Sample records for cotton yield monitor

  1. Test of pressure transducer for measuring cotton-mass flow

    USDA-ARS?s Scientific Manuscript database

    In this study, a cotton harvester yield monitor was developed based on the relationship between air pressure and the mass of seed cotton conveyed. The sensor theory was verified by laboratory tests. The sensor was tested on a cotton picker with seed cotton at two moisture contents, 5.9% and 8.5% we...

  2. RELIABILITY TESTING OF AN ON-HARVESTER COTTON WEIGHT MEASUREMENT SYSTEM

    USDA-ARS?s Scientific Manuscript database

    A system for weighing seed cotton onboard stripper harvesters was developed and installed on several producer owned and operated machines. The weight measurement system provides critical information to producers when in the process of calibrating yield monitors or conducting on-farm research. The ...

  3. Impact of variety on cotton yield monitor calibration

    USDA-ARS?s Scientific Manuscript database

    Public and private research and demonstration efforts are essential to keeping US producers competitive with those in the rest of the world. While modern yield monitors for grain are able to harvest variety and hybrid trials without imposing variety/hybrid-related bias, many reports have indicated t...

  4. Use of a digital camera to monitor the growth and nitrogen status of cotton.

    PubMed

    Jia, Biao; He, Haibing; Ma, Fuyu; Diao, Ming; Jiang, Guiying; Zheng, Zhong; Cui, Jin; Fan, Hua

    2014-01-01

    The main objective of this study was to develop a nondestructive method for monitoring cotton growth and N status using a digital camera. Digital images were taken of the cotton canopies between emergence and full bloom. The green and red values were extracted from the digital images and then used to calculate canopy cover. The values of canopy cover were closely correlated with the normalized difference vegetation index and the ratio vegetation index and were measured using a GreenSeeker handheld sensor. Models were calibrated to describe the relationship between canopy cover and three growth properties of the cotton crop (i.e., aboveground total N content, LAI, and aboveground biomass). There were close, exponential relationships between canopy cover and three growth properties. And the relationships for estimating cotton aboveground total N content were most precise, the coefficients of determination (R(2)) value was 0.978, and the root mean square error (RMSE) value was 1.479 g m(-2). Moreover, the models were validated in three fields of high-yield cotton. The result indicated that the best relationship between canopy cover and aboveground total N content had an R(2) value of 0.926 and an RMSE value of 1.631 g m(-2). In conclusion, as a near-ground remote assessment tool, digital cameras have good potential for monitoring cotton growth and N status.

  5. Heterosis and correlation in interspecific and intraspecific hybrids of cotton.

    PubMed

    Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A

    2016-06-24

    Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.

  6. An evaluation of eco-friendly naturally coloured cottons regarding seed cotton yield, yield components and major lint quality traits under conditions of East Mediterranean region of Turkey.

    PubMed

    Efe, Lale; Killi, Fatih; Mustafayev, Sefer A

    2009-10-15

    In the study carried out in 2002-2003 in the East Mediterranean region of Turkey (in Kahramanmaras Province), four different naturally coloured cotton (Gossypium hirsutum L.) (dark brown, light brown, cream and green) lines from Azerbaijan and two white linted cotton varieties (Maras-92 and Sayar-314 (G. hirsutum L.)) of the region were used as material. The aim of this study was to determine seed cotton yield and yield components and major lint quality traits of investigated coloured cotton lines comprising white linted local standard cotton varieties. Field trials were established in randomized block design with four blocks. According to two year's results, it was determined that naturally coloured cottons were found similar to both white linted standard cotton varieties for sympodia number and seed cotton yield. For boll number per plant, except green cotton line all coloured cotton lines were similar to standard varieties or even some of them were better than standards. For ginning outturn, dark brown, cream and green cotton lines were found statistically similar to standard Maras-92. But all naturally coloured cotton lines had lower seed cotton weight per boll and generally lower fiber quality than white linted standard varieties. For fiber length and fiber strength cream cotton line was the best coloured cotton. And for fiber fineness only green cotton line was better than both standards. It can be said that naturally coloured cotton lines need to be improved especially for fiber quality characters in the East Mediterranean region of Turkey.

  7. Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield

    NASA Astrophysics Data System (ADS)

    Suarez, L. A.; Apan, A.; Werth, J.

    2016-10-01

    Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.

  8. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield.

    PubMed

    Cattaneo, Manda G; Yafuso, Christine; Schmidt, Chris; Huang, Cho-ying; Rahman, Magfurar; Olson, Carl; Ellers-Kirk, Christa; Orr, Barron J; Marsh, Stuart E; Antilla, Larry; Dutilleul, Pierre; Carrière, Yves

    2006-05-16

    Higher yields and reduced pesticide impacts are needed to mitigate the effects of agricultural intensification. A 2-year farm-scale evaluation of 81 commercial fields in Arizona show that use of transgenic Bacillus thuringiensis (Bt) cotton reduced insecticide use, whereas transgenic cotton with Bt protein and herbicide resistance (BtHr) did not affect herbicide use. Transgenic cotton had higher yield than nontransgenic cotton for any given number of insecticide applications. However, nontransgenic, Bt and BtHr cotton had similar yields overall, largely because higher insecticide use with nontransgenic cotton improved control of key pests. Unlike Bt and BtHr cotton, insecticides reduced the diversity of nontarget insects. Several other agronomic and ecological factors also affected biodiversity. Nevertheless, pairwise comparisons of diversity of nontarget insects in cotton fields with diversity in adjacent noncultivated sites revealed similar effects of cultivation of transgenic and nontransgenic cotton on biodiversity. The results indicate that impacts of agricultural intensification can be reduced when replacement of broad-spectrum insecticides by narrow-spectrum Bt crops does not reduce control of pests not affected by Bt crops.

  9. Optimum poultry litter rates for maximum profit vs. yield in cotton production

    USDA-ARS?s Scientific Manuscript database

    Cotton lint yield responds well to increasing rates of poultry litter fertilization, but little is known of how optimum rates for yield compare with optimum rates for profit. The objectives of this study were to analyze cotton lint yield response to poultry litter application rates, determine and co...

  10. Predicting cotton yield of small field plots in a cotton breeding program using UAV imagery data

    NASA Astrophysics Data System (ADS)

    Maja, Joe Mari J.; Campbell, Todd; Camargo Neto, Joao; Astillo, Philip

    2016-05-01

    One of the major criteria used for advancing experimental lines in a breeding program is yield performance. Obtaining yield performance data requires machine picking each plot with a cotton picker, modified to weigh individual plots. Harvesting thousands of small field plots requires a great deal of time and resources. The efficiency of cotton breeding could be increased significantly while the cost could be decreased with the availability of accurate methods to predict yield performance. This work is investigating the feasibility of using an image processing technique using a commercial off-the-shelf (COTS) camera mounted on a small Unmanned Aerial Vehicle (sUAV) to collect normal RGB images in predicting cotton yield on small plot. An orthonormal image was generated from multiple images and used to process multiple, segmented plots. A Gaussian blur was used to eliminate the high frequency component of the images, which corresponds to the cotton pixels, and used image subtraction technique to generate high frequency pixel images. The cotton pixels were then separated using k-means cluster with 5 classes. Based on the current work, the calculated percentage cotton area was computed using the generated high frequency image (cotton pixels) divided by the total area of the plot. Preliminary results showed (five flights, 3 altitudes) that cotton cover on multiple pre-selected 227 sq. m. plots produce an average of 8% which translate to approximately 22.3 kgs. of cotton. The yield prediction equation generated from the test site was then use on a separate validation site and produced a prediction error of less than 10%. In summary, the results indicate that a COTS camera with an appropriate image processing technique can produce results that are comparable to expensive sensors.

  11. Adapting the CROPGRO cotton model to simulate cotton biomass and yield under southern root-knot nematode parasitism

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) yield losses by southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] (RKN) are usually estimated after significant damage has been caused. However, estimation of potential yield reduction before planting is possible by using crop simulation mod...

  12. Variability in cotton fiber yield, fiber quality, and soil properties in a southeastern coastal plain

    USDA-ARS?s Scientific Manuscript database

    To maximize profitability, cotton (GossypiumhirsutumL.) producers must attempt to control the quality of the crop while maximizing yield. The objective of this research was to measure the intrinsic variability present in cotton fiber yield and quality. The 0.5-ha experimental site was located in a...

  13. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    PubMed

    Tian, Xiaofei; Li, Chengliang; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  14. Composition and ethanol production potential of cotton gin residues.

    PubMed

    Agblevor, Foster A; Batz, Sandra; Trumbo, Jessica

    2003-01-01

    Cotton gin residue (CGR) collected from five cotton gins was fractionated and characterized for summative composition. The major fractions of the CGR varied widely between cotton gins and consisted of clean lint (5-12%),hulls (16-48%), seeds (6-24%), motes (16-24%), and leaves (14-30%). The summative composition varied within and between cotton gins and consisted of ash (7.9-14.6%), acid-insoluble material (18-26%), xylan (4-15%),and cellulose (20-38%). Overlimed steam-exploded cotton gin waste was readily fermented to ethanol by Escherichia coli KO11. Ethanol yields were feedstock and severity dependent and ranged from 58 to 92.5% of the theoretical yields. The highest ethanol yield was 191 L (50 gal)/t, and the lowest was 120 L (32 gal)/t.

  15. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield

    PubMed Central

    Tian, Xiaofei; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0–100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0–15.8%, 9.3–13.9%, and 9.2–21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0–20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching. PMID:29324750

  16. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    PubMed

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net benefit, and benefit-cost ratio were the highest in the S3 treatment during both years of experimentation. Thus, relay cropping of wheat in standing cotton might be a viable option to improve the soil physical environment and profitability of the cotton-wheat cropping system.

  17. Constitutively overexpressing a tomato fructokinase gene (lefrk1) in cotton (Gossypium hirsutum L. cv. coker 312) positively affects plant vegetative growth, boll number and seed cotton yield.

    USDA-ARS?s Scientific Manuscript database

    Increasing fructokinase (FRK) activity in cotton (Gossypium hirsutum L.) plants may reduce fructose inhibition of sucrose synthase (Sus) and lead to improved fibre yield and quality. Cotton was transformed with a tomato (Solanum lycopersicum L.) fructokinase gene (LeFRK1) under the control of the C...

  18. Direct catalytic production of sorbitol from waste cellulosic materials.

    PubMed

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-05-01

    Cotton wool, cotton textile, tissue paper and printing paper, all potential waste cellulosic materials, were directly converted to sorbitol using a Ru/CNT catalyst in the presence of H 2 and using only water as solvent, without any acids. Conversions up to 38% were attained for the raw substrates, with sorbitol yields below 10%. Ball-milling of the materials disrupted their crystallinity, allowing reaching 100% conversion of cotton wool, cotton textile and tissue paper after 4h, with sorbitol yields around 50%. Mix-milling these materials with the catalyst greatly enhanced their conversion rate, and the materials were efficiently converted to sorbitol with a yield around 50% in 2h. However, ball- and mix-milled printing paper presented a conversion of only 50% after 5h, with sorbitol yields of 7%. Amounts of sorbitol of 0.525, 0.511 and 0.559g could be obtained from 1g of cotton wool, cotton textile and tissue paper, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation

    PubMed Central

    Herring, Stephanie L.; Heitman, Joshua L.

    2010-01-01

    The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation. PMID:22736865

  20. Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation.

    PubMed

    Herring, Stephanie L; Koenning, Stephen R; Heitman, Joshua L

    2010-12-01

    The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation.

  1. Functional Genomic Analysis of Cotton Genes with Agrobacterium-Mediated Virus-Induced Gene Silencing

    PubMed Central

    Gao, Xiquan; Shan, Libo

    2015-01-01

    Cotton (Gossypium spp.) is one of the most agronomically important crops worldwide for its unique textile fiber production and serving as food and feed stock. Molecular breeding and genetic engineering of useful genes into cotton have emerged as advanced approaches to improve cotton yield, fiber quality, and resistance to various stresses. However, the understanding of gene functions and regulations in cotton is largely hindered by the limited molecular and biochemical tools. Here, we describe the method of an Agrobacterium infiltration-based virus-induced gene silencing (VIGS) assay to transiently silence endogenous genes in cotton at 2-week-old seedling stage. The genes of interest could be readily silenced with a consistently high efficiency. To monitor gene silencing efficiency, we have cloned cotton GrCla1 from G. raimondii, a homolog gene of Arabidopsis Cloroplastos alterados 1 (AtCla1) involved in chloroplast development, and inserted into a tobacco rattle virus (TRV) binary vector pYL156. Silencing of GrCla1 results in albino phenotype on the newly emerging leaves, serving as a visual marker for silencing efficiency. To further explore the possibility of using VIGS assay to reveal the essential genes mediating disease resistance to Verticillium dahliae, a fungal pathogen causing severe Verticillium wilt in cotton, we developed a seedling infection assay to inoculate cotton seedlings when the genes of interest are silenced by VIGS. The method we describe here could be further explored for functional genomic analysis of cotton genes involved in development and various biotic and abiotic stresses. PMID:23386302

  2. Functional genomic analysis of cotton genes with agrobacterium-mediated virus-induced gene silencing.

    PubMed

    Gao, Xiquan; Shan, Libo

    2013-01-01

    Cotton (Gossypium spp.) is one of the most agronomically important crops worldwide for its unique textile fiber production and serving as food and feed stock. Molecular breeding and genetic engineering of useful genes into cotton have emerged as advanced approaches to improve cotton yield, fiber quality, and resistance to various stresses. However, the understanding of gene functions and regulations in cotton is largely hindered by the limited molecular and biochemical tools. Here, we describe the method of an Agrobacterium infiltration-based virus-induced gene silencing (VIGS) assay to transiently silence endogenous genes in cotton at 2-week-old seedling stage. The genes of interest could be readily silenced with a consistently high efficiency. To monitor gene silencing efficiency, we have cloned cotton GrCla1 from G. raimondii, a homolog gene of Arabidopsis Cloroplastos alterados 1 (AtCla1) involved in chloroplast development, and inserted into a tobacco rattle virus (TRV) binary vector pYL156. Silencing of GrCla1 results in albino phenotype on the newly emerging leaves, serving as a visual marker for silencing efficiency. To further explore the possibility of using VIGS assay to reveal the essential genes mediating disease resistance to Verticillium dahliae, a fungal pathogen causing severe Verticillium wilt in cotton, we developed a seedling infection assay to inoculate cotton seedlings when the genes of interest are silenced by VIGS. The method we describe here could be further explored for functional genomic analysis of cotton genes involved in development and various biotic and abiotic stresses.

  3. Impact of heterozygosity and heterogeneity on cotton lint yield stability: II. Lint yield components

    USDA-ARS?s Scientific Manuscript database

    In order to determine which yield components may contribute to yield stability, an 18-environment field study was undertaken to observe the mean, standard deviation (SD), and coefficient of variation (CV) for cotton lint yield components in population types that differed for lint yield stability. Th...

  4. Crop Rotation and Races of Meloidogyne incognita in Cotton Root-knot Management

    PubMed Central

    Kirkpatrick, T. L.; Sasser, J. N.

    1984-01-01

    The influence o f various crop rotations and nematode inoculum levels on subsequent population densities of Meloidogyne incognita races 1 and 3 were studied in microplots. Ten different 3-year sequences o f cotton, corn, peanut, or soybean, all with cotton as the 3rd-year crop, were grown in microplots infested with each race. Cotton monoculture, two seasons o f corn, or cotton followed by corn resulted in high race 3 population densities and severe root galling on cotton the 3rd year. Peanut for 2 years preceding cotton most effectively decreased the race 3 population and root galls on cotton the 3rd year. Race 1 did not significantly influence cotton growth or yield at initial populations of up to 5,000 eggs/500 cm³ soil. At 5,000 eggs/500 cm³, cotton growth was suppressed by race 3 but yield was not affected. PMID:19294030

  5. Effect of treated tannery effluent with domestic wastewater and amendments on growth and yield of cotton.

    PubMed

    Jagathjothi, N; Amanullah, M Mohamed; Muthukrishnan, P

    2013-11-15

    Pot culture and field experiments were carried out at the Common Effluent Treatment Plant (CETP), Dindigul during kharif 2011-12 to investigate the influence of irrigation of treated tannery effluent along with domestic wastewater on growth, yield attributes and yield of cotton. The pot culture was in a factorial completely randomized design and field experiment laid out in factorial randomized block design with four replications. The results revealed that the mixing proportion of 25% Treated Tannery Effluent (TTE)+75% domestic wastewater (DWW) application recorded taller plants, higher dry matter production, number of sympodial branches plant(-1), number of fruiting points plant(-1), number of bolls plant(-1) and seed cotton yield with yield reduction of 15.28 and 16.11% compared to normal water irrigation under pot culture and field experiment, respectively. Regarding amendments, gypsum application registered higher seed cotton yield followed by VAM.

  6. Net returns and risk for cover crop use as an integrated pest management practice in Alabama cotton production

    USDA-ARS?s Scientific Manuscript database

    Cotton producers in Alabama are faced with uncertain yields and prices, as well as increasing weed management challenges such as glyphosate resistant weeds. By utilizing a production system that will reduce risk while maintaining yield, cotton production may be economically sustainable into the futu...

  7. Physiology of host-pathogen interaction in wilt diseases of cotton in relation to pathogen management

    USDA-ARS?s Scientific Manuscript database

    Verticillium and Fusarium wilts are important vascular wilt diseases of cotton that significantly reduce cotton yields and negatively impact fiber quality. In spite of intense efforts to control these diseases, yield losses persist and in the US alone were estimated to be about 133 and 28 thousand b...

  8. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses

    PubMed Central

    Najeeb, Ullah; Bange, Michael P.; Tan, Daniel K. Y.; Atwell, Brian J.

    2015-01-01

    Climatic variability, typified by erratic heavy-rainfall events, causes waterlogging in intensively irrigated crops and is exacerbated under warm temperature regimes on soils with poor internal drainage. Irrigated cotton is often grown in precisely these conditions, exposing it to waterlogging-induced yield losses after substantial summer rainfall. This calls for a deeper understanding of mechanisms of waterlogging tolerance and its relevance to cotton. Hence this review suggests possible causes of waterlogging-induced yield loss in cotton and approaches to improvement of waterlogging tolerance, drawing upon the slight body of published data in cotton and principles from other species. The yield penalty depends on soil type, phenological stage and cumulative period of root exposure to air-filled porosities below 10 %. Events in the soil include O2 deficiency in the root zone that changes the redox state of nutrients, making them unavailable (e.g. nitrogen) or potentially toxic for plants. Furthermore, root-derived hormones that are transported in the xylem have long been associated with oxygen deficits. These belowground effects (impaired root growth, nutrient uptake and transport, hormonal signalling) affect the shoots, interfering with canopy development, photosynthesis and radiation-use efficiency. Compared with the more waterlogging-tolerant cereals, cotton does not have identified adaptations to waterlogging in the root zone, forming no conspicuous root aerenchyma and having low fermentative activity. We speculate that these factors contribute substantially to the sensitivity of cotton to sustained periods of waterlogging. We discuss the impact of these belowground factors on shoot performance, photosynthesis and yield components. Management practices, i.e. soil aeration, scheduling irrigation and fertilizer application, can reduce waterlogging-induced damage. Limiting ethylene biosynthesis using anti-ethylene agents and down-regulating expression of genes controlling ethylene biosynthesis are strong candidates to minimize yield losses in waterlogged cotton crops. Other key pathways of anoxia tolerance are also cited as potential tools towards waterlogging-tolerant cotton genotypes. PMID:26194168

  9. Nano-Al{sub 2}O{sub 3} multilayer film deposition on cotton fabrics by layer-by-layer deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugur, Sule S., E-mail: sule@mmf.sdu.edu.tr; Sariisik, Merih; Aktas, A. Hakan

    Highlights: {yields} Cationic charges were created on the cotton fibre surfaces with 2,3-epoxypropyltrimethylammonium chloride. {yields} Al{sub 2}O{sub 3} nanoparticles were deposited on the cotton fabrics by layer-by-layer deposition. {yields} The fabrics deposited with the Al{sub 2}O{sub 3} nanoparticles exhibit better UV-protection and significant flame retardancy properties. {yields} The mechanical properties were improved after surface film deposition. -- Abstract: Al{sub 2}O{sub 3} nanoparticles were used for fabrication of multilayer nanocomposite film deposition on cationic cotton fabrics by electrostatic self-assembly to improve the mechanical, UV-protection and flame retardancy properties of cotton fabrics. Cotton fabric surface was modified with a chemical reaction tomore » build-up cationic charge known as cationization. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy were used to verify the presence of deposited nanolayers. Air permeability, whiteness value, tensile strength, UV-transmittance and Limited Oxygen Index properties of cotton fabrics were analyzed before and after the treatment of Al{sub 2}O{sub 3} nanoparticles by electrostatic self-assemblies. It was proved that the flame retardancy, tensile strength and UV-transmittance of cotton fabrics can be improved by Al{sub 2}O{sub 3} nanoparticle additive through electrostatic self-assembly process.« less

  10. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions.

    PubMed

    Huang, Jian; Ji, Feng

    2015-07-01

    Understanding the effects of climatic change on phenological phases of cotton (Gossypium hirsutum L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.16 days during the period of 1981-2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.19 days, respectively. The other growth period lengths were prolonged by 2-9.71 days. The whole growth period length was prolonged by 22.26 days. The stop-growing date was delayed by 2.49-3.46 days for every 1 °C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17-4.76 days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.

  11. Management Practices of Cotton Producers in Lauderdale County, Tennessee.

    ERIC Educational Resources Information Center

    Peal, Charles T.; Dotson, Robert S.

    Eighty-one randomly selected cotton producers in Lauderdale County were interviewed for the purposes of: (1) characterizing those in different cotton yield groups, (2) determining which practices were being used by those in different yield groups, and (3) identifying some of the factors influencing the farmers to use or not to use the 12 practices…

  12. Pollen genotyping in cotton for genetic linkage analysis

    USDA-ARS?s Scientific Manuscript database

    Cotton is an important fiber and oil crop and thus makes very important contributions to US agricultural security and sustainable agriculture. Two species are vital for American cotton industry, i.e., Upland cotton (Gossypium hirsutum) and Pima cotton (G. barbadense) that are prized for high yields...

  13. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits.

    PubMed

    Fang, Lei; Wang, Qiong; Hu, Yan; Jia, Yinhua; Chen, Jiedan; Liu, Bingliang; Zhang, Zhiyuan; Guan, Xueying; Chen, Shuqi; Zhou, Baoliang; Mei, Gaofu; Sun, Junling; Pan, Zhaoe; He, Shoupu; Xiao, Songhua; Shi, Weijun; Gong, Wenfang; Liu, Jianguang; Ma, Jun; Cai, Caiping; Zhu, Xiefei; Guo, Wangzhen; Du, Xiongming; Zhang, Tianzhen

    2017-07-01

    Upland cotton (Gossypium hirsutum) is the most important natural fiber crop in the world. The overall genetic diversity among cultivated species of cotton and the genetic changes that occurred during their improvement are poorly understood. Here we report a comprehensive genomic assessment of modern improved upland cotton based on the genome-wide resequencing of 318 landraces and modern improved cultivars or lines. We detected more associated loci for lint yield than for fiber quality, which suggests that lint yield has stronger selection signatures than other traits. We found that two ethylene-pathway-related genes were associated with increased lint yield in improved cultivars. We evaluated the population frequency of each elite allele in historically released cultivar groups and found that 54.8% of the elite genome-wide association study (GWAS) alleles detected were transferred from three founder landraces: Deltapine 15, Stoneville 2B and Uganda Mian. Our results provide a genomic basis for improving cotton cultivars and for further evolutionary analysis of polyploid crops.

  14. Root growth and spatial distribution characteristics for seedlings raised in substrate and transplanted cotton

    PubMed Central

    Han, Yingchun; Li, Yabing; Wang, Guoping; Feng, Lu; Yang, Beifang; Fan, Zhengyi; Lei, Yaping; Du, Wenli; Mao, Shuchun

    2017-01-01

    In this study, transplanting cotton seedlings grown in artificial substrate is considered due to recent increased interest in cotton planting labor saving approaches. The nursery methods used for growing cotton seedlings affect root growth. However, the underlying functional responses of root growth to variations in cotton seedling transplanting methods are poorly understood. We assessed the responses of cotton (Gossypium hirsutum L.) roots to different planting methods by conducting cotton field experiments in 2012 and 2013. A one-factor random block design was used with three replications and three different cotton planting patterns (substrate seedling transplanted cotton (SSTC), soil-cube seedling transplanted cotton (ScSTC) and directly sown cotton (DSC). The distributions and variances of the root area density (RAD) and root length density (RLD) at different cotton growing stages and several yield components were determined. Overall, the following results were observed: 1) The RAD and RLD were greatest near the plants (a horizontal distance of 0 cm) but were lower at W20 and W40 cm in the absence of film mulching than at E20 and E40 cm with film mulching. 2) The roots were confined to shallow depths (20–40 cm), and the root depths of SSTC and DSC were greater than the root depths of ScSTC. 3) Strong root growth was observed in the SSTC at the cotton flowering and boll setting stages. In addition, early onset root growth occurred in the ScSTC, and vigorous root growth occurred throughout all cotton growth stages in DSC. 4) The SSTC plants had more lateral roots with higher root biomass (RB) than the ScSTC, which resulted in higher cotton yields. However, the early onset root growth in the ScSTC resulted in greater pre-frost seed cotton (PFSC) yields. These results can be used to infer how cotton roots are distributed in soils and capture nutrients. PMID:29272298

  15. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    PubMed

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P

  16. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus

    PubMed Central

    Davis, R. F.; Baird, R. E.; McNeil, R. D.

    2000-01-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P ≤ 0.05) following cotton root destruction. Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P ≤ 0.05) H. columbus population levels at planting in 1996 but not in 1997, but cotton yield was not increased by root destruction in either year. Removing debris following root destruction did not lower H. columbus levels compared to leaving debris on the soil surface. This study suggests that a rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton. PMID:19271009

  17. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population.

    PubMed

    Yu, Jiwen; Zhang, Ke; Li, Shuaiyang; Yu, Shuxun; Zhai, Honghong; Wu, Man; Li, Xingli; Fan, Shuli; Song, Meizhen; Yang, Daigang; Li, Yunhai; Zhang, Jinfa

    2013-01-01

    Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.

  18. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion

    USDA-ARS?s Scientific Manuscript database

    Airborne imagery has been successfully used for mapping cotton root rot within cotton fields toward the end of the growing season. To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusio...

  19. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates.

    PubMed

    Girmay, Zenebe; Gorems, Weldesemayat; Birhanu, Getachew; Zewdie, Solomon

    2016-12-01

    Mushroom cultivation is reported as an economically viable bio-technology process for conversion of various lignocellulosic wastes. Given the lack of technology know-how on the cultivation of mushroom, this study was conducted in Wondo Genet College of Forestry and Natural Resource, with the aim to assess the suitability of selected substrates (agricultural and/or forest wastes) for oyster mushroom cultivation. Accordingly, four substrates (cotton seed, paper waste, wheat straw, and sawdust) were tested for their efficacy in oyster mushroom production. Pure culture of oyster mushroom was obtained from Mycology laboratory, Department of Plant Biology and Biodiversity Management, Addis Ababa University. The pure culture was inoculated on potato dextrose agar for spawn preparation. Then, the spawn containing sorghum was inoculated with the fungal culture for the formation of fruiting bodies on the agricultural wastes. The oyster mushroom cultivation was undertaken under aseptic conditions, and the growth and development of mushroom were monitored daily. Results of the study revealed that oyster mushroom can grow on cotton seed, paper waste, sawdust and wheat straw, with varying growth performances. The highest biological and economic yield, as well as the highest percentage of biological efficiency of oyster mushroom was obtained from cotton seed, while the least was from sawdust. The study recommends cotton seed, followed by paper waste as suitable substrates for the cultivation of oyster mushroom. It also suggests that there is a need for further investigation on various aspects of oyster mushroom cultivation in Ethiopia to promote the industry.

  20. The effect of varieties on cotton wax as it relates to cotton quality parameters

    USDA-ARS?s Scientific Manuscript database

    Cotton wax is one of the non-cellulosic components found on the surfaces of cotton. It is important in dyeing and processing quality. This investigation was carried out to study the yield of wax on the surface of cottons by performing two methods: Soxhlet extractions and accelerated solvent extracti...

  1. Breeding Potential of Introgression Lines Developed from Interspecific Crossing between Upland Cotton (Gossypium hirsutum) and Gossypium barbadense: Heterosis, Combining Ability and Genetic Effects

    PubMed Central

    Li, Xingli; Pei, Wenfeng

    2016-01-01

    Upland cotton (Gossypium hirstum L.), which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs) in Upland cotton with G. barbadense germplasm integration has not been well addressed. This study involved six ILs developed from an interspecific crossing and backcrossing between Upland cotton and G. barbadense and represented one of the first studies to investigate breeding potentials of a set of ILs using a full diallel analysis. High mid-parent heterosis was detected in several hybrids between ILs and a commercial cultivar, which also out-yielded the high-yielding cultivar parent in F1, F2 and F3 generations. A further analysis indicated that general ability (GCA) variance was predominant for all the traits, while specific combining ability (SCA) variance was either non-existent or much lower than GCA. The estimated GCA effects and predicted additive effects for parents in each trait were positively correlated (at P<0.01). Furthermore, GCA and additive effects for each trait were also positively correlated among generations (at P<0.05), suggesting that F2 and F3 generations can be used as a proxy to F1 in analyzing combining abilities and estimating genetic parameters. In addition, differences between reciprocal crosses in F1 and F2 were not significant for yield, yield components and fiber quality traits. But maternal effects appeared to be present for seed oil and protein contents in F3. This study identified introgression lines as good general combiners for yield and fiber quality improvement and hybrids with high heterotic vigor in yield, and therefore provided useful information for further utilization of introgression lines in cotton breeding. PMID:26730964

  2. Breeding Potential of Introgression Lines Developed from Interspecific Crossing between Upland Cotton (Gossypium hirsutum) and Gossypium barbadense: Heterosis, Combining Ability and Genetic Effects.

    PubMed

    Zhang, Jinfa; Wu, Man; Yu, Jiwen; Li, Xingli; Pei, Wenfeng

    2016-01-01

    Upland cotton (Gossypium hirstum L.), which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs) in Upland cotton with G. barbadense germplasm integration has not been well addressed. This study involved six ILs developed from an interspecific crossing and backcrossing between Upland cotton and G. barbadense and represented one of the first studies to investigate breeding potentials of a set of ILs using a full diallel analysis. High mid-parent heterosis was detected in several hybrids between ILs and a commercial cultivar, which also out-yielded the high-yielding cultivar parent in F1, F2 and F3 generations. A further analysis indicated that general ability (GCA) variance was predominant for all the traits, while specific combining ability (SCA) variance was either non-existent or much lower than GCA. The estimated GCA effects and predicted additive effects for parents in each trait were positively correlated (at P<0.01). Furthermore, GCA and additive effects for each trait were also positively correlated among generations (at P<0.05), suggesting that F2 and F3 generations can be used as a proxy to F1 in analyzing combining abilities and estimating genetic parameters. In addition, differences between reciprocal crosses in F1 and F2 were not significant for yield, yield components and fiber quality traits. But maternal effects appeared to be present for seed oil and protein contents in F3. This study identified introgression lines as good general combiners for yield and fiber quality improvement and hybrids with high heterotic vigor in yield, and therefore provided useful information for further utilization of introgression lines in cotton breeding.

  3. Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery

    NASA Astrophysics Data System (ADS)

    Chu, Tianxing; Chen, Ruizhi; Landivar, Juan A.; Maeda, Murilo M.; Yang, Chenghai; Starek, Michael J.

    2016-07-01

    This paper explores the potential of using unmanned aircraft system (UAS)-based visible-band images to assess cotton growth. By applying the structure-from-motion algorithm, the cotton plant height (ph) and canopy cover (cc) information were retrieved from the point cloud-based digital surface models (DSMs) and orthomosaic images. Both UAS-based ph and cc follow a sigmoid growth pattern as confirmed by ground-based studies. By applying an empirical model that converts the cotton ph to cc, the estimated cc shows strong correlation (R2=0.990) with the observed cc. An attempt for modeling cotton yield was carried out using the ph and cc information obtained on June 26, 2015, the date when sigmoid growth curves for both ph and cc tended to decline in slope. In a cross-validation test, the correlation between the ground-measured yield and the estimated equivalent derived from the ph and/or cc was compared. Generally, combining ph and cc, the performance of the yield estimation is most comparable against the observed yield. On the other hand, the observed yield and cc-based estimation produce the second strongest correlation, regardless of the complexity of the models.

  4. Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum).

    PubMed

    Lu, Quanwei; Shi, Yuzhen; Xiao, Xianghui; Li, Pengtao; Gong, Juwu; Gong, Wankui; Liu, Aiying; Shang, Haihong; Li, Junwen; Ge, Qun; Song, Weiwu; Li, Shaoqi; Zhang, Zhen; Rashid, Md Harun Or; Peng, Renhai; Yuan, Youlu; Huang, Jinling

    2017-10-05

    As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton ( Gossypium hirsutum ) crossed with high-quality Sea Island cotton ( G. barbadense ). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase ( MNS1 )], XLOC_029945 ( FLA8 ), and XLOC_075372 ( snakin-1 ), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding. Copyright © 2017 Lu et al.

  5. Genetic and transcriptomic dissection of the fiber length trait using a cotton (Gossypium hirsutum L.) MAGIC population.

    USDA-ARS?s Scientific Manuscript database

    Cotton fiber length is a key determinant of fiber quality for the textile industry. Improving cotton fiber length without reducing yield is one of the major goals for cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to narrow genetic diversit...

  6. An opportunistic Pantoea sp. isolated from a cotton fleahopper that is capable of causing cotton (Gossypium hirsutum L.) bud rot

    USDA-ARS?s Scientific Manuscript database

    Pantoea ananatis (Serano) representatives are known to have a broad host range including both humans and plants. The cotton fleahopper (Pseudatomoscelis seriatus, Reuter) is a significant pest that causes cotton bud damage that may result in significant yield losses. In this study, cotton fleahopp...

  7. Tillage and Irrigation Management of Cotton in a Corn/Cotton Rotation

    USDA-ARS?s Scientific Manuscript database

    A research study was undertaken to evaluate the yield of cotton in a corn-cotton rotation under two tillage treatments, conventional and minimum/conservation, and two irrigation treatments, irrigated and non-irrigated. Crops were grown under four treatments, irrigated-conventional tillage, irrigate...

  8. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.

    PubMed

    Chen, Jiao; Liang, Jiajin; Wu, Shubin

    2016-10-01

    Pyrolysis was demonstrated to investigate the thermal decomposition characteristics and potential of lignin-rich cotton by-products cotton exocarp (CE) and spent mushroom substrate consisted of cotton by-products (MSC) for biorefineries. The chemical component and structure alteration of CE and MSC was found to affect their thermochemical behaviors. The bio-oil yield from CE was 58.13wt% while the maximum yield from MSC was 45.01% at 600°C. The phenolic compounds obtained from CE and MSC were 33.9% and 39.2%, respectively. The yield of acetic acid from MSC between 400 and 600°C was about 30-38% lower than that from CE, which suggests the high quality of bio-oil was obtained. Biochar from MSC via slow pyrolysis had a high mass yield (44.38wt%) with well-developed pore structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The multi-year effects of repeatedly growing cotton with moderate resistance to Meloidogyne incognita

    PubMed Central

    Kemerait, Robert C.

    2009-01-01

    Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes. PMID:22661787

  10. Pressure effects on extraction of cotton using ASE

    USDA-ARS?s Scientific Manuscript database

    Cotton wax is one of the non-cellulosic components found on the surfaces of cotton. It is important in dyeing and processing quality. This investigation was carried out to study the yield of wax on the surface of cottons by performing two methods: Soxhlet extractions and accelerated solvent extracti...

  11. Effects of nitrogen and planting seed size on cotton growth, development, and yield

    USDA-ARS?s Scientific Manuscript database

    A standardized experiment was conducted during 2009 and 2010 at 20 location-years across U.S. cotton (Gossypium hirsutum L.)-producing states to compare the N use requirement of contemporary cotton cultivars based on their planting seed size. Treatments consisted of three cotton varieties with plant...

  12. Correlation Between Precipitation and Crop Yield for Corn and Cotton Produced in Alabama

    NASA Technical Reports Server (NTRS)

    Hayes, Carol E.; Perkey, Donald J.

    1998-01-01

    In this study, variations in precipitation during the time of corn silking are compared to Alabama corn yields. Also, this study compares precipitation variations during bloom to Alabama cotton yield. The goal is to obtain mathematical correlations between rainfall during the crop's critical period and the crop amount harvested per acre.

  13. Do genotypic differences in thermotolerance plasticity correspond with water-induced differences in yield and photosynthetic stability for field-grown upland cotton?

    USDA-ARS?s Scientific Manuscript database

    To determine if cultivar differences in thermotolerance plasticity of photosystem II promote yield or photosynthetic stability when variability in both parameters is water-induced, the temperature response of maximum quantum yield of photosystem II (Fv/Fm) was evaluated for two cotton cultivars (FM ...

  14. Optimizing nitrogen application rate and plant density for improving cotton yield and nitrogen use efficiency in the North China Plain

    PubMed Central

    Dong, Helin; Zheng, Cangsong; Sun, Miao; Liu, Aizhong; Wang, Guoping; Liu, Shaodong; Zhang, Siping; Chen, Jing; Li, Yabing; Pang, Chaoyou; Zhao, Xinhua

    2017-01-01

    Plant population density (PPD) and nitrogen (N) application rate (NAR) are two controllable factors in cotton production. We conducted field experiments to investigate the effects of PPD, NAR and their interaction (PPD × NAR) on yield, N uptake and N use efficiency (NUE) of cotton using a split-plot design in the North China Plain during 2013 and 2014. The main plots were PPDs (plants m−2) of 3.00 (low), 5.25 (medium) and 7.50 (high) and the subplots were NARs of 0 (N-free), 112.5 (low), 225.0 (moderate) and 337.5 (high). During both 2013 and 2014, biological yield and N uptake of cotton increased significantly, but harvesting index decreased significantly with NAR and PPD increasing. With NAR increasing, internal nitrogen use efficiency(NUE) decreased significantly under three PPDs and agronomical NUE, physiologilal NUE, nitrogen recovery efficiency(NRE) and partial factor productivity from applied nitrogen (PFPN) also decreased significantly under high PPD between two years. Lint yield increment varied during different PPDs and years, but NAR enhancement showed less function under higher PPD than lower PPD in general. Taken together, moderate NAR under medium PPD combined higher lint yield with higher agronomic NUE, physiological NUE, and NRE, while low NAR with high PPD would achieve a comparable yield with superior NRE and PFPN and high NAR under high PPD and medium PPD produced higher biological yield but lower harvest index, lint yield and NUE compared to moderate NAR with medium PPD. Our overall results indicated that, in this region, increasing PPD and decreasing NAR properly would enhance both lint yield and NUE of cotton. PMID:28981538

  15. Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model

    USDA-ARS?s Scientific Manuscript database

    The Texas High Plains (THP) region contributes to about 25% of the US cotton production. Dwindling groundwater resources in the underlying Ogallala aquifer, future climate variability and frequent occurrences of droughts are major concerns for cotton production in this region. Assessing the impacts ...

  16. Competitive release as an ecological cause of stink bug outbreaks in transgenic Bt cotton in the southeast US

    USDA-ARS?s Scientific Manuscript database

    Insect-resistant transgenic Bt cotton has, in general, increased yield and reduced insecticide use in cotton production by successfully managing target pests. In the southeast US, Bt cotton provides effective control of Helicpverpa zea and Heliothis virescens [Lepidoptera: Noctuidae]. However Bt c...

  17. Simulating future climate change impacts on seed cotton yield in the Texas high plains using the CSM-CROPGRO cotton model

    USDA-ARS?s Scientific Manuscript database

    The Texas High Plains (THP) region contributes to about 25% of the US cotton production. Dwindling groundwater resources in the underlying Ogallala aquifer, future climate variability and frequent occurrences of droughts are major concerns for cotton production in this region. Assessing the impacts ...

  18. Evaluations of Fusarium wilt resistance in Upland cotton from Uzbek cotton germplasm resources.

    USDA-ARS?s Scientific Manuscript database

    Fusarium oxysporum f. sp. vasinfectum Atk. Sny & Hans (FOV), in combination with Verticillium dahliae Kleb, causes a wilt disease complex in cotton that significantly reduces yield. A highly virulent strain of FOV, No. 316, was isolated that caused up to 80% plant death in commercial cotton in Uzbe...

  19. Resistance monitoring of Heliothis virescens to pyramided cotton varieties with a hydrateable, artificial cotton leaf bioassay

    USDA-ARS?s Scientific Manuscript database

    Proof of concept was demonstrated for a practical, off the shelf bioassay to monitor for tobacco budworm resistance to pyramided Bt cotton using plant eluants. The bioassay was based on a previously described feeding disruption test using hydrateable artificial diet containing a blue indicator dye, ...

