef...

  3. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  4. Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China.

    PubMed

    Ali, Abid; Desneux, Nicolas; Lu, Yanhui; Liu, Bing; Wu, Kongming

    2016-04-14

    Planting Bt cotton in China since 1997 has led to important changes in the natural enemy communities occurring in cotton, however their specific effect on suppressing the cotton aphids (being notorious in conventional cotton ecosystem) has not been fully documented yet. We observed strong evidence for top-down control of the aphid population, e.g. the control efficiency of natural enemies on cotton aphid increased significantly in open field cages compared to exclusion cages, accounted for 60.2, 87.2 and 76.7% in 2011, 2012 and 2013 season, respectively. The cotton aphid populations peaked in early June to late July (early and middle growth stages) in open field cotton survey from 2011 to 2013. The population densities of cotton aphids and natural enemies were highest on middle growth stage while lowest densities were recorded on late stage for aphids and on early plant stage for natural enemies. Aphid parasitoids (Trioxys spp., Aphidius gifuensis), coccinellids and spiders were key natural enemies of cotton aphid. Briefly, natural enemies can suppress aphid population increase from early to middle plant growth stages by providing biocontrol services in Chinese Bt cotton.

  5. Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China

    PubMed Central

    Ali, Abid; Desneux, Nicolas; Lu, Yanhui; Liu, Bing; Wu, Kongming

    2016-01-01

    Planting Bt cotton in China since 1997 has led to important changes in the natural enemy communities occurring in cotton, however their specific effect on suppressing the cotton aphids (being notorious in conventional cotton ecosystem) has not been fully documented yet. We observed strong evidence for top-down control of the aphid population, e.g. the control efficiency of natural enemies on cotton aphid increased significantly in open field cages compared to exclusion cages, accounted for 60.2, 87.2 and 76.7% in 2011, 2012 and 2013 season, respectively. The cotton aphid populations peaked in early June to late July (early and middle growth stages) in open field cotton survey from 2011 to 2013. The population densities of cotton aphids and natural enemies were highest on middle growth stage while lowest densities were recorded on late stage for aphids and on early plant stage for natural enemies. Aphid parasitoids (Trioxys spp., Aphidius gifuensis), coccinellids and spiders were key natural enemies of cotton aphid. Briefly, natural enemies can suppress aphid population increase from early to middle plant growth stages by providing biocontrol services in Chinese Bt cotton. PMID:27075171

  6. Heterosis and correlation in interspecific and intraspecific hybrids of cotton.

    PubMed

    Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A

    2016-06-24

    Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.

  7. Evidence TRPV4 contributes to mechanosensitive ion channels in mouse skeletal muscle fibers.

    PubMed

    Ho, Tiffany C; Horn, Natalie A; Huynh, Tuan; Kelava, Lucy; Lansman, Jeffry B

    2012-01-01

    We recorded the activity of single mechanosensitive (MS) ion channels from membrane patches on single muscle fibers isolated from mice. We investigated the actions of various TRP (transient receptor potential) channel blockers on MS channel activity. 2-aminoethoxydiphenyl borate (2-APB) neither inhibited nor facilitated single channel activity at submillimolar concentrations. The absence of an effect of 2-APB indicates MS channels are not composed purely of TRPC or TRPV1, 2 or 3 proteins. Exposing patches to 1-oleolyl-2-acetyl-sn-glycerol (OAG), a potent activator of TRPC channels, also had no effect on MS channel activity. In addition, flufenamic acid and spermidine had no effect on the activity of single MS channels. By contrast, SKF-96365 and ruthenium red blocked single-channel currents at micromolar concentrations. SKF-96365 produced a rapid block of the open channel current. The blocking rate depended linearly on blocker concentration, while the unblocking rate was independent of concentration, consistent with a simple model of open channel block. A fit to the concentration-dependence of block gave k(on) = 13 x 10 ( 6) M (-1) s (-1) and k(off) = 1609 sec (-1) with K(D) = ~124 µM. Block by ruthenium red was complex, involving both reduction of the amplitude of the single-channel current and increased occupancy of subconductance levels. The reduction in current amplitude with increasing concentration of ruthenium red gave a K(D) = ~49 µM. The high sensitivity of MS channels to block by ruthenium red suggests MS channels in skeletal muscle contain TRPV subunits. Recordings from skeletal muscle isolated from TRPV4 knockout mice failed to show MS channel activity, consistent with a contribution of TRPV4. In addition, exposure to hypo-osmotic solutions increases opening of MS channels in muscle. Our results provide evidence TRPV4 contributes to MS channels in skeletal muscle.

