Sample records for cotton-based waste textiles

  1. Direct catalytic production of sorbitol from waste cellulosic materials.

    PubMed

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-05-01

    Cotton wool, cotton textile, tissue paper and printing paper, all potential waste cellulosic materials, were directly converted to sorbitol using a Ru/CNT catalyst in the presence of H 2 and using only water as solvent, without any acids. Conversions up to 38% were attained for the raw substrates, with sorbitol yields below 10%. Ball-milling of the materials disrupted their crystallinity, allowing reaching 100% conversion of cotton wool, cotton textile and tissue paper after 4h, with sorbitol yields around 50%. Mix-milling these materials with the catalyst greatly enhanced their conversion rate, and the materials were efficiently converted to sorbitol with a yield around 50% in 2h. However, ball- and mix-milled printing paper presented a conversion of only 50% after 5h, with sorbitol yields of 7%. Amounts of sorbitol of 0.525, 0.511 and 0.559g could be obtained from 1g of cotton wool, cotton textile and tissue paper, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.

    PubMed

    Hong, Feng; Guo, Xiang; Zhang, Shuo; Han, Shi-fen; Yang, Guang; Jönsson, Leif J

    2012-01-01

    Cotton-based waste textiles were explored as alternative feedstock for production of bacterial cellulose (BC) by Gluconacetobacter xylinus. The cellulosic fabrics were treated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). [AMIM]Cl caused 25% inactivation of cellulase activity at a concentration as low as of 0.02 g/mL and decreased BC production during fermentation when present in concentrations higher than 0.0005 g/mL. Therefore, removal of residual IL by washing with hot water was highly beneficial to enzymatic saccharification as well as BC production. IL-treated fabrics exhibited a 5-7-fold higher enzymatic hydrolysis rate and gave a seven times larger yield of fermentable sugars than untreated fabrics. BC from cotton cloth hydrolysate was obtained at an yield of 10.8 g/L which was 83% higher than that from the culture grown on glucose-based medium. The BC from G. xylinus grown on IL-treated fabric hydrolysate had a 79% higher tensile strength than BC from glucose-based culture medium which suggests that waste cotton pretreated with [AMIM]Cl has potential to serve as a high-quality carbon source for BC production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process.

    NASA Astrophysics Data System (ADS)

    Oelerich, Jens; Bijleveld, Marijn; Bouwhuis, Gerrit H.; Brinks, Ger J.

    2017-10-01

    Recycling of cotton waste into high value products is a longstanding goal in textile research. The SaXcellTM process provides a chemical recycling route towards virgin fibres. In this study a Life cycle assessment (LCA) is conducted to measure the impact of the chemical recycling of cotton waste on the environment. Pure cotton waste and cotton containing 10 % of polyester are elaborated. The results show that chemical recycling via the SaXcellTM process can have a lower impact on climate change and other impact category than comparable pulping technologies.

  4. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.

    PubMed

    Asaadi, Shirin; Hummel, Michael; Hellsten, Sanna; Härkäsalmi, Tiina; Ma, Yibo; Michud, Anne; Sixta, Herbert

    2016-11-23

    A new chemical recycling method for waste cotton is presented that allows the production of virgin textile fibers of substantially higher quality than that from the mechanical recycling methods that are used currently. Cotton postconsumer textile wastes were solubilized fully in the cellulose-dissolving ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to be processed into continuous filaments. As a result of the heterogeneous raw material that had a different molar mass distribution and degree of polymerization, pretreatment to adjust the cellulose degree of polymerization by acid hydrolysis, enzyme hydrolysis, or blending the waste cotton with birch prehydrolyzed kraft pulp was necessary to ensure spinnability. The physical properties of the spun fibers and the effect of the processing parameters on the ultrastructural changes of the fibers were measured. Fibers with a tenacity (tensile strength) of up to 58 cN tex -1 (870 MPa) were prepared, which exceeds that of native cotton and commercial man-made cellulosic fibers. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Economic and employment potential in textile waste management of Faisalabad.

    PubMed

    Noman, Muhammad; Batool, Syeda Adila; Chaudhary, Muhammad Nawaz

    2013-05-01

    The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US$3 billion per year. On average 161 325 people are employed in the textile sector in Faisalabad, of which 11 860 are involved in solid waste handling and management. The textile industries generate solid wastes such as fibre, metal, plastic and paper waste. A total of 794 209 kg day(-1) (289 886 285 kg year(-1)) solid waste is produced from this sector and purchased by cotton waste junkshop owners at US$125 027 day(-1) (US$45 634 855 year(-1)). Only pre-consumer textile waste is considered. Interestingly no waste is sent to landfill. The waste is first segregated into different categories/ types by hand and then weighed. Cotton waste is sold to brick kilns where it is used as an alternative fuel as it is cheaper than wood/coal. Iron scrap is sold in the junk market from where it is resold to recycling industries. Paper waste is recycled, minimizing the virgin material used for producing new paper products. Iron and plastic drums are returned to the chemical industries for refilling, thus decreasing the cost of dyes and decreasing the demand for new drums. Cutting rags are used for making different things such as ropes and underlay, it is also shredded and used as fillings for pillows and mattresses, thus improving waste management, reducing cost and minimizing the need for virgin material. As no system of quality control and no monitoring of subsequent products exist there is a need to carry out quality control and monitoring.

  6. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zeng, Lizhen; Zhao, Shaofei; He, Miao

    2018-02-01

    The anode material is a crucial factor that significantly affects the cost and performance of microbial fuel cells (MFCs). In this study, a novel macroscale porous, biocompatible, highly conductive and low cost electrode, carbonized polydopamine-modified cotton textile (NC@CCT), is fabricated by using normal cheap waste cotton textiles as raw material via a simple in situ polymerization and carbonization treatment as anode of MFCs. The physical and chemical characterizations show that the macroscale porous and biocompatible NC@CCT electrode is coated by nitrogen-doped carbon nanoparticles and offers a large specific surface area (888.67 m2 g-1) for bacterial cells growth, accordingly greatly increases the loading amount of bacterial cells and facilitates extracellular electron transfer (EET). As a result, the MFC equipped with the NC@CCT anode achieves a maximum power density of 931 ± 61 mW m-2, which is 80.5% higher than that of commercial carbon felt (516 ± 27 mW m-2) anode. Moreover, making full use of the normal cheap waste cotton textiles can greatly reduce the cost of MFCs and the environmental pollution problem.

  7. Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies.

    PubMed

    Wanassi, Béchir; Hariz, Ichrak Ben; Ghimbeu, Camélia Matei; Vaulot, Cyril; Hassen, Mohamed Ben; Jeguirim, Mejdi

    2017-04-01

    Recycling cotton waste derived from the textile industry was used as a low-cost precursor for the elaboration of an activated carbon (AC) through carbonization and zinc chloride chemical activation. The AC morphological, textural, and surface chemistry properties were determined using different analytical techniques including Fourier transform infrared, temperature programmed desorption-mass spectroscopy, nitrogen manometry and scanning electron microscopy. The results show that the AC was with a hollow fiber structure in an apparent diameter of about 6.5 μm. These analyses indicate that the AC is microporous and present a uniform pore size distributed centered around 1 nm. The surface area and micropore volume were 292 m 2 .g -1 and 0.11 cm 3 .g -1 , respectively. Several types of acidic and basic oxygenated surface groups were highlighted. The point of zero charge (pH PZC ) of theca was 6.8. The AC performance was evaluated for the removal of Alizarin Red S (ARS) from aqueous solution. The maximum adsorption capacity was 74 mg.g -1 obtained at 25 °C and pH = 3. Kinetics and equilibrium models were used to determine the interaction nature of the ARS with the AC. Statistical tools were used to select the suitable models. The pseudo-second order was found to be the most appropriate kinetic model. The application of two and three isotherm models shows that Langmuir-Freundlich (n = 0.84, K = 0.0014 L.mg -1 , and q = 250 mg.g -1 ) and Sips (n = 0.84, K = 0.003 L.mg -1 , and q = 232.6 mg.g -1 ) were the suitable models. The results demonstrated that cotton waste can be used in the textile industry as a low-cost precursor for the AC synthesis and the removal of anionic dye from textile wastewater.

  8. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater.

    PubMed

    Ahmad, A A; Hameed, B H

    2010-01-15

    This study deals with the use of activated carbon prepared from bamboo waste (BMAC), as an adsorbent for the removal of chemical oxygen demand (COD) and color of cotton textile mill wastewater. Bamboo waste was used to prepare activated carbon by chemical activation using phosphoric acid (H(3)PO(4)) as chemical agent. The effects of three preparation variables activation temperature, activation time and H(3)PO(4):precursor (wt%) impregnation ratio on the color and COD removal were investigated. Based on the central composite design (CCD) and quadratic models were developed to correlate the preparation variables to the color and COD. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum condition was obtained by using temperature of 556 degrees C, activation time of 2.33 h and chemical impregnation ratio of 5.24, which resulted in 93.08% of color and 73.98% of COD.

  9. Combustion of textile residues in a packed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.

    2007-08-15

    Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materialsmore » at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)« less

  10. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    USDA-ARS?s Scientific Manuscript database

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  11. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.

    2017-10-01

    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment.

  12. Cotton Dust Exposure and Respiratory Disorders among Textile Workers at a Textile Company in the Southern Part of Benin

    PubMed Central

    Hinson, Antoine Vikkey; Lokossou, Virgil K.; Schlünssen, Vivi; Agodokpessi, Gildas; Sigsgaard, Torben; Fayomi, Benjamin

    2016-01-01

    The textile industry sector occupies a prominent place in the economy of Benin. It exposes workers to several occupational risks, including exposure to cotton dust. To assess the effect of exposure to cotton dust on the health of workers, this study was initiated and conducted in a Beninese cotton industry company. The objective of the study was to evaluate the respiratory disorders among the textile workers exposed to cotton dust and the cross-sectional study involved 656 subjects exposed to cotton dust and 113 non-exposed subjects. The methods used are mainly based on a survey using a questionnaire of organic dust designed by the International Commission of Occupational Health (ICOH); and on the measures of lung function parameters (FEV1 and FVC). The main results of the different analyzes revealed that subjects exposed to cotton dust have more respiratory symptoms than unexposed subjects (36.9% vs. 21.2%). The prevalence of chronic cough, expectorations, dyspnoea, asthma and chronic bronchitis are 16.8%, 9.8%, 17.3%, 2.6%, and 5.9% respectively among the exposed versus 2.6%, 0.8%, 16.8%, 0% and 0.8% among the unexposed subjects. The prevalence of byssinosis is 44.01%.The prevalence of symptoms is dependent on the sector of activity and the age of the subject. These results should encourage medical interventions and technical prevention especially since the textile industry occupies an important place in the Benin’s economy. PMID:27618081

  13. Cotton Dust Exposure and Respiratory Disorders among Textile Workers at a Textile Company in the Southern Part of Benin.

    PubMed

    Hinson, Antoine Vikkey; Lokossou, Virgil K; Schlünssen, Vivi; Agodokpessi, Gildas; Sigsgaard, Torben; Fayomi, Benjamin

    2016-09-08

    The textile industry sector occupies a prominent place in the economy of Benin. It exposes workers to several occupational risks, including exposure to cotton dust. To assess the effect of exposure to cotton dust on the health of workers, this study was initiated and conducted in a Beninese cotton industry company. The objective of the study was to evaluate the respiratory disorders among the textile workers exposed to cotton dust and the cross-sectional study involved 656 subjects exposed to cotton dust and 113 non-exposed subjects. The methods used are mainly based on a survey using a questionnaire of organic dust designed by the International Commission of Occupational Health (ICOH); and on the measures of lung function parameters (FEV₁ and FVC). The main results of the different analyzes revealed that subjects exposed to cotton dust have more respiratory symptoms than unexposed subjects (36.9% vs. 21.2%). The prevalence of chronic cough, expectorations, dyspnoea, asthma and chronic bronchitis are 16.8%, 9.8%, 17.3%, 2.6%, and 5.9% respectively among the exposed versus 2.6%, 0.8%, 16.8%, 0% and 0.8% among the unexposed subjects. The prevalence of byssinosis is 44.01%.The prevalence of symptoms is dependent on the sector of activity and the age of the subject. These results should encourage medical interventions and technical prevention especially since the textile industry occupies an important place in the Benin's economy.

  14. Greensilica® vectors for smart textiles.

    PubMed

    Matos, Joana C; Avelar, Inês; Martins, M Bárbara F; Gonçalves, M Clara

    2017-01-20

    The present work aims developing a versatile Greensilica ® vector/carrier, able to bind to a wide range of textile matrices of carbohydrate polymers and susceptible of being loaded with chemicals/drugs/therapeutic molecules, to create a green tailor-made (multi)functional high-tech textile. A green, eco-friendly, ammonia-free, easily scalable, time-saving sol-gel process was established for the production of those silica-based colloidal particles (SiO 2 , amine-SiO 2 , diamine-SiO 2 , and epoxy-SiO 2 ). Two different textile matrices (cotton, polyester) were functionalized, through the impregnation of Greensilica® particles. The impregnation was performed with and without cure. Diamine-SiO 2 colloidal particles exhibited the higher bonding efficiency in cured textile matrices (both cotton and polyester), while with no cure the best adherence to cotton and polyester textile matrices was achieved with diamine-SiO 2 and amine-SiO 2 , respectively. Use once and throw away and continued use applications were envisaged and screened through washing tests. The efficiency of the textiles impregnation was confirmed by SEM, and quantified by ICP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A carbon nanotube based ammonia sensor on cotton textile

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  16. Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances.

    PubMed

    Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R

    2017-05-01

    In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.

  17. Preparation of antibacterial textile using laser ablation method

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Rashidian, M.; Dorranian, D.

    2018-02-01

    A facile in situ laser ablation synthesis of Copper nanoparticles on cotton fabric is reported in this paper. This synthetic method is a laser ablation based fabrication of Cu nanoparticles on cotton fabric for improved performance and antibacterial activity. The treated cotton fabric was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-Visible spectroscopic techniques and antibacterial counting test. Very good antibacterial behavior of treated fabrics achieved. This fabric can be used as medical and industrial textiles.

  18. Exploring biomedical applications of cotton

    USDA-ARS?s Scientific Manuscript database

    The use of cotton as a biomaterial for design of improved wound dressings, and other non-implantable medical textiles will be considered. The research and development of cotton-based wound dressings, which possess a mechanism-based mode of action, has entered a new level of understanding in recent ...

  19. Emerging Concern from Short-Term Textile Leaching: A Preliminary Ecotoxicological Survey.

    PubMed

    Lofrano, G; Libralato, G; Carotenuto, M; Guida, M; Inglese, M; Siciliano, A; Meriç, S

    2016-11-01

    Textile dyes and their residues gained growing attention worldwide. Textile industry is a strong water consumer potentially releasing xenobiotics from washing and rinsing procedures during finishing processes. On a decentralised basis, also final consumers generate textile waste streams. Thus, a procedure simulating home washing with tap water screened cotton textiles leachates (n = 28) considering physico-chemical (COD, BOD 5 , and UV absorbance) and ecotoxicological data (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum). Results evidenced that: (i) leachates presented low biodegradability levels; (ii) toxicity in more than half leachates presented slight acute or acute effects; (iii) the remaining leachates presented "no effect" suggesting the use of green dyes/additives, and/or well established finishing processes; (iv) no specific correlations were found between traditional physico-chemical and ecotoxicological data. Further investigations will be necessary to identify textile residues, and their potential interactions with simulated human sweat in order to evidence potential adverse effects on human health.

  20. Exploring biomedical ppplications of cotton

    USDA-ARS?s Scientific Manuscript database

    The use of cotton as a biomaterial for design of improved wound dressings, and other non-implantable medical textiles will be considered. The research and development of cotton-based wound dressings, which possess a mechanism-based mode of action, has entered a new level of understanding in recent y...

  1. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy.

    PubMed

    Ueland, Maiken; Howes, Johanna M; Forbes, Shari L; Stuart, Barbara H

    2017-10-05

    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of municipal solid waste classification in Korea based on fossil carbon fraction.

    PubMed

    Lee, Jeongwoo; Kang, Seongmin; Kim, Seungjin; Kim, Ki-Hyun; Jeon, Eui-Chan

    2015-10-01

    Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study. Fossil carbon fraction (FCF) differs depending on the characteristics of waste in each country; and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration.

  3. Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes.

    PubMed

    Lima, Ravi M A P; Alcaraz-Espinoza, Jose Jarib; da Silva, Fernando A G; de Oliveira, Helinando P

    2018-04-25

    Multifunctional wearable electronic textiles based on interfacial polymerization of polypyrrole on carbon nanotubes/cotton fibers offer advantages of simple and low-cost materials that incorporate bactericidal, good electrochemical performance, and electrical heating properties. The high conductivity of doped polypyrrole/CNT composite provides textiles that reaches temperature on order of 70 °C with field of 5 V/cm, superior electrochemical performance applied as electrodes of supercapacitor prototypes, reaching capacitance in order of 30 F g -1 and strong bactericidal activity against Staphylococcus aureus. The combination of these properties can be explored in smart devices for heat and microbial treatment on different parts of body, with incorporated storage of energy on textiles.

  4. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.

    PubMed

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William G T; Knox, J Paul; Goubet, Florence; Meulewaeter, Frank

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.

  5. Microbial Odor Profile of Polyester and Cotton Clothes after a Fitness Session

    PubMed Central

    Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom

    2014-01-01

    Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation. PMID:25128346

  6. Conductive Textiles via Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene.

    PubMed

    Ala, Okan; Hu, Bin; Li, Dapeng; Yang, Chen-Lu; Calvert, Paul; Fan, Qinguo

    2017-08-30

    We fabricated electrically conductive textiles via vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) layers on cotton, cotton/poly(ethylene terephthalate) (PET), cotton/Lycra, and PET fabrics. We then measured the electrical resistivity values of such PEDOT-coated textiles and analyzed the effect of water treatment on the electrical resistivity. Additionally, we tested the change in the electrical resistance of the conductive textiles under cyclic stretching and relaxation. Last, we characterized the uniformity and morphology of the conductive layer formed on the fabrics using scanning electron microscopy and electron-dispersive X-ray spectroscopy.

  7. Endotoxin exposure and lung cancer risk: a systematic review and meta-analysis of the published literature on agriculture and cotton textile workers.

    PubMed

    Lenters, Virissa; Basinas, Ioannis; Beane-Freeman, Laura; Boffetta, Paolo; Checkoway, Harvey; Coggon, David; Portengen, Lützen; Sim, Malcolm; Wouters, Inge M; Heederik, Dick; Vermeulen, Roel

    2010-04-01

    To examine the association between exposure to endotoxins and lung cancer risk by conducting a systematic review and meta-analysis of epidemiologic studies of workers in the cotton textile and agricultural industries; industries known for high exposure levels of endotoxins. Risk estimates were extracted from studies published before 2009 that met predefined quality criteria, including 8 cohort, 1 case-cohort, and 2 case-control studies of cotton textile industry workers, and 15 cohort and 2 case-control studies of agricultural workers. Summary risk estimates were calculated using random effects meta-analyses. Potential sources of heterogeneity were explored through subgroup analyses. The summary risk of lung cancer was 0.72 (95% CI, 0.57-0.90) for textile workers and 0.62 (0.52-0.75) for agricultural workers. The relative risk of lung cancer was below 1.0 for most subgroups defined according to sex, study design, outcome, smoking adjustment, and geographic area. Two studies provided quantitative estimates of endotoxin exposure and both studies tended to support a dose-dependent protective effect of endotoxins on lung cancer risk. Despite several limitations, this meta-analysis based on high-quality studies adds weight to the hypothesis that occupational exposure to endotoxin in cotton textile production and agriculture is protective against lung cancer.

  8. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    PubMed

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-03

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  9. The application of ultrasound and enzymes in textile processing of greige cotton

    USDA-ARS?s Scientific Manuscript database

    Research progress made at the USDA’s Southern Regional Research Center to provide an ultrasound and enzymatic alternative to the current textile processing method of scouring greige cotton textile with caustic chemicals is reported. The review covers early efforts to measure pectin and wax removal ...

  10. Effects of Gin Machinery on Cotton Quality

    USDA-ARS?s Scientific Manuscript database

    Ginning practices affect both the economic returns to cotton producers and the quality of fiber produced for textile mills and, ultimately, consumers. Because of the recent shift from a primarily domestic to an export market for U.S. cotton and the loss of textile market share to synthetic fibers, p...

  11. 76 FR 79166 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... (``CITA'') has determined that certain cotton/nylon/spandex raschel knit open work crepe printed fabric... determination (``Request'') from Sorini Samet & Associates on behalf of Hansoll Textile Ltd. for certain cotton... site for CAFTA-DR Commercial Availability proceedings. SPECIFICATIONS: Certain Cotton/Nylon/Spandex...

  12. Comparative toxicity of leachates from 52 textiles to Daphnia magna.

    PubMed

    Dave, Göran; Aspegren, Pia

    2010-10-01

    The environmental aspects of textiles are very complex and include production, processing, transport, usage, and recycling. Textiles are made from a variety of materials and can contain a large number of chemicals. Chemicals are used during production of fibres, for preservation and colouring and they are released during normal wear and during washing. The aim of this study was to investigate the release to water of toxic chemicals from various textiles. Altogether 52 samples of textiles made from cotton (21), linen (4), cotton and linen (7), cellulose (3), synthetic fibres (7), cotton and synthetic fibres (8) and wool (2). Seven were eco-labelled. All textiles were cut into squares and placed into Petri dishes with 50 ml ISO test medium in a concentration series (4-256 cm(2)/50 ml) and tested for acute toxicity to Daphnia magna. Estimated EC50s were converted into weight/volume, and 48-h EC50s ranged between <1 and >182 g/L. It was not possible to detect any difference between fibre type and toxicity (ANOVA), but a significantly higher toxicity was found for printed versus unprinted cotton and cotton/linen textiles, while the opposite was found for synthetic textiles. Eco-labelled products were evenly distributed on a toxicity scale, which means that eco-labelling in its present form does not necessarily protect users or the environment from exposure to toxic chemicals. Therefore, the results from the present study suggest that bioassays and toxicity tests should become an integrated part of textile environmental quality control programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles.

    PubMed

    Lu, Haicui; Chen, Jizhang; Tian, Qinghua

    2018-03-01

    Wearable electronics are developing rapidly in recent years. In this work, we develop a cost-effective, facile, and scalable approach to transform insulating cotton textile to highly conductive Ni-coated cotton textile (NCT). In order to verify the feasibility of NCT as a flexible current collector for wearable supercapacitors, we electrodeposit low-crystalline Ni-Al layered double hydroxide (LDH) nanoparticles onto the NCT. The obtained NCT@NiAl-LDH shows high specific capacitance (935.2 mF cm -2 ), superior rate capability, and good cyclability. Besides, the asymmetric supercapacitor (ASC) assembled from NCT@NiAl-LDH exhibits high specific energy of 58.8 Wh kg -1 (134 μWh cm -2 ) when the specific power is 539 W kg -1 (1228 μW cm -2 ). The results demonstrate great potential of our methodology. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Microbial odor profile of polyester and cotton clothes after a fitness session.

    PubMed

    Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom; Boon, Nico

    2014-11-01

    Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Spectral Textile Detection in the VNIR/SWIR Band

    DTIC Science & Technology

    2015-03-01

    swath (a red cotton shirt). The spectrum collected using a contact probe is shown in blue (solid line), while the spectrum collected with a remote...contact probe and the Fieldspec® 3 spectroradiometer. Curves corresponding to textiles ( cotton , polyester, nylon, acrylic, and wool) are shown in blue...can be used to detect dismounts. Composition. Commonly used plant fibers are cotton , rayon, flax, and hemp. Cotton and rayon are composed of cellulose

  16. Distributed Spacing Stochastic Feature Selection and its Application to Textile Classification

    DTIC Science & Technology

    2011-09-01

    Spandex, (b) 65% Polyester / 35% Cot- ton vs 94% Polyester / 6% Spandex, (c) 65% Polyester / 35% Cotton vs 100% Cotton , and (d) 65% Polyester / 35% Cotton ...3-29 3.10. This is an example of the final feature selection process for 100% Cotton Woven, with acceptable distributed spacing set to a 35...3-40 4.1. Representative samples from the 12 class textile data set: 65% Polyester 35% Cotton Woven (red), 80% Nylon 20% Spandex Knit (green), 97

  17. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies

    PubMed Central

    2012-01-01

    Background For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever. This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. Results On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. Conclusions The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments. PMID:22616934

  18. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies.

    PubMed

    Wilson, Helen; Carr, Chris; Hacke, Marei

    2012-05-22

    For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever.This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments.

  19. Flame retardant polymer-clay nanocoatings on cotton textile substrates using a newly developed, continuous layer-by-layer deposition process

    USDA-ARS?s Scientific Manuscript database

    Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than most synthetic fabrics. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-clay nan...

  20. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles.

    PubMed

    Specos, M M Miró; García, J J; Tornesello, J; Marino, P; Vecchia, M Della; Tesoriero, M V Defain; Hermida, L G

    2010-10-01

    Microcapsules containing citronella essential oil were prepared by complex coacervation and applied to cotton textiles in order to study the repellent efficacy of the obtained fabrics. Citronella released from treated textiles was indirectly monitored by the extractable content of its main components. Repellent activity was assessed by exposure of a human hand and arm covered with the treated textiles to Aedes aegypti mosquitoes. Fabrics treated with microencapsulated citronella presented a higher and longer lasting protection from insects compared to fabrics sprayed with an ethanol solution of the essential oil, assuring a repellent effect higher than 90% for three weeks. Complex coacervation is a simple, low cost, scalable and reproducible method of obtaining encapsulated essential oils for textile application. Repellent textiles were achieved by padding cotton fabrics with microcapsules slurries using a conventional pad-dry method. This methodology requires no additional investment for textile finishing industries, which is a desirable factor in developing countries. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  1. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  2. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    PubMed

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  3. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    PubMed Central

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199

  4. Long-term respiratory health effects in textile workers.

    PubMed

    Lai, Peggy S; Christiani, David C

    2013-03-01

    Over 60 million people worldwide work in the textile or clothing industry. Recent studies have recognized the contribution of workplace exposures to chronic lung diseases, in particular chronic obstructive pulmonary disease (COPD). Early studies in textile workers have focused on the relationship between hemp or cotton dust exposure and the development of a syndrome termed byssinosis. The purpose of this review is to evaluate the effect of long-term exposure to organic dust in textile workers on chronic respiratory disease in the broader context of disease classifications, such as reversible or irreversible obstructive lung disease (i.e. asthma or COPD), and restrictive lung disease. Cessation of exposure to cotton dust leads to improvement in lung function. Recent animal models have suggested a shift in the lung macrophage:dendritic cell population ratio as a potential mechanistic explanation for persistent inflammation in the lung due to repeated cotton dust-related endotoxin exposure. Other types of textile dust, such as silk, may contribute to COPD in textile workers. Textile dust-related obstructive lung disease has characteristics of both asthma and COPD. Significant progress has been made in the understanding of chronic lung disease due to organic dust exposure in textile workers.

  5. Long term respiratory health effects in textile workers

    PubMed Central

    Lai, Peggy S.; Christiani, David C.

    2013-01-01

    Purpose of review Over 60 million people worldwide work in the textile or clothing industry. Recent studies have recognized the contribution of workplace exposures to chronic lung diseases, in particular chronic obstructive pulmonary disease (COPD). Early studies in textile workers have focused on the relationship between hemp or cotton dust exposure and the development of a syndrome termed Byssinosis. The purpose of this review is to evaluate the effect of long term exposure to organic dust in textile workers on chronic respiratory disease in the broader context of disease classifications such as reversible or irreversible obstructive lung disease (i.e. asthma or COPD), and restrictive lung disease. Recent findings Cessation of exposure to cotton dusts leads to improvement in lung function. Recent animal models have suggested a shift in the lung macrophage:dendritic cell population as a potential mechanistic explanation for persistent inflammation in the lung due to repeated cotton-dust related endotoxin exposure. Other types of textile dust, such as silk, may contribute to COPD in textile workers. Summary Textile dust related obstructive lung disease has characteristics of both asthma and COPD. Significant progress has been made in the understanding of chronic lung disease due to organic dust exposure in textile workers. PMID:23361196

  6. At the nano-level modified cotton knitwear prototype development

    NASA Astrophysics Data System (ADS)

    Kukle, S.; Vihodceva, S.; Belakova, D.; Lukasevica, B.; Riepniece, A.

    2017-10-01

    This article reviews efficiency of the fluorine, silica and zinc compounds containing textile coating conformity with the day-to-day wearing conditions of cotton knitwear used as the first level clothing to the wearer skin. Silica sol modified with the zinc acetate dehydrate was used for the weft knitted cotton single-jersey and double-jersey fabrics chemical modification. The experimental part of the presented research includes the evaluation of the fabrics structure characteristics, air and vapour permeability and water-repellent abilities. The wettability of cotton textiles were evaluated by the water contact angle before and after modification as well after hydrothermal treatment. Images of the obtained modified fibres surfaces analysed by scanning electron microscopy, and fibres surface chemical composition has been determined with dispersive X-ray analysis. Conformity of modified textiles properties important to the wearing comfort and the inserted additional functions determined by testing textiles “in vitro” verified “in vivo” in experimental wearing process where 100 volunteers of different professions had participated.

  7. Propagation of polarized light through textile material.

    PubMed

    Peng, Bo; Ding, Tianhuai; Wang, Peng

    2012-09-10

    In this paper a detailed investigation, based on simulations and experiments of polarized light propagation through textile material, is presented. The fibers in textile material are generally anisotropic with axisymmetric structure. The formalism of anisotropic fiber scattering (AFS) at oblique incidence is first deduced and then, based on this formalism and considered multiscattering, a polarization-dependent Monte Carlo method is employed to simulate the propagation of polarized light in textile material. Taking cotton fiber assemblies as samples, the forward-scattering Mueller matrices are calculated theoretically through the AFS-based simulations and measured experimentally by an improved Mueller matrix polarimeter. Their variations according to sample thickness are discussed primarily. With these matrices polar-decomposed, a further discussion on the optical polarization properties of cotton fiber assemblies (i.e., depolarization Δ, diattenuation D, optical rotation ψ and linear retardance δ) versus the thickness is held. Simultaneously, a meaningful comparison of both the matrices and their polar decomposition, generated from the simulations based on isotropic fiber scattering (IFS), with those simulated based on AFS is made. Results show that the IFS-derived values are strikingly different from those that are AFS-derived due to ignoring the fiber anisotropy. Furthermore, all the AFS-derived results are perfectly consistent with those obtained experimentally, which suggests that the Monte Carlo simulation based on AFS has potential applications for light scattering and propagation in textile material.

  8. A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics

    NASA Astrophysics Data System (ADS)

    Zhou, Qianlong; Jia, Chunyang; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan

    2016-09-01

    At present, the topic of building high-performance, miniaturized and mechanically flexible energy storage modules which can be directly integrated into textile based wearable electronics is a hotspot in the wearable technology field. In this paper, we reported a highly flexible fiber-shaped electrode fabricated through a one-step convenient hydrothermal process. The prepared graphene hydrogels/multi-walled carbon nanotubes-cotton thread derived from natural cotton thread is electrochemically active and mechanically strong. Fiber-shaped supercapacitor based on the prepared fiber electrodes and polyvinyl alcohol-H3PO4 gel electrolyte exhibits good capacitive performance (97.73 μF cm-1 at scan rate of 2 mV s-1), long cycle life (95.51% capacitance retention after 8000 charge-discharge cycles) and considerable stability (90.75% capacitance retention after 500 continuous bending cycles). Due to its good mechanical and electrochemical properties, the graphene hydrogels/multi-walled carbon nanotubes-cotton thread based all-solid fiber-shaped supercapacitor can be directly knitted into fabrics and maintain its original capacitive performance. Such a low-cost textile thread based versatile energy storage device may hold great potential for future wearable electronics applications.

  9. A Quality Function Deployment-Based Expert System for Cotton Fibre Selection

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shankar; Prasad, Kanika

    2018-01-01

    The textile industries have seen resurgence in customers' demand for quality products during the preceding few years. This product range is extremely varied, with hand-spun and hand-woven products at one end of the spectrum, while products manufactured from the capital intensive sophisticated machineries at the other end. Since, cotton fibres are predominantly employed as the raw material for manufacturing these products, their proper selection is crucial for sustainable development of the textile/spinning industries. However, availability of numerous cotton fibre alternatives with various physical properties makes this selection process unwieldy and time consuming. Thus, there is need for a structured approach that can incorporate customers' demand into the selection process. This paper demonstrates the application of a structured and logical procedure of selecting the best cotton fibre type to fulfill a set of specified end product requirements through design and development of a quality function deployment (QFD)-based expert system. The QFD technique is employed here to provide due importance to the customers' spoken and unspoken needs, and subsequently calculate the priority weights of the considered cotton fibre properties. Two real time illustrative examples are presented to explicate the applicability and potentiality of the developed expert system to resolve cotton fibre selection problems.