  20. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    PubMed

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  1. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis

    PubMed Central

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m-1 of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m-1 of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20–0.33 weed plant m-1 of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m-1 of cotton row, redroot pigweed produced about 626,000 seeds m-2. Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430–2,250 g dry weight by harvest. Redroot pigweed biomass ha-1 tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m-1 of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management. PMID:26057386

  2. A 2-Year Field Study Shows Little Evidence That the Long-Term Planting of Transgenic Insect-Resistant Cotton Affects the Community Structure of Soil Nematodes

    PubMed Central

    Li, Xiaogang; Liu, Biao

    2013-01-01

    Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899

  3. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    PubMed

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.

  4. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    PubMed

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  5. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    USDA-ARS?s Scientific Manuscript database

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  6. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    PubMed

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil NO 3 - -N accumulation layer moved downward. By comprehensively considering above-ground biomass, seed cotton yield, water and nitrogen uptake and utilization, and soil NO 3 - -N accumulation in the soil profile, the treatment N 3 I 1 could be recommended as the optimal water and nitrogen application pattern for summer cotton production in the experimental region.

  7. Yield and Economic Performance of Organic and Conventional Cotton-Based Farming Systems – Results from a Field Trial in India

    PubMed Central

    Forster, Dionys; Andres, Christian; Verma, Rajeev; Zundel, Christine; Messmer, Monika M.; Mäder, Paul

    2013-01-01

    The debate on the relative benefits of conventional and organic farming systems has in recent time gained significant interest. So far, global agricultural development has focused on increased productivity rather than on a holistic natural resource management for food security. Thus, developing more sustainable farming practices on a large scale is of utmost importance. However, information concerning the performance of farming systems under organic and conventional management in tropical and subtropical regions is scarce. This study presents agronomic and economic data from the conversion phase (2007–2010) of a farming systems comparison trial on a Vertisol soil in Madhya Pradesh, central India. A cotton-soybean-wheat crop rotation under biodynamic, organic and conventional (with and without Bt cotton) management was investigated. We observed a significant yield gap between organic and conventional farming systems in the 1st crop cycle (cycle 1: 2007–2008) for cotton (−29%) and wheat (−27%), whereas in the 2nd crop cycle (cycle 2: 2009–2010) cotton and wheat yields were similar in all farming systems due to lower yields in the conventional systems. In contrast, organic soybean (a nitrogen fixing leguminous plant) yields were marginally lower than conventional yields (−1% in cycle 1, −11% in cycle 2). Averaged across all crops, conventional farming systems achieved significantly higher gross margins in cycle 1 (+29%), whereas in cycle 2 gross margins in organic farming systems were significantly higher (+25%) due to lower variable production costs but similar yields. Soybean gross margin was significantly higher in the organic system (+11%) across the four harvest years compared to the conventional systems. Our results suggest that organic soybean production is a viable option for smallholder farmers under the prevailing semi-arid conditions in India. Future research needs to elucidate the long-term productivity and profitability, particularly of cotton and wheat, and the ecological impact of the different farming systems. PMID:24324659

  8. Yield and economic performance of organic and conventional cotton-based farming systems--results from a field trial in India.

    PubMed

    Forster, Dionys; Andres, Christian; Verma, Rajeev; Zundel, Christine; Messmer, Monika M; Mäder, Paul

    2013-01-01

    The debate on the relative benefits of conventional and organic farming systems has in recent time gained significant interest. So far, global agricultural development has focused on increased productivity rather than on a holistic natural resource management for food security. Thus, developing more sustainable farming practices on a large scale is of utmost importance. However, information concerning the performance of farming systems under organic and conventional management in tropical and subtropical regions is scarce. This study presents agronomic and economic data from the conversion phase (2007-2010) of a farming systems comparison trial on a Vertisol soil in Madhya Pradesh, central India. A cotton-soybean-wheat crop rotation under biodynamic, organic and conventional (with and without Bt cotton) management was investigated. We observed a significant yield gap between organic and conventional farming systems in the 1(st) crop cycle (cycle 1: 2007-2008) for cotton (-29%) and wheat (-27%), whereas in the 2(nd) crop cycle (cycle 2: 2009-2010) cotton and wheat yields were similar in all farming systems due to lower yields in the conventional systems. In contrast, organic soybean (a nitrogen fixing leguminous plant) yields were marginally lower than conventional yields (-1% in cycle 1, -11% in cycle 2). Averaged across all crops, conventional farming systems achieved significantly higher gross margins in cycle 1 (+29%), whereas in cycle 2 gross margins in organic farming systems were significantly higher (+25%) due to lower variable production costs but similar yields. Soybean gross margin was significantly higher in the organic system (+11%) across the four harvest years compared to the conventional systems. Our results suggest that organic soybean production is a viable option for smallholder farmers under the prevailing semi-arid conditions in India. Future research needs to elucidate the long-term productivity and profitability, particularly of cotton and wheat, and the ecological impact of the different farming systems.

  9. Strategies for soil-based precision agriculture in cotton

    NASA Astrophysics Data System (ADS)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  10. Variable Rate Application of Nematicides on Cotton Fields: A Promising Site-Specific Management Strategy

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) lint yield losses associated with southern root-knot nematode [Meloidogyne incognita] (RKN) parasitism have increased during the last 20 years. The hypothesis that variable rate application of nematicides can reduce yield losses and reduce the risk for under- and over-...

  11. Application of DSSAT-CROPGRO-Cotton Model to Assess Long Term (1924-2012) Cotton Yield under Different Irrigation Management Strategies

    NASA Astrophysics Data System (ADS)

    Adhikari, P.; Gowda, P. H.; Northup, B. K.; Rocateli, A.

    2017-12-01

    In this study a well calibrated and validated DSSAT-CROPGRO-Cotton model was used for assessing the irrigation management in the Texas High Plains (THP). Long term (1924-2012) historic lint yield were simulated under different irrigation management practices which were commonly used in the THP. The simulation treatments includes different amount of irrigation water high (H; 6.4 mm d-1), medium (M; 3.2 mm d-1) and low (L; 0 mm d-1) during emergence (S1), vegetative (S2) and maturity (S3) stage. The combination of these treatments resulted into 27 treatments. The amount and date of irrigation for each stage were obtained from the recent cotton irrigation experiment at Halfway, TX (Brodovsky, et al., 2015). Similarly, calibrated model was also used to observe the effect of plantation date on crop yield in the THP regions.

  12. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.

    PubMed

    Jiang, Yu; Li, Changying; Paterson, Andrew H; Sun, Shangpeng; Xu, Rui; Robertson, Jon

    2017-01-01

    Plant canopy structure can strongly affect crop functions such as yield and stress tolerance, and canopy size is an important aspect of canopy structure. Manual assessment of canopy size is laborious and imprecise, and cannot measure multi-dimensional traits such as projected leaf area and canopy volume. Field-based high throughput phenotyping systems with imaging capabilities can rapidly acquire data about plants in field conditions, making it possible to quantify and monitor plant canopy development. The goal of this study was to develop a 3D imaging approach to quantitatively analyze cotton canopy development in field conditions. A cotton field was planted with 128 plots, including four genotypes of 32 plots each. The field was scanned by GPhenoVision (a customized field-based high throughput phenotyping system) to acquire color and depth images with GPS information in 2016 covering two growth stages: canopy development, and flowering and boll development. A data processing pipeline was developed, consisting of three steps: plot point cloud reconstruction, plant canopy segmentation, and trait extraction. Plot point clouds were reconstructed using color and depth images with GPS information. In colorized point clouds, vegetation was segmented from the background using an excess-green (ExG) color filter, and cotton canopies were further separated from weeds based on height, size, and position information. Static morphological traits were extracted on each day, including univariate traits (maximum and mean canopy height and width, projected canopy area, and concave and convex volumes) and a multivariate trait (cumulative height profile). Growth rates were calculated for univariate static traits, quantifying canopy growth and development. Linear regressions were performed between the traits and fiber yield to identify the best traits and measurement time for yield prediction. The results showed that fiber yield was correlated with static traits after the canopy development stage ( R 2 = 0.35-0.71) and growth rates in early canopy development stages ( R 2 = 0.29-0.52). Multi-dimensional traits (e.g., projected canopy area and volume) outperformed one-dimensional traits, and the multivariate trait (cumulative height profile) outperformed univariate traits. The proposed approach would be useful for identification of quantitative trait loci (QTLs) controlling canopy size in genetics/genomics studies or for fiber yield prediction in breeding programs and production environments.

  13. Greenhouse Gas Emissions from Cotton Field under Different Irrigation Methods and Fertilization Regimes in Arid Northwestern China

    PubMed Central

    Guo, Wei; Feng, Jinfei; Li, Lanhai; Yang, Haishui; Wang, Xiaohua; Bian, Xinmin

    2014-01-01

    Drip irrigation is broadly extended in order to save water in the arid cotton production region of China. Biochar is thought to be a useful soil amendment to reduce greenhouse gas (GHG) emissions. Here, a field study was conducted to compare the emissions of nitrous oxide (N2O) and methane (CH4) under different irrigation methods (drip irrigation (D) and furrow irrigation (F)) and fertilization regimes (conventional fertilization (C) and conventional fertilization + biochar (B)) during the cotton growth season. The accumulated N2O emissions were significantly lower with FB, DC, and DB than with FC by 28.8%, 36.1%, and 37.6%, while accumulated CH4 uptake was 264.5%, 226.7%, and 154.2% higher with DC, DB, and FC than that with FB, respectively. Irrigation methods showed a significant effect on total global warming potential (GWP) and yield-scaled GWP (P < 0.01). DC and DB showed higher cotton yield, water use efficiency (WUE), and lower yield-scaled GWP, as compared with FC and FB. This suggests that in northwestern China mulched-drip irrigation should be a better approach to increase cotton yield with depressed GHG. In addition, biochar addition increased CH4 emissions while it decreased N2O emissions. PMID:25133229

  14. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield

    PubMed Central

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3, a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA-HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing dsHaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera. Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls. PMID:28867769

  15. Correlations and path analysis among agronomic and technological traits of upland cotton.

    PubMed

    Farias, F J C; Carvalho, L P; Silva Filho, J L; Teodoro, P E

    2016-08-12

    To date, path analysis has been used with the aim of breeding different cultures. However, for cotton, there have been few studies using this analysis, and all of these have used fiber productivity as the primary dependent variable. Therefore, the aim of the present study was to identify agronomic and technological properties that can be used as criteria for direct and indirect phenotypes in selecting cotton genotypes with better fibers. We evaluated 16 upland cotton genotypes in eight trials conducted during the harvest 2008/2009 in the State of Mato Grosso, using a randomized block design with four replicates. The evaluated traits were: plant height, average boll weight, percentage of fiber, cotton seed yield, fiber length, uniformity of fiber, short fiber index, fiber strength, elongation, maturity of the fibers, micronaire, reflectance, and the degree of yellowing. Phenotypic correlations between the traits and cotton fiber yield (main dependent variable) were unfolded in direct and indirect effects through path analysis. Fiber strength, uniformity of fiber, and reflectance were found to influence fiber length, and therefore, these traits are recommended for both direct and indirect selection of cotton genotypes.

  16. Detection of total and PRRSV-specific antibodies in oral fluids collected with different rope types from PRRSV-vaccinated and experimentally infected pigs.

    PubMed

    Decorte, Inge; Van Breedam, Wander; Van der Stede, Yves; Nauwynck, Hans J; De Regge, Nick; Cay, Ann Brigitte

    2014-06-17

    Oral fluid collected by means of ropes has the potential to replace serum for monitoring and surveillance of important swine pathogens. Until now, the most commonly used method to collect oral fluid is by hanging a cotton rope in a pen. However, concerns about the influence of rope material on subsequent immunological assays have been raised. In this study, we evaluated six different rope materials for the collection of oral fluid and the subsequent detection of total and PRRSV-specific antibodies of different isotypes in oral fluid collected from PRRSV-vaccinated and infected pigs. An initial experiment showed that IgA is the predominant antibody isotype in porcine saliva. Moreover, it was found that synthetic ropes may yield higher amounts of IgA, whereas all rope types seemed to be equally suitable for IgG collection. Although IgA is the predominant antibody isotype in porcine oral fluid, the PRRSV-specific IgA-based IPMA and ELISA tests were clearly not ideal for sensitive detection of PRRSV-specific IgA antibodies. In contrast, PRRSV-specific IgG in oral fluids was readily detected in PRRSV-specific IgG-based IPMA and ELISA tests, indicating that IgG is a more reliable isotype for monitoring PRRSV-specific antibody immunity in vaccinated/infected animals via oral fluids with the currently available tests. Since PRRSV-specific IgG detection seems more reliable than PRRSV-specific IgA detection for monitoring PRRSV-specific antibody immunity via oral fluids, and since all rope types yield equal amounts of IgG, it seems that the currently used cotton ropes are an appropriate choice for sample collection in PRRSV monitoring.

  17. Usefulness of the HMRPGV method for simultaneous selection of upland cotton genotypes with greater fiber length and high yield stability.

    PubMed

    Farias, F J C; Carvalho, L P; Silva Filho, J L; Teodoro, P E

    2016-08-19

    The harmonic mean of the relative performance of genotypic predicted value (HMRPGV) method has been used to measure the genotypic stability and adaptability of various crops. However, its use in cotton is still restricted. This study aimed to use mixed models to select cotton genotypes that simultaneously result in longer fiber length, higher fiber yield, and phenotypic stability in both of these traits. Eight trials with 16 cotton genotypes were conducted in the 2008/2009 harvest in Mato Grosso State. The experimental design was randomized complete blocks with four replicates of each of the 16 genotypes. In each trial, we evaluated fiber yield and fiber length. The genetic parameters were estimated using the restricted maximum likelihood/best linear unbiased predictor method. Joint selection considering, simultaneously, fiber length, fiber yield, stability, and adaptability is possible with the HMRPGV method. Our results suggested that genotypes CNPA MT 04 2080 and BRS CEDRO may be grown in environments similar to those tested here and may be predicted to result in greater fiber length, fiber yield, adaptability, and phenotypic stability. These genotypes may constitute a promising population base in breeding programs aimed at increasing these trait values.

  18. Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.).

    PubMed

    Ademe, Mulugeta Seyoum; He, Shoupu; Pan, Zhaoe; Sun, Junling; Wang, Qinglian; Qin, Hongde; Liu, Jinhai; Liu, Hui; Yang, Jun; Xu, Dongyong; Yang, Jinlong; Ma, Zhiying; Zhang, Jinbiao; Li, Zhikun; Cai, Zhongmin; Zhang, Xuelin; Zhang, Xin; Huang, Aifen; Yi, Xianda; Zhou, Guanyin; Li, Lin; Zhu, Haiyong; Pang, Baoyin; Wang, Liru; Jia, Yinhua; Du, Xiongming

    2017-12-01

    Fiber yield and quality are the most important traits for Upland cotton (Gossypium hirsutum L.). Identifying high yield and good fiber quality genes are the prime concern of researchers in cotton breeding. Association mapping offers an alternative and powerful method for detecting those complex agronomic traits. In this study, 198 simple sequence repeats (SSRs) were used to screen markers associated with fiber yield and quality traits with 302 elite Upland cotton accessions that were evaluated in 12 locations representing the Yellow River and Yangtze River cotton growing regions of China. Three subpopulations were found after the estimation of population structure. The pair-wise kinship values varied from 0 to 0.867. Only 1.59% of the total marker locus pairs showed significant linkage disequilibrium (LD, p < 0.001). The genome-wide LD decayed within the genetic distance of ~30 to 32 cM at r 2  = 0.1, and decreased to ~1 to 2 cM at r 2  = 0.2, indicating the potential for association mapping. Analysis based on a mixed linear model detected 57 significant (p < 0.01) marker-trait associations, including seven associations for fiber length, ten for fiber micronaire, nine for fiber strength, eight for fiber elongation, five for fiber uniformity index, five for fiber uniformity ratio, six for boll weight and seven for lint percent, for a total of 35 SSR markers, of which 11 markers were associated with more than one trait. Among marker-trait associations, 24 associations coincided with the previously reported quantitative trait loci (QTLs), the remainder were newly identified QTLs/genes. The QTLs identified in this study will potentially facilitate improvement of fiber yield and quality in the future cotton molecular breeding programs.

  19. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion.

    PubMed

    Wu, Mingquan; Yang, Chenghai; Song, Xiaoyu; Hoffmann, Wesley Clint; Huang, Wenjiang; Niu, Zheng; Wang, Changyao; Li, Wang; Yu, Bo

    2018-01-31

    To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusion approach (ISTDFA) was employed to combine 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Different Vegetation Index (NDVI) and 10-m Sentinetl-2 NDVI data to generate a synthetic Sentinel-2 NDVI time series for monitoring this disease. Then, the phenology of healthy cotton and infected cotton was modeled using a logistic model. Finally, several phenology parameters, including the onset day of greenness minimum (OGM), growing season length (GLS), onset of greenness increase (OGI), max NDVI value, and integral area of the phenology curve, were calculated. The results showed that ISTDFA could be used to combine time series MODIS and Sentinel-2 NDVI data with a correlation coefficient of 0.893. The logistic model could describe the phenology curves with R-squared values from 0.791 to 0.969. Moreover, the phenology curve of infected cotton showed a significant difference from that of healthy cotton. The max NDVI value, OGM, GSL and the integral area of the phenology curve for infected cotton were reduced by 0.045, 30 days, 22 days, and 18.54%, respectively, compared with those for healthy cotton.

  20. PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads.

    PubMed

    Levendis, Y A; Atal, A; Carlson, J B; Quintana, M D

    2001-01-01

    This is a laboratory investigation on the emissions from batch combustion of representative infectious ("red bag") medical waste components, such as medical examination latex gloves and sterile cotton pads. Plastics and cloth account for the majority of the red bag wastes by mass and, certainly, by volume. An electrically heated, horizontal muffle furnace was used for batch combustion of small quantities of shredded fuels (0.5-1.5 g) at a gas temperature of approximately 1000 degrees C. The residence time of the post-combustion gases in the furnace was approximately 1 s. At the exit of the furnace, the following emissions were measured: CO, CO2, NOx, particulates and polynuclear aromatic compounds (PACs). The first three gaseous emissions were measured with continuous gas analyzers. Soot and PAC emissions were simultaneously measured by passing the furnace effluent through a filter (to collect condensed-phase PACs) and a bed of XAD-4 adsorbent (to capture gaseous-phase PACs). Analysis involved soxhlet extraction, followed by gas chromatography-mass spectrometry (GC-MS). Results were contrasted with previously measured emissions from batch combustion of pulverized coal and tire-derived fuel (TDF) under similar conditions. Results showed that the particulate soot) and cumulative PAC emissions from batch combustion of latex gloves were more than an order of magnitude higher than those from cotton pads. The following values are indicative of the relative trends (but not necessarily absolute values) in emission yields: 26% of the mass of the latex was converted to soot, 11% of which was condensed PAC. Only 2% of the mass of cotton pads was converted to soot, and only 3% of the weight of that soot was condensed PAC. The PAC yields from latex were comparable to those from TDF. The PAC yields from cotton were higher than those from coal. A notable exception to this trend was that the three-ring gas-phase PAC yields from cotton were more significant than those from latex. Emission yields of CO and CO2 from batch combustion of cotton were, respectively, comparable and higher than those from latex, despite the fact that the carbon content of cotton was half that of latex. This is indicative of the more effective combustion of cotton. Nearly all of the mass of carbon of cotton gasified to CO and CO2 while only small fractions of the carbon in latex were converted to CO2 and CO (20% and 10%, respectively). Yields of NOx from batch combustions of latex and cotton accounted for 15% and 12%, respectively, of the mass of fuel nitrogen indicating that more fuel nitrogen was converted to NOx in the former case, possibly due to higher flame temperatures. No SO2 emissions were detected, indicating that during the fuel-rich combustion of latex, its sulfur content was converted to other compounds (such as H2S) or remained in the soot.

  1. Effect of simultaneous drought stress and root-knot nematode infection on cotton yield and fiber quality

    USDA-ARS?s Scientific Manuscript database

    Both drought stress and root-knot nematode (Meloidogyne incognita) infection can reduce cotton yield, and drought can affect fiber quality, but it not known what effect the nematodes have on fiber quality. To determine whether nematode parasitism affects fiber quality and whether the combined effec...

  2. Enhanced-efficiency fertilizer effects on cotton yield and quality in the Coastal Plains

    USDA-ARS?s Scientific Manuscript database

    Interest in the use of enhanced-efficiency N fertilizer (EENFs) sources has increased in recent years due to the potential of these new EENF sources to increase crop yield, while at the same time decreasing N loss from agricultural fields. The efficacy of these fertilizer sources on cotton productio...

  3. Soybean yield and nutrient utilization following long-term pelletized broiler litter application to cotton

    USDA-ARS?s Scientific Manuscript database

    Broiler litter may have long-lasting plant growth benefits after application is terminated. A study was conducted to determine the residual effects of pelletized litter relative to inorganic fertilizer applied to cotton in previous years on growth and yield of soybean. Experimental design was a rand...

  4. Effect of foliar-applied salicylic acid on cotton flowering, boll retention, and yield

    Treesearch

    J.J. Heitholt; J.H. Schmidt; Joseph E. Mulrooney

    2001-01-01

    Salicylic acid (2-hydroxybenzoic acid) may help regulate several plant functions, including systemic acquired resistance to pathogens and the formation of flowers. The objective of this study was to characterize the effects of foliar-applied salicylic acid on cotton (Gossypium hirsutum L.) flowering, boll retention, and yield. Field experiments were...

  5. Comparison of hydrocarbon yields in cotton from field grown vs. greenhouse grown plants

    USDA-ARS?s Scientific Manuscript database

    Four accession of cotton (SA-1181, 1403, 1419, and 2269) were grown both in field conditions and a greenhouse to compare the environmental effects on leaf biomass, % yield of hydrocarbons (HC), and total HC (g HC /g leaves) under natural and controlled (protected) conditions. Leaf biomass was simi...

  6. Responses of reniform nematode and browntop millet to tillage, cover crop, and herbicides in cotton

    USDA-ARS?s Scientific Manuscript database

    Cropping practices that reduce competition from reniform nematode (Rotylenchulus reniformis) and browntop millet (Urochlora ramosum) may help minimize losses in cotton (Gossypium hirsutum). The impacts of tillage, rye cover crop, and preemergence and postemergence herbicides on cotton yields, renifo...

  7. Economic Cotton Production over Irrigation Rates in the Southeast United States

    USDA-ARS?s Scientific Manuscript database

    Regardless of location, water availability affects Cotton (Gossypium hirsutum L.) yield potential and economic stability. Irrigation is used in the Southeast U.S. to supplement rainfall on nearly 50% of cotton acres in Georgia. Rainfall often interferes with the efficiency of irrigation, adding to...

  8. Economic cotton production over irrigation rates in the southeast United States

    USDA-ARS?s Scientific Manuscript database

    Regardless of location, water availability affects Cotton (Gossypium hirsutum L.) yield potential and economic stability. Irrigation is used in the Southeast U.S. to supplement rainfall on nearly 50% of cotton acres in Georgia. Rainfall often interferes with the efficiency of irrigation, adding to...

  9. Transgenic cotton: from biotransformation methods to agricultural application.

    PubMed

    Zhang, Baohong

    2013-01-01

    Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease-resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cotton are the two dominant transgenic cottons in the transgenic cotton market.

  10. Plant growth stage-specific injury and economic injury level for verde plant bug, Creontiades signatus (Hemiptera: Miridae), on cotton: effect of bloom period of infestation.

    PubMed

    Brewer, Michael J; Anderson, Darwin J; Armstrong, J Scott

    2013-10-01

    Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (< 1% [2012] to 12% [2011] of bolls with disease symptoms), and drought stress persisted throughout the study. Caging effect was minimal: a 10% fruit retention decline was associated with caging, and the effect was not detectable in the other measurements. Overall, reduced fruit retention and boll load caused by verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.

  11. FACE: Free-Air CO{sub 2} Enrichment for plant research in the field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrey, G.R.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.

  12. FACE: Free-Air CO[sub 2] Enrichment for plant research in the field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrey, G.R.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.

  13. Residual effect of poultry litter applications on no-till cotton lint yield

    USDA-ARS?s Scientific Manuscript database

    In no-till cotton production systems, the potential residual benefits from prior years of poultry litter application are not well known. This study investigated the productivity of no-till cotton fertilized or unfertilized with synthetic N in years subsequent to the last application of suboptimal po...

  14. Comparative genetic analysis of lint yield and fiber quality among single, three-way, and double crosses in upland cotton

    USDA-ARS?s Scientific Manuscript database

    Decisions on the appropriate crossing systems to employ for genetic improvement of quantitative traits are critical in cotton breeding. Determination of genetic variance for lint yield and fiber quality in three different crossing schemes, i.e., single cross (SC), three-way cross (TWC), and double ...

  15. [Compensation effect of cotton growth and development after soil salt content reduction at bud stage].

    PubMed

    Guo, Wen-Qi; Zhang, Pei-Tong; Li, Chun-Hong; Yin, Jian-Mei; Han, Xiao-Yong

    2014-01-01

    To elucidate the dynamic characteristics of cotton growth and development after soil salt content reduction (SD) at bud stage and its effect on yield formation, a pot experiment was conducted in which soil salt content was declined from 5 per thousand level to 2 per thousand level at cotton bud stage. The results showed that the plant height, biomass, total fruit branch and fruit node number, boll number, boll mass of cotton plants increased after soil salt content reduction at bud stage. The distribution proportions of biomass in root and boll decreased after soil salt content reduction, however, the distribution proportions of biomass in leaf, main stem and fruit branch were on the rise. The growth rate of cotton plant increased after soil salt content reduction. Plant dry matter accumulation rate of SD cotton exceeded CK cotton at 22 days after soil salt content reduction. The response of different organs of cotton plant were different to soil salt content reduction, the plant height was the earliest, followed by the fruit branch and fruit node formation, and the bud and boll were the latest, which indicated that the compensation effect of cotton growth and development after soil salt content reduction at bud stage firstly appeared on the formation and growth of new leaf, fruit branch and fruit node, and on this basis, gradually brought out yield compensation.

  16. Allelopathic influence of a wheat or rye cover crop on growth and yield of no-till cotton

    USDA-ARS?s Scientific Manuscript database

    TECHNICAL ABSTRACT No-till planting cotton into small grain cover crops has many benefits including reducing soil erosion and allelopathic suppression of weeds. It is suggested that the potentials of allelopathy on cotton plants. Nevertheless, little is known about the actual effects of alleloche...

  17. Furrow diking and the economic water use efficiency of irrigated cotton in the southeast United States

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) production in the Southeast United States can be limited by periodic drought. Irrigation and furrow diking tillage may improve economic yield and water use efficiency of cotton. Timing of rainfall may interfere with the efficiency of irrigation. Field studies were c...

  18. Transcriptional Profiling in Cotton Associated with Bacillus Subtilis (UFLA285) Induced Biotic-Stress Tolerance

    USDA-ARS?s Scientific Manuscript database

    Abstract Lint yield and quality in cotton is greatly affected by water-deficit stress. The principal aim of this study was to identify cotton genes associated metabolic pathways involved in the water-deficit stress response. Gene expression profiles were developed for leaf and root tissues subject...

  19. Intumescent flame-retardant cotton produced by tannic acid and sodium hydroxide

    USDA-ARS?s Scientific Manuscript database

    This study showed that tannic acid can form intumescent flame-retardant coating on cotton nonwoven fabric with an aid of NaOH. Tannic acid alone altered the thermal patterns of the pyrolysis and combustion of cotton and increased the char yield, but its improvement in limiting oxygen index (LOI) wa...

  20. Assessing the Economic Impact of inversion tillage, cover crops, and herbicide regimes in palmer amaranth (Amaranthus palmeri) infested cotton

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) producers in Alabama and across the Cotton Belt are faced with a rapidly expanding problem that decreases yields and increases production costs: herbicide-resistant weeds. Producers are increasingly relying on production methods that raise production costs, such as add...

  1. Endotoxins in cotton: washing effects and size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olenchock, S.A.; Mull, J.C.; Jones, W.G.

    1983-01-01

    Endotoxin contamination was measured in washed and unwashed cottons from three distinct growing areas, California, Mississippi, and Texas. The data show differences in endotoxin contamination based upon the geographic source of the cotton. It is also shown that washing bulk cotton before the carding process results in lower endotoxin in the cotton dust. Washing conditions can affect the endotoxin levels, and all size fractions of the airborne dust contain quantifiable endotoxin contamination. Endotoxin analyses provide a simple and reliable method for monitoring the cleanliness of cotton or airborne cotton dusts.

  2. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    PubMed

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative pan evaporation with Kp (the Ko was taken as 0.5, 0.75, 0.85, and 0.75 at squaring stage, early blossoming, full-blossoming, and late blossoming stage, respectively), which could be the high efficient irrigation index to obtain high yield and WUE in drip irrigation cotton field and to save irrigation water resources.

  3. Captures of Boll Weevils (Coleoptera: Curculionidae) in Relation to Trap Distance From Cotton Fields.

    PubMed

    Spurgeon, Dale W

    2016-12-01

    The boll weevil (Anthonomus grandis grandis Boheman) has been eradicated from much of the United States, but remains an important pest of cotton (Gossypium spp.) in other parts of the Americas. Where the weevil occurs, the pheromone trap is a key tool for population monitoring or detection. Traditional monitoring programs have placed traps in or near the outermost cotton rows where damage by farm equipment can cause loss of trapping data. Recently, some programs have adopted a trap placement adjacent to but outside monitored fields. The effects of these changes have not been previously reported. Captures of early-season boll weevils by traps near (≤1 m) or far (7-10 m) from the outermost cotton row were evaluated. In 2005, during renewed efforts to eradicate the boll weevil from the Lower Rio Grande Valley of Texas, far traps consistently captured more weevils than traps near cotton. Traps at both placements indicated similar patterns of early-season weevil captures, which were consistent with those previously reported. In 2006, no distinction between trap placements was detected. Early-season patterns of captures in 2006 were again similar for both trap placements, but captures were much lower and less regular compared with those observed in 2005. These results suggest magnitude and likelihood of weevil capture in traps placed away from cotton are at least as high as for traps adjacent to cotton. Therefore, relocation of traps away from the outer rows of cotton should not negatively impact ability to monitor or detect the boll weevil. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by a US Government employee and is in the public domain in the US.

  4. Modelling the structural response of cotton plants to mepiquat chloride and population density

    PubMed Central

    Gu, Shenghao; Evers, Jochem B.; Zhang, Lizhen; Mao, Lili; Zhang, Siping; Zhao, Xinhua; Liu, Shaodong; van der Werf, Wopke; Li, Zhaohu

    2014-01-01

    Background and Aims Cotton (Gossypium hirsutum) has indeterminate growth. The growth regulator mepiquat chloride (MC) is used worldwide to restrict vegetative growth and promote boll formation and yield. The effects of MC are modulated by complex interactions with growing conditions (nutrients, weather) and plant population density, and as a result the effects on plant form are not fully understood and are difficult to predict. The use of MC is thus hard to optimize. Methods To explore crop responses to plant density and MC, a functional–structural plant model (FSPM) for cotton (named CottonXL) was designed. The model was calibrated using 1 year's field data, and validated by using two additional years of detailed experimental data on the effects of MC and plant density in stands of pure cotton and in intercrops of cotton with wheat. CottonXL simulates development of leaf and fruits (square, flower and boll), plant height and branching. Crop development is driven by thermal time, population density, MC application, and topping of the main stem and branches. Key Results Validation of the model showed good correspondence between simulated and observed values for leaf area index with an overall root-mean-square error of 0·50 m2 m−2, and with an overall prediction error of less than 10 % for number of bolls, plant height, number of fruit branches and number of phytomers. Canopy structure became more compact with the decrease of leaf area index and internode length due to the application of MC. Moreover, MC did not have a substantial effect on boll density but increased lint yield at higher densities. Conclusions The model satisfactorily represents the effects of agronomic measures on cotton plant structure. It can be used to identify optimal agronomic management of cotton to achieve optimal plant structure for maximum yield under varying environmental conditions. PMID:24489020

  5. A Web Application for Cotton Irrigation Management on The US Southern High Plains. Part I: Crop Yield Modeling and Profit Analysis

    USDA-ARS?s Scientific Manuscript database

    Irrigated cotton (Gossypium Hirsutum L.) production is a central part of west Texas agriculture that depends on the essentially non-renewable water resource of the Ogallala aquifer. Web-based decision support tools that estimate the profit effects of irrigation for cotton under varying lint price, p...

  6. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton

    USDA-ARS?s Scientific Manuscript database

    The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton in mid-southern United States and causes yield reduction, and deprivation in fiber fitness. A greenhouse colony of the spider mite was used to infest cotton and pinto beans at the three-leaf and trifoliate stages, r...

  7. 1-MCP EFFECTS ON ANTIOXIDANT ACTIVITY AND GENE EXPRESSION OF ACC-SYNTHASE AND ACC-OXIDASE IN COTTON FLOWERS

    USDA-ARS?s Scientific Manuscript database

    Cotton remains an important cash crop for farmers in the southern United States. When temperatures rise above 32oC the in vivo fertilization efficiency of cotton is reduced resulting in decreased seed production and potentially decreased yields. Under stress, the plant hormone ethylene is manufact...

  8. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance

    PubMed Central

    Trapero, Carlos; Wilson, Iain W.; Stiller, Warwick N.; Wilson, Lewis J.

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars. PMID:27148323

  9. Registration of cotton germplasm USDA MD 16-1 and USDA MD 16-2 with enhanced lint yield and fiber quality.

    USDA-ARS?s Scientific Manuscript database

    Upland cotton germplasm USDA MD 16-1 (Reg. No. __ and PI ___ ), and USDA MD 16-2 (Reg. No. ___ and PI___) (Gossypium hirsutum L.), have enhanced yield and good fiber quality. These germplasm lines were developed by the USDA-ARS, Stoneville, MS and released in 2017. Two crosses, MD 25-51 X MD 10-9-1 ...

  10. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum).

    PubMed

    Wen, Tianwang; Wu, Mi; Shen, Chao; Gao, Bin; Zhu, De; Zhang, Xianlong; You, Chunyuan; Lin, Zhongxu

    2018-02-24

    Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc 1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiner, Brienne N.; Morley, Shannon M.; Beacham, Tere A.

    Polonium-210 is a radioactive isotope often used to study sedimentation processes, food chains, aerosol behavior, and atmospheric circulations related to environmental sciences. Materials for the analysis of Po-210 range from tobacco leaves or cotton fibers, to soils and sediments. The purpose of this work was to determine polonium losses from a variety of sample types (soil, cotton fiber, and air filter) due to digestion technique, chemical separation, and deposition method for alpha energy analysis. Results demonstrated that yields from a perchloric acid wet-ash were similar to that from a microwave digestion. Both were greater than the dry-ash procedure. The poloniummore » yield from the perchloric acid wet ash was 87 ± 5%, the microwave digestion had a yield of 100 ± 7%, and the dry ash had a yield of 38 ± 5%. The chemical separation of polonium by an anion exchange resin was used only on the soil samples due to the complex nature of this sample. The yield of Po-209 tracer after chemical separation and deposition for alpha analysis was 83 ± 7% for the soil samples. Spontaneous deposition yields for the cotton and air filters were 87 ± 4% and 92 ± 6%, respectively. Based on the overall process yields for each sample type the amount of Po-210 was quantified using alpha energy analysis. The soil contained 0.18 ± 0.08 Bq/g, the cotton swipe contained 0.7 mBq/g, and the air filter contained 0.04 ± 0.02 mBq/g. High and robust yields of polonium are possible using a suitable digestion, separation, and deposition method.« less

  12. A web application for cotton irrigation management on the U.S. southern high plains. Part I: Crop yield modeling and profit analysis

    USDA-ARS?s Scientific Manuscript database

    Irrigated cotton (Gossypium Hirsutum L.) production is a central part of west Texas agriculture that depends on the essentially non-renewable water resource of the Ogallala aquifer. Web-based decision support tools that estimate the profit effects of irrigation for cotton under varying lint price, p...

  13. Quantitative trait locus mapping of drought and salt tolerance in as introgressed recombinant inbred line population of upland cotton under the greenhouse and feild conditions

    USDA-ARS?s Scientific Manuscript database

    Drought and salt tolerances are complex traits and controlled by multiple genes, environmental factors and their interactions. Drought and salt stresses can result in more than 50% yield loss in Upland cotton (Gossypium hirsutum L.). G. barbadense L. (the source of Pima cotton) carries desirable tra...

  14. Verde plant bug, Creontiades signatus (Hemiptera: Miridae) effects of insect density and bloom period of infestation on cotton damage and yield

    USDA-ARS?s Scientific Manuscript database

    The verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), has emerged as a threat to cotton in South Texas, causing boll damage similar to boll-feeding stink bugs (Hemiptera: Pentatomidae). Verde plant bugs were released into caged cotton for a one-week period to characterize the effec...

  15. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates.

    PubMed

    Li, Xiaogang; Liu, Biao; Wang, Xingxiang; Han, Zhengmin; Cui, Jinjie; Luo, Junyu

    2012-03-01

    Impacts on soil invertebrates are an important aspect of environmental risk assessment and post-release monitoring of transgenic insect-resistant plants. The purpose of this study was to research and survey the effects of transgenic insect-resistant cottons that had been planted over 10 years on the abundance and community structure of soil invertebrates under field conditions. During 3 consecutive years (2006-2008), eight common taxa (orders) of soil invertebrates belonging to the phylum Arthropoda were investigated in two different transgenic cotton fields and one non-transgenic cotton field (control). Each year, soil samples were taken at four different growth stages of cotton (seedling, budding, boll forming and boll opening). Animals were extracted from the samples using the improved Tullgren method, counted and determined to the order level. The diversity of the soil fauna communities in the different fields was compared using the Simpson's, Shannon's diversity indices and evenness index. The results showed a significant sampling time variation in the abundance of soil invertebrates monitored in the different fields. However, no difference in soil invertebrate abundance was found between the transgenic cotton fields and the control field. Both sampling time and cotton treatment had a significant effect on the Simpson's, Shannon's diversity indices and evenness index. They were higher in the transgenic fields than the control field at the growth stages of cotton. Long-term cultivation of transgenic insect-resistant cottons had no significant effect on the abundance of soil invertebrates. Collembola, Acarina and Araneae could act as the indicators of soil invertebrate in this region to monitor the environmental impacts of transgenic plants in the future. This journal is © The Royal Society of Chemistry 2012

  16. Satellite-based monitoring of cotton evapotranspiration

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  17. Scoping the potential use of microbial inoculants in cotton production systems

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2014-05-01

    There is a growing body of research showing that beneficial microbes can enhance soil productivity and yield in cropping systems. To appreciate the potential uses of beneficial microbes for increasing yield, it is necessary to understand how the microbes promote the growth of plants in terms of biofertilization and disease control, what are the mechanisms employed, what are the challenges for the isolation and use of plant growth promoting microbes, as well as what might hinder their successful application. This presentation critically reviews information on microbial inoculants, giving ample of examples of identified plant growth promoting microbes (including commercial products) and how they may benefit the plant, with particular focus on cotton and cotton related systems.

  18. Cumulative release characteristics of controlled-release nitrogen and potassium fertilizers and their effects on soil fertility, and cotton growth

    PubMed Central

    Yang, Xiuyi; Geng, Jibiao; Li, Chengliang; Zhang, Min; Tian, Xiaofei

    2016-01-01

    To investigate the interacting effects of polymer coated urea (PCU) and polymer coated potassium chloride (PCPC) on cotton growth, an experiment was conducted with containerized plants in 2014 and 2015. There were two kinds of nitrogen fertilizer, PCU and urea, which were combined with PCPC at three application rates (40, 80 and 120 kg ha−1). The kinds of nitrogen fertilizer formed the main plot, while individual rates of PCPC were the subplots. The results suggested N and K release patterns for PCU and PCPC in the soil were closely matched to the N and K requirements by cotton. Soil inorganic nitrogen contents significantly increased by using PCU instead of urea, and the same trend was observed with soil available potassium contents, which also had increased rates. Meanwhile, the number of bolls and lint yields of cotton in the PCU treatments were 4.9–35.3% and 2.9–40.7% higher than from urea treatments. Lint yields also increased by 9.1–12.7% with PCPC80 and PCPC120 treatments compared with PCPC40 treatment at the same nitrogen type. Hence, application of PCU combined with 80 kg ha−1 of PCPC fertilizer on cotton increased the yields and fertilizer use efficiencies in addition to improving fiber quality and delaying leaf senescence. PMID:27966638

  19. Cocoa/Cotton Comparative Genomics

    USDA-ARS?s Scientific Manuscript database

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  20. Chemical imaging of secondary cell wall development in cotton fibers using a mid-infrared focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    Market demands for cotton varieties with improved fiber properties also call for the development of fast, reliable analytical methods for monitoring fiber development and measuring their properties. Currently, cotton breeders rely on instrumentation that can require significant amounts of sample, w...