  8. Generation of hydroxyl radicals and effective whitening of cotton fabrics by H2O2 under UVB irradiation.

    PubMed

    Tang, Peixin; Sun, Gang

    2017-03-15

    Chemically crosslinked cotton fabrics may show yellowish appearance, especially citric acid (CA) crosslinked ones. Hydrogen peroxide (H2O2) bleaching under alkaline condition could improve the whiteness of the CA-crosslinked cotton fabrics but sacrificing certain crosslinking performance of the products due to alkaline hydrolysis of ester connections. Regular H2O2 and UV irradiation (H2O2/UV) system can destroy color but also damage fibers due to the use of very short wavelength of UVC such as 254nm or shorter. Now, it was found that longer wavelength UV such as 312nm performed better in H2O2/UV systems on CA-crosslinked cotton fabrics. The reaction mechanism and potential product of the oxidation reaction on CA-crosslinked cotton were proposed and demonstrated. UV-vis spectrophotometer and Fourier transform infrared spectroscopy provided key evidence. Whiteness, wrinkle recovery angle and tensile strength of the fabrics were evaluated, and the results support the mechanism. The process is environmentally friendly and highly efficient.

  9. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.

    PubMed

    Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng

    2013-10-15

    Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth.

  10. Ultrastructural and cytochemical evidence for single impulse initiation zones in vestibular macular nerve fibers of rat

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Chee, Oliver; Black, Samuel; Cutler, Lynn

    1991-01-01

    Cupric ion-ferricyanide labeling methods and related ferrocyanide-stained tissues were used to locate the characterize, at the ultrastructural level, presumptive impulse initiation zones in the three types of vestibular macular nerve fibers. Large-diameter, M-type vestibular nerve fibers terminate in a calyx at the heminode, and labeling is coextensive with the base of the calyx. Intermediate, M/U-type nerve fibers have short, unmyelinated preterminal segments that sometimes bifurcate intamacularly, and small-diameter, U-type nerve fibers have long, unmyelinated preterminal axons and up to three branches. Preterminals of these nerve fibers display ultrastructural heterogeneity that is correlated with labeling patterns for sodium channels and/or associated polyanionic sites. They have a nodelike ultrastructure and label heavily from near the heminode to the base of the macula. Their intramacular branches, less organized ultrastructurally, label only slightly. Results indicate that vestibular nerve fibers have one impulse initiation zone, located near the heminode, that varies in length according to nerve fiber type. Structural heterogeneity may favor impulse conduction in the central direction, and length of the impulse initiation zone could influence nerve discharge patterns.

  11. Multiple isoforms of myofibrillar proteins in crustacean muscle: evidence for two slow fiber types

    SciTech Connect

    Mykles, D.L.

    1986-01-01

    Four distinct patterns of myofibrillar proteins, extracted from fast and slow muscles of the lobster, Homarus americanus, are distinguished by different assemblages of regulatory and contractile protein variants. Multiple isoforms of troponin-T, -I, and -C, paramyosin, and myosin light chains occur in six muscles of the claws and abdomen. Analysis of glycerinated fibers from the claws of lobster and land crab, Gecarcinus lateralis, show that more than one isoform is expressed in a single fiber, forming unique assemblages by which subgroups can be discriminated within the broader categories of fast and slow fibers. 9 refs., 3 figs.

  12. Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (cotton)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated cotton is composed of a tetraploid genome derived from two ancestral genomes that are related but divergent from each other. The “A” genome is derived from a cotton species that is used for low quality spinnable-fiber production in low production areas and has an African origin. The “D”...

  13. Physiology of host-pathogen interaction in wilt diseases of cotton in relation to pathogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium and Fusarium wilts are important vascular wilt diseases of cotton that significantly reduce cotton yields and negatively impact fiber quality. In spite of intense efforts to control these diseases, yield losses persist and in the US alone were estimated to be about 133 and 28 thousand b...

  14. Using the reactive dye method to covalently attach antibacterial compounds to cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial compounds used were sulfamethoxazole and trimethoprim. A version of the reactive dye method was used to react these two compounds chemically with the cotton fiber molecule. The two compounds were activated and then covalently bonded to cotton fabric, either separately or together...

  15. Performance and combining ability in cotton (Gossypium hirsutum L.) populations with diverse parents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving fiber quality properties of cotton (Gossypium hirsutum L.) is important for increasing the efficiency of manufacturing textiles, including enhancing yarn quality and spinning performance. This study was conducted to determine if we could identify useful cotton cultivars to use as parents ...

  16. Effect of supplemental irrigation and graded levels of nitrogen on cotton yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of supplemental irrigation and nitrogen (N) fertilization on cotton yield and fiber quality were investigated in the Mississippi Delta in 2011 and 2012. Cotton was planted in 48 experimental plots with irrigation as main treatment unit and N application rate as subunit. Supplemental irrigati...

  17. Exploring biosensor applications with cotton cellulose nanocrystalline protein and peptide conjugates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensor I: Nano-crystalline preparations were produced through acid hydrolysis and mechanical breakage of the cotton fibers from a scoured and bleached cotton fabric and a scoured and bleached, mercerized fabric, which was shown to produce cellulose I (NCI) and cellulose II (NCII) crystals respective...