  10. A Quality Function Deployment-Based Expert System for Cotton Fibre Selection

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shankar; Prasad, Kanika

    2018-06-01

    The textile industries have seen resurgence in customers' demand for quality products during the preceding few years. This product range is extremely varied, with hand-spun and hand-woven products at one end of the spectrum, while products manufactured from the capital intensive sophisticated machineries at the other end. Since, cotton fibres are predominantly employed as the raw material for manufacturing these products, their proper selection is crucial for sustainable development of the textile/spinning industries. However, availability of numerous cotton fibre alternatives with various physical properties makes this selection process unwieldy and time consuming. Thus, there is need for a structured approach that can incorporate customers' demand into the selection process. This paper demonstrates the application of a structured and logical procedure of selecting the best cotton fibre type to fulfill a set of specified end product requirements through design and development of a quality function deployment (QFD)-based expert system. The QFD technique is employed here to provide due importance to the customers' spoken and unspoken needs, and subsequently calculate the priority weights of the considered cotton fibre properties. Two real time illustrative examples are presented to explicate the applicability and potentiality of the developed expert system to resolve cotton fibre selection problems.

  11. General Tips Concerning What Has Been Learned About Cotton Processing in Traditional Textile Manufacturing

    USDA-ARS?s Scientific Manuscript database

    This article, under the following sub-headings, briefly describes a few important practical tips involving processing of cotton in traditional textile manufacturing: (1)Bale Selection and Fiber Mixing, (2) Fiber Opening and Cleaning, (3) Carding, (4) Drawing, (5) Combing (if necessary), (6) Roving, ...

  12. Synthesis of silver nanoparticles in textile finish aqueous system and their antimicrobial properties on cotton fibers

    USDA-ARS?s Scientific Manuscript database

    Silver nanoparticles (NPs) were synthesized by a simple and environmentally benign procedure using poly (ethylene glycol) (PEG) as reducing agent and stabilizer in the textile finish aqueous system, and their antimicrobial properties on greige (mechanically cleaned) and bleached cotton fibers were i...

  13. Research on detecting heterogeneous fibre from cotton based on linear CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-bin; Cao, Bing; Zhang, Xin-peng; Shi, Wei

    2009-07-01

    The heterogeneous fibre in cotton make a great impact on production of cotton textile, it will have a bad effect on the quality of product, thereby affect economic benefits and market competitive ability of corporation. So the detecting and eliminating of heterogeneous fibre is particular important to improve machining technics of cotton, advance the quality of cotton textile and reduce production cost. There are favorable market value and future development for this technology. An optical detecting system obtains the widespread application. In this system, we use a linear CCD camera to scan the running cotton, then the video signals are put into computer and processed according to the difference of grayscale, if there is heterogeneous fibre in cotton, the computer will send an order to drive the gas nozzle to eliminate the heterogeneous fibre. In the paper, we adopt monochrome LED array as the new detecting light source, it's lamp flicker, stability of luminous intensity, lumens depreciation and useful life are all superior to fluorescence light. We analyse the reflection spectrum of cotton and various heterogeneous fibre first, then select appropriate frequency of the light source, we finally adopt violet LED array as the new detecting light source. The whole hardware structure and software design are introduced in this paper.

  14. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects.

    PubMed

    Pensupa, Nattha; Leu, Shao-Yuan; Hu, Yunzi; Du, Chenyu; Liu, Hao; Jing, Houde; Wang, Huaimin; Lin, Carol Sze Ki

    2017-08-16

    In recent years, there have been increasing concerns in the disposal of textile waste around the globe. The growth of textile markets not only depends on population growth but also depends on economic and fashion cycles. The fast fashion cycle in the textile industry has led to a high level of consumption and waste generation. This can cause a negative environmental impact since the textile and clothing industry is one of the most polluting industries. Textile manufacturing is a chemical-intensive process and requires a high volume of water throughout its operations. Wastewater and fiber wastes are the major wastes generated during the textile production process. On the other hand, the fiber waste was mainly created from unwanted clothes in the textile supply chain. This fiber waste includes natural fiber, synthetic fiber, and natural/synthetic blends. The natural fiber is mostly comprised of cellulosic material, which can be used as a resource for producing bio-based products. The main challenge for utilization of textile waste is finding the method that is able to recover sugars as monosaccharides. This review provides an overview of valorization of textile waste to value-added products, as well as an overview of different strategies for sugar recovery from cellulosic fiber and their hindrances.

  15. Smart textile framework: Photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment.

    PubMed

    Khattab, Tawfik A; Rehan, Mohamed; Hamouda, Tamer

    2018-09-01

    Smart clothing can be defined as textiles that respond to a certain stimulus accompanied by a change in their properties. A specific class herein is the photochromic and fluorescent textiles that change color with light. A photochromic and fluorescent cotton fabric based on pigment printing is obtained. Such fabric is prepared by aqueous-based pigment-binder printing formulation containing inorganic pigment phosphor characterized by good photo- and thermal stability. It exhibits optimal excitation wavelength (365 nm) results in color and fluorescence change of the fabric surface. To prepare the transparent pigment-binder composite film, the phosphor pigment must be well-dispersed via physical immobilization without their aggregation. The pigment-binder paste is applied successfully onto cotton fabric using screen printing technique followed by thermal fixation. After screen-printing, a homogenous photochromic film is assembled on a cotton substrate surface, which represents substantial greenish-yellow color development as indicated by CIE Lab color space measurements under ultraviolet light, even at a pigment concentration of 0.08 wt% of the printing paste. The photochromic cotton fabric exhibit three excitation peaks at 272, 325 and 365 nm and three emission peaks at 418, 495 and 520 nm. The fluorescent optical microscope, scanning electron microscope, elemental mapping, energy dispersive X-ray spectroscopy, fluorescence emission and UV/Vis absorption spectroscopic data of the printed cotton fabric are described. The printed fabric showed a reversible and rapid photochromic response during ultra-violet excitation without fatigue. The fastness properties including washing, crocking, perspiration, sublimation/heat, and light are described. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Investigation of the influence of textiles and surface treatments on blistering using a novel simulant.

    PubMed

    Guerra, C; Schwartz, C J

    2012-02-01

    Friction blisters occur when shear loading causes the separation of dermal layers. Consequences range from minor pain to life-threatening infection. Past research in blister formation has focused on in vivo experiments, which complicate a mechanics-based study of the phenomenon. A Synthetic Skin Simulant Platform (3SP) approach was developed to investigate the effect of textile fabrics (t-shirt knit and denim cottons) and surface treatments (dry and wet lubricants) on blister formation. 3SP samples consist of bonded elastomeric layers that are surrogates for various dermal layers. These layers display frictional and mechanical properties similar to their anatomical analogues. Blistering was assessed by the measurement of deboned area between layers. Denim caused greater blistering than did the t-shirt knit cotton, and both lubricants significantly reduced blister area and surface damage. A triglyceride-based lubricant had a more pronounced effect on blister reduction than corn starch. The triglyceride lubricant used with t-shirt knit cotton resulted in no blisters being formed. The performance of the 3SP approach follows previously reported frictional behavior of skin in vivo. The results of textile and surface treatment performance suggest that future 3SP iterations can be focused on specific anatomical sites based on application type. © 2011 John Wiley & Sons A/S.

  17. Bacterial Exchange in Household Washing Machines

    PubMed Central

    Callewaert, Chris; Van Nevel, Sam; Kerckhof, Frederiek-Maarten; Granitsiotis, Michael S.; Boon, Nico

    2015-01-01

    Household washing machines (WMs) launder soiled clothes and textiles, but do not sterilize them. We investigated the microbial exchange occurring in five household WMs. Samples from a new cotton T-shirt were laundered together with a normal laundry load. Analyses were performed on the influent water and the ingoing cotton samples, as well as the greywater and the washed cotton samples. The number of living bacteria was generally not lower in the WM effluent water as compared to the influent water. The laundering process caused a microbial exchange of influent water bacteria, skin-, and clothes-related bacteria and biofilm-related bacteria in the WM. A variety of biofilm-producing bacteria were enriched in the effluent after laundering, although their presence in the cotton sample was low. Nearly all bacterial genera detected on the initial cotton sample were still present in the washed cotton samples. A selection for typical skin- and clothes-related microbial species occurred in the cotton samples after laundering. Accordingly, malodour-causing microbial species might be further distributed to other clothes. The bacteria on the ingoing textiles contributed for a large part to the microbiome found in the textiles after laundering. PMID:26696989

  18. Bacterial Exchange in Household Washing Machines.

    PubMed

    Callewaert, Chris; Van Nevel, Sam; Kerckhof, Frederiek-Maarten; Granitsiotis, Michael S; Boon, Nico

    2015-01-01

    Household washing machines (WMs) launder soiled clothes and textiles, but do not sterilize them. We investigated the microbial exchange occurring in five household WMs. Samples from a new cotton T-shirt were laundered together with a normal laundry load. Analyses were performed on the influent water and the ingoing cotton samples, as well as the greywater and the washed cotton samples. The number of living bacteria was generally not lower in the WM effluent water as compared to the influent water. The laundering process caused a microbial exchange of influent water bacteria, skin-, and clothes-related bacteria and biofilm-related bacteria in the WM. A variety of biofilm-producing bacteria were enriched in the effluent after laundering, although their presence in the cotton sample was low. Nearly all bacterial genera detected on the initial cotton sample were still present in the washed cotton samples. A selection for typical skin- and clothes-related microbial species occurred in the cotton samples after laundering. Accordingly, malodour-causing microbial species might be further distributed to other clothes. The bacteria on the ingoing textiles contributed for a large part to the microbiome found in the textiles after laundering.

  19. Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study.

    PubMed

    Gargoubi, Sondes; Tolouei, Ranna; Chevallier, Pascale; Levesque, Lucie; Ladhari, Neji; Boudokhane, Chedly; Mantovani, Diego

    2016-08-20

    Recently, antimicrobial and decontaminating textiles, such as cotton a natural carbohydrate polymer, are generating more attention. Plant materials used for natural dyes are expected to impart biofunctional properties and high added valued functional textiles. In the current study, surface modification of cotton to maximize the dye amount on the surface has been investigated. Physical modification using nitrogen-hydrogen plasma, chemical modification using chitosan and chemical modification using dopamine as biopolymers imparting amino groups were explored. Furthermore, dye exhaustion of curcumin, as a natural functional dye has been studied. Dye stability tests were also performed after fabric washing using hospital washing protocol to predict the durability of the functionalizations. The results demonstrated that cotton surfaces treated with dopamine exhibit a high level of dye uptake (78%) and a good washing fastness. The use of non-toxic and natural additives during cotton finishing process could give the opportunity of cradle to cradle design for antimicrobial textile industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. General Tips of What Little This Author has Learned of Cotton Processing in Traditional Textile Manufacturing

    USDA-ARS?s Scientific Manuscript database

    This article, under the following sub-headings, only lists a few very important tips that the author has experienced in his career involving processing of cotton in the traditional textile manufacturing: (1) Fiber Opening and Cleaning (2) Carding (3) Drawing (4) Combing, if necessary (5) Roving (6)...

  1. Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process

    USDA-ARS?s Scientific Manuscript database

    Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than their synthetic counterparts. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-cl...

  2. Resonance Raman and UV-visible spectroscopy of black dyes on textiles.

    PubMed

    Abbott, Laurence C; Batchelor, Stephen N; Smith, John R Lindsay; Moore, John N

    2010-10-10

    Resonance Raman and UV-visible diffuse reflectance spectra were recorded from samples of cotton, viscose, polyester, nylon, and acrylic textile swatches dyed black with one of seven single dyes, a mixture of two dyes, or one of seven mixtures of three dyes. The samples generally gave characteristic Raman spectra of the dyes, demonstrating that the technique is applicable for the forensic analysis of dyed black textiles. Survey studies of the widely used dye Reactive Black 5 show that essentially the same Raman spectrum is obtained on bulk sampling from the dye in solution, on viscose, on cotton at different uptakes, and on microscope sampling from the dye in cotton threads and single fibres. The effects of laser irradiation on the Raman bands and emission backgrounds from textile samples with and without dye are also reported. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Scalable Production of Graphene-Based Wearable E-Textiles.

    PubMed

    Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S

    2017-12-26

    Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.

  4. Cotton dust, endotoxin and cancer mortality among the Shanghai textile workers cohort: a 30-year analysis

    PubMed Central

    Fang, S C; Mehta, A J; Hang, J Q; Eisen, E A; Dai, H L; Zhang, H X; Su, L; Christiani, D C

    2013-01-01

    Background Although occupational exposure to cotton dust and endotoxin is associated with adverse respiratory health, associations with cancer are unclear. We investigated cancer mortality in relation to cotton dust and endotoxin exposure in the Shanghai textile workers cohort. Methods We followed 444 cotton textile and a reference group of 467 unexposed silk workers for 30 years (26 777 person-years). HRs for all cancers combined (with and without lung cancer) and gastrointestinal cancer were estimated in Cox regression models as functions of cotton textile work and categories of cumulative exposure (low, medium, high), after adjustment for covariates including pack-years smoked. Different lag years accounted for disease latency. Results Risks of mortality from gastrointestinal cancers and all cancers combined, with the exclusion of lung cancer, were increased in cotton workers relative to silk workers. When stratified by category of cumulative cotton exposure, in general, risks were greatest for 20-year lagged medium exposure (all cancers HR=2.7 (95% CI 1.4 to 5.2); cancer excluding lung cancer HR=3.4 (1.7–7.0); gastrointestinal cancer HR=4.1 (1.8–9.7)). With the exclusion of lung cancer, risks of cancer were more pronounced. When stratified by category of cumulative endotoxin exposure, consistent associations were not observed for all cancers combined. However, excluding lung cancer, medium endotoxin exposure was associated with all cancers and gastrointestinal cancer in almost all lag models. Conclusions Cotton dust may be associated with cancer mortality, especially gastrointestinal cancer, and endotoxin may play a causative role. Findings also indirectly support a protective effect of endotoxin on lung cancer. PMID:23828454

  5. Effects of waste glass additions on quality of textile sludge-based bricks.

    PubMed

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  6. Propolis induced antibacterial activity and other technical properties of cotton textiles.

    PubMed

    Sharaf, S; Higazy, A; Hebeish, A

    2013-08-01

    Propolis is a gum gathered by honey bees from various plants; the honey bees use propolis to seal holes in their honey combs, smooth out the internal wall and protect the entrance against intruders. It is composed of 50% resin (flavonoids and related phenolic acid), 30% wax, 10% essential oils, 5% pollen and 5% various organic components. As a natural mixture, propolis is widely used in medicine, cosmetics and food. So far no attempts have been yet made to make use of propolis in the realm of textile finishing. Current work presents the first systemic study targeted to build up a scientific basis for production of cotton textiles having antibacterial activity and other useful properties by making use of propolis as eco-friendly finish within the scope of green strategy. Propolis extract solution (70/30 ethanol/water) of 10% concentration was prepared as the stock. Different amounts of the latter were used along with a crosslinking agent and catalyst for treatment of cotton fabrics as per pad-dry-cure technique. Antibacterial activity of the so treated fabrics was obtained through monitoring the efficiency of the interaction of propolis with cotton cellulose. This interaction was expressed as inhibition zone diameter after the treated fabrics were exposed to (G+ve) and (G-ve) bacteria. Other properties include crease recovery, tensile strength and elongation at break. Factors affecting these properties such as type, nature and concentration of the crosslinking agent, concentration of propolis, and conditions of curing were investigated. In addition characterization of the propolis containing modified cotton fabrics including demonstration of the antibacterial activity, SEM, FTIR, durability to washing, UV protection and water repellency were performed. Based on results obtained, it is concluded that application of propolis along with glyoxal and Al2(SO4)3catalyst using pad-dry (3min/80°C), cure (5/140°C) bring about cotton textile with superior antibacterial activity, water repellent and ease of care characteristics as well as UV protection. Tentative mechanism of the reaction of propolis with cotton in the presence of glyoxal was also reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton

    USDA-ARS?s Scientific Manuscript database

    Background: Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders’ ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed t...

  8. Preliminary evaluation of feeder and lint slide moisture addition on ginning, fiber quality, and textile processing of western cotton

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the effects of moisture addition at the gin stand feeder conditioning hopper and/or the battery condenser slide on gin performance and Western cotton fiber quality and textile processing. The test treatments included no moisture addition, feeder hopper hum...

  9. Synthesis of novel reactive N-halamine precursors and application in antimicrobial cellulose

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiming; Ma, Kaikai; Du, Jinmei; Li, Rong; Ren, Xuehong; Huang, T. S.

    2014-01-01

    2,4,6-Trichloro-s-triazine has been used as one of the important linkers of reactive dyes for textiles such as cellulosic fibers. N-Halamine precursors could be bonded to a triazine-based linker by the chloride displacement reaction, and the synthesized compounds could attach to cotton fabrics by covalent bonds through a reactive dyeing process. In this study, two novel antimicrobial N-halamine precursors, 2,2,6,6-tetramethyl-4-piperidinol-s-trizine (TMPT) and 4-(4-(2,2,6,6-tetramethyl-4-piperidinol)-6-chloro-1,3,5-triazinylamino)-benzenesulfonate (BTMPT), were synthesized and used to coat cotton fabrics. The synthesized s-triazine-based N-halamine precursors react with cellulose to produce biocidal cellulosic fibers upon exposure to diluted household bleach. The coated fabrics were characterized by FT-IR and SEM. The chlorinated treated cotton swatches demonstrated excellent antimicrobial properties against S. aureus (Gram-positive) and E. coli O157:H7 (Gram-negative) with short contact times. Washing test and UVA light test showed that chlorinated BTMPT-coated cotton fabrics were more stable than TMPT-coated cotton fabrics. Compared to the traditional pad-dry-cure technique to produce antimicrobial textiles, the novel process in this study has advantages of saving energy and maintaining tensile strength of fabrics.

  10. Dictionary of cotton: Picking & ginning

    USDA-ARS?s Scientific Manuscript database

    Cotton is an essential commodity for textiles and has long been an important item of trade in the world’s economy. Cotton is currently grown in over 100 countries by an estimated 100 producers. The basic unit of the cotton trade is the cotton bale which consists of approximately 500 pounds of raw c...

  11. Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.

    2014-01-01

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920

  12. Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2014-06-24

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.

  13. Preliminary examinations for the identification of U.S. domestic and international cotton fibers by near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton is and has been a large cash crop in the United States and abroad for many years. Part of the widespread interest and utility of this product is due to its attractive chemical and physical properties for use in textiles. The textile industry could benefit from the presentation of a quick rel...

  14. T & I--Textiles, Cotton Boll. Kit No. 59. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Buddin, David

    An instructor's manual and student activity guide on the cotton boll are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry (textiles). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home…

  15. Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste

    NASA Astrophysics Data System (ADS)

    Todor, M. P.; Bulei, C.; Heput, T.; Kiss, I.

    2018-01-01

    The objective of the research is to develop new fully / partially biodegradable composite materials by using new natural fibers and those recovered from various wastes. Thus, the research aims to obtain some composites with matrix of various types of polymeric materials and the reinforcement phase of textile materials (of different natures, morphologies and composites) so that the resulting products to be (bio)degradable. The textile inserts used as raffle are ecological, non-toxic and biodegradable and they contain (divided or in combination) bast fibers (flax, hemp, jute) and other vegetable fibers (cotton, wool) as plain yarn or fabric, which can replace fibers of glass commonly used in polymeric composites. The main activities described in this article are carried out during the first phase of the research (phase I - initiation of research) and they are oriented towards the choice of types of textile inserts from which the composites will be obtained (the materials needed for the raffle), the choice of the types of polymers (the necessary materials for matrices) and choosing the variants of composites with different types and proportions of the constituent content (proposals and working variants) and choosing the right method for obtaining samples of composite materials (realization technology). The purpose of the research is to obtain composite materials with high structural, thermo-mechanical and / or tribological performances, according to ecological norms and international requirements in order to replace the existing classical materials, setting up current, innovative and high performance solutions, for applications in top areas such as automotive industry and not only.

  16. Scalable Production of Graphene-Based Wearable E-Textiles

    PubMed Central

    2017-01-01

    Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors. PMID:29185706

  17. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  18. Scope of nanotechnology in modern textiles

    USDA-ARS?s Scientific Manuscript database

    This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...

  19. Genetic and transcriptomic dissection of the fiber length trait using a cotton (Gossypium hirsutum L.) MAGIC population.

    USDA-ARS?s Scientific Manuscript database

    Cotton fiber length is a key determinant of fiber quality for the textile industry. Improving cotton fiber length without reducing yield is one of the major goals for cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to narrow genetic diversit...

  20. Molecular development of the mid-stage elongating cotton fiber

    USDA-ARS?s Scientific Manuscript database

    Cotton fiber is one of the leading natural textile fibers and is the leading value added crop in the USA. The annual business revenue from the cotton industry exceeds $120 billion. The growth of the cotton fiber is divided into four unique, yet overlapping stages; initiation, elongation, secondary w...

  1. Photonic textiles for pulse oximetry.

    PubMed

    Rothmaier, Markus; Selm, Bärbel; Spichtig, Sonja; Haensse, Daniel; Wolf, Martin

    2008-08-18

    Biomedical sensors, integrated into textiles would enable monitoring of many vitally important physiological parameters during our daily life. In this paper we demonstrate the design and performance of a textile based pulse oximeter, operating on the forefinger tip in transmission mode. The sensors consisted of plastic optical fibers integrated into common fabrics. To emit light to the human tissue and to collect transmitted light the fibers were either integrated into a textile substrate by embroidery (producing microbends with a nominal diameter of 0.5 to 2 mm) or the fibers inside woven patterns have been altered mechanically after fabric production. In our experiments we used a two-wavelength approach (690 and 830 nm) for pulse wave acquisition and arterial oxygen saturation calculation. We have fabricated different specimens to study signal yield and quality, and a cotton glove, equipped with textile based light emitter and detector, has been used to examine movement artifacts. Our results show that textile-based oximetry is feasible with sufficient data quality and its potential as a wearable health monitoring device is promising.

  2. 76 FR 52640 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... (``CITA'') has determined that an acceptable substitute for certain compacted, plied, ring spun cotton... to remove or restrict (``Request'') certain compacted, plied, ring spun cotton yarns, currently on... Spun Cotton Yarns Compacted, plied, ring spun cotton yarns, with yarn counts in the range from 42 to...

  3. Use of ATR FT-IR spectroscopy in non-destructive and rapid assessment of developmental cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The knowledge of chemical and compositional components in cotton fibers is of value to cotton breeders and growers for cotton enhancement and to textile processors for quality control. In this work, we applied the previously proposed simple algorithms to analyze the attenuated total reflection Fouri...

  4. Textile industry needs

    USDA-ARS?s Scientific Manuscript database

    The immediate customer of the cotton gin is the producer; however the ultimate customers are the textile mill and the consumer. The ginner has the challenging job to satisfy both the producer and the textile industry. The classing and grading systems are intended to assign economic value to the ba...

  5. [Ecological regionalization of national cotton fiber quality in China using GGE biplot analysis method].

    PubMed

    Xu, Nai Yin; Jin, Shi Qiao; Li, Jian

    2017-01-01

    The distinctive regional characteristics of cotton fiber quality in the major cotton-producing areas in China enhance the textile use efficiency of raw cotton yarn by improving fiber quality through ecological regionalization. The "environment vs. trait" GGE biplot analysis method was adopted to explore the interaction between conventional cotton sub-regions and cotton fiber quality traits based on the datasets collected from the national cotton regional trials from 2011 to 2015. The results showed that the major cotton-producing area in China were divided into four fiber quality ecological regions, namely, the "high fiber quality ecological region", the "low micronaire ecological region", the "high fiber strength and micronaire ecological region", and the "moderate fiber quality ecological region". The high fiber quality ecological region was characterized by harmonious development of cotton fiber length, strength, micronaire value and the highest spinning consistency index, and located in the conventional cotton regions in the upper and lower reaches of Yangtze River Valley. The low micronaire value ecological region composed of the northern and south Xinjiang cotton regions was characterized by low micronaire value, relatively lower fiber strength, and relatively high spinning consistency index performance. The high fiber strength and micronaire value ecological region covered the middle reaches of Yangtze River Valley, Nanxiang Basin and Huaibei Plain, and was prominently characterized by high strength and micronaire value, and moderate performance of other traits. The moderate fiber quality ecological region included North China Plain and Loess Plateau cotton growing regions in the Yellow River Valley, and was characterized by moderate or lower performances of all fiber quality traits. This study effectively applied "environment vs. trait" GGE biplot to regionalize cotton fiber quality, which provided a helpful reference for the regiona-lized cotton growing regions in terms of optimal raw fiber production for textile industry, and gave a good example for the implementation of similar ecological regionalization of other crops as well.

  6. Release of polyester and cotton fibers from textiles in machine washings.

    PubMed

    Sillanpää, Markus; Sainio, Pirjo

    2017-08-01

    Microplastics are widely spread in the environment, which along with still increasing production have aroused concern of their impacts on environmental health. The objective of this study is to quantify the number and mass of two most common textile fibers discharged from sequential machine washings to sewers. The number and mass of microfibers released from polyester and cotton textiles in the first wash varied in the range 2.1 × 10 5 to 1.3 × 10 7 and 0.12 to 0.33% w/w, respectively. Amounts of released microfibers showed a decreasing trend in sequential washes. The annual emission of polyester and cotton microfibers from household washing machines was estimated to be 154,000 (1.0 × 10 14 ) and 411,000 kg (4.9 × 10 14 ) in Finland (population 5.5 × 10 6 ). Due to the high emission values and sorption capacities, the polyester and cotton microfibers may play an important role in the transport and fate of chemical pollutants in the aquatic environment.

  7. Electrical performance of PEDOT:PSS-based textile electrodes for wearable ECG monitoring: a comparative study.

    PubMed

    Castrillón, Reinel; Pérez, Jairo J; Andrade-Caicedo, Henry

    2018-04-02

    Wearable textile electrodes for the detection of biopotentials are a promising tool for the monitoring and early diagnosis of chronic diseases. We present a comparative study of the electrical characteristics of four textile electrodes manufactured from common fabrics treated with a conductive polymer, a commercial fabric, and disposable Ag/AgCl electrodes. These characteristics will allow identifying the performance of the materials when used as ECG electrodes. The electrodes were subjected to different electrical tests, and complemented with conductivity calculations and microscopic images to determine their feasibility in the detection of ECG signals. We evaluated four electrical characteristics: contact impedance, electrode polarization, noise, and long-term performance. We analyzed PEDOT:PSS treated fabrics based on cotton, cotton-polyester, lycra and polyester; also a commercial fabric made of silver-plated nylon Shielde® Med-Tex P130, and commercial Ag/AgCl electrodes. We calculated conductivity from the surface resistance and, analyzed their surface at a microscopic level. Rwizard was used in the statistical analysis. The results showed that textile electrodes treated with PEDOT:PSS are suitable for the detection of ECG signals. The error detecting features of the ECG signal was lower than 2% and the electrodes kept working properly after 36 h of continuous use. Even though the contact impedance and the polarization level in textile electrodes were greater than in commercial electrodes, these parameters did not affect the acquisition of the ECG signals. Fabrics conductivity calculations were consistent to the contact impedance.

  8. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.

    PubMed

    Liang, Sai; Zhang, Tianzhu; Xu, Yijian

    2012-03-01

    Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Comparisons of minicard ratings with ion chromatography sugar profiles of water extracts of cotton fibers and those of minicard sticky spot materials

    USDA-ARS?s Scientific Manuscript database

    Specific levels and ratios of the carbohydrates melezitose and trehalulose deposited on the surface of cotton fibers are indicators of whitefly or aphid contamination. These deposits could cause stickiness problems during cotton ginning and textile processing. The concept of cotton stickiness is hi...

  10. Environmental and medical study of byssinosis and other respiratory conditions in the cotton textile industry in Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noweir, M.H.; Noweir, K.H.; Osman, H.A.

    1984-01-01

    This study was conducted in a typical Egyptian textile plant located in Alexandria. Male workers from all operations (N . 506) were examined and their dust exposures were assessed. Results showed that airborne dust concentrations were very high and that the plant fraction is mostly concentrated in respirable dust. Byssinosis prevailed in 21% of workers in opening and cleaning sections and in 13% in carding and combing rooms, but was found in none of the workers in drawing, twisting, and spinning operations, in only 1.1% in weaving, and in 3.1% of workers in other ''auxiliary'' occupations. The rare prevalence ofmore » byssinosis among the latter workers groups was attributed to the workers continuous exposure without fixed weekend interruption, the personal and family history of exposure to cotton, the low proportion of plant materials in dust evolved in related operations, the fine quality of Egyptian cotton, and/or the population characteristics of Egyptian workers. Reduction in FEV 1.0 at the end of the first work shift after absence from work occured more often than byssinosis, which indicates the importance of this test for the early detection of effects of cotton dust exposure. It is suggested that a nationwide study in the cotton textile industry is indicated.« less

  11. Determing the feasiblity of chemical imaging of cotton trash

    USDA-ARS?s Scientific Manuscript database

    There is some interest in the textile community about the identity of cotton trash that has become comingled with cotton lint. Currently, trash is identified visually by human “classers” and instrumentally by the Advanced Fiber Information System (AFIS) and the High Volume Instrument (HVI). Although...

  12. Shortwave infrared hyperspectral Imaging for cotton foreign matter classification

    USDA-ARS?s Scientific Manuscript database

    Various types of cotton foreign matter seriously reduce the commercial value of cotton lint and further degrade the quality of textile products for consumers. This research was aimed to investigate the potential of a non-contact technique, i.e., liquid crystal tunable filter (LCTF) hyperspectral ima...

  13. Photocopy from Evan Leigh's Modern Cotton Spinning (Vol 1), Manchester, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy from Evan Leigh's Modern Cotton Spinning (Vol 1), Manchester, 1873 (PL XX); illustration used by eminent British textile engineer to exemplify the ultimate development in American cotton mill technology. - Harmony Manufacturing Company, Mill Number 3, 100 North Mohawk Street, Cohoes, Albany County, NY

  14. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Sai; Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn; Xu Yijian

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for papermore » production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.« less

  15. Implementing traceability using particle randomness-based textile printed tags

    NASA Astrophysics Data System (ADS)

    Agrawal, T. K.; Koehl, L.; Campagne, C.

    2017-10-01

    This article introduces a random particle-based traceability tag for textiles. The proposed tag not only act as a unique signature for the corresponding textile product but also possess the features such as easy to manufacture and hard to copy. It seeks applications in brand authentication and traceability in textile and clothing (T&C) supply chain. A prototype has been developed by screen printing process, in which micron-scale particles were mixed with the printing paste and printed on cotton fabrics to attain required randomness. To encode the randomness, the image of the developed tag was taken and analyzed using image processing. The randomness of the particles acts as a product key or unique signature which is required to decode the tag. Finally, washing and abrasion resistance tests were conducted to check the durability of the printed tag.

  16. 78 FR 7414 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Agreements (``CITA'') has determined that certain cotton/polyester three-thread circular knit fleece fabric... behalf of Intradeco Apparel, Inc. for certain cotton/polyester three-thread circular knit fleece fabric.... Specifications: Certain Cotton/Polyester Three-Thread Circular Knit Fleece Fabric HTS: 6001.21 Fiber content...

  17. 76 FR 78249 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Agreements (``CITA'') has determined that certain cotton/nylon/spandex raschel knit, open work crepe, piece... cotton/ nylon/spandex raschel knit, open crepe, piece dyed fabric, as specified below. On November 15... site for CAFTA-DR Commercial Availability proceedings. Specifications Certain Cotton/Nylon/Spandex...

  18. USDA and university researchers work to prevent U.S. cotton contamination

    USDA-ARS?s Scientific Manuscript database

    U.S. cotton is considered to have some of the lowest levels of contamination in the world. However, that reputation is in jeopardy as complaints of contamination from domestic and foreign mills are on the rise. Cotton contamination is classified by the International Textile Manufacturers Federation ...

  19. Development of the phosphorus and nitrogen containing flame retardant for value added cotton product

    USDA-ARS?s Scientific Manuscript database

    It is our desire to develop new crosslinking agents for cotton textiles that afford useful flame protection regardless of fabric construction. Herein we present the synthesis and the application of the triazine and piperazine derivatives as flame retardant on cotton. Novel phosphorus-nitrogen contai...

  20. An efficient process for producing economical and eco-friendly cotton textile composites for mobile industry

    USDA-ARS?s Scientific Manuscript database

    The mobile industry comprised of airplanes, automotives, and ships uses enormous quantities of various types of textiles. Just a few decades ago, most of these textile products and composites were made with woven or knitted fabrics that were mostly made with the then only available natural fibers, i...

  1. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish.

    PubMed

    Arshad, Noureen; Zia, Khalid Mahmood; Jabeen, Farukh; Anjum, Muhammad Naveed; Akram, Nadia; Zuber, Mohammad

    2018-05-01

    Our current research work comprised of synthesis of a series of novel chitosan based water dispersible polyurethanes. The synthesis was carried out in three steps, in first step, the NCO end capped PU-prepolymer was formed through the reaction between Polyethylene glycol (PEG) (Mn = 600), Dimethylolpropionic acid (DMPA) and Isophorone diisocyanate (IPDI). In second step, the neutralization step was carried out by using Triethylamine (TEA) which resulted the formation of neutralized NCO terminated PU-prepolymer, after that the last step chain extension was performed by the addition of chitosan and followed the formation of dispersion by adding calculated amount of water. The proposed structure of CS-WDPUs was confirmed by using FTIR technique. The antimicrobial activities of the plain weave poly-cotton printed and dyed textile swatches after application of CS-WDPUs were also evaluated. The results showed that the chitosan incorporation in to PU backbone has markedly enhanced the antibacterial activity of WDPUs. These synthesized CS-WDPUs are eco-friendly antimicrobial finishes (using natural bioactive agents such as chitosan) with potential applications on polyester/cotton textiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Enzyme processing of textiles in reverse micellar solution.