  1. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    PubMed Central

    Zhang, Hongzhi; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2017-01-01

    There is a need to optimize water-nitrogen (N) applications to increase seed cotton yield and water use efficiency (WUE) under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1), deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2), pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3), pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4)] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1), 2:8 (N2)] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD), root volume density (RVD), root mass density (RMD), and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP) in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE. PMID:28611817

  2. Biomass Accumulation, Photosynthetic Traits and Root Development of Cotton as Affected by Irrigation and Nitrogen-Fertilization

    PubMed Central

    Chen, Zongkui; Tao, Xianping; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2018-01-01

    Limitations of soil water and nitrogen (N) are factors which cause a substantial reduction in cotton (Gossypium hirsutum L.) yield, especially in an arid environment. Suitable management decisions like irrigation method and nitrogen fertilization are the key yield improvement technologies in cotton production systems. Therefore, we hypothesized that optimal water-N supply can increase cotton plant biomass accumulation by maintaining leaf photosynthetic capacity and improving root growth. An outdoor polyvinyl chloride (PVC) tube study was conducted to investigate the effects of two water-N application depths, i.e., 20 cm (H20) or 40 cm (H40) from soil surface and four water-N combinations [deficit irrigation (W55) and no N (N0) (W55N0), W55 and moderate N (N1) (W55N1), moderate irrigation (W75) and N0 (W75N0), W75N1] on the roots growth, leaf photosynthetic traits and dry mass accumulation of cotton crops. H20W55N1 combination increased total dry mass production by 29–82% and reproductive organs biomass by 47–101% compared with other counterparts. Root protective enzyme and nitrate reductase (NR) activity, potential quantum yield of photosystem (PS) II (Fv/Fm), PSII quantum yield in the light [Y(II)] and electron transport rate of PSII were significantly higher in H20W55N1 prior to 82 days after emergence. Root NR activity and protective enzyme were significantly correlated with chlorophyll, Fv/Fm, Y(II) and stomatal conductance. Hence, shallow irrigation (20 cm) with moderate irrigation and N-fertilization application could increase cotton root NR activity and protective enzyme leading to enhance light capture and photochemical energy conversion of PSII before the full flowering stage. This enhanced photoassimilate to reproductive organs. PMID:29497435

  3. Preliminary comparisons of portable near infrared (nir) instrumentation for laboratory measurements of cotton fiber micronaire

    USDA-ARS?s Scientific Manuscript database

    Micronaire is a key quality and processing parameter for cotton fiber. A program was implemented to determine the capabilities of portable Near Infrared (NIR) instrumentation to monitor cotton fiber micronaire both in the laboratory and in/near the field. Previous evaluations on one NIR unit demon...

  4. Using airborne imagery to monitor cotton root rot infection before and after fungicide treatment

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a severe soilborne disease that has affected cotton production for over a century. Recent research has shown that a commercial fungicide, flutriafol, has potential for the control of this disease. To effectively and economically control this disease, it is necessary to identify in...

  5. Evaluation of remote sensing in control of pink cotton bollworm

    NASA Technical Reports Server (NTRS)

    Lewis, L. N. (Principal Investigator); Coleman, V. B.

    1973-01-01

    The author has identified the following significant results. The U-2 underflight photography has shown that the critical stages in cotton plow down (defoliation, shredding, and plowing) can be identified. This result will prove invaluable to a user agency whose purpose is to monitor the cotton season for compliance with California State law.

  6. Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The amount of secondary cell wall (SCW) cellulose in the fiber affects the quality and commercial value of cotton. Accurate assessments of SCW cellulose are essential for improving cotton fibers. Fourier Transform Infrared (FT-IR) spectroscopy enables distinguishing SCW from other cell wall componen...

  7. Harvester-based sensing system for cotton fiber-quality mapping

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture in cotton production attempts to maximize profitability by exploiting information on field spatial variability to optimize the fiber yield and quality. For precision agriculture to be economically viable, collection of spatial variability data within a field must be automated a...

  8. Cultivar variation in cotton photosynthetic performance under different temperature regimes

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis when plants were grown in the field under...

  9. Site Specific Management of Cotton Production in the United States

    USDA-ARS?s Scientific Manuscript database

    Site-specific management or precision agriculture, as it is evolving in large-scale crop production, offers promising new methods for managing cotton production for optimized yields, maximized profitability, and minimized environmental pollution. However, adaptation of site-specific theory and meth...

  10. Intercropping With Fruit Trees Increases Population Abundance and Alters Species Composition of Spider Mites on Cotton.

    PubMed

    Li, Haiqiang; Pan, Hongsheng; Wang, Dongmei; Liu, Bing; Liu, Jian; Zhang, Jianping; Lu, Yanhui

    2018-05-05

    With the recent increase in planting of fruit trees in southern Xinjiang, the intercropping of fruit trees and cotton has been widely adopted. From 2014 to 2016, a large-scale study was conducted in Aksu, an important agricultural area in southern Xinjiang, to compare the abundance and species composition of spider mites in cotton fields under jujube-cotton, apple-cotton, and cotton monocrop systems. The abundance of spider mites in cotton fields under both intercropping systems was generally higher than in the cotton monocrop. The species composition of spider mites also differed greatly between cotton intercropped with apple or jujube compared to the cotton monocrop. The relative proportion of Tetranychus truncates Ehara (Acari: Tetranychidae) in the species complex generally increased while that of another spider mite, Tetranychus dunhuangensis Wang (Acari: Tetranychidae), decreased under fruit tree-cotton systems. More attention should be paid to the monitoring and management of spider mites, especially T. truncates in this important region of China.

  11. Variations in seed protein content of cotton (Gossypium hirsutum L.) mutant lines by in vivo and in vitro mutagenesis.

    PubMed

    Muthusamy, Annamalai; Jayabalan, Narayanasamy

    2013-01-01

    The present work describes the influence of gamma irradiation (GR), ethyl methane sulphonate (EMS) and sodium azide (SA) treatment on yield and protein content of selected mutant lines of cotton. Seeds of MCU 5 and MCU 11 were exposed to gamma rays (GR), ethyl methane sulphonate (EMS) and sodium azide (SA). Lower dose of gamma irradiation (100-500 Gy), 10-50 mM EMS and SA at lower concentration effectively influences in improving the yield and protein content. Significant increase in yield (258.9 g plant(-1)) and protein content (18.63 mg g(-1) d. wt.) as compared to parental lines was noted in M2 generations. During the subsequent field trials, number of mutant lines varied morphologically in terms of yield as well as biochemical characters such as protein. The selected mutant lines were bred true to their characters in M3 and M4 generations. The significant increase in protein content and profiles of the mutant lines with range of 10.21-18.63 mg g(-1). The SDS-PAGE analysis of mutant lines revealed 9 distinct bands of different intensities with range of 26-81 kDa. The difference in intensity of bands was more (41, 50 and 58 kDa) in the mutant lines obtained from in vitro mutation than in vivo mutation. Significance of such stimulation in protein content correlated with yielding ability of the mutant lines of cotton in terms of seed weight per plant. The results confirm that in cotton it is possible to enhance the both yield and biochemical characters by in vivo and in vitro mutagenic treatments.

  12. Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections.

    PubMed

    Qin, Hongde; Chen, Min; Yi, Xianda; Bie, Shu; Zhang, Cheng; Zhang, Youchang; Lan, Jiayang; Meng, Yanyan; Yuan, Youlu; Jiao, Chunhai

    2015-01-01

    Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1-2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.

  13. Boll weevil (Anthonomus grandis) population genomics as a tool for monitoring and management

    USDA-ARS?s Scientific Manuscript database

    Despite the success of eradication efforts across most of the cotton-producing regions of the U.S., the cotton boll weevil (Anthonomus grandis grandis Boheman) remains a major pest of cotton in much of the New World. The area along the Texas border with northern Mexico has been a particularly troub...

  14. Single and multiple in-season measurements as indicators of at-harvest cotton boll damage caused by verde plant bug (Hemiptera: Miridae)

    USDA-ARS?s Scientific Manuscript database

    The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot development provided opportunity to assess if a single in-season measurement had value in evaluati...

  15. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton.

    PubMed

    Martin, Daniel E; Latheef, Mohamed A

    2018-02-01

    The two-spotted spider mite, Tetranychus urticae Koch, is an important pest of cotton in mid-southern USA and causes yield reduction and deprivation in fiber fitness. Cotton and pinto beans grown in the greenhouse were infested with spider mites at the three-leaf and trifoliate stages, respectively. Spider mite damage on cotton and bean canopies expressed as normalized difference vegetation index indicative of changes in plant health was measured for 27 consecutive days. Plant health decreased incrementally for cotton until day 21 when complete destruction occurred. Thereafter, regrowth reversed decline in plant health. On spider mite treated beans, plant vigor plateaued until day 11 when plant health declined incrementally. Results indicate that pinto beans were better suited as a host plant than cotton for rearing T. urticae in the laboratory.

  16. The influences of piperazine-phosphonates derivatives on flame retardancy and thermal behaviors of cotton cellulose

    USDA-ARS?s Scientific Manuscript database

    In an effort to create the environmentally-friendly flame retardants (FRs) for cotton cellulose, two phosphoramidates derivatives, tetraethyl piperazine-1,4-diyldiphosphonate (PDP) and diethyl 4-methylpiperazin-1-ylphosphoramidate (PAP), have been developed. Both were synthesized in high yield and ...

  17. The conundrum of chemical boll weevil control in subtropical regions

    USDA-ARS?s Scientific Manuscript database

    The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a tropical Mesoamerican insect that invaded the United States in 1893, spreading across the Cotton Belt as the key pest of cotton and causing billions of dollars in yield losses and insecticide-based control efforts;...

  18. Crop juxtaposition affects cotton fiber quality in Georgia farmscapes.

    PubMed

    Toews, Michael D; Shurley, W Donald

    2009-08-01

    Phytophagous stink bugs (Hemiptera: Pentatomidae), including green stink bug [Acrosternum hilare (Say)], southern green stink bug [Nezara viridula (L.)], and brown stink bug [Euschistus servus (Say)], have become a serious production issue for southeastern U.S. cotton, Gossypium hirsutum L., growers. To investigate how different agronomic crops may affect stink bug damage and fiber quality in neighboring cotton fields, replicated 1.6-2.0-ha trials were planted with corn (Zea mays L.), peanut (Arachis hypogaea L.), and soybean [Glycine max (L.) Merr.] bordering a centrally located cotton plot (each of the four crops composed of approximately 0.4-0.5 ha per trial). Three trials were conducted in 2007 and three additional trials were conducted in 2008. Stink bug damage in the cotton plot was sampled weekly during weeks 3 through 6 of bloom at distances of 0.5, 5.3, 9.6, and 18.7 m from the adjacent crop. At the end of the year, representative lint samples at distances of 0.5, 9.6, 18.7, and 31.8 m from each adjacent crop were mechanically harvested, ginned, and classed. Results show that boll damage, seedcotton yield, gin turnout, fiber color, and lint value were negatively affected when the cotton was located adjacent to peanut and soybean. Regardless of the adjacent crop, there were no differences among yield and fiber quality parameters comparing seedcotton obtained 18.7 m from the plot edge and samples obtained from the middle of the cotton plot (approximately 31.8 m from an adjacent crop). These data suggest that integrated pest management programs for the stink bug complex in cotton may include farmscape level planning and targeted interventions as opposed to a crop specific management approach.

  19. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less

  20. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield.

    PubMed

    Ma, Zhiying; He, Shoupu; Wang, Xingfen; Sun, Junling; Zhang, Yan; Zhang, Guiyin; Wu, Liqiang; Li, Zhikun; Liu, Zhihao; Sun, Gaofei; Yan, Yuanyuan; Jia, Yinhua; Yang, Jun; Pan, Zhaoe; Gu, Qishen; Li, Xueyuan; Sun, Zhengwen; Dai, Panhong; Liu, Zhengwen; Gong, Wenfang; Wu, Jinhua; Wang, Mi; Liu, Hengwei; Feng, Keyun; Ke, Huifeng; Wang, Junduo; Lan, Hongyu; Wang, Guoning; Peng, Jun; Wang, Nan; Wang, Liru; Pang, Baoyin; Peng, Zhen; Li, Ruiqiang; Tian, Shilin; Du, Xiongming

    2018-05-07

    Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.

  1. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton.

    PubMed

    Long, Qin; Yue, Fang; Liu, Ruochen; Song, Shuiqing; Li, Xianbi; Ding, Bo; Yan, Xingying; Pei, Yan

    2018-05-11

    Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.

  2. A New Epoxy Bis-Phosphonate Crosslinker for Durable Fire Retardancy on Cotton

    USDA-ARS?s Scientific Manuscript database

    A new epoxy bis-phosphonate crosslinker for cotton [2-(dimethoxy-phosphorylmethyl)-oxiranylmethyl]-phosphonic acid dimethyl ester was prepared in two steps from 3-chloro-2-chloromethylpropene in 55% yield. The new monomer was characterized by proton and carbon NMR and GC-mass spectrometry. This cro...

  3. Development of a solar radiation stress index for cotton

    USDA-ARS?s Scientific Manuscript database

    In Mid-South cotton fields, a marked increase in small boll abscission following a progression of cloudy days may be erroneously attributed to effects of arthropod pests. Zhao and Oosterhuis (2000) found that 4 days of shading impacted yield especially during the period of effective flowering and bo...

  4. Variable rate application of nematicides on cotton fields: A promising site-specific management strategy.

    USDA-ARS?s Scientific Manuscript database

    Field tests were conducted to determine if differences in response to nematicide application (i.e., root-knot nematode (RKN) population levels, cotton yield, and profitability) occurred among RKN management zones (MZ). The MZ were delineated using variables related to soil texture, including appare...

  5. Planting geometry and growing season effects on the growth and yield of dryland cotton

    USDA-ARS?s Scientific Manuscript database

    The declining Ogallala Aquifer beneath the Southern High Plains may necessitate dryland crop production and cotton (Gossypium hirsutum L.) is a well-adapted and potentially profitable alternative crop. The limited growing season duration of the Texas Panhandle and southwestern Kansas, however, impos...

  6. Effects of tillage and N fertilizer on cotton growth, yield, and fiber quality

    USDA-ARS?s Scientific Manuscript database

    Increasing restrictions on ammonium nitrate have spurred interest in alternative sources of N fertilizer, including urea-ammonium sulfate (UAS). However, UAS has not been widely tested, particularly in row crop agriculture. A cotton (Gossypium hirsutum L.) field study was conducted in Central Alabam...

  7. Effects of lint cleaning on lint trash particle size distribution

    USDA-ARS?s Scientific Manuscript database

    Cotton quality trash measurements used today typically yield a single value for trash parameters for a lint sample (i.e. High Volume Instrument – percent area; Advanced Fiber Information System – total count, trash size, dust count, trash count, and visible foreign matter). A Cotton Trash Identifica...

  8. Thermal and flame retardant behaviors of cotton fiber treated with phosphoramidate derivatives

    USDA-ARS?s Scientific Manuscript database

    In this research, two phosphoramidate derivatives EHP Diethyl 3-hydroxypropylphos phoramidate and MHP Dimethyl 3-hydroxypropylphos phoramidate were prepared in very high yield and purity by one step procedure and the cotton fabrics treated with them at different levels of add-on (5 - 20 wt %) were c...

  9. Ginning picker and stripper harvested high plains cotton - update

    USDA-ARS?s Scientific Manuscript database

    Texas High Plains cotton has improved over the last ten years with regard to yield and High Volume Instrument (HVI) fiber quality. Harvesting and ginning practices are needed which preserve fiber quality and maximize return to the producer. The objective of this work is to investigate the influence ...

  10. Using remote sensing and soil physical properties for predicting the spatial distribution of cotton lint yield

    USDA-ARS?s Scientific Manuscript database

    Timely reflectance data from cotton (Gossypium hirsutum L.) production fields provide a useful tool for crop health assessment and site-specific crop management decisions. This field study investigated the relationships among site-specific normalized difference vegetation index (NDVI), soil physical...

  11. Biological control as an alternative measure for TPB in Mississippi

    USDA-ARS?s Scientific Manuscript database

    The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois), is a common pest of the main agricultural crops in Mississippi, particularly of cotton in the Mississippi Delta. TPB in cotton is economically important through reductions of crop yield and losses may vary depend on TPB populatio...

  12. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  13. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

  14. Interaction of Endomycorrhizal Fungi, Superphosphate, and Meloidogyne incognita on Cotton in Microplot and Field Studies.

    PubMed

    Smith, G S; Roncadori, R W; Hussey, R S

    1986-04-01

    Microplot and field experiments were conducted to determine the effects of two vesicular-arbuscular mycorrhizal (VAM) fungi, Glomus intraradices (Gi) and Gigaspora margarita (Gm), and dicalcium phosphate (P) on Meloidogyne incognita (Mi) reproduction and seed cotton yield of the Mi-susceptible cotton cultivar, Stoneville 213. In 1983 population densities of Mi juveniles were significantly lower 60 and 90 days after planting in microplots receiving Gi. Mycorrhizal fungi reduced the severity of yield losses to Mi, whereas P fertilization increased yield losses to Mi. In 1984 microplot yields were reduced linearly as nematode inoculum densities increased in treatments of Mi alone, Gm, or P, but the response was curvilinear with Gi. Yield suppressions in the 1984 field experiment occurred only in plots infested with Mi alone. In the 1984 microplots, numbers of Mi juveniles penetrating seedling roots increased Iinearly with increasing nematode inoculum densities and was favored when mycorrhizal fungi or superphosphate were added. Juvenile penetration of roots was negatively correlated with yields in all treatments (r = -0.54 to -0.81) except Gm and with number of bolls in Mi alone (r = -0.85) and P (r = -0.81) treatments. Mycorrhizal fungi can increase host tolerance to M. incognita in field conditions and may function as important biological control agents in soils infested with high population densities of efficient VAM species.

  15. Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review.

    PubMed

    Khan, Aziz; Tan, Daniel Kean Yuen; Munsif, Fazal; Afridi, Muhammad Zahir; Shah, Farooq; Wei, Fan; Fahad, Shah; Zhou, Ruiyang

    2017-10-01

    Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH 3 ) is a central intermediate in plant N metabolism. NH 3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH 3 to glutamate to form glutamine (Gln), and the second step transfers the NH 3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH 3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.

  16. [Ecological fitness of transgenic GAFP cotton and its effects on the field insect community.

    PubMed

    Luo, Jun Yu; Zhang, Shuai; Zhu, Xiang Zhen; Lu, Li Min; Wang, Chun Yi; Li, Chun Hua; Zhang, Li Juan; Wang, Li; Cui, Jin Jie

    2016-11-18

    The ecological fitness of transgenic cotton and its effects on the insect communities in cotton fields is one of the key aspects of the evaluation of the environmental safety of transgenic cotton. New transgenic GAFP (Gastrodia anti-fungal protein) cotton and its parental varieties were used in this study to explore their ecological fitness and their effects on insect community infield in Anyang, Henan Province in 2013 and 2014. The results showed that there was no significant difference in dry mass for transgenic cotton leaves compared to that of parental cotton. Specific leaf areas of transgenic cotton were lowered obviously at seedling stage, while enhanced significantly at budding, flowering and bolling stages relative to parental cotton. The plant height of transgenic cotton was lowered only at seedling stage, and no significant difference was showed between the two cultivars at budding, flowering and bolling stages. No significant differences were discovered on plant branch numbers, bud numbers and falling numbers between the transgenic cotton and control material in any of the four key stages during the cotton growth. However, the number of bolls per plant for transgenic cotton was lower than that of the control cotton at the bolling stage. In the 2nd, 3rd, and 4th generation of cotton bollworm (Helicoverpa armigera), the mortality rate of cotton bollworm and beet armyworm (Spodoptera exigua) of transgenic cotton had no significant difference with parental cotton. Compared to parental cotton, total individuals of insect community, pest sub-communities and enemy sub-communities in transgenic cotton field didn't show any significant difference. The above results showed that after the GAFP gene was imported into cotton, the cotton growth was enhanced significantly, while the whole yield component traits and the insect community in the field were not significantly changed. Our study on the competition of new transgenic cotton and survival of transgenic cotton insect communities in cotton field would provide the theoretical basis for the evaluation of new transgenic cotton and environmental safety, and accumulate scientific data for environmental safety evaluation of the transgenic cotton.

  17. Employing response surface methodology (RSM) to improve methane production from cotton stalk.

    PubMed

    Zhang, Han; Khalid, Habiba; Li, Wanwu; He, Yanfeng; Liu, Guangqing; Chen, Chang

    2018-03-01

    China is the largest cotton producer with the cotton output accounting for 25% of the total world's cotton production. A large quantity of cotton stalk (CS) waste is generated which is burned and causes environmental and ecological problems. This study investigated the anaerobic digestibility of CS by focusing on improving the methane yield by applying central composite design of response surface methodology (RSM). The purpose of this study was to determine the best level of factors to optimize the desired output of methane production from CS. Thus, it was necessary to describe the relationship of many individual variables with one or more response values for the effective utilization of CS. The influences of feed to inoculum (F/I) ratio and organic loading (OL) on methane production were investigated. Results showed that the experimental methane yield (EMY) and volatile solid (VS) removal were calculated to be 70.22 mL/gVS and 14.33% at F/I ratio of 0.79 and organic loading of 25.61 gVS/L, respectively. Characteristics of final effluent showed that the anaerobic system was stable. This research laid a foundation for future application of CS to alleviate the problems of waste pollution and energy output.

  18. Evaluation of cotton stalk hydrolysate for xylitol production.

    PubMed

    Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent

    2016-07-03

    Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.

  19. Inheritance of the ovule fuzzless trait for Gossypium arboreum germplasm line PI 529708

    USDA-ARS?s Scientific Manuscript database

    Background: Cotton is the most important fiber crop and understanding the genetic mechanisms controlling fiber production on cotton seeds can aid in the development of improved varieties with higher lint yields and improved fiber quality. Lint and fuzz are the two types of fiber produced on the cott...

  20. Water use, canopy temperature, lint yield, and fiber quality response of six upland cotton cultivars to water stress

    USDA-ARS?s Scientific Manuscript database

    The declining saturated thickness of the Ogallala Aquifer combined with the unpredictability of precipitation during the growing season in the Southern High Plains has resulted in elevated production risks associated with short-term crop water deficits. Cotton (Gossypium spp.) cultivars that can use...

  1. Relationship between piercing-sucking insect control and internal lint and seed rot in Southeastern cotton (Gossypium hirsutum)

    USDA-ARS?s Scientific Manuscript database

    In 1999 crop consultants scouting for stink bugs (several Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The same symptoms were subsequently reported in fields throughout the southeastern Cotto...

  2. Dissecting genotype × environment interactions and trait correlations present in the Pee Dee cotton germplasm collection following seventy years of plant breeding

    USDA-ARS?s Scientific Manuscript database

    Genotype × environment interactions and trait correlations significantly impact efforts to develop high yield, high quality, and environmentally stable Upland cotton (Gossypium hirsutum L.) cultivars. Knowledge of both can and should be used to design optimal breeding programs and effective selectio...

  3. Cotton Cultivar Response to Root-Knot Nematodes in Two Tillage Regimes, 2008

    USDA-ARS?s Scientific Manuscript database

    Six cotton cultivars were evaluated for yield response to the root-knot nematode in a naturally infested field at E. V. Smith Research and Extension Center, near Shorter, Alabama. The field had a long history of root-knot nematode infestation, and the soil type was classified as a sandy loam. Plots ...

  4. Row and plant spacing effects on growth and yield of dryland cotton where growing season duration is limited

    USDA-ARS?s Scientific Manuscript database

    Irrigation water availability is decreasing in the Southern Great Plains due to continued pumping from the Ogallala aquifer. Cotton (Gossypium hirsutum L.) is a profitable alternative crop suited to sustainable dryland production. However, the growing season of the Texas Panhandle and southwestern...

  5. Planting Cotton in a Crop Residue in a Semiarid Climate: Water Balance and Lint Yield

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) is planted on more land area than any other crop on the Texas High Plains. Much of this area is considered highly erodible and requires a conservation compliance program to participate in government farm programs. Because this region is semiarid and because irrigation ...

  6. Nitrogen fertilizer sources and tillage effects on cotton growth, yield, and fiber quality

    USDA-ARS?s Scientific Manuscript database

    Interest in urea-ammonium sulfate (UAS) as a N fertilizer is increasing due, in part, to increased restriction on ammonium nitrate. This has resulted in UAS being marketed as an alternative fertilizer source; however, UAS has not been widely tested. A cotton (Gossypium hirsutum L.) field study was c...

  7. Reducing pesticide risks to farming communities: cotton farmer field schools in Mali

    PubMed Central

    Settle, William; Soumaré, Mohamed; Sarr, Makhfousse; Garba, Mohamed Hama; Poisot, Anne-Sophie

    2014-01-01

    We provide results from a study of two separate sectors within the cotton-growing region of southern Mali. In one sector, farmers have engaged in a farmer field school (FFS) training programme since 2003—the other not. One goal of the training was the adoption of alternatives to the use of hazardous insecticides, through integrated pest management (IPM) methods. Over an 8-year period, analysis showed that with roughly 20% of the 4324 cotton-growing farm households having undergone training, hazardous insecticide use for the entire sector fell by 92.5% compared with earlier figures and with the second (control) sector. Yields for cotton in both sectors were highly variable over time, but no evidence was found for changes in yield owing to shifts in pest management practices. Evidence is presented for a likely diffusion of new practices having taken place, from FFS participants to non-participants. We discuss strengths and weaknesses of the FFS approach, in general, and highlight the need for improved baseline survey and impact analyses to be integrated into FFS projects. PMID:24535387

  8. [Effects of soil progressive drought during the flowering and boll-forming stage on gas exchange parameters and chlorophyll fluorescence characteristics of the subtending leaf to cotton boll].

    PubMed

    Liu, Zhao-wei; Zhang, Pan; Wang, Rui; Kuai, Jie; Li, Lei; Wang, You-hua; Zhou, Zhi-guo

    2014-12-01

    To investigate the dynamic changes and response mechanisms of gas exchange parameters and fluorescence indices of the subtending leaf to cotton boll under soil progressive drought stress, pot experiments of the hybrid cotton No. 3 were conducted with soil relative water content (SRWC) (75 +/- 5)% as control group, SRWC (60 +/- 5)% and SRWC (45 +/- 5)% as experimental groups dealt with progressive drought for 50 days. Results showed that, the net photosynthetic rate (Pn), stomatal conductance (g(s)) and leaf intercellular CO2 concentration (Ci) decreased while Ls increased under SRWC (60 +/- 5)% for 0-21 days. Furthermore, there was no significant change in chlorophyll fluorescence indices. This indicated that stomatal limitation was the main reason for the reduction of photosynthesis of cotton. In addition, when drought for 21-49 days under SRWC (60 +/- 5)%, Pn kept decreasing, while Ci began to increase and Ls began to decrease. Potential photochemical efficiency (Fv/Fm), quantum yield of photo system II (phi(PSI)) and photochemical quenching coefficient (q(P)) reduced significantly, but non-photochemical quenching coefficient (NPQ) first rose then decreased. Thus, nonstomatal limitation was the main reason why the photosynthesis of cotton reduced. Photosynthetic organization and photosynthetic enzyme system were destroyed, boll setting intensity reduced and the number of boll and yield reduced significantly. Drought for 0-14 days under SRWC (45 +/- 5)% treatment led to sharp decrease in Pn, g(s) and Ci, whereas Ls obviously increased. There was no significant change in Fv/Fm, phi(PSII), q(P), indicating stomatal limitation was the main reason why the photosynthesis of cotton reduced. Pn decreased slowly, while Ci began to rise and Ls began to decline under SRWC (45 +/- 5)% treatment for 14-49 days. Fv/Fm, phi(PSII), q(P) decreased while NPQ rose first then declined, which indicated that nonstomatal limitation worked to reduce the cotton photosynthetic performance. The boll setting intensity reduced significantly and the number of boll and yield declined. The critical stress time of cotton growth in current study was 21 and 14 days respectively under SRWC (60 +/- 5)% and SRWC (45 +/- 5)% treatments during the flowering and boll-forming stage.

  9. Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton.

    PubMed

    Song, Guicheng; Wang, Miaomiao; Zeng, Bin; Zhang, Jing; Jiang, Chenliang; Hu, Qirui; Geng, Guangtao; Tang, Canming

    2015-05-01

    Pollen tube growth in styles was strongly inhibited by temperature above 35 °C, and the yield of cotton decreased because of the adverse effect of high temperatures during square development. High-temperature stress during flowering influences the square development of upland cotton (Gossypium hirsutum L.) and cotton yield. Although it is well known that square development is sensitive to high temperature, high-temperature sensitive stages of square development and the effects of high temperature on pollen tube growth in the styles are unknown. The effect of high temperature on anther development corresponding to pollen vigor is unknown during anther development. The objectives of this study were to identify the stages of square development that are sensitive to high temperatures (37/30 and 40/34 °C), to determine whether the abnormal development of squares influenced by high temperature is responsible for the variation in the in vitro germination percent of pollen grains at anthesis, to identify the effect of high temperature on pollen germination in the styles, and to determine pollen thermotolerance heterosis. Our results show that the stages from the sporogenous cell to tetrad stage (square length <6.0 mm) were the most sensitive to high temperature, and the corresponding pollen viability at anthesis was consistent with the changes in the square development stage. Pollen tube growth in the styles was strongly inhibited by temperature above 35 °C, and the yield of cotton decreased because of the effect of high temperature during square development. The thermotolerance of hybrid F1 pollen showed heterosis, and pollen viability could be used as a criterion for screening for high-temperature tolerance cultivars. These results can be used in breeding to develop new cotton cultivars that can withstand high-temperature conditions, particularly in a future warmer climate.

  10. Evaluation of Methods to Improve the Extraction and Recovery of DNA from Cotton Swabs for Forensic Analysis

    PubMed Central

    Adamowicz, Michael S.; Stasulli, Dominique M.; Sobestanovich, Emily M.; Bille, Todd W.

    2014-01-01

    Samples for forensic DNA analysis are often collected from a wide variety of objects using cotton or nylon tipped swabs. Testing has shown that significant quantities of DNA are retained on the swab, however, and subsequently lost. When processing evidentiary samples, the recovery of the maximum amount of available DNA is critical, potentially dictating whether a usable profile can be derived from a piece of evidence or not. The QIAamp DNA Investigator extraction kit was used with its recommended protocol for swabs (one hour incubation at 56°C) as a baseline. Results indicate that over 50% of the recoverable DNA may be retained on the cotton swab tip, or otherwise lost, for both blood and buccal cell samples when using this protocol. The protocol’s incubation time and temperature were altered, as was incubating while shaking or stationary to test for increases in recovery efficiency. An additional step was then tested that included periodic re-suspension of the swab tip in the extraction buffer during incubation. Aliquots of liquid blood or a buccal cell suspension were deposited and dried on cotton swabs and compared with swab-less controls. The concentration of DNA in each extract was quantified and STR analysis was performed to assess the quality of the extracted DNA. Stationary incubations and those performed at 65°C did not result in significant gains in DNA yield. Samples incubated for 24 hours yielded less DNA. Increased yields were observed with three and 18 hour incubation periods. Increases in DNA yields were also observed using a swab re-suspension method for both cell types. The swab re-suspension method yielded an average two-fold increase in recovered DNA yield with buccal cells and an average three-fold increase with blood cells. These findings demonstrate that more of the DNA collected on swabs can be recovered with specific protocol alterations. PMID:25549111

  11. Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions

    PubMed Central

    Mishra, Neelam; Sun, Li; Zhu, Xunlu; Smith, Jennifer; Prakash Srivastava, Anurag; Yang, Xiaojie; Pehlivan, Necla; Esmaeili, Nardana; Luo, Hong; Shen, Guoxin; Jones, Don; Auld, Dick; Burke, John

    2017-01-01

    The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton. We report here that overexpression of OsSIZ1 in cotton results in higher net photosynthesis and better growth than wild-type cotton under drought and thermal stresses in growth chamber and greenhouse conditions. Additionally, this tolerance to abiotic stresses was correlated with higher fiber yield in both controlled-environment and field trials carried out under reduced irrigation and rainfed conditions. These results suggest that OsSIZ1 is a viable candidate gene to improve crop yields under water-limited and rainfed agricultural production systems. PMID:28340002

  12. [Genetic improvement of cotton varieties in Huang-Huai region in China since 1950's. III. Improvement on agronomy properties, disease resistance and stability].

    PubMed

    Jiang, B G; Kong, F L; Zhang, Q Y; Yang, F X; Jiang, R Q

    2000-01-01

    Data from a set of 5-location and 2-year experiments on 10 representative historical cotton varieties and the data of Huang-Huai Regional Cotton Trials from 1973 to 1996 were analyzed to estimate the effects of genetic improvement in agronomy properties, disease resistance and stability of cotton in Huang-Huai Region in China. The results indicated that a great genetic progress of earliness and disease resistance had been achieved by breeding programs since 1950's. The maturity was shortened 3-5 days; The rate of preforst yield was increased about 7 percentages. The problem of resistance to Fususium wilt has been solved and the resistance to Verticillum wilt was improving. Some progress in stability of cotton varieties also has been achieved by breeding programs since 1950.

  13. Monitoring agricultural processing electrical energy use and efficiency

    USDA-ARS?s Scientific Manuscript database

    Energy costs have become proportionately larger as cotton post-harvest processing facilities have utilized other inputs more efficiently. A discrepancy in energy consumption per unit processed between facilities suggests that energy could be utilized more efficiently. Cotton gin facilities were in...

  14. [Regulation effect of water storage in deeper soil layers on root physiological characteristics and leaf photosynthetic traits of cotton with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Du, Ming-Wei; Huang, Jian-Jun; Zhang, Ya-Li; Zhang, Wang-Feng

    2009-06-01

    A soil column culture experiment was conducted under the ecological and climatic conditions of Xinjiang to study the effects of water storage in deeper (> 60 cm) soil layers on the root physiological characteristics and leaf photosynthetic traits of cotton variety Xinluzao 13. Two treatments were installed, i.e., well-watered and no watering. The moisture content in plough layer was controlled at 70% +/- 5% and 55% +/- 5% of field capacity by drip irrigation under mulch during growth season. It was shown that the water storage in deeper soil layers enhanced the SOD activity and the vigor of cotton root, and increased the water use efficiency of plant as well as the leaf water potential, chlorophyll content, and net photosynthesis rate, which finally led to a higher yield of seed cotton and higher water use efficiency. Under well-watered condition and when the moisture content in plough layer was maintained at 55% of field capacity, the senescence of roots in middle and lower soil layers was slower, and the higher root vigor compensated the negative effects of impaired photosynthesis caused by water deficit to some extent. The yield of seed cotton was lower when the moisture content in plough layer was maintained at 55% of field capacity than at 70% of field capacity, but no significant difference was observed in the water use efficiency. Our results emphasized the importance of pre-sowing irrigation in winter or in spring to increase the water storage of deeper soil layers. In addition, proper cultivation practices and less frequent drip irrigation (longer intervals between successive rounds of irrigation) were also essential for conserving irrigation water and achieving higher yield.

  15. Alternate row placement is ineffective for cultural control of Meloidogyne incognita in cotton

    PubMed Central

    2008-01-01

    The objective of this study was to determine if planting cotton into the space between the previous year's rows reduces crop loss due to Meloidogyne incognita compared to planting in the same row every year. Row placement had a significant (P ≤ 0.05) effect on nematode population levels only on 8 July 2005. Plots receiving 1,3-dichloropropene plus aldicarb had lower nematode population levels than non-fumigated plots on 24 May and 8 July in 2005, but not in 2004. The effect of nematicide treatment on nematode populations was not affected by row placement. Row placement did not have a significant effect on root galling or yield in 2004 or 2005. Nematicide treatment decreased root galling in all years, and the decrease was not influenced by row placement. Yield was increased by nematicide application in 2004 and 2005, and the increase was not affected by row placement. Percentage yield loss was not affected by row placement. Changing the placement of rows reduced nematode population levels only on one sampling date in one year, but end-of-season root galling and lint yield were not affected by changing the placement of rows, nor was the effect of fumigation on yield influenced by row placement. Therefore, row placement is unlikely to contribute to M. incognita management in cotton. PMID:19440259

  16. The yield difference between wild-type cotton and transgenic cotton that expresses IPT depends on when water-deficit stress is applied

    USDA-ARS?s Scientific Manuscript database

    Drought is the No. 1 factor that limits agricultural production in the world, thus, making crops more drought tolerant is a major goal in agriculture. Many genes with functions in abiotic stress tolerance were identified, and overexpression of these genes confers increased drought tolerance in trans...

  17. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas

    USDA-ARS?s Scientific Manuscript database

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrog...

  18. Relationship between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and cotton yield: A step toward precision agriculture

    Treesearch

    Johnny L. Boggs; T.D. Tsegaye; Tamula L. Coleman; K.C. Reddy; Ahmed Fahsi

    2003-01-01

    Modern agriculture uses large amounts of organic and inorganic nutrients to optimize productivity. Excessive nutrient applications sometime lead to adverse effects on the environment and human health. Precision agriculture is evolving with the abjectives of minimizing these adverse effects by enabling farmers to manage nutrient applications more efficiently while...

  19. Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton is one of the most important and widely grown crops in the world. In addition to natural textile fiber production as a primary purpose, it yields a high grade vegetable oil for human consumption and also carbohydrate fiber and protein byproducts for animal feed. In this work, attenuated total...

  20. Enhancing management of fall-applied poultry litter with cover crop and subsurface band placement in no-till cotton

    USDA-ARS?s Scientific Manuscript database

    Whether yield reduction risk of cotton fertilized with fall-applied poultry litter in regions with warm fall or winter months can be minimized by applying the litter in subsurface bands in conjunction with winter cover crop is unknown. A field study was conducted in Mississippi to test whether litte...

  1. Survey of cotton (Gossypium sp.) for non-polar, extractable hydrocarbons for use as petrochemicals and liquid fuels

    USDA-ARS?s Scientific Manuscript database

    An ontogenetic study of a commercial cotton cultivar (FiberMax 1320), grown dryland, revealed that the dry weight (DW) of leaves reached a maximum at the 1st flower stage, and then declined as bolls opened. However, % pentane soluble hydrocarbon (HC) yield continued to increase throughout the growi...

  2. Evaluation of selected acaricides against two-spotted spider mite (Acari: Tetranychidae) on greenhouse cotton using multispectral data

    USDA-ARS?s Scientific Manuscript database

    Two-spotted spider mite (TSSM), Tetranychus urticae (Koch), is an early season pest of cotton in the mid-southern United States and causes reduction in yield, fiber quality and impaired seed germination. Objectives of this study were to investigate the efficacy of abamectin and spiromesifen with two...

  3. Physiological effects of Meloidogyne incognita infection on cotton genotypes with differing levels of resistance in the greenhouse

    USDA-ARS?s Scientific Manuscript database

    Greenhouse tests were conducted to evaluate 1) the effect of Meloidogyne incognita infection in cotton on plant growth and physiology including the height-to-node ratio, chlorophyll content, dark adapted quantum yield of photosystem II, and leaf area, and 2) the extent to which moderate or high leve...

  4. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton

    USDA-ARS?s Scientific Manuscript database

    Background: Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders’ ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed t...

  5. Elevated CO2, warmer temperatures and soil water deficit affect plant growth, physiology and water use of cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Changes in temperature, atmospheric [CO2] and precipitation under the scenarios of projected climate change present a challenge to crop production, and may have significant impacts on the physiology, growth and yield of cotton (Gossypium hirsutum L.). A glasshouse experiment explored the early growt...

  6. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    PubMed

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluating Pilose, a Cultigen of Gossypium hirsutum, as a Source of Resistance to Cotton Fleahopper (Hemiptera: Miridae).

    PubMed

    McLoud, Laura Ann; Knutson, Allen; Campos-Figueroa, Manuel; Smith, C Wayne; Hague, Steven

    2015-08-01

    Cotton fleahopper (Pseudatomoscelis seriatus Reuter) (Hemiptera: Miridae) is a piercing-sucking insect that has emerged as a major pest of cotton (Gossypium hirsutum L.) in Texas. Cotton fleahoppers feed on floral buds, commonly referred to as squares, causing damage and abscission, and subsequent yield loss. Previous studies indicate that plant resistance to cotton fleahopper is present in upland cotton, but the mechanism of resistance remains undetermined. In this study, Pilose, a cultigen of G. hirsutum, was examined as a source of resistance to cotton fleahopper, focusing on mechanism of resistance and heritability of the resistance trait. Results indicated that the resistance trait in Pilose is heritable and that pubescence is causative of resistance or that the resistance trait may be tightly linked to genes controlling pubescence. Behavioral assays indicated nonpreference as a mode of resistance in plants with dense pubescence. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Rise and fall of cotton aphid (Hemiptera: Aphididae) populations in southeastern cotton production systems.