  18. Dietary fiber intake and risk of renal cell carcinoma: evidence from a meta-analysis.

    PubMed

    Huang, Tian-bao; Ding, Pei-pei; Chen, Jian-feng; Yan, Yang; Zhang, Long; Liu, Huan; Liu, Peng-cheng; Che, Jian-ping; Zheng, Jun-hua; Yao, Xu-dong

    2014-08-01

    The aim of this study was to investigate the possible relationships between dietary fiber intake and risk of renal cell carcinoma (RCC). Electronic databases including MEDLINE, EMBASE and Web of Science were searched to find eligible studies. Random-effects relative risk (RR) and its corresponding 95 % confidence interval (CI) were used. Besides, random-effects dose-response analyses were also performed to clarify the dose-response relations. Finally, publication bias was assessed by Egger's test and Begg's test. All p values were two tailed. Seven studies, including two cohort studies and five case-control studies, were eligible and included in this meta-analysis. Overall analysis in highest versus lowest level revealed that total dietary fiber intake was associated with reduced RCC risk (RR 0.84, 95 % CI 0.74-0.96). In addition, pooled estimated data showed that risk of RCC was significantly associated with vegetable and legume fiber intake (RR 0.70, RR 0.80, respectively), but not with fruit and cereal fiber intake (RR 0.92, RR 1.04, respectively). However, in dose-response analysis, no significant association was reported. Finally, no publication bias was detected by Egger's or Begg's test. The dietary fiber intake, especially vegetable and legume fiber, may be associated with reduced RCC risk. Considering the limitations of the included studies, more well-designed prospective studies will be needed to confirm our findings.

  19. $1+ Cotton? New Thresholds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is a major crop in Arizona and is affected by multiple insect pests. A highly effective and economically efficient integrated pest management program has been developed for the major pests of cotton. The program utilizes sampling to determine the abundance of pest insects in the field and eco...

  20. Keeping Cotton Green

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is a major crop in Arizona and is affected by multiple insect pests. A highly effective and economically efficient integrated pest management program has been developed for the major pests of cotton. The program utilizes sampling to determine the abundance of pest insects in the field and eco...

  1. Impact of experimental gins on fiber quality parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripper harvested cotton usually contains approximately 6 to 8 times higher levels of trash than machine picked cotton. Ginning in stripper areas should be made more efficient at removing the trash particles while preserving fiber quality. Fiber breakage is a concern at two junctures: the saw gins ...

  2. Correlation of HVI vs. stelometer fiber strength and its application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber strength is an important quality characteristic that is directly related to the manufacturing of quality consumer goods. Currently, two types of instruments have been implemented to assess cotton fiber strength, namely, the automation oriented HVI and the laboratory based Stelometer. Ea...

  3. Dictionary of cotton: Picking & ginning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is an essential commodity for textiles and has long been an important item of trade in the world’s economy. Cotton is currently grown in over 100 countries by an estimated 100 producers. The basic unit of the cotton trade is the cotton bale which consists of approximately 500 pounds of raw c...

  4. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    PubMed

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  5. Cotton fabrics with single-faced superhydrophobicity.

    PubMed

    Liu, Yuyang; Xin, J H; Choi, Chang-Hwan

    2012-12-18

    This article reports on the fabrication of cotton fabrics with single-faced superhydrophobicity using a simple foam finishing process. Unlike most commonly reported superhydrophobic fabrics, the fabrics developed in this study exhibit asymmetric wettability on their two faces: one face showing superhydrophobic behavior (highly nonwetting or water-repellent characteristics) and the other face retaining the inherent hydrophilic nature of cotton. The superhydrophobic face exhibits a low contact angle hysteresis of θ(a)/θ(r) = 151°/144° (θ(a), advancing contact angle; θ(r), receding contact angle), which enables water drops to roll off the surface easily so as to endow the surface with well-known self-cleaning properties. The untreated hydrophilic face preserves its water-absorbing capability, resulting in 44% of the water-absorbing capacity compared to that of the original cotton samples with both sides untreated (hydrophilic). The single-faced superhydrophobic fabrics also retain moisture transmissibility that is as good as that of the original untreated cotton fabrics. They also show robust washing fastness with the chemical cross-linking process of hydrophobic fluoropolymer to fabric fibers. Fabric materials with such asymmetric or gradient wettability will be of great use in many applications such as unidirectional liquid transporting, moisture management, microfluidic systems, desalination of seawater, flow management in fuel cells, and water/oil separation.

  6. The Future of Nematode Management in Cotton

    PubMed Central

    Starr, J. L.; Koenning, S. R.; Kirkpatrick, T. L.; Robinson, A. F.; Roberts, P. A.; Nichols, R. L.

    2007-01-01

    The importance of plant-parasitic nematodes as yield-limiting pathogens of cotton has received increased recognition and attention in the United States in the recent past. This paper summarizes the remarks made during a symposium of the same title that was held in July 2007 at the joint meeting of the Society of Nematologists and the American Phytopathological Society in San Diego, California. Although several cultural practices, including crop rotation, can be effective in suppressing the populations of the important nematode pathogens of cotton, the economic realities of cotton production limit their use. The use of nematicides is also limited by issues of efficacy and economics. There is a need for development of chemistries that will address these limitations. Also needed are systems that would enable precise nematicide application in terms of rate and placement only in areas where nematode population densities warrant application. Substantial progress is being made in the identification, characterization and mapping of loci for resistance to Meloidogyne incognita and Rotylenchulus reniformis. These data will lead to efficient marker-assisted selection systems that will likely result in development and release of nematode-resistant cotton cultivars with superior yield potential and high fiber quality. PMID:19259500

  7. Study on length distribution of ramie fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extra-long length of ramie fibers and the high variation in fiber length has a negative impact on the spinning processes. In order to better study the feature of ramie fiber length, in this research, the probability density function of the mixture model applied in the characterization of cotton...