    PubMed

    Sawada, K; Ueda, M

    2001-08-23

    Scouring of cotton using pectinase enzyme, bioscouring, in reverse micellar system was studied. The effectiveness of bioscouring was evaluated by measuring weight loss of cotton, analyzing pectin and cotton wax remaining and by wetness testing. Pectinase enzyme showed excellent activity even in organic media, and the effectiveness of scouring was equivalent or better than that achieved by conventional alkaline process or bioscouring in aqueous media. Enzymatic modification of wool using protease enzyme in the same system was also studied. It has found that felting property and tensile strength of wool fabrics treated by protease in reverse micellar system were superior to those in aqueous media. Possibilities of utilization of the same system for the subsequent textile dyeing process were also investigated. It was found that cotton and polyester fabrics were dyed satisfactorily by reverse micellar system compared to conventional aqueous system.

  3. A Grey Fuzzy Logic Approach for Cotton Fibre Selection

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati

    2017-06-01

    It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.

  4. [Rhinitis and asthma related to cotton dust exposure in apprentices in the clothing industry].

    PubMed

    Chaari, N; Amri, C; Khalfallah, T; Alaya, A; Abdallah, B; Harzallah, L; Henchi, M-A; Bchir, N; Kamel, A; Akrout, M

    2009-01-01

    Respiratory allergies are the most common occupational diseases in the world. The aim of this study was to determine the prevalence of rhinitis and asthma among apprentices exposed to cotton dust in the clothing industry and to describe their epidemiologic and clinical profiles. We carried out a descriptive study of 600 apprentices in a textile and clothing vocational training centre in the Monastir area. The investigation comprised a questionnaire exploring risk factors and symptoms appearing during their training. Subjects who developed allergic respiratory symptoms at the work-place underwent a clinical examination, rhinomanometry and investigation of their allergic status and respiratory function. One hundred twenty apprentices (20%) developed allergic respiratory reactions due to exposure to textile dust (exclusively cotton) during their training, with a positive withdrawal-re-exposure test. Conjunctivitis (14.3%) and rhinitis (8.5%) were the most frequent allergic symptoms. Twenty eight apprentices (4.6%) presented symptoms of asthma. Rhinitis was associated with asthma in 45% of cases. Two cases of asthma were diagnosed clinically at the work-place following their exposure to textile dust. The prick test performed in 120 symptomatic apprentices was positive in 41.6% of cases. There was sensitization to pollens in 29 cases and to dermatophagoides in 13 cases. Cotton and wool allergy was noted in two cases. Allergic symptoms developing during the training were significantly more frequent in the atopic group, and they varied according to the intensity of textile dust exposure. In the textile and clothing industry the frequency of respiratory disorders caused by allergens remains high, especially in atopic apprentices who constitute a population at high risk.

  5. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics.

    PubMed

    Shaheen, Th I; El-Naggar, Mehrez E; Abdelgawad, Abdelrahman M; Hebeish, A

    2016-02-01

    Herein we represent a new discovery based on amine material called hexamethyltriethylene tetramine (HMTETA). We have observed that when an aqueous solution of Zn(NO3)·6H2O was added to aqueous solution of HMTETA followed by shaking for a time, the colorless solution was converted to milky color under the alkaline medium provided by HMTETA prior to formation of uniform zinc oxide nanoparticles (ZnO NPs). The latter are in situ formed within the cotton fabrics without the support of capping or other stabilizing agents. Obviously, then, the new made of formation of ZnO NPs speaks of a single-stage process where cotton fabric is immersed in a prepared solution of the new precursors through which binding of ZnO NPs into the textile fabrics takes place. Textile fabrics are, indeed, used as a template, which is capable of maintaining the size and surface distribution of the as-synthesized nanoparticles in a uniform domain. It is also likely that nanoparticles is confined inside the fibril and microfibrils of the cotton fibers. World-class facilities have been employed to follow up the synthesis of ZnO NPs, their characterization and their application to confer, in particular, high durable antibacterial and UV protective function on cotton fabrics. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Enrichment of chromosome 17 specific molecular markers of Pima cotton substituted in Upland cotton lines

    USDA-ARS?s Scientific Manuscript database

    Cotton is the primary source of non-synthetic textile fiber, as well as an important source of food, feed, fuel and other products. In the USA cotton is a major crop in 13 states and grown in 17 states on about 5 million hectares, more than all crops except maize, wheat or soybean, with a return of...

  7. Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive.

    PubMed

    Salat, Marc; Petkova, Petya; Hoyo, Javier; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko

    2018-06-01

    An important preventive measure for providing a bacteria-free environment for the patients is the introduction of highly efficient and durable antibacterial textiles in hospitals. This work describes a single step sono-enzymatic process for coating of cotton medical textiles with antibacterial ZnO nanoparticles (NPs) and gallic acid (GA) to produce biocompatible fabrics with durable antibacterial properties. Cellulose substrates, however, need pre-activation to achieve sufficient stability of the NPs on their surface. Herein, this drawback is overcome by the simultaneous sonochemical deposition of ZnO NPs and the synthesis of a bio-based adhesive generated by the enzymatic cross-linking of GA in which the NPs were embedded. GA possesses the multiple functions of an antibacterial agent, a building block of the cross-linked phenolic network, and as a compound providing the safe contact of the coated materials with human skin. The ZnO NPs-GA coated fabrics maintained above 60% antibacterial efficacy even after 60 washing cycles at 75 °C hospital laundry regime. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Piperazine-phosphonate derivatives: their flame retardant and thermal degradation properties on cotton fibers

    USDA-ARS?s Scientific Manuscript database

    It has been known that phosphorus-nitrogen system shows greater flame resistance in cotton textiles at a lower level than phosphorus used alone. This research aims to compare the effectiveness of Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) as a flame retardant (FR) for cotton fabric to a prev...

  9. 76 FR 67424 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Agreements (``CITA'') has determined that certain cotton/nylon/spandex raschel knit open work crepe fabric..., Travis & Rosenberg, P.A., on behalf of Hansae Co. Ltd., for certain cotton/nylon/spandex raschel knit... Availability proceedings. Specifications: Certain Cotton/Nylon/Spandex Raschel Knit Open Work Crepe Fabric HTS...

  10. 75 FR 48931 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... Agreements (``CITA'') has determined that certain woven yarn-dyed fabrics of lyocell and cotton, as specified...'') for BWA, Inc. (``BWA'') Corporation for certain woven yarn-dyed fabrics of lyocell and cotton. On July... Fabrics of Lyocell and Cotton HTS Subheading: 5516.13.0000, 5516.43.00 Fiber Content: 55-85% standard...

  11. Identification of ancient textile fibres from Khirbet Qumran caves using synchrotron radiation microbeam diffraction

    NASA Astrophysics Data System (ADS)

    Müller, Martin; Murphy, Bridget; Burghammer, Manfred; Riekel, Christian; Roberts, Mark; Papiz, Miroslav; Clarke, David; Gunneweg, Jan; Pantos, Emmanuel

    2004-10-01

    Archaeological textiles fragments from the caves of Qumran in the Dead Sea region were investigated by means of X-ray microbeam diffraction on single fibres. This non-destructive technique made the identification of the used plant textile fibres possible. Apart from bast fibres (mainly flax), cotton was identified which was most unexpected in the archaeological context.

  12. Sol-gel 3-glycidoxypropyltriethoxysilane finishing on different fabrics: The role of precursor concentration and catalyst on the textile performances and cytotoxic activity.

    PubMed

    Plutino, M R; Colleoni, C; Donelli, I; Freddi, G; Guido, E; Maschi, O; Mezzi, A; Rosace, G

    2017-11-15

    In this paper, the influence of 3-glycidoxypropyltriethoxysilane (GPTES) based organic-inorganic coatings on the properties of treated textile fabrics was studied. All experimental results were deeply analyzed and thereafter correlated with the employed silica precursor concentration and with the presence of the BF 3 OEt 2 (Boron trifluoride diethyl etherate), used as epoxy ring opening catalyst. SEM analysis, FT-IR spectroscopy, X-ray Photoelectron Spectroscopy (XPS), thermogravimetric analysis (TGA) and washing fastness tests of the sol-gel treated cotton fabric samples were firstly exploited in order to characterize the morphological and structural features of the achieved coatings. Finally, the influence of the resulting nanohybrid coatings was explored in terms of abrasion resistance, tensile strength and elongation properties of treated cotton, polyester and silk fabrics. The catalyst amounts seem to strongly improve the formation of coatings, but still they do not influence the wear resistance of treated textile fabrics to the same extent. Indeed, it was found that increasing catalyst/GPTES ratio leads to a more cross linked inorganic 3D-network. GPTES itself was not found to affect the bulk properties of the selected textile and the resulting coatings were not so rigid to hardly modify the mechanical properties of the treated samples. Finally, it is worth mentioning that in all case the obtained 3-glycidoxypropyltriethoxysilane-based chemical finishing have shown no cytotoxic effects on human skin cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.

    PubMed

    Souri, Hamid; Bhattacharyya, Debes

    2018-06-05

    The demand for stretchable, flexible, and wearable multifunctional devices based on conductive nanomaterials is rapidly increasing considering their interesting applications including human motion detection, robotics, and human-machine interface. There still exists a great challenge to manufacture stretchable, flexible, and wearable devices through a scalable and cost-effective fabrication method. Herein, we report a simple method for the mass production of electrically conductive textiles, made of cotton and wool, by hybridization of graphene nanoplatelets and carbon black particles. Conductive textiles incorporated into a highly elastic elastomer are utilized as highly stretchable and wearable strain sensors and heaters. The electromechanical characterizations of our multifunctional devices establish their excellent performance as wearable strain sensors to monitor various human motions, such as finger, wrist, and knee joint movements, and to recognize sound with high durability. Furthermore, the electrothermal behavior of our devices shows their potential application as stretchable and wearable heaters working at a maximum temperature of 103 °C powered with 20 V.

  14. Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach.

    PubMed

    Mantecca, Paride; Kasemets, Kaja; Deokar, Archana; Perelshtein, Ilana; Gedanken, Aharon; Bahk, Yeon Kyoung; Kianfar, Baharh; Wang, Jing

    2017-08-15

    Nano metal oxides have been proposed as alternatives to silver (Ag) nanoparticles (NPs) for antibacterial coatings. Here, cotton and polyester-cotton fabrics were sonochemically coated with zinc oxide (ZnO) and copper oxide (CuO) NPs. By varying the reaction solvent (water or ethanol), NPs with different sizes and shapes were synthesized. The cytotoxic and pro-inflammatory effects of studied NPs were investigated in vitro in human alveolar epithelial A549 and macrophage-like THP1 cells. To understand the potential respiratory impact of the NPs, the coated textiles were subjected to the abrasion tests, and the released airborne particles were measured. A very small amount of the studied metal oxides NPs was released from abrasion of the textiles coated by the ethanol-based sonochemical process. The release from the water-based coating was comparably higher. Lung and immune cells viability decreased after 24 h of exposure only at the highest studied NPs concentration (100 μg/mL). Different from the ZnO NPs, both formulations of CuO NPs induced IL-8 release in the lung epithelial cells already at subtoxic concentrations (1-10 μg/mL) but not in immune cells. All of the studied NPs did not induce IL-6 release by the lung and immune cells. Calculations revealed that the exposures of the NPs to human lung due to the abrasion of the textiles were lower or comparable to the minimum doses in the cell viability tests (0.1 μg/mL), at which acute cytotoxicity was not observed. The results alleviate the concerns regarding the potential risk of these metal oxide NPs in their applications for the textile coating and provide insight for the safe-by-design approach.

  15. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes

    USDA-ARS?s Scientific Manuscript database

    Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candi...

  16. Applications of FT-IR spectroscopy to the studies of esterification and crosslinking of cellulose by polycarboxylic acids: Part II. The performance of the crosslinked cotton fabrics

    NASA Astrophysics Data System (ADS)

    Wei, Weishu; Yang, Charles Q.

    1998-06-01

    Durable press finishing processes are commonly used in the textile industry to produce wrinkle-free cotton fabrics and garments. A durable press finishing agent forms covalent bands with cellulosic hydroxyl groups, thus crosslinking the cellulose molecules. The crosslinking of cellulose increases wrinkle resistance of the treated cotton fabric and reduces fabric mechanical strength. Wrinkle recovery angle (WRA) and tensile strength are the two most important parameters used to evaluate the performance of the crosslinked cotton fabrics and garments. In this study, we investigated the correlation between WRA and tensile strength on one hand, and the amount of crosslinkages formed by the crosslinking agents including dimethyloldihydroxylethyleneurea (DMDHEU) and 1,2,3,4-butanetetracarboxylic acid (BTCA) determined by FT-IR spectroscopy on the other hand. Linear regression curves between the carbonyl band absorbance, and WRA and tensile strength of the treated cotton fabric were developed. The data indicated that FT-IR spectroscopy is a reliable technique for predicting the performance of durable press finished cotton fabrics, therefore can be used as a convenient instrumental method for quality control in the textile and garment industry.

  17. U.S. Clothing and Textile Trade with China and the World: Trends Since the End of Quotas

    DTIC Science & Technology

    2007-07-10

    the road to quota-free trade for clothing and textiles, the MFA expanded the scope of the LTA to include wool and man-made fibers. However, concerns...starting a 10-year process of eliminating quotas for international trade in clothing and textiles. The ATC’s quota phase-out contained two concurrent...goods. The ATC also required that products from different categories — textiles and clothing, wool , cotton or man-made fibres, etc. — be included in

  18. China Report, Political, Sociological and Military Affairs

    DTIC Science & Technology

    1985-01-19

    of the cotton textiles, 75 percent of the artificial fibers, and 53 percent of the woolen textiles imported to the United States. In 1981, a new...connections with overseas or had questionable family background as enemies, regardless their intellignece and capabilities. And factionalism caused the

  19. Ginning

    USDA-ARS?s Scientific Manuscript database

    The purpose of the cotton ginning process is to separate a field crop into its salable components. It is a necessary step between the farmer and the textile manufacturer. The original gin was a simple manually operated device that took hand harvested cotton and separated fiber from the cottonseed. T...

  20. 78 FR 18561 - Determination Under the Textile and Apparel Commercial Availability Provision of the United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... that certain cotton corduroy fabric, as specified below, is not available in commercial quantities in a... Bella Bliss, LLC for certain cotton corduroy fabric, as specified below. On February 26, 2013, in... Availability proceedings. [[Page 18562

  1. Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties.

    PubMed

    Tissera, Nadeeka D; Wijesena, Ruchira N; Rathnayake, Samantha; de Silva, Rohini M; de Silva, K M Nalin

    2018-04-15

    Electrically conductive cotton fabric was fabricated by in situ one pot oxidative polymerization of aniline. Using a simple heterogeneous polymerization method, polyaniline (PANI) nano fibers with an average fiber diameter of 40-75 nm were grafted in situ onto cotton fabric. The electrical conductivity of the PANI nanofiber grafted fabric was improved 10 fold compared to fabric grafted with PANI nanoclusters having an average cluster size of 145-315 nm. The surface morphology of the cotton fibers was characterized using SEM and AFM. Electrical conductivity of PANI nanofibers on the cotton textile was further improved from 76 kΏ/cm to 1 kΏ/cm by increasing the HCl concentration from 1 M to 3 M in the polymerization medium. PANI grafted cotton fabrics were analyzed using FTIR, and the data showed the presence of polyaniline functional groups on the treated fabric. Further evidence was present for the chemical interaction of PANI with cellulose. Dopant level and morphology dependent electron transition behavior of PANI nanostructures grafted on cotton fabric was further characterized using UV-vis spectroscopy. The electrical conductivity of the PANI nano fiber grafted cotton fabric can be tuned by immersing the fabric in pH 2 and pH 6 solutions for multiple cycles. Copyright © 2018. Published by Elsevier Ltd.

  2. Respiratory Symptoms and Lung Function among Greek Cotton Industry Workers: A Cross-Sectional Study.

    PubMed

    Anyfantis, Ioannis D; Rachiotis, Georgios; Hadjichristodoulou, Cristos; Gourgoulianis, Konstantinos I

    2017-01-01

    Workers in cotton industry are occupationally exposed to various dust-related hazards. The nature of these agents and the respective exposure levels depend on the cotton industry specific sector. These exposures could be associated with respiratory symptoms and changes in lung function parameters. To evaluate associations between occupational exposure and respiratory function as well as reported symptoms in several groups of workers at different stages of the cotton industry in a vertical approach that covers all the major sectors-from cotton ginning to weaving and fabric production. A questionnaire on respiratory symptoms and individual as well as workplace characteristics was completed by 256 workers at the cotton industry and 148 office workers (control group). Both groups underwent spirometry. Workers in cotton industry reported a higher prevalence of severe dyspnea (p=0.002) and wheezing (p=0.004) compared to the control group. Also they were found to have a lower predicted FEV 1 % (p<0.029) and lower FEV 1 /FVC (p<0.001) values. In addition, a higher prevalence of FEV 1 % <80% (p<0.001) and FEV 1 /FVC <70% (p=0.041) were found among textile workers. Similar results were found for non-smoker textile workers compared to non-smoker control group workers. Those working in cotton ginning mills recorded the highest decrease of spirometric values. Duration of employment in cotton industry and smoking use were found to be predictors of lung function decline for cotton industry workers. Occupational exposure to cotton dust was associated with increased prevalence of respiratory symptoms and obstructive pattern in pulmonary function test.

  3. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    NASA Astrophysics Data System (ADS)

    Thambiraj, S.; Ravi Shankaran, D.

    2017-08-01

    We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well executed from the prepared CNCs, which have great potential for various applications including bio-sensors, food packaging and drug delivery applications.

  4. Evaluation of textile substrates for dispensing synthetic attractants for malaria mosquitoes.

    PubMed

    Mweresa, Collins K; Mukabana, Wolfgang R; Omusula, Philemon; Otieno, Bruno; Gheysens, Tom; Takken, Willem; van Loon, Joop J A

    2014-08-16

    The full-scale impact of odour-baited technology on the surveillance, sampling and control of vectors of infectious diseases is partly limited by the lack of methods for the efficient and sustainable dispensing of attractants. In this study we investigated whether locally-available and commonly used textiles are efficient substrates for the release of synthetic odorant blends attracting malaria mosquitoes. The relative efficacy of (a) polyester, (b) cotton, (c) cellulose + polyacrylate, and (d) nylon textiles as substrates for dispensing a synthetic odour blend (Ifakara blend 1(IB1)) that attracts malaria mosquitoes was evaluated in western Kenya. The study was conducted through completely randomized Latin square experimental designs under semi-field and field conditions. Traps charged with IB1-impregnated polyester, cotton and cellulose + polyacrylate materials caught significantly more female Anopheles gambiae sensu stricto (semi-field conditions) and An. gambiae sensu lato (field conditions) mosquitoes than IB1-treated nylon (P = 0.001). The IB1-impregnated cellulose + polyacrylate material was the most attractive to female An. funestus mosquitoes compared to all other dispensing textile substrates (P < 0.001). The responses of female An. funestus mosquitoes to IB1-treated cotton and polyester were equal (P = 0.45). Significantly more female Culex mosquitoes were attracted to IB1-treated cotton than to the other treatments (P < 0.001). Whereas IB1-impregnated cotton and cellulose + polyacrylate material attracted equal numbers of female Mansonia mosquitoes (P = 0.44), the catches due to these two substrates were significantly higher than those associated with the other substrates (P < 0.001). The number and species of mosquitoes attracted to a synthetic odour blend is influenced by the type of odour-dispensing material used. Thus, surveillance and intervention programmes for malaria and other mosquito vectors using attractive odour baits should select an odour-release material that optimizes the odour blend.

  5. Cotton fibre cross-section properties

    USDA-ARS?s Scientific Manuscript database

    From a structural perspective the cotton fibre is a singularly discrete, elongated plant cell with no junctions or inter-cellular boundaries. Its form in nature is essentially unadulterated from the field to the spinning mill where its cross-section properties, as for any textile fibre, are central ...

  6. Use of ultrasonic energy in the enzymatic treatment of cotton fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yachmenev, V.G.; Blanchard, E.J.; Lambert, A.H.

    Application of enzymes in the textile industry is becoming increasingly popular because of mild processing conditions and the capability for replacing harsh organic/inorganic chemicals. The combination of ultrasound with conventional enzymatic treatment of cotton offers significant advantages such as less consumption of expensive enzymes, shorter processing time, less fiber damage, and better uniformity of enzymatic treatment. Laboratory research has shown that introduction of ultrasonic energy during enzymatic treatment resulted in significant improvement in the performance of cellulase enzyme (CELLUSOFT L). It was established that ultrasound does not inactivate the complex structure of the enzyme molecules and weight loss of cottonmore » fabric sonicated and treated with cellulase enzyme increased up to 25--35%. The experimental data indicate that the maximum benefit provided by sonification occurs at relatively low enzyme concentrations. Ultrasonic energy significantly intensified the enzymatic treatment of the cotton fabrics but did not contribute to a decrease in tensile strength of the cotton textiles.« less

  7. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L.

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  8. Aqueous Zinc Compounds as Residual Antimicrobial Agents for Textiles.

    PubMed

    Holt, Brandon Alexander; Gregory, Shawn Alan; Sulchek, Todd; Yee, Shannon; Losego, Mark D

    2018-03-07

    Textiles, especially those worn by patients and medical professionals, serve as vectors for proliferating pathogens. Upstream manufacturing techniques and end-user practices, such as transition-metal embedment in textile fibers or alcohol-based disinfectants, can mitigate pathogen growth, but both techniques have their shortcomings. Fiber embedment requires complete replacement of all fabrics in a facility, and the effects of embedded nanoparticles on human health remain unknown. Alcohol-based, end-user disinfectants are short-lived because they quickly volatilize. In this work, common zinc salts are explored as an end-user residual antimicrobial agent. Zinc salts show cost-effective and long-lasting antimicrobial efficacy when solution-deposited on common textiles, such as nylon, polyester, and cotton. Unlike common alcohol-based disinfectants, these zinc salt-treated textiles mitigate microbial growth for more than 30 days and withstand commercial drying. Polyester fabrics treated with ZnO and ZnCl 2 were further explored because of their commercial ubiquity and likelihood for rapid commercialization. ZnCl 2 -treated textiles were found to retain their antimicrobial coating through abrasive testing, whereas ZnO-treated textiles did not. Scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry analyses suggest that ZnCl 2 likely hydrolyzes and reacts with portions of the polyester fiber, chemically attaching to the fiber, whereas colloidal ZnO simply sediments and binds with weaker physical interactions.

  9. Superoleophobic Textiles

    DTIC Science & Technology

    2011-06-01

    different techniques to achieve superhydrophobicity and superoleophobicity using nylon/cotton woven fabric (nyco) and hydroentangled nylon nonwoven...condensation through wet processing. Fabric materials prepared using these three techniques were superhydrophobic and superoleophobic as shown by...Baxter surface. superhydrophobic , superoleophobic, textiles U U U UU 38 Jeffery R. Owens Reset i Distribution A: Approved for public release

  10. Epoxy Phosphonate Crosslinkers for Providing Flame Resistance to Cotton Textiles

    USDA-ARS?s Scientific Manuscript database

    Two new monomers (2-methyl-oxiranylmethyl)-phosphonic acid dimethyl ester (3) and [2-(dimethoxy-phosphorylmethyl)-oxyranylmethyl]-phosphonic acid dimethyl ester (6) were prepared and used with dicyandiamide (7) and citric acid (8) to impart flame resistance to cotton plain weave, twill, and 80:20-co...

  11. Textile Wastes.

    ERIC Educational Resources Information Center

    Talbot, R. S.

    1978-01-01

    Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)

  12. 1. PERSPECTIVE VIEW OF KEX PLANT, FORMER CALLAWAY MILLS UNITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PERSPECTIVE VIEW OF KEX PLANT, FORMER CALLAWAY MILLS UNITY COTTON MILL (A. FRANCIS WALKER, 1900-01) FROM DUNSON STREET. UNITY COTTON MILL WAS THE FIRST OF SEVERAL TEXTILE MILLS BUILT BY THE CALLAWAY MILLS GROUP IN SOUTHWEST LAGRANGE DURING THE EARLY TWENTIETH CENTURY. NOTE REMAINING PORTION OF ORIGINAL WATER TANK TOWER IN MIDDLE OF PHOTOGRAPH. - Unity Cotton Mill, 815 Leeman Street, La Grange, Troup County, GA

  13. Cotton: a sustainable raw material for value-added nonwoven textiles

    USDA-ARS?s Scientific Manuscript database

    Sustainability of the materials and services we use today and protection of our environment are very strong initiatives, worldwide. Cotton is an annually renewable cash crop that is critically important to national economies of many countries, including the United States which is the 3rd largest pr...

  14. Measurement comparison of cotton fiber micronaire and its components by portable near infrared spectroscopy instruments

    USDA-ARS?s Scientific Manuscript database

    Micronaire is a key cotton fiber classing and quality assessment property, and changes in fiber micronaire can impact downstream fiber processing and dye consistency in the textile manufacturing industry. Micronaire is a function of two fiber components—fiber maturity and fineness. Historically, m...

  15. Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles.

    PubMed

    Petkova, Petya; Francesko, Antonio; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko

    2016-03-01

    The antimicrobial finishing is a must for production of medical textiles, aiming at reducing the bioburden in clinical wards and consequently decreasing the risk of hospital-acquired infections. This work reports for the first time on a simultaneous sonochemical/enzymatic process for durable antibacterial coating of cotton with zinc oxide nanoparticles (ZnO NPs). The novel technology goes beyond the "stepwise" concept we proposed recently for enzymatic pre-activation of the fabrics and subsequent sonochemical nano-coating, and is designed to produce "ready-to-use" antibacterial medical textiles in a single step. A multilayer coating of uniformly dispersed NPs was obtained in the process. The enzymatic treatment provides better adhesion of the ZnO NPs and, as a consequence, enhanced coating stability during exploitation. The NPs-coated cotton fabrics inhibited the growth of the medically relevant Staphylococcus aureus and Escherichia coli respectively by 67% and 100%. The antibacterial efficiency of these textile materials resisted the intensive laundry regimes used in hospitals, though only 33% of the initially deposited NPs remained firmly fixed onto the fabrics after multiple washings. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Characterization and thermal behaviour of textile waste from the industrial city of Aleppo in Syria.

    PubMed

    Majanny, Abdulkader; Nassour, Abdallah; Gose, Sven; Scholz, Reinhard; Nelles, Michael

    2011-03-01

    This paper describes the present waste management practices in the industrial city Alsheikh Najjar of Aleppo, mainly with regard to textile waste materials, and provides some insights into future prospects. As a first exploration for energy recovery from textile waste materials, the thermal behaviour of seven different types of textile waste were studied by thermogravimetry. There were assorted differential thermogravimetry peaks found over a particular range of temperatures. Pyrolysis experiments were carried out to identify the pyrolysis products such as gas, liquid, and solid residues known as char. In a subsequent analysis, the combustion behaviour of textile waste was determined and analysed. Typical parameters - reaction front velocity, ignition rate - were considered for the evaluation of the combustion behaviour and the results were compared with values observed for waste wood.

  17. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes.

    PubMed

    Shim, Bong Sup; Chen, Wei; Doty, Chris; Xu, Chuanlai; Kotov, Nicholas A

    2008-12-01

    The idea of electronic yarns and textiles has appeared for quite some time, but their properties often do not meet practical expectations. In addition to chemicallmechanical durability and high electrical conductivity, important materials qualifications include weavablity, wearability, light weight, and "smart" functionalities. Here we demonstrate a simple process of transforming general commodity cotton threads into intelligent e-textiles using a polyelectrolyte-based coating with carbon nanotubes (CNTs). Efficient charge transport through the network of nanotubes (20 omega/cm) and the possibility to engineer tunneling junctions make them promising materials for many high-knowledge-content garments. Along with integrated humidity sensing, we demonstrate that CNT-cotton threads can be used to detect albumin, the key protein of blood, with high sensitivity and selectivity. Notwithstanding future challenges, these proof-of-concept demonstrations provide a direct pathway for the application of these materials as wearable biomonitoring and telemedicine sensors, which are simple, sensitive, selective, and versatile.

  18. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    NASA Astrophysics Data System (ADS)

    Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka

    2016-11-01

    The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  19. A new physical method to assess handle properties of fabrics made from wood-based fibers

    NASA Astrophysics Data System (ADS)

    Abu-Rous, M.; Liftinger, E.; Innerlohinger, J.; Malengier, B.; Vasile, S.

    2017-10-01

    In this work, the handfeel of fabrics made of wood-based fibers such as viscose, modal and Lyocell was investigated in relation to cotton fabrics applying the Tissue Softness Analyzer (TSA) method in comparison to other classical methods. Two different construction groups of textile were investigated. The validity of TSA in assessing textile softness of these constructions was tested. TSA results were compared to human hand evaluation as well as to classical physical measurements like drape coefficient, ring pull-through and Handle-o-meter, as well as a newer device, the Fabric Touch Tester (FTT). Physical methods as well as human hand assessments mostly agreed on the softest and smoothest range, but showed different rankings in the harder/rougher side fabrics. TSA ranking of softness and smoothness corresponded to the rankings by other physical methods as well as with human hand feel for the basic textile constructions.

  20. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  1. Impact of temperature and relative humidity on the near infrared spectroscopy measurements of cotton fiber micronaire

    USDA-ARS?s Scientific Manuscript database

    A key cotton fiber property is micronaire, the indirect indicator of the fiber’s maturity (cell wall development or thickening) and fineness (linear density or size). Micronaire can impact the fiber’s quality, textile processing efficiency, and fabric dye consistency. As a key quality property, fi...

  2. Bio-modification of Cotton and Micro-denier Polyester with Sericin to Develop Potent Antibacterial and Antifungal Textile Products

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, M.; Uddandrao, V. V. Sathibabu; Saravanan, G.; Vadivukkarasi, S.; Koushik, C. V.

    2018-06-01

    The present study was aimed to develop a novel textile product through bio modification of cotton and micro-denier polyester with sericin (Sn) against bacterial and fungal growth. The authors extracted and purified Sn from silk yellow cocoons. Sn solution (10 g/L) was incorporated into the 100% cotton (C), 100% micro-denier polyester (MDP) and 65/35 micro-denier polyester/cotton (MDP/C) in a padding mangle by a 2-dip/2-nip process and fabrics were analysed by Field-Emission scanning electron microscope. Fabrics were divided into six groups such as untreated groups (C, MDP and MDP/C) and Sn-treated groups (Sn + C, Sn + MDP and Sn + MDP/C) and then underwent organoleptic evaluation and as well as anti-bacterial (Staphylococcus aureus and Escherichia coli) and anti-fungal (Aspergillus niger and Trichoderma harzianum) activities. Sn treated fabrics were found to show the presence of Sn by scanning electron micrographs and also attained high organoleptic score from the panel members. In addition, the Sn-treated fabrics displayed outstanding anti bacterial and anti fungal properties in terms of both qualitative and quantitative analysis. Sn + MDP/C fabrics have shown potential reduction in bacterial and fungal growth when compared with other treated and untreated fabrics. Hence, this study suggests that bio modification of C, MDP and MDP/C with Sn may make them ideal candidate for their application in medical textiles against pathogens.

  3. Respiratory symptoms in Lancashire textile weavers.

    PubMed

    Raza, S N; Fletcher, A M; Pickering, C A; Niven, R M; Faragher, E B

    1999-08-01

    To investigate a large population of cotton textile weavers for reported respiratory symptoms relative to occupational factors, smoking, and exposure to dust. Cotton processing is known to produce a respiratory disease known as byssinosis particularly in the early processes of cotton spinning. Relatively little is known about the respiratory health of the cotton weavers who produce cloth from spun cotton. By the time cotton is woven many of the original contaminants have been removed. 1295 operatives from a target population of 1428 were given an interviewer led respiratory questionnaire. The presence of upper and lower respiratory tract symptoms were sought and the work relatedness of these symptoms determined by a stem questionnaire design. Also occupational and demographic details were obtained and spirometry and personal dust sampling performed. Byssinosis was present in only four people (0.3%). Chronic bronchitis had a moderate overall prevalence of about 6% and was related predominantly to smoking. There were several other work related respiratory symptoms (persistent cough 3.9%, chronic production of phlegm 3.6%, chest tightness 4.8%, wheezing 5.4%, and breathlessness 2.3%). All of these were predicted predominantly by smoking (either past or present), with no consistent independent effect of exposure to dust. Work related eye and nasal symptoms were more common (10.4% and 16.9% respectively). Byssinosis is a rare respiratory symptom in cotton weaving. Other work related respiratory symptoms were reported but their presence was predominantly related to smoking with no consistent effects of exposure to dust.

  4. Integrating Substrateless Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures.

    PubMed

    Joseph, John; Nair, Shantikumar V; Menon, Deepthy

    2015-08-12

    The present study describes a unique way of integrating substrateless electrospinning process with textile technology. We developed a new collector design that provided a pressure-driven, localized cotton-wool structure in free space from which continuous high strength yarns were drawn. An advantage of this integration was that the textile could be drug/dye loaded and be developed into a core-sheath architecture with greater functionality. This method could produce potential nanotextiles for various biomedical applications.