    PubMed

    Abney, Mark R; Ruberson, John R; Herzog, Gary A; Kring, Timothy J; Steinkraus, Donald C; Roberts, Phillip M

    2008-02-01

    The impact of natural enemies on cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), populations in cotton, Gossypium hirsutum L., production systems in the southeastern United States was evaluated over 3 yr in irrigated commercial cotton fields. Fungal epizootics caused by the entomopathogen Neozygites fresenii (Nowakowski) Batko reduced aphid numbers to subthreshold levels in 1999, 2000, and 2001 and occurred consistently in early to mid-July in all 3 yr. Scymnus spp. were the most abundant aphidophagous predators, although other coccinellid species and generalist predators such as spiders, fire ants, heteropterans, and neuropterans also were present. Studies using arthropod exclusion cages demonstrated little impact of predators or parasitoids on aphid populations before fungal epizootics. Arthropod natural enemies were most abundant after epizootics and may have suppressed aphid populations late in the season. Seed cotton yield, and lint quality were not affected by aphicide applications in any year of the study. Implications of these findings for aphid management in the southeastern United States are discussed.

  9. Multiattribute evaluation of regional cotton variety trials.

    PubMed

    Basford, K E; Kroonenberg, P M; Delacy, I H; Lawrence, P K

    1990-02-01

    The Australian Cotton Cultivar Trials (ACCT) are designed to investigate various cotton [Gossypium hirsutum (L.)] lines in several locations in New South Wales and Queensland each year. If these lines are to be assessed by the simultaneous use of yield and lint quality data, then a multivariate technique applicable to three-way data is desirable. Two such techniques, the mixture maximum likelihood method of clustering and three-mode principal component analysis, are described and used to analyze these data. Applied together, the methods enhance each other's usefulness in interpreting the information on the line response patterns across the locations. The methods provide a good integration of the responses across environments of the entries for the different attributes in the trials. For instance, using yield as the sole criterion, the excellence of the namcala and coker group for quality is overlooked. The analyses point to a decision in favor of either high yields of moderate to good quality lint or moderate yield but superior lint quality. The decisions indicated by the methods confirmed the selections made by the plant breeders. The procedures provide a less subjective, relatively easy to apply and interpret analytical method of describing the patterns of performance and associations in complex multiattribute and multilocation trials. This should lead to more efficient selection among lines in such trials.

  10. Relationship between cotton yield and soil electrical conductivity, topography, and landsat imagery

    USDA-ARS?s Scientific Manuscript database

    Understanding spatial and temporal variability in crop yield is a prerequisite to implementing site-specific management of crop inputs. Apparent soil electrical conductivity (ECa), soil brightness, and topography are easily obtained data that can explain yield variability. The objectives of this stu...

  11. Crop yield response to increasing biochar rates

    USDA-ARS?s Scientific Manuscript database

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  12. Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions.

    PubMed

    Cely, Martha V T; de Oliveira, Admilton G; de Freitas, Vanessa F; de Luca, Marcelo B; Barazetti, André R; Dos Santos, Igor M O; Gionco, Barbara; Garcia, Guilherme V; Prete, Cássio E C; Andrade, Galdino

    2016-01-01

    Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF) enhance plant nutrition by providing especially phosphorus, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species of AMF domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for nutrient supply in soybean (Glycine max L.) and cotton (Gossypium hirsutum L.) when compared with conventional chemical fertilization under field conditions. The experiments were carried out in a completely randomized block design with five treatments: Fertilizer, AMF, AMF with Fertilizer, AMF with 1/2 Fertilizer, and the Control with non-inoculated and non-fertilized plants. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth, nutrient absorption and yield. The results showed that AMF inoculation increased around 20 % of root colonization in both soybean and cotton; nutrients analyses in vegetal tissues showed increase of P and nitrogen content in inoculated plants, these results reflect in a higher yield. Our results showed that, AMF inoculation increase the effectiveness of fertilizer application in soybean and reduce the fertilizer dosage in cotton.

  13. Effects of Fuzzless Cottonseed Phenotype on Cottonseed Nutrient Composition in near Isogenic Cotton (Gossypium hirsutum L.) Mutant Lines under Well-Watered and Water Stress Conditions

    USDA-ARS?s Scientific Manuscript database

    Cotton mutant near isogenic lines (NILs) for fuzzless seed trait has been used to investigate cell biology, genetic, and molecular processes of fiber initiation, development, fiber yield and quality. However, there is no information available on the effect of fuzzless seed trait on cottonseed nutrie...

  14. QTL mapping of multiple independent loci for resistance to fusarium wilt races 1 and 4 in an interspecific cotton population

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt, caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. vasinfectum (FOV), is a vascular disease of cotton (Gossypium spp.). FOV race 1 (FOV1) causes major plant injury and yield loss in G. hirsutum cultivars with co-infection with root-knot nematode (Meloidogyne incognita)...

  15. Individual and combined contributions of the Renbarb1, Renbarb2, and Renbarb3 quantitative trait loci to reniform nematode (Rotylenchulus reniformis Linford & Oliveira) resistance in Upland Cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    The infection of Upland cotton (Gossypium hirsutum L.) by the root parasite Rotylenchulus reniformis (Linford & Oliveira), the reniform nematode, results in massive annual yield losses throughout the southeastern United States and portions of Texas. Resistance to reniform nematode was identified in...

  16. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs.

    PubMed

    Akmal, Mohd; Baig, Mirza S; Khan, Jawaid A

    2017-12-10

    Cotton leaf curl disease (CLCuD), a major factor resulting in the enormous yield losses in cotton crop, is caused by a distinct monopartite begomovirus in association with Cotton leaf curl Multan betasatellite (CLCuMB). Micro(mi)RNAs are known to regulate gene expression in eukaryotes, including antiviral defense in plants. In a previous study, we had computationally identified a set of cotton miRNAs, which were shown to have potential targets in the genomes of Cotton leaf curl Multan virus (CLCuMuV) and CLCuMB at multiple loci. In the current study, effect of Gossypium arboreum-encoded miRNAs on the genome of CLCuMuV and CLCuMB was investigated in planta. Two computationally predicted cotton-encoded miRNAs (miR398 and miR2950) that showed potential to bind multiple Open Reading Frames (ORFs; C1, C4, V1, and non- coding intergenic region) of CLCuMuV, and (βC1) of CLCuMB were selected. Functional validation of miR398 and miR2950 was done by overexpression approach in G. hirsutum var. HS6. A total of ten in vitro cotton plants were generated from independent events and subjected to biological and molecular analyses. Presence of the respective Precursor (pre)-miRNA was confirmed through PCR and Southern blotting, and their expression level was assessed by semi quantitative RT-PCR, Real Time quantitative PCR and northern hybridization in the PCR-positive lines. Southern hybridization revealed 2-4 copy integration of T-DNA in the genome of the transformed lines. Remarkably, expression of pre-miRNAs was shown up to 5.8-fold higher in the transgenic (T 0 ) lines as revealed by Real Time PCR. The virus resistance was monitored following inoculation of the transgenic cotton lines with viruliferous whitefly (Bemisia tabaci) insect vector. After inoculation, four of the transgenic lines remained apparently symptom free. While a very low titre of viral DNA could be detected by Rolling circle amplification, betasatellite responsible for symptom induction could not be detected in any of the healthy looking transgenic lines. In this study for the first time, efficacy of the host (G. arboreum)-encoded miRNAs against CLCuD symptoms was experimentally demonstrated through overexpression of miR398 and miR2950 in G. hirsutum var. HS6 plants. Computational prediction of miRNAs targeting virus genome and their subsequent implication in translational inhibition or cleavage based suppression of viral mRNA via overexpression could help in generating virus resistant plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chilling Stress—The Key Predisposing Factor for Causing Alternaria alternata Infection and Leading to Cotton (Gossypium hirsutum L.) Leaf Senescence

    PubMed Central

    Zhao, Jingqing; Li, Sha; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-01-01

    Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2–4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA) content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence. PMID:22558354

  18. Wireless sensor network for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  19. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense.

    PubMed

    Li, Peng-Tao; Wang, Mi; Lu, Quan-Wei; Ge, Qun; Rashid, Md Harun Or; Liu, Ai-Ying; Gong, Ju-Wu; Shang, Hai-Hong; Gong, Wan-Kui; Li, Jun-Wen; Song, Wei-Wu; Guo, Li-Xue; Su, Wei; Li, Shao-Qi; Guo, Xiao-Ping; Shi, Yu-Zhen; Yuan, You-Lu

    2017-09-08

    How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the "oxidation-reduction process", which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs.

  20. Titanium-Dioxide Nano-Fiber-Cotton Targets for Efficient Multi-keV X-Ray Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, M; Nishimura, H; Fujioka, S

    Multi-keV x-ray generation from low-density (27 {+-} 7 mg/cc) nano-fiber-cotton targets composed of titanium-dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency (3.7 {+-} 0.5%) from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that (1.4 {+-} 0.9%) for a planar Ti-foil target.

  1. Titanium dioxide nanofiber-cotton targets for efficient multi-keV x-ray generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, Minoru; Nishimura, Hiroaki; Fujioka, Shinsuke

    Multi-keV x-ray generation from low-density (27{+-}7 mg/cm{sup 3}) nanofiber-cotton targets composed of titanium dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency [(3.7{+-}0.5)%] from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that [(1.4{+-}0.9)%] for a planar Ti-foil target.

  2. Coordinating management of water, salinity and trace elements for cotton under mulched drip irrigation with brackish water

    NASA Astrophysics Data System (ADS)

    Jin, M.; Chen, W.; Liang, X.

    2016-12-01

    Rational irrigation with brackish water can increase crop production, but irrational use may cause soil salinization. In order to understand the relationships among water, salt, and nutrient (including trace elements) and find rational schemes to manage water, salinity and nutrient in cotton fields, field and pot experiments were conducted in an arid area of southern Xinjiang, northwest China. Field experiments were performed from 2008 to 2015, and involved mulched drip irrigation during the growing season and flood irrigation afterwards. The average cotton yield of seven years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. With the progress of brackish water irrigation, Cu, Fe, Mn, and Na showed strong aggregation in topsoil at the narrow row, whereas the contents of Ca and K decreased in the order of inter-mulch gap, the wide inter row, and the narrow row. The contents of Cu, Fe, Mn, Ca and K in root soil reduced with cotton growth, whereas Na increased. Although mulched drip irrigation during the growing season resulted in an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts below background levels. Based on experiments a scheme for coordinating management of soil water, salt, and nutrient is proposed, that is, under the planting pattern of one mulch, two drip lines and four rows, the alternative irrigation plus a flood irrigation after harvesting or before seeding was the ideal scheme. Numerical simulations using solute transport model coupled with the root solute uptake based on the experiments and extended by another 20 years, suggest that the mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with fresh water after harvesting, is a sustainable irrigation practice that should not lead to soil salinization. Pot experiments with trace elements and different saline water showed significantly antagonistic effects on cotton growth and yield between NaCl and Mn or Zn or B. Zn concentration in irrigation water under salinity stress affected the uptake of nutrient elements and caused the different contents of nutrient elements in cotton, and influenced cotton growth and yields.

  3. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton

    PubMed Central

    Xu, Jun; Xu, Xiaoyang; Tian, Liangliang; Wang, Guilin; Zhang, Xueying; Wang, Xinyu; Guo, Wangzhen

    2016-01-01

    Verticillium dahliae, a destructive and soil-borne fungal pathogen, causes massive losses in cotton yields. However, the resistance mechanism to V. dahilae in cotton is still poorly understood. Accumulating evidence indicates that chitinases are crucial hydrolytic enzymes, which attack fungal pathogens by catalyzing the fungal cell wall degradation. As a large gene family, to date, the chitinase genes (Chis) have not been systematically analyzed and effectively utilized in cotton. Here, we identified 47, 49, 92, and 116 Chis from four sequenced cotton species, diploid Gossypium raimondii (D5), G. arboreum (A2), tetraploid G. hirsutum acc. TM-1 (AD1), and G. barbadense acc. 3–79 (AD2), respectively. The orthologous genes were not one-to-one correspondence in the diploid and tetraploid cotton species, implying changes in the number of Chis in different cotton species during the evolution of Gossypium. Phylogenetic classification indicated that these Chis could be classified into six groups, with distinguishable structural characteristics. The expression patterns of Chis indicated their various expressions in different organs and tissues, and in the V. dahliae response. Silencing of Chi23, Chi32, or Chi47 in cotton significantly impaired the resistance to V. dahliae, suggesting these genes might act as positive regulators in disease resistance to V. dahliae. PMID:27354165

  4. Silencing GhNDR1 and GhMKK2 compromised cotton resistance to Verticillium wilt

    PubMed Central

    Gao, Xiquan; Wheeler, Terry; Li, Zhaohu; Kenerley, Charles M.; He, Ping; Shan, Libo

    2011-01-01

    SUMMARY Cotton is an important cash crop worldwide and serves as a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort in genetics and genomics has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. With the effort of whole genome sequencing of cotton, it is essential to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully established an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with different genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we established a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons, and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, we demonstrated that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton using gene silencing assays, and established the high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton. PMID:21219508

  5. Captures of boll weevils (Coleoptera: Curculionidae) in relation to trap distance from cotton fields

    USDA-ARS?s Scientific Manuscript database

    Once populations of the boll weevil (Anthonomus grandis grandis Boheman) are suppressed, eradication programs rely on pheromone trap-based monitoring for timely detection of weevil populations in cotton (Gossypium spp.). Delayed detection may increase the costs of remedial treatments, and permit rep...

  6. Soil moisture and plant canopy temperature sensing for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  7. Assessment of Climate Change Impacts and Evaluation of Adaptation Strategies for Grain Sorghum and Cotton Production in the Texas High Plains

    NASA Astrophysics Data System (ADS)

    Kothari, K.; Ale, S.; Bordovsky, J.; Hoogenboom, G.; Munster, C. L.

    2017-12-01

    The semi-arid Texas High Plains (THP) is one of the most productive agricultural regions in the United States. However, agriculture in the THP is faced with the challenges of rapid groundwater depletion in the underlying Ogallala Aquifer, restrictions on pumping groundwater, recurring droughts, and projected warmer and drier future climatic conditions. Therefore, it is imperative to adopt strategies that enhance climate change resilience of THP agriculture to maintain a sustainable agricultural economy in this region. The overall goal of this study is to assess the impacts of climate change and potential reduction in groundwater availability on production of two major crops in the region, cotton and grain sorghum, and suggest adaptation strategies using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. The DSSAT model was calibrated and evaluated using data from the long-term cotton-sorghum rotation experiments conducted at Helms Farm near Halfway in the THP. After achieving a satisfactory calibration for crop yield (RMSE < 1.0 T ha-1 or 14%) and dates of onset of various growth stages, the model was used to simulate historic (1980-2010) and future (2040-2070) cotton and sorghum yields and water use. The Multivariate Adaptive Constructed Analogs (MACA) projected future climate datasets from nine CMIP5 global climate models (GCMs) and two representative concentration pathways (RCP 4.5 and 8.5) were used in this study. Preliminary results indicated a reduction in irrigated grain sorghum yield per hectare by 6% and 8%, and a reduction in dryland sorghum yield per hectare by 9% and 17% under RCP 4.5 and RCP 8.5 scenarios, respectively. Grain sorghum future water use declined by about 2% and 5% under RCP 4.5 and RCP 8.5, respectively. Climate change impacts on cotton production and evaluation of several adaptation strategies such as incorporating heat and drought tolerances in cultivars, early planting, shifting to short season varieties, and deficit irrigation are currently being studied.

  8. Maximizing the potential of cropping systems for nematode management.

    PubMed

    Noe, J P; Sasser, J N; Imbriani, J L

    1991-07-01

    Quantitative techniques were used to analyze and determine optimal potential profitability of 3-year rotations of cotton, Gossypium hirsutum cv. Coker 315, and soybean, Glycine max cv. Centennial, with increasing population densities of Hoplolaimus columbus. Data collected from naturally infested on-farm research plots were combined with economic information to construct a microcomputer spreadsheet analysis of the cropping system. Nonlinear mathematical functions were fitted to field data to represent damage functions and population dynamic curves. Maximum yield losses due to H. columbus were estimated to be 20% on cotton and 42% on soybean. Maximum at-harvest population densities were calculated to be 182/100 cm(3) soil for cotton and 149/100 cm(3) soil for soybean. Projected net incomes ranged from a $17.74/ha net loss for the soybean-cotton-soybean sequence to a net profit of $46.80/ha for the cotton-soybean-cotton sequence. The relative profitability of various rotations changed as nematode densities increased, indicating economic thresholds for recommending alternative crop sequences. The utility and power of quantitative optimization was demonstrated for comparisons of rotations under different economic assumptions and with other management alternatives.

  9. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production

    PubMed Central

    Timper, Patricia; Davis, Richard F.; Tillman, P. Glynn

    2006-01-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations compared to most vetches and clovers. PMID:19259434

  10. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    PubMed

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations compared to most vetches and clovers.

  11. Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield.

    PubMed

    Uzen, Nese; Cetin, Oner; Unlu, Mustafa

    2016-12-01

    This study has aimed to determine the effects of treated wastewater on cotton yield and soil pollution in Southeastern Anatolia Region of Turkey during 2011 and 2012. The treated wastewater was provided from the reservoir operated as anaerobic stabilization. After treatment, suspended solids (28-60 mg/l), biological oxygen demand (29-30 mg/l), and chemical oxygen demand (71-112 mg/l) decreased significantly compared to those in the wastewater. There was no heavy metal pollution in the water used. There were no significant amounts of coliform bacteria, fecal coliform, and Escherichia coli compared to untreated wastewater. The cottonseed yield (31.8 g/plant) in the tanks where no commercial fertilizers were applied was considerably higher compared to the yield (17.2 g/plant) in the fertilized tanks where a common nitrogenous fertilizer was utilized. There were no significant differences between the values of soil pH. Soil electrical conductivity (EC) after the experiment increased from 0.8-1.0 to 0.9-1.8 dS/m. Heavy metal pollution did not occur in the soil and plants, because there were no heavy metals in the treated wastewater. It can be concluded that treated domestic wastewater could be used to grow in a controlled manner crops, such as cotton, that would not be used directly as human nutrients.

  12. Quantifying the Usefulness of Ensemble-Based Precipitation Forecasts with Respect to Water Use and Yield during a Field Trial

    NASA Astrophysics Data System (ADS)

    Christ, E.; Webster, P. J.; Collins, G.; Byrd, S.

    2014-12-01

    Recent droughts and the continuing water wars between the states of Georgia, Alabama and Florida have made agricultural producers more aware of the importance of managing their irrigation systems more efficiently. Many southeastern states are beginning to consider laws that will require monitoring and regulation of water used for irrigation. Recently, Georgia suspended issuing irrigation permits in some areas of the southwestern portion of the state to try and limit the amount of water being used in irrigation. However, even in southern Georgia, which receives on average between 23 and 33 inches of rain during the growing season, irrigation can significantly impact crop yields. In fact, studies have shown that when fields do not receive rainfall at the most critical stages in the life of cotton, yield for irrigated fields can be up to twice as much as fields for non-irrigated cotton. This leads to the motivation for this study, which is to produce a forecast tool that will enable producers to make more efficient irrigation management decisions. We will use the ECMWF (European Centre for Medium-Range Weather Forecasts) vars EPS (Ensemble Prediction System) model precipitation forecasts for the grid points included in the 1◦ x 1◦ lat/lon square surrounding the point of interest. We will then apply q-to-q bias corrections to the forecasts. Once we have applied the bias corrections, we will use the check-book method of irrigation scheduling to determine the probability of receiving the required amount of rainfall for each week of the growing season. These forecasts will be used during a field trial conducted at the CM Stripling Irrigation Research Park in Camilla, Georgia. This research will compare differences in yield and water use among the standard checkbook method of irrigation, which uses no precipitation forecast knowledge, the weather.com forecast, a dry land plot, and the ensemble-based forecasts mentioned above.

  13. A carbon nanotube based ammonia sensor on cotton textile

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  14. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  15. Drought coping strategies in cotton: increased crop per drop.

    PubMed

    Ullah, Abid; Sun, Heng; Yang, Xiyan; Zhang, Xianlong

    2017-03-01

    The growth and yield of many crops, including cotton, are affected by water deficit. Cotton has evolved drought specific as well as general morpho-physiological, biochemical and molecular responses to drought stress, which are discussed in this review. The key physiological responses against drought stress in cotton, including stomata closing, root development, cellular adaptations, photosynthesis, abscisic acid (ABA) and jasmonic acid (JA) production and reactive oxygen species (ROS) scavenging, have been identified by researchers. Drought stress induces the expression of stress-related transcription factors and genes, such as ROS scavenging, ABA or mitogen-activated protein kinases (MAPK) signalling genes, which activate various drought-related pathways to induce tolerance in the plant. It is crucial to elucidate and induce drought-tolerant traits via quantitative trait loci (QTL) analysis, transgenic approaches and exogenous application of substances. The current review article highlights the natural as well as engineered drought tolerance strategies in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.

    PubMed

    Hong, Feng; Guo, Xiang; Zhang, Shuo; Han, Shi-fen; Yang, Guang; Jönsson, Leif J

    2012-01-01

    Cotton-based waste textiles were explored as alternative feedstock for production of bacterial cellulose (BC) by Gluconacetobacter xylinus. The cellulosic fabrics were treated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). [AMIM]Cl caused 25% inactivation of cellulase activity at a concentration as low as of 0.02 g/mL and decreased BC production during fermentation when present in concentrations higher than 0.0005 g/mL. Therefore, removal of residual IL by washing with hot water was highly beneficial to enzymatic saccharification as well as BC production. IL-treated fabrics exhibited a 5-7-fold higher enzymatic hydrolysis rate and gave a seven times larger yield of fermentable sugars than untreated fabrics. BC from cotton cloth hydrolysate was obtained at an yield of 10.8 g/L which was 83% higher than that from the culture grown on glucose-based medium. The BC from G. xylinus grown on IL-treated fabric hydrolysate had a 79% higher tensile strength than BC from glucose-based culture medium which suggests that waste cotton pretreated with [AMIM]Cl has potential to serve as a high-quality carbon source for BC production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting.

    PubMed

    Gao, Yu-Lin; Feng, Hong-Qiang; Wu, Kong-Ming

    2010-08-01

    Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.

  18. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations.

    PubMed

    Said, Joseph I; Knapka, Joseph A; Song, Mingzhou; Zhang, Jinfa

    2015-08-01

    A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.

  19. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting.

    PubMed

    Duan, Manli; Gu, Jie; Wang, Xiaojuan; Li, Yang; Zhang, Sheqi; Yin, Yanan; Zhang, Ranran

    2018-01-01

    Genetically modified (GM) cotton production generates a large yield of stalks and their disposal is difficult. In order to study the feasibility of using GM cotton stalks for composting and the changes that occur in antibiotic resistance genes (ARGs) during composting, we supplemented pig manure with GM or non-GM cotton stalks during composting and we compared their effects on the absolute abundances (AA) of intI1, intI2, and ARGs under the two treatments. The compost was mature after processing based on the germination index and C/N ratio. After composting, the AAs of ARGs, intI1, and intI2 were reduced by 41.7% and 45.0% in the non-GM and GM treatments, respectively. The ARG profiles were affected significantly by temperature and ammonia nitrogen. In addition, excluding tetC, GM cotton stalks had no significant effects on ARGs, intI1, and intI2 compared with the non-GM treatment (p < 0.05). Thus, similar to non-GM cotton stalks, GM cotton stalks can be used for aerobic composting with livestock manure, and the AAs of ARGs can be reduced. Furthermore, the results of this study provide a theoretical basis for the harmless utilization of GM cotton stalks. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  1. Sustainability versus yield in agricultural soils under various crop production practices - a microbial perspective

    NASA Astrophysics Data System (ADS)

    Pereg, Lily; Aldorri, Sind; McMillan, Mary

    2017-04-01

    Wheat and cotton are important food and cash crops often grown in rotation on black, grey and red clay soil, in Australia. The common practice of nitrogen and phosphate fertilizers have been solely in the form of agrochemicals, however, a few growers have incorporated manure or composted plant material into the soil before planting. While the cotton yield in studied farms was comparable, we found that the use of such organic amendments significantly enhanced the pool of nitrogen cycling genes, suggesting increased potential of soil microbial function as well as increased microbial metabolic diversity and abundance. Therefore, the regular use of organic amendments contributed to improved soil sustainability.

  2. Cotton yield estimation using very high-resolution digital images acquired on a low-cost small unmanned aerial vehicle

    USDA-ARS?s Scientific Manuscript database

    Yield estimation is a critical task in crop management. A number of traditional methods are available for crop yield estimation but they are costly, time-consuming and difficult to expand to a relatively large field. Remote sensing provides techniques to develop quick coverage over a field at any sc...

  3. Improving dyeability of modified cotton fabrics by the natural aqueous extract from red cabbage using ultrasonic energy.

    PubMed

    Ben Ticha, Manel; Haddar, Wafa; Meksi, Nizar; Guesmi, Ahlem; Mhenni, M Farouk

    2016-12-10

    The concern regarding sustainable utilization of available resources is growing due to its global importance. In this paper, the dyeability of cotton fabrics with natural colorant extracted from red cabbage was improved by applying cationic groups on cotton fibers. Modification of cotton was carried using acid tannic, Rewin Os, Denitex BC and Sera Fast as cationic agents. The dyeing process was done by ultrasonic energy. The effects of the cationising agent amount, the dye bath pH, the dyeing temperature and duration, on the sonicator dyeing quality were studied. The performances of this process were evaluated by measuring the colour yield (K/S) and the dyeing fastness of the coloured cotton. Besides, modified cotton fibers were characterized by morphology analysis (SEM) and Fourier transform infrared (FTIR) spectra and compared to untreated cotton. Moreover, a two-level full factorial design was employed to optimize the sonicator dyeing process. Mathematical model equation and statistical analysis were derived by computer simulation programming applying the least squares method using Minitab 15. Best dyeing conditions were found to be: 10%, pH 11, 60min and 100°C respectively for the Sera Fast amount, dye bath pH, dyeing duration and temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. AgroClimate: Simulating and Monitoring the Risk of Extreme Weather Events from a Crop Phenology Perspective

    NASA Astrophysics Data System (ADS)

    Fraisse, C.; Pequeno, D.; Staub, C. G.; Perry, C.

    2016-12-01

    Climate variability, particularly the occurrence of extreme weather conditions such as dry spells and heat stress during sensitive crop developmental phases can substantially increase the prospect of reduced crop yields. Yield losses or crop failure risk due to stressful weather conditions vary mainly due to stress severity and exposure time and duration. The magnitude of stress effects is also crop specific, differing in terms of thresholds and adaptation to environmental conditions. To help producers in the Southeast USA mitigate and monitor the risk of crop losses due to extreme weather events we developed a web-based tool that evaluates the risk of extreme weather events during the season taking into account the crop development stages. Producers can enter their plans for the upcoming season in a given field (e.g. crop, variety, planting date, acreage etc.), select or not a specific El Nino Southern Oscillation (ENSO) phase, and will be presented with the probabilities (ranging from 0 -100%) of extreme weather events occurring during sensitive phases of the growing season for the selected conditions. The DSSAT models CERES-Maize, CROPGRO-Soybean, CROPGRO-Cotton, and N-Wheat phenology models have been translated from FORTRAN to a standalone versions in R language. These models have been tested in collaboration with Extension faculty and producers during the 2016 season and their usefulness for risk mitigation and monitoring evaluated. A companion AgroClimate app was also developed to help producers track and monitor phenology development during the cropping season.

  5. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India

    PubMed Central

    Kathage, Jonas; Qaim, Matin

    2012-01-01

    Despite widespread adoption of genetically modified crops in many countries, heated controversies about their advantages and disadvantages continue. Especially for developing countries, there are concerns that genetically modified crops fail to benefit smallholder farmers and contribute to social and economic hardship. Many economic studies contradict this view, but most of them look at short-term impacts only, so that uncertainty about longer-term effects prevails. We address this shortcoming by analyzing economic impacts and impact dynamics of Bt cotton in India. Building on unique panel data collected between 2002 and 2008, and controlling for nonrandom selection bias in technology adoption, we show that Bt has caused a 24% increase in cotton yield per acre through reduced pest damage and a 50% gain in cotton profit among smallholders. These benefits are stable; there are even indications that they have increased over time. We further show that Bt cotton adoption has raised consumption expenditures, a common measure of household living standard, by 18% during the 2006–2008 period. We conclude that Bt cotton has created large and sustainable benefits, which contribute to positive economic and social development in India. PMID:22753493

  6. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).

    PubMed

    Liang, Chengzhen; Meng, Zhaohong; Meng, Zhigang; Malik, Waqas; Yan, Rong; Lwin, Khin Myat; Lin, Fazhuang; Wang, Yuan; Sun, Guoqing; Zhou, Tao; Zhu, Tao; Li, Jianying; Jin, Shuangxia; Guo, Sandui; Zhang, Rui

    2016-10-07

    The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton.

  7. Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae.

    PubMed

    Singh, Anita; Bajar, Somvir; Bishnoi, Narsi R

    2017-11-01

    The aim of this work was to study the physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae. Firstly, factors affecting pretreatment were screened out by Plackett-Burman design (PBD) and most significant factors were further optimized by Box-Behnken design (BBD). As shown by experimental study, most significant factors were FeCl 3 concentration (FC), irradiation time (IT) and substrate concentration (SC) affecting pretreatment of cotton stalk among all studied factors. Under optimum conditions of pretreatment FC 0.15mol/l, IT 20min and SC 55g/l, the release of reducing sugar was 6.6g/l. Hydrolysis of pretreated cotton stalk was done by crude on-site produced enzymes and hydrolysate was concentrated. Ethanol production by Saccharomyces cerevisiae using concentrated cotton stalk hydrolysate was 9.8g p /l, with ethanol yield 0.37g p /g s on consumed sugars. The data indicated that microwave FeCl 3 pretreated cotton stalk hydrolyses by crude unprocessed enzyme cocktail was good, and ethanol can be produced by fermentation of hydrolysate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    PubMed

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  9. Cotton production in the presence of Helicoverpa armigera (Hb.) in Central Greece.

    PubMed

    Stavridis, D G; Gliatis, A; Deligeorgidis, P N; Giatropoulos, C; Giatropoulos, A; Deligeorgidis, N P; Ipsilandis, C G

    2008-11-01

    The present study was conducted in 10 different communities of prefecture of Larissa, one of the main cotton-productive areas of Greece. Monitoring of Helicoverpa armigera lasted four years from 2002 to 2005. The monitoring system included four locations within each community and three traps in each location. Traps were of the funnel type, a reusable injection-moulded kind of plastic trap. Pheromone was z-11-hexadecenyl aldehyde 0.36% w/w. Insecticide (Vapona) was used for all the four years, but for years 2003 and 2004 double traps were used additionally, without the presence of insecticide (only with pheromone). Traps containing a pheromone and an insecticide had significantly greater number of insects trapped than those containing no insecticide. Fluctuation of insect population was different from year to year. Correlations on data between years (insect populations and cotton production across all communities) revealed that, when cotton production was low, the number of adult male insects of H. armigera captured in pheromone traps was high (r = -0.69). There were no statistically significant correlations between cotton production and number of trapped insects when data from all communities (across the four years) were used. Local conditions within each area have been proved important and these results were completely different compared to data concerning specific years. Prediction models must be used for average estimations within great areas that include data from many locations.

  10. Extraction of diatoms from (cotton) clothing for forensic comparisons.

    PubMed

    Uitdehaag, Stefan; Dragutinovic, Aleksandar; Kuiper, Irene

    2010-07-15

    Diatoms in clothing can be used to determine contact with surface water and contact with a specific water source, which can help link suspects to crime scenes. However, for the study of diatoms it is imperative that they are first extracted from the clothing under investigation. In this study we tested three methods for extracting diatoms from cotton clothing: rinsing with water (RW), rinsing with ethanol (RE) and the dissolution of cotton with nitric and sulphuric acid (DI). The DI method produced the highest average yield and can be used to determine contact with water. The RE method extracted reproducible numbers of diatoms from two different T-shirts and the resulting species compositions were similar to their relevant reference water samples. Therefore, we present rinsing with ethanol as an effective extraction method for the qualitative and quantitative analysis of diatoms in (cotton) clothing. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  11. In-situ deposition of hematite (α-Fe2O3) microcubes on cotton cellulose via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Gili, M.; Latag, G.; Balela, M.

    2018-03-01

    Hematite microcubes with truncated edges have been successfully deposited on cotton cellulose via one-step hydrothermal process using anhydrous FeCl3 and glycine as Fe(III) precursor and chelating agent, respectively. The amount of glycine significantly affects the morphology and yield of hematite. The addition of 0.495 g of glycine to 50 ml of 0.1 M FeCl3 solution with 0.400 g of cotton resulted to hematite-deposited cellulose having ∼15% hematite content. The reduction of glycine to 0.247 g increased the amount of hematite on the surface of the cotton cellulose to ∼20% by weight. However, the hematite microcubes have a wide size distribution, with particle size in the range of 0.684 μm to 1.520 μm. Without glycine, hematite cannot be formed in the solution.

  12. Yield response and economics of shallow subsurface drip irrigation systems

    USDA-ARS?s Scientific Manuscript database

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  13. Picker vs. stripper harvesting in the Texas High Plains: Agronomic implications

    USDA-ARS?s Scientific Manuscript database

    Many changes have occurred during the last decade in the Texas High Plains which have resulted in increased cotton yields and improved fiber quality. The main factors associated with both higher lint yield and quality include a shift in varieties planted, with virtually no "storm-proof stripper type...

  14. Patterns of zone management uncertainty in cotton using tarnished plant bug distributions, NDVI, soil EC, yield and thermal imagery

    USDA-ARS?s Scientific Manuscript database

    Management zones for various crops have been delineated using NDVI (Normalized Difference Vegetation Index), apparent bulk soil electrical conductivity (ECa - Veris), and yield data; however, estimations of uncertainty for these data layers are equally important considerations. The objective of this...

  15. Comparison of growth, yield and fiber quality of the obsolete SA30 yellow leaf with four sets of modern yellow and green leaf near isogenic cotton (Gossypium hirsutum L.) lines

    USDA-ARS?s Scientific Manuscript database

    The Virescent Yellow leaf cotton line Seed Accession 30 (SA30) was crossed with four modern parental lines (DP5690, DES119, SG747 and MD51ne) to develop four sets of near isogenic lines (NILs) segregating for green and yellow leaves. Comparisons of these lines were made in the field in a two year re...

  16. Molecular Identification of Thrips Species Infesting Cotton in the Southeastern United States.

    PubMed

    Wang, Hehe; Kennedy, George G; Reay-Jones, Francis P F; Reisig, Dominic D; Toews, Michael D; Roberts, Phillip M; Herbert, D Ames; Taylor, Sally; Jacobson, Alana L; Greene, Jeremy K

    2018-04-02

    Traditional identification of thrips species based on morphology is difficult, laborious, and especially challenging for immature thrips. To support monitoring and management efforts of thrips as consistent and widespread pests of cotton (Gossypium hirsutum L.), a probe-based quantitative PCR (qPCR) assay with crude DNA extraction was developed to allow efficient and specific identification of the primary species of thrips infesting cotton. The assay was applied to identify over 5,000 specimens of thrips (including 3,366 immatures) collected on cotton seedlings from Alabama, Georgia, North Carolina, South Carolina, and Virginia in 2016. One half of all adult samples were examined by morphological identification, which provided a statistically equivalent species composition as the qPCR method. Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) was the dominant species across all the locations (76.8-94.3% of adults and 81.6-98.0% of immatures), followed by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in Georgia, North Carolina, and Virginia (4.6-19% of adults and 1.7-17.3% of immatures) or Frankliniella tritici (Fitch) (Thysanoptera: Thripidae) in South Carolina (10.8% of adults and 7.8% of immatures). Thrips tabaci (Lindeman) (Thysanoptera: Thripidae) and Neohydatothrips variabilis (Beach) (Thysanoptera: Thripidae) were occasionally found among adults but were rarely present among immature thrips. These five species of thrips represented 98.2-100% of samples collected across the Southeast. The qPCR assay was demonstrated to be a valuable tool for large-scale monitoring of species composition of thrips at different life stages in cotton. The tool will contribute to a better understanding of thrips population structure in cotton and could assist with development and application of improved management strategies.

  17. Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization.

    PubMed

    Ahamd, Maqshoof; Abbasi, Waleed Mumtaz; Jamil, Moazzam; Iqbal, Muhammad; Hussain, Azhar; Akhtar, Muhammad Fakhar-U-Zaman; Nazli, Farheen

    2017-06-01

    Incorporation of genetically modified crops in the cropping system raises the need for studying the effect of these crops on the soil ecosystem. The current study aimed to compare the effect of Bacillus thuringiensis (Bt)- and non-Bt-cotton (Gossypium hirsutum L.) genotypes on rhizosphere properties under fertilized and unfertilized soil conditions. One non-Bt-cotton (IUB 75) and four Bt-cotton varieties (IUB-222, MM-58, IUB-13, FH-142) were sown in a Randomized Complete Block Design (RCBD) in a factorial fashion with three replications under unfertilized (T1) and fertilized (T2 at NPK 310-170-110 kg ha -1 ) soil conditions. The culturable soil bacterial population was recorded at flowering, boll opening, and harvesting stages, while other rhizosphere biological and chemical properties were recorded at harvesting. Results revealed that Bt-cotton genotypes IUB-222 and FH-142 showed significantly higher rhizosphere total nitrogen, NH 4 + -N, available phosphorus, and available potassium. Total organic carbon and microbial biomass carbon was also maximum in the rhizosphere of IUB-222 under fertilized conditions. Similarly, bacterial population (CFU g -1 ) at flowering stage and at harvesting was significantly higher in the rhizosphere of IUB-222 as compared to non-Bt- (IUB-75) and other Bt-cotton genotypes under same growth conditions. It showed that Bt genotypes can help in maintaining soil macronutrients (total nitrogen, available phosphorus, and available potassium) under proper nutrient management. Moreover, Bt-cotton genotypes seem to strengthen certain biological properties of the soil, thus increasing the growth and yield capability, maintaining available nutrients in the soil as compared to non-Bt cotton, while no harmful effects of Bt cotton on soil properties was detected.

  18. Photonic textiles for pulse oximetry.

    PubMed

    Rothmaier, Markus; Selm, Bärbel; Spichtig, Sonja; Haensse, Daniel; Wolf, Martin

    2008-08-18

    Biomedical sensors, integrated into textiles would enable monitoring of many vitally important physiological parameters during our daily life. In this paper we demonstrate the design and performance of a textile based pulse oximeter, operating on the forefinger tip in transmission mode. The sensors consisted of plastic optical fibers integrated into common fabrics. To emit light to the human tissue and to collect transmitted light the fibers were either integrated into a textile substrate by embroidery (producing microbends with a nominal diameter of 0.5 to 2 mm) or the fibers inside woven patterns have been altered mechanically after fabric production. In our experiments we used a two-wavelength approach (690 and 830 nm) for pulse wave acquisition and arterial oxygen saturation calculation. We have fabricated different specimens to study signal yield and quality, and a cotton glove, equipped with textile based light emitter and detector, has been used to examine movement artifacts. Our results show that textile-based oximetry is feasible with sufficient data quality and its potential as a wearable health monitoring device is promising.

  19. Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field

    USDA-ARS?s Scientific Manuscript database

    Heat and drought stresses are often coincident and constitute major factors limiting global crop yields. Selection of cultivars with superior tolerance to these stresses under production environments will facilitate efforts to improve yield and water use efficiencies in a climatically changing world...

  20. Enhanced efficiency fertilizer’s effect on cotton yield and greenhouse gas emissions

    USDA-ARS?s Scientific Manuscript database

    Interest in the use of enhanced-efficiency nitrogen fertilizer (EENFs) sources has increased in recent years due to the potential of these new EENF sources to increase crop yield, while at the same time decreasing N loss from agricultural fields. Nitrogen is the most essential nutrient needed to op...

  1. Yield and economics of shallow subsurface drip irrigation (S3DI) and furrow diking

    USDA-ARS?s Scientific Manuscript database

    A shallow subsurface drip irrigation (S3DI) was installed yearly in conjunction with furrow diking to document yield and economic benefit of these techniques on peanut (Arachis hypogaea L.), cotton (Gossypium hirsutum L.), and corn (Zea mays L.). This research was conducted for three years from 2005...

  2. Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation.