  8. Relationship between fiber and yarn properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fundamental understanding of the relationship between cotton fiber and yarn properties is important, as fiber properties are determined through a number of well-defined protocols. In this study, yarn linear density was assessed by a gravimetric method, and then was compared with fiber HVITM micron...

  9. Miniature Spinning Enzyme-Retted Flax Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be blended with other short staple fibers, such as cotton (Gossypium barbadense L. or Gossypium hirsutum L.), processed into a yarn and then manufactured into a fabric. Manufacturing yarns with natural flax fibers has traditional...

  10. Miniature spinning enzyme-retted flax fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be blended with other short staple fibers, such as cotton (Gossypium barbadense L. or Gossypium hirsutum L.), processed into a yarn and then manufactured into a fabric. Manufacturing yarns with natural flax fibers has traditional...

  11. Evidence against GABA release from glutamatergic mossy fiber terminals in the developing hippocampus.

    PubMed

    Uchigashima, Motokazu; Fukaya, Masahiro; Watanabe, Masahiko; Kamiya, Haruyuki

    2007-07-25

    Hippocampal mossy fibers of young rodents have been reported to corelease inhibitory neurotransmitter GABA in addition to excitatory transmitter glutamate. In this study, we aimed at re-evaluating this corelease hypothesis of both inhibitory and excitatory transmitters in the hippocampus. Electrophysiological examination revealed that, in juvenile mice and rats of the two to 3 weeks old, stimulation at the granule cell layer of the dentate gyrus elicited monosynaptic GABAergic IPSCs in CA3 neurons in the presence of ionotropic glutamate receptor (iGluR) blockers, only when rather strong stimuli were given. The group II mGluR agonist (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclo-propyl)glycine (DCG-IV), which selectively suppresses transmission at the mossy fiber-CA3 synapse, abolished almost all postsynaptic responses elicited by the weak stimuli, whereas those by strong stimuli were inhibited only slightly. In addition, the minimal stimulation elicited GABAergic IPSCs in neonatal mice of the first postnatal week, whereas these responses are not sensitive to DCG-IV. Immunohistochemical examination revealed that mossy fiber terminals expressed GABA and the GABA-synthesizing enzyme GAD67, although the expression levels were much weaker than those in the inhibitory interneurons. Notably, the expression levels of the vesicular GABA transporter were much lower than those of GABA and GAD67, and almost below detection threshold. These results suggest that mossy fiber synapses are purely glutamatergic and apparent monosynaptic IPSCs so far reported are evoked by costimulation of inhibitory interneurons, at least in young mice and rats. Hippocampal mossy fiber terminals synthesize and store GABA, but have limited ability in vesicular release for GABA in the developing rodents.

  12. Cotton and its interaction with cotton morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphological plasticity of the cotton plant enables it to be produced in a wide variety of agro-ecological regions (Oosterhuis and Jernstedt 1999). This plasticity essentially translates to the lengthening, shortening, or interruption of its effective flowering period in response to season leng...

  13. Flexible Microsupercapacitors Using Silk and Cotton Substrates.

    PubMed

    Das, Chayanika; Krishnamoorthy, Kothandam

    2016-11-02

    Flexible microsupercapacitors (MSCs) are needed to power ultrasmall wearable electronic devices. Silk cocoons comprise microfibers of silk, which is an attractive natural resource to fabricate MSCs. These fibers are insulators; hence, they must be converted to conducting surfaces. Polyphenols from green tea have been used as a protective layer that also acted as a reducing agent for silver ions. The reduction of silver ions resulted in the formation of silver nanoparticles that subsequently reduced gold ions to gold. The gold film imparts conductivity to the silk fiber without affecting the mechanical strength of the silk fiber. The mechanical strength of uncoated silk fiber and gold coated silk fiber were found to be 5.2 and 5 GPa, respectively. A pseudocapacitive polymer, poly(3,4-ethylenedioxythiophene), was used as the active material to fabricate MSCs. The MSCs showed an impressive gravimetric capacitance of 500 F/g and areal capacitance of 62 mF/cm(2). The power and energy densities were calculated to be 2458 W/kg and 44 Wh/kg, respectively. The device was coiled on a cylinder, and the performance of the device was found to be same as that of the uncoiled device. To demonstrate that the approach is not specific to silk, we also coated gold on cotton fibers using the protocol used to coat gold on silk. Coiled and uncoiled supercapacitors were fabricated using PEDOT coated cotton fibers. The gravimetric capacitance was found to be 250 F/g with energy and power densities of 5.5 Wh/kg and 1118 W/kg, respectively. We have also demonstrated that the devices can be connected in parallel and series to improve the performance of the miniaturized devices.

  14. Application of cotton burr/stem in thermoplastic composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton gin waste (CGW) is a waste stream from a ginning operation that is rich in ligno-cellulosic fibers. Currently, there are no major commercial-scale applications for this material except for a small fraction that goes into either composting or is land applied. For a majority of gins across the ...