  5. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation.

    PubMed

    Lacoste, Clément; El Hage, Roland; Bergeret, Anne; Corn, Stéphane; Lacroix, Patrick

    2018-03-15

    Alginate derived from seaweed is a natural polysaccharide able to form stable gel through carbohydrate functional groups largely used in the food and pharmaceutical industry. This article deals with the use of sodium alginate as an adhesive binder for wood fibres/textile waste fibres biocomposites. Several aldehyde-based crosslinking agents (glyoxal, glutaraldehyde) were compared for various wood/textile waste ratios (100/0, 50/50, 60/40, 70/30 and 0/100 in weight). The fully biomass derived composites whose properties are herewith described satisfy most of the appropriate requirements for building materials. They are insulating with a thermal conductivity in the range 0.078-0.089 W/m/K for an average density in the range 308-333 kg/m3 according to the biocomposite considered. They are semi-rigid with a maximal mechanical strength of 0.84 MPa under bending and 0.44 MPa under compression for 60/40 w/w wood/textile waste biocomposites with a glutaraldehyde crosslinking agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Molecular analysis of late-stage fiber development in upland cotton

    USDA-ARS?s Scientific Manuscript database

    Cotton is the world's most important textile and the number one value-added crop. It plays a crucial role in the economy of Texas – supporting close to 50,000 jobs and supplying $2 billion to the state economy. Its role is even more evident in the South Plains of Texas, which supplies approximately...

  7. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton is a world’s leading crop important to the world’s textile and energy industries, and a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction and extensive analysis of a binary bacterial artificial chromosome (BI...

  8. Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton is one of the most important and widely grown crops in the world. In addition to natural textile fiber production as a primary purpose, it yields a high grade vegetable oil for human consumption and also carbohydrate fiber and protein byproducts for animal feed. In this work, attenuated total...

  9. The Potential of Improving Medical Textile for Cutaneous Diseases

    NASA Astrophysics Data System (ADS)

    Radu, C. D.; Cerempei, A.; Salariu, M.; Parteni, O.; Ulea, E.; Campagne, Chr

    2017-10-01

    The paper dwells on the prospect of medical textiles designed to release a drug/active principle to the dermis of patients suffering from cutaneous disease (allergic dermatitis, psoriasis, bacterial/infectious conditions and inflammatory conditions). The paper is an overview of general and experimental data from textile applications. An adequate medical textile may have a cellulosic structure, mainly knitted cotton fabric. In special cases, one may use woven fabric for multilayer drug-releasing systems. As far as controlled release systems are concerned, we carried out a critical comparison between the systems described in literature and our experimental findings as concerns cyclodextrin, hydrogel, film charged with active principles and multilayer system.

  10. The analysis of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 2: comparison with the traditional methods of fiber examination.

    PubMed

    Buzzini, Patrick; Massonnet, Genevieve

    2015-05-01

    In the second part of this survey, the ability of micro-Raman spectroscopy to discriminate 180 fiber samples of blue, black, and red cottons, wools, and acrylics was compared to that gathered with the traditional methods for the examination of textile fibers in a forensic context (including light microscopy methods, UV-vis microspectrophotometry and thin-layer chromatography). This study shows that the Raman technique plays a complementary and useful role to obtain further discriminations after the application of light microscopy methods and UV-vis microspectrophotometry and assure the nondestructive nature of the analytical sequence. These additional discriminations were observed despite the lower discriminating powers of Raman data considered individually, compared to those of light microscopy and UV-vis MSP. This study also confirms that an instrument equipped with several laser lines is necessary for an efficient use as applied to the examination of textile fibers in a forensic setting. © 2015 American Academy of Forensic Sciences.

  11. Screen-Printed Photochromic Textiles through New Inks Based on SiO2@naphthopyran Nanoparticles.

    PubMed

    Pinto, Tânia V; Costa, Paula; Sousa, Céu M; Sousa, Carlos A D; Pereira, Clara; Silva, Carla J S M; Pereira, Manuel Fernando R; Coelho, Paulo J; Freire, Cristina

    2016-10-26

    Photochromic silica nanoparticles (SiO 2 @NPT), fabricated through the covalent immobilization of silylated naphthopyrans (NPTs) based on 2H-naphtho[1,2-b]pyran (S1, S2) and 3H-naphtho[2,1-b]pyran (S3, S4) or through the direct adsorption of the parent naphthopyrans (1, 3) onto silica nanoparticles (SiO 2 NPs), were successfully incorporated onto cotton fabrics by a screen-printing process. Two aqueous acrylic- (AC-) and polyurethane- (PU-) based inks were used as dispersing media. All textiles exhibited reversible photochromism under UV and solar irradiation, developing fast responses and intense coloration. The fabrics coated with SiO 2 @S1 and SiO 2 @S2 showed rapid color changes and high contrasts (ΔE* ab = 39-52), despite presenting slower bleaching kinetics (2-3 h to fade to the original color), whereas the textiles coated with SiO 2 @S3 and SiO 2 @S4 exhibited excellent engagement between coloration and decoloration rates (coloration and fading times of 1 and 2 min, respectively; ΔE* ab = 27-53). The PU-based fabrics showed excellent results during the washing fastness tests, whereas the AC-based textiles evidenced good results only when a protective transfer film was applied over the printed design.

  12. Developing a national programme for textiles and clothing recovery.

    PubMed

    Bukhari, Mohammad Abdullatif; Carrasco-Gallego, Ruth; Ponce-Cueto, Eva

    2018-04-01

    Textiles waste is relatively small in terms of weight as compared to other waste streams, but it has a large impact on human health and environment, and its rate is increasing due to the 'fast fashion' model. In this paper, we examine the French national programme for managing post-consumer textiles and clothing through a case study research. To date, France is the only country in the world implementing an extended producer responsibility (EPR) policy for end-of-use clothing, linen and shoes. The case highlights the benefits of using an EPR policy and provides interesting insights about the challenges faced by the textiles waste sector. For instance, the EPR policy has contributed to a threefold increase in the collection and recycling rates of post-consumer textiles since 2006. In addition, the material recovery rate of the post-consumer textiles can reach 90%, 50% of which can be directly reused. However, the 'reuse' stream is facing some challenges because its main market is in Africa and many African countries are considering banning the import of used textiles to encourage a competitive textiles industry locally and internationally. The EPR policy shows a great potential to identify new markets for 'reuse' and to improve the textiles waste sector. Such an EPR policy also could drive societies to financially support innovation and research to provide feasible solutions for fashion producers to adopt eco-design and design for recycling practices. This paper provides guidance for policy makers, shareholders, researchers and practitioners interested in diverting post-consumer textiles and clothing waste from landfills and promoting circular textiles transition.

  13. Viking and Early Middle Ages Northern Scandinavian Textiles Proven to be made with Hemp

    NASA Astrophysics Data System (ADS)

    Skoglund, G.; Nockert, M.; Holst, B.

    2013-10-01

    Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.

  14. Viking and early Middle Ages northern Scandinavian textiles proven to be made with hemp.

    PubMed

    Skoglund, G; Nockert, M; Holst, B

    2013-10-18

    Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.

  15. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    PubMed

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations.

    PubMed

    Said, Joseph I; Knapka, Joseph A; Song, Mingzhou; Zhang, Jinfa

    2015-08-01

    A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.

  17. The interactive effect of the degradation of cotton clothing and decomposition fluid production associated with decaying remains.

    PubMed

    Ueland, Maiken; Nizio, Katie D; Forbes, Shari L; Stuart, Barbara H

    2015-10-01

    Textiles are a commonly encountered source of evidence in forensic cases. In the past, most research has been focused on how textiles affect the decomposition process while little attention has been paid to how the decomposition products interact with the textiles. While some studies have shown that the presence of remains will have an effect on the degradation of clothing associated with a decaying body, very little work has been carried out on the specific mechanisms that prevent or delay textile degradation when in contact with decomposing remains. In order to investigate the effect of decomposition fluid on textile degradation, three clothed domestic pig (Sus scrofa domesticus) carcasses were placed on a soil surface, textile specimens were collected over a period of a year and were then analysed using ATR-FTIR spectroscopy and GC-MS. Multivariate statistical analysis was used to analyse the data. Cotton specimens not associated with remains degraded markedly, whereas the samples exposed to decomposition fluids remained relatively intact over the same time frame. An investigation of the decomposition by-products found that the protein-related bands remained stable and unchanged throughout the experiment. Lipid components, on the other hand, demonstrated a significant change; this was confirmed with the use of both ATR-FTIR spectroscopy and GC-MS. Through an advanced statistical approach, information about the decomposition by-products and their characteristics was obtained. There is potential that the lipid profile in a textile specimen could be a valuable tool used in the examination of clothing located at a crime scene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Sorption of mercury onto waste material derived low-cost activated carbon

    NASA Astrophysics Data System (ADS)

    Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro

    2017-03-01

    The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.

  19. Conjugated-polyelectrolyte-grafted cotton fibers act as "micro flypaper" for the removal and destruction of bacteria.

    PubMed

    Ista, Linnea K; Dascier, Dimitri; Ji, Eunkyung; Parthasarathy, Anand; Corbitt, Thomas S; Schanze, Kirk S; Whitten, David G

    2011-08-01

    We demonstrate herein a method for chemically modifying cotton fibers and cotton-containing fabric with a light-activated, cationic phenylene-ethynylene (PPE-DABCO) conjugated polyelectrolyte biocide. When challenged with Pseudomonas aeruginosa and Bacillus atropheaus vegetative cells from liquid suspension, light-activated PPE-DABCO effects 1.2 and 8 log, respectively, losses in viability of the exposed bacteria. These results suggest that conjugated polyelectrolytes retain their activity when grafted to fabrics, showing promise for use in settings where antimicrobial textiles are needed.

  20. The GhTT2_A07 gene is linked to the brown color and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibers

    USDA-ARS?s Scientific Manuscript database

    Some naturally-colored brown cotton fibers from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fiber loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the me...

  1. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres

    USDA-ARS?s Scientific Manuscript database

    Some naturally-coloured brown cotton fibres from accessions of Gossypium hirsutum can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have yet to be identified, and the mechan...

  2. Rapid Copper Metallization of Textile Materials: a Controlled Two-Step Route to Achieve User-Defined Patterns under Ambient Conditions.

    PubMed

    Zhang, Shuang-Yuan; Guan, Guijian; Jiang, Shan; Guo, Hongchen; Xia, Jing; Regulacio, Michelle D; Wu, Mingda; Shah, Kwok Wei; Dong, Zhili; Zhang, Jie; Han, Ming-Yong

    2015-09-30

    Throughout history earth-abundant copper has been incorporated into textiles and it still caters to various needs in modern society. In this paper, we present a two-step copper metallization strategy to realize sequentially nondiffusive copper(II) patterning and rapid copper deposition on various textile materials, including cotton, polyester, nylon, and their mixtures. A new, cost-effective formulation is designed to minimize the copper pattern migration on textiles and to achieve user-defined copper patterns. The metallized copper is found to be very adhesive and stable against washing and oxidation. Furthermore, the copper-metallized textile exhibits excellent electrical conductivity that is ~3 times better than that of stainless steel and also inhibits the growth of bacteria effectively. This new copper metallization approach holds great promise as a commercially viable method to metallize an insulating textile, opening up research avenues for wearable electronics and functional garments.

  3. Smart textile device using ion polymer metal compound.

    PubMed

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.

  4. Laundering in the prevention of skin infections.

    PubMed

    Kurz, Josef

    2003-01-01

    The statistics at the Hohenstein Institutes and the detergent industry show that the number of complaints due to skin irritations or allergies of washed laundry are relatively low. A clear interdependence between the number of complaints and the season of the year is existing. An interesting fact is that work wear made of cotton shows a relatively higher number of complaints than blends of polyester with cotton. The highest number of complaints results from operating theatre textiles, which is probably due to the exceptional strain of the skin of the operating-theatre staff by surgical disinfecting measures. During washing in household washing machines and also in the industrial sector it is mainly the mechanical action of the washing machines and the chemistry of the detergents which influence the textiles. The effects of the washing process on the textiles if assessed regarding the dermatological point of view, can go in two different directions: Changes of the textile itself and the formation of residues on the washed laundry, whereby the residues can be unintended, i.e. inevitable or desired, so to speak as finishing, for example optical brighteners, softeners, etc. The changes of the textile substance itself can result in a raising. This can either mean that the textile becomes more harsh in feel or fluffier. Textiles which become harsher only have little influence on the skin. Whereas the change to a fluffier textile has positive effects on the skin as there are so-called 'distance holders' formed on the textile surface, which prevents an early sticking of the textiles to a perspirating skin. This increases the wear comfort. Inevitable residues on the washed laundry can be caused by wear (this is not important), the washing water and the detergent. Within the detergents only the surfactants and alkalines are of interest. Desired residues are for example optical brighteners to increase the degree of whiteness, softeners, finishing baths (starch), scents and water-repellent finishes. Regarding special cases like for example flame-retardant finishes, antistatic additives and antimicrobial effects, there is only little experience available so far.

  5. Towards reinforcement solutions for urban fibre/fabric waste using bio-based biodegradable resins.

    NASA Astrophysics Data System (ADS)

    Agrawal, Pramod; Hermes, Alina; Bapeer, Solaf; Luiken, Anton; Bouwhuis, Gerrit; Brinks, Ger

    2017-10-01

    The main research question is how to systematically define and characterize urban textile waste and how to effectively utilise it to produce reinforcement(s) with selected bio-based biodegradable resin(s). Several composite samples have been produced utilising predominantly natural and predominantly synthetic fibres by combining loose fibres with PLA, nonwoven fabric with PLA, woven fabric with PLA, two-layer composite & four-layer composite samples. Physio-chemical characterisations according to the established standards have been conducted. The present work is a step toward the circular economy and closing the loop in textile value chain.

  6. Social and economic importance of textile reuse and recycling in Brazil

    NASA Astrophysics Data System (ADS)

    Baruque-Ramos, J.; Amaral, M. C.; Laktim, M. C.; Santos, H. N.; Araujo, F. B.; Zonatti, W. F.

    2017-10-01

    Brazil is an important world producer of textiles. However, this industrial activity, combined with additional import and trade, generates millions of tons of textile scraps, unsold clothing and discarded post-consumption garments. There is a great potential for the recycling and reuse industry in the context of solidarity and circular economy. The present study aimed to present examples in Brazil related to waste reduction, reuse and recycling of textiles in the context of solidary economy. In this way, some representative initiatives, from Sao Paulo, Minas Gerais and Rio de Janeiro states are presented and discussed based on these principles and approaching responsible lifestyles and environmental awareness and the refusal to waste resources in general. The main socioenvironmental benefits are related to the training of labor and local income generation, the population’s awareness of consumption patterns, saving of natural resources and raw materials, and mitigation of environmental impacts.

  7. Embedment of silver into temperature- and pH-responsive microgel for the development of smart textiles with simultaneous moisture management and controlled antimicrobial activities.

    PubMed

    Štular, Danaja; Jerman, Ivan; Naglič, Iztok; Simončič, Barbara; Tomšič, Brigita

    2017-03-01

    Silver nanoparticles were embedded into a temperature- and pH-responsive microgel based on poly-(N-isopropylacrylamide) and chitosan (PNCS) before or after its application to cotton fabric to create a smart stimuli-responsive textile with simultaneous moisture management and controlled antimicrobial activities. Two different methods of silver embedment into the PNCS microgel using two different forms of silver nanoparticles were studied, i.e., in-situ synthesis of AgCl nanocrystals into PNCS microgel particles that had previously been applied to cotton fabric, as well as the direct incorporation of colloidal silver into the microgel suspension prior to its deposition on cellulose fibres. SEM and FT-IR analysis were employed to determine the morphological and chemical changes of the modified cotton fibres, while EDS and ICP MS analysis were used to confirm the presence of the silver nanoparticles. The influence of silver embedment on the swelling/deswelling activity of the PNCS microgel was studied using the temperature- and pH-responsiveness, as determined by the moisture content, water vapour transmission rate and water uptake. The antimicrobial activity against the bacteria Staphylococcus aureus and Escherichia coli was assessed. Regardless of the embedment technique, the presence of silver nanoparticles resulted in impaired moisture management activity of the studied microgel. The PNCS microgel proved to be a suitable carrier of antimicrobial agents, assuring the effective controlled release of silver triggered by changes in the temperature and pH of the surroundings, which granted the cotton fabric excellent antimicrobial activity against Gram-negative E. coli (>99%) and Gram-positive S. aureus (>85%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  9. Evaluation of textiles proposed for spacecraft crew apparel

    NASA Technical Reports Server (NTRS)

    Duncan, W. C.

    1976-01-01

    Textiles proposed for spacecraft wearing apparel were tested for possible primary irritancy and allergenicity using guinea pigs and human subjects. The materials submitted for testing were: (1) blue, loosely knit fabric of a copolymer of chlorotrifluoroethylene and ethylene (CTFE), (2) a white fabric, 100% cotton double knit, treated with fire retardant Tetrakis (hydroxymethyl) phosphonium hydroxide/ammonia, and (3) a gold colored polyimide fabric. There were no adverse reactions to any of the fabrics.

  10. Functional Genomic Analysis of Cotton Genes with Agrobacterium-Mediated Virus-Induced Gene Silencing

    PubMed Central

    Gao, Xiquan; Shan, Libo

    2015-01-01

    Cotton (Gossypium spp.) is one of the most agronomically important crops worldwide for its unique textile fiber production and serving as food and feed stock. Molecular breeding and genetic engineering of useful genes into cotton have emerged as advanced approaches to improve cotton yield, fiber quality, and resistance to various stresses. However, the understanding of gene functions and regulations in cotton is largely hindered by the limited molecular and biochemical tools. Here, we describe the method of an Agrobacterium infiltration-based virus-induced gene silencing (VIGS) assay to transiently silence endogenous genes in cotton at 2-week-old seedling stage. The genes of interest could be readily silenced with a consistently high efficiency. To monitor gene silencing efficiency, we have cloned cotton GrCla1 from G. raimondii, a homolog gene of Arabidopsis Cloroplastos alterados 1 (AtCla1) involved in chloroplast development, and inserted into a tobacco rattle virus (TRV) binary vector pYL156. Silencing of GrCla1 results in albino phenotype on the newly emerging leaves, serving as a visual marker for silencing efficiency. To further explore the possibility of using VIGS assay to reveal the essential genes mediating disease resistance to Verticillium dahliae, a fungal pathogen causing severe Verticillium wilt in cotton, we developed a seedling infection assay to inoculate cotton seedlings when the genes of interest are silenced by VIGS. The method we describe here could be further explored for functional genomic analysis of cotton genes involved in development and various biotic and abiotic stresses. PMID:23386302

  11. Functional genomic analysis of cotton genes with agrobacterium-mediated virus-induced gene silencing.

    PubMed

    Gao, Xiquan; Shan, Libo

    2013-01-01

    Cotton (Gossypium spp.) is one of the most agronomically important crops worldwide for its unique textile fiber production and serving as food and feed stock. Molecular breeding and genetic engineering of useful genes into cotton have emerged as advanced approaches to improve cotton yield, fiber quality, and resistance to various stresses. However, the understanding of gene functions and regulations in cotton is largely hindered by the limited molecular and biochemical tools. Here, we describe the method of an Agrobacterium infiltration-based virus-induced gene silencing (VIGS) assay to transiently silence endogenous genes in cotton at 2-week-old seedling stage. The genes of interest could be readily silenced with a consistently high efficiency. To monitor gene silencing efficiency, we have cloned cotton GrCla1 from G. raimondii, a homolog gene of Arabidopsis Cloroplastos alterados 1 (AtCla1) involved in chloroplast development, and inserted into a tobacco rattle virus (TRV) binary vector pYL156. Silencing of GrCla1 results in albino phenotype on the newly emerging leaves, serving as a visual marker for silencing efficiency. To further explore the possibility of using VIGS assay to reveal the essential genes mediating disease resistance to Verticillium dahliae, a fungal pathogen causing severe Verticillium wilt in cotton, we developed a seedling infection assay to inoculate cotton seedlings when the genes of interest are silenced by VIGS. The method we describe here could be further explored for functional genomic analysis of cotton genes involved in development and various biotic and abiotic stresses.

  12. Dust and Chemical Exposures, and Miscarriage Risk Among Women Textile Workers in Shanghai, China

    PubMed Central

    Wong, Eva Y.; Ray, Roberta M.; Gao, Dao Li; Wernli, Karen J.; Li, W; Fitzgibbons, E. Dawn; Camp, Janice E.; Astrakianakis, George; Heagerty, Patrick J.; Thomas, David B.; Checkoway, Harvey

    2010-01-01

    Introduction To investigate possible associations between miscarriage and occupational exposures in the Shanghai Textile Industry. Methods We conducted a retrospective cohort study of miscarriages among 1,752 women in the Shanghai textile industry. Reproductive history was self-reported by women and occupational work histories were collected from factory personnel records. Occupational exposures were assigned by linking work history information to an industry-specific job-exposure matrix informed by factory-specific textile process information and industrial hygiene assessments. Estimates of cotton dust and endotoxin exposure were also assigned. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by multivariate logistic regression, with adjustment for age at pregnancy, education level, smoking status of woman and spouse, use of alcohol, and woman’s year of birth. Results An elevation in risk of a spontaneously aborted first pregnancy was associated with exposure to synthetic fibers (1.89, 95% CI: 1.20–3.00) and mixed synthetic and natural fibers (3.31, 95% CI: 1.30–8.42). No increased risks were observed for women working with solvents, nor were significant associations observed with quantitative cotton dust or endotoxin exposures. Associations were robust and similar when all pregnancies in a woman’s reproductive history were considered. Conclusions Occupational exposure to synthetic fibers may cause miscarriages, and this possibility should be the subject of further investigation. PMID:18805889

  13. Life cycle design and design management strategies in fashion apparel manufacturing

    NASA Astrophysics Data System (ADS)

    Tutia, R.; Mendes, FD; Ventura, A.

    2017-10-01

    The generation of solid textile waste in the process of development and clothing production is an error that causes serious damages to the environment and must be minimized. The greatest volume of textile residues is generated by the department of cut, such as textiles parings and snips that are not used in the productive process. (MILAN et al, 2007). One way to conceive new products environmently conscious is turned to the adoption of a methodology based on Life Cycle Design (LCD) and Design Management.

  14. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan.

    PubMed

    Xu, QingBo; Xie, LiJing; Diao, Helena; Li, Fang; Zhang, YanYan; Fu, FeiYa; Liu, XiangDong

    2017-12-01

    Carboxymethyl chitosan (CMCTS) and silver nanoparticles (Ag NPs) were successfully linked onto a cotton fabric surface through a simple mist modification process. The CMCTS binder was covalently linked to the cotton fabric via esterification and the Ag NPs were tightly adhered to the fiber surface by coordination bonds with the amine groups of CMCTS. As a result, the coating of Ag NPs on the cotton fabric showed excellent antibacterial properties and laundering durability. After 50 consecutive laundering cycles, the bacterial reduction rates (BR) against both S. aureus and E. coli remained over 95%. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluating the combined efficacy of polymers with fungicides for protection of museum textiles against fungal deterioration in Egypt.

    PubMed

    Abdel-Kareem, Omar

    2010-01-01

    Fungal deterioration is one of the highest risk factors for damage of historical textile objects in Egypt. This paper represents both a study case about the fungal microflora deteriorating historical textiles in the Egyptian Museum and the Coptic museum in Cairo, and evaluation of the efficacy of several combinations of polymers with fungicides for the reinforcement of textiles and their prevention against fungal deterioration. Both cotton swab technique and biodeteriorated textile part technique were used for isolation of fungi from historical textile objects. The plate method with the manual key was used for identification of fungi. The results show that the most dominant fungi isolated from the tested textile samples belong to Alternaria, Aspergillus, Chaetomium, Penicillium and Trichoderma species. Microbiological testing was used for evaluating the usefulness of the suggested conservation materials (polymers combined with fungicides) in prevention of the fungal deterioration of ancient Egyptian textiles. Textile samples were treated with 4 selected polymers combined with two selected fungicides. Untreated and treated textile samples were deteriorated by 3 selected active fungal strains isolated from ancient Egyptian textiles. This study reports that most of the tested polymers combined with the tested fungicides prevented the fungal deterioration of textiles. Treatment of ancient textiles by suggested polymers combined with the suggested fungicides not only reinforces these textiles, but also prevents fungal deterioration and increases the durability of these textiles. The tested polymers without fungicides reduce the fungal deterioration of textiles but do not prevent it completely.

  16. Cotton textiles modified with citric acid as efficient anti-bacterial agent for prevention of nosocomial infections

    PubMed Central

    Bischof Vukušić, Sandra; Flinčec Grgac, Sandra; Budimir, Ana; Kalenić, Smilja

    2011-01-01

    Aim To study the antimicrobial activity of citric acid (CA) and sodium hypophosphite monohydrate (SHP) against gram-positive and gram-negative bacteria, and to determine the influence of conventional and microwave thermal treatments on the effectiveness of antimicrobial treatment of cotton textiles. Method Textile material was impregnated with CA and SHP solution and thermally treated by either conventional or microwave drying/curing treatment. Antibacterial effectiveness was tested according to the ISO 20743:2009 standard, using absorption method. The surfaces were morphologically observed by scanning electron microscopy, while physical characteristics were determined by wrinkle recovery angles method (DIN 53 891), tensile strength (DIN 53 837), and whiteness degree method (AATCC 110-2000). Results Cotton fabric treated with CA and SHP showed significant antibacterial activity against MRSA (6.38 log10 treated by conventional drying and 6.46 log10 treated by microwave drying before washing, and 6.90 log10 and 7.86 log10, respectively, after 1 cycle of home domestic laundering washing [HDLW]). Antibacterial activity was also remarkable against S. aureus (4.25 log10 by conventional drying, 4.58 log10 by microwave drying) and against P. aeruginosa (1.93 log10 by conventional and 4.66 log10 by microwave drying). Antibacterial activity against P. aeruginosa was higher in samples subjected to microwave drying/curing than in those subjected to conventional drying/curing. As expected, antibacterial activity was reduced after 10 HDLW cycles but the compound was still effective. The surface of the untreated cotton polymer was smooth, while minor erosion stripes appeared on the surfaces treated with antimicrobial agent, and long and deep stripes were found on the surface of the washed sample. Conclusion CA can be used both for the disposable (non-durable) materials (gowns, masks, and cuffs for blood pressure measurement) and the materials that require durability to laundering. The current protocols and initiatives in infection control could be improved by the use of antimicrobial agents applied on cotton carbohydrate polymer. PMID:21328723

  17. Non-Military Activities in Japan and Korea for the Months of September - October 1945

    DTIC Science & Technology

    1945-10-01

    institutions, general elec- tions, woman suffrage, reorganization of government bureaus and pun- - 29 - ishment of high policy makers who engineered the war...which he was persecuted - 30 - during the war. This new Liberal Party has a women’s section and favors woman suffrage, lowering the voting age, and...textile goods. Spin - ners are inquiring as to the possibilities of importing raw cotton, yarn and other basic necessities inasmuch as cotton stocks on

  18. Textile Fingerprinting for Dismount Analysis in the Visible, Near, and Shortwave Infrared Domain

    DTIC Science & Technology

    2014-03-01

    Laboratory setup of reflectance data collection. The green, 100% cotton shirt sample, contact probe, and black calibration panel used are labeled...32 3.2 100 Instances of Cotton Reflectance from ASD FieldSpec ® 3 Hi-Res Spectroradiometer using a contact probe, with a black reflectance panel as...eight a-class colors. The solid vertical black line represents the wavelength selected as a feature (430nm, 481nm, 530nm, 588nm

  19. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication

    PubMed Central

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-01-01

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776

  20. Evaluation of cotton-fabric bleaching using hydrogen peroxide and Blue LED

    NASA Astrophysics Data System (ADS)

    de Oliveira, Bruno P.; Moriyama, Lilian T.; Bagnato, Vanderlei S.

    2015-06-01

    The raw cotton production requires multiple steps being one of them the removal of impurities acquired during previous processes. This procedure is widely used by textile industries around the world and is called bleaching. The raw cotton is composed by cellulosic and non-cellulosic materials like waxes, pectins and oils, which are responsible for its characteristic yellowish color. The bleaching process aims to remove the non-cellulosic materials concentration in the fabric, increasing its whiteness degree. The most used bleaching method utilizes a bath in an alkali solution of hydrogen peroxide, stabilizers and buffer solutions under high temperature. In the present study we evaluated the possibility of using a blue illumination for the bleaching process. We used blue LEDs (450 nm) to illuminate an acid hydrogen peroxide solution at room temperature. The samples treated by this method were compared with the conventional bleaching process through a colorimetric analysis and by a multiple comparison visual inspection by volunteers. The samples were also studied by a tensile test in order to verify the integrity of the cloth after bleaching. The results of fabric visual inspection and colorimetric analysis showed a small advantage for the sample treated by the standard method. The tensile test showed an increasing on the yield strength of the cloth after blue light bleaching. The presented method has great applicability potential due to the similar results compared to the standard method, with relative low cost and reduced production of chemical waste.

  1. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton.

    PubMed

    Long, Qin; Yue, Fang; Liu, Ruochen; Song, Shuiqing; Li, Xianbi; Ding, Bo; Yan, Xingying; Pei, Yan

    2018-05-11

    Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.

  2. Summary Report on Federal Laboratory Technology Transfer: FY 2003 Activity Metrics and Outcomes. 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act

    DTIC Science & Technology

    2004-12-01

    Agency, FY 1999-2003 Table 1.1 – Overview of the Types of Information on Federal lab Technology Transfer Collected in the...invention disclosure, patenting, and licensing. Table 1.1 – Overview of the Types of Information on Federal Lab Technology Transfer Collected in...results. In addition, ARS hosts a Textile Manufacturing Symposium and a Cotton Ginning Symposium at gin and textile labs to benefit county extension

  3. The AMTEX Partnership{trademark}. First quarter report, Fiscal year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The AMTEX Partnership is a collaborative research and development program among the US Integrated Textile Industry, DOE, the National Laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. Topics in this quarters report include: computer-aided fabric evaluation, cotton biotechnology, demand activated manufacturing architecture, electronic embedded fingerprints, on-line process control in flexible fiber manufacturing, rapid cutting, sensors for agile manufacturing, and textile resource conservation.

  4. Analytical assessment of woven fabrics under vertical stabbing - The role of protective clothing.

    PubMed

    Hejazi, Sayyed Mahdi; Kadivar, Nastaran; Sajjadi, Ali

    2016-02-01

    Knives are being used more commonly in street fights and muggings. Therefore, this work presents an analytical model for woven fabrics under vertical stabbing loads. The model is based on energy method and the fabric is assumed to be unidirectional comprised of N layers. Thus, the ultimate stab resistance of fabric was determined based on structural parameters of fabric and geometrical characteristics of blade. Moreover, protective clothing is nowadays considered as a strategic branch in technical textile industry. The main idea of the present work is improving the stab resistance of woven textiles by using metal coating method. In the final, a series of vertical stabbing tests were conducted on cotton, polyester and polyamide fabrics. Consequently, it was found that the model predicts with a good accuracy the ultimate stab resistance of the sample fabrics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    PubMed

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-05

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A multifunctional cotton fabric using TiO2 and PCMs: introducing thermal comfort and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Scacchetti, F. A. P.; Pinto, E.; Soares, G.

    2017-10-01

    The development of materials with multiple functionalities is a market imperative that places new challenges on textile processing. The purpose of this study was to establish the conditions to obtain a cotton material that is comfortable, with self-cleaning and antimicrobial properties. For this purpose, microcapsules of phase change materials (mPCM) and titanium dioxide nanoparticles (TiO2 NP) were applied. The resulting fabrics were characterized with resource to infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), contact angle and scanning electron microscopy (SEM). The self-cleaning properties of treated fabrics were also analysed based on the photocatalytic ability of coated fabrics. Therefore, the decomposition of methyl orange (MO) and the degradation of red wine and curry spots under the irradiation of a solar simulator were analysed. Thus, the incorporation of TiO2 particles into the cotton fabric promoted self-cleaning and antibacterial characteristics, but the presence of PCM combined with TiO2 increases the bioactivity of materials.

  7. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    PubMed Central

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method. PMID:22619632

  8. Acute and chronic toxicity of soluble fractions of industrial solid wastes on Daphnia magna and Vibrio fischeri.

    PubMed

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE(50,48 h) = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE(50,30 min) = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

  9. 25 CFR 309.13 - What are examples of other weaving and textiles that are Indian products?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., including, but not limited to, cornhusk, raffia, tule, horsehair, cotton, wool, fiber, linen, rabbit skin..., star quilts, pictorial appliqué wall hangings, fiber woven bags, embroidered dance shawls, rabbit skin...

  10. 25 CFR 309.13 - What are examples of other weaving and textiles that are Indian products?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., including, but not limited to, cornhusk, raffia, tule, horsehair, cotton, wool, fiber, linen, rabbit skin..., star quilts, pictorial appliqué wall hangings, fiber woven bags, embroidered dance shawls, rabbit skin...

  11. 25 CFR 309.13 - What are examples of other weaving and textiles that are Indian products?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., including, but not limited to, cornhusk, raffia, tule, horsehair, cotton, wool, fiber, linen, rabbit skin..., star quilts, pictorial appliqué wall hangings, fiber woven bags, embroidered dance shawls, rabbit skin...