    PubMed Central

    Radin, J W; Lu, Z; Percy, R G; Zeiger, E

    1994-01-01

    Responses of stomata to environment have been intensively studied, but little is known of genetic effects on stomatal conductance or their consequences. In Pima cotton (Gossypium barbadense L.), a crop that is bred for irrigated production in very hot environments, stomatal conductance varies genetically over a wide range and has increased with each release of new higher-yielding cultivars. A cross between heat-adapted (high-yielding) and unadapted genotypes produced F2 progeny cosegregating for stomatal conductance and leaf temperature. Within segregating populations in the field, conductance was negatively correlated with foliar temperature because of evaporative cooling. Plants were selected from the F2 generation specifically and solely for differing stomatal conductance. Among F3 and F4 populations derived from these selections, conductance and leaf cooling were significantly correlated with fruiting prolificacy during the hottest period of the year and with yield. Conductance was not associated with other factors that might have affected yield potential (single-leaf photosynthetic rate, leaf water potential). As breeders have increased the yield of this crop, genetic variability for conductance has allowed inadvertent selection for "heat avoidance" (evaporative cooling) in a hot environment. PMID:11607487

  3. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    NASA Astrophysics Data System (ADS)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the plant protection schedule taken up for main crop and for intercrops, but was least in the insecticide sprayed to both the crops. Data on interaction of intercropping and plant protection schedules indicated that Bt cotton with chilli as intercrop and with zero plant protection showed the highest population of P-solubilizers, N2 fixers as well as urease and phosphatase activities at 135 days of crop growth. Similarly, population of total bacteria, fungi and actinomycetes were highest in the treatment of Bt cotton + chilli + onion with zero protection but were on par with the treatment Bt cotton + chilli with zero protection at 135 days of crop growth. Dehydrogenase activity was found to be the highest in the treatment of Bt cotton + redgram with zero protection at 135 days of crop growth. Our studies showed harmful effects of insecticide sprays on soil microflora and enzyme activities.

  4. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton.

    PubMed

    Wang, Chunling; Lu, Guoqing; Hao, Yuqiong; Guo, Huiming; Guo, Yan; Zhao, Jun; Cheng, Hongmei

    2017-09-01

    ABP9 , encoding a bZIP transcription factor from maize, enhances tolerance to multiple stresses and may participate in the ABA signaling pathway in transgenic cotton by altering physiological and biochemical processes and stress-related gene expression. Abiotic stresses, such as soil salinity and drought, negatively affect growth, development, and yield in cotton. Gene ABP9, which encodes a bZIP transcription factor, binds to the abscisic acid (ABA)-responsive-element (ABRE2) motif of the maize catalase1 gene. Its expression significantly improves tolerance in Arabidopsis to multiple abiotic stresses, but little is known about its role in cotton. In the present study, the ABP9 gene was introduced into upland cotton (Gossypium hirsutum L.) cultivar R15 by Agrobacterium tumefaciens-mediated transformation, and 12 independent transgenic cotton lines were obtained. Cotton plants over-expressing ABP9 have enhanced tolerance to salt and osmotic stress. Under stress, they developed better root systems in a greenhouse and higher germination, reduced stomatal aperture, and stomatal density in a growth chamber. Under drought conditions, survival rate and relative water content (RWC) of transgenic cotton were higher than those of R15 plants. Under salt and osmotic stresses, chlorophyll, proline, and soluble sugar contents significantly increased in transgenic cotton leaves and the malondialdehyde (MDA) content was lower than in R15. Overexpression of ABP9 also enhanced oxidative stress tolerance, reduced cellular levels of reactive oxygen species (ROS) through increased activities of antioxidative enzymes, and alleviated oxidative damage to cell. Interestingly, ABP9 over-expressing cotton was more sensitive to exogenous ABA than R15 at seed germination, root growth, stomatal aperture, and stomatal density. Moreover, ABP9 overexpression upregulated significantly the transcription levels of stress-related genes such as GhDBP2, GhNCED2, GhZFP1, GhERF1, GhHB1, and GhSAP1 under salt treatment. Conjointly, these results showed that overexpression of ABP9 conferred enhanced tolerance to multiple abiotic stresses in cotton. The stress-tolerant transgenic lines provide valuable resources for cotton breeding.

  5. Combining ability analysis for within-boll yield components in upland cotton (Gossypium hirsutum L.).

    PubMed

    Imran, M; Shakeel, A; Azhar, F M; Farooq, J; Saleem, M F; Saeed, A; Nazeer, W; Riaz, M; Naeem, M; Javaid, A

    2012-08-24

    Cotton is an important cash crop worldwide, accounting for a large percentage of world agricultural exports; however, yield per acre is still poor in many countries, including Pakistan. Diallel mating system was used to identify parents for improving within-boll yield and fiber quality parameters. Combining ability analysis was employed to obtain suitable parents for this purpose. The parental genotypes CP-15/2, NIAB Krishma, CIM-482, MS-39, and S-12 were crossed in complete diallel mating under green house conditions during 2009. The F₀ seed of 20 hybrids and five parents were planted in the field in randomized complete block design with three replications during 2010. There were highly significant differences among all F₁ hybrids and their parents. Specific combining ability (SCA) variance was greater than general combining ability (GCA) variance for bolls per plant (9.987), seeds per boll (0.635), seed density (5.672), lint per seed (4.174), boll size (3.69), seed cotton yield (0.315), and lint percentage (0.470), showing predominance of non-additive genes; while seed volume (3.84) was controlled by additive gene action based on maximum GCA variance. Cultivar MS-39 was found to be the best general combiner for seed volume (0.102), seeds per boll (0.448), and lint per seed (0.038) and its utilization produced valuable hybrids, including MS-39 x NIAB Krishma and MS-39 x S-12. The parental line CIM-482 had high GCA effects for boll size (0.33) and seeds per boll (0.90). It also showed good SCA with S-12 and NIAB Krishma for bolls per plant, with CP- 15/2 for boll size, and with MS-39 for seeds per boll. The hybrids, namely, CP-15/2 x NIAB Krishma, NIAB Krishma x S-12, NIAB Krishma x CIM-482, MS-39 x NIAB Krishma, MS-39 x CP-15/2, and S-12 x MS-39 showed promising results. Correlation analysis revealed that seed cotton yield showed significant positive correlation with bolls per plant, boll size and seeds per boll while it showed negative correlation with lint percentage and lint per seed. Seed volume showed significant negative correlation with seed density. Seeds per boll were positively correlated with boll size and negatively correlated with bolls per plant lint percentage and lint per seed. Similarly, lint per seed exhibited positive correlation with lint percentage and boll size showed significantly negative correlation with bolls per plant. Presence of non-additive genetic effects in traits like bolls per plant, seeds per boll, lint per seed, seed cotton yield, and lint percentage is indicative of later generation selection or heterosis breeding may be adopted. For boll size, seed volume and seed density early generation selection may be followed because of the presence of additive gene action. The parental material used in this study and cross combinations obtained from these parents may be exploited in future breeding endeavors.

  6. Mass rearing and augmentative biological control evaluation of Rhynocoris fuscipes (Hemiptera: Reduviidae) against multiple pests of cotton.

    PubMed

    Tomson, Majesh; Sahayaraj, Kitherian; Kumar, Vivek; Avery, Pasco B; McKenzie, Cindy L; Osborne, Lance S

    2017-08-01

    Rhynocoris fuscipes (Fab.) (Hemiptera: Reduviidae) is a generalist predator of cotton pests and is commonly found inhabiting cotton-growing regions in southern India. With the goal of integrating this predator in standard management practices used against cotton pests on a commercial scale, (1) we developed a protocol for adult group rearing of this predator inside micro-environmental cages (MECs), and (2) we evaluated the biocontrol potential of mass-produced predators against cotton pests under potted and field conditions. Higher fecundity and adult longevity of R. fuscipes was recorded in the MECs than under natural growing conditions. The reduviid predator preferred stones and fallen leaves as hiding places in the MECs. The predator showed a higher biocontrol potential during the night hours against two pests, Phenacoccus solenopsis Tinsley and Dysdercus cingulatus (Fab.), than during the day under potted conditions. Under field conditions, R. fuscipes significantly reduced the population of Aphis gossypii Glover, P. solenopsis, D. cingulatus and Helicoverpa armigera (Hübner) by 28, 70, 29 and 50%, respectively. No negative impact of R. fuscipes was reported on other natural enemies present in the cotton agroecosystem. Significantly higher crop yield and cost benefit ratio were observed in R. fuscipes-released plots than in the control plots. The results suggest that R. fuscipes can be mass produced efficiently under controlled conditions in MECs, and used in an integrated management program for multiple cotton pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers.

    PubMed

    Csiszár, Emilia; Nagy, Sebestyén

    2017-10-15

    Cellulose nanocrystals (CNCs) were released from bleached cotton and flax by a sulphuric acid hydrolysis with about 40 and 34% yield, respectively. The rod-like cotton-CNC particles were slightly longer and wider and had a less pronounced aggregation ability in aqueous suspension than the flax-CNC ones. Films were cast from the CNC suspensions with sorbitol and glycerol plasticisers. The concept behind this research was to explore how the plasticisers - with similar structure but different molecular weight - and their concentrations affect the perceptible and measured properties of CNC films. Results revealed that the type of plasticiser determined the morphology and the optical and tensile properties of films. The best quality CNC film with an averaged thickness of 50μm was obtained with 20% sorbitol from cotton-CNC. It was proved that behaviour of sorbitol and glycerol plasticisers in CNC films was very similar to that reported previously for starch films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.

    PubMed

    Saito, Tsuguyuki; Nishiyama, Yoshiharu; Putaux, Jean-Luc; Vignon, Michel; Isogai, Akira

    2006-06-01

    Never-dried native celluloses (bleached sulfite wood pulp, cotton, tunicin, and bacterial cellulose) were disintegrated into individual microfibrils after oxidation mediated by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical followed by a homogenizing mechanical treatment. When oxidized with 3.6 mmol of NaClO per gram of cellulose, almost the totality of sulfite wood pulp and cotton were readily disintegrated into long individual microfibrils by a treatment with a Waring Blendor, yielding transparent and highly viscous suspensions. When observed by transmission electron microscopy, the wood pulp and cotton microfibrils exhibited a regular width of 3-5 nm. Tunicin and bacterial cellulose could be disintegrated by sonication. A bulk degree of oxidation of about 0.2 per one anhydroglucose unit of cellulose was necessary for a smooth disintegration of sulfite wood pulp, whereas only small amounts of independent microfibrils were obtained at lower oxidation levels. This limiting degree of oxidation decreased in the following order: sulfite wood pulp > cotton > bacterial cellulose, tunicin.

  9. Evaluation of genotype x environment interactions in cotton using the method proposed by Eberhart and Russell and reaction norm models.

    PubMed

    Alves, R S; Teodoro, P E; Farias, F C; Farias, F J C; Carvalho, L P; Rodrigues, J I S; Bhering, L L; Resende, M D V

    2017-08-17

    Cotton produces one of the most important textile fibers of the world and has great relevance in the world economy. It is an economically important crop in Brazil, which is the world's fifth largest producer. However, studies evaluating the genotype x environment (G x E) interactions in cotton are scarce in this country. Therefore, the goal of this study was to evaluate the G x E interactions in two important traits in cotton (fiber yield and fiber length) using the method proposed by Eberhart and Russell (simple linear regression) and reaction norm models (random regression). Eight trials with sixteen upland cotton genotypes, conducted in a randomized block design, were used. It was possible to identify a genotype with wide adaptability and stability for both traits. Reaction norm models have excellent theoretical and practical properties and led to more informative and accurate results than the method proposed by Eberhart and Russell and should, therefore, be preferred. Curves of genotypic values as a function of the environmental gradient, which predict the behavior of the genotypes along the environmental gradient, were generated. These curves make possible the recommendation to untested environmental levels.

  10. Cotton Stalk Pretreatment Using Daedalea flavida, Phlebia radiata, and Flavodon flavus: Lignin Degradation, Cellulose Recovery, and Enzymatic Saccharification.

    PubMed

    Meehnian, Harmanpreet; Jana, Asim K

    2017-04-01

    Lignocellulolytic enzyme activities of selective fungi Daedalea flavida MTCC 145 (DF-2), Phlebia radiata MTCC 2791 (PR), and non-selective fungus Flavodon flavus MTCC 168 (FF) were studied for pretreatment of cotton stalks. Simultaneous productions of high LiP and laccase activities by DF-2 during early phase of growth were effective for lignin degradation 27.83 ± 1.25 % (w/w of lignin) in 20-day pretreatment. Production of high MnP activity without laccase in the early growth phase of PR was ineffective and delayed lignin degradation 24.93 ± 1.53 % in 25 days due to laccase production at later phase. With no LiP activity, low activities of MnP and laccase by FF yielded poor lignin degradation 15.09 ± 0.6 % in 20 days. Xylanase was predominant cellulolytic enzyme produced by DF-2, resulting hemicellulose as main carbon and energy source with 83 % of cellulose recovery after 40 days of pretreatment. The glucose yield improved more than two fold from 20-day DF-2 pretreated cotton stalks after enzymatic saccharification.

  11. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    PubMed

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Impact of enhanced ultraviolet-B irradiance on cotton growth, development, yield, and qualities under field conditions

    Treesearch

    Wei Gao; Youfei Zheng; James R. Slusser; Gordon M. Heisler

    2003-01-01

    The stratospheric ozone depletion and enhanced solar ultraviolet-B (UV-B) irradiance may have adverse impacts on the productivity of agricultural crops. The effect of UV-B enhancements on agricultural crops includes reduction in yield, alteration in species competition, decrease in photosynthetic activity, susceptibility to disease, and changes in structure and...

  13. Biological fabrication of cellulose fibers with tailored properties

    NASA Astrophysics Data System (ADS)

    Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R.; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen

    2017-09-01

    Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material’s functionality. In vitro model cultures of upland cotton (Gossypium hirsutum) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept.

  14. The cotton centromere contains a Ty3-gypsy-like LTR retroelement.

    PubMed

    Luo, Song; Mach, Jennifer; Abramson, Bradley; Ramirez, Rolando; Schurr, Robert; Barone, Pierluigi; Copenhaver, Gregory; Folkerts, Otto

    2012-01-01

    The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum) we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG) that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species.

  15. The Cotton Centromere Contains a Ty3-gypsy-like LTR Retroelement

    PubMed Central

    Luo, Song; Mach, Jennifer; Abramson, Bradley; Ramirez, Rolando; Schurr, Robert; Barone, Pierluigi; Copenhaver, Gregory; Folkerts, Otto

    2012-01-01

    The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum) we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG) that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species. PMID:22536361

  16. [Effects of cotton straw returning on soil organic carbon, nitrogen, phosphorus and potas-sium contents in soil aggregates].

    PubMed

    Wang, Shuang Lei; Liu, Yan Hui; Song, Xian Liang; Wei, Shao Bin; Li, Jin Pu; Nie, Jun Jun; Qin, Du Lin; Sun, Xue Zhen

    2016-12-01

    To clarify the effects of cotton straw returning on the composition and contents of nu-trients in different particle sizes of aggregates, two treatments with or without cotton straw returning were tested in continuous three years. After three years straw treatments, we collected undisturbed soil within 0-5, 5-10, 10-20 and 20-30 cm soil layers, and to measure the composition, soil organic carbon, nitrogen, phosphorus and potassium contents in different particle sizes of aggregates classified using dry sieving. Returning cotton straw into the field significantly increased particle contents of 2-5 mm and >5 mm aggregates in 0-5 cm soil layer, while the content of <0.25 mm micro-aggregates was decreased. Cotton straw returning significantly improved soil organic carbon, nitrogen, and potassium contents by 19.2%, 14.2% and 17.3%, respectively, compared to no returning control. In 5-10 cm soil layer, cotton straw returning increased the contents of 2-5 mm and >5 mm aggregates, reduced the content of <0.25 mm micro-aggregate, but significantly increased contents of soil organic carbon, available nitrogen and potassium by 19.6%, 12.6% and 23.4%, compared to no straw returning control. In 10-20 cm soil layer, cotton straw returning significantly reduced the content of <0.25 mm micro-aggregates, and significantly enhanced soil organic carbon, nitrogen, and potassium contents by 8.4%, 10.9% and 11.5%, compared to the control. However, in 20-30 cm soil layer, cotton straw returning only increased soil available potassium content by 12.0%, while there were no significant changes in particle size, organic carbon, nitrogen and phosphorus contents. We concluded that cotton straw returning could significantly improve the structure of surface soil by increasing the number of macro-aggregates, contents of organic carbon, available nitrogen and potassium in aggregates, while decreasing micro-aggregate content. The enhancement of the contribution of macro-aggregates to soil fertility by returning cotton straw could improve soil physical structure, fertility and then increase cotton yield.

  17. Efficacy evaluation of selected herbicides on weed control and productivity evaluation of Bt cotton in Punjab.

    PubMed

    Singh, Kulvir; Rathore, Pankaj

    2015-07-01

    Field experiments were conducted during Kharif 2012 and 2013 to evaluate the efficacy of different herbicides for weed management in cotton. Highest seed cotton yield (3537.3 kg ha(-1)) was recorded in weed free plots followed by pendimethalin @1.0 kg a.i ha(-1) as Pre.em.+quizalofopethyl @50 g a.i ha(-1) post-em at 2-4 weed leaf stage + one hoeing (3318.9 kg ha") owing to improved number of bolls per plant and boll weight. Statistically least yield was recorded underweedy check (1435.4 kg ha(-1)). Application of pyrithiobac sodium could not express any visible toxic effect on crop indicating its selectivity for cotton, although none of the tested new chemicals i.e., pyrithiobac sodium@ 62.5g a.i ha(-1) and quizalofopethyl @50g a.i ha(-1) when applied alone could not outperform the existing recommended chemicals for weed management. Yield losses to the extent of 6.2-59.4% were recorded due to weed competition. Weed control efficiency (WCE) was highest under weed free check (86.8%) followed by pendimethalin @1.0 kg a.i ha(-1) as Pre. em.+quizalofopethyl @50g a.i ha(-1), at 2-4 weed leaf stage + one hoeing (73.7%), whereas minimum values were for weedy check (24.7%). Though net returns (r94660 ha(-1)) were highest for weed free check but higher B:C ratio (2:11) was observed for pendimethalin @1.0 kg a.i ha(-1) as Pre em.+quizalofopethyl @50 g a.i ha(-1) post-em at 2-4 weed leaf stage+one hoeing. Therefore, for reasons such as labor shortage besides their timely availability, using these herbicides in combination with cultural practices could be the practical solution foreconomically efficient and effective weed management.

  18. Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia.

    PubMed

    Downes, Sharon; Mahon, Rod

    2012-01-01

    Bt cotton has been gradually released and adopted by Australian growers since 1996. It was initially deployed in Australia primarily to control the polyphagous pest Helicoverpa armigera (Hübner), which in the 1990s became increasingly difficult to control due to widespread resistance to synthetic chemical insecticides. Bt-cotton has become a key tool in a program of integrated pest management for the production system that reduces pesticide dependence and the problems associated with its use. Herein we overview the deployment of Bt cotton in Australia including its performance and the approaches used to prolong the evolution of resistance to it by H. armigera. An integral component of this approach is monitoring resistance in this pest. We outline resistance screening methods, as well as the characteristics of resistant strains of H. armigera that have been isolated from field populations, or selected in the laboratory. We then highlight the successes and challenges for Bt cotton in Australia by way of discussing adaptive resistance management in light of potential changes in resistance.

  19. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    PubMed

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  20. Spatio-temporal monitoring of cotton cultivation using ground-based and airborne multispectral sensors in GIS environment.

    PubMed

    Papadopoulos, Antonis; Kalivas, Dionissios; Theocharopoulos, Sid

    2017-07-01

    Multispectral sensor capability of capturing reflectance data at several spectral channels, together with the inherent reflectance responses of various soils and especially plant surfaces, has gained major interest in crop production. In present study, two multispectral sensing systems, a ground-based and an aerial-based, were applied for the multispatial and temporal monitoring of two cotton fields in central Greece. The ground-based system was Crop Circle ACS-430, while the aerial consisted of a consumer-level quadcopter (Phantom 2) and a modified Hero3+ Black digital camera. The purpose of the research was to monitor crop growth with the two systems and investigate possible interrelations between the derived well-known normalized difference vegetation index (NDVI). Five data collection campaigns were conducted during the cultivation period and concerned scanning soil and plants with the ground-based sensor and taking aerial photographs of the fields with the unmanned aerial system. According to the results, both systems successfully monitored cotton growth stages in terms of space and time. The mean values of NDVI changes through time as retrieved by the ground-based system were satisfactorily modelled by a second-order polynomial equation (R 2 0.96 in Field 1 and 0.99 in Field 2). Further, they were highly correlated (r 0.90 in Field 1 and 0.74 in Field 2) with the according values calculated via the aerial-based system. The unmanned aerial system (UAS) can potentially substitute crop scouting as it concerns a time-effective, non-destructive and reliable way of soil and plant monitoring.

  1. Effect of oxidation processing on the preparation of post-hydrothermolysis acid from cotton stalk.

    PubMed

    Wang, Caiwei; Zhang, Shouyu; Wu, Shunyan; Cao, Zhongyao; Zhang, Yifan; Li, Hao; Jiang, Fenghao; Lyu, Junfu

    2018-05-04

    The typical properties and yield of the refined hydrothermolytic acid (RHTA) and refined hydrothermolytic oxidation acid (RHOA) respectively prepared from cotton stalk by the hydrothermolysis process with and without hydrogen peroxide at 180-280 °C were investigated. The pH of RHOA at 180-260 °C is lower than that of RHTA. The yield of RHOA prepared at 180-280 °C is higher than that of RHTA except 230 °C. Besides, the variation trend of RHOA yield at 180-260 °C is in accordance with that of RHTA yield at 200-280 °C. The composition of RHTA and RHOA were determined using gas chromatography and mass spectrometry. The acids content of RHOA at 200 °C reaches the maximum. The phenols of RHOA at 200-230 °C is significantly higher than that of RHTA. Under oxidation atmosphere, the formation of ketones is inhibited and the secondary reactions of furan derivatives is promoted. Overall, the oxidation processing can alleviate the severe hydrothermolysis conditions for preparing post-hydrothermolysis acid. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mapping and genomic targeting of the major leaf shape gene (L) in Upland cotton (Gossypium hirsutum L.).

    PubMed

    Andres, Ryan J; Bowman, Daryl T; Kaur, Baljinder; Kuraparthy, Vasu

    2014-01-01

    A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L (o) ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.

  3. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers.

    PubMed

    Liu, Yongliang; Kim, Hee-Jin

    2017-06-22

    With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber ( im ) mutant cotton fibers. It was observed that the R value, CI IR , and the integrated intensity of the 895 cm -1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.

  4. Energy Monitoring in Gins - 2013 Update

    USDA-ARS?s Scientific Manuscript database

    Energy, comprised of electricity and fuel, is the second largest source of variable costs for cotton gins, after labor. Few studies of gin energy use have been conducted recently and none have monitored energy use continuously throughout the ginning season. More detailed information is needed to ide...

  5. Energy Monitoring in Gins - 2012 Preliminary Results

    USDA-ARS?s Scientific Manuscript database

    Electricity and fuel are the second largest source of variable costs for cotton gins, after labor. Few studies of gin energy use have been conducted recently and none have monitored energy use continuously throughout the ginning season. More detailed information is needed to identify management st...

  6. Using ESAP Software for Predicting the Spatial Distributions of NDVI and Transpiration of Cotton

    USDA-ARS?s Scientific Manuscript database

    The normalized difference vegetation index (NDVI) has many applications in agricultural management, including monitoring real-time crop coefficients for estimating crop evapotranspiration (ET). However, frequent monitoring of NDVI as needed in such applications is generally not feasible from aerial ...

  7. Extraction and Analysis of Major Autumn Crops in Jingxian County Based on Multi - Temporal gf - 1 Remote Sensing Image and Object-Oriented

    NASA Astrophysics Data System (ADS)

    Ren, B.; Wen, Q.; Zhou, H.; Guan, F.; Li, L.; Yu, H.; Wang, Z.

    2018-04-01

    The purpose of this paper is to provide decision support for the adjustment and optimization of crop planting structure in Jingxian County. The object-oriented information extraction method is used to extract corn and cotton from Jingxian County of Hengshui City in Hebei Province, based on multi-period GF-1 16-meter images. The best time of data extraction was screened by analyzing the spectral characteristics of corn and cotton at different growth stages based on multi-period GF-116-meter images, phenological data, and field survey data. The results showed that the total classification accuracy of corn and cotton was up to 95.7 %, the producer accuracy was 96 % and 94 % respectively, and the user precision was 95.05 % and 95.9 % respectively, which satisfied the demand of crop monitoring application. Therefore, combined with multi-period high-resolution images and object-oriented classification can be a good extraction of large-scale distribution of crop information for crop monitoring to provide convenient and effective technical means.

  8. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.

    PubMed

    Keshav, Praveen K; Naseeruddin, Shaik; Rao, L Venkateswar

    2016-08-01

    Cotton stalk, a widely available and cheap agricultural residue lacking economic alternatives, was subjected to steam explosion in the range 170-200°C for 5min. Steam explosion at 200°C and 5min led to significant hemicellulose solubilization (71.90±0.10%). Alkaline extraction of steam exploded cotton stalk (SECOH) using 3% NaOH at room temperature for 6h led to 85.07±1.43% lignin removal with complete hemicellulose solubilization. Besides, this combined pretreatment allowed a high recovery of the cellulosic fraction from the biomass. Enzymatic saccharification was studied between steam exploded cotton stalk (SECS) and SECOH using different cellulase loadings. SECOH gave a maximum of 785.30±8.28mg/g reducing sugars with saccharification efficiency of 82.13±0.72%. Subsequently, fermentation of SECOH hydrolysate containing sugars (68.20±1.16g/L) with Saccharomyces cerevisiae produced 23.17±0.84g/L ethanol with 0.44g/g yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.

    PubMed

    Huang, Yu; Wei, Xiaoyang; Zhou, Shiguang; Liu, Mingyong; Tu, Yuanyuan; Li, Ao; Chen, Peng; Wang, Yanting; Zhang, Xuewen; Tai, Hongzhong; Peng, Liangcai; Xia, Tao

    2015-04-01

    In this study, steam explosion pretreatment was performed in cotton stalks, leading to 5-6 folds enhancements on biomass enzymatic saccharification distinctive in Gossypium barbadense and Gossypium hirsutum species. Sequential 1% H2SO4 pretreatment could further increase biomass digestibility of the steam-exploded stalks, and also cause the highest sugar-ethanol conversion rates probably by releasing less inhibitor to yeast fermentation. By comparison, extremely high concentration alkali (16% NaOH) pretreatment with raw stalks resulted in the highest hexoses yields, but it had the lowest sugar-ethanol conversion rates. Characterization of wall polymer features indicated that biomass saccharification was enhanced with steam explosion by largely reducing cellulose DP and extracting hemicelluloses. It also showed that cellulose crystallinity and arabinose substitution degree of xylans were the major factors on biomass digestibility in cotton stalks. Hence, this study has provided the insights into cell wall modification and biomass process technology in cotton stalks and beyond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies

    PubMed Central

    Aslam, Usman; Cheema, Hafiza M. N.; Ahmad, Sheraz; Khan, Iqrar A.; Malik, Waqas; Khan, Asif A.

    2016-01-01

    Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton (Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based reverse genetic strategy to create and evaluate induced genetic variability at DNA level. Here, we report development and testing of TILLING populations of allotetraploid cotton (G. hirsutum) for functional genomic studies and mutation based enrichment of cotton genetic resources. Seed of two cotton cultivars “PB-899 and PB-900” were mutagenized with 0.3 and 0.2% (v/v) ethyl methanesulfonate, respectively. The phenotyping of M1 and M2 populations presented numerous mutants regarding the branching pattern, leaf morphology, disease resistance, photosynthetic lesions and flower sterility. Molecular screening for point mutations was performed by TILLING PCR aided CEL1 mismatch cleavage. To estimate the mutation frequency in the mutant genomes, five gene classes were TILLed in 8000 M2 plants of each var. “PB-899” and “PB-900.” These include actin (GhACT), Pectin Methyl Esterase (GhPME), sucrose synthase (GhSUS), resistance gene analog, and defense response gene (DRGs). The var. PB-899 was harboring 47% higher mutation induction rate than PB-900. The highest rate of mutation frequency was identified for NAC-TF5 (EU706348) of DRGs class, ranging from 1/58 kb in PB-899 to 1/105 kb in PB-900. The mutation screening assay revealed the presence of significant proportion of induced mutations in cotton TILLING populations such as 1/153 kb and 1/326 kb in var. “PB-899” and “PB-900,” respectively. The establishment of a cotton TILLING platform (COTIP) and data obtained from the resource TILLING population suggest its effectiveness in widening the genetic bases of cotton for improvement and utilizing it for subsequent reverse genetic studies of various genes. PMID:28082993

  11. Single and multiple in-season measurements as indicators of at-harvest cotton boll damage caused by verde plant bug (Hemiptera: Miridae).

    PubMed

    Brewer, Michael J; Armstrong, J Scott; Parker, Roy D

    2013-06-01

    The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot provided opportunity to assess if single in-season measurements had value in evaluating at-harvest damage to bolls and if multiple in-season measurements enhanced their combined use. One in-season verde plant bug density measurement, three in-season plant injury measurements, and two at-harvest damage measurements were taken in 15 cotton fields in South Texas, 2010. Linear regression selected two measurements as potentially useful indicators of at-harvest damage: verde plant bug density (adjusted r2 = 0.68; P = 0.0004) and internal boll injury of the carpel wall (adjusted r2 = 0.72; P = 0.004). Considering use of multiple measurements, a stepwise multiple regression of the four in-season measurements selected a univariate model (verde plant bug density) using a 0.15 selection criterion (adjusted r2 = 0.74; P = 0.0002) and a bivariate model (verde plant bug density-internal boll injury) using a 0.25 selection criterion (adjusted r2 = 0.76; P = 0.0007) as indicators of at-harvest damage. In a validation using cultivar and water regime treatments experiencing low verde plant bug pressure in 2011 and 2012, the bivariate model performed better than models using verde plant bug density or internal boll injury separately. Overall, verde plant bug damaging cotton bolls exemplified the benefits of using multiple in-season measurements in pest monitoring programs, under the challenging situation when at-harvest damage results from a sequence of plant responses initiated by in-season insect feeding.

  12. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress.

    PubMed

    Zhang, Yanjun; Kong, Xiangqiang; Dai, Jianlong; Luo, Zhen; Li, Zhenhuai; Lu, Hequan; Xu, Shizhen; Tang, Wei; Zhang, Dongmei; Li, Weijiang; Xin, Chengsong; Dong, Hezhong

    2017-01-01

    Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.

  13. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress

    PubMed Central

    Zhang, Yanjun; Kong, Xiangqiang; Dai, Jianlong; Luo, Zhen; Li, Zhenhuai; Lu, Hequan; Xu, Shizhen; Tang, Wei; Zhang, Dongmei; Li, Weijiang; Xin, Chengsong

    2017-01-01

    Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress. PMID:28953908

  14. Genomics-enabled analysis of the emergent disease cotton bacterial blight

    PubMed Central

    Phillips, Anne Z.; Burke, Jillian; Bunn, J. Imani; Allen, Tom W.; Wheeler, Terry

    2017-01-01

    Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars. PMID:28910288

  15. The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton

    PubMed Central

    Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  16. The compensation effects of physiology and yield in cotton after drought stress.

    PubMed

    Niu, Jing; Zhang, Siping; Liu, Shaodong; Ma, Huijuan; Chen, Jing; Shen, Qian; Ge, Changwei; Zhang, Xiaomeng; Pang, Chaoyou; Zhao, Xinhua

    The objective of this study was to investigate the root growth compensatory effects and cotton yield under drought stress. The results indicate that the root dry weight, boll weight, and cotton yield increased in both the drought-resistant cultivar (CCRI-45) and the drought-sensitive cultivar (CCRI-60). Compensation effects were exhibited under the three-day drought stress treatment at a soil relative water content (SRWC) of 60% and 45% during the seedling stage, and flowering and boll-forming stage over two years. The yield of the drought-resistant cultivar (CCRI-45) was higher than the control, however, following the six-day 45% SRWC drought treatments, the yield of the drought-sensitive cultivar (CCRI-60) was lower than the control. The soluble sugar content, proline content, superoxide dismutase (SOD) activity, and peroxidase (POD) activity of the roots increased under drought stress and then decreased after re-watering, although the values remained higher than those of the controls for a short period. These physiological measures may represent stress reactions and thus may not indicate factors that result in compensation effects. However, catalase (CAT) activity and gibberellic acid (GA) content of the roots decreased under drought stress. After re-watering, the CAT activity and the GA content increased and were significantly higher than those of the controls under the six-day 60% SRWC and 45% SRWC drought treatments. The abscisic acid (ABA) content of the roots increased under drought stress. After re-watering, the ABA content decreased to a lower level under the three and six-day 60% SRWC and 45% SRWC drought treatments than in the controls. According to an analysis of various indicators, the interaction between ABA and GA signals may play an important role in root growth compensatory effects. In summary, the results demonstrate that moderate drought stress is beneficial to root growth and yield. This conclusion is of great significance to improving our understanding of the maximum utilization of limited water resources. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Agronomic threshold of soil available phosphorus in grey desert soils in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Liu, H.; Hao, X. Y.; Wang, X. H.; Sun, J. S.; Li, J. M.; Ma, Y. B.

    2016-08-01

    Based on 23 years of data, yields of maize, wheat and cotton were modelled under different fertilizer management practices and at different levels of available phosphorus (Olsen-P) in soil. Three types of threshold models were used, namely linear-linear (LL), linear- plateau (LP), and Mitscherlich type exponential (Exp). The agronomic thresholds of available phosphorus were 25.4 mgkg-1 for cotton, 14.8 mgkg-1 for wheat, 13.1 mgkg-1 for maize and 25.4 mgkg-1 for the grey desert soil regions of Xinjiang in China as a whole.

  18. Conductive reduced graphene oxide/MnO2 carbonized cotton fabrics with enhanced electro -chemical, -heating, and -mechanical properties

    NASA Astrophysics Data System (ADS)

    Tian, Mingwei; Du, Minzhi; Qu, Lijun; Zhang, Kun; Li, Hongliang; Zhu, Shifeng; Liu, Dongdong

    2016-09-01

    Versatile and ductile conductive carbonized cotton fabrics decorated with reduced graphene oxide (rGO)/manganese dioxide (MnO2) are prepared in this paper. In order to endow multifunction to cotton fabric, graphene oxide (GO) is deposited on cotton fibers by simple dip-coating route. MnO2 nanoparticles are assembled on the surface of cotton fabric through in-situ chemical solution deposition. MnO2/GO@cotton fabrics are carbonized to achieve conductive fabric (MnO2/rGO@C). The morphologies and structures of obtained fabrics are characterized by SEM, XRD, ICP and element analysis, and their electro-properties including electro-chemical, electro-heating and electro-mechanical properties are evaluated. The MnO2/rGO@C yields remarkable specific capacitance of 329.4 mA h/g at the current density of 100 mA/g, which is more than 40% higher than that of the control carbonized cotton fabric (231 mA h/g). Regarding electro-heating properties, the temperature of MnO2/rGO@C fabric could be monotonically increased to the steady-state maximum temperatures (ΔTmax) of 36 °C within 5 min under the applied voltage 15 V while the ΔTmax = 17 °C of the control case. In addition, MnO2/rGO@C exhibits repeatable electro-mechanical properties and its normalized resistance (R-R0)/R0 could reach 0.78 at a constant strain (curvature = 0.6 cm-1). The MnO2/rGO@C fabric is versatile, scalable, and adaptable to a wide variety of smart textiles applications.

  19. An image-based approach for automatic detecting five true-leaves stage of cotton

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Cao, Zhiguo; Wu, Xi; Yu, Zhenghong; Wang, Yu; Bai, Xiaodong

    2013-10-01

    Cotton, as one of the four major economic crops, is of great significance to the development of the national economy. Monitoring cotton growth status by automatic image-based detection makes sense due to its low-cost, low-labor and the capability of continuous observations. However, little research has been done to improve close observation of different growth stages of field crops using digital cameras. Therefore, algorithms proposed by us were developed to detect the growth information and predict the starting date of cotton automatically. In this paper, we introduce an approach for automatic detecting five true-leaves stage, which is a critical growth stage of cotton. On account of the drawbacks caused by illumination and the complex background, we cannot use the global coverage as the unique standard of judgment. Consequently, we propose a new method to determine the five true-leaves stage through detecting the node number between the main stem and the side stems, based on the agricultural meteorological observation specification. The error of the results between the predicted starting date with the proposed algorithm and artificial observations is restricted to no more than one day.

  20. Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    PubMed

    Magalhães, D M; Borges, M; Laumann, R A; Sujii, E R; Mayon, P; Caulfield, J C; Midega, C A O; Khan, Z R; Pickett, J A; Birkett, M A; Blassioli-Moraes, M C

    2012-12-01

    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses conspecific herbivore-induced volatiles in host location, and that homoterpene compounds, such as (E)-4,8-dimethylnona-1,3,7-triene and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene and the monoterpene (E)-ocimene, may be involved in preference for host plants at the reproductive stage.

  1. Harvesting

    USDA-ARS?s Scientific Manuscript database

    The spindle picker and brush-roll stripper are the two machines used to harvest cotton produced in the United States. Adoption of each harvester type is dictated by regional differences in regard to production environment, production practices, cultivar, and yield. The spindle picker is a selectiv...

  2. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density

    PubMed Central

    Wheeler, T. A.; Leser, J. F.; Keeling, J. W.; Mullinix, B.

    2008-01-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty. PMID:19259531

  3. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density.

    PubMed

    Wheeler, T A; Leser, J F; Keeling, J W; Mullinix, B

    2008-06-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log(10) (J2 + 1)/500 cm(3) soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log(10)(J2 + 1)/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18 degrees C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10 degrees C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.

  4. [Effects of water storage in deeper soil layers on the root growth, root distribution and economic yield of cotton in arid area with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng

    2012-02-01

    Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the downward growth of cotton roots, which was essential for achieving water-saving and high-yielding cultivation of cotton with drip irrigation under mulch.

  5. Biological fabrication of cellulose fibers with tailored properties.

    PubMed

    Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen

    2017-09-15

    Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material's functionality. In vitro model cultures of upland cotton ( Gossypium hirsutum ) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    PubMed

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P

  7. Effects of chilling temperatures on photosynthesis

    USDA-ARS?s Scientific Manuscript database

    Environmental stress is an inescapable reality for most plants growing in natural settings. Conditions of sub or supra-optimal temperatures, water deficit, water logging, salinity, and pollution can have dramatic effects on plant growth and development, and in agricultural settings, yield. In cotton...

  8. Identification and characterization of a CLE domain-containing protein from Rotylenchulus reniformis

    USDA-ARS?s Scientific Manuscript database

    The reniform nematode, Rotylenchulus reniformis, is a sedentary semi-endoparasite that causes significant yield loss on many economically important crops including cotton, soybean, and pineapple. Vermiform infective female nematodes secrete esophageal gland effector proteins, encoded by parasitism ...

  9. Validation, residue analysis, and risk assessment of fipronil and flonicamid in cotton (Gossypium sp.) samples and soil.

    PubMed

    Chawla, Suchi; Gor, Hetal N; Patel, Hemlatta K; Parmar, Kaushik D; Patel, Anil R; Shukla, Varsha; Ilyas, Mohammad; Parsai, Satish K; Somashekar; Meena, Roop Singh; Shah, Paresh G

    2018-05-04

    Cotton crop is highly susceptible to attack by sucking pests. Being an important oilseed and feed crop, it is essential to monitor the pesticides and ensure health protection at consumer level. Therefore, a method was validated to estimate fipronil and flonicamid in various cotton samples and risk assessment was performed. Contamination of oil in the extracts from the various oil seeds and cake samples is a major problem as this oil contaminates the column and interferes with the detection of pesticides. The present manuscript for the first time describes successful analysis of the pesticides from various cotton samples including cotton oil, seed, and cake. Quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based methods were validated for estimation of fipronil and flonicamid in cotton samples and in soil by LC-MS/MS. Recoveries were within the acceptable range of 70-120% with relative standard deviation ≤ 20% and HorRat values < 0.3-1.3. R 2 was > 0.99. Matrix effects of 150 and 13.5% were observed for fipronil and flonicamid, respectively, in cotton leaves. Limits of quantitation (LOQs) were in the range of 0.0004 to 0.004 mg kg -1 for fipronil and flonicamid. Cotton samples collected from a field study at different locations were analyzed. Half-life ranged from 2.2 to 5.8 for fipronil and 4.6 to 7.0 days for flonicamid. A pre-harvest interval of 33 days is suggested. The risk assessment studies at maximum residue level values showed HQ < 1 at pre-harvest interval (PHI). The methods being short and easy can be extended to estimate more types of pesticides in different oilseeds. Following a PHI of 33 days, fipronil and flonicamid can be used on cotton at standard dose. As the levels of fipronil and flonicamid were below determination limit in all the soils, the environmental risk is negligible.

  10. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae.