  15. Glandless seed and glanded plant research in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently the world has become entangled by threatened shortage of food such as rice. This threatens the sustainable development of the world economy, and resulted in rising food prices. To address this issue, cotton (Gossypium) may offer a source of not only fiber, but also a source of food from co...

  16. Cotton micronaire measurements by small portable near infrared (nir) analyzers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key quality and processing parameter for cotton fiber is micronaire, which is a function of the fiber’s maturity and fineness. Near Infrared (NIR) spectroscopy has previously shown the ability to measure micronaire, primarily in the laboratory and using large, research-grade laboratory NIR instru...

  17. A survey of abiotic stress tolerance variability in cotton germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The High Plains of Texas grows about 20% of the cotton fiber produced in the United States. The Ogallala Aquifer is the major water source of irrigation for agricultural production but is declining and future water availability will be significantly reduced. Water-deficit stress has a significant i...

  18. ALTERNATIVE COTTON HARVEST PREPARATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic production practices, urban encroachment and the presence of certain protected crops on adjacent fields presently restrict the use of defoliant chemicals in some cotton acreage. New legislation or stricter interpretation of existing environmental regulations may greatly increase the amount ...

  19. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density.

    PubMed

    Hirth, Michael; Rukwied, Roman; Gromann, Alois; Turnquist, Brian; Weinkauf, Benjamin; Francke, Klaus; Albrecht, Philip; Rice, Frank; Hägglöf, Björn; Ringkamp, Matthias; Engelhardt, Maren; Schultz, Christian; Schmelz, Martin; Obreja, Otilia

    2013-11-01

    Nerve growth factor (NGF) is involved in the long-term sensitization of nociceptive processing linked to chronic pain. Functional and structural ("sprouting") changes can contribute. Thus, humans report long-lasting hyperalgesia to mechanical and electrical stimulation after intradermal NGF injection and NGF-induced sprouting has been reported to underlie cancer bone pain and visceral pain. Using a human-like animal model we investigated the relationship between the structure and function of unmyelinated porcine nociceptors 3 weeks after intradermal NGF treatment. Axonal and sensory characteristics were studied by in vivo single-fiber electrophysiology and immunohistochemistry. C fibers recorded extracellularly were classified based on mechanical response and activity-dependent slowing (ADS) of conduction velocity. Intraepidermal nerve fiber (IENF) densities were assessed by immunohistochemistry in pigs and in human volunteers using the same NGF model. NGF increased conduction velocity and reduced ADS and propagation failure in mechano-insensitive nociceptors. The proportion of mechano-sensitive C nociceptors within NGF-treated skin areas increased from 45.1% (control) to 71% and their median mechanical thresholds decreased from 40 to 20 mN. After NGF application, the mechanical receptive fields of nociceptors increased from 25 to 43 mm(2). At the structural level, however, IENF density was not increased by NGF. In conclusion, intradermal NGF induces long-lasting axonal and mechanical sensitization in porcine C nociceptors that corresponds to hyperalgesia observed in humans. Sensitization is not accompanied by increased IENF density, suggesting that NGF-induced hyperalgesia might not depend on changes in nerve fiber density but could be linked to the recruitment of previously silent nociceptors.

  20. Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers

    PubMed Central

    2015-01-01

    Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous analyses of tissue-specific RNA-seq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ∼5% of these silk-gland specific transcripts (SSTs) encode spidroins; although the remaining predicted genes presumably encode other proteins associated with silk production, this is mostly unverified. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands and detect 17 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk-associated proteins. Major and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes. PMID:26302244

  1. Silver-cotton nanocomposites: Nano-design of microfibrillar structure causes morphological changes and increased tenacity

    PubMed Central

    Nam, Sunghyun; Condon, Brian D.; Delhom, Christopher D.; Fontenot, Krystal R.

    2016-01-01

    The interactions of nanoparticles with polymer hosts have important implications for directing the macroscopic properties of composite fibers, yet little is known about such interactions with hierarchically ordered natural polymers due to the difficulty of achieving uniform dispersion of nanoparticles within semi-crystalline natural fiber. In this study we have homogeneously dispersed silver nanoparticles throughout an entire volume of cotton fiber. The resulting electrostatic interaction and distinct supramolecular structure of the cotton fiber provided a favorable environment for the controlled formation of nanoparticles (12 ± 3 nm in diameter). With a high surface-to-volume ratio, the extensive interfacial contacts of the nanoparticles efficiently “glued” the structural elements of microfibrils together, producing a unique inorganic-organic hybrid substructure that reinforced the multilayered architecture of the cotton fiber. PMID:27849038

  2. Silver-cotton nanocomposites: Nano-design of microfibrillar structure causes morphological changes and increased tenacity

    NASA Astrophysics Data System (ADS)

    Nam, Sunghyun; Condon, Brian D.; Delhom, Christopher D.; Fontenot, Krystal R.