  12. Cyanuric Chloride and Hexachlorocyclotriphosphazene Derivatives as Flame Retardants in Cotton Textile Applications

    USDA-ARS?s Scientific Manuscript database

    In a series of experiments cyanuric chloride and hexachlorocyclotriphosphazene derivatives were synthesized and characterized using spectroscopic, thermogravimetric, limiting oxygen index, and vertical flame analyses. Standardized test results have determined these compounds are promising flame reta...

  13. Effectiveness of automated ultraviolet-C light for decontamination of textiles inoculated with Enterococcus faecium.

    PubMed

    Smolle, C; Huss, F; Lindblad, M; Reischies, F; Tano, E

    2018-01-01

    Healthcare textiles are increasingly recognized as potential vehicles for transmission of hospital-acquired infections. This study tested the ability of an automated ultraviolet-C (UV-C) room disinfection device (Tru-D Smart UV-C) to decontaminate textiles inoculated with Enterococcus faecium in a clinical setting. Contaminated polycotton (50/50 polyester/cotton) swatches were distributed to predefined locations in a ward room and exposed to UV-C light. UV-C decontamination reduced E. faecium counts by a mean log 10 reduction factor of 1.37 (all P = 0.005, Wilcoxon signed rank test). UV-C decontamination may be a feasible adjunctive measure to conventional laundering to preserve the cleanliness of healthcare textiles in ward rooms. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    PubMed

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  15. A critical review on textile wastewater treatments: Possible approaches.

    PubMed

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    NASA Astrophysics Data System (ADS)

    Durán, Nelson; Marcato, Priscyla D.; Alves, Oswaldo L.; Da Silva, João P. S.; De Souza, Gabriel I. H.; Rodrigues, Flávio A.; Esposito, Elisa

    2010-01-01

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  17. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  18. Unraveling cellulose microfibrils: a twisted tale

    USDA-ARS?s Scientific Manuscript database

    Molecular dynamics (MD) simulations of hydrated cellulose microfibrils are attractive to the textiles industry for their capacity to characterize water interactions with cotton fiber, as well as to the biofuels industry for their potential to provide insight toward efficient mechanisms for conversio...

  19. Novel phosphonates triazine derivative as economic flame retardant for cotton

    USDA-ARS?s Scientific Manuscript database

    Phosphorous-containing flame retardants are widely used in standard and engineering plastics, polyurethane foams, thermosets, coatings, and textiles. Organophosphorous flame retardants have been known to be more effective when used in conjunction with nitrogen-containing systems. Their mixture produ...

  20. Development of thermosensitive microgel-loaded cotton fabric for controlled drug release

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Zhu; Wang, Xiao; Wu, Jun-Zi; Li, Shu-De

    2017-05-01

    COS-g-PVCL copolymer was synthesized and infiltrated into CaCO3 particles to prepare thermosensitive porous microgels which exhibited phase transition behavior at the temperature that was similar to the lower critical solution temperature(LCST) of copolymer. The incorporation of microgel to cotton was done by pad-dry-cure method from aqueous microparticle dispersion that contained citric acid as a crosslinking agent. In vitro drug release experiments were performed at two different temperatures (25 and 37 °C) in PBS of pH 7.4 to study its drug release behavior with response to temperature. Due to the shrinkage of microgels, drug release profiles obtained were found to have enhanced release for aloin when the temperature was above LCST than other release conditions. Microgel-loaded fabrics proved to be in vivo biocompatible by skin irritation studies and displayed an obviously high water vapor permeability at 40 °C. The MTT assay showed no obvious cytotoxicity of microgel-loaded cotton against mouse fibroblast cells within 5 days. The results obtained demonstrated the potential use of the thermos-responsive microgel-loaded cotton fabrics as a textile-based drug delivery system for treating sunburn or skin care.

  1. Appraisal of marigold flower based lutein as natural colourant for textile dyeing under the influence of gamma radiations

    NASA Astrophysics Data System (ADS)

    Adeel, Shahid; Gulzar, Tahsin; Azeem, Muhammad; Fazal-ur-Rehman; Saeed, Muhammad; Hanif, Iram; Iqbal, Naeem

    2017-01-01

    Maintaining colour strength and fastness of the fabrics dyed with natural colourants had been the major constraint of utilizing plant based dyes in modern textile practices. The present study was concerned with the extraction of lutein dye from marigold (Tagetes erecta L.) flowers and role of gamma radiation in improving colour strength and fastness characteristics of the extracted dye. The investigation of dyed fabric in spectraflash showed that gamma ray treatment of 30 kGy was the optimum absorbed dose for surface modification to improve its dye uptake ability. Good colour strength was obtained when irradiated cotton (RC, 30 kGy) was dyed with extract of radiated marigold flower powder (RP) at 70 °C for 85 min, keeping M:L of 1:50 using dye bath of pH 5.0. The results from mordanting experiments revealed that 7% of tannic acid as pre-mordant and 5% of Cu as post-mordant were the best treatments to improve colour strength. It was found that gamma ray induced extraction of lutein from marigold flowers had a potential to be utilized as natural dyes in textile sector to produce yellowish green shades.

  2. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  3. Effect of heat-setting on UV protection and antibacterial properties of cotton/spandex fabric

    NASA Astrophysics Data System (ADS)

    Pervez, M. N.; Talukder, M. E.; Shafiq, F.; Hasan, K. M. F.; Taher, M. A.; Meraz, M. M.; Cai, Y.; Lin, Lina

    2018-01-01

    An unexampled approach for simultaneous heat setting process with optimized condition at C3 (140°C, 45 s) and functional finishing, i.e. UV protection and antibacterial properties of cotton/spandex fabric were studied in this research. Experimental results disclosed that, ameliorative antibacterial efficacy and perdurable UV protection of heat-treated cotton/spandex fabrics with best sample A3 among all samples was achieved and mechanical properties also improved as the temperature rose from 120 to 140°C. In addition, Ultraviolet (UV) radiation protection and antibacterial properties are becoming increasingly necessary for human health, and textiles play an important role and this report will be appurtenant to meet regular demand.

  4. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin

    2018-05-01

    Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.

  5. Loading of chitosan - Nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions.

    PubMed

    Ibrahim, Nabil A; Eid, Basma M; El-Aziz, Eman Abd; Elmaaty, Tarek M Abou; Ramadan, Shaimaa M

    2017-12-01

    New and durable multifunctional properties of cotton/polyester blended fabrics were developed through loading of chitosan (Cs) and various metal oxide nanoparticles (MONPs) namely ZnO, TiO 2 , and SiO 2 onto fabric surface using citric acid/Sodium hypophosphite for ester-crosslinking and creating new anchoring and binding sites, COOH groups, onto the ester-crosslinked fabrics surface. The surface morphology and the presence of active ingredients (Cs & MONPs) onto selected - coated fabric samples were analyzed by SEM images and confirmed by EDS spectrums. The influence of various finishing formulations on some performance and functional properties such as wettability, antibacterial activity, UV-protection, self-cleaning, resiliency and durability to wash were studied. The obtained results revealed that the extent of improvement in the imparted functional properties is governed by type of loaded-hybrid and follows the decreasing order: Cs-TiO 2 NPs>Cs-ZnONPs>SiO 2 NP s >Cs alone, as well as kind of substrate cotton/polyester (65/35)>cotton/polyester (50/50). Moreover, after 15 washing cycles, the durability of the imparted functional properties of Cs/TiO 2 NP s - loaded substrates marginally decreased indicating the strong fixation of the hybrid components onto the ester-crosslinked substrates. The obtained bioactive multifunctional textiles can be used for producing eco-friendly protective textile materials for numerous applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microwave-assisted enhancement of milkweed (Calotropis procera L.) leaves as an eco-friendly source of natural colorants for textile.

    PubMed

    Hussaan, Muhammad; Iqbal, Naeem; Adeel, Shahid; Azeem, Muhammad; Tariq Javed, M; Raza, Ali

    2017-02-01

    Application of natural colorants to textile fabrics has gained worldwide public acceptance due to the hazardous nature of synthetic dyes. Present study investigated the microwave's mediated extraction of natural colorants from leaves of milkweed (Calotropis procera L.) as well as their application to cotton fabrics assisted with biochemical mordants. Dye extraction from C. procera leaves was carried out in various mediums (alkali and aqueous), and the extracted dye as well as cotton fabrics was irradiated with microwaves for 2, 4, 6, 8, or 10 min. Effect of various temperature regimes and sodium chloride (NaCl) concentrations was also evaluated on the color strength of dyed cotton fabrics. The results revealed that extraction of natural colorants was enhanced when microwave radiations were applied for 4 min by using alkali as an extraction medium as compared to aqueous one. Optimum dyeing of cotton fabrics was achieved by using NaCl at a temperature of 55 °C. Among the chemical mordants, iron was effective for better color strength when used as pre- and post-mordant. Among the studied bio-mordants, extract of Acacia nilotica bark significantly improved the color strength and fastness properties as pre-mordant and Curcuma longa tuber as post-mordant. It was concluded that extract of C. procera leaves was a potential source of natural colorants and a high level of dye was obtained upon irradiation of alkali-solubilized extract for 4 min. Application of NaCl at concentration of 3 g/100 mL and temperature treatment of 55 °C significantly improved the color strength of dyed cotton fabrics.

  7. Cotton nanocomposites

    USDA-ARS?s Scientific Manuscript database

    Nanotechnology is a rapidly growing field which has drawn a lot of attention in recent years. Nanotechnology has been hailed as the next great technology, and just as widely criticized as the next great threat. Textiles have not been ignored in the pursuit of developing applications for nanotechno...

  8. An improved device to measure cottonseed strength

    USDA-ARS?s Scientific Manuscript database

    During processing, seeds of cotton cultivars with fragile seeds often break and produce seed coat fragments that can cause processing problems at textile mills. A cottonseed shear tester, previously developed to measure cottonseed strength, was modified with enhancements to the drive system to provi...

  9. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    PubMed

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.

  10. Design, Synthesis and Affinity Properties of Biologically Active Peptide and Protein Conjugates of Cotton Cellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J. V.; Goheen, Steven C.

    The formation of peptide and protein conjugates of cellulose on cotton fabrics provides promising leads for the development of wound healing, antibacterial, and decontaminating textiles. An approach to the design, synthesis, and analysis of bioconjugates containing cellulose peptide and protein conjugates includes: 1) computer graphic modeling for a rationally designed structure; 2) attachment of the peptide or protein to cotton cellulose through a linker amino acid, and 3) characterization of the resulting bioconjugate. Computer graphic simulation of protein and peptide cellulose conjugates gives a rationally designed biopolymer to target synthetic modifications to the cotton cellulose. Techniques for preparing these typesmore » of conjugates involve both sequential assembly of the peptide on the fabric and direct crosslinking of the peptide or protein as cellulose bound esters or carboxymethylcellulose amides.« less

  11. High sensitivity knitted fabric strain sensors

    NASA Astrophysics Data System (ADS)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  12. Carbon Textile Decorated with Pseudocapacitive VC/Vx Oy for High-Performance Flexible Supercapacitors.

    PubMed

    Van Lam, Do; Shim, Hyung Cheoul; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2017-11-01

    It is demonstrated that, via V 2 O 5 coating by low temperature atomic layer deposition and subsequent pyrolysis, ubiquitous cotton textile can readily turn into high-surface-area carbon textile fully decorated with pseudocapacitive V x O y /VC widely usable as electrodes of high-performance supercapacitor. It is found that carbothermic reduction of V 2 O 5 (C + V 2 O 5 → C' + VC + CO/CO 2 (g)) leads to chemical/mechanical activation of carbon textile, thereby producing high-surface-area conductive carbon textile. In addition, sequential phase transformation and carbide formation (V 2 O 5 → V x O y → VC) occurred by carbothermic reduction trigger decoration of the carbon textile with redox-active V x O y /VC. Thanks to the synergistic effect of electrical double layer and pseudocapacitance, the supercapacitors made of the hybrid carbon textile exhibit far better energy density (over 30-fold increase) with excellent cycling stability than the carbon textile simply undergone pyrolysis. The method can open up a promising and facile way to synthesize hybrid electrode materials for electrochemical energy storages possessing advantages of both electrical double layer and pseudocapacitive material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Functionalization of textiles with silver and zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pulit-Prociak, Jolanta; Chwastowski, Jarosław; Kucharski, Arkadiusz; Banach, Marcin

    2016-11-01

    The paper presents a method for functionalization of textile materials using fabric dyes modified with silver or zinc oxide nanoparticles. Embedding of these nanoparticles into the structure of other materials makes that the final product is characterized by antimicrobial properties. Indigo and commercially available dye were involved in studies. It is worth to note that silver nanoparticles were obtained in-situ in the reaction of preparing indigo dye and in the process of preparing commercial dye baths. Such a method allows reducing technological steps. The modified dyes were used for dyeing of cotton fibers. The antimicrobial properties of final textile materials were studied. Saccharomyces cerevisiae strain was used in microbiological test. The results confirmed biocidal activity of prepared materials.

  14. Conductive pathway on cotton fabric created using solution with silver organometallic compound

    NASA Astrophysics Data System (ADS)

    Campbell, Eric E.; He, Ruijian; Mayer, Michael

    2017-10-01

    A knitted cotton fabric is made conductive by thermal deposition of an organometallic silver compound (OSC). For the thermal process, the fabric was soaked with the OSC liquid and heated to 225 °C for 4 min. The cured state of the OSC is determined by the stabilization in the electrical resistance. The resulting silver metallization is shaped as nanoparticles and a continuous film. A typical resistance of a 10 cm  ×  1.5 cm metallized strip made with 1.9 ml OSC is 1.70 Ω. Various other resistance levels were achieved. A higher volume of OSC provided a lower electrical resistance for the metallized conductive path but increased its stiffness. Lower resistance was achieved by increasing the number of repeat coatings while keeping the OSC volume constant. The resistance decreased when the OSC coated fabric was elongated, an effect similar to negative piezoresistivity. A resistance of initially 0.34 Ω decreased to a minimum of 0.29 Ω at 10% elongation under repeated stretching and relaxation cycling. The metallization method reported here can be suitable for applications in the field know as technical textiles, electronic textiles (e-textiles), wearable electronics, functional garments, or smart fabrics.

  15. The use of the Kelor Seeds (Moringa oleifera) as alternative coagulant in waste delivery process of textile industrial waste

    NASA Astrophysics Data System (ADS)

    Rambe, AM; Pandia, S.; Ginting, MHS; Tambun, R.; Haryanto, B.

    2018-02-01

    This research is to know the influence of moringa seed as coagulant, pH of liquid waste textile industry (jeans wash), size of moringa seed particles to decrease of turbidity percentage. Measurements were made to Total Suspended Solid, Color Rate and Chemical Oxygen Demand for wastewater textile industry by coagulation - flocculation method. Variables of this study were conducted on dosage of moringa, with particle size 212 mesh. The results showed that moringa seeds as coagulant dose optimum is 1250 mg/L for the textile industry wastewater at pH 7.8. Moringa seed powder is about 212 mesh with a dose of 1250 mg/L can lower the turbidity of 77.77%, Total Suspended Solid amounted to 83.69% and Chemical Oxygen Demand amounted to 75.86%.

  16. Identifying potential environmental impacts of waste handling strategies in textile industry.

    PubMed

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  17. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    NASA Astrophysics Data System (ADS)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  18. The draft genome of a diploid cotton Gossypium raimondii

    USDA-ARS?s Scientific Manuscript database

    We have sequenced and assembled the draft genome of Gossypium raimondii, whose progenitor is considered the contributor of the D-subgenome to the economically important natural textile fiber producer, G. hirsutum. Next-generation Illumina pair-end (PE) sequencing strategies were employed to obtain ...

  19. Rethinking cotton in nonwovens

    USDA-ARS?s Scientific Manuscript database

    This invited article (published in a popular online trade periodical “Advanced Textile Source,” April 10, 2015, and later published in the Industrial Fabrics Association International’s (IFAI’s) regular print journal “Speciality Fabrics Review,” May 15, 2015) briefly reviews the long history of cott...

  20. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes.

    PubMed

    Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian

    2015-06-11

    One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene-metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm(-3) and 1,400 mW cm(-3), respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices.

  1. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes

    PubMed Central

    Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian

    2015-01-01

    One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene–metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm−3 and 1,400 mW cm−3, respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices. PMID:26068809

  2. Copper deposition on fabrics by rf plasma sputtering for medical applications

    NASA Astrophysics Data System (ADS)

    Segura, G.; Guzmán, P.; Zuñiga, P.; Chaves, S.; Barrantes, Y.; Navarro, G.; Asenjo, J.; Guadamuz Vargas, S., VI; Chaves, J.

    2015-03-01

    The present work is about preparation and characterization of RF sputtered Cu films on cotton by the usage of a Magnetron Sputter Source and 99.995% purity Cu target at room temperature. Cotton fabric samples of 1, 2 and 4 min of sputtering time at discharge pressure of 1×10-2 Torr and distance between target and sample of 8 cm were used. The main goal was to qualitatively test the antimicrobial action of copper on fabrics. For that purpose, a reference strain of Escherichia Coli ATCC 35218 that were grown in TSA plates was implemented. Results indicated a decrease in the growth of bacteria by contact with Cu; for fabric samples with longer sputtering presented lower development of E. coli colonies. The scope of this research focused on using these new textiles in health field, for example socks can be made with this textile for the treatment of athlete's foot and the use in pajamas, sheets, pillow covers and robes in hospital setting for reducing the spread of microorganisms.

  3. Integration of biotechnological wastewater treatment units in textile finishing factories: from end of the pipe solutions to combined production and wastewater treatment units.

    PubMed

    Feitkenhauer, H; Meyer, U

    2001-08-23

    Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.

  4. Morphological, biochemical, and histopathological indices and contaminant burdens of cotton rats (Sigmodon hispidus) at three hazardous waste sites near Houston, Texas, USA

    USGS Publications Warehouse

    Rattner, B.A.; Flickinger, Edward L.; Hoffman, D.J.

    1993-01-01

    Male cotton rats (Sigmodon hispidus) were studied at three industrial waste sites near Houston, Texas, to determine whether various morphological, biochemical, and histopathological indices provided evidence of contaminant exposure and toxic insult. Only modest changes were detected in cotton rats residing at waste sites compared with reference sites. No single parameter was consistently altered, except hepatic cytochrome P-450 concentration which was lower ( [Formula: see text] ) at two waste sites, and tended to be lower ( [Formula: see text] ) at a third waste site. Elevated petroleum hydrocarbon concentrations were detected in rats at one waste site, but contaminant burdens of rats from the other sites were unremarkable. Unlike rats captured in summer, those trapped in winter exhibited hepatocellular hypertrophy and up to a 65% increase in liver: body weight ratio, cytochrome P-450 concentration, and activities of aniline hydroxylase, aryl hydrocarbon hydroxylase, and glutathione S-transferase. Although genotoxicity has been previously documented in cotton rats residing at two of the waste sites, biomarkers in the present study provided little evidence of exposure and damage

  5. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.

    PubMed

    Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He

    2012-01-01

    Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.

  6. 7 CFR 1488.2 - Definition of terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Cotton Standards Act (7 CFR 28.40), by-products of cotton such as cotton mill waste, motes, and linters..., including eligible cotton, produced in the United States and designated as eligible for export under CCC's... cotton means Upland and Extra Long staple cotton grown in the United States: Provided, however, That...

  7. 7 CFR 1488.2 - Definition of terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Cotton Standards Act (7 CFR 28.40), by-products of cotton such as cotton mill waste, motes, and linters..., including eligible cotton, produced in the United States and designated as eligible for export under CCC's... cotton means Upland and Extra Long staple cotton grown in the United States: Provided, however, That...

  8. 7 CFR 1488.2 - Definition of terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Cotton Standards Act (7 CFR 28.40), by-products of cotton such as cotton mill waste, motes, and linters..., including eligible cotton, produced in the United States and designated as eligible for export under CCC's... cotton means Upland and Extra Long staple cotton grown in the United States: Provided, however, That...

  9. 7 CFR 1488.2 - Definition of terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Cotton Standards Act (7 CFR 28.40), by-products of cotton such as cotton mill waste, motes, and linters..., including eligible cotton, produced in the United States and designated as eligible for export under CCC's... cotton means Upland and Extra Long staple cotton grown in the United States: Provided, however, That...

  10. 7 CFR 1488.2 - Definition of terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Cotton Standards Act (7 CFR 28.40), by-products of cotton such as cotton mill waste, motes, and linters..., including eligible cotton, produced in the United States and designated as eligible for export under CCC's... cotton means Upland and Extra Long staple cotton grown in the United States: Provided, however, That...

  11. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development

    PubMed Central

    Balasubramanian, Vimal Kumar; Rai, Krishan Mohan; Thu, Sandi Win; Hii, Mei Mei; Mendu, Venugopal

    2016-01-01

    The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality. PMID:27679939

  12. Fire resistant behaviour of cellulosic textile functionalized with wastage plant bio-molecules: A comparative scientific report.

    PubMed

    Basak, Santanu; Wazed Ali, S

    2018-07-15

    Three different wastage plant based bio-molecules named banana peel powder (Musa acuminata) (BPP), coconut shell (Cocos nucifera) extract (CSE) and pomegranate rind (Punica granatum) extract (PRE) have been explored as fire resistant material on the cellulosic polymer (cotton fabric). To this end, extracts have been applied to the cotton fabric in different concentration at elevated temperature for specific time period. Treated cotton fabric showed 6 (BPP), 8.5 (CSE) and 12 (PRE) times lower vertical burning rate compared to the control cotton fabric. Thermo-gravimetry (TG) curves and the limiting oxygen index (LOI) value revealed that the PRE extract (LOI: 32) treated fabric encompassed more thermal stability compared to the BPP (LOI:26) and the CSE (LOI: 27) treated fabric as it showed higher oxygen index and more weight retention (40%) at higher temperature 450°C. Moreover, the carbonaceous samples remained after the burning of the extracts and the treated fabrics showed structural integration and more carbon content [65.6 (PRE extract) and 76.3% (PRE treated cotton)] compared to the fragile, net like char of the control cotton fabric, having less carbon content (49.8%). Gas Chromatography Mass spectroscopy (GC-MS) of the different extracts (CSE, PRE, BPP) used for the study showed the presence of high molecular weight aromatic phenolic compounds, tannin based compound and the nitrogen containing alkaloids, responsible for fire resistant effect of the different extract treated fabric. Besides fire retardancy, all the treated fabric showed attractive natural colour (measured by colour strength values) and there has been no adverse effect on the tensile strength property of the fabric after the treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The discrimination of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 1: in situ detection and characterization of dyes.

    PubMed

    Buzzini, Patrick; Massonnet, Genevieve

    2013-11-01

    Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength. © 2013 American Academy of Forensic Sciences.

  14. 7 CFR 301.52 - Quarantine; restriction on interstate movement of specified regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... articles: (1) Cotton and wild cotton, including all parts of these plants. (2) Seed cotton. (3) Cottonseed...) Cotton waste produced at cotton gins and cottonseed oil mills. (6) Cotton gin trash. (7) Used bagging and... cotton oil mill equipment. (9) Kenaf, including all parts of the plants. (10) Okra, including all parts...

  15. 7 CFR 319.8 - Notice of quarantine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... seed cotton; cottonseed; cotton lint, linters, and other forms of cotton fiber (not including yarn, thread, and cloth); cottonseed hulls, cake, meal, and other cottonseed products, except oil; cotton waste... ordinarily used, for containing cotton, grains (including grain products), field seeds, agricultural roots...

  16. Design, Preparation and Activity of Cotton Gauze for Use in Chronic Wound Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J. V.; Yager, Dorne; Bopp, Alvin

    We consider the rational design and chemical modification of cotton gauze, which is used widely in chronic wounds, to improve wound dressing fibers for application to chronic wound healing. Cotton gauze may be tailored to more effectively enhance the biochemistry of wound healing. The presence of elevated levels of elastase in non-healing wounds has been associated with the degradation of important growth factors and fibronectin necessary for wound healing. In the healing wound a balance of elastase and antiproteases precludes degradation of beneficial proteins from taking place. Cotton gauze modified to release elastase inhibitors or selectively functionalized to sequester elastasemore » provides a dressing that decreases high levels of destructive elastase in the chronic wounds. Three approaches have been taken to explore the potential of fiber-inhibitors useful in chronic wounds: 1) Formulation of inhibitors on the dressing; 2) Synthesis of elastase recognition sequences on cotton cellulose; and 3) Data presented here on carboxymethylating, and oxidizing textile finishes of cotton gauze to remove elastase from the wound.« less

  17. Applications of Nanotechnology in Textiles and Cotton Nonwovens: A Review

    USDA-ARS?s Scientific Manuscript database

    Nanotechnology is an advanced science that deals with the understanding, manipulation, transformation, control, and efficient utilization of matter at nanometer dimensions or, say, near its molecular levels. The term nanometer refers to a linear dimension that is a billionth of a meter or, say, one...

  18. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    DTIC Science & Technology

    2014-11-13

    Evaluation of Flame Resistant Clothing for Protection Against Fire Simulations Using an Instrumented Manikin. Several UHMWPE fabrics were tested underneath...PROTECTIVE CLOTHING COTTON FLASH FLAMES UNDERGARMENTS TEST AND EVALUATION FABRICS FLAME TESTING FIRE ...PROTECTION FIRE RESISTANT TEXTILES UHMWPE(ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

  19. Antimicrobial coating of modified chitosan onto cotton fabrics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoli; Ma, Kaikai; Li, Rong; Ren, Xuehong; Huang, T. S.

    2014-08-01

    Chitosan has been applied as an antibacterial agent to provide biocidal function for textiles but has limitations of application condition and durability. In this study, a new N-halamine chitosan derivative was synthesized by introducing N-halamine hydantoin precursor. The synthesized chitosan derivative 1-Hydroxymethyl-5,5-dimethylhydantoin chitosan (chitosan-HDH) was coated onto cotton fabric with 1,2,3,4-butanetetracarboxylic acid (BTCA) as a crosslinking agent. The coatings were characterized and confirmed by FT-IR and SEM. The treated cotton fabrics can be rendered excellent antimicrobial activity upon exposure to dilute household bleach. The chlorinated coated swatches can inactivate 100% of the Staphylococcus aureus and E. coli O157:H7 with a contact time of 5 min. Almost all the lost chlorine after a month of storage could be recharged upon rechlorination. The crease recovery property of the treated swatches improved while the breaking strength decreased compared with uncoated cotton.

  20. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

    PubMed

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2016-10-20

    Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Investigation of eco-friendly casein fibre production methods

    NASA Astrophysics Data System (ADS)

    Bier, M. C.; Kohn, S.; Stierand, A.; Grimmelsmann, N.; Homburg, S. V.; Rattenholl, A.; Ehrmann, A.

    2017-10-01

    The growing environmentally awareness of the consumers leads to a lot of new products in the textile industry. Either a sustainably produced textile or one which is created by reuse of a waste product is preferred. One possibility to create fibers from waste is using waste milk for casein fiber production. Opposite to several other biopolymers, however, spinning fibers from casein causes diverse problems. This article gives an overview of the investigations on how to produce fibres from the milk protein casein in a sustainable way, i.e. without formaldehyde or other polluting ingredients. Mechanical properties as well as water-resistance were investigated for chemical and physical modifications of the base composition. In this way, the positive influence of paraffin oil and wax as well as aggregation at high temperatures could be proven, while temperature treatment resulted in a higher E-modulus.

  2. Treatment of cotton textile wastewater using lime and ferrous sulfate.

    PubMed

    Georgiou, D; Aivazidis, A; Hatiras, J; Gimouhopoulos, K

    2003-05-01

    This technical note summarizes the results of a textile wastewater treatment process aiming at the destruction of the wastewater's color by means of coagulation/flocculation techniques using ferrous sulfate and/or lime. All the experiments were run in a pilot plant that simulated an actual industrial wastewater treatment plant. Treatment with lime alone proved to be very effective in removing the color (70-90%) and part of the COD (50-60%) from the textile wastewater. Moreover, the treatment with ferrous sulfate regulating the pH in the range 9.0+/-0.5 using lime was equally effective. Finally, the treatment with lime in the presence of increasing doses of ferrous sulfate was tested successfully, however; it proved to be very costly mainly due to the massive production of solids that precipitated.

  3. Dyes removal from textile wastewater using graphene based nanofiltration

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Rizki, Z.; Zunita, M.; Dharmawijaya, P. T.

    2017-05-01

    Wastewater produced from textile industry is having more strict regulation. The major pollutant of wastewater from textile industry is Dyes. Dyes have several harsh properties i.e toxic, volatile, complexing easily with mineral ions that are dissolved in water (decreasing the amount of important mineral ions in water), and hard to disintegrate, therefore it must be removed from the waste stream. There are several methods and mechanisms to remove dyes such as chemical and physical sorption, evaporation, biological degradation, and photocatalytic system that can be applied to the waste stream. Membrane-based separation technology has been introduced in dyes removal treatment and is well known for its advantages (flexibility, mild operating condition, insensitive to toxic pollutant). Graphene and its derivatives are novel materials which have special properties due to its ultrathin layer and nanometer-size pores. Thus, the materials are very light yet strong. Moreover, it has low cost and easy to fabricate. Recently, the application of graphene and its derivatives in nanofiltration membrane processes is being widely explored. This review investigates the potentials of graphene based membrane in dyes removal processes. The operating conditions, dyes removal effectiveness, and the drawbacks of the process are the main focus in this paper.

  4. Chemically Driven Printed Textile Sensors Based on Graphene and Carbon Nanotubes

    PubMed Central

    Skrzetuska, Ewa; Puchalski, Michał; Krucińska, Izabella

    2014-01-01

    The unique properties of graphene, such as the high elasticity, mechanical strength, thermal conductivity, very high electrical conductivity and transparency, make them it an interesting material for stretchable electronic applications. In the work presented herein, the authors used graphene and carbon nanotubes to introduce chemical sensing properties into textile materials by means of a screen printing method. Carbon nanotubes and graphene pellets were dispersed in water and used as a printing paste in the screen printing process. Three printing paste compositions were prepared—0%, 1% and 3% graphene pellet content with a constant 3% carbon nanotube mass content. Commercially available materials were used in this process. As a substrate, a twill woven cotton fabric was utilized. It has been found that the addition of graphene to printing paste that contains carbon nanotubes significantly enhances the electrical conductivity and sensing properties of the final product. PMID:25211197

  5. Textile sustainability: reuse of clean waste from the textile and apparel industry

    NASA Astrophysics Data System (ADS)

    Broega, A. C.; Jordão, C.; Martins, S. B.

    2017-10-01

    Today societies are already experiencing changes in their production systems and even consumption in order to guarantee the survival and well-being of future generations. This fact emerges from the need to adopt a more sustainable posture in both people’s daily lives and productive systems. Within this context, textile sustainability emerges as the object of study of this work whose aim is to analyse which sustainability dimensions are being prioritized by the clean waste management systems of the textile and garment industries. This article aims to analyse solutions that are being proposed by sustainable creative business models in the reuse of discarded fabrics by the textile industry. Search also through a qualitative research by a case study (the Reuse Fabric Bank) understand the benefits generated by the re-use in environmental, economic, social and ways to add value.

  6. Comparison of biodegradation of low-weight hydroentangled raw cotton nonwoven fabric and that of commonly used disposable nonwoven fabrics in the aerobic Captina silt loam soil

    USDA-ARS?s Scientific Manuscript database

    The increasing use of disposable nonwovens made of petroleum-based materials generates a large amount of non-biodegradable, solid waste in the environment. As an effort to enhance the usage of biodegradable cotton in nonwovens, this study analyzed the biodegradability of mechanically pre-cleaned gr...

  7. Encapsulation for smart textile electronics - humidity and temperature sensor.

    PubMed

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation.

  8. Cotton fiber quality characterization with light scattering and fourier transform infrared techniques.

    PubMed

    Thomasson, J A; Manickavasagam, S; Mengüç, M P

    2009-03-01

    Fiber quality measurement is critical to assessing the value of a bale of cotton for various textile purposes. An instrument that could measure numerous cotton quality properties by optical means could be made simpler and faster than current fiber quality measurement instruments, and it might be more amenable to on-line measurement at processing facilities. To that end, a laser system was used to investigate cotton fiber samples with respect to electromagnetic scattering at various wavelengths, polarization angles, and scattering angles. A Fourier transform infrared (FT-IR) instrument was also used to investigate the transmission of electromagnetic energy at various mid-infrared wavelengths. Cotton samples were selected to represent a wide range of micronaire values. Varying the wavelength of the laser at a fixed polarization resulted in little variation in scattered light among the cotton samples. However, varying the polarization at a fixed wavelength produced notable variation, indicating that polarization might be used to differentiate among cotton samples with respect to certain fiber properties. The FT-IR data in the 12 to 22 microm range produced relatively large differences in the amount of scattered light among all samples, and FT-IR data at certain combinations of fixed wavelengths were highly linearly related to certain measures of cotton quality including micronaire.

  9. A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol).

    PubMed

    Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi

    2015-02-17

    Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.