    PubMed

    Gong, Qian; Yang, Zhaoen; Wang, Xiaoqian; Butt, Hamama Islam; Chen, Eryong; He, Shoupu; Zhang, Chaojun; Zhang, Xueyan; Li, Fuguang

    2017-03-03

    Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The complex mechanism underlying cotton resistance to Verticillium wilt remains uncharacterized. Identifying an endogenous resistance gene may be useful for controlling this disease. We cloned the ribosomal protein L18 (GaRPL18) gene, which mediates resistance to Verticillium wilt, from a wilt-resistant cotton species (Gossypium arboreum). We then characterized the function of this gene in cotton and Arabidopsis thaliana plants. GaRPL18 encodes a 60S ribosomal protein subunit important for intracellular protein biosynthesis. However, previous studies revealed that some ribosomal proteins are also inhibitory toward oncogenesis and congenital diseases in humans and play a role in plant disease defense. Here, we observed that V. dahliae infections induce GaRPL18 expression. Furthermore, we determined that the GaRPL18 expression pattern is consistent with the disease resistance level of different cotton varieties. GaRPL18 expression is upregulated by salicylic acid (SA) treatments, suggesting the involvement of GaRPL18 in the SA signal transduction pathway. Virus-induced gene silencing technology was used to determine whether the GaRPL18 expression level influences cotton disease resistance. Wilt-resistant cotton species in which GaRPL18 was silenced became more susceptible to V. dahliae than the control plants because of a significant decrease in the abundance of immune-related molecules. We also transformed A. thaliana ecotype Columbia (Col-0) plants with GaRPL18 according to the floral dip method. The plants overexpressing GaRPL18 were more resistant to V. dahliae infections than the wild-type Col-0 plants. The enhanced resistance of transgenic A. thaliana plants to V. dahliae is likely mediated by the SA pathway. Our findings provide new insights into the role of GaRPL18, indicating that it plays a crucial role in resistance to cotton "cancer", also known as Verticillium wilt, mainly regulated by an SA-related signaling pathway mechanism.

  11. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    PubMed

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved understanding of the roles of the Hsf gene family during stress responses and fiber development.

  12. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.).

    PubMed

    Zahoor, Rizwan; Zhao, Wenqing; Dong, Haoran; Snider, John L; Abid, Muhammad; Iqbal, Babar; Zhou, Zhiguo

    2017-10-01

    To investigate whether potassium (K) application enhances the potential of cotton (Gossypium hirsutum L.) plants to maintain physiological functions during drought and recovery, low K-sensitive (Siza 3) and -tolerant (Simian 3) cotton cultivars were exposed to three K rates (0, 150, and 300 K 2 O kg ha -1 ) and either well-watered conditions or severe drought stress followed by a recovery period. Under drought stress, cotton plants showed a substantial decline in leaf water potential, stomatal conductance, photosynthetic rate, and the maximum and actual quantum yield of PSII, resulting in greater non-photochemical quenching and lipid peroxidation as compared to well-watered plants. However, plants under K application not only showed less of a decline in these traits but also displayed greater potential to recover after rewatering as compared to the plants without K application. Plants receiving K application showed lower lipid peroxidation, higher antioxidant enzyme activities, and increased proline accumulation as compared to plants without K application. Significant relationships between rates of photosynthetic recovery and K application were observed. The cultivar Siza 3 exhibited a more positive response to K application than Simian 3. The results suggest that K application enhances the cotton plant's potential to maintain functionality under drought and facilitates recovery after rewatering. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images

    USDA-ARS?s Scientific Manuscript database

    Examination of seed germination rate is of great importance for growers early in the season to determine the necessity for replanting their fields. The objective of this study was to explore the potential of using unmanned aircraft system (UAS)-based visible-band images to monitor and quantify the c...

  14. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection.

    PubMed

    Li, Yuan-Qing; Huang, Pei; Zhu, Wei-Bin; Fu, Shao-Yun; Hu, Ning; Liao, Kin

    2017-03-21

    In this work, a wire-shaped flexible strain sensor was fabricated by encapsulating conductive carbon thread (CT) with polydimethylsiloxane (PDMS) elastomer. The key strain sensitive material, CT, was prepared by pyrolysing cotton thread in N 2 atmosphere. The CT/PDMS composite wire shows a typical piezo-resistive behavior with high strain sensitivity. The gauge factors (GF) calculated at low strain of 0-4% and high strain of 8-10% are 8.7 and 18.5, respectively, which are much higher than that of the traditional metallic strain sensor (GF around 2). The wire-shaped CT/PDMS composite sensor shows excellent response to cyclic tensile loading within the strain range of 0-10%, the frequency range of 0.01-10 Hz, to up to 2000 cycles. The potential of the wire senor as wearable strain sensor is demonstrated by the finger motion and blood pulse monitoring. Featured by the low costs of cotton wire and PDMS resin, the simple structure and fabrication technique, as well as high performance with miniaturized size, the wire-shaped sensor based on CT/PDMS composite is believed to have a great potential for application in wearable electronics for human health and motion monitoring.

  15. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  16. Effect of Simultaneous Water Deficit Stress and Meloidogyne incognita Infection on Cotton Yield and Fiber Quality

    PubMed Central

    Davis, R. F.; Earl, H. J.; Timper, P.

    2014-01-01

    Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. PMID:24987162

  17. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production

    PubMed Central

    Li, Hongbiao; Zhang, Genlin; Dang, Yanyan

    2016-01-01

    ABSTRACT Microbial production of 2,3-butanediol is limited by the toxic components in the lignocellulose hydrolysate. To improve the 2,3-butanediol production via Klebsiella pneumoniae from cotton stalk hydrolysate, a method coupling a high tolerance of strain and detoxification of the hydrolysate was thus investigated in this study. The strain tolerance of K. pneumoniae to the cotton stalk hydrolysate was improved via an adaptive laboratory evolution, which involved a stepwise increase in the hydrolysate concentration in the medium. Compared with the initial strain, the resulting strain increased the biomass 3.2-fold in a medium of 20 g/L hydrolysate and produced 10.45 g/L of 2,3-butanediol at an optimal concentration of 60 g/L hydrolysate. After detoxification of cotton stalk hydrolysate, the cell metabolism of K. pneumoniae was further promoted, and the 2,3-butanediol production increased by 1.2 folds. Using fed-batch fermentation, the concentration of 2,3-butanediol reached 35.5 g/L with a yield of 0.43 g/g. The results demonstrated that the bioconversion of low-cost cotton stalk hydrolysate into 2,3-butanediol improves the economics of microbial 2,3-butanediol production. PMID:27442598

  18. Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) Singer

    PubMed Central

    Mane, Vijay Panjabrao; Patil, Shyam Sopanrao; Syed, Abrar Ahmed; Baig, Mirza Mushtaq Vaseem

    2007-01-01

    Pleurotus sajor-caju (Fr.) Singer was cultivated on selected agro wastes viz. cotton stalks, groundnut haulms, soybean straw, pigeon pea stalks and leaves and wheat straw, alone or in combinations. Cotton stalks, pigeon pea stalks and wheat straw alone or in combination were found to be more suitable than groundnut haulms and soybean straw for the cultivation. Organic supplements such as groundnut oilseed cake, gram powder and rice bran not only affected growth parameters but also increased yields. Thus bioconversion of lignocellulosic biomass by P. sajor-caju offers a promising way to convert low quality biomass into an improved human food. PMID:17910118

  19. Antiviral Activity of Intranasally Applied Human Leukocyte Interferon

    PubMed Central

    Greenberg, Stephen B.; Harmon, Maurice W.; Johnson, Paul E.; Couch, Robert B.

    1978-01-01

    Previous studies in our laboratory have demonstrated that the development of antiviral activity of human leukocyte interferon (IF) in nasal epithelial cells is time and concentration dependent and that the loss of intranasally applied human leukocyte IF is rapid. The present studies compared the activity of IF applied intranasally either by nasal drops or by a saturated cotton pledget. Adult volunteers had IF applied to an area of nasal mucosa (2 by 2 cm2) either by repeated nose drops or by a saturated cotton pledget that was applied to the nasal mucosa and left in place for 1 h. Nasal epithelial cells scraped from the area of application, as well as the control, untreated side of the same volunteers, were challenged with vesicular stomatitis virus. No significant reduction in mean virus yield was found in volunteers who received 80,000 U by nose drops. Significant reduction (P < 0.025) in mean virus yield was found in cells obtained 4 h after 80,000, 50,000, or 20,000 U was applied by cotton pledget or in volunteers pretreated with oral antihistamines prior to receiving 80,000 U by nose drops. These experiments indicate that nasal epithelial cells can be made antiviral in vivo by application of human leukocyte IF. However, practical usefulness of human leukocyte IF for prophylaxis against respiratory viral infections may depend on the method of local application. PMID:214028

  20. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study.

    PubMed

    Hanif, Muhammad Usman; Capareda, Sergio C; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products.

  1. Evaluation of remote sensing in control of pink bollworm in cotton. [Southern California deserts

    NASA Technical Reports Server (NTRS)

    Lewis, L. N. (Principal Investigator); Coleman, V. B.

    1973-01-01

    The author has identified the following significant results. The main objective is to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used for crop identification. The status of each field (i.e., crop, bare, harvested, wet, plowed) is mapped from the imagery and is then compared to ground survey information taken at the time of ERTS-1 overflights. A computer analysis has been performed to compare field and satellite data to a crop calendar. Correlation to data has been 97% for field condition. Actual crop identification varies; cotton identification is only 63% due to lack of full season coverage.

  2. Landscape-Scale water balance of cotton fields

    USDA-ARS?s Scientific Manuscript database

    Information on the temporal and spatial distribution of the components of the water balance of a production field is necessary to manage agronomic inputs. Furthermore, factors that determine crop yield require knowledge of the energy, water, nutrient and carbon balance and their interaction. The in...

  3. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  4. Changes in behavioral responses of Lygus lineolaris (Hemiptera: Miridae) from various applied signal voltages during EPG recordings

    USDA-ARS?s Scientific Manuscript database

    A 3rd-generation AC-DC electrical penetration graph (EPG) monitor was used to study feeding behaviors of pre-reproductive adult Lygus lineolaris (Hemiptera: Miridae) on pinhead (<3mm) cotton squares, applying different signal voltages at several input impedances. The AC-DC monitor allows a user to s...

  5. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.

    PubMed

    Sun, Shangpeng; Li, Changying; Paterson, Andrew H; Jiang, Yu; Xu, Rui; Robertson, Jon S; Snider, John L; Chee, Peng W

    2018-01-01

    Plant breeding programs and a wide range of plant science applications would greatly benefit from the development of in-field high throughput phenotyping technologies. In this study, a terrestrial LiDAR-based high throughput phenotyping system was developed. A 2D LiDAR was applied to scan plants from overhead in the field, and an RTK-GPS was used to provide spatial coordinates. Precise 3D models of scanned plants were reconstructed based on the LiDAR and RTK-GPS data. The ground plane of the 3D model was separated by RANSAC algorithm and a Euclidean clustering algorithm was applied to remove noise generated by weeds. After that, clean 3D surface models of cotton plants were obtained, from which three plot-level morphologic traits including canopy height, projected canopy area, and plant volume were derived. Canopy height ranging from 85th percentile to the maximum height were computed based on the histogram of the z coordinate for all measured points; projected canopy area was derived by projecting all points on a ground plane; and a Trapezoidal rule based algorithm was proposed to estimate plant volume. Results of validation experiments showed good agreement between LiDAR measurements and manual measurements for maximum canopy height, projected canopy area, and plant volume, with R 2 -values of 0.97, 0.97, and 0.98, respectively. The developed system was used to scan the whole field repeatedly over the period from 43 to 109 days after planting. Growth trends and growth rate curves for all three derived morphologic traits were established over the monitoring period for each cultivar. Overall, four different cultivars showed similar growth trends and growth rate patterns. Each cultivar continued to grow until ~88 days after planting, and from then on varied little. However, the actual values were cultivar specific. Correlation analysis between morphologic traits and final yield was conducted over the monitoring period. When considering each cultivar individually, the three traits showed the best correlations with final yield during the period between around 67 and 109 days after planting, with maximum R 2 -values of up to 0.84, 0.88, and 0.85, respectively. The developed system demonstrated relatively high throughput data collection and analysis.

  6. The Negative Correlation between Fiber Color and Quality Traits Revealed by QTL Analysis.

    PubMed

    Feng, Hongjie; Guo, Lixue; Wang, Gaskin; Sun, Junling; Pan, Zhaoe; He, Shoupu; Zhu, Heqin; Sun, Jie; Du, Xiongming

    2015-01-01

    Naturally existing colored cotton was far from perfection due to having genetic factors for lower yield, poor fiber quality and monotonous color. These factors posed a challenge to colored cotton breeding and innovation. To identify novel quantitative trait loci (QTL) for fiber color along with understanding of correlation between fiber color and quality in colored cotton, a RIL and two F2 populations were generated from crosses among Zong128 (Brown fiber cotton) and two white fiber cotton lines which were then analyzed in four environments. Two stable and major QTLs (qLC-7-1, qFC-7-1) for fiber lint and fuzz color were detected accounting for 16.01%-59.85% of the phenotypic variation across multiple generations and environments. Meanwhile, some minor QTLs were also identified on chromosomes 5, 14, 21 and 24 providing low phenotypic variation (<5%) from only F2 populations, not from the RILs population. Especially, a multiple-effect locus for fiber color and quality has been detected between flanking markers NAU1043 and NAU3654 on chromosome 7 (A genome) over multiple environments. Of which, qLC-7-1, qFC-7-1 were responsible for positive effects and improved fiber color in offsprings. Meanwhile, the QTLs (qFL-7-1, qFU-7-1, qFF-7-1, qFE-7-1, and qFS-7-1) for fiber quality had negative effects and explained 2.19%-8.78% of the phenotypic variation. This multiple-effect locus for fiber color and quality may reveal the negative correlation between the two types of above traits, so paving the way towards cotton genetic improvement.

  7. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants.

    PubMed

    Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao

    2015-11-01

    Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Molecular characterization of the Gossypium Diversity Reference Set of the US National Cotton Germplasm Collection.

    PubMed

    Hinze, Lori L; Fang, David D; Gore, Michael A; Scheffler, Brian E; Yu, John Z; Frelichowski, James; Percy, Richard G

    2015-02-01

    A core marker set containing markers developed to be informative within a single commercial cotton species can elucidate diversity structure within a multi-species subset of the Gossypium germplasm collection. An understanding of the genetic diversity of cotton (Gossypium spp.) as represented in the US National Cotton Germplasm Collection is essential to develop strategies for collecting, conserving, and utilizing these germplasm resources. The US collection is one of the largest world collections and includes not only accessions with improved yield and fiber quality within cultivated species, but also accessions possessing sources of abiotic and biotic stress resistance often found in wild species. We evaluated the genetic diversity of a subset of 272 diploid and 1,984 tetraploid accessions in the collection (designated the Gossypium Diversity Reference Set) using a core set of 105 microsatellite markers. Utility of the core set of markers in differentiating intra-genome variation was much greater in commercial tetraploid genomes (99.7 % polymorphic bands) than in wild diploid genomes (72.7 % polymorphic bands), and may have been influenced by pre-selection of markers for effectiveness in the commercial species. Principal coordinate analyses revealed that the marker set differentiated interspecific variation among tetraploid species, but was only capable of partially differentiating among species and genomes of the wild diploids. Putative species-specific marker bands in G. hirsutum (73) and G. barbadense (81) were identified that could be used for qualitative identification of misclassifications, redundancies, and introgression within commercial tetraploid species. The results of this broad-scale molecular characterization are essential to the management and conservation of the collection and provide insight and guidance in the use of the collection by the cotton research community in their cotton improvement efforts.

  9. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling.

    PubMed

    Wang, Lu; Cook, Akiko; Patrick, John W; Chen, Xiao-Ya; Ruan, Yong-Ling

    2014-05-01

    Cotton fibers, the most important source of cellulose for the global textile industry, are single-celled trichomes derived from the ovule epidermis at or just prior to anthesis. Despite progress in understanding cotton fiber elongation and cell-wall biosynthesis, knowledge regarding the molecular basis of fiber cell initiation, the first step of fiber development determining the fiber yield potential, remains elusive. Here, we provide evidence that expression of a vacuolar invertase (VIN) is an early event that is essential for cotton fiber initiation. RNAi-mediated suppression of GhVIN1, a major VIN gene that is highly expressed in wild-type fiber initials, resulted in significant reduction of VIN activity and consequently a fiberless seed phenotype in a dosage dependent manner. The absence of a negative effect on seed development in these fiberless seeds indicates that the phenotype is unlikely to be due to lack of carbon nutrient. Gene expression analyses coupled with in vitro ovule culture experiments revealed that GhVIN1-derived hexose signaling may play an indispensable role in cotton fiber initiation, probably by regulating the transcription of several MYB transcription factors and auxin signaling components that were previously identified as required for fiber initiation. Together, the data represent a significant advance in understanding the mechanisms of cotton fiber initiation, and provide the first indication that VIN-mediated hexose signaling may act as an early event modulating the expression of regulatory genes and hence cell differentiation from the ovule epidermis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber

    PubMed Central

    Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  11. Assessing the Impacts of Land Use Change from Cotton to Perennial Bioenergy Grasses on Hydrological Fluxes and Water Quality in a Semi-Arid Agricultural Watershed Using the APEX Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ale, S.; Rajan, N.

    2015-12-01

    The semi-arid Texas High Plains (THP) region, where cotton (Gossypium hirsutum L.) is grown in vast acreage, has the potential to grow perennial bioenergy grasses. A change in land use from cotton cropping systems to perennial grasses such as Alamo switchgrass (Panicum virgatum L.) and Miscanthus giganteus (Miscanthus sinensis Anderss. [Poaceae]) can significantly affect regional hydrologic cycle and water quality. Assessing the impacts of this potential land use change on hydrology and water quality enables the environmental assessment of feasibility to grow perennial grasses in this region to meet the U.S. national bioenergy target of 2022. The Agricultural Policy/Environmental eXtender (APEX) model was used in this study to assess the impacts of replacing cotton with switchgrass and Miscanthus on water and nitrogen balances in the upstream subwatershed of the Double Mountain Fork Brazos watershed in the THP, which contains 52% cotton land use. The APEX model was initially calibrated against observed streamflow and crop yield data. Since observed data on nitrogen loads in streamflow was not available for this subwatershed, we calibrated the APEX model against the SWAT-simulated nitrogen loads at the outlet of this subwatershed, which were obtained in a parallel study. The calibrated APEX model was used to simulate the impacts of land use change from cotton to Miscanthus and switchgrass on surface and subsurface water and nitrogen balances. Preliminary results revealed that the average (1994-2009) annual surface runoff decreased by 84% and 66% under the irrigated and dryland switchgrass scenarios compared to the baseline scenarios. Average annual percolation increased by 106% and 57% under the irrigated and dryland switchgrass scenarios relative to the baseline scenarios. Preliminary results also indicated Miscanthus and switchgrass appeared to be superior to cotton in terms of better water conservation and water quality, and minimum crop management requirements.

  12. Divergence and evolution of cotton bHLH proteins from diploid to allotetraploid.

    PubMed

    Liu, Bingliang; Guan, Xueying; Liang, Wenhua; Chen, Jiedan; Fang, Lei; Hu, Yan; Guo, Wangzhen; Rong, Junkang; Xu, Guohua; Zhang, Tianzhen

    2018-02-23

    Polyploidy is considered a major driving force in genome expansion, yielding duplicated genes whose expression may be conserved or divergence as a consequence of polyploidization. We compared the genome sequences of tetraploid cotton (Gossypium hirsutum) and its two diploid progenitors, G. arboreum and G. raimondii, and found that the bHLH genes were conserved over the polyploidization. Oppositely, the expression of the homeolgous gene pairs was diversified. The biased homeologous proportion for bHLH family is significantly higher (64.6%) than the genome wide homeologous expression bias (40%). Compared with cacao (T. cacao), orthologous genes only accounted for a small proportion (41.7%) of whole cotton bHLHs family. The further Ks analysis indicated that bHLH genes underwent at least two distinct episodes of whole genome duplication: a recent duplication (1.0-60.0 million years ago, MYA, 0.005 < Ks < 0.312) and an old duplication (> 60.0 MYA, 0.312 < Ks < 3.0). The old duplication event might have played a key role in the expansion of the bHLH family. Both recent and old duplicated pairs (68.8%) showed a divergent expression profile, indicating specialized functions. The expression diversification of the duplicated genes suggested it might be a universal feature of the long-term evolution of cotton. Overview of cotton bHLH proteins indicated a conserved and divergent evolution from diploids to allotetraploid. Our results provided an excellent example for studying the long-term evolution of polyploidy.

  13. Anaerobic degradation of renewable biomass for production of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajoka, M.I.; Tabassum, R.; Malik, K.A.

    1996-12-31

    Anaerobic degradation of renewable biomass namely kallar grass (KG) (Leptochloafusca L. Kunth), Atriplex sp, wheat straw, cotton stalk, cotton lint and molasses was carried out at 37{degrees}C in a 15 litre fermentor, using laboratory enriched co-culture of fermentative, acetogenic and methanogenic organisms. Maximum reduction of volatile solids (VS) was from causticized KG, and cotton lint, followed by causticized wheat straw and Atriplex sp. followed by causticized wheat straw and Atriplex sp. Maximum production of methane was obtained from NaOH-pretreated KG with a process product yield (Y{sub p/s}) of 0.9 m{sup 3}/kg VS with a volumetric productivity (Q{sub p}) of 4.24more » L/day after 19 days of fermentation. Maximum methane content in the gas mixture was 96% with average of 78.6{+-}21.6. The Y{sub p/s} in 1000 litre digestor was 0.7 m{sup 3}/kg VS from a 3% suspension of uncaustisized kallar grass.« less

  14. Bt cotton and employment effects for female agricultural laborers in Pakistan.

    PubMed

    Kouser, Shahzad; Abedullah; Qaim, Matin

    2017-01-25

    The literature about economic and social impacts of Bt cotton adoption on farm households in developing countries is growing. Yet, there is still uncertainty about wider implications of this technology for rural development, including effects for landless rural laborers. Bt-related yield advantages may lead to intensified production and higher demand for labor. Building on farm survey data collected in Pakistan and using double-hurdle regression models, we analyze employment effects of Bt cotton adoption. Model estimates show that Bt adoption has increased the demand for hired labor by 55%. Manual harvesting, which is common in Pakistan, is a labor-intensive activity primarily carried out by female laborers. Accordingly, gender disaggregation shows that the employment-generating effects are particularly strong for women, who often belong to the most disadvantaged groups of rural societies. These results suggest that Bt technology can contribute to additional employment income for the poor and to more equitable rural development. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Green dyeing process of modified cotton fibres using natural dyes extracted from Tamarix aphylla (L.) Karst. leaves.

    PubMed

    Baaka, Noureddine; Mahfoudhi, Adel; Haddar, Wafa; Mhenni, Mohamed Farouk; Mighri, Zine

    2017-01-01

    This research work involves an eco-friendly dyeing process of modified cotton with the aqueous extract of Tamarix aphylla leaves. During this process, the dyeing step was carried out on modified cotton by several cationising agents in order to improve its dyeability. The influence of the main dyeing conditions (dye bath pH, dyeing time, dyeing temperature, salt addition) on the performances of this dyeing process were studied. The dyeing performances of this process were appreciated by measuring the colour yield (K/S) and the fastness properties of the dyed samples. The effect of mordant type with different mordanting methods on dyeing quality was also studied. The results showed that mordanting gave deeper shades and enhanced fastness properties. In addition, environmental indicators (BOD 5 , COD and COD/BOD 5 ) were used to describe potential improvements in the biodegradability of the dyebath wastewater. Further, HPLC was used to identify the major phenolic compounds in the extracted dye.

  16. Progress in Development of Reniform Resistant Germplasm Developed from BARBREN-713

    USDA-ARS?s Scientific Manuscript database

    Following the release of new reniform nematode (Rotylenchulus reniformis Linford and Oliveira) resistant upland cotton (Gossypium hirusutm L.) germplasm lines, such as BARBREN-713, breeding efforts were initiated in 2011 with the goal of improving both yield and fiber quality performance in reniform...

  17. Cotton production as affected by irrigation level and transitioning tillage systems

    USDA-ARS?s Scientific Manuscript database

    Identifying management practices that conserve and protect water resources are very important to a wide variety of stakeholders within semi-arid environments. The objective of this research was to develop conservation tillage and water management strategies that enhance lint yields in subsurface dri...

  18. A black color morph of adult Nezara viridula (L.)

    USDA-ARS?s Scientific Manuscript database

    The southern green stink bug is a worldwide pest of cotton and other row crops, affecting crop yield and transmitting diseases. Adult coloration is sometimes used to identify southern green stink bugs and to determine their physiological condition. Multiple colors occur in southern green stink bug. ...

  19. Crop response to biochar under differing irrigation levels in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Application of biochar to soils is hypothesized to increase crop yield. Crop productivity impacts of biochar application in Southeastern cropping systems consisting of peanut (Arachis hypogaea L.), corn (Zea mays L.), and cotton (Gossypium hirsutum L.) produced under varying rates of irrigation have...

  20. South American plants II: taspine isolation and anti-inflammatory activity.

    PubMed

    Perdue, G P; Blomster, R N; Blake, D A; Farnsworth, N R

    1979-01-01

    Croton lechleri L. (Euphorbiaceae), a plant from the Upper Amazon Valley of Peru, yielded the alkaloid taspine. The anti-inflammatory activity of taspine hydrochloride was studied using the carrageenan-induced pedal edema method, the cotton pellet-induced granuloma method, and the adjuvant polyarthritis model.

  1. Relationship between NDVI at early bloom and yield in germplasm evaluation trials

    USDA-ARS?s Scientific Manuscript database

    The use of high-throughput phenotyping (HTP) equipment is expanding as it offers the potential to increase the efficiency of making selections in cotton (Gossypium hirsutum L.) improvement programs. Measurements often being collected on HTP field equipment include normalized difference vegetative in...

  2. Evaluation of tillage and herbicide interaction for amaranthus control in cotton

    USDA-ARS?s Scientific Manuscript database

    With growing agricultural demands from both conventional and organic systems comes the need for sustainable practices to ensure long-term productivity. Implementation of reduced- or no-till practices offers a number of environmental benefits for agricultural land and maintains adequate yield for cu...

  3. A simplified field protocol for genetic sampling of birds using buccal swabs

    USGS Publications Warehouse

    Vilstrup, Julia T.; Mullins, Thomas D.; Miller, Mark P.; McDearman, Will; Walters, Jeffrey R.; Haig, Susan M.

    2018-01-01

    DNA sampling is an essential prerequisite for conducting population genetic studies. For many years, blood sampling has been the preferred method for obtaining DNA in birds because of their nucleated red blood cells. Nonetheless, use of buccal swabs has been gaining favor because they are less invasive yet still yield adequate amounts of DNA for amplifying mitochondrial and nuclear markers; however, buccal swab protocols often include steps (e.g., extended air-drying and storage under frozen conditions) not easily adapted to field settings. Furthermore, commercial extraction kits and swabs for buccal sampling can be expensive for large population studies. We therefore developed an efficient, cost-effective, and field-friendly protocol for sampling wild birds after comparing DNA yield among 3 inexpensive buccal swab types (2 with foam tips and 1 with a cotton tip). Extraction and amplification success was high (100% and 97.2% respectively) using inexpensive generic swabs. We found foam-tipped swabs provided higher DNA yields than cotton-tipped swabs. We further determined that omitting a drying step and storing swabs in Longmire buffer increased efficiency in the field while still yielding sufficient amounts of DNA for detailed population genetic studies using mitochondrial and nuclear markers. This new field protocol allows time- and cost-effective DNA sampling of juveniles or small-bodied birds for which drawing blood may cause excessive stress to birds and technicians alike.

  4. Evaluation of remote sensing in control of pink cotton bollworm

    NASA Technical Reports Server (NTRS)

    Lewis, L. N. (Principal Investigator); Coleman, V. B.

    1972-01-01

    The author has identified the following significant results. This investigation is attempting to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used in crop identification. The status of each field is mapped from the imagery and is then compared to ground surveys taken at the time of each ERTS-1 overflight. Correlation has been to date 100%. A computer analysis will be performed to compare field status with the crop calendar in order to identify crops. Correlation is expected to be 80 to 90%. Cotton fields, because of their state regulated season which is exactly coincident with no other crop, are expected to be easily identified.

  5. Evaluation of remote sensing in control of pink bollworm in cotton. [Imperial Valley, Coachella Valley, and Palo Verde Valley, California

    NASA Technical Reports Server (NTRS)

    Lewis, L. N. (Principal Investigator); Coleman, V. B.; Johnson, C. W.

    1974-01-01

    The author has identified the following significant results. This investigation is to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used for crop identification. The status of each field (crop, bare, harvested, wet, plowed) is mapped from the imagery and is then compared to ground survey information taken at the time of ERTS-1 overflights. A computer analysis has been performed to compare field and satellite data to a crop calendar. Correlation to date has been 97% for field condition. Actual crop identification varies; cotton identification is only 63% due to lack of full season coverage.

  6. Development of DNA barcodes of genus Lygus Hahn (Hemiptera: Miridae)

    USDA-ARS?s Scientific Manuscript database

    The genus Lygus (Hemiptera: Miridae) is an important group of insects that contains 43 known species worldwide. Some species within this genus are important agricultural pests in North America. Annual economic impacts in cotton, Gossypium hirsutum L., from Lygus spp. due to yield losses and control ...

  7. Dynamic prescription maps for site-specific variable rate irrigation of cotton

    USDA-ARS?s Scientific Manuscript database

    A prescription map is a set of instructions that controls a variable rate irrigation (VRI) system. These maps, which may be based on prior yield, soil texture, topography, or soil electrical conductivity data, are often manually applied at the beginning of an irrigation season and remain static. The...

  8. A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the U.S., accounting for yield losses and control costs on the order of several billion dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducin...

  9. The Cullars Rotation (CIRCA 1911) - 2008

    USDA-ARS?s Scientific Manuscript database

    The Cullars Rotation is the oldest, continuous soil fertility experiment in the southern United States and the second oldest experiment in the world that includes cotton. It was placed on the National Register of Historical Places in 2003. It continues to document the long-term yield trends of fi ve...

  10. 2011 High Plains and Northern Rolling Plains Cotton Harvest-Aid Guide

    USDA-ARS?s Scientific Manuscript database

    Harvest-aid chemicals are generally applied to hasten harvest of a mature crop and to reduce potential preharvest losses of lint yield and fiber quality. Proper use of harvest aids can result in earlier harvest, preservation of fiber quality, and fewer seed quality reductions due to field exposure. ...

  11. 2009 High plains and northern rolling plains cotton harvest-aid guide

    USDA-ARS?s Scientific Manuscript database

    Harvest-aid chemicals are generally applied to hasten harvest of a mature crop, and to reduce potential preharvest losses of lint yield and fiber quality. Proper use of harvest aids can result in earlier harvest, preservation of fiber quality, and fewer seed quality reductions due to field exposure....

  12. 2012 High Plains and Northern Rolling Plains Cotton harvest aid-guide

    USDA-ARS?s Scientific Manuscript database

    Harvest-aid chemicals are generally applied to hasten harvest of a mature crop, and to reduce potential preharvest losses of lint yield and fiber quality. Proper use of harvest aids can result in earlier harvest, preservation of fiber quality, and fewer seed quality reductions due to field exposure....

  13. Site-specific cotton management: Soil measurements

    USDA-ARS?s Scientific Manuscript database

    oil variability within fields has a large effect on crop growth and yield, often due to variations in soil texture and water holding capacity. This is particularly true in the alluvial soils of the Mississippi Delta, where profile sand contents can range from 20% to 90% within a field. Variable-rate...

  14. Toxicity of selected acaricides in a glass-vial bioassay to two-spotted spider mite (Acari: Tetranychidae)

    USDA-ARS?s Scientific Manuscript database

    Two-spotted spider mite (TSSM), Tetranychus urticae Koch, feeds on epidermal cells of cotton foliage, destroys photosynthetic cells, and reduces yields, fiber quality and seed germination. With a short life cycle, prolific fecundity, an arrhenotokous reproduction, and an ability to expeditiously dig...

  15. Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker.

    PubMed

    Zhang, Xianwen; Ye, Zhenwei; Wang, Tiankang; Xiong, Hairong; Yuan, Xiaoling; Zhang, Zhigang; Yuan, Youlu; Liu, Zhi

    2014-11-10

    Cotton is an important fiber plant, and it's attractive to elucidate the molecular mechanism of anther development due to the close relationship between the anther fertility and boll-setting, and also fiber yield. In the present paper, 47.2 million paired-end reads with average length of 82.87 bp from the anthers of TM-1 (Gossypium hirsutum L.), a genetic standard line, were generated through transcriptome sequencing, and 210,965 unigenes of more than 100 bp were obtained. BLAST, KEGG, COG, and GO analyses showed that the genes were enriched in the processes of transcription, translation, and post-translation as well as hormone signal transduction, the transcription factor families, and cell wall-related genes mainly participating in cell expansion and carbohydrate metabolism. Further analysis identified 11,153 potential SSRs. A suit of 5122 primer pair sequences were designed, and 82 of 300 randomly selected primer pairs produced reproducible amplicons that were polymorphic among 22 cotton accessions from G. hirsutum, Gossypium barbadense and Gossypium arboreum. The UPGMA clustering analysis further confirmed high quality and effectiveness of these novel SSR markers. The present study provided insights into the transcriptome profile of the cotton and established a public information platform for functional genomics and molecular breeding. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid.

    PubMed

    Wang, Li; Mu, Chun; Du, Mingwei; Chen, Yin; Tian, Xiaoli; Zhang, Mingcai; Li, Zhaohu

    2014-08-01

    The growth regulator mepiquat chloride (MC) is globally used in cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield loss. However, little information is available as to whether the modification of plant architecture by MC is related to alterations in gibberellic acid (GA) metabolism and signaling. Here, the role of GA metabolism and signaling was investigated in cotton seedlings treated with MC. The MC significantly decreased endogenous GA3 and GA4 levels in the elongating internode, which inhibited cell elongation by downregulating GhEXP and GhXTH2, and then reducing plant height. Biosynthetic and metabolic genes of GA were markedly suppressed within 2-10d of MC treatment, which also downregulated the expression of DELLA-like genes. A remarkable feedback regulation was observed at the early stage of MC treatment when GA biosynthetic and metabolic genes expression was evidently upregulated. Mepiquat chloride action was controlled by temporal translocation and spatial accumulation which regulated GA biosynthesis and signal expression for maintaining GA homeostasis. The results suggested that MC application could reduce endogenous GA levels in cotton through controlled GA biosynthetic and metabolic genes expression, which might inhibit cell elongation, thereby shortening the internode and reducing plant height. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.

    PubMed

    Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G

    2013-02-01

    Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.

  18. The influence of gamma irradiation on natural dyeing properties of cotton and flax fabrics

    NASA Astrophysics Data System (ADS)

    Chirila, Laura; Popescu, Alina; Cutrubinis, Mihalis; Stanculescu, Ioana; Moise, Valentin Ioan

    2018-04-01

    Fabrics made of 100% cotton and 100% flax respectively were exposed at ambient temperature to gamma radiation doses, from 5 to 40 kGy, using a Co-60 research irradiator. After the irradiation treatment the fabrics were subjected to dyeing process with Itodye Nat Pomegranate commercial natural dye. The influence of gamma irradiation treatment on the physical-mechanical properties, dyeing and surface morphology of natural fibres were investigated. Gamma ray treatment of 40 kGy was the most effective in the case of fabrics made from 100% cotton, enhancing the colour strength as evidenced by K/S value. The results obtained from the mechanical properties of fabrics made of 100% flax indicated that the dose of 40 kGy leads to a decrease of tensile strength up of to 41.5%. Infrared spectroscopy was used to monitor chemical and structural changes in cellulosic fibres induced during processing. Crystallinity indices calculated from various bands ratio showed insignificant variations for cotton and small variations in the case of flax. The surface morphology of irradiated cotton fabrics did not show significant changes even at the highest dose of 40 kGy, while the low doses applied on flax fabrics led to an appearance of small changes of surface morphology. The gamma irradiation increased the uptake of natural dyes on natural cellulosic fibres.

  19. The non-contact heart rate measurement system for monitoring HRV.

    PubMed

    Huang, Ji-Jer; Yu, Sheng-I; Syu, Hao-Yi; See, Aaron Raymond

    2013-01-01

    A noncontact ECG monitoring and analysis system was developed using capacitive-coupled device integrated to a home sofa. Electrodes were placed on the backrest of a sofa separated from the body with only the chair covering and the user's clothing. The study also incorporates measurements using different fabric materials, and a pure cotton material was chosen to cover the chair's backrest. The material was chosen to improve the signal to noise ratio. The system is initially implemented on a home sofa and is able to measure non-contact ECG through thin cotton clothing and perform heart rate analysis to calculate the heart rate variability (HRV) parameters. It was also tested under different conditions and results from reading and sleeping exhibited a stable ECG. Subsequently, results from our calculated HRV were found to be identical to those of a commercially available HRV analyzer. However, HRV parameters are easily affected by motion artifacts generated during drinking or eating with the latter producing a more severe disturbance. Lastly, parameters measured are saved on a cloud database, providing users with a long-term monitoring and recording for physiological information.

  20. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    PubMed

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the respective costs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. CRADA No. BNL-C-97-10 between BNL and Cotton, Inc. Final abstract and final report [Final Report of Research carried out under DOE CRADA No. BNL-C-97-10 - "Prediction of Yield in Cotton"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The objectives of this work were to determine if the numbér of fiber cell initials varied genetically and to compare the number of initials with that of mature fibers obtained at harvest time. The method used to count the number of fiber cell initials is direct, simple, quick and done while the plant is growing. In contrast, the currently used commercial process is indirect and needs large amount mature fibers gathered at harvest time. However, all current work on cotton yield is based on fiber numbers obtained by the indirect commercial process. Consequently, it was necessary to compare results obtainedmore » from the two methods using the same plants as the source of material. The results show that the number of fiber initials per ovule differed significantly (P>0.05) for seven cultivars in 1995 and 1996. AIso, a 1997 study shows the number of fiber initials varied by 15% over boll positions and environments, with rankings among cultivars generally consistent across boll positions and sampling times. Finally, although there were differences among cultivars for initial fiber cell number, all cultivars had nearly the same number of mature lint fibers per seed. This last finding is significant. It indicates that the rate of fiber cell initiation varies among cultivars; the lower the rate, the greater the difference between the number of initials and the number of mature fiber cells. If the rate of fiber initiation is relatively high, the number of initials and mature fibers differs by about 11%; if it is low, the difference is as high as 31%. Cotton breeders may be able to use genetic differences for the number of fiber initials and/or the rate of fiber cell initiation in crop improvement programs.« less

  2. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.

    PubMed

    Kumari, Rajni; Pramanik, K

    2012-06-01

    The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose-xylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8 ± 0.31 g L(-1)), ethanol productivity (1.06 g L(-1) h(-1)) and ethanol yield (0.458 g g(-1)) by fermentation of glucose-xylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08 ± 0.142 g L(-1), ethanol yield of 0.44 g g(-1), productivity of 0.45 g L(-1) h(-1) and biomass yield of 0.40 g g(-1).

  3. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study

    PubMed Central

    Hanif, Muhammad Usman; Capareda, Sergio C.; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products. PMID:27043929

  4. Timing and placement of cattle manure and/or gliricidia affects cotton and sunflower nutrient accumulation and biomass productivity.

    PubMed

    Primo, Dário C; Menezes, Rômulo S C; Oliveira, Fabio F DE; Dubeux Júnior, José Carlos B; Sampaio, Everardo V S B

    2018-01-01

    Organic fertilizers are a viable alternative to increase oilseed productivity in family agriculture systems. The study aimed to evaluate the effects of timing and placement of cattle manure and/or gliricidia (Gliricidia sepium Jacq. Walp) prunings on cotton (Gossipium hirsutum L.) and sunflower (Helianthus annuus L.) nutrient accumulation and biomass productivity. Experiments were carried out in 2010 and 2011 in Taperoá, Paraíba, Brazil. The organic fertilization treatments were: GI - gliricidia incorporated before planting; GS - gliricidia applied on surface 45 days after planting (DAP); MI + GI - manure and gliricidia incorporated before planting; MI + GS - manure incorporated before planting and gliricídia applied on the surface 45 DAP; MI - manure incorporated before planting; and T - with no organic fertilization. In 2010, treatment MI + GS increased N, P, and K accumulation in cotton (12 and 7 kg ha-1) as well as in sunflower (20 and 29 kg ha-1). In 2011, GI and GS treatments resulted in higher N, P, K accumulations in both crops. The highest cotton productivity in 2010 was obtained with MI + GS treatment (198 kg ha-1) and in 2011 with GS treatment (594 kg ha-1). For sunflower, MI + GS treatment yielded the highest productivity in 2010 (466 kg ha-1) and GI treatment in 2011 (3542 kg ha-1). GI and MI + GS treatments increased total biomass productivity for cotton and sunflower. The treatment that combined both cattle manure incorporated into the soil before planting and gliricidia applied on the surface 45 days after planting was the most viable management strategy.

  5. Soil organic carbon sequestration in cotton production systems of the southeastern United States: a review.

    PubMed

    Causarano, H J; Franzluebbers, A J; Reeves, D W; Shaw, J N

    2006-01-01

    Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.

  6. Phytohormonal Networks Promote Differentiation of Fiber Initials on Pre-Anthesis Cotton Ovules Grown In Vitro and In Planta

    PubMed Central

    Kim, Hee Jin; Hinchliffe, Doug J.; Triplett, Barbara A.; Chen, Z. Jeffrey; Stelly, David M.; Yeater, Kathleen M.; Moon, Hong S.; Gilbert, Matthew K.; Thyssen, Gregory N.; Turley, Rickie B.; Fang, David D.