    2016-11-01

    The interactions of nanoparticles with polymer hosts have important implications for directing the macroscopic properties of composite fibers, yet little is known about such interactions with hierarchically ordered natural polymers due to the difficulty of achieving uniform dispersion of nanoparticles within semi-crystalline natural fiber. In this study we have homogeneously dispersed silver nanoparticles throughout an entire volume of cotton fiber. The resulting electrostatic interaction and distinct supramolecular structure of the cotton fiber provided a favorable environment for the controlled formation of nanoparticles (12 ± 3 nm in diameter). With a high surface-to-volume ratio, the extensive interfacial contacts of the nanoparticles efficiently “glued” the structural elements of microfibrils together, producing a unique inorganic-organic hybrid substructure that reinforced the multilayered architecture of the cotton fiber.

  3. Potential and K+ activity in skinned muscle fibers. Evidence against a simple Donnan equilibrium.

    PubMed Central

    Godt, R. E.; Baumgarten, C. M.

    1984-01-01

    It has been suggested that potentials measured with conventional microelectrodes in chemically or mechanically skinned muscle fibers arise from a Donnan equilibrium due to myofilament fixed charges. This hypothesis was tested in mechanically skinned frog (Rana pipiens) semitendinosus fibers by measuring the distribution potential (Ed) between fiber and bath with 3 M KCl-filled microelectrodes and the K+ activity gradient (aik/aok) with K+ ion-selective microelectrodes (KISE). If skinned fibers are a Donnan system, Ed should become more positive as pH is decreased, altering the fixed charge on the myofilaments. Consistent with this expectation, Ed was -4.4, -0.6, and +4.8 mV in ATP-containing solutions and -6.5, -2.2, and +8.4 mV in ATP-free solutions at pH 7, 6, and 5, respectively. Donnan equilibrium also requires that all mobile ionic species be in electrochemical equilibrium. In ATP-containing solutions, this was true for K+ at pH 7. At pH 5, however, KISE indicated that K+ was not in equilibrium; average Ed was 5.9 mV positive to the K+ equilibrium potential, and aik/aok was 1.04, while the Donnan prediction was 0.83. In contrast, KISE measurements in ATP-free solutions indicated that K+ was in equilibrium at all pH studied. Skinned fibers in ATP-containing media are not equilibrium systems because ATPase reactions occur. Under our conditions, frog myofibrils hydrolyze 0.4 and 0.08 mumol ATP/min X mg myofibrillar protein at pH 7 and 5, respectively. It is suggested that in the presence of ATP, Ed is a superposition of Donnan and diffusion potentials, the latter arising from differences in the mobilities of anionic substrate and products that diffuse through the charged myofilament lattice. A coupling to diffusion of K+, the predominant counter ion, is required for macroscopic electroneutrality. This coupling may be the origin of the nonequilibrium K+ distribution. PMID:6230113

  4. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton...

  5. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton...

  6. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton...

  7. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton...

  8. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton...

  9. Mass spectrometry imaging of mature cotton embryos with altered seed oil and protein reserves from diverse cotton (Gossypium sp.) genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The domestication and breeding of cotton for elite, high-fiber cultivars has directly led to reduced genetic variation of seed constituents within currently cultivated accessions. A large screen of cottonseed embryos was carried out using time-domain 1H nuclear magnetic resonance (TD-NMR) for alter...

  10. Trophoblast Deportation to the Lungs of Cotton Rats (Sigmodon hispidus)

    PubMed Central

    Perle, Krista M D La; Green, M Gia; Niewiesk, Stefan

    2014-01-01

    Cotton rats (Sigmodon hispidus) have been used to study a variety of infectious agents, particularly human respiratory viral pathogens. During the course of comprehensive pathologic evaluations of aging breeders from our breeding colony, 6 of 22 (27%) female cotton rats had histologic evidence, limited to the lungs, of embolized cells that were confirmed to be trophoblastic in origin by HSD3B1 immunoreactivity. When pulmonary trophoblast emboli were numerous, they usually were associated with additional histologic findings in the lungs, including pulmonary edema and hemorrhage, endothelial hypertrophy, fibrinoid vascular necrosis, and abundant alveolar macrophages containing fresh fibrin and hemolyzing erythrocytes. Of the 6 cotton rats with pulmonary trophoblast emboli, 5 (83%) were at 8 to 18 d of the 27-d gestation period, with the greatest number of emboli per lung present between days 10 through 14. The remaining cotton rat had a focal pulmonary trophoblast embolus and was not pregnant but had delivered a litter 3 mo previously. Three other cotton rats in either the early or late stages of gestation showed no histologic evidence of pulmonary trophoblast deportation. This report is the first to document pulmonary trophoblast emboli in cotton rats. This finding suggests that cotton rats may be an alternative animal model for the study of normal and aberrant trophoblast deportation in routine pregnancies and gestational pathologic conditions in women. PMID:25527025

  11. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton.