  10. Continuity and Change in India’s Foreign Policy: The Next Five Years,

    DTIC Science & Technology

    1984-01-01

    mainly of food products (tea, coffee, rice, cashews , pepper), tobacco, leather goods, cotton textiles, jute products, light engineering goods, and...industrial fasteners ( nuts and bolts), for example, have drawn strong Indian protests, and the protectionist mood in the United States, as reflected in

  11. Geotextiles : a specific application of biofibers

    Treesearch

    B. W. English

    1995-01-01

    Geotextiles are any textile like material used to enhance soil structural performance. Biobased geotextiles are used for short term (6 months to 10 year) applications where biodegradability is a positive attribute, such as mulching and erosion control. Fiber options for biobased geotextiles include cereal straws, coir, jute, kenaf, flax, sisal, hemp, cotton, woodfiber...

  12. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    PubMed Central

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium. PMID:23046547

  13. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, Alexandra H.; Oldham, Christopher J.; Parsons, Gregory N., E-mail: gnp@ncsu.edu

    Textile materials, including woven cotton, polymer knit fabrics, and synthetic nonwoven fiber mats, are being explored as low-cost, flexible, and light-weight platforms for wearable electronic sensing, communication, energy generation, and storage. The natural porosity and high surface area in textiles is also useful for new applications in environmental protection, chemical decontamination, pharmaceutical and chemical manufacturing, catalytic support, tissue regeneration, and others. These applications raise opportunities for new chemistries, chemical processes, biological coupling, and nanodevice systems that can readily combine with textile manufacturing to create new “multifunctional” fabrics. Atomic layer deposition (ALD) has a unique ability to form highly uniform andmore » conformal thin films at low processing temperature on nonuniform high aspect ratio surfaces. Recent research shows how ALD can coat, modify, and otherwise improve polymer fibers and textiles by incorporating new materials for viable electronic and other multifunctional capabilities. This article provides a current overview of the understanding of ALD coating and modification of textiles, including current capabilities and outstanding problems, with the goal of providing a starting point for further research and advances in this field. After a brief introduction to textile materials and current textile treatment methods, the authors discuss unique properties of ALD-coated textiles, followed by a review of recent electronic and multifunctional textiles that use ALD coatings either as direct functional components or as critical nucleation layers for active materials integration. The article concludes with possible future directions for ALD on textiles, including the challenges in materials, manufacturing, and manufacturing integration that must be overcome for ALD to reach its full potential in electronic and other emerging multifunctional textile systems.« less

  14. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs.

    PubMed

    Huang, Cong; Nie, Xinhui; Shen, Chao; You, Chunyuan; Li, Wu; Zhao, Wenxia; Zhang, Xianlong; Lin, Zhongxu

    2017-11-01

    Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton-producing and cotton-consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome-wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high-density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single-nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty-eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high-resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-05

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Textile fibers coated with carbon nanotubes for smart clothing applications

    NASA Astrophysics Data System (ADS)

    Lepak, Sandra; Lalek, Bartłomiej; Janczak, Daniel; Dybowska-Sarapuk, Łucja; Krzemiński, Jakub; Jakubowska, Małgorzata; Łekawa-Raus, Agnieszka

    2017-08-01

    Carbon nanomaterials: graphene, fullerenes and in particular carbon nanotubes (CNTs) are extremely interesting and extraordinary materials. It is mostly thanks to theirs unusual electrical and mechanical properties. Carbon nanotubes are increasingly examined to enable its usage in many fields of science and technology. It has been reported that there is a high possibility to use CNTs in electronics, optics, material engineering, biology or medicine. However, this material still interests and inspire scientists around the world and the list of different CNTs applications is constantly expanding. In this paper we are presenting a study on the possibility of application carbon nanotubes as a textile fiber coating for smart clothing applications. Various suspensions and pastes containing CNTs have been prepared as a possible coating onto textile fibers. Different application techniques have also been tested. Those techniques included painting with nanotube suspension, spray coating of suspensions and immersion. Following textile fibers were subject to tests: cotton, silk, polyester, polyamide and wool. Obtained composites materials were then characterized electrically by measuring the electrical resistance.

  17. Biological fabrication of cellulose fibers with tailored properties

    NASA Astrophysics Data System (ADS)

    Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R.; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen

    2017-09-01

    Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material’s functionality. In vitro model cultures of upland cotton (Gossypium hirsutum) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept.

  18. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres

    PubMed Central

    Hinchliffe, Doug J.; Condon, Brian D.; Thyssen, Gregory; Naoumkina, Marina; Madison, Crista A.; Reynolds, Michael; Delhom, Christopher D.; Fang, David D.; Li, Ping; McCarty, Jack

    2016-01-01

    Some naturally coloured brown cotton fibres from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the mechanism of lint fibre FR is not yet fully understood. In this study, we show that both the brown colour and enhanced FR of the Lc1 lint colour locus are linked to a 1.4Mb inversion on chromosome A07 that is immediately upstream of a gene with similarity to Arabidopsis TRANSPARENT TESTA 2 (TT2). As a result of the alternative upstream sequence, the transcription factor GhTT2_A07 is highly up-regulated in developing fibres. In turn, genes in the phenylpropanoid metabolic pathway are activated, leading to biosynthesis of proanthocyanidins and accumulation of inorganic elements. We show that enhanced FR and anthocyanin precursors appear in developing brown fibres well before the brown colour is detectible, demonstrating for the first time that the polymerized proanthocyanidins that constitute the brown colour are not the source of enhanced FR. Identifying the particular colourless metabolite that provides Lc1 cotton with enhanced FR could help minimize the use of synthetic chemical flame retardant additives in textiles. PMID:27567364

  19. Organic textile waste as a resource for sustainable agriculture in arid and semi-arid areas.

    PubMed

    Eriksson, Bo G

    2017-03-01

    New vegetation in barren areas offers possibilities for sequestering carbon in the soil. Arid and semi-arid areas (ASAs) are candidates for new vegetation. The possibility of agriculture in ASAs is reviewed, revealing the potential for cultivation by covering the surface with a layer of organic fibres. This layer collects more water from humidity in the air than does the uncovered mineral surface, and creates a humid environment that promotes microbial life. One possibility is to use large amounts of organic fibres for soil enhancement in ASAs. In the context of the European Commission Waste Framework Directive, the possibility of using textile waste from Sweden is explored. The costs for using Swedish textile waste are high, but possible gains are the sale of agricultural products and increased land prices as well as environmental mitigation. The findings suggest that field research on such agriculture in ASAs should start as soon as possible.

  20. Production of sludge-incorporated paver blocks for efficient waste management.

    PubMed

    Velumani, P; Senthilkumar, S

    2018-06-01

    Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.

  1. Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells

    PubMed Central

    John, Maliyakal E.; Keller, Greg

    1996-01-01

    Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry. PMID:11038522

  2. Radiative human body cooling by nanoporous polyethylene textile.

    PubMed

    Hsu, Po-Chun; Song, Alex Y; Catrysse, Peter B; Liu, Chong; Peng, Yucan; Xie, Jin; Fan, Shanhui; Cui, Yi

    2016-09-02

    Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management. Copyright © 2016, American Association for the Advancement of Science.

  3. Applications of cyclodextrins in medical textiles - review.

    PubMed

    Radu, Cezar-Doru; Parteni, Oana; Ochiuz, Lacramioara

    2016-02-28

    This paper presents data on the general properties and complexing ability of cyclodextrins and assessment methods (phase solubility, DSC tests and X-ray diffraction, FTIR spectra, analytical method). It focuses on the formation of drug deposits on the surface of a textile underlayer, using a cyclodextrin compound favoring the inclusion of a drug/active principle and its release onto the dermis of patients suffering from skin disorders, or for protection against insects. Moreover, it presents the kinetics, duration, diffusion flow and release media of the cyclodextrin drug for in vitro studies, as well as the release modeling of the active principle. The information focuses on therapies: antibacterial, anti-allergic, antifungal, chronic venous insufficiency, psoriasis and protection against insects. The pharmacodynamic agents/active ingredients used on cotton, woolen and synthetic textile fabrics are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    PubMed

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  5. Chemical variation for fiber cuticular wax levels in upland cotton (Gossypium hirsutum) evaluated under contrasting irrigation regimes

    USDA-ARS?s Scientific Manuscript database

    Fiber quality is important for the sale of bulk fiber to textile mills for processing but is affected by many environmental factors, including water deficit. These environmental factors have made it difficult to identify the primary determinants of fiber quality which has spurred renewed research ef...

  6. 46 CFR 160.055-1 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Repellant Treated. MIL-W-17337D—Webbing, Woven, Nylon. MIL-C-43006D—Cloth and Strip Laminated, Vinyl-Nylon High Strength, Flexible. (2) Federal Specifications: CCC-C-700G—Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D—Cloth, Drill, Cotton. (3) Federal Standards: No. 191—Textile Test Methods. No...

  7. 46 CFR 160.055-1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Repellant Treated. MIL-W-17337D—Webbing, Woven, Nylon. MIL-C-43006D—Cloth and Strip Laminated, Vinyl-Nylon High Strength, Flexible. (2) Federal Specifications: CCC-C-700G—Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D—Cloth, Drill, Cotton. (3) Federal Standards: No. 191—Textile Test Methods. No...

  8. 46 CFR 160.055-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Repellant Treated. MIL-W-17337D—Webbing, Woven, Nylon. MIL-C-43006D—Cloth and Strip Laminated, Vinyl-Nylon High Strength, Flexible. (2) Federal Specifications: CCC-C-700G—Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D—Cloth, Drill, Cotton. (3) Federal Standards: No. 191—Textile Test Methods. No...

  9. 46 CFR 160.055-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Repellant Treated. MIL-W-17337D—Webbing, Woven, Nylon. MIL-C-43006D—Cloth and Strip Laminated, Vinyl-Nylon High Strength, Flexible. (2) Federal Specifications: CCC-C-700G—Cloth, Coated, Vinyl, Coated (Artificial Leather). CCC-C-426D—Cloth, Drill, Cotton. (3) Federal Standards: No. 191—Textile Test Methods. No...

  10. Respiratory-function changes in textile workers exposed to synthetic fibers.

    PubMed

    Valic, F; Zuskin, E

    1977-01-01

    The prevalence of respiratory symptoms and acute and chronic changes in ventilatory function were studied in three groups of textile workers: 68 workers with exposure to synthetic fibers only, 30 with previous exposure to cotton, and 77 with previous exposure to hemp. The prevalence of dyspnea, grade 3 to 4, was significantly lower (P less than .01) in workers with a history of exposure to synthetic fibers only than in those previously exposed to hemp or cotton. No case of byssinosis was found in any of the workers studied. Values in ventilatory-function tests (FEV 1.0, FVC and MEF 50%) were significantly reduced during the work shift on Monday and Thursday. The Monday MEF 50% preshift values were significantly lower than expected in all three groups of workers. A comparison of the 1963-1973 data on the 77 workers previously exposed to hemp showed a lower prevalence of most chronic respiratory symptoms and smaller acute FEV1.0 and FVC reductions when they worked with synthetic fibers (1973) than when they were exposed to hemp (1963).

  11. Simulative Global Warming Negatively Affects Cotton Fiber Length through Shortening Fiber Rapid Elongation Duration.

    PubMed

    Dai, Yanjiao; Yang, Jiashuo; Hu, Wei; Zahoor, Rizwan; Chen, Binglin; Zhao, Wenqing; Meng, Yali; Zhou, Zhiguo

    2017-08-23

    Global warming could possibly increase the air temperature by 1.8-4.0 °C in the coming decade. Cotton fiber is an essential raw material for the textile industry. Fiber length, which was found negatively related to the excessively high temperature, determines yarn quality to a great extent. To investigate the effects of global warming on cotton fiber length and its mechaism, cottons grown in artificially elevated temperature (34.6/30.5 °C, T day /T night ) and ambient temperature (31.6/27.3 °C) regions have been investigated. Becaused of the high sensitivities of enzymes V-ATPase, PEPC, and genes GhXTH1 and GhXTH2 during fiber elongation when responding to high temperature stress, the fiber rapid elongation duration (FRED) has been shortened, which led to a significant suppression on final fiber length. Through comprehensive analysis, T night had a great influence on fiber elongation, which means T n could be deemed as an ideal index for forecasting the degree of high temperature stress would happen to cotton fiber property in future. Therefore, we speculate the global warming would bring unfavorable effects on cotton fiber length, which needs to take actions in advance for minimizing the loss in cotton production.

  12. Textile Manufacturing Sector (NAICS 313)

    EPA Pesticide Factsheets

    Find environmental regulatory and compliance information for the textile and leather manufacturing sector, including NESHAPs for leather tanning and fabric printing, and small business guidance for RCRA hazardous waste requirements.

  13. Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation

    NASA Astrophysics Data System (ADS)

    Caschera, Daniela; Federici, Fulvio; de Caro, Tilde; Cortese, Barbara; Calandra, Pietro; Mezzi, Alessio; Lo Nigro, Raffaella; Toro, Roberta G.

    2018-01-01

    A modified one step and cost-effective chemical green route has been used to synthesize oleate-capped TiO2 anatase nanocrystals (NCs) doped with different amounts of europium, with high yields and without high-temperature post-calcination processes. Europium doping endowed TiO2 NCs with an intense red luminescence associated with the 5D0 → 7F2 transition of the electronic structure of Eu3+ and was responsible for both the morphological change of the NCs structure (from nanorods to spherical nanoparticles) and the blue shift in the absorption edge respect to the undoped TiO2 NCs. Furthermore, photocatalytic experiments revealed that a low-content (0.5 mol%) Eu3+ doped TiO2 NCs showed the best ability as photocatalyst for the degradation of methylene blue (MB) under both UV and visible light irradiation, even if all the Eu3+ doped oleate-capped TiO2 NCs were more effective under visible light. Moreover, taking advantage of their photocatalytic activity, the 0.5% Eu3+ doped oleate-capped TiO2 photocatalysts has been employed on cotton fabrics. Our results highlighted that functionalization of cotton textile with Eu3+ doped oleate-capped TiO2 NCs imparted new functionalities, such as a high photocatalytic activity toward MB degradation under visible light. In addition, it determined also the change in the wetting behaviour of cotton that switches to a superhydrophobic nature. The obtained fabric also showed stable and robust superhydrophobicity against strong acid and alkaline environments. Multifunctional materials having simultaneously luminescence, superhydrophobicity and visible light photocatalysis are expected to be very useful in many technological applications.

  14. 7 CFR 318.47 - Notice of quarantine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... aforementioned insect pests. (c) All parts and products of plants of the genus Gossypium, such as seeds including seed cotton; cottonseed; cotton lint, linters, and other forms of cotton fiber; cottonseed hulls, cake, meal, and other cottonseed products, except oil; cotton waste; and all other unmanufactured parts of...

  15. 7 CFR 318.47 - Notice of quarantine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... aforementioned insect pests. (c) All parts and products of plants of the genus Gossypium, such as seeds including seed cotton; cottonseed; cotton lint, linters, and other forms of cotton fiber; cottonseed hulls, cake, meal, and other cottonseed products, except oil; cotton waste; and all other unmanufactured parts of...

  16. Isolation and recovery of cellulose from waste nylon/cotton blended fabrics by 1-allyl-3-methylimidazolium chloride.

    PubMed

    Lv, Fangbing; Wang, Chaoxia; Zhu, Ping; Zhang, Chuanjie

    2015-06-05

    Development of a simple process for separating cellulose and nylon 6 from their blended fabrics is indispensable for recycling of waste mixed fabrics. An efficient procedure of dissolution of the fabrics in an ionic liquid 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) and subsequent filtration separation has been demonstrated. Effects of treatment temperature, time and waste fabrics ratio on the recovery rates were investigated. SEM images showed that the cotton cellulose dissolved in [AMIM]Cl while the nylon 6 fibers remained. The FTIR spectrum of regenerated cellulose (RC) was similar with that of virgin cotton fibers, which verified that no other chemical reaction occurred besides breakage of hydrogen bonds during the processes of dissolution and separation. TGA curves indicated that the regenerated cellulose possessed a reduced thermal stability and was effectively removed from waste nylon/cotton blended fabrics (WNCFs). WNCFs were sufficiently reclaimed with high recovery rate of both regenerated cellulose films and nylon 6 fibers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Bioinspiration and Biomimicry: Possibilities for Cotton Byproducts

    USDA-ARS?s Scientific Manuscript database

    The byproducts from cotton gins have commonly been referred to as cotton gin trash or cotton gin waste primarily because the lint and seed were the main focus of the operation and the byproducts were a financial liability that did not have a consistent market. Even though the byproducts were called ...

  18. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    PubMed

    Avci, Utku; Pattathil, Sivakumar; Singh, Bir; Brown, Virginia L; Hahn, Michael G; Haigler, Candace H

    2013-01-01

    Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  20. Benzothiazole, benzotriazole, and their derivates in clothing textiles--a potential source of environmental pollutants and human exposure.

    PubMed

    Avagyan, Rozanna; Luongo, Giovanna; Thorsén, Gunnar; Östman, Conny

    2015-04-01

    Textiles play an important role in our daily life, and textile production is one of the oldest industries. In the manufacturing chain from natural and/or synthetic fibers to the final clothing products, the use of many different chemicals is ubiquitous. A lot of research has focused on chemicals in textile wastewater, but the knowledge of the actual content of harmful chemicals in clothes sold on the retail market is limited. In this paper, we have focused on eight benzothiazole and benzotriazole derivatives, compounds rated as high production volume chemicals. Twenty-six clothing samples of various textile materials and colors manufactured in 14 different countries were analyzed in textile clothing using liquid chromatography tandem mass spectrometry. Among the investigated textile products, 11 clothes were for babies, toddlers, and children. Eight of the 11 compounds included in the investigation were detected in the textiles. Benzothiazole was present in 23 of 26 investigated garments in concentrations ranging from 0.45 to 51 μg/g textile. The garment with the highest concentration of benzothiazole contained a total amount of 8.3 mg of the chemical. The third highest concentration of benzothiazole (22 μg/g) was detected in a baby body made from "organic cotton" equipped with the "Nordic Ecolabel" ("Svanenmärkt"). It was also found that concentrations of benzothiazoles in general were much higher than those for benzotriazoles. This study implicates that clothing textiles can be a possible route for human exposure to harmful chemicals by skin contact, as well as being a potential source of environmental pollutants via laundering and release to household wastewater.

  1. Fire Hazard Assessment of Shipboard Plastic Waste Processing Systems

    DTIC Science & Technology

    1994-02-28

    cm 1.6 Wood panel (S178M) 1.6 Plastic wage (processed) 1.65 Hardboard, gloss paint, 3.4 mm 1.7 Mineral wool , textile paper (S160M) 1.7 Hardboard...1.27 cm 390 Chipboard (Si 18M) 390 Plywood, plain, 0.635 cm 390 Foam, flexible, 2.54 cm 390 GRP, 2.24 mm 390 Pha waste -(ressed 400 Mineral wool , textile

  2. Box-Behnken design approach towards optimization of activated carbon synthesized by co-pyrolysis of waste polyester textiles and MgCl2

    NASA Astrophysics Data System (ADS)

    Yuan, Zhihang; Xu, Zhihua; Zhang, Daofang; Chen, Weifang; Zhang, Tianqi; Huang, Yuanxing; Gu, Lin; Deng, Haixuan; Tian, Danqi

    2018-01-01

    Pyrolysis activation of waste polyester textiles (WPT) was regarded as a sustainable technique to synthesize multi-pore activated carbons. MgO-template method of using MgCl2 as the template precursor was employed, which possessed the advantages of ideal pore-forming effect and efficient preparation process. The response surface methodology coupled with Box-Behnken design (BBD) was conducted to study the interaction between different variables and optimized preparation conditions of waste polyester textiles based activated carbons. Derived from BBD design results, carbonization temperature was the most significant individual factor. And the maximum specific surface area of 1364 m2/g, which presented a good agreement with the predicted response values(1315 m2/g), was obtained at mixing ratio in MgCl2/WPT, carbonization temperature and time of 5:1, 900 °C and 90 min, respectively. Furthermore, the physicochemical properties of the sample prepared under optimal conditions were carried on utilizing nitrogen adsorption/desorption isotherms, EA, XRD, SEM and FTIR. In addition, the pore-forming mechanism was mainly attributed to the tendency of carbon layer coating on MgO to form pore walls after elimination of MgO and the strong dehydration effect of MgCl2 on WPT.

  3. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  4. Application of cotton burr/stem in thermoplastic composites

    USDA-ARS?s Scientific Manuscript database

    Cotton gin waste (CGW) is a waste stream from a ginning operation that is rich in ligno-cellulosic fibers. Currently, there are no major commercial-scale applications for this material except for a small fraction that goes into either composting or is land applied. For a majority of gins across the ...

  5. An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes.

    PubMed

    Wei, Chengzhuo; Xu, Qi; Chen, Zeqi; Rao, Weida; Fan, Lingling; Yuan, Ye; Bai, Zikui; Xu, Jie

    2017-08-01

    A novel all-solid-state yarn supercapacitor (YSC) has been fabricated by using the cotton yarns coated with polypyrrole (PPy) nanotubes. The interconnected network structure of PPy can increase the surface area as well as the electrode/electrolyte interface area, thus resulting in improved electrochemical performance. For the proposed YSC, a high areal-specific capacitance of 74.0mFcm -2 and a desirable energy density of 7.5μWhcm -2 are achieved. The flexibility of the YSC demonstrates that it is suitable for the integration as flexible power sources in wearable electronic textiles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Morphological changes in textile fibres exposed to environmental stresses: atomic force microscopic examination.

    PubMed

    Canetta, Elisabetta; Montiel, Kimberley; Adya, Ashok K

    2009-10-30

    The ability of the atomic force microscope (AFM) to investigate the nanoscopic morphological changes in the surfaces of fabrics was examined for the first time. This study focussed on two natural (cotton and wool), and a regenerated cellulose (viscose) textile fibres exposed to various environmental stresses for different lengths of times. Analyses of the AFM images allowed us to measure quantitatively the surface texture parameters of the environmentally stressed fabrics as a function of the exposure time. It was also possible to visualise at the nanoscale the finest details of the surfaces of three weathered fabrics and clearly distinguish between the detrimental effects of the imposed environmental conditions. This study confirmed that the AFM could become a very powerful tool in forensic examination of textile fibres to provide significant fibre evidence due to its capability of distinguishing between different environmental exposures or forced damages to fibres.

  7. Printed organic conductive polymers thermocouples in textile and smart clothing applications.

    PubMed

    Seeberg, Trine M; Røyset, Arne; Jahren, Susannah; Strisland, Frode

    2011-01-01

    This work reports on an experimental investigation of the potential of using selected commercially available organic conductive polymers as active ingredients in thermocouples printed on textiles. Poly(3, 4-ethylenedioxythiophene): poly(4 styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) were screen printed onto woven cotton textile. The influence of multiple thermocycles between 235 K (-38 °C) and 350 K (+77 °C) on resistivity and thermoelectric properties was examined. The Seebeck coefficients of PEDOT:PSS and PANI were found to be about +18 μV/K and +15 uV/K, respectively, when "metal-polymer" thermocouples were realized by combining the polymer with copper. When "polymer-polymer" thermocouples were formed by combining PEDOT:PSS and PANI, a thermoelectric voltage of about +10 μV/K was observed. A challenge recognized in the experiments is that the generated voltage exhibited drift and fluctuations.

  8. BASS Hardware Setup

    NASA Image and Video Library

    2016-01-27

    ISS046e025945 (01/27/2016) --- NASA astronaut Tim Kopra sets up hardware for the Burning and Suppression of Solids – Milliken, or BASS-M, experiment. The BASS-M investigation tests flame-retardant cotton fabrics to determine how well they resist burning in microgravity. Results benefit research on flame-retardant textiles that can be used on Earth and in space

  9. Public Employment Program Needs in the Rural South.

    ERIC Educational Resources Information Center

    Reul, Myrtle R.

    Almost 50 percent of the nation's poor reside in the South where 13 of every 100 whites and 41 of every 100 blacks are poor. The southern industries of ranching, dairy farming, cotton, and textiles are suffering from movement out of the area and development of competing products. Most new industries are small, labor oriented, low-profit-margin…

  10. Development of PVA-alginate as a matrix for enzymatic decolorization of textile dye in bioreactor system

    NASA Astrophysics Data System (ADS)

    Yanto, Dede Heri Yuli; Zahara, Syifa; Laksana, Raden Permana Budi; Anita, Sita Heris; Oktaviani, Maulida; Sari, Fahriya Puspita

    2017-01-01

    An immobilization technique using polyvinyl alcohol (PVA) crosslinked with sodium alginate as a matrix has been developed for textile dyes decolorization. Textiles use dye as an addition to the aesthetic value of the product. Dyes are generally used is a textile dye where the waste will be released directly into the waters around 2-20%. Therefore, it is important to develop an enzyme immobilization method using PVA-Alginate as a matrix. Based on the results of the study showed that the PVA-Alginate beads produced high decolorization percent compared to beads which contains only Ca-alginate alone and formula matrix is optimum at PVA 6% and alginate 1.5%. Encapsulation with boric acid at 7% showed optimum decolorization and reduction for enzyme leakage during decolorization. This study suggested that immobilization of enzymes into PVA-alginate matrix might be used as a biodecolorating agent.

  11. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres.

    PubMed

    Hinchliffe, Doug J; Condon, Brian D; Thyssen, Gregory; Naoumkina, Marina; Madison, Crista A; Reynolds, Michael; Delhom, Christopher D; Fang, David D; Li, Ping; McCarty, Jack

    2016-10-01

    Some naturally coloured brown cotton fibres from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the mechanism of lint fibre FR is not yet fully understood. In this study, we show that both the brown colour and enhanced FR of the Lc1 lint colour locus are linked to a 1.4Mb inversion on chromosome A07 that is immediately upstream of a gene with similarity to Arabidopsis TRANSPARENT TESTA 2 (TT2). As a result of the alternative upstream sequence, the transcription factor GhTT2_A07 is highly up-regulated in developing fibres. In turn, genes in the phenylpropanoid metabolic pathway are activated, leading to biosynthesis of proanthocyanidins and accumulation of inorganic elements. We show that enhanced FR and anthocyanin precursors appear in developing brown fibres well before the brown colour is detectible, demonstrating for the first time that the polymerized proanthocyanidins that constitute the brown colour are not the source of enhanced FR. Identifying the particular colourless metabolite that provides Lc1 cotton with enhanced FR could help minimize the use of synthetic chemical flame retardant additives in textiles. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. [Investigation of fibrous cultural materials by infrared spectroscopy].

    PubMed

    Luo, Xi-yun; Du, Yi-ping; Shen, Mei-hua; Zhang, Wen-qing; Zhou, Xin-guang; Fang, Shu-ying; Zhang, Xuan

    2015-01-01

    Cultural fibrous material includes both important categories, i. e. textile and paper, consisting of precious cultural materials in museum, such as costume, painting, and manuscript. In recent years more and more connoisseur and conservator's concerns are, through nondestructive method, the authenticity and the ageing identification of these cultural relics especially made from fragile materials. In this research, we used attenuated total reflection infrared spectroscopy to identify five traditional textile fibers, alongside cotton, linen, wool, mulberry silk and tussah silk, and another five paper fibers alongside straw, wheat straw, long qisong, Chinese alpine rush and mulberry bar, which are commonly used for making Chinese traditional xuan paper. The research result showed that the animal fiber (wool, mulberry silk and tussah silk) and plant fiber (cotton and linen) were easier to be distinguished by comparing the peaks at 3 280 cm-1 belonging to NH stretching vibration and a serious peaks related to amide I to amide III. In the spectrum of wool, the peak at 1 076 cm-1 was assigned to the S-O stretching vibration absorption of cystine in wool structure and can be used to tell wool from silk. The spectrum of mulberry silk and tussah silk seems somewhat difficult to be identified, as well as the spectrum of cotton and linen. Five rural paper fibers all have obvious characteristic peaks at 3 330, 2 900 cm-1 which are related to OH and CH stretching vibration. In the fingerprint wavenumber range of 1 600 - 800 cm, the similar peaks also appeared at 1 370, 1 320 cm-1 and 1 162, 1 050 cm-1, both group peaks respectively are related to CH and CO vibration in the structure of cellulose and hemicellulose in paper fibers. Although there is more similarity of the infrared spectroscopy of these 5 paper fibers, some tiny difference in absorbance also can be found at 3 300 cm-1 and in the fingerprint range at 1 332, 1 203, and 1 050 cm-1 which are related to C-O-C vibration in cellulose. Moreover, in order to explore direct and simple method to identify different materials with similar spectrum,. the principal component analysis (PCA) was applied to separate cotton and linen, mulberry silk and tussah silk, as well as five paper fibers. To eliminate and reduce the spectral scattering caused by sample uneven surface roughness, the multiplicative scatter correction (MSC) has been applied based on total spectral data. The result showed that the score plot using the first two principal components can effectively categorize both group textiles of cotton and linen, as well as mulberry silk and tussah silk, and they have similar chemical structure. For five paper fibers, the PCA was applied in different spectral range (918-550, 1 280-918, 1 700-1 280 and 3 800-2 800 cm-1), and the best result appeared in the range from 3 800 to 2 800 cm-1, in which the five paper fibers can be well categorized. This research showed that infrared spectroscopy combined with principal component analysis has great potential advantage on identifying fibrous materials with similar structure.

  13. Characterisation of oil and aluminium complex on replica and historical 19th c. Turkey red textiles by non-destructive diffuse reflectance FTIR spectroscopy.

    PubMed

    Wertz, Julie H; Tang, Pik Leung; Quye, Anita; France, David J

    2018-06-11

    This work investigates historical and replica Turkey red textiles with diffuse reflectance infrared (DRIFT) spectroscopy to study the coordination complex between cellulose, fatty acids, and the aluminium ions that form the basis of the colour lake. Turkey red was produced in Scotland for around 150 years, and is held in many museum and archive collections. The textile was renowned for its brilliant red hue, and for its fastness to light, washing, rubbing, and bleaching. This was attributed to its unusual preparatory process, the chemistry of which was never fully understood, that involved imbuing cotton with a solution of aqueous fatty acids and then aluminium in the following step. Here we show, for the first time, a characterisation of the Turkey red complex on replica and historical textiles. The development of techniques for non-destructive and in situ analysis of historical textiles is valuable for improving understanding of their chemistry, hopefully contributing to better conservation and display practices. The results show the fatty acids condense onto the cellulose polymer via hydrogen bonding between the CO and OH of the respective compounds, then the aluminium forms a bridging complex with the fatty acid carboxyl. This contributes to an improved understanding of Turkey red textiles, and shows the useful application of handheld diffuse FTIR instruments for heritage textile research. Copyright © 2018. Published by Elsevier B.V.

  14. Cross-sectional study on the endotoxin exposure and lung function impairment in the workers of textile industry near Lahore, Pakistan.

    PubMed

    Ghani, Nadia; Khalid, Anum; Tahir, Arifa

    2016-07-01

    To examine the effects of airborne endotoxin on lung function impairment in exposure-response relationships among the workers of textile industry. The cross-sectional study was conducted at Lahore College for Women University, Lahore, Pakistan, from January to August 2014, and comprised textile mill workers. The participants were divided into exposed and control groups. A questionnaire was used to ask workers about the potential adverse health effects of their occupation. The pulmonary function test was carried out by spirometer. Endotoxin levels in the samples were determined using the key quality characteristics limulus amebocyte lysate. The data was analysed to determine the correlation between the endotoxin exposure duration and pulmonary function test parameters. There were 200 subjects subdivided into 100 each inexposed and control groups. Overall, 160(80%) were not aware of safety measures and the remaining 40(20%) were partially practising. Changes in pulmonary function due to endotoxin exposure showed decreased force vital capacity, flow rate and peak expiratory flow parameters significantly different (p<0.05, p<0.001). The endotoxin concentration was between 12EU/m3 and 300EU/m3. Airborne endotoxin concentrations in textile plants exceeded the Dutch health-based guidance limit of 90EU/m3 and was associated with respiratory health effects. Prolonged exposure to airborne endotoxin caused constant lung impairment. Proper safety measures should be adopted to avoid the inhalation of cotton dust.

  15. Field Comparison of the Sampling Efficacy of Two Smear Media: Cotton Fiber and Kraft Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogue, M.G.

    Two materials were compared in field tests at the Defense Waste Processing Facility: kraft paper (a strong, brown paper made from wood pulp prepared with a sodium sulfate solution) and cotton fiber. Based on a sampling of forty-six pairs of smears, the cotton fiber smears provide a greater sensitivity. The cotton fiber smears collected an average of forty-four percent more beta activity than the kraft paper smears and twenty-nine percent more alpha activity. Results show a greater sensitivity with cotton fiber over kraft paper at the 95 percent confidence level. Regulatory requirements for smear materials are vague. The data demonstratemore » that the difference in sensitivity of smear materials could lead to a large difference in reported results that are subsequently used for meeting shipping regulations or evaluating workplace contamination levels.« less

  16. Ageing of native cellulose fibres under archaeological conditions: textiles from the Dead Sea region studied using synchrotron X-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Müller, M.; Murphy, B.; Burghammer, M.; Riekel, C.; Pantos, E.; Gunneweg, J.

    2007-12-01

    Archaeological cellulose textile fibres (linen and cotton) from caves in the Dead Sea region were investigated using synchrotron X-ray microdiffraction. The degradation of the up to 2100 year old fibres was found to depend on the climatic conditions at the place of storage. The size and the lattice parameters of the cellulose nanocrystals (microfibrils) in the fibres change upon degradation; these parameters are shown to be strongly correlated, leading to a microscopic description of the degradation process in terms of molecular disorder. Artificial ageing does not seem to reproduce the effects observed here for the first time on archaeological cellulose fibres.