    2015-01-01

    The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta. PMID:25927364

  7. Intensification of tropical agriculture as seen by satellite

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Michelson, H. C.; Spera, S. A.; Hadnott, B.

    2013-12-01

    We present case studies from Latin America and Africa on intensification of tropical agriculture. The Brazilian Amazon of the early 2000s experienced intensification and extensification. We use time series analysis of MODIS vegetation indices to track changes in cropping intensity and crop types over time. The state of Mato Grosso is Brazil's leading producer of soy, corn and cotton. Using 250 m MODIS EVI data and a new decision-tree algorithm tuned to phenological patterns characteristic of Mato Grosso's major natural vegetation and crop rotations, we mapped land-cover across the state over 11 growing seasons (2001-2011). Between 2000 and 2011, a majority of the cultivated land in Mato Grosso transitioned from the cultivation of one commercial crop per growing season (soy or cotton) to two commercial crops (a soy crop followed by a corn or cotton crop). Over our study period, the cultivated area of double cropped land in Mato Grosso steadily increased over 6-fold from .46 million hectares to 2.9 million hectares, 92% of which was in a soy-corn double cropping rotation. In the sub-Saharan country of Malawi, 70% of the land is dedicated to food production yet yields of the primary staple crop, maize, have stagnated around 1 ton ha-1 (developed nations' maize yields are 12-16 tons ha-1). Due to the limited land area, improving yields through intensification is a necessary objective of development. Poverty and food insecurity were widespread and persistent for smallholder farmers cultivating less than 1 hectare of land until the implementation of a government intervention, funded through foreign aid, subsidized allocations of fertilizer and improved seed to small farmers. Since implementation of the policy, the number of food insecure, or people in need of food aid, has decreased from 5 million to half a million people. We present indicators that levels of poverty have decreased since the subsidy. National yields have doubled. Applying modified methods from Brazil, we are able to detect cropland intensification through remote sensing. We present remote sensing analysis of social and economic correlates to changes in yields and build an empirical model of sustainable intensification. Together, these case studies demonstrate that remote sensing techniques can be easily adapted across very different crop types, field sizes and environments.

  8. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    USDA-ARS?s Scientific Manuscript database

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  9. Impacts of enhanced-efficiency nitrogen fertilizers on greenhouse gas emissions in a coastal plain soil under cotton

    USDA-ARS?s Scientific Manuscript database

    Enhanced-efficiency nitrogen fertilizers (EENFs) have the potential to increase crop yield while also decreasing N loss from agricultural fields. However, effects of EENFs on emissions of greenhouse gases (GHGs) need to be studied at a variety of locations and cropping systems. The effects of these ...

  10. Effects of enhanced efficiency fertilizers on cotton growth characteristics

    USDA-ARS?s Scientific Manuscript database

    The use of enhanced-efficiency N fertilizers (EENFs) in row crop agriculture has not been well studied despite increasing interest in these N sources to increase crop yield while also decreasing N loss. Therefore, a field study was conducted in Central Alabama from 2009 to 2011 to compare EENFs to s...

  11. Shallow subsurface drip irrigation (S3DI) for small irregular-shaped fields in the southeast

    USDA-ARS?s Scientific Manuscript database

    Field tests were conducted using S3DI on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) rotations to investigate yield potential and economic sustainability of this irrigation system. Drip tubing was installed in alternate row middles, strip tillage was used ...

  12. Irrigation strategies that use cutout for optimum boll maturation and yield where growing season duration is limited

    USDA-ARS?s Scientific Manuscript database

    Irrigation water availability is decreasing due to declining water sources and greater competition. Many producers must now comply with annual pumping restrictions that may limit overall productivity of crops like corn (Zea mays L.). Cotton [Gossypium hirsutum (L.)] water demand is less than corn, b...

  13. Lower Limits of Water Use By Cotton, Maize, and Grain Sorghum in Three Great Plains Soils

    USDA-ARS?s Scientific Manuscript database

    Accurate knowledge of the amount of soil water available for crop use helps agricultural producers select cropping and irrigation management strategies that maximize crop yields. Using neutron attenuation, we measured the lower limits of soil water content (LL, in m**3 m**-3) at harvest (three seas...

  14. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. These data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.« less

  15. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE PAGES

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; ...

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. These data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.« less

  16. Agrobacterium-mediated virus-induced gene silencing assay in cotton.

    PubMed

    Gao, Xiquan; Britt, Robert C; Shan, Libo; He, Ping

    2011-08-20

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation(1). To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation(2,3). Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies(3,4). As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development(6), and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves(7), providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton.

  17. Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton

    PubMed Central

    Gao, Xiquan; Britt Jr., Robert C.; Shan, Libo; He, Ping

    2011-01-01

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation1. To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation2,3. Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies3,4. As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development6, and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves7, providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton. PMID:21876527

  18. Effect of plastic mulching and nitrapyrin on N2O concentration and emissions in China under climate change

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Zhu, C.

    2017-12-01

    Fertilized agricultural soils are the main source of atmospheric nitrous oxide (N2O). In this study, both soil N2O concentration in the profile and N2O emission were measured to quantify the effect of plastic mulching and nitrapyrin on N2O dynamic in an oasis cotton field. During the observation period, both N2O concentration and N2O emissions rapidly increased following fertigation, and soil temperature, moisture and mineral N content were the main factors influencing N2O. Temporal variation in N2O emission coincided with changes in N2O content in all soil layers, indicating that the accumulation of N2O likely drives the release of N2O into the atmosphere. The crop yields, N2O content (the sum of aqueous and gaseous phases) in the soil and N2O emissions increased linearly as the application of N fertilizer increased from 80 to 400 kg N ha-1. Plastic mulching increased the crop yields by 16-21%, increased the N2O contents by 88-99%, and reduced the cumulative N2O emissions by 19-28%, indicating that the application of plastic film reduced N2O emission probably through restricted the N2O diffusion process, and limited the N2O production through enhanced the N uptake of cotton. The addition of nitrapyrin to the N fertilizer significantly reduced the levels of N2O without influencing crop yield, with N2O content in the soil profile and cumulative N2O emissions decreasing by 25-32% and 23-42%, respectively. Overall, our result suggested the combined use of plastic film and nitrapyrin could be an efficient practice to reduce N2O emission in the oasis cotton field. Keywords: N2O emissions; plastic film mulching; nitrapyrin; climate change

  19. Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system.

    PubMed

    Kang, Sumin; Xiao, Lingping; Meng, Lingyan; Zhang, Xueming; Sun, Runcang

    2012-11-16

    To investigate the potential for the utilization of cotton stalk, ammonia hydrothermal treatment was applied to fractionate the samples into aqueous ammonia-soluble and ammonia-insoluble portions. The ammonia-soluble portion was purified to yield lignin fractions. The lignin fractions obtained were characterized by wet chemistry (carbohydrate analysis) and spectroscopy methods (FT-IR, 13C and 1H-13C HSQC NMR spectroscopy) as well as gel permeation chromatography (GPC). The results showed that the cotton stalk lignin fractions were almost absent of neutral sugars (0.43%-1.29%) and had relatively low average molecular weights (1255-1746 g/mol). The lignin fractions belonged to typical G-S lignin, which was composed predominately of G-type units (59%) and noticeable amounts of S-type units (40%) together with a small amount of H-type units (~1%). Furthermore, the ammonia-extractable lignin fractions were mainly composed of β-0-4' inter-unit linkages (75.6%), and small quantities of β-β' (12.2%), together with lower amounts of β-5' carbon-carbon linkages (7.4%) and p-hydroxycinnamyl alcohol end groups.

  20. Effects of selected synthetic insecticides on the total and differential populations of circulating haemocytes in adults of the red cotton stainer bug Dysdercus koenigii (Fabricius) (Hemiptera: Pyrrhocoridae).

    PubMed

    Sarwar, Zahid Mahmood; Ijaz, Mamuna; Sabri, Muhammad Altaf; Yousaf, Hasnain; Mohsan, Muhammad

    2018-06-01

    Red cotton bug, Dysdercus koenigii (Hemiptera: Pyrrhocoridae), has become the major insect pest of various crops, including cotton, and thereby reducing the yield qualitatively and quantitatively and synthetic insecticides belonging to different groups are the major control agents for such insect pests. A laboratory experiment was carried out to evaluate the effect of different conventional insecticides, i.e., imidacloprid, deltamethrin, lambda cyhalothrin, gamma cyhalothrin and cyfluthirn on haemocytes of D. koenigii. The individuals were exposed to insecticides separately and data was recorded after 30 and 60 min of the exposure. The findings of current study depicted chlorpyrifos to be more effective and significant alterations in total haemocyte counts and differential haemocyte counts were observed in the cyfluthirn treated D. koenigii. In addition to this, cell structure was also disrupted as an immune response. Similar studies would also be helpful to understand the defence mechanisms of insects against the xenobiotics which will help to device efficient management tools for D. koenigii.

  1. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth

    NASA Astrophysics Data System (ADS)

    Brand, David; Wijewardana, Chathurika; Gao, Wei; Reddy, K. Raja

    2016-12-01

    Interactive effects of multiple environmental stresses are predicted to have a negative effect on cotton growth and development and these effects will be exacerbated in the future climate. The objectives of this study were to test the hypothesis that cotton cultivars differ in their responses to multiple environmental factors of (CO2) [400 and 750 µmol·mol-1 (+(CO2)], temperature [28/20 and 20/12°C (-T)], and UV-B radiation [0 and 10 kJ·m-2·d-1 (+ UV-B)]. A genetic and molecular standard (TM-1) and three modern cotton cultivars (DP1522B2XF, PHY496W3R, and ST4747GLB2) were grown in eight sunlit, controlled environment chambers with control treatment 400 µmol·mol-1 [CO2], 28/21°C temperature, and 0 kJ UV-B. The results showed significant differences among the cultivars for most of the shoot and root parameters. Plants grown under low temperature alone or as a combination with + UV-B treatment caused more detrimental effects on root and shoot vigor. Although the elevated CO2 treatments weakened the damaging effects of higher UV-B levels on cotton growth on all cultivars, increased CO2 could not mask the negative effects of low temperature. When comparing all cultivars, genetic standard TM-1 produced the smallest values for the majority of traits under CO2, UV-B, and low temperature either alone or in combination with other treatments. Based on principal component analysis, the four cultivars were classified as tolerant (DP1522B2XF), intermediate (PHY496W3R and ST4747GLB2) and sensitive (TM-1) to multiple environmental stresses.Low temperature was identified as the most damaging treatment to cotton early seedling vigor while elevated CO2 caused the least. Existing variability of cotton cultivars in response to multiple environmental stresses could allow for selection of cultivars with the best coping ability and higher lint yield for future climate change environments.

  2. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling.

    PubMed

    Zhou, Ying; Zhang, Ze-Ting; Li, Mo; Wei, Xin-Zheng; Li, Xiao-Jie; Li, Bing-Ying; Li, Xue-Bao

    2015-02-01

    Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14-3-3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14-3-3L, Gh14-3-3e and Gh14-3-3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14-3-3 RNAi transgenic plants were significantly shorter than those of wild type. This 'short fibre' phenotype of the 14-3-3 RNAi cotton could be partially rescued by application of 2,4-epibrassinolide (BL). Expression levels of the BR-related and fibre-related genes were altered in the Gh14-3-3 transgenic fibres. Furthermore, we identified Gh14-3-3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14-3-3L/e/h were required for Gh14-3-3-GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14-3-3 proteins. Additionally, 14-3-3-regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14-3-3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition.

    PubMed

    Singh, Raman Jeet; Ahlawat, I P S

    2015-05-01

    Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat. Application of 50 kg N ha(-1) to wheat maintained the least carbon footprint (0.091) followed by 100 kg N ha(-1) (0.100). Our study indicates that system productivity as well as energy and carbon use efficiencies of transgenic cotton-wheat production system can be enhanced by inclusion of peanut as an intercrop in cotton and substitution of 25% RDN of cotton through FYM, as well as application of 100 kg N ha(-1) to succeeding wheat crop.

  4. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied according to field management, soil type and salinity level, where soil salinity was the main limiting factor. Furthermore, the calibrated and validated EPIC model was run under several scenarios of climate conditions and land management practices to estimate the effect of climate change on cotton production and sustainability of agriculture systems in the basin. The application of SLISYS-Tarim showed that this database can be a suitable framework for storage and retrieval of soil and terrain data at various scales. The simulation with the EPIC model can assess the impact of climate change and management strategies. Therefore, SLISYS-Tarim can be a good tool for regional planning and serve the decision support system on regional and national scale.

  5. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    NASA Astrophysics Data System (ADS)

    Yavuz, G.; Zille, A.; Seventekin, N.; Souto, A. P.

    2017-10-01

    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fabric provided cationic groups on the fiber surface promoting electrostatic interaction with photonic crystals. SEM images of the washed samples indicate that the PCs are firmly coated on the cotton surface only in the chitosan treated sample. The photonic nanospheres show an average diameter of 280 nm and display a face-centered cubic closepacking structure with an average thickness of 10 μm. A further chitosan post-treatment enhances color yield of the samples due to the chitosan transparent covering layer that induce bright reflections where the angles of incidence and reflection are the same. After washing, no photonic crystal can be detected on control fabric surface. However, the sample that received a chitosan post-treatment showed a good washing fastness maintaining a reasonable degree of iridescence. Chitosan fills the spaces between the polymer spheres in the matrix stabilizing the photonic structure. Sizeable variations in lattice spacing will allow color variations using more flexible non-close-packed photonic crystal arrays in chitosan hydrogels matrices.

  6. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    PubMed Central

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. de A. e; Omoto, Celso

    2016-01-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants. PMID:27721425

  7. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    NASA Astrophysics Data System (ADS)

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. De A. E.; Omoto, Celso

    2016-10-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.

  8. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles.

    PubMed

    Specos, M M Miró; García, J J; Tornesello, J; Marino, P; Vecchia, M Della; Tesoriero, M V Defain; Hermida, L G

    2010-10-01

    Microcapsules containing citronella essential oil were prepared by complex coacervation and applied to cotton textiles in order to study the repellent efficacy of the obtained fabrics. Citronella released from treated textiles was indirectly monitored by the extractable content of its main components. Repellent activity was assessed by exposure of a human hand and arm covered with the treated textiles to Aedes aegypti mosquitoes. Fabrics treated with microencapsulated citronella presented a higher and longer lasting protection from insects compared to fabrics sprayed with an ethanol solution of the essential oil, assuring a repellent effect higher than 90% for three weeks. Complex coacervation is a simple, low cost, scalable and reproducible method of obtaining encapsulated essential oils for textile application. Repellent textiles were achieved by padding cotton fabrics with microcapsules slurries using a conventional pad-dry method. This methodology requires no additional investment for textile finishing industries, which is a desirable factor in developing countries. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  9. Genetic analysis of some agronomic and fiber traits in Gossypium hirsutum L. grown in field conditions

    USDA-ARS?s Scientific Manuscript database

    Cotton production is an essential component of the economy of Pakistan, and continuing to improve the yield and fiber quality of this crop will ensure the future stability of this industry. Combining ability describes the performance of genotypes when they are crossed together, and it is a common me...

  10. Economic Indicators of the Farm Sector. Farm Sector Review, 1985.

    ERIC Educational Resources Information Center

    Economic Research Service (USDA), Washington, DC.

    Farm production rose 6 percent in 1985 due to record high yields in corn, soybeans, cotton, and several other crops. While United States consumption increased slightly, exports of farm products fell 23 percent in value and 19 percent in volume. Net cash income increased 12 percent due to increased output, lower cash expenses, and unusually high…

  11. Integrating geospatial data and cropping system simulation within a geographic information system to analyze spatial seed cotton yield, water use, and irrigation requirements

    USDA-ARS?s Scientific Manuscript database

    The development of sensors that provide geospatial information on crop and soil conditions has been a primary success for precision agriculture. However, further developments are needed to integrate geospatial data into computer algorithms that spatially optimize crop production while considering po...

  12. Effect of Tillage System, Row Spacing and Herbicide Technologies on Plant Growth and Lint Yield in Cotton

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted from 2004 through 2006 growing seasons at the E.V. Smith Research Center, Field Crops Unit near Shorter, AL, to compare a conventional variety, a glyphosate tolerant variety, and a glufosinate tolerant variety under both the conventional tillage and the conservation tilla...

  13. Soybean response to poultry litter in a rotation

    USDA-ARS?s Scientific Manuscript database

    Soybean yield response to annual poultry litter rates (0, 1.0 and 3.4 tons/acre) on a Leeper silty clay loam soil in corn (M), cotton (C) and soybean (B) rotation system were evaluated. The rotation systems from 2010-2014 were: CMBBMR; CMCBM and CCMMB. This study site had high levels of soil test Ph...

  14. A Target Region Amplified Polymorphism (TRAP) Marker for Fertility Restorer Gene Rf1 and Chromosomal Localization of Rf1 and Rf2 in Cotton

    USDA-ARS?s Scientific Manuscript database

    Cytoplasmic male sterility (CMS), a maternally inherited trait and characterized as an inability to produce functional pollen , is an important biological system for economically producing hybrid seed to enhance crop yield and studying cytoplasmic and nuclear gene interactions. In cultivated tetrapl...

  15. Evaluation of swabs and transport media for the recovery of ...

    EPA Pesticide Factsheets

    Journal Article Two Y. pestis strains (virulent and avirulent), four swab types (polyester, macrofoam, rayon, and cotton), two pre-moistening solutions, six transport media, three temperatures, two levels of organic load, and four processing methods were evaluated to determine the conditions that would yield the highest percent of cultivable Y. pestis cells after storage.

  16. Production of galacto-oligosaccharides from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth.

    PubMed

    Albayrak, Nedim; Yang, Shang-Tian

    2002-01-05

    The production of galacto-oligosaccharides (GOS) from lactose by A. oryzae beta-galactosidase immobilized on cotton cloth was studied. The total amounts and types of GOS produced were mainly affected by the initial lactose concentration in the reaction media. In general, more and larger GOS can be produced with higher initial lactose concentrations. A maximum GOS production of 27% (w/w) of initial lactose was achieved at 50% lactose conversion with 500 g/L of initial lactose concentration. Tri-saccharides were the major types of GOS formed, accounting for more than 70% of the total GOS produced in the reactions. Temperature and pH affected the reaction rate, but did not result in any changes in GOS formation. The presence of galactose and glucose at the concentrations encountered near maximum GOS greatly inhibited the reactions and reduced GOS yield by as much as 15%. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme, suggesting no diffusion limitation in the enzyme carrier. The thermal stability of the enzyme increased approximately 25-fold upon immobilization on cotton cloth. The half-life for the immobilized enzyme on cotton cloth was more than 1 year at 40 degrees C and 48 days at 50 degrees C. Stable, continuous operation in a plugflow reactor was demonstrated for 2 weeks without any apparent problem. A maximum GOS production of 21 and 26% (w/w) of total sugars was attained with a feed solution containing 200 and 400 g/L of lactose, respectively, at pH 4.5 and 40 degrees C. The corresponding reactor productivities were 80 and 106 g/L/h, respectively, which are at least several-fold higher than those previously reported. Copyright 2002 John Wiley & Sons, Inc.

  17. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis).

    PubMed

    Li, Ruijuan; Rashotte, Aaron M; Singh, Narendra K; Lawrence, Kathy S; Weaver, David B; Locy, Robert D

    2015-01-01

    Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.

  18. A Diagnosis of Biophysical and Socio-Economic Factors Influencing Farmers' Choice to Adopt Organic or Conventional Farming Systems for Cotton Production.

    PubMed

    Riar, Amritbir; Mandloi, Lokendra S; Poswal, Randhir S; Messmer, Monika M; Bhullar, Gurbir S

    2017-01-01

    Organic agriculture is one of the most widely known alternative production systems advocated for its benefits to soil, environment, health and economic well-being of farming communities. Rapid increase in the market demand for organic products presents a remarkable opportunity for expansion of organic agriculture. A thorough understanding of the context specific motivations of farmers for adoption of organic farming systems is important so that appropriate policy measures are put in place. With an aim of understanding the social and biophysical motivations of organic and conventional cotton farmers for following their respective farming practices, a detailed farm survey was conducted in Nimar valley of Madhya Pradesh state in central India. The study area was chosen for being an important region for cotton production, where established organic and conventional farms operate under comparable circumstances. We found considerable variation among organic and conventional farmers for their social and biophysical motivations. Organic farmers were motivated by the sustainability of cotton production and growing safer food without pesticides, whereas conventional farmers were sensitive about their reputation in community. Organic farmers with larger holdings were more concerned about closed nutrient cycles and reducing their dependence on external inputs, whereas medium and small holding organic farmers were clearly motivated by the premium price of organic cotton. Higher productivity was the only important motivation for conventional farmers with larger land holdings. We also found considerable yield gaps among different farms, both under conventional and organic management, that need to be addressed through extension and training. Our findings suggest that research and policy measures need to be directed toward strengthening of extension services, local capacity building, enhancing availability of suitable inputs and market access for organic farmers.

  19. The effects of fruiting positions on cellulose synthesis and sucrose metabolism during cotton (Gossypium hirsutum L.) fiber development.

    PubMed

    Ma, Yina; Wang, Youhua; Liu, Jingran; Lv, Fengjuan; Chen, Ji; Zhou, Zhiguo

    2014-01-01

    Cotton (Gossypium hirsutum L.) boll positions on a fruiting branch vary in their contribution to yield and fiber quality. Fiber properties are dependent on deposition of cellulose in the fiber cell wall, but information about the enzymatic differences in sucrose metabolism between these fruiting positions is lacking. Therefore, two cotton cultivars with different sensitivities to low temperature were tested in 2010 and 2011 to quantify the effect of fruit positions (FPs) on fiber quality in relation to sucrose content, enzymatic activities and sucrose metabolism. The indices including sucrose content, sucrose transformation rate, cellulose content, and the activities of the key enzymes, sucrose phosphate synthase (SPS), acid invertase (AI) and sucrose synthase (SuSy) which inhibit cellulose synthesis and eventually affect fiber quality traits in cotton fiber, were determined. Results showed that as compared with those of FP1, cellulose content, sucrose content, and sucrose transformation rate of FP3 were all decreased, and the variations of cellulose content and sucrose transformation rate caused by FPs in Sumian 15 were larger than those in Kemian 1. Under FP effect, activities of SPS and AI in sucrose regulation were decreased, while SuSy activity in sucrose degradation was increased. The changes in activities of SuSy and SPS in response to FP effect displayed different and large change ranges between the two cultivars. These results indicate that restrained cellulose synthesis and sucrose metabolism in distal FPs are mainly attributed to the changes in the activities of these enzymes. The difference in fiber quality, cellulose synthesis and sucrose metabolism in response to FPs in fiber cells for the two cotton cultivars was mainly determined by the activities of both SuSy and SPS.

  20. A Diagnosis of Biophysical and Socio-Economic Factors Influencing Farmers’ Choice to Adopt Organic or Conventional Farming Systems for Cotton Production

    PubMed Central

    Riar, Amritbir; Mandloi, Lokendra S.; Poswal, Randhir S.; Messmer, Monika M.; Bhullar, Gurbir S.

    2017-01-01

    Organic agriculture is one of the most widely known alternative production systems advocated for its benefits to soil, environment, health and economic well-being of farming communities. Rapid increase in the market demand for organic products presents a remarkable opportunity for expansion of organic agriculture. A thorough understanding of the context specific motivations of farmers for adoption of organic farming systems is important so that appropriate policy measures are put in place. With an aim of understanding the social and biophysical motivations of organic and conventional cotton farmers for following their respective farming practices, a detailed farm survey was conducted in Nimar valley of Madhya Pradesh state in central India. The study area was chosen for being an important region for cotton production, where established organic and conventional farms operate under comparable circumstances. We found considerable variation among organic and conventional farmers for their social and biophysical motivations. Organic farmers were motivated by the sustainability of cotton production and growing safer food without pesticides, whereas conventional farmers were sensitive about their reputation in community. Organic farmers with larger holdings were more concerned about closed nutrient cycles and reducing their dependence on external inputs, whereas medium and small holding organic farmers were clearly motivated by the premium price of organic cotton. Higher productivity was the only important motivation for conventional farmers with larger land holdings. We also found considerable yield gaps among different farms, both under conventional and organic management, that need to be addressed through extension and training. Our findings suggest that research and policy measures need to be directed toward strengthening of extension services, local capacity building, enhancing availability of suitable inputs and market access for organic farmers. PMID:28769975

  1. Monitoring of cotton dust and health risk assessment in small-scale weaving industry.

    PubMed

    Tahir, Muhammad Wajid; Mumtaz, Muhammad Waseem; Tauseef, Shanza; Sajjad, Muqadas; Nazeer, Awais; Farheen, Nazish; Iqbal, Muddsar

    2012-08-01

    The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).

  2. Energy monitoring in gins

    USDA-ARS?s Scientific Manuscript database

    Energy costs are the second largest source of variable costs for cotton gins, accounting for 27% of variable costs. Energy use has typically not been a major consideration in gin design, and previous studies of energy use have utilized instantaneous readings or aggregated season-long values. In this...

  3. Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributions of Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development

    PubMed Central

    Rong, Junkang; Feltus, F. Alex; Waghmare, Vijay N.; Pierce, Gary J.; Chee, Peng W.; Draye, Xavier; Saranga, Yehoshua; Wright, Robert J.; Wilkins, Thea A.; May, O. Lloyd; Smith, C. Wayne; Gannaway, John R.; Wendel, Jonathan F.; Paterson, Andrew H.

    2007-01-01

    QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks. PMID:17565937

  4. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development.

    PubMed

    Rong, Junkang; Feltus, F Alex; Waghmare, Vijay N; Pierce, Gary J; Chee, Peng W; Draye, Xavier; Saranga, Yehoshua; Wright, Robert J; Wilkins, Thea A; May, O Lloyd; Smith, C Wayne; Gannaway, John R; Wendel, Jonathan F; Paterson, Andrew H

    2007-08-01

    QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.

  5. The Development of a Remote Sensor System and Decision Support Systems Architecture to Monitor Resistance Development in Transgenic Crops

    NASA Technical Reports Server (NTRS)

    Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen

    2008-01-01

    The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.

  6. Weed management and cotton yield under two row spacings, conventional and conservation tillage systems utilizing conventional, glufosinate-, and glyphosate-based weed management systems

    USDA-ARS?s Scientific Manuscript database

    A field experiment was conducted in 2005 and 2006, to evaluate weed control in conventional, Liberty Link® (LL), and Roundup Ready® (RR) herbicide systems under standard [102 cm (40 inch)] and narrow [38 cm (15 inch)] row-spacings utilizing conventional and high-residue conservation tillage systems....

  7. A Multiyear Study on Seasonal Flight Activity Based on Captures of Southern Green Stink Bug (Hemiptera: Pentatomidae) in Blacklight Traps in Central Texas

    USDA-ARS?s Scientific Manuscript database

    The southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), is cosmopolitan in distribution and feeds on many cultivated plants. On cotton, it reduces yield and transmits fungal and bacterial pathogens that result in necrosis of the locule and boll rotting. Objectives of this study...

  8. Natural dyeing and UV protection of plasma treated cotton

    NASA Astrophysics Data System (ADS)

    Gorjanc, Marija; Mozetič, Miran; Vesel, Alenka; Zaplotnik, Rok

    2018-03-01

    Raw cotton fabrics have been exposed to low-pressure non-equilibrium gaseous plasma to improve the adsorption of natural dyes as well as ultraviolet (UV) protection factor. Plasma created in a glass tube by an electrodeless radiofrequency (RF) discharge was created either in oxygen or ammonia at the pressure of 50 Pa to stimulate formation of oxygen and nitrogen groups, respectively. The type and concentration of functional groups was determined by X-ray photoelectron spectroscopy (XPS) and morphological modifications by scanning electron microscopy (SEM). The colour yield for curcumin dye was improved significantly for samples treated with ammonia plasma what was explained by bonding of the dye to surface of amino groups. Contrary, the yield decreased when oxygen plasma treatment was applied due to the negatively charged surface that repels the negatively charged dye molecules. The effect was even more pronounced when using green tea extract as the colouring agent. The colour difference between the untreated and ammonia plasma treated sample increased linearly with plasma treatment time reaching the factor of 3.5 for treatment time of 300 s. The ultraviolet protection factor (UPF) was over 50 indicating excellent protection due to improved adsorption of the dye on the ammonia plasma treated samples.

  9. Functional characterization of a novel jasmonate ZIM-domain interactor (NINJA) from upland cotton (Gossypium hirsutum).

    PubMed

    Wang, Le; Wu, Shu-Ming; Zhu, Yue; Fan, Qiang; Zhang, Zhen-Nan; Hu, Guang; Peng, Qing-Zhong; Wu, Jia-He

    2017-03-01

    The jasmonic acid (JA) signalling pathway plays roles in plant development and defence against biotic and abiotic stresses. We isolated a cotton NINJA (novel interactor of JA ZIM-domain) gene, designated GhNINJA, which contains a 1305 bp open read frame. The GhNINJA gene encodes a 434 amino acid peptide. According to quantitative real-time PCR analysis, GhNINJA is preferentially expressed in roots, and its expression level is greatly induced by Verticillium dahliae infection. Through a virus-induced gene silencing technique, we developed GhNINJA-silenced cotton plants, which had significantly decreased expression of the target gene with an average expression of 6% of the control. The regenerating lateral root growth of silenced plants was largely inhibited compared to the control. Analysis by microscopy demonstrated that the cell length of the root differentiation zone in GhNINJA-silenced plants is significantly shorter than those of the control. Moreover, the silenced plants exhibited higher tolerance to V. dahliae infection compared to the control, which was linked to the increased expression of the defence marker genes PDF1.2 and PR4. Together, these data indicated that knockdown of GhNINJA represses the root growth and enhances the tolerance to V. dahliae. Therefore, GhNINJA gene can be used as a candidate gene to breed the new cultivars for improving cotton yield and disease resistance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutledge, J. T.; Phillips, W. S.

    In May and July, 1997, a consortia of operators and service companies conducted a series of hydraulic fracture imaging tests in the Carthage Cotton Valley gas field of East Texas (Walker, 1997). Microseismic data were collected and processed for six hydraulic fracture treatments in two wells (3 completion intervals per well) (Mayerhofer et al., 2000). One well was completed with gel-proppant treatments in which a viscous crosslink gel was injected to entrain high concentrations of sand proppant into formation. The second well was completed using treated water and very low proppant concentrations (waterfracs). Waterfracs have been shown to be justmore » as effective as the conventional gel-proppant treatments in Cotton Valley reservoirs, but at greatly reduced cost. Mayerhofer and Meehan (1998) suggest two possible reasons why waterfracs are successful: (1) Induced shear displacement along natural and hydraulic fractures results in self-propping (shear dilation enhanced by fracture branching, proppant and spalled rock fragments), and (2) Fracture extension and cleanup is easier to achieve with low-viscosity fluids. With improved source location precision and focal mechanism determination (fracture plane orientation and sense of slip), we have reexamined the Cotton Valley data, comparing the seismicity induced by water and gel-proppant treatments at common depth intervals. We have improved the location precision and computed focal mechanism of microearthquakes induced during a series of hydraulic fracture completions within the Cotton Valley formation of East Texas. Conventional gel-proppant treatments and treatments using treated water and very low proppant concentrations (waterfracs) were monitored. Waterfracs have been shown to be just as effective as the conventional gel-proppant treatments in Cotton Valley reservoirs, but at greatly reduced cost (Mayerhofer and Meehan, 1998). Comparison of the seismicity induced by the two treatment types show similar distributions of event locations and focal mechanisms for common depth intervals. We interpret the induced seismicity to be primarily controlled by the natural fracture geometry and independent of treatment design. By implication, we expect the effectiveness of shear-induced fracture propping to be independent of the treatment fluid in Cotton Valley reservoirs.« less

  11. Propolis induced antibacterial activity and other technical properties of cotton textiles.

    PubMed

    Sharaf, S; Higazy, A; Hebeish, A

    2013-08-01

    Propolis is a gum gathered by honey bees from various plants; the honey bees use propolis to seal holes in their honey combs, smooth out the internal wall and protect the entrance against intruders. It is composed of 50% resin (flavonoids and related phenolic acid), 30% wax, 10% essential oils, 5% pollen and 5% various organic components. As a natural mixture, propolis is widely used in medicine, cosmetics and food. So far no attempts have been yet made to make use of propolis in the realm of textile finishing. Current work presents the first systemic study targeted to build up a scientific basis for production of cotton textiles having antibacterial activity and other useful properties by making use of propolis as eco-friendly finish within the scope of green strategy. Propolis extract solution (70/30 ethanol/water) of 10% concentration was prepared as the stock. Different amounts of the latter were used along with a crosslinking agent and catalyst for treatment of cotton fabrics as per pad-dry-cure technique. Antibacterial activity of the so treated fabrics was obtained through monitoring the efficiency of the interaction of propolis with cotton cellulose. This interaction was expressed as inhibition zone diameter after the treated fabrics were exposed to (G+ve) and (G-ve) bacteria. Other properties include crease recovery, tensile strength and elongation at break. Factors affecting these properties such as type, nature and concentration of the crosslinking agent, concentration of propolis, and conditions of curing were investigated. In addition characterization of the propolis containing modified cotton fabrics including demonstration of the antibacterial activity, SEM, FTIR, durability to washing, UV protection and water repellency were performed. Based on results obtained, it is concluded that application of propolis along with glyoxal and Al2(SO4)3catalyst using pad-dry (3min/80°C), cure (5/140°C) bring about cotton textile with superior antibacterial activity, water repellent and ease of care characteristics as well as UV protection. Tentative mechanism of the reaction of propolis with cotton in the presence of glyoxal was also reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Molecular Diagnostic for Boll Weevil (Coleoptera: Curculionidae) Based on Amplification of Three Species-specific Microsatellites

    USDA-ARS?s Scientific Manuscript database

    The boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), is a serious pest of cultivated cotton in the Americas, and reinfestation of zones from which they have been eradicated is of perpetual concern. Extensive arrays of pheromone traps monitor for reintroductions, but occasionally...

  13. Low Maintenance Water Treatment for Heating and Cooling Systems: Review of Technologies and Guidelines for Implementation

    DTIC Science & Technology

    2007-09-01

    should be operated periodically to replenish inhibitor and bio- cide concentrations and prevent particulate matter from settling and pro- moting under... Cotton , Irvin J. (2000). “On-Line Dissolved Oxygen Monitoring in Boiler Feedwater Systems.” Paper No. 00661. Corrosion 2000. NACE International

  14. Cotton harvest at 40% versus 75% boll-splitting on yield and economic return under standard and proactive boll weevil (Coleoptera: Curculionidae) spray regimes.

    PubMed

    Showler, A T; Robinson, J R C

    2008-10-01

    The standard practice of two or three preemptive insecticide applications at the start of pinhead (1-2-mm-diameter) squaring followed by threshold-triggered (when 10% of randomly selected squares have oviposition punctures) insecticide applications for boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), control does not provide reliable protection of cotton, Gossypium hirsutum L., lint production. This study, conducted during 2004 and 2005, showed that three to six fewer spray applications in a "proactive" approach, in which spraying began at the start of large (5.5-8-mm-diameter) square formation and continued at approximately 7-d intervals while large squares were abundant, resulted in fewer infested squares and 1.4- to 1.7-fold more lint than the standard treatment. Fewer sprays and increased yield made proactive spraying significantly more profitable than the standard approach, which resulted in relatively low or negative economic returns. Harvest at 75% boll-split in the proactive spray regime of 2005 resulted in four-fold greater economic return than cotton harvested at 40% boll-split because of improved protection of large squares and the elimination of late-season sprays inherent to standard spray regime despite the cost of an extra irrigation in the 75% boll-split treatments. The earlier, 40% harvest trigger does not avoid high late-season boll weevil pressure, which exerts less impact on bolls, the predominant form of fruiting body at that time, than on squares. Proactive spraying and harvest timing are based on an important relationship between nutrition, boll weevil reproduction, and economic inputs; therefore, the tactic of combining proaction with harvest at 75% boll-split is applicable where boll weevils are problematic regardless of climate or region, or whether an eradication program is ongoing.

  15. Evaluation of saliva collection devices for the analysis of proteins.

    PubMed

    Topkas, Eleni; Keith, Patricia; Dimeski, Goce; Cooper-White, Justin; Punyadeera, Chamindie

    2012-07-11

    Human saliva mirrors the body's health and can be collected non-invasively, does not require specialized skills and is suitable for large population based screening programs. The aims were twofold: to evaluate the suitability of commercially available saliva collection devices for quantifying proteins present in saliva and to provide levels for C-reactive protein (CRP), myoglobin, and immunoglobin E (IgE) in saliva of healthy individuals as a baseline for future studies. Saliva was collected from healthy volunteers (n=17, ages 18-33years). The following collection methods were evaluated: drool; Salimetrics® Oral Swab (SOS); Salivette® Cotton and Synthetic (Sarstedt) and Greiner Bio-One Saliva Collection System (GBO SCS®). We used AlphaLISA® assays to measure CRP, IgE and myoglobin levels in human saliva. Significant (p<0.05) differences in the salivary flow rates were observed based on the method of collection, i.e. salivary flow rates were significantly lower (p<0.05) in unstimulated saliva (i.e. drool and SOS), when compared with mechanically stimulated methods (p<0.05) (Salivette® Cotton and Synthetic) and acid stimulated method (p<0.05) (SCS®). Saliva collected using SOS yielded significantly (p<0.05) lower concentrations of myoglobin and CRP, whilst, saliva collected using the Salivette® Cotton and Synthetic swab yielded significantly (p<0.05) lower myoglobin and IgE concentrations respectively. The results demonstrated significantly relevant differences in analyte levels based on the collection method. Significant differences in the salivary flow rates were also observed depending on the saliva collection method. The data provide preliminary baseline values for salivary CRP, myoglobin, and IgE levels in healthy participants and based on the collection method. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2007-08-01

    We report the production and characteristics of natural cellulose fibers obtained from the leaves and stems of switchgrass. In this paper, the composition, structure and properties of fibers obtained from the leaves and stem of switchgrass have been studied in comparison to the common natural cellulose fibers, such as cotton, linen and kenaf. The leaves and stems of switchgrass have tensile properties intriguingly similar to that of linen and cotton, respectively. Fibers were obtained from the leaves and stems of switchgrass using a simple alkaline extraction and the structure and properties of the fibers were studied. Fibers obtained from switchgrass leaves have crystallinity of 51%, breaking tenacity of 5.5 g per denier (715 MPa) and breaking elongation of 2.2% whereas the corresponding values for fibers obtained from switchgrass stems are 46%, 2.7 g per denier and 6.8%, respectively. Switchgrass is a relatively easy to grow and high yield biomass crop that can be source to partially substitute the natural and synthetic fibers currently in use. We hope that this research will stimulate interests in using switchgrass as a novel fiber crop in addition to being promoted as a potential source for biofuels. (c) 2007 Wiley Periodicals, Inc.

  17. Isolation and Structural Characterization of Lignin from Cotton Stalk Treated in an Ammonia Hydrothermal System

    PubMed Central

    Kang, Sumin; Xiao, Lingping; Meng, Lingyan; Zhang, Xueming; Sun, Runcang

    2012-01-01

    To investigate the potential for the utilization of cotton stalk, ammonia hydrothermal treatment was applied to fractionate the samples into aqueous ammonia-soluble and ammonia-insoluble portions. The ammonia-soluble portion was purified to yield lignin fractions. The lignin fractions obtained were characterized by wet chemistry (carbohydrate analysis) and spectroscopy methods (FT-IR, 13C and 1H-13C HSQC NMR spectroscopy) as well as gel permeation chromatography (GPC). The results showed that the cotton stalk lignin fractions were almost absent of neutral sugars (0.43%–1.29%) and had relatively low average molecular weights (1255–1746 g/mol). The lignin fractions belonged to typical G-S lignin, which was composed predominately of G-type units (59%) and noticeable amounts of S-type units (40%) together with a small amount of H-type units (~1%). Furthermore, the ammonia-extractable lignin fractions were mainly composed of β-O-4′ inter-unit linkages (75.6%), and small quantities of β-β′ (12.2%), together with lower amounts of β-5′ carbon-carbon linkages (7.4%) and p-hydroxycinnamyl alcohol end groups. PMID:23203120

  18. Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)▿

    PubMed Central

    Anilkumar, Konasale J.; Rodrigo-Simón, Ana; Ferré, Juan; Pusztai-Carey, Marianne; Sivasupramaniam, Sakuntala; Moar, William J.

    2008-01-01

    Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments. PMID:18024681

  19. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water massmore » uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.« less

  20. Organic cotton systems improved soil properties vis-a-vis the modern systems

    NASA Astrophysics Data System (ADS)

    Blaise, D.; Venugopalan, M. V.; Singh, J. V.; Narkhedkar, N. G.; Velmourougane, K.