    PubMed

    Edwards, J Vincent; Castro, Nathan J; Condon, Brian; Costable, Carmen; Goheen, Steven C

    2012-05-01

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatographic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressings is adsorption and accumulation of proteins like albumin at the solid-liquid interface of the biological fluid and wound dressing fiber. To better understand the effect of fiber charge and molecular modifications in cellulose-containing fibers on the binding of serum albumin as observed in protease sequestrant dressings, albumin binding to modified cotton fibers was compared with traditional and chromatographic isotherms. Modified cotton including carboxymethylated, citrate-crosslinked, dialdehyde and phosphorylated cotton, which sequester elastase and collagenase, were compared for their albumin binding isotherms. Albumin isotherms on citrate-cellulose, cross-linked cotton demonstrated a two-fold increased binding affinity over untreated cotton. A comparison of albumin binding between traditional, solution isotherms and chromatographic isotherms on modified cellulose yielded similar equilibrium constants. Application of the binding affinity of albumin obtained in the in vitro protein isotherm to the in vivo wound dressing uptake of the protein is discussed. The chromatographic approach to assessment of albumin isotherms on modified cellulose offers a more rapid approach to evaluating protein binding on modified cellulose over traditional solution approaches.

  12. 21 CFR 880.5300 - Medical absorbent fiber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical absorbent fiber. 880.5300 Section 880.5300... Devices § 880.5300 Medical absorbent fiber. (a) Identification. A medical absorbent fiber is a device intended for medical purposes that is made from cotton or synthetic fiber in the shape of a ball or a...

  13. Relationship of Fiber Properties to Vortex Yarn Quality via Partial Least Squares

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cotton Quality Research Station (CQRS) of the USDA-ARS, recently completed a comprehensive study of the relationship of cotton fiber properties to the quality of spun yarn. The five year study, began in 2001, utilized commercial variety cotton grown, harvested and ginned in each of three major ...

  14. Relationship of fiber properties to vortex yarn quality via partial least squares

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cotton Quality Research Station (CQRS) of the USDA-ARS, recently completed a comprehensive study of the relationship of cotton fiber properties to the quality of spun yarn. The five year study, began in 2001, utilized commercial variety cotton grown, harvested and ginned in each of three major ...

  15. 43. COTTON VACUUM, WHICH WAS USED TO MOVE COTTON INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. COTTON VACUUM, WHICH WAS USED TO MOVE COTTON INTO PICKER ROOM. 2nd FLOOR PICKER ROOM, MILL NO. 2. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  16. Exploring high throughput phenotyping, plant architecture and plant-boll distribution for improving drought tolerance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a pressing need to identify and understand the effects of different irrigation regimes on plant-boll distribution, seed cotton yield, and plant architecture for improving yield and fiber quality under stress and/or drought tolerance of cotton (Gossypium spp.) cultivars. To identify the impa...

  17. Mining cotton germplasm resources to fight Cotton Leaf Curl Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CLCuV (Cotton Leaf Curl Virus) is a major threat to cotton production in Pakistan and parts of India and has been reported in cotton producing countries in Africa, as well as China and Uzbekistan. Identifying sources of resistance to CLCuV helps not only countries such as Pakistan where the virus is...

  18. CottonDB: A resource for cotton genome research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CottonDB (http://cottondb.org/) is a database and web resource for cotton genomic and genetic research. Created in 1995, CottonDB was among the first plant genome databases established by the USDA-ARS. Accessed through a website interface, the database aims to be a convenient, inclusive medium of ...

  19. Optical algorithm for calculating the quantity distribution of fiber assembly.

    PubMed

    Wu, Meiqin; Wang, Fumei

    2016-09-01

    A modification of the two-flux model of Kubelka-Munk was proposed for the description of light propagating through a fiber-air mixture medium, which simplified fibers' internal reflection as a part of the scattering on the total fiber path length. A series of systematical experiments demonstrated a higher consistency with the reference quantity distribution than the common Lambert law on the fibrogram used in the textile industry did. Its application in the fibrogram for measuring the cotton fiber's length was demonstrated to be good, extending its applicability to the wool fiber, the length of which is harder to measure than that of the cotton fiber.

  20. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    PubMed

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  1. Advancements in Cotton Harvesting Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvesting research within USDA ARS is focused on improving harvest productivity, cotton quality, and producer profitability. In recent years, our work has encompassed efforts to improve both spindle picker and brush-roll stripper harvesting systems. Specifically, work with cotton pickers i...

  2. Cotton (Gossypium hirsutum L.).

    PubMed

    Rathore, Keerti S; Campbell, LeAnne M; Sherwood, Shanna; Nunes, Eugenia

    2015-01-01

    Cotton continues to be a crop of great economic importance in many developing and some developed countries. Cotton plants expressing the Bt gene to deter some of the major pests have been enthusiastically and widely accepted by the farmers in three of the major producing countries, i.e., China, India, and the USA. Considering the constraints related to its production and the wide variety of products derived from the cotton plant, it offers several target traits that can be improved through genetic engineering. Thus, there is a great need to accelerate the application of biotechnological tools for cotton improvement. This requires a simple, yet robust gene delivery/transformant recovery system. Recently, a protocol, involving large-scale, mechanical isolation of embryonic axes from germinating cottonseeds followed by direct transformation of the meristematic cells has been developed by an industrial laboratory. However, complexity of the mechanical device and the patent restrictions are likely to keep this method out of reach of most academic laboratories. In this chapter, we describe the method developed in our laboratory that has undergone further refinements and involves Agrobacterium-mediated transformation of cotton cells, selection of stable transgenic callus lines, and recovery of plants via somatic embryogenesis.