  17. Judging The Effectiveness Of Wool Combing By The Entropy Of The Images Of Wool Slivers

    NASA Astrophysics Data System (ADS)

    Rodrigues, F. Carvalho; Carvalho, Fernando D.; Peixoto, J. Pinto; Silva, M. Santos

    1989-04-01

    In general it can be said that the textile industry endeavours to render a bunch of fibers chaotically distributed in space into an ordered spatial distribution. This fact is independent of the nature the fibers, i.e., the aim of getting into higher order states in the spatial distribution of the fibers dictates different industrial processes depending on whether the fibers are wool, cotton or man made but the all effect is centred on obtaining at every step of any of the processes a more ordered state regarding the spatial distribution of the fibers. Thinking about the textile processes as a method of getting order out of chaos, the concept of entropy appears as the most appropriate judging parameter on the effectiveness of a step in the chain of an industrial process to produce a regular textile. In fact, entropy is the hidden parameter not only for the textile industry but also for the non woven and paper industrial processes. It happens that in these industries the state of order is linked with the spatial distribution of fibers and to obtain an image of a spatial distribution is an easy matter. To compute the image entropy from the grey level distribution requires only the use of the Shannon formula. In this paper to illustrate the usefulness of employing the entropy of an image concept to textiles the evolution of the entropy of wool slivers along the combing process is matched against the state of parallelization of the fibbers along the seven steps as measured by the existing method. The advantages of the entropy method over the previous method based on diffraction is also demonstrated.

  18. Factors Affecting the Persistence of Staphylococcus aureus on Fabrics

    PubMed Central

    Wilkoff, Lee J.; Westbrook, Louise; Dixon, Glen J.

    1969-01-01

    The persistence of Staphylococcus aureus (Smith) on wool blanket, wool gabardine, cotton sheeting, cotton knit jersey, cotton terry cloth, and cotton wash-and-wear fabrics was studied. The fabrics were exposed to bacterial populations by three methods: direct contact, aerosol, and a lyophilized mixture of bacteria and dust having a high content of textile fibers. The contaminated fabrics were held in 35 or 78% relative humidities at 25 C. In general, the persistence time of S. aureus populations on fabrics held in 35% relative humidity was substantially longer when the fabrics were contaminated by exposure to aerosolized cultures or to dust containing bacteria than when contaminated by direct contact. In a 78% relative humidity, bacterial populations on the fabrics persisted for substantially shorter periods of time regardless of the mode of contamination or fabric type. Cotton wash-and-wear fabric (treated with a modified triazone resin) was the material on which populations of S. aureus persisted for the shortest time. This organism retained its virulence for Swiss mice after being recovered from wool gabardine swatches held 4 weeks in 35% relative humidity and 6 weeks in 78% relative humidity. Images PMID:5775911

  19. Evaluation of genotype x environment interactions in cotton using the method proposed by Eberhart and Russell and reaction norm models.

    PubMed

    Alves, R S; Teodoro, P E; Farias, F C; Farias, F J C; Carvalho, L P; Rodrigues, J I S; Bhering, L L; Resende, M D V

    2017-08-17

    Cotton produces one of the most important textile fibers of the world and has great relevance in the world economy. It is an economically important crop in Brazil, which is the world's fifth largest producer. However, studies evaluating the genotype x environment (G x E) interactions in cotton are scarce in this country. Therefore, the goal of this study was to evaluate the G x E interactions in two important traits in cotton (fiber yield and fiber length) using the method proposed by Eberhart and Russell (simple linear regression) and reaction norm models (random regression). Eight trials with sixteen upland cotton genotypes, conducted in a randomized block design, were used. It was possible to identify a genotype with wide adaptability and stability for both traits. Reaction norm models have excellent theoretical and practical properties and led to more informative and accurate results than the method proposed by Eberhart and Russell and should, therefore, be preferred. Curves of genotypic values as a function of the environmental gradient, which predict the behavior of the genotypes along the environmental gradient, were generated. These curves make possible the recommendation to untested environmental levels.

  20. Integration of textile fabric and coconut shell in particleboard

    NASA Astrophysics Data System (ADS)

    Misnon, M. I.; Bahari, S. A.; Islam, M. M.; Epaarachchi, J. A.

    2013-08-01

    In this study, cotton fabric and coconut shell were integrated in particleboard to reduce the use of wood. Particleboards containing mixed rubberwood and coconut shell with an equal weight ratio have been integrated with various layers of cotton fabric. These materials were bonded by urea formaldehyde with a content level of 12% by weight. Flexural and water absorption tests were conducted to analyze its mechanical properties and dimensional stability. Results of flexural test showed an increment at least double strength values in fabricated materials as compared to control sample. The existence of fabric in the particleboard system also improved the dimensional stability of the produced material. Enhancement of at least 39% of water absorption could help the dimensional stability of the produced material. Overall, these new particleboards showed better results with the incorporation of cotton fabric layers and this study provided better understanding on mechanical and physical properties of the fabricated particleboard.

  1. Biological fabrication of cellulose fibers with tailored properties.

    PubMed

    Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen

    2017-09-15

    Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material's functionality. In vitro model cultures of upland cotton ( Gossypium hirsutum ) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Cellulase finishing of woven, cotton fabrics in jet and winch machines.

    PubMed

    Cortez, J M; Ellis, J; Bishop, D P

    2001-08-23

    Some authors have reported that as the applied agitation rate increases, the apparent activity of the endoglucanases from Trichoderma reesei towards cotton cellulose increases more markedly than does the apparent activity of the cellobiohydrolases. This suggests that the quality of cellulase finishing effects on cellulosic textiles may be machine-type dependent. The present work using total crude, endoglucanase-rich and cellobiohydrolase-rich cellulases from T. reesei confirmed that the final properties of woven, cotton fabrics treated under realistic processing conditions in a jet machine, were measurably and perceivably different from those of the same fabrics, treated using the same processing conditions of temperature, time, pH, enzyme concentration and fabric to liquor ratio, but in a winch machine. The results are interpreted in terms of the effects of agitation rate on the adsorption-desorption behaviour of the T. reesei endoglucanases and cellobiohydrolases.

  3. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  4. Acyclic N-Halamine Polymeric Biocidal Films

    DTIC Science & Technology

    2010-07-01

    surfaces were rechargeable upon chlorine loss. antimicrobial, bacteria, biocidal coatings, biofilms , N-halamine U U U UU 14 Joe Wander 850 283-6240...halamine, biofilms , antimicrobial. INTRODUCTION A variety of antimicrobial organic materials, including phosp ho- nium salts [1-4], quaternary ammonium...Cotton Cellulose , J. Appl. Polym. Sci., 81: 617-624. 21. Sun, Y. and Sun, G. (2002). Durable and Regenerable Antimicrobial Textile Materials Prepared

  5. Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber

    USDA-ARS?s Scientific Manuscript database

    Silver nanoparticles (Ag NPs) are known to have efficient antimicrobial properties, but the direct application of Ag NPs onto the surface of textiles has shown to be ineffective and raise environmental concerns because Ag NPs leach out during washing. In this study, non-leaching and stable Agcotton ...

  6. Non-woven Textile Materials from Waste Fibers for Cleanup of Waters Polluted with Petroleum and Oil Products

    NASA Astrophysics Data System (ADS)

    Neznakomova, Margarita; Boteva, Silvena; Tzankov, Luben; Elhag, Mohamed

    2018-04-01

    The aim of this work was to investigate the possibility of using non-woven materials (NWM) from waste fibers for oil spill cleanup and their subsequent recovery. Manufacture of textile and readymade products generates a significant amount of solid waste. A major part of it is deposited in landfills or disposed of uncontrollably. This slowly degradable waste causes environmental problems. In the present study are used two types of NWM obtained by methods where waste fibers are utilized. Thus, real textile products are produced (blankets) with which spills are covered and removed by adsorption. These products are produced by two methods: the strengthening of the covering from recovered fibers is made by entanglement when needles of special design pass through layers (needle-punching) or by stitching with thread (technology Maliwatt). Regardless of the random nature of the fiber mixture, the investigated products are good adsorbents of petroleum products. The nature of their structure (a significant void volume and developed surface) leads to a rapid recovery of the spilled petroleum products without sinking of the fiber layer for the sampled times. The used NWM can be burned under special conditions.

  7. Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Wong, Y. C.; Veloo, K. V.

    2018-04-01

    Reactive red 120 is used as a textile dye for fabric coloring. The dye waste is produced during textile finishing process subsequently released directly to water bodies which giving harmful effects to the environment due to the carcinogenic characteristic. Adsorption process becomes an effective treatment to treat textile dye. This research emphasizes the treatment of textile dye namely reactive red 120 (RR120) by using sugarcane bagasse powder. The batch study was carried out under varying parameters such as 60 minutes contact time, pH (1-8), dye concentration (5-25 mg/L), particle size (125-500 μm) and biosorbent dosage (0.01-0.2 g/L). The maximum adsorption percentage of RR120 was 94.62%. The adsorption of dye was increased with the decreasing of pH, initial dye concentration and particle size. Sugarcane bagasse powder as low-cost biosorbent was established using Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM). This locally agricultural waste could be upgraded into useful material which is biosorbent that promising for decolorization of colored textile wastewater.

  8. 3D Printing of NinjaFlex Filament onto PEDOT:PSS-Coated Textile Fabrics for Electroluminescence Applications

    NASA Astrophysics Data System (ADS)

    Tadesse, Melkie Getnet; Dumitrescu, Delia; Loghin, Carmen; Chen, Yan; Wang, Lichuan; Nierstrasz, Vincent

    2018-03-01

    Electroluminescence (EL) is the property of a semiconductor material pertaining to emitting light in response to an electrical current or a strong electric field. The purpose of this paper is to develop a flexible and lightweight EL device. Thermogravimetric analysis (TGA) was conducted to observe the thermal degradation behavior of NinjaFlex. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)—PEDOT:PSS—with ethylene glycol (EG) was coated onto polyester fabric where NinjaFlex was placed onto the coated fabric using three-dimensional (3D) printing and phosphor paste, and BendLay filaments were subsequently coated via 3D printing. Adhesion strength and flexibility of the 3D-printed NinjaFlex on textile fabrics were investigated. The TGA results of the NinjaFlex depict no weight loss up to 150°C and that the NinjaFlex was highly conductive with a surface resistance value of 8.5 ohms/sq.; the coated fabric exhibited a uniform surface appearance as measured and observed by using four-probe measurements and scanning electron microscopy, respectively, at 60% PEDOT:PSS. The results of the adhesion test showed that peel strengths of 4160 N/m and 3840 N/m were recorded for polyester and cotton specimens, respectively. No weight loss was recorded following three washing cycles of NinjaFlex. The bending lengths were increased by only a factor of 0.082 and 0.577 for polyester and cotton samples at 0.1-mm thickness, respectively; this remains sufficiently flexible to be integrated into textiles. The prototype device emitted light with a 12-V alternating current power supply.

  9. Optimal Substitution of Cotton Burr and Linters in Thermoplastic Composites

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate various substitutions of cotton burr and linters fractions of cotton gin waste (CGW) as a natural fiber source in ligno-cellulosic polymer composites (LCPC.) Samples were fabricated with approximately 50% natural fiber, 40% of high-density polyethylene (HDPE) powder...

  10. Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe-N-Doped Titanium Dioxide Nanoparticles

    PubMed Central

    Stan, Miruna Silvia; Nica, Ionela Cristina; Dinischiotu, Anca; Varzaru, Elena; Iordache, Ovidiu George; Dumitrescu, Iuliana; Popa, Marcela; Chifiriuc, Mariana Carmen; Pircalabioru, Gratiela G.; Lazar, Veronica; Bezirtzoglou, Eugenia; Feder, Marcel; Diamandescu, Lucian

    2016-01-01

    Our research was focused on the evaluation of the photocatalytic and antimicrobial properties, as well as biocompatibility of cotton fabrics coated with fresh and reused dispersions of nanoscaled TiO2-1% Fe-N particles prepared by the hydrothermal method and post-annealed at 400 °C. The powders were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy and X-ray photoelectron spectroscopy. The textiles coated with doped TiO2 were characterized by scanning electron microscopy and energy dispersive X-ray analyses, and their photocatalytic effect by trichromatic coordinates of the materials stained with methylene blue and coffee and exposed to UV, visible and solar light. The resulting doped TiO2 consists of a mixture of prevailing anatase phase and a small amount (~15%–20%) of brookite, containing Fe3+ and nitrogen. By reusing dispersions of TiO2-1% Fe-N, high amounts of photocatalysts were deposited on the fabrics, and the photocatalytic activity was improved, especially under visible light. The treated fabrics exhibited specific antimicrobial features, which were dependent on their composition, microbial strain and incubation time. The in vitro biocompatibility evaluation on CCD-1070Sk dermal fibroblasts confirmed the absence of cytotoxicity after short-term exposure. These results highlight the potential of TiO2-1% Fe-N nanoparticles for further use in the development of innovative self-cleaning and antimicrobial photocatalytic cotton textiles. However, further studies are required in order to assess the long-term skin exposure effects and the possible particle release due to wearing. PMID:28773913

  11. Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe-N-Doped Titanium Dioxide Nanoparticles.

    PubMed

    Stan, Miruna Silvia; Nica, Ionela Cristina; Dinischiotu, Anca; Varzaru, Elena; Iordache, Ovidiu George; Dumitrescu, Iuliana; Popa, Marcela; Chifiriuc, Mariana Carmen; Pircalabioru, Gratiela G; Lazar, Veronica; Bezirtzoglou, Eugenia; Feder, Marcel; Diamandescu, Lucian

    2016-09-21

    Our research was focused on the evaluation of the photocatalytic and antimicrobial properties, as well as biocompatibility of cotton fabrics coated with fresh and reused dispersions of nanoscaled TiO₂-1% Fe-N particles prepared by the hydrothermal method and post-annealed at 400 °C. The powders were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy and X-ray photoelectron spectroscopy. The textiles coated with doped TiO₂ were characterized by scanning electron microscopy and energy dispersive X-ray analyses, and their photocatalytic effect by trichromatic coordinates of the materials stained with methylene blue and coffee and exposed to UV, visible and solar light. The resulting doped TiO₂ consists of a mixture of prevailing anatase phase and a small amount (~15%-20%) of brookite, containing Fe 3+ and nitrogen. By reusing dispersions of TiO₂-1% Fe-N, high amounts of photocatalysts were deposited on the fabrics, and the photocatalytic activity was improved, especially under visible light. The treated fabrics exhibited specific antimicrobial features, which were dependent on their composition, microbial strain and incubation time. The in vitro biocompatibility evaluation on CCD-1070Sk dermal fibroblasts confirmed the absence of cytotoxicity after short-term exposure. These results highlight the potential of TiO₂-1% Fe-N nanoparticles for further use in the development of innovative self-cleaning and antimicrobial photocatalytic cotton textiles. However, further studies are required in order to assess the long-term skin exposure effects and the possible particle release due to wearing.

  12. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  13. Manufacturing of polylactic acid nanocomposite 3D printer filaments for smart textile applications

    NASA Astrophysics Data System (ADS)

    Hashemi Sanatgar, R.; Cayla, A.; Campagne, C.; Nierstrasz, V.

    2017-10-01

    In this paper, manufacturing of polylactic acid nanocomposite 3D printer filaments was considered for smart textile applications. 3D printing process was applied as a novel process for deposition of nanocomposites on PLA fabrics to introduce more flexible, resourceefficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity.

  14. Industrial hygiene, occupational safety and respiratory symptoms in the Pakistani cotton industry

    PubMed Central

    Khan, Abdul Wali; Moshammer, Hanns Michael; Kundi, Michael

    2015-01-01

    Objectives In the cotton industry of Pakistan, 15 million people are employed and exposed to cotton dust, toxic chemicals, noise and physical hazards. The aim of this study was to determine the prevalence of health symptoms, particularly respiratory symptoms, and to measure cotton dust and endotoxin levels in different textile factories of Faisalabad, Pakistan. Methods A cross-sectional investigation was performed in a representative sample of 47 cotton factories in the Faisalabad region in Punjab, Pakistan. Respiratory symptoms of 800 workers were documented by questionnaire. Occupational safety in the factories was assessed by a trained expert following a checklist, and dust and endotoxin levels in different work areas were measured. Results Prevalence of respiratory disease symptoms (fever, shortness of breath, chest tightness and cough) was generally high and highest in the weaving section of the cotton industry (20–40% depending on symptoms). This section also displayed the poorest occupational safety ratings and the highest levels of inhalable cotton dust (mean±SD 4.6±2.5 vs 0.95±0.65 mg/m3 in compact units). In contrast, endotoxin levels were highest in the spinning section (median 1521 EU/m3), where high humidity is maintained. Conclusions There are still poor working conditions in the cotton industry in Pakistan where workers are exposed to different occupational hazards. More health symptoms were reported from small weaving factories (power looms). There is a dire need for improvements in occupational health and safety in this industrial sector with particular focus on power looms. PMID:25838509

  15. Afghanistan and Pakistan Reconstruction Opportunity Zones (ROZs), H.R. 1318/H.R. 1886/H.R. 2410 and S. 496: Issues and Arguments

    DTIC Science & Technology

    2009-07-09

    Qualifying Industrial Zone (QIZ) program under the U.S.-Israel Free Trade Agreement Implementation Act, (P.L. 99-47, as amended by the 1996 West Bank and...cotton apparel items are covered in this category: coats, nightgowns and pajamas , and a few shirts and blouses. • Table A-2 includes textile and

  16. Warming up human body by nanoporous metallized polyethylene textile.

    PubMed

    Cai, Lili; Song, Alex Y; Wu, Peilin; Hsu, Po-Chun; Peng, Yucan; Chen, Jun; Liu, Chong; Catrysse, Peter B; Liu, Yayuan; Yang, Ankun; Zhou, Chenxing; Zhou, Chenyu; Fan, Shanhui; Cui, Yi

    2017-09-19

    Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer with embedded nanopores, the nanoporous metallized polyethylene textile achieves a minimal IR emissivity (10.1%) on the outer surface that effectively suppresses heat radiation loss without sacrificing wearing comfort. This enables 7.1 °C decrease of the set-point compared to normal textile, greatly outperforming other radiative heating textiles by more than 3 °C. This large set-point expansion can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.Energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, the authors show a nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene.

  17. Activated Carbon Fibers with Hierarchical Nanostructure Derived from Waste Cotton Gloves as High-Performance Electrodes for Supercapacitors.

    PubMed

    Wei, Chao; Yu, Jianlin; Yang, Xiaoqing; Zhang, Guoqing

    2017-12-01

    One of the most challenging issues that restrict the biomass/waste-based nanocarbons in supercapacitor application is the poor structural inheritability during the activating process. Herein, we prepare a class of activated carbon fibers by carefully selecting waste cotton glove (CG) as the precursor, which mainly consists of cellulose fibers that can be transformed to carbon along with good inheritability of their fiber morphology upon activation. As prepared, the CG-based activated carbon fiber (CGACF) demonstrates a surface area of 1435 m 2  g -1 contributed by micropores of 1.3 nm and small mesopores of 2.7 nm, while the fiber morphology can be well inherited from the CG with 3D interconnected frameworks created on the fiber surface. This hierarchically porous structure and well-retained fiber-like skeleton can simultaneously minimize the diffusion/transfer resistance of the electrolyte and electron, respectively, and maximize the surface area utilization for charge accumulation. Consequently, CGACF presents a higher specific capacitance of 218 F g -1 and an excellent high-rate performance as compared to commercial activated carbon.

  18. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton.

    PubMed

    Magwanga, Richard Odongo; Lu, Pu; Kirungu, Joy Nyangasi; Lu, Hejun; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Zhang, Zhenmei; Salih, Haron; Wang, Kunbo; Liu, Fang

    2018-01-15

    Late embryogenesis abundant (LEA) proteins are large groups of hydrophilic proteins with major role in drought and other abiotic stresses tolerance in plants. In-depth study and characterization of LEA protein families have been carried out in other plants, but not in upland cotton. The main aim of this research work was to characterize the late embryogenesis abundant (LEA) protein families and to carry out gene expression analysis to determine their potential role in drought stress tolerance in upland cotton. Increased cotton production in the face of declining precipitation and availability of fresh water for agriculture use is the focus for breeders, cotton being the backbone of textile industries and a cash crop for many countries globally. In this work, a total of 242, 136 and 142 LEA genes were identified in G. hirsutum, G. arboreum and G. raimondii respectively. The identified genes were classified into eight groups based on their conserved domain and phylogenetic tree analysis. LEA 2 were the most abundant, this could be attributed to their hydrophobic character. Upland cotton LEA genes have fewer introns and are distributed in all chromosomes. Majority of the duplicated LEA genes were segmental. Syntenic analysis showed that greater percentages of LEA genes are conserved. Segmental gene duplication played a key role in the expansion of LEA genes. Sixty three miRNAs were found to target 89 genes, such as miR164, ghr-miR394 among others. Gene ontology analysis revealed that LEA genes are involved in desiccation and defense responses. Almost all the LEA genes in their promoters contained ABRE, MBS, W-Box and TAC-elements, functionally known to be involved in drought stress and other stress responses. Majority of the LEA genes were involved in secretory pathways. Expression profile analysis indicated that most of the LEA genes were highly expressed in drought tolerant cultivars Gossypium tomentosum as opposed to drought susceptible, G. hirsutum. The tolerant genotypes have a greater ability to modulate genes under drought stress than the more susceptible upland cotton cultivars. The finding provides comprehensive information on LEA genes in upland cotton, G. hirsutum and possible function in plants under drought stress.

  19. [Pleural mesothelioma in women in the Veneto Region who used to work as rag sorters for textile recycling and paper production].

    PubMed

    Merler, E; Gioffrè, F; Rozio, L; Bizzotto, R; Mion, M; Sarto, F

    2001-01-01

    The paper reports 9 cases of mesothelioma diagnosed by means of histology or cytology that were observed among women resident in the Veneto Region, Northern Italy, whose only activity that could involve exposure to asbestos was as rag sorter. These cases are part of a group of about 260 subjects with mesothelioma whose entire working and residential history has been collected. The women worked as rag sorters between the 1940's and 1960's in textile recycling (8 cases) or (one case) at a paper mill where cotton was used for paper production. The work as rag sorter helps to explain the high proportion of mesotheliomas among women with an occupational exposure to asbestos.

  20. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates.

    PubMed

    Girmay, Zenebe; Gorems, Weldesemayat; Birhanu, Getachew; Zewdie, Solomon

    2016-12-01

    Mushroom cultivation is reported as an economically viable bio-technology process for conversion of various lignocellulosic wastes. Given the lack of technology know-how on the cultivation of mushroom, this study was conducted in Wondo Genet College of Forestry and Natural Resource, with the aim to assess the suitability of selected substrates (agricultural and/or forest wastes) for oyster mushroom cultivation. Accordingly, four substrates (cotton seed, paper waste, wheat straw, and sawdust) were tested for their efficacy in oyster mushroom production. Pure culture of oyster mushroom was obtained from Mycology laboratory, Department of Plant Biology and Biodiversity Management, Addis Ababa University. The pure culture was inoculated on potato dextrose agar for spawn preparation. Then, the spawn containing sorghum was inoculated with the fungal culture for the formation of fruiting bodies on the agricultural wastes. The oyster mushroom cultivation was undertaken under aseptic conditions, and the growth and development of mushroom were monitored daily. Results of the study revealed that oyster mushroom can grow on cotton seed, paper waste, sawdust and wheat straw, with varying growth performances. The highest biological and economic yield, as well as the highest percentage of biological efficiency of oyster mushroom was obtained from cotton seed, while the least was from sawdust. The study recommends cotton seed, followed by paper waste as suitable substrates for the cultivation of oyster mushroom. It also suggests that there is a need for further investigation on various aspects of oyster mushroom cultivation in Ethiopia to promote the industry.

  1. 16 CFR 303.14 - Products containing unknown fibers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., secondhand materials, textile by-products, or waste materials of unknown, and for practical purposes... the fiber content disclosure otherwise required by the Act and regulations, indicate that such product is composed of miscellaneous scraps, rags, odd lots, textile by-products, secondhand materials (in...

  2. UV-light assisted patterned metallization of textile fabrics

    NASA Astrophysics Data System (ADS)

    Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.

    2018-04-01

    A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.

  3. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Dexin; Liu, Fang; Shan, Xiaoru; Zhang, Jian; Tang, Shiyi; Fang, Xiaomei; Liu, Xueying; Wang, Wenwen; Tan, Zhaoyun; Teng, Zhonghua; Zhang, Zhengsheng; Liu, Dajun

    2015-10-01

    Upland cotton plays a critical role not only in the textile industry, but also in the production of important secondary metabolites, such as oil and proteins. Construction of a high-density linkage map and identifying yield and seed trait quantitative trail loci (QTL) are prerequisites for molecular marker-assisted selective breeding projects. Here, we update a high-density upland cotton genetic map from recombinant inbred lines. A total of 25,313 SSR primer pairs were screened for polymorphism between Yumian 1 and T586, and 1712 SSR primer pairs were used to genotype the mapping population and construct a map. An additional 1166 loci have been added to our previously published map with 509 SSR markers. The updated genetic map spans a total recombinant length of 3338.2 cM and contains 1675 SSR loci and nine morphological markers, with an average interval of 1.98 cM between adjacent markers. Green lint (Lg) mapped on chromosome 15 in a previous report is mapped in an interval of 2.6 cM on chromosome 21. Based on the map and phenotypic data from multiple environments, 79 lint percentage and seed nutrient trait QTL are detected. These include 8 lint percentage, 13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13 palmitic, and 12 stearic acid content QTL. They explain 3.5-62.7 % of the phenotypic variation observed. Four morphological markers identified have a major impact on lint percentage and cottonseed nutrients traits. In this study, our genetic map provides new sights into the tetraploid cotton genome. Furthermore, the stable QTL and morphological markers could be used for fine-mapping and map-based cloning.

  4. The Effect of Fabric Position to the Distribution of Acoustic Pressure Field in Ultrasonic Bath

    NASA Astrophysics Data System (ADS)

    Gürses, B. O.; Özdemir, A. O.; Tonay, Ö.; Şener, M.; Perinçek, S.

    2017-10-01

    Nowadays, the use of ultrasonic energy in textile wet processes at industrial-scale is limited. It is largely due to the lack of understanding about design, operational and performance characteristics of the ultrasonic bath, suitable for textile treatments. In the context of this study, the effect of fabric position, as one of the design parameter, to the distribution of acoustic pressure field in ultrasonic bath was investigated. The ultrasonic bath in the size 20×30 cm2 with one transducer at frequency 40 kHz was used in experiments. The cotton fabric with 1 mm thickness was moved along vertical and horizontal directions of the ultrasonic bath. The acoustic field and cavitation volume density in the bath is analyzed by COMSOL Multiphysic. The cavitation volume density is calculated by comparing the pressure points in the bath with cavitation threshold pressure. Consequently, it was found that the position of the textile material in the ultrasonic bath is one of the most important factors to achieve the uniform and maximum acoustic cavitation field. So, it should be taken into consideration during the design of industrial-scale ultrasonic bath used in textile wet processes.

  5. Evaluation and Analysis of Cotton Bedding as a Bulking Agent in an Aerobic Food Waste Composting System

    NASA Astrophysics Data System (ADS)

    Chan, A. S. L.

    2017-12-01

    Food wastage is a prominent issue in Hong Kong that should be addressed. Here at The Independent Schools Foundation Academy, we are continuously looking for ways to improve, including that of food waste. In 2013 the school installed an A900 Rocket Food Composter, in hopes of reducing carbon footprint. Since the installation, the school has tested various elements of the food composter to further improve upon it to make it increasingly more sustainable and effective. These improvements vary from the revamping of the odour control system, increasing the nitrogen content and the installation of an improved grease trap. The school composts the food waste through combining a variety of substances together: coffee, compost, food waste, and a bulking agent - which will be tested in this study. Recently, the school has changed the compost bulking agent from wood shavings and cardboard to cotton bedding - a side product of the production of UK passports. In this study, I will evaluate the effectiveness of cotton bedding as a bulking agent in an aerobic composting system, focusing primarily on three points: a) microbial activity - the identification of cellulose digesting bacteria and the associated kinetics, b) the soil gas composition - the data shall be collected through the use of the Gasmet DX 4015, and c) the chemical analysis of the compost - specifically the amount of aluminum in the compost and whether or not it is significant enough to discredit cotton bedding as an effective bulking agent. The the analysis of cotton bedding using these three specifications will allow ISF Academy to evaluate the overall effectiveness of cotton bedding as a bulking agent.

  6. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F

    2013-10-01

    Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton.

    PubMed

    Feng, Hongjie; Tian, Xinhui; Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie

    2013-01-01

    As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3'H, and GhF3'5'H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.

  8. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  9. Three-Dimensional Printed Thermal Regulation Textiles.

    PubMed

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing

    2017-11-28

    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  10. Chemical Modification of Waste Cotton Linters for Oil Spill Cleanup Application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Debapriya; Umrigar, Keval

    2017-12-01

    The possibility of use of waste cotton linters as oil sorbents by chemical modification such as acetylation and cyanoethylation was studied. The acetylation process was carried out in presence of acetic anhydride using either H2SO4 or HClO4 as catalyst. The acetylation treatment time was 30, 60 and 120 min and treatment temperature was room temperature, 50 and 70 °C. For cyanoethylation, the waste cotton linters were pre-treated with 2, 5 and 10% NaOH. The treatment temperature for cyanoethylation was room temperature, 50 and 70 °C and treatment time was 30, 60 and 120 min. Both the chemical modification processes were optimized on the basis of oil absorption capacity of the chemically modified cotton fibre with the help of MATLAB software. The modified samples were tested for its oleophilicity in terms of oil absorption capacity, oil retention capacity, oil recovery capacity, reusability of sample and water uptake and buoyancy as oil sorbent. Chemically modified fibres were characterized by Fourier transform infra red spectrophotometer, scanning electron microscope and degree of substitutions.

  11. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Pang, Jiuyin; Bao, Wenhui; Zhang, Wenbo; Gao, He; Wang, Chengyu; Shi, Junyou; Li, Jian

    2017-10-01

    During these decades, functional materials are facing the severe challenge of their weak surface structure. To solve this problem, plasma technology and spraying technology were utilized to improve the bonding effect between cotton substrates and coating structures. Herein, silica/silver nanoparticles (SiO2/Ag NPs) were prepared and introduced to the nano-/micro- structures on sample surface by spraying technology in the existence of polyurethane adhesive. Then the circles of spraying procedure containing adhesive and SiO2/Ag NPs had been discussed. After further fluorination, the samples still displayed an excellent waterproof property even after abrasion test with sand paper and various washing test by its solvent-acetone or harsh liquids with strong acidity/alkalinity, indicating their robust surfaces structures. More importantly, this product displayed the outstanding performance no matter in laboratory oil/water filtration or the extensive oil leakage and spill. At last, our modification also endowed the cotton sample with great antimicrobial property.

  12. A Novel Isoform of Sucrose Synthase Is Targeted to the Cell Wall during Secondary Cell Wall Synthesis in Cotton Fiber[C][W][OA

    PubMed Central

    Brill, Elizabeth; van Thournout, Michel; White, Rosemary G.; Llewellyn, Danny; Campbell, Peter M.; Engelen, Steven; Ruan, Yong-Ling; Arioli, Tony; Furbank, Robert T.

    2011-01-01

    Sucrose (Suc) synthase (Sus) is the major enzyme of Suc breakdown for cellulose biosynthesis in cotton (Gossypium hirsutum) fiber, an important source of fiber for the textile industry. This study examines the tissue-specific expression, relative abundance, and temporal expression of various Sus transcripts and proteins present in cotton. A novel isoform of Sus (SusC) is identified that is expressed at high levels during secondary cell wall synthesis in fiber and is present in the cell wall fraction. The phylogenetic relationships of the deduced amino acid sequences indicate two ancestral groups of Sus proteins predating the divergence of monocots and dicots and that SusC sequences form a distinct branch in the phylogeny within the dicot-specific clade. The subcellular location of the Sus isoforms is determined, and it is proposed that cell wall-localized SusC may provide UDP-glucose for cellulose and callose synthesis from extracellular sugars. PMID:21757635

  13. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae.

    PubMed

    Shaban, Muhammad; Miao, Yuhuan; Ullah, Abid; Khan, Anam Qadir; Menghwar, Hakim; Khan, Aamir Hamid; Ahmed, Muhammad Mahmood; Tabassum, Muhammad Adnan; Zhu, Longfu

    2018-04-01

    Cotton, a natural fiber producing crop of huge importance for textile industry, has been reckoned as the backbone in the economy of many developing countries. Verticillium wilt caused by Verticillium dahliae reflected as the most devastating disease of cotton crop in several parts of the world. Average losses due to attack of this disease are tremendous every year. There is urgent need to develop strategies for effective control of this disease. In the last decade, progress has been made to understand the interaction between cotton-V. dahliae and several growth and pathogenicity related genes were identified. Still, most of the molecular components and mechanisms of cotton defense against Verticillium wilt are poorly understood. However, from existing knowledge, it is perceived that cotton defense mechanism primarily depends on the pre-formed defense structures including thick cuticle, synthesis of phenolic compounds and delaying or hindering the expansion of the invader through advanced measures such as reinforcement of cell wall structure, accumulation of reactive oxygen species (ROS), release of phytoalexins, the hypersensitive response and the development of broad spectrum resistance named as, systemic acquired resistance (SAR). Investigation of these defense tactics provide valuable information about the improvement of cotton breeding strategies for the development of durable, cost effective, and broad spectrum resistant varieties. Consequently, this management approach will help to reduce the use of fungicides and also minimize other environmental hazards. In the present paper, we summarized the V. dahliae virulence mechanism and comprehensively discussed the cotton molecular mechanisms of defense such as physiological, biochemical responses with the addition of signaling pathways that are implicated towards attaining resistance against Verticillium wilt. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Industrial hygiene, occupational safety and respiratory symptoms in the Pakistani cotton industry.