    2012-04-01

    India is the largest cotton growing country in the world. Traditionally, cotton in India was grown with minimal inputs and resources available on farm were put to efficient use. Advent of hybrids and Bt cotton revolutionized cotton production in the country and lead to heavy reliance on external inputs. However, there is a growing awareness of the detrimental effects of excessive use of pesticides and fertilizers. This is leading to growing interest in organic cultivation of crops. An organic system (OS) was compared with the modern systems (MS) for changes in the soil physical, chemical and biological properties in field experiments conducted both on station and farmers fields in Maharashtra, India on rain dependent cotton grown on Vertisols. Soil samples of the organic plots had significantly greater C content than the MS plots relying on mineral fertilizers and pesticides. Similarly, other nutrients were also greater in the OS than the MS across locations. Most of the increases were noticed in the top 30 cm of the soil profile. Interestingly, enrichment of the soil at lower depths was noticed in the OS which could be due to the surface creep of soils through the cracks in the Vertisols. With regard to the physical properties, water-stable aggregates and mean weight diameter in the MS were significantly lesser than the OS. Differences were restricted to the top 20 cm. Soil biological properties of the two systems were compared through the enzyme assays such as the dehydrogenase, glucosidase, phosphatase, sulfatase periodically during the crop growing season. All the enzyme assays indicated greater activities in the OS than the MS. Further, microfauna (nematodes) monitored indicated less of plant parasitic nematodes in the OS than the MS. Excessive tillage followed in the MS did bring about a reduction in the nematode numbers. But the systems had more parasitic nematodes.

  1. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    PubMed

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  2. Expression of an arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabid...

  3. Expression of an Arabidopsis Vacuolar H+-pyrophosphatase Gene (AVP1) in Cotton Improves Drought- and Salt Tolerance and Increases Fibre Yield in the Field Conditions.

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+PPase from Arabido...

  4. Positive and normative modeling for Palmer amaranth control and herbicide resistance management.

    PubMed

    Frisvold, George B; Bagavathiannan, Muthukumar V; Norsworthy, Jason K

    2017-06-01

    Dynamic optimization models are normative; they solve for what growers 'ought to do' to maximize some objective, such as long-run profits. While valuable for research, such models are difficult to solve computationally, limiting their applicability to grower resistance management education. While discussing properties of normative models in general, this study presents results of a specific positive model of herbicide resistance management, applied to Palmer amaranth control on a representative cotton farm. This positive model compares a proactive resistance management strategy to a reactive strategy with lower short-run costs, but greater risk of herbicide resistance developing. The proactive strategy can pay for itself within 1-4 years, with a yield advantage of 4% or less if the yield advantage begins within 1-2 years of adoption. Whether the proactive strategy is preferable is sensitive to resistance onset and yield losses, but less sensitive to cotton prices or baseline yields. Industry rebates to encourage residual herbicide use (to delay resistance to post-emergence treatments) may be too small to alter grower behavior or they may be paid to growers who would have used residuals anyway. Rebates change grower behavior over a relatively narrow range of model parameters. The size of rebates needed to induce a grower to adopt the proactive strategy declines significantly if growers extend their planning horizon from 1 year to 3-4 years. Whether proactive resistance management is more profitable than a reactive strategy is more sensitive to biological parameters than economic ones. Simulation results suggest growers with longer time horizons (perhaps younger ones) would be more responsive to rebate programs. More empirical work is needed to determine how much rebates increase residual use above what would occur without them. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Comparison of aerial imagery from manned and unmanned aircraft platforms for monitoring cotton growth

    USDA-ARS?s Scientific Manuscript database

    Unmanned aircraft systems (UAS) have emerged as a low-cost and versatile remote sensing platform in recent years, but little work has been done on comparing imagery from manned and unmanned platforms for crop assessment. The objective of this study was to compare imagery taken from multiple cameras ...

  6. Incorporation of Monitoring Systems to Model Irrigated Cotton at a Landscape Level

    USDA-ARS?s Scientific Manuscript database

    Advances in computer speed, industry IT core capabilities, and available soils and weather information have resulted in the need for “cropping system models” that address in detail the spatial and temporal water, energy and carbon balance of the system at a landscape scale. Many of these models have...

  7. Influence of long-term land application of class B biosolids on soil bacterial diversity

    USDA-ARS?s Scientific Manuscript database

    This project evaluated the influence of annual land applications of Class B biosolids on soil bacterial diversity monitored over a 20 year period. Each annual land application was followed by a cotton crop. The study was initiated in 1986 at the University of Arizona Marana Agricultural Center, 21 m...

  8. Weather-based forecasts of California crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D B; Cahill, K N; Field, C B

    2005-09-26

    Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over themore » 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.« less

  9. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants.

    PubMed

    Kataria, Sunita; Guruprasad, K N; Ahuja, Sumedha; Singh, Bupinder

    2013-10-05

    A field experiment was conducted under tropical climate for assessing the effect of ambient UV-B and UV-A by exclusion of UV components on the growth, photosynthetic performance and yield of C3 (cotton, wheat) and C4 (amaranthus, sorghum) plants. The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315nm), UV-A+B (<400nm), transmitted all the UV (280-400nm) or without filters. All the four plant species responded to UV exclusion by a significant increase in plant height, leaf area, leaf biomass, total biomass accumulation and yield. Measurements of the chlorophyll, chlorophyll fluorescence parameters, gas exchange parameters and the activity of Ribulose-1,5-bisphosphate carboxylase (Rubisco) by fixation of (14)CO2 indicated a direct relationship between enhanced rate of photosynthesis and yield of the plants. Quantum yield of electron transport was enhanced by the exclusion of UV indicating better utilization of PAR assimilation and enhancement in reducing power in all the four plant species. Exclusion of UV-B in particular significantly enhanced the net photosynthetic rate, stomatal conductance and activity of Rubisco. Additional fixation of carbon due to exclusion of ambient UV-B was channeled towards yield as there was a decrease in the level of UV-B absorbing substances and an increase in soluble proteins in all the four plant species. The magnitude of the promotion in all the parameters studied was higher in dicots (cotton, amaranthus) compared to monocots (wheat, sorghum) after UV exclusion. The results indicated a suppressive action of ambient UV-B on growth and photosynthesis; dicots were more sensitive than monocots in this suppression while no great difference in sensitivity was found between C3 and C4 plants. Experiments indicated the suppressive action of ambient UV on carbon fixation and yield of C3 and C4 plants. Exclusion of solar UV-B will have agricultural benefits in both C3 and C4 plants under tropical climate. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton

    PubMed Central

    Pauli, Duke; Andrade-Sanchez, Pedro; Carmo-Silva, A. Elizabete; Gazave, Elodie; French, Andrew N.; Heun, John; Hunsaker, Douglas J.; Lipka, Alexander E.; Setter, Tim L.; Strand, Robert J.; Thorp, Kelly R.; Wang, Sam; White, Jeffrey W.; Gore, Michael A.

    2016-01-01

    The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010–2012. Canopy temperature, normalized difference vegetation index (NDVI), height, and leaf area index (LAI) displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL) expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars. PMID:26818078

  11. Molecular diagnostic development for begomovirus-betasatellite complexes undergoing diversification: A case study.

    PubMed

    Brown, Judith K; Ur-Rehman, Muhammad Zia; Avelar, Sofia; Chingandu, N; Hameed, Usman; Haider, Saleem; Ilyas, Muhammad

    2017-09-15

    At least five begomoviral species that cause leaf curl disease of cotton have emerged recently in Asia and Africa, reducing fiber quality and yield. The potential for the spread of these viruses to other cotton-vegetable growing regions throughout the world is extensive, owing to routine, global transport of alternative hosts of the leaf curl viruses, especially ornamentals. The research reported here describes the design and validation of polymerase chain reaction (PCR) primers undertaken to facilitate molecular detection of the two most-prevalent leaf curl-associated begomovirus-betasatellite complexes in the Indian Subcontinent and Africa, the Cotton leaf curl Kokhran virus-Burewala strain and Cotton leaf curl Gezira virus, endemic to Asia and Africa, respectively. Ongoing genomic diversification of these begomoviral-satellite complexes was evident based on nucleotide sequence alignments, and analysis of single nucleotide polymorphisms, both factors that created new challenges for primer design. The additional requirement for species and strain-specific, and betasatellite-specific primer design, imposes further constraints on primer design and validation due to the large number of related species and strains extant in 'core leaf curl virus complex', now with expanded distribution in south Asia, the Pacific region, and Africa-Arabian Peninsula that have relatively highly conserved coding and non-coding regions, which precludes much of the genome-betasatellite sequence when selecting primer 'targets'. Here, PCR primers were successfully designed and validated for detection of cloned viral genomes and betasatellites for representative 'core leaf curl' strains and species, distant relatives, and total DNA isolated from selected plant species. The application of molecular diagnostics to screen plant imports prior to export or release from ports of entry is expected to greatly reduce the likelihood of exotic leaf curl virus introductions that could dramatically affect the production of cotton as well as vegetable and ornamental crop hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    PubMed

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.).

    PubMed

    Li, Tinggang; Ma, Xuefeng; Li, Nanyang; Zhou, Lei; Liu, Zheng; Han, Huanyong; Gui, Yuejing; Bao, Yuming; Chen, Jieyin; Dai, Xiaofeng

    2017-12-01

    Verticillium wilt (VW), caused by infection by Verticillium dahliae, is considered one of the most yield-limiting diseases in cotton. To examine the genetic architecture of cotton VW resistance, we performed a genome-wide association study (GWAS) using a panel of 299 accessions and 85 630 single nucleotide polymorphisms (SNPs) detected using the specific-locus amplified fragment sequencing (SLAF-seq) approach. Trait-SNP association analysis detected a total of 17 significant SNPs at P < 1.17 × 10 -5 (P = 1/85 630, -log 10 P = 4.93); the peaks of SNPs associated with VW resistance on A10 were continuous and common in three environments (RDIG2015, RDIF2015 and RDIF2016). Haplotype block structure analysis predicted 22 candidate genes for VW resistance based on A10_99672586 with a minimum P-value (-log 10 P = 6.21). One of these genes (CG02) was near the significant SNP A10_99672586 (0.26 Mb), located in a 372-kb haplotype block, and its Arabidopsis AT3G25510 homologues contain TIR-NBS-LRR domains that may be involved in disease resistance response. Real-time quantitative PCR and virus-induced gene silencing (VIGS) analysis showed that CG02 was specific to up-regulation in the resistant (R) genotype Zhongzhimian2 (ZZM2) and that silenced plants were more susceptible to V. dahliae. These results indicate that CG02 is likely the candidate gene for resistance against V. dahliae in cotton. The identified locus or gene may serve as a promising target for genetic engineering and selection for improving resistance to VW in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. 7 CFR 27.43 - Validity of cotton class certificates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Validity of cotton class certificates. 27.43 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.43 Validity of cotton class certificates. Each cotton class certificate for cotton classified...

  15. 7 CFR 27.43 - Validity of cotton class certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Validity of cotton class certificates. 27.43 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.43 Validity of cotton class certificates. Each cotton class certificate for cotton classified...

  16. 7 CFR 27.43 - Validity of cotton class certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Validity of cotton class certificates. 27.43 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.43 Validity of cotton class certificates. Each cotton class certificate for cotton classified...

  17. 7 CFR 27.43 - Validity of cotton class certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Validity of cotton class certificates. 27.43 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.43 Validity of cotton class certificates. Each cotton class certificate for cotton classified...

  18. 7 CFR 27.43 - Validity of cotton class certificates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Validity of cotton class certificates. 27.43 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.43 Validity of cotton class certificates. Each cotton class certificate for cotton classified...

  19. Safety assessment and public concerns for genetically modified food products: the Japanese experience.

    PubMed

    Hino, Akihiro

    2002-01-01

    The recombinant DNA (rDNA) technique is expected to bring about great progress in the improvement of breeding technology and the development of new plant varieties showing high quality and high yield, such as those with excellent pest and disease resistance, those with environmental stress tolerance, and so forth. In the United States and Canada, many genetically modified (GM) crop plants were commercialized as early as 1994. In Japan, 35 transgenic crop plants, such as herbicide tolerant soybean, cotton, and canola, and insect-resistant corn, cotton, and potatos, were authorized and considered marketable until April 2001. The general public, however, is not familiar with rDNA technology, and some people seem to feel uncomfortable with biotechnology, frequently because of the difficulty of the technology and lacking of sufficient information. New labeling systems were initiated in April 2001 in Japan to provide information regarding the use of GM crops as raw material.

  20. Water-quality, biological, and habitat assessment of the Boeuf River Basin, southeastern Arkansas, 1994-96

    USGS Publications Warehouse

    Barks, C. Shane; Petersen, James C.; Usrey, Faron D.

    2002-01-01

    Water-quality and biological samples were collected at several sites in the Boeuf River Basin between November 1994 and December 1996. Water-quality and benthic macroinvertebrate community samples were collected and habitat was measured once at 25 ambient monitoring sites during periods of seasonal low flow. Water-quality storm-runoff samples were collected during 11 storm events at two sites (one draining a cotton field and one draining a forested area). Water-quality samples were collected at one site during the draining of a catfish pond. Water-quality samples from the 25 ambient sites indicate that streams in the Boeuf River Basin typically are turbid and nutrient enriched in late fall during periods of relatively low flow. Most suspended solids concentrations ranged from about 50 to 200 milligrams per liter (mg/L), most total nitrogen concentrations ranged from about 1.1 to 1.8 mg/L, and most total phosphorus concentrations ranged from about 0.25 to 0.40 mg/L. Suspended solids, total nitrogen, total ammonia plus organic nitrogen, total phosphorus, and dissolved orthophosphorus concentrations from samples collected during storm events were typically higher at the cotton field site than at the forested site. Estimated annual yields of suspended solids, nitrogen, and phosphorus were substantially higher from the cotton field than from the forested area. Dissolved chloride concentrations typically were higher at the forested site than from the cotton field site. Typically, the suspended solids and nutrient concentrations from the 25 ambient sites were lower than concentrations in runoff from the cotton field but higher than concentrations in runoff from the forest area. Concentrations of sulfate, chloride, suspended solids, and some nutrients in samples from the catfish pond generally were greater than concentrations in samples from other sites. Total phosphorus, orthophosphorus, and fecal coliform bacteria concentrations from the catfish pond generally were lower than concentrations in samples from other sites. Biological condition scores calculated using macroinvertebrate samples and U.S. Environmental Protection Agency Rapid Bioassessment Protocol II indicated that most of the 25 ambient sites would be in the 'moderately impaired' category. However, substantial uncertainty exists in this rating because bioassessment data were compared with data from a reference site outside of the Boeuf River Basin sampled using different methods. Several metrics indicated that communities at most of the ambient sites are composed of more tolerant macroinvertebrates than the community at the reference site. Habitat assessments (using Rapid Bioassessment Protocol II) indicated the reference site outside the Boeuf River Basin had better habitat than the ambient sites. Physical habitat scores for the 25 ambient sites indicated that most ambient sites had poor bottom substrate cover, embeddedness values, and flow and had poor to fair habitat related to most other factors. Most habitat factors at the reference site were considered good to excellent. Part of the variation in biological condition scores was explained by physical habitat scores and concentrations of suspended solids and dissolved oxygen. However, a considerable amount of variability in biological condition scores is not explained by these factors.

  1. 76 FR 80278 - Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...-0066] RIN 0581-AD19 Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade... Pima cotton. The leaf grade is a part of the official classification which denotes cotton fiber quality used in cotton marketing and manufacturing of cotton products. Currently, the leaf grade is determined...

  2. Ecoinformatics Can Reveal Yield Gaps Associated with Crop-Pest Interactions: A Proof-of-Concept

    PubMed Central

    Rosenheim, Jay A.; Meisner, Matthew H.

    2013-01-01

    Farmers and private consultants execute a vast, decentralized data collection effort with each cropping cycle, as they gather pest density data to make real-time pest management decisions. Here we present a proof of concept for an ecoinformatics approach to pest management research, which attempts to harness these data to answer questions about pest-crop interactions. The impact of herbivory by Lygus hesperus on cotton is explored as a case study. Consultant-derived data satisfied a ‘positive control’ test for data quality by clearly resolving the expected negative relationship between L. hesperus density and retention of flower buds. The enhanced statistical power afforded by the large ecoinformatics dataset revealed an early-season window of crop sensitivity, during which L. hesperus densities as low as 1-2 per sample were associated with yield loss. In contrast, during the mid-season insecticide use by farmers was often unnecessary, as cotton compensated fully for moderate L. hesperus densities. Because the dataset emerged from the commercial production setting, it also revealed the limited degree to which farmers were willing to delay crop harvest to provide opportunities for compensatory fruiting. Observational approaches to pest management research have strengths and weaknesses that complement those of traditional, experimental approaches; combining these methods can contribute to enhanced agricultural productivity. PMID:24260408

  3. Benefits of genetically modified crops for the poor: household income, nutrition, and health.

    PubMed

    Qaim, Matin

    2010-11-30

    The potential impacts of genetically modified (GM) crops on income, poverty and nutrition in developing countries continue to be the subject of public controversy. Here, a review of the evidence is given. As an example of a first-generation GM technology, the effects of insect-resistant Bt cotton are analysed. Bt cotton has already been adopted by millions of small-scale farmers, in India, China, and South Africa among others. On average, farmers benefit from insecticide savings, higher effective yields and sizeable income gains. Insights from India suggest that Bt cotton is employment generating and poverty reducing. As an example of a second-generation technology, the likely impacts of beta-carotene-rich Golden Rice are analysed from an ex ante perspective. Vitamin A deficiency is a serious nutritional problem, causing multiple adverse health outcomes. Simulations for India show that Golden Rice could reduce related health problems significantly, preventing up to 40,000 child deaths every year. These examples clearly demonstrate that GM crops can contribute to poverty reduction and food security in developing countries. To realise such social benefits on a larger scale requires more public support for research targeted to the poor, as well as more efficient regulatory and technology delivery systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Substances migrating from cotton and cotton... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.70 Substances migrating from cotton and cotton fabrics used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry...

  5. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Substances migrating from cotton and cotton... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.70 Substances migrating from cotton and cotton fabrics used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry...

  6. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Substances migrating from cotton and cotton... Provisions § 182.70 Substances migrating from cotton and cotton fabrics used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry food packaging that are generally...

  7. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Substances migrating from cotton and cotton... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.70 Substances migrating from cotton and cotton fabrics used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry...

  8. Paper-Based Device for Rapid Visualization of NADH Based on Dissolution of Gold Nanoparticles.

    PubMed

    Liang, Pingping; Yu, Haixiang; Guntupalli, Bhargav; Xiao, Yi

    2015-07-15

    We describe a paper-based device that enables rapid and sensitive room-temperature detection of dihydronicotinamide adenine dinucleotide (NADH) via a colorimetric readout and demonstrate its value for monitoring NAD+-driven enzymatic reactions. Our system is based on NADH-mediated inhibition of gold nanoparticle (AuNPs) dissolution in a Au3+-cetyltrimethylammonium bromide (CTAB) solution. We fabricated a device consisting of a mixed cellulose ester paper featuring a wax-encircled, AuNP-coated film atop a cotton absorbent layer sandwiched between two plastic cover layers. In the absence of NADH, the Au3+-CTAB complex dissolves the AuNP layer completely, generating a white color in the test zone. In the presence of NADH, Au3+ is rapidly reduced to Au+, greatly decreasing the dissolution of AuNPs and yielding a red color that becomes stronger at increasing concentrations of NADH. This device exploits capillary force-assisted vertical diffusion, allowing us to apply a 25 μL sample to a surface-confined test zone to achieve a detection limit of 12.5 μM NADH. We used the enzyme glucose dehydrogenase as a model to demonstrate that our paper-based device can monitor NAD+-driven biochemical processes with and without selective dehydrogenase inhibitors by naked-eye observation within 4 min at room temperature in a small sample volume. We believe that our paper-based device could offer a valuable and low-cost analytical tool for monitoring NAD+-associated enzymatic reactions and screening for dehydrogenase inhibitors in a variety of testing contexts.

  9. Functional Characterization of a Strong Bi-directional Constitutive Plant Promoter Isolated from Cotton Leaf Curl Burewala Virus

    PubMed Central

    Khan, Zainul A.; Abdin, Malik Z.; Khan, Jawaid A.

    2015-01-01

    Cotton leaf curl Burewala virus (CLCuBuV), belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP) genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were fused with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum) plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells. PMID:25799504

  10. Functional characterization of a strong bi-directional constitutive plant promoter isolated from cotton leaf curl Burewala virus.

    PubMed

    Khan, Zainul A; Abdin, Malik Z; Khan, Jawaid A

    2015-01-01

    Cotton leaf curl Burewala virus (CLCuBuV), belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP) genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were fused with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum) plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.

  11. Update on monitoring of resistance to Bt cotton in key lepidopteran pests in the USA

    USDA-ARS?s Scientific Manuscript database

    Producers sprayed more Bollgard II to control target lepidopteran pests in 2010 than in previous years, and therefore concerns have been expressed that the susceptibility of the target lepidopteran pests to the Bt Cry1Ac and Cry2Ab proteins in Bollgard II has significantly decreased. However, resist...

  12. A statewide network for monitoring agricultural water quality and water quantity in Arkansas

    USDA-ARS?s Scientific Manuscript database

    Arkansas produces the most rice, 3rd most cotton and 2nd most broilers of any state in the US. By 2050, agriculture will be asked to produce twice as much food, feed, and fiber for the projected world population, while challenged with reduced water availability from groundwater decline and increase...

  13. Structure/function analysis of cotton-based peptide-cellulose conjugates: spatiotemporal/kinetic assessment of protease aerogels compared to nanocrystalline and paper cellulose

    USDA-ARS?s Scientific Manuscript database

    The growing incidence of chronic wounds in the world population has prompted increased interest in chronic wound dressings with protease-modulating activity and protease point of care sensors to treat and enable monitoring of elevated protease-based wound pathology. However, the overall design featu...

  14. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton harvested...

  15. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton harvested...

  16. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton harvested...

  17. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton harvested...

  18. 7 CFR 1205.304 - Cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton harvested...

  19. Nitrogen dynamics in organic and conventional cotton production systems in India

    NASA Astrophysics Data System (ADS)

    Duboc, O.; Adamtey, N.; Forster, D.; Cadisch, G.

    2012-04-01

    Ongoing population growth still represents a challenge to agricultural production (food, fiber and fuel material supply). In spite of the undeniable achievements reached with the "green revolution" technologies, there is a growing awareness among scientists and policy makers that diverse and integrated approaches which are both productive and sustainable are now necessary to meet the agricultural challenges. Integrated and organic agriculture are such alternatives which need to be better investigated and implemented. While long-term experiments in temperate regions have assessed the effect of organic agriculture on different crops and soil quality, there is currently a lack of reliable data from tropical regions, such as findings arising from long-term systems comparison trials. This has necessitated a long-term system comparison trials in Kenya, Bolivia and India by the Research Institute of Organic Agriculture (FiBL) and its partners (icipe, BioRe, Ecotop and Institute of Ecology) (www.systems-comparison.fibl.org). In India the project is based in Madhya Pradesh, in which organic and conventional production systems are being compared in a 2-yr crop rotation - cotton (yr 1) and soybean-wheat (yr 2). The field trial is planned for a time span of 10-20 years, in order to investigate long-term effects of those production systems on yields, soil characteristics, or economic return. A PhD study is incorporated into this project to investigate the effect of the production systems on soil characteristics. The main focus will be on nitrogen cycling under the different production systems. Particular attention will be given to nitrogen use efficiencies and the synchrony of nitrogen availability (e.g. nitrogen mineralization with the polyethylene bag technique, monitoring of soil mineral N) with plant nitrogen uptake, for which allometric equations will be calibrated in order to circumvent destructive sampling on the plots of the long-term experiment. Nitrogen losses - leaching and gaseous emissions - will also be investigated with methods such as buried ion exchange resin cores and gas sampling in the field. Furthermore, the project will test management solutions to improve nitrogen use efficiencies in both, organic and conventional systems, such as the introduction of leguminous intercrops in cotton, which is the main cash crop in the system and which also has the highest requirements for fertilization. This poster thus mainly discusses methodic issues relating to the planned study.

  20. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Substances migrating from cotton and cotton fabrics... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.70 Substances migrating from cotton and cotton fabrics used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry...

  1. 7 CFR 1205.341 - Certification of cotton producer organization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Certification of cotton producer organization. 1205... COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Certification of Cotton Producer Organization § 1205.341 Certification of cotton producer organization. Any cotton producer organization within...

  2. 7 CFR 1205.341 - Certification of cotton producer organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Certification of cotton producer organization. 1205... COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Certification of Cotton Producer Organization § 1205.341 Certification of cotton producer organization. Any cotton producer organization within...

  3. 7 CFR 1205.341 - Certification of cotton producer organization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Certification of cotton producer organization. 1205... COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Certification of Cotton Producer Organization § 1205.341 Certification of cotton producer organization. Any cotton producer organization within...

  4. 7 CFR 1205.341 - Certification of cotton producer organization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Certification of cotton producer organization. 1205... COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Certification of Cotton Producer Organization § 1205.341 Certification of cotton producer organization. Any cotton producer organization within...

  5. 7 CFR 1205.341 - Certification of cotton producer organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Certification of cotton producer organization. 1205... COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Certification of Cotton Producer Organization § 1205.341 Certification of cotton producer organization. Any cotton producer organization within...

  6. Vibrational spectroscopic determination of botanical trash samples

    USDA-ARS?s Scientific Manuscript database

    Cotton trash present with cotton lint can drastically affect the yarn properties and marketability of cotton. Cotton trash usually comes into contact with cotton lint from field to fabric processing operations of cotton. Conventional methods to determine cotton lint currently do not present the or...

  7. 7 CFR 27.44 - Invalidity of cotton class certificates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Invalidity of cotton class certificates. 27.44 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.44 Invalidity of cotton class certificates. Any cotton class certificate shall become invalid...

  8. 7 CFR 27.44 - Invalidity of cotton class certificates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Invalidity of cotton class certificates. 27.44 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.44 Invalidity of cotton class certificates. Any cotton class certificate shall become invalid...

  9. 7 CFR 27.44 - Invalidity of cotton class certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Invalidity of cotton class certificates. 27.44 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.44 Invalidity of cotton class certificates. Any cotton class certificate shall become invalid...

  10. 7 CFR 27.44 - Invalidity of cotton class certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Invalidity of cotton class certificates. 27.44 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.44 Invalidity of cotton class certificates. Any cotton class certificate shall become invalid...

  11. 7 CFR 27.44 - Invalidity of cotton class certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Invalidity of cotton class certificates. 27.44 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.44 Invalidity of cotton class certificates. Any cotton class certificate shall become invalid...

  12. CottonGen: a genomics, genetics and breeding database for cotton research

    USDA-ARS?s Scientific Manuscript database

    CottonGen (http://www.cottongen.org) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data for cotton. CottonGen supercedes CottonDB and the Cotton Marker Database, with enhanced tools for easier data sharing, mining, vis...

  13. 7 CFR 28.106 - Universal cotton standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Universal cotton standards. 28.106 Section 28.106... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Practical Forms of Cotton Standards § 28.106 Universal cotton standards. Whenever any of the official cotton...

  14. 7 CFR 28.106 - Universal cotton standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Universal cotton standards. 28.106 Section 28.106... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Practical Forms of Cotton Standards § 28.106 Universal cotton standards. Whenever any of the official cotton...

  15. 7 CFR 27.73 - Supervision of transfers of cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Supervision of transfers of cotton. 27.73 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Transfers of Cotton § 27.73 Supervision of transfers of cotton. Whenever the owner of any cotton inspected and sampled for classification...

  16. 7 CFR 27.73 - Supervision of transfers of cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Supervision of transfers of cotton. 27.73 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Transfers of Cotton § 27.73 Supervision of transfers of cotton. Whenever the owner of any cotton inspected and sampled for classification...

  17. 7 CFR 28.106 - Universal cotton standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Universal cotton standards. 28.106 Section 28.106... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Practical Forms of Cotton Standards § 28.106 Universal cotton standards. Whenever any of the official cotton...

  18. 77 FR 20503 - Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ...-AD19 Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade AGENCY... amending the procedures for determining the official leaf grade for Upland and Pima cotton. The leaf grade is a part of the official classification which denotes cotton fiber quality used in cotton marketing...

  19. 7 CFR 27.73 - Supervision of transfers of cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Supervision of transfers of cotton. 27.73 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Transfers of Cotton § 27.73 Supervision of transfers of cotton. Whenever the owner of any cotton inspected and sampled for classification...

  20. 7 CFR 28.106 - Universal cotton standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Universal cotton standards. 28.106 Section 28.106... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Practical Forms of Cotton Standards § 28.106 Universal cotton standards. Whenever any of the official cotton...

  1. 7 CFR 28.106 - Universal cotton standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Universal cotton standards. 28.106 Section 28.106... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Practical Forms of Cotton Standards § 28.106 Universal cotton standards. Whenever any of the official cotton...

  2. 75 FR 24373 - Cotton Research and Promotion Program: Designation of Cotton-Producing States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... 0581-AC84 Cotton Research and Promotion Program: Designation of Cotton- Producing States AGENCY... amending the Cotton Research and Promotion Order (Cotton Order) following a referendum held October 13 through November 10, 2009, in which Upland cotton producers and importers favored the adoption of two...

  3. Comparison of oilseed yields: a preliminary review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, J.A.; Bagby, M.O.

    It was assumed that for most oilseed crops, 90% of the oil yield might be considered as profit. To compare oil seeds, pertinent portions of the yield and energy paragraphs from a summary published by Dr. Duke for DOE Grant No. 59-2246-1-6-054-0 with Dr. Bagby as ADODR were reproduced. The seed yields ranged from 200 to 14,000 kg/ha, the low one too low to consider and the high one suspiciously high. The yield of 14,000 kg oil per hectare is equivalent to more than 30 barrels of oil per hectare. The energy species included ambrette, tung-oil tree, cashew, wood-oil tree,more » mu-oil tree, peanut, mustard greens; rape, colza; black mustard, turnip, safflower, colocynth, coconut, crambe, African oil palm, soybean, cotton, sunflower, Eastern black walnut, Engligh walnut, meadow foam, flax, macadamia nuts, opium poppy, perilla, almond, castorbean, Chinese tallow tree, sesame, jojoba, yellow mustard, stokes' aster, and Zanzibar oilvine. 1 table. (DP)« less

  4. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco.

    PubMed

    Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X

    2017-11-22

    Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.

  5. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than Good...

  6. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  7. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  8. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than Good...

  9. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than Good...

  10. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  11. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  12. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  13. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than Good...

  14. 7 CFR 28.451 - Below Color Grade Cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than Good...

  15. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    USDA-ARS?s Scientific Manuscript database

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  16. Real-time monitoring of fragrance release from cotton towels by low thermal mass gas chromatography using a longitudinally modulating cryogenic system for headspace sampling and injection.

    PubMed

    Haefliger, Olivier P; Jeckelmann, Nicolas; Ouali, Lahoussine; León, Géraldine

    2010-01-15

    An innovative headspace sampling and injection system for gas chromatography was designed using a longitudinally modulating cryogenic system mounted around the sampling loop of a two-position loop injector. The setup was hyphenated to a fast low thermal mass gas chromatograph, allowing transient concentrations of semivolatile analytes to be monitored in real time with a time resolution of 4.5 min. The performance of the instrument, and in particular its cryotrapping efficiency, was characterized using a mixture of long-chain alkanes, methyl esters, ethyl esters, and alcohols of different volatilities. The device was found to be ideally suited to the analysis of semivolatile compounds with boiling points ranging between 190 and 320 degrees C, which are typical for a majority of perfumery raw materials. The new instrument was successfully used to monitor the release of eight odorant compounds from cotton towels to which fabric softener had been applied that alternatively contained the fragrance in free form or in microencapsulated form. The analytical results, unprecedented in their level of precision and time resolution for such an application, evidenced the major impact of microencapsulation technology on the kinetics of fragrance release during the drying of the towels and on the triggering of additional fragrance release by applying mechanical stress to the fabric to rupture the microcapsule walls.

  17. 7 CFR 301.52 - Quarantine; restriction on interstate movement of specified regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... articles: (1) Cotton and wild cotton, including all parts of these plants. (2) Seed cotton. (3) Cottonseed...) Cotton waste produced at cotton gins and cottonseed oil mills. (6) Cotton gin trash. (7) Used bagging and... cotton oil mill equipment. (9) Kenaf, including all parts of the plants. (10) Okra, including all parts...

  18. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Dexin; Liu, Fang; Shan, Xiaoru; Zhang, Jian; Tang, Shiyi; Fang, Xiaomei; Liu, Xueying; Wang, Wenwen; Tan, Zhaoyun; Teng, Zhonghua; Zhang, Zhengsheng; Liu, Dajun

    2015-10-01

    Upland cotton plays a critical role not only in the textile industry, but also in the production of important secondary metabolites, such as oil and proteins. Construction of a high-density linkage map and identifying yield and seed trait quantitative trail loci (QTL) are prerequisites for molecular marker-assisted selective breeding projects. Here, we update a high-density upland cotton genetic map from recombinant inbred lines. A total of 25,313 SSR primer pairs were screened for polymorphism between Yumian 1 and T586, and 1712 SSR primer pairs were used to genotype the mapping population and construct a map. An additional 1166 loci have been added to our previously published map with 509 SSR markers. The updated genetic map spans a total recombinant length of 3338.2 cM and contains 1675 SSR loci and nine morphological markers, with an average interval of 1.98 cM between adjacent markers. Green lint (Lg) mapped on chromosome 15 in a previous report is mapped in an interval of 2.6 cM on chromosome 21. Based on the map and phenotypic data from multiple environments, 79 lint percentage and seed nutrient trait QTL are detected. These include 8 lint percentage, 13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13 palmitic, and 12 stearic acid content QTL. They explain 3.5-62.7 % of the phenotypic variation observed. Four morphological markers identified have a major impact on lint percentage and cottonseed nutrients traits. In this study, our genetic map provides new sights into the tetraploid cotton genome. Furthermore, the stable QTL and morphological markers could be used for fine-mapping and map-based cloning.

  19. Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation

    NASA Astrophysics Data System (ADS)

    Caschera, Daniela; Federici, Fulvio; de Caro, Tilde; Cortese, Barbara; Calandra, Pietro; Mezzi, Alessio; Lo Nigro, Raffaella; Toro, Roberta G.

    2018-01-01

    A modified one step and cost-effective chemical green route has been used to synthesize oleate-capped TiO2 anatase nanocrystals (NCs) doped with different amounts of europium, with high yields and without high-temperature post-calcination processes. Europium doping endowed TiO2 NCs with an intense red luminescence associated with the 5D0 → 7F2 transition of the electronic structure of Eu3+ and was responsible for both the morphological change of the NCs structure (from nanorods to spherical nanoparticles) and the blue shift in the absorption edge respect to the undoped TiO2 NCs. Furthermore, photocatalytic experiments revealed that a low-content (0.5 mol%) Eu3+ doped TiO2 NCs showed the best ability as photocatalyst for the degradation of methylene blue (MB) under both UV and visible light irradiation, even if all the Eu3+ doped oleate-capped TiO2 NCs were more effective under visible light. Moreover, taking advantage of their photocatalytic activity, the 0.5% Eu3+ doped oleate-capped TiO2 photocatalysts has been employed on cotton fabrics. Our results highlighted that functionalization of cotton textile with Eu3+ doped oleate-capped TiO2 NCs imparted new functionalities, such as a high photocatalytic activity toward MB degradation under visible light. In addition, it determined also the change in the wetting behaviour of cotton that switches to a superhydrophobic nature. The obtained fabric also showed stable and robust superhydrophobicity against strong acid and alkaline environments. Multifunctional materials having simultaneously luminescence, superhydrophobicity and visible light photocatalysis are expected to be very useful in many technological applications.

  20. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum.

    PubMed

    Fan, Xinqi; Guo, Qi; Xu, Peng; Gong, YuanYong; Shu, Hongmei; Yang, Yang; Ni, Wanchao; Zhang, Xianggui; Shen, Xinlian

    2015-01-01

    WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.

  1. Cotton Production Practices Change Soil Properties

    NASA Astrophysics Data System (ADS)

    Blaise, D.; Singh, J. V.

    2012-04-01

    Historically, indigenous Asiatic cottons (Gossypium arboreum) were cultivated with minimal inputs in India. The introduction of the Upland cottons (G. hirsutum) and later the hybrid (H-4) triggered a whole set of intensified agronomic management with reliance on high doses of fertilisers and pesticide usage. In 2002, the transgenic Bt cotton hybrids were introduced and released for commercial cultivation. Presently, more than 95% of the nearly 12.2 million hectares of cotton area is under the Bt transgenic hybrids. These hybrids are not only high yielding but have reduced the dependence on pesticide because of an effective control of the lepidopteran pests. Thus, a change in the management practices is evident over the years. In this paper, we discuss the impact of two major agronomic management practices namely, nutrient management and tillage besides organic cotton cultivation in the rainfed cotton growing regions of central India characterized by sub-humid to semi-arid climate and dominated by Vertisols. Long-term studies at Nagpur, Maharashtra indicated the importance of integrated nutrient management (INM) wherein a part of the nutrient needs through fertiliser was substituted with organic manures such as farmyard manure (FYM). With the application of mineral fertilisers alone, soils became deficient in micronutrients. This was not observed with the FYM amended plots. Further, the manure amended plots had a better soil physical properties and the water holding capacity of the soil improved due to improvements in soil organic matter (SOM). Similarly, in a separate experiment, an improvement in SOM was observed in the organically managed fields because of continuous addition of organic residues. Further, it resulted in greater biological activity compared to the conventionally managed fields. Conservation tillage systems such as reduced tillage (RT) are a means to improve soil health and crop productivity. Long-term studies on tillage practices such as conventional tillage {CT}, RT with two inter-row cultivations {RT1} and RT with no inter-row cultivation {RT2} were conducted for 11 years. At the end of the study, an improvement in the soil physical properties such as water stable aggregates and mean weight diameter were observed in the RT system and the plots amended with green manure (GM) cover crop compared to those without. Further, available soil moisture content was greater in the GM mulched plots up to 0.60 m depth compared to the without GM treatment. The RT systems, too, had a higher SOM content than the CT probably due to less soil disturbance and greater retention of crop residues. INM and conservation tillage are strategies to sequester C and reduce emissions. It can also mitigate green house gas emissions because less of fertiliser would be used in the INM treatments. Studies conducted, thus far, have not indicated any adverse effect of Bt cotton cultivation. However, there could be a possibility, of nutrient depletion with the cultivation of Bt transgenic hybrids because of higher biomass and nutrient removal increasing the nutrient demand. Studies on these aspects are needed to understand how long-term cultivation of Bt cotton hybrids will alter the soil properties.

  2. Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses

    PubMed Central

    Luo, Xiaoli; Wu, Jiahe; Li, Yuanbao; Nan, Zhirun; Guo, Xing; Wang, Yixue; Zhang, Anhong; Wang, Zhian; Xia, Guixian; Tian, Yingchuan

    2013-01-01

    In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss. PMID:23335985

  3. Automatic detection and identification of brown stink bug, Euschistus servus, and southern green stink bug, Nezara viridula, (Heteroptera: Pentatomidae) using intraspecific substrate-borne vibrational signals

    USDA-ARS?s Scientific Manuscript database

    Stink bugs cost the southeastern cotton industry millions of dollars each year in crop losses and control costs. These losses are reduced by strategic pesticide applications; however, current methods of monitoring these pests for making management decisions are time-consuming and costly. Therefore, ...

  4. ARS labs update to California Cotton Ginners and Growers

    USDA-ARS?s Scientific Manuscript database

    There are four USDA-ARS labs involved in cotton harvesting, processing & fiber quality research; The Southwestern Cotton Ginning Research Laboratory (Mesilla Park, NM); The Cotton Production and Processing Unit (Lubbock, TX); The Cotton Ginning Research Unit (Stoneville, MS); and The Cotton Structur...

  5. 7 CFR 1205.319 - Cotton-producing region.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Cotton-producing region. 1205.319 Section 1205.319... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing...

  6. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the administrative...

  7. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all cultivated...

  8. 7 CFR 27.39 - Issuance of classification records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27... practicable after the classification of cotton has been completed by the Cotton and Tobacco Programs, the Quality Assurance Division shall issue an electronic cotton classification record showing the results of...

  9. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the administrative...

  10. 7 CFR 1205.319 - Cotton-producing region.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton-producing region. 1205.319 Section 1205.319... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing...

  11. 7 CFR 1205.319 - Cotton-producing region.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Cotton-producing region. 1205.319 Section 1205.319... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing...

  12. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the administrative...

  13. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all cultivated...

  14. 7 CFR 1205.319 - Cotton-producing region.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Cotton-producing region. 1205.319 Section 1205.319... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing...

  15. 7 CFR 1205.319 - Cotton-producing region.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Cotton-producing region. 1205.319 Section 1205.319... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing...

  16. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the administrative...

  17. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all cultivated...

  18. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all cultivated...

  19. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all cultivated...

  20. 7 CFR 1205.308 - Cotton Board.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the administrative...

Top