  3. Preparation of silver-coated cotton fabrics using silver carbamate via thermal reduction and their properties.

    PubMed

    Kwak, Wan-Gyu; Oh, Man Hwan; Gong, Myoung-Seon

    2015-01-22

    In this study, cotton fabric was successfully coated with silver to have both antibacterial and conductive properties through a facile thermal reduction process at a low temperature using silver 2-ethylhexylcarbamate as the starting material. The cotton fabric modified with 3-mercaptopropyltriethoxysilane was padded with a solution of silver 2-ethylhexylcarbamate in methanol and then reduced for the in situ generation of Ag nanoparticles by only heating at 130°C. The silver-coated cotton fabrics (cotton/Ag) were examined by a scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analyses. The morphology of cotton/Ag nanocomposite fabrics conveyed a uniform and continuous layer of silver metal on the cotton surface. The results indicated that the silver nanoparticles were assembled on cotton fibers with a size range from 20 to 100 nm. The cotton/Ag imparts high conductivity to the textiles with electric resistance as low as 3.92±0.18 Ω. The antibacterial effects of the treated cotton fabric against Escherichia coli O157:H7 (ATCC 43889) and Staphylococcus aureus (ATCC 25923) were examined and found to be excellent.

  4. Genome-wide functional analysis of cotton (Gossypium hirsutum) in response to drought.

    PubMed

    Chen, Yun; Liu, Zhi-Hao; Feng, Li; Zheng, Yong; Li, Deng-Di; Li, Xue-Bao

    2013-01-01

    Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6) of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene) analysis showed that the normal biophysical profiles of cotton (cultivar J-13) were affected by drought stress, and some cellular metabolic processes (including photosynthesis) were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.

  5. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt.

    PubMed

    Gao, Xiquan; Wheeler, Terry; Li, Zhaohu; Kenerley, Charles M; He, Ping; Shan, Libo

    2011-04-01

    Cotton is an important cash crop worldwide, and is a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. Given the recent availability of the whole-genome sequence of cotton, it is necessary to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully developed an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with various genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we developed a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct, MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, using gene silencing assays, we have shown that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton, and have developed high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton.

  6. Combining ability for neps seed coat fragments and motes in Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minimizing neppiness, i.e., neps, seed coat fragments, and motes, in ginned cotton (Gossypium hirsutum L.) fibers is one of the keys to keep U.S. fibers competitive in global market. Forty-eight F2 hybrids derived from crosses between 12 exotic germplasm lines (male parents), i.e., 6 Species Polycr...

  7. Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is one of the most important and widely grown crops in the world. In addition to natural textile fiber production as a primary purpose, it yields a high grade vegetable oil for human consumption and also carbohydrate fiber and protein byproducts for animal feed. In this work, attenuated total...

  8. Evaluation of 3 cotton trash measurement methods by visible/near-infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, three types of instrumentals have been developed to assess the trash content in lint cotton fibers, namely, Shirley analyzer (SA), advanced fiber information system (AFIS), and high volume instrumentation (HVI). Each of these devices has its unique advantages, and comprehensive comparison...

  9. Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking

    PubMed Central

    Glauche, Volkmar; Weiller, Cornelius; Willmes, Klaus

    2013-01-01

    Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation. PMID:23383194

  10. Earliest mechanical evidence of cross-bridge activity after stimulation of single skeletal muscle fibers.

    PubMed

    Claflin, D R; Morgan, D L; Julian, F J

    1990-03-01

    The stiffness of single fibers from frog skeletal muscle was measured by the application of small 2-kHz sinusoidal length oscillations during twitch and tetanic contractions at a range of initial sarcomere lengths. The earliest mechanical signs of activation were a fall in tension (latency relaxation) and a rise in stiffness. The earliest stiffness increase and the earliest tension fall occurred simultaneously at all sarcomere lengths. This suggests a cross-bridge origin for the latency relaxation. The lead of stiffness over tension seen during the rise of tension was substantially established during the latent period. Reducing the size of the twitch by reducing calcium release with D-600 (methoxyverapamil) reduced the latency relaxation and the stiffness development during latency much less than it reduced the twitch tension. For very small twitches the peak of the stiffness response occurred during the latent period and the times of onset of both latency relaxation and stiffness rise were delayed, but remained coincident. This suggests a strong connection between the latency relaxation and the rise of stiffness during the latent period, whereas the connection between these events and positive tension generation appears to be less strong.

  11. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  12. 75 FR 24373 - Cotton Research and Promotion Program: Designation of Cotton-Producing States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Service 7 CFR Part 1205 RIN 0581-AC84 Cotton Research and Promotion Program: Designation of Cotton... Marketing Service (AMS) is amending the Cotton Research and Promotion Order (Cotton Order) following a... Bill) that amended the Cotton Research and Promotion Act (Cotton Act). The 2008 Farm Bill provided...

  13. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all...

  14. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the...

  15. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the...

  16. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all...

  17. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the...

  18. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the...

  19. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the...

  20. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all...