    PubMed

    Khan, Abdul Wali; Moshammer, Hanns Michael; Kundi, Michael

    2015-04-02

    In the cotton industry of Pakistan, 15 million people are employed and exposed to cotton dust, toxic chemicals, noise and physical hazards. The aim of this study was to determine the prevalence of health symptoms, particularly respiratory symptoms, and to measure cotton dust and endotoxin levels in different textile factories of Faisalabad, Pakistan. A cross-sectional investigation was performed in a representative sample of 47 cotton factories in the Faisalabad region in Punjab, Pakistan. Respiratory symptoms of 800 workers were documented by questionnaire. Occupational safety in the factories was assessed by a trained expert following a checklist, and dust and endotoxin levels in different work areas were measured. Prevalence of respiratory disease symptoms (fever, shortness of breath, chest tightness and cough) was generally high and highest in the weaving section of the cotton industry (20-40% depending on symptoms). This section also displayed the poorest occupational safety ratings and the highest levels of inhalable cotton dust (mean±SD 4.6±2.5 vs 0.95±0.65 mg/m(3) in compact units). In contrast, endotoxin levels were highest in the spinning section (median 1521 EU/m(3)), where high humidity is maintained. There are still poor working conditions in the cotton industry in Pakistan where workers are exposed to different occupational hazards. More health symptoms were reported from small weaving factories (power looms). There is a dire need for improvements in occupational health and safety in this industrial sector with particular focus on power looms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants.

    PubMed

    Sarkar, Ajoy K

    2004-10-27

    The ultraviolet properties of textiles dyed with synthetic dyes have been widely reported in literature. However, no study has investigated the ultraviolet properties of natural fabrics dyed with natural colorants. This study reports the Ultraviolet Protection Factor (UPF) of cotton fabrics dyed with colorants of plant and insect origins. Three cotton fabrics were dyed with three natural colorants. Fabrics were characterized with respect to fabric construction, weight, thickness and thread count. Influence of fabric characteristics on Ultraviolet Protection Factor was studied. Role of colorant concentration on the ultraviolet protection factor was examined via color strength analysis. A positive correlation was observed between the weight of the fabric and their UPF values. Similarly, thicker fabrics offered more protection from ultraviolet rays. Thread count appears to negatively correlate with UPF. Dyeing with natural colorants dramatically increased the protective abilities of all three fabric constructions. Additionally, within the same fabric type UPF values increased with higher depths of shade. Dyeing cotton fabrics with natural colorants increases the ultraviolet protective abilities of the fabrics and can be considered as an effective protection against ultraviolet rays. The UPF is further enhanced with colorant of dark hues and with high concentration of the colorant in the fabric.

  16. 7 CFR 319.8-23 - Treatment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... fumigation of cotton and covers (other than high density cotton free of surface contamination) will be... only lint, linters, or waste, and the bales of which are compressed to a density of 28 or more pounds...

  17. Forensic analysis of dyed textile fibers.

    PubMed

    Goodpaster, John V; Liszewski, Elisa A

    2009-08-01

    Textile fibers are a key form of trace evidence, and the ability to reliably associate or discriminate them is crucial for forensic scientists worldwide. While microscopic and instrumental analysis can be used to determine the composition of the fiber itself, additional specificity is gained by examining fiber color. This is particularly important when the bulk composition of the fiber is relatively uninformative, as it is with cotton, wool, or other natural fibers. Such analyses pose several problems, including extremely small sample sizes, the desire for nondestructive techniques, and the vast complexity of modern dye compositions. This review will focus on more recent methods for comparing fiber color by using chromatography, spectroscopy, and mass spectrometry. The increasing use of multivariate statistics and other data analysis techniques for the differentiation of spectra from dyed fibers will also be discussed.

  18. Methyl salicylate: a reactive chemical warfare agent surrogate to detect reaction with hypochlorite.

    PubMed

    Salter, W Bruce; Owens, Jeffery R; Wander, Joseph D

    2011-11-01

    Methyl salicylate (MeS) has a rich history as an inert physical simulant for the chemical warfare agents sulfur mustard and soman, where it is used extensively for liquid- and vapor-permeation testing. Here we demonstrate possible utility of MeS as a reactivity simulant for chlorine-based decontaminants. In these experiments MeS was reacted with sodium hypochlorite varying stoichiometry, temperature, reaction time, and pH. No colored oxidation products were observed; however, chlorination of the aromatic ring occurred ortho (methyl 3-chlorosalicylate) and para (methyl 5-chlorosalicylate) to the position bearing the -OH group in both the mono- and disubstituted forms. The monosubstituted para product accumulated initially, and the ortho and 3,5-dichloro products formed over the next several hours. Yields from reactions conducted below pH 11 declined rapidly with decreasing pH. Reactions run at 40 °C produced predominantly para substitution, while those run at 0 °C produced lower yields of ortho- and para-substituted products. Reactions were also carried out on textile substrates of cotton, 50/50 nylon-cotton, and a meta aramid. The textile data broadly reproduced reaction times and stoichiometry observed in the liquid phase, but are complicated by physical and possibly chemical interactions with the fabric. These data indicate that, for hypochlorite-containing neutralizing agents operating at strongly alkaline pH, one can expect MeS to react stoichiometrically with the hypochlorite it encounters. This suggests utility of MeS in lieu of such highly hazardous surrogates as monochloroalkyl sulfides as a simulant for threat scenarios involving the stoichiometric decomposition of sulfur mustard. Specifically, the extent of coverage of the simulant on a fabric by the neutralizing agent can be directly measured. Similar reactivity toward other halogen oxidizing agents is likely but remains to be demonstrated.

  19. COLLOIDAL FOULING OF MEMBRANES: IMPLICATIONS IN THE TREATMENT OF TEXTILE DYE WASTES AND WATER REUSE

    EPA Science Inventory

    Three manuscripts are in preparation for submission to refereed journals based on the MS Thesis of the student supported by this work. This student will continue work towards the Ph.D. on a related topic with other sources of funding upon completion of this project...

  20. Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.

    PubMed

    Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine

    2012-11-01

    The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    NASA Astrophysics Data System (ADS)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  2. Ternary liquid-liquid equilibria for the phenolic compounds extraction from artificial textile industrial waste

    NASA Astrophysics Data System (ADS)

    Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina

    2017-03-01

    Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.

  3. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    PubMed

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  4. Enzymatic laundry for old clothes: immobilized alpha-amylase from Bacillus sp. for the biocleaning of an ancient Coptic tunic.

    PubMed

    Ferrari, Martina; Mazzoli, Roberto; Morales, Simona; Fedi, Mariaelena; Liccioli, Lucia; Piccirillo, Anna; Cavaleri, Tiziana; Oliva, Cinzia; Gallo, Paolo; Borla, Matilde; Cardinali, Michela; Pessione, Enrica

    2017-09-01

    The classification and conservation of ancient artworks (belonging to collections) is of important cultural, historical, and economic concern. However, ancient textiles often display structural damage that renders them fragile and unsuitable for exhibition. One of the most common types of damage is linked to erroneous restoration treatments, among which the application of glues to consolidate cuts. Harsh strategies, such as mechanical or chemical treatments, are not suitable since they can cause further impairment of the fabric, whereas mild approaches, like wet cleaning, are often ineffective, as also demonstrated by the present study. Here, we have explored the possibility of using gellan-immobilized enzymes of bacterial origin (Bacillus alpha-amylase) to obtain a satisfactory starch removal from a damaged archaeological tunic-shroud from the Turin Egyptian Museum (Italy), without altering the original yarns or textile fibers. This method, already applied to clean casein-damaged wall paintings, as well as cotton, silk, and linen fabrics, has proved to be optimal for the treatment of a wool burial shroud and to be able to definitively solve fragile textile restoration problems. Moreover, efforts have been made to obtain insights into the artwork: a multidisciplinary approach has allowed to obtain a correct chronological attribution (radiocarbon dating) and fabric fiber characterization (SEM-EDX) as well as shed light on the colored parts and dark stains (FORS+IRFC and XRF). Finally, the evaluation of the type of glue, by Fourier transform infrared spectroscopy, has suggested the best enzyme for glue removal. These results have demonstrated that a mild bio-based approach is a successful tool for the treatment of archaeological textiles in critical conditions.

  5. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization.

    PubMed

    Farinha, Catarina Brazão; de Brito, Jorge; Veiga, Rosário; Fernández, J M; Jiménez, J R; Esquinas, A R

    2018-03-20

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.

  6. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization

    PubMed Central

    de Brito, Jorge; Veiga, Rosário

    2018-01-01

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation. PMID:29558418

  7. Aging of printing and writing paper upon exposure to light. Part 2, Mechanical and chemical properties

    Treesearch

    Chris Hunt; Xiaochun Yu; James Bond; Umesh Agarwal; Raj Atalla

    2003-01-01

    Data is presented on chemical and physical changes observed on a series of 15 specially made writing papers as part of the development of the new ASTM standard D6789-02. Papers were exposed to north window, fluorescent, and halogen illumination for several years. Furnish covered the span from stone groundwood to textile cotton, pH 5 to 8.1, with and without alkaline...

  8. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    PubMed

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb.

  9. Analysis of Flavonoids and the Flavonoid Structural Genes in Brown Fiber of Upland Cotton

    PubMed Central

    Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie

    2013-01-01

    Backgroud As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Experimental Design Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3′H, and GhF3′5′H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. Result The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Conclusions Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers. PMID:23527031

  10. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    PubMed Central

    2013-01-01

    Background Cotton, one of the world’s leading crops, is important to the world’s textile and energy industries, and is a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction of a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library and comparative genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.) with one of its diploid putative progenitor species, G. raimondii Ulbr. Results We constructed the cotton BIBAC library in a vector competent for high-molecular-weight DNA transformation in different plant species through either Agrobacterium or particle bombardment. The library contains 76,800 clones with an average insert size of 135 kb, providing an approximate 99% probability of obtaining at least one positive clone from the library using a single-copy probe. The quality and utility of the library were verified by identifying BIBACs containing genes important for fiber development, fiber cellulose biosynthesis, seed fatty acid metabolism, cotton-nematode interaction, and bacterial blight resistance. In order to gain an insight into the Upland cotton genome and its relationship with G. raimondii, we sequenced nearly 10,000 BIBAC ends (BESs) randomly selected from the library, generating approximately one BES for every 250 kb along the Upland cotton genome. The retroelement Gypsy/DIRS1 family predominates in the Upland cotton genome, accounting for over 77% of all transposable elements. From the BESs, we identified 1,269 simple sequence repeats (SSRs), of which 1,006 were new, thus providing additional markers for cotton genome research. Surprisingly, comparative sequence analysis showed that Upland cotton is much more diverged from G. raimondii at the genomic sequence level than expected. There seems to be no significant difference between the relationships of the Upland cotton D- and A-subgenomes with the G. raimondii genome, even though G. raimondii contains a D genome (D5). Conclusions The library represents the first BIBAC library in cotton and related species, thus providing tools useful for integrative physical mapping, large-scale genome sequencing and large-scale functional analysis of the Upland cotton genome. Comparative sequence analysis provides insights into the Upland cotton genome, and a possible mechanism underlying the divergence and evolution of polyploid Upland cotton from its diploid putative progenitor species, G. raimondii. PMID:23537070

  11. Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics

    NASA Astrophysics Data System (ADS)

    Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve

    2017-05-01

    Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.

  12. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Yu, You

    2017-07-01

    The templated-rGO fabric, featuring high conductivity (<1.0 Ω □-1) and low density (160 mg cm-2), is prepared by a simple dip-coating technique with sequentially coating nickel via polymer-assisted metal deposition (PAMD) and reduced-graphene oxide (rGO) on textile fabric templates at very mild conditions and is used in the fabrication of energy storage devices. As a proof of concept, both the layered and planar supercapacitors (SCs) are successfully fabricated using the rGO fabrics as templates, and both exhibit excellent electrochemical performance, ultrahigh stability with 2000 charge-discharge cycles and mechanical flexibility at bending (r  =  3 mm) and even folding states. It is found that the material of textile fabric used has a profound effect on the electrochemical property of SCs. The comparison result reveals that loose natural cotton fabrics are more suitable than tight man-made nylon fabrics for preparing high-performance SCs. In addition, such supercapacitor can be sewed into commercial textiles and powers a LED light, indicating promising applications in wearable electronics.

  13. Reeling in the textiles at Row Clothing Enterprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, H.

    1997-12-01

    While a handful of textile processing centers in operation today can date their roots back to the turn of this century or before, Row Clothing Enterprises (Baltimore) first opened its doors in 1985. Soon after, it climbed its way to becoming one of the premier textile processing businesses in the country. And what they want most of all is usable clothing--the discards of American secondhand clothing stores. The company exports 100% of the usable clothing it recovers paying institutions as much as $150 a ton for the material. Graders also sort the material into piles headed for the mutilating, ormore » fiber-shredding, machine. While not all the material is shredded, it does provide more opportunities for resale. Whatever Row cannot resell as clothing--because it is soiled or torn--gets processed into industrial wiping cloths, if it is cotton. Clothing made from wool and polyester is sent to woolen and polyester fiber mills to be made into new clothing. While 80% of Row`s wiper market is domestic, 80% of its fiber market is overseas.« less

  14. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.

    PubMed

    Andrew, Trisha L; Zhang, Lushuai; Cheng, Nongyi; Baima, Morgan; Kim, Jae Joon; Allison, Linden; Hoxie, Steven

    2018-04-17

    Body-mountable electronics and electronically active garments are the future of portable, interactive devices. However, wearable devices and electronic garments are demanding technology platforms because of the large, varied mechanical stresses to which they are routinely subjected, which can easily abrade or damage microelectronic components and electronic interconnects. Furthermore, aesthetics and tactile perception (or feel) can make or break a nascent wearable technology, irrespective of device metrics. The breathability and comfort of commercial fabrics is unmatched. There is strong motivation to use something that is already familiar, such as cotton/silk thread, fabrics, and clothes, and imperceptibly adapt it to a new technological application. (24) Especially for smart garments, the intrinsic breathability, comfort, and feel of familiar fabrics cannot be replicated by devices built on metalized synthetic fabrics or cladded, often-heavy designer fibers. We propose that the strongest strategy to create long-lasting and impactful electronic garments is to start with a mass-produced article of clothing, fabric, or thread/yarn and coat it with conjugated polymers to yield various textile circuit components. Commonly available, mass-produced fabrics, yarns/threads, and premade garments can in theory be transformed into a plethora of comfortably wearable electronic devices upon being coated with films of electronically active conjugated polymers. The definitive hurdle is that premade garments, threads, and fabrics have densely textured, three-dimensional surfaces that display roughness over a large range of length scales, from microns to millimeters. Tremendous variation in the surface morphology of conjugated-polymer-coated fibers and fabrics can be observed with different coating or processing conditions. In turn, the morphology of the conjugated polymer active layer determines the electrical performance and, most importantly, the device ruggedness and lifetime. Reactive vapor coating methods allow a conjugated polymer film to be directly formed on the surface of any premade garment, prewoven fabric, or fiber/yarn substrate without the need for specialized processing conditions, surface pretreatments, detergents, or fixing agents. This feature allows electronic coatings to be applied at the end of existing, high-throughput textile and garment manufacturing routines, irrespective of dye content or surface finish of the final textile. Furthermore, reactive vapor coating produces conductive materials without any insulating moieties and yields uniform and conformal films on fiber/fabric surfaces that are notably wash- and wear-stable and can withstand mechanically demanding textile manufacturing routines. These unique features mean that rugged and practical textile electronic devices can be created using sewing, weaving, or knitting procedures without compromising or otherwise affecting the surface electronic coating. In this Account, we highlight selected electronic fabrics and garments created by melding reactive vapor deposition with traditional textile manipulation processes, including electrically heated gloves that are lightweight, breathable, and sweat-resistant; surface-coated cotton, silk, and bast fiber threads capable of carrying large current densities and acting as sewable circuit interconnects; and surface-coated nylon threads woven together to form triboelectric textiles that can convert surface charge created during small body movements into usable and storable power.

  15. Recycling Today Makes for a Better Tomorrow.

    ERIC Educational Resources Information Center

    Raze, Robert E., Jr.

    1992-01-01

    Today's children must be educated about solid waste management and recycling to reduce the amount of waste that goes into landfills. The article describes what can be recycled (newspapers, corrugated cardboard, paper, glass, aluminum, textiles, motor oil, organic wastes, appliances, steel cans, and plastics). It also lists student environment…

  16. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum).

    PubMed

    Wen, Tianwang; Wu, Mi; Shen, Chao; Gao, Bin; Zhu, De; Zhang, Xianlong; You, Chunyuan; Lin, Zhongxu

    2018-02-24

    Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc 1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Expression and functional analyses of a Kinesin gene GhKIS13A1 from cotton (Gossypium hirsutum) fiber.

    PubMed

    Li, Yan-Jun; Zhu, Shou-Hong; Zhang, Xin-Yu; Liu, Yong-Chang; Xue, Fei; Zhao, Lan-Jie; Sun, Jie

    2017-06-12

    Cotton fiber, a natural fiber widely used in the textile industry, is differentiated from single cell of ovule epidermis. A large number of genes are believed to be involved in fiber formation, but so far only a few fiber genes have been isolated and functionally characterized in this developmental process. The Kinesin13 subfamily was found to play key roles during cell division and cell elongation, and was considered to be involved in the regulation of cotton fiber development. The full length of coding sequence of GhKIS13A1 was cloned using cDNA from cotton fiber for functional characterization. Expression pattern analysis showed that GhKIS13A1 maintained a lower expression level during cotton fiber development. Biochemical assay showed that GhKIS13A1 has microtubule binding activity and basal ATPase activity that can be activated significantly by the presence of microtubules. Overexpression of GhKIS13A1 in Arabidopsis reduced leaf trichomes and the percentage of three-branch trichomes, and increased two-branch and shriveled trichomes compared to wild-type. Additionally, the expression of GhKIS13A1 in the Arabidopsis Kinesin-13a-1 mutant rescued the defective trichome branching pattern of the mutant, making its overall trichome branching pattern back to normal. Our results suggested that GhKIS13A1 is functionally compatible with AtKinesin-13A regarding their role in regulating the number and branching pattern of leaf trichomes. Given the developmental similarities between cotton fibers and Arabidopsis trichomes, it is speculated that GhKIS13A1 may also be involved in the regulation of cotton fiber development.

  18. The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses.

    PubMed

    He, Peng; Zhao, Peng; Wang, Limin; Zhang, Yuzhou; Wang, Xiaosi; Xiao, Hui; Yu, Jianing; Xiao, Guanghui

    2017-07-03

    Cell elongation and expansion are significant contributors to plant growth and morphogenesis, and are often regulated by environmental cues and endogenous hormones. Auxin is one of the most important phytohormones involved in the regulation of plant growth and development and plays key roles in plant cell expansion and elongation. Cotton fiber cells are a model system for studying cell elongation due to their large size. Cotton is also the world's most utilized crop for the production of natural fibers for textile and garment industries, and targeted expression of the IAA biosynthetic gene iaaM increased cotton fiber initiation. Polar auxin transport, mediated by PIN and AUX/LAX proteins, plays a central role in the control of auxin distribution. However, very limited information about PIN-FORMED (PIN) efflux carriers in cotton is known. In this study, 17 PIN-FORMED (PIN) efflux carrier family members were identified in the Gossypium hirsutum (G. hirsutum) genome. We found that PIN1-3 and PIN2 genes originated from the At subgenome were highly expressed in roots. Additionally, evaluation of gene expression patterns indicated that PIN genes are differentially induced by various abiotic stresses. Furthermore, we found that the majority of cotton PIN genes contained auxin (AuxREs) and salicylic acid (SA) responsive elements in their promoter regions were significantly up-regulated by exogenous hormone treatment. Our results provide a comprehensive analysis of the PIN gene family in G. hirsutum, including phylogenetic relationships, chromosomal locations, and gene expression and gene duplication analyses. This study sheds light on the precise roles of PIN genes in cotton root development and in adaption to stress responses.

  19. Conductive reduced graphene oxide/MnO2 carbonized cotton fabrics with enhanced electro -chemical, -heating, and -mechanical properties

    NASA Astrophysics Data System (ADS)

    Tian, Mingwei; Du, Minzhi; Qu, Lijun; Zhang, Kun; Li, Hongliang; Zhu, Shifeng; Liu, Dongdong

    2016-09-01

    Versatile and ductile conductive carbonized cotton fabrics decorated with reduced graphene oxide (rGO)/manganese dioxide (MnO2) are prepared in this paper. In order to endow multifunction to cotton fabric, graphene oxide (GO) is deposited on cotton fibers by simple dip-coating route. MnO2 nanoparticles are assembled on the surface of cotton fabric through in-situ chemical solution deposition. MnO2/GO@cotton fabrics are carbonized to achieve conductive fabric (MnO2/rGO@C). The morphologies and structures of obtained fabrics are characterized by SEM, XRD, ICP and element analysis, and their electro-properties including electro-chemical, electro-heating and electro-mechanical properties are evaluated. The MnO2/rGO@C yields remarkable specific capacitance of 329.4 mA h/g at the current density of 100 mA/g, which is more than 40% higher than that of the control carbonized cotton fabric (231 mA h/g). Regarding electro-heating properties, the temperature of MnO2/rGO@C fabric could be monotonically increased to the steady-state maximum temperatures (ΔTmax) of 36 °C within 5 min under the applied voltage 15 V while the ΔTmax = 17 °C of the control case. In addition, MnO2/rGO@C exhibits repeatable electro-mechanical properties and its normalized resistance (R-R0)/R0 could reach 0.78 at a constant strain (curvature = 0.6 cm-1). The MnO2/rGO@C fabric is versatile, scalable, and adaptable to a wide variety of smart textiles applications.

  20. Extraction of natural colorant from purple sweet potato and dyeing of fabrics with silver nanoparticles for augmented antibacterial activity against skin pathogens.

    PubMed

    Velmurugan, Palanivel; Kim, Jae-In; Kim, Kangmin; Park, Jung-Hee; Lee, Kui-Jae; Chang, Woo-Suk; Park, Yool-Jin; Cho, Min; Oh, Byung-Taek

    2017-08-01

    The main objective of this study was to extract natural colorant from purple sweet potato powder (PSPP) via a water bath and ultrasound water bath using acidified ethanol (A. EtOH) as the extraction solvent. When optimizing the colorant extraction conditions of the solvents, acidified ethanol with ultrasound yielded a high extraction capacity and color intensity at pH2, temperature of 80°C, 20mL of A. EtOH, 1.5g of PSPP, time of 45min, and ultrasonic output power of 75W. Subsequently, the colorant was extracted using the optimized conditions for dyeing of textiles (leather, silk, and cotton). This natural colorant extraction technique can avoid serious environmental pollution during the extraction and is an alternative to synthetic dyes, using less solvent and simplified abstraction procedures. The extracted purple sweet potato natural colorant (PSPC) was used to dye leather, silk, and cotton fabrics in an eco-friendly approach with augmented antibacterial activity by in situ synthesis of silver nanoparticles (AgNPs) and dyeing. The optimal dyeing conditions for higher color strength (K/S) values were pH2 and 70°C for 45min. The colorimetric parameters L ∗ , a ∗ , b ∗ , C, and H were measured to determine the depth of the color. The Fourier transform infrared spectroscopy (FTIR) spectra of undyed control, dyed with PSPC and dyed with blend of PSPC and AgNPs treated leather, silk and cotton fabric were investigated to study the interaction among fiber type, nanoparticles, and dye. The structural morphology of leather and silk and cotton fabrics and the anchoring of AgNPs with elemental compositions were investigated by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). The dry and wet rubbing fastness for dye alone and dye with nanoparticles were grade 4-5 and 4, respectively. Thus, the results of the present study clearly suggest that in situ synthesis of AgNPs along with dyeing should be considered in the development of antimicrobial textile finishes. Copyright © 2017. Published by Elsevier B.V.

  1. The AMTEX Partnership{trademark}. Fourth quarter FY95 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. The operations and program management of the AMTEX Partnership{trademark} is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership. Progress is reported on the following projects: computer-aided fabric evaluation;more » cotton biotechnology; demand activated manufacturing architecture; electronic embedded fingerprints; on-line process control for flexible fiber manufacturing; rapid cutting; sensors for agile manufacturing; and textile resource conservation.« less

  2. Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation.

    PubMed

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2008-05-01

    The decolorization and reduction of COD of dyeing wastewater from a cotton textile mill was conducted using catalytic thermal treatment (thermolysis) accompanied with/without coagulation. Thermolysis in presence of a homogeneous copper sulphate catalyst was found to be the most effective in comparison to other catalysts (FeCl(3), FeSO(4), CuO, ZnO and PAC) used. A maximum reduction of chemical oxygen demand (COD) and color of dyeing wastewater of 66.85% and 71.4%, respectively, was observed with a catalyst concentration of 5 kg/m(3) at pH 8. Commercial alum was found most effective coagulant among various coagulants (aluminum potassium sulphate, PAC, FeCl(3) and FeSO(4)) tested during coagulation operations, resulting in 58.57% COD and 74% color reduction at pH 4 and coagulant dose of 5 kg/m(3). Coagulation of the clear fluid (supernatant) obtained after treatment by thermolysis at the conditions previously used resulted in an overall reduction of 89.91% COD and 94.4% color at pH 4 and a coagulant dose of 2 kg/m(3). The application of thermolysis followed by coagulation, thus, is the most effective treatment method in removing nearly 90% COD and 95% color at a lower dose of coagulant (2 kg/m(3)). The sludge thus produced would contain lower inorganic mass coagulant and, therefore, less amount of inorganic sludge.

  3. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles.

    PubMed

    Singh, Bir; Avci, Utku; Eichler Inwood, Sarah E; Grimson, Mark J; Landgraf, Jeff; Mohnen, Debra; Sørensen, Iben; Wilkerson, Curtis G; Willats, William G T; Haigler, Candace H

    2009-06-01

    Cotton (Gossypium hirsutum) provides the world's dominant renewable textile fiber, and cotton fiber is valued as a research model because of its extensive elongation and secondary wall thickening. Previously, it was assumed that fibers elongated as individual cells. In contrast, observation by cryo-field emission-scanning electron microscopy of cotton fibers developing in situ within the boll demonstrated that fibers elongate within tissue-like bundles. These bundles were entrained by twisting fiber tips and consolidated by adhesion of a cotton fiber middle lamella (CFML). The fiber bundles consolidated via the CFML ultimately formed a packet of fiber around each seed, which helps explain how thousands of cotton fibers achieve their great length within a confined space. The cell wall nature of the CFML was characterized using transmission electron microscopy, including polymer epitope labeling. Toward the end of elongation, up-regulation occurred in gene expression and enzyme activities related to cell wall hydrolysis, and targeted breakdown of the CFML restored fiber individuality. At the same time, losses occurred in certain cell wall polymer epitopes (as revealed by comprehensive microarray polymer profiling) and sugars within noncellulosic matrix components (as revealed by gas chromatography-mass spectrometry analysis of derivatized neutral and acidic glycosyl residues). Broadly, these data show that adhesion modulated by an outer layer of the primary wall can coordinate the extensive growth of a large group of cells and illustrate dynamic changes in primary wall structure and composition occurring during the differentiation of one cell type that spends only part of its life as a tissue.

  4. Pressure Mapping Mat for Tele-Home Care Applications

    PubMed Central

    Saenz-Cogollo, Jose Francisco; Pau, Massimiliano; Fraboni, Beatrice; Bonfiglio, Annalisa

    2016-01-01

    In this paper we present the development of a mat-like pressure mapping system based on a single layer textile sensor and intended to be used in home environments for monitoring the physical condition of persons with limited mobility. The sensor is fabricated by embroidering silver-coated yarns on a light cotton fabric and creating pressure-sensitive resistive elements by stamping the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at the crossing points of conductive stitches. A battery-operated mat prototype was developed and includes the scanning circuitry and a wireless communication module. A functional description of the system is presented together with a preliminary experimental evaluation of the mat prototype in the extraction of plantar pressure parameters. PMID:26978369

  5. Development of an Insect Repellent Spray for Textile Based on Permethrin-Loaded Lipid-Core Nanocapsules.

    PubMed

    Forgearini, Joana C; Michalowski, Cecília B; Assumpção, Evelise; Pohlmann, Adriana R; Guterres, Silvia S

    2016-02-01

    The aim of this study was to prepare and characterize permethrin-loaded lipid core nanocapsules (P-LNC) in order to produce a long last insect repellent spray formulation for clothes. P-LNC were prepared by self-assembling in aqueous solution showing a mean diameter of 201 +/- 4 nm with a monomodal distribution, a permethrin content of 4.6 +/- 0.1 mg/mL and zeta potential of--16.7 +/- 4 mV. P-LNC (0.46%), as well as the commercial product (0.46%) and the hydroalcoholic solution (0.50%) of permethrin were separately sprayed onto cotton or polyester, followed by successive washes of the fabric. The results showed that the fabrics treated with P-LNC are more resistant than other solutions in terms of remaining permethrin content. After twenty washes, the cotton treated with P-LNC, presented a concentration of 566 +/- 27 mg/M2 of impregnated permethrin, while for the treatment with the substance hydroalcoholic solution and with the commercial product the concentrations values were of 340 +/- 7 mg/M2 and 224 +/- 74 mg/M2, respectively. When the test was performed using polyester, this fiber was less adhesive than cotton, resulting in a final concentration of permethrin (after 20 washes) of 81 +/- 10 mg/m2 for P-LNC suspension, 94 +/- 8 mg/M2 for the substance hydroalcoolic solution and 22 +/- 3 mg/M2 for the commercial product. After impregnating cotton with the formulations and submitting to a temperature of 200 degrees C, the P-LNC also demonstrated higher adherence compared to the other formulations (407 +/- 67 mg/m2 for P-LNC, 236 +/- 72 mg/m2 for the substance hydroalcoholic solution and 158 +/- 62 mg/m2 for commercial product). These results showed that the repellent spray composed of P-LNC developed in this work is a promising and innovative product for the individual protection against insects, useful for impregnation onto cotton garments.

  6. An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants

    PubMed Central

    Sarkar, Ajoy K

    2004-01-01

    Background The ultraviolet properties of textiles dyed with synthetic dyes have been widely reported in literature. However, no study has investigated the ultraviolet properties of natural fabrics dyed with natural colorants. This study reports the Ultraviolet Protection Factor (UPF) of cotton fabrics dyed with colorants of plant and insect origins. Methods Three cotton fabrics were dyed with three natural colorants. Fabrics were characterized with respect to fabric construction, weight, thickness and thread count. Influence of fabric characteristics on Ultraviolet Protection Factor was studied. Role of colorant concentration on the ultraviolet protection factor was examined via color strength analysis. Results A positive correlation was observed between the weight of the fabric and their UPF values. Similarly, thicker fabrics offered more protection from ultraviolet rays. Thread count appears to negatively correlate with UPF. Dyeing with natural colorants dramatically increased the protective abilities of all three fabric constructions. Additionally, within the same fabric type UPF values increased with higher depths of shade. Conclusion Dyeing cotton fabrics with natural colorants increases the ultraviolet protective abilities of the fabrics and can be considered as an effective protection against ultraviolet rays. The UPF is further enhanced with colorant of dark hues and with high concentration of the colorant in the fabric. PMID:15509304

  7. Intumescent flame retardant properties of graft copolymerized vinyl monomers onto cotton fabric

    NASA Astrophysics Data System (ADS)

    Rosace, G.; Colleoni, C.; Trovato, V.; Iacono, G.; Malucelli, G.

    2017-10-01

    In this paper, an intumescent flame retardant treatment, obtained by a combination of vinylphosphonic acid (VPA) and methacrylamide (MAA), was applied to cotton fabrics. In order to improve the cross-linking degree onto cellulose polymers, potassium persulfate was used as initiator of a radical polymerization technique. The application on cotton was carried out by padding, followed by drying and a curing treatment. The treated samples were characterized by SEM, TGA and FTIR-ATR analyses and tested in terms of flammability and washing fastness. The thermal and fire behavior of the treated fabrics was thoroughly investigated. The results clearly showed that the VPA/MAA coating was able to exert a protective action, giving rise to the formation of a stable char on the surface of textile fibers upon heating, hence improving the flame retardant performance of cotton. Horizontal flame spread tests confirmed that the coated fabrics achieved self-extinction, and the residues well preserved the original weave structure and fiber morphology; at variance, the uncoated fabric left only ashes. A remarkable weight loss was observed only after the first washing cycle, then the samples did not show any significant weight loss, hence confirming the durability of the self-extinguishing treatment, even after five laundering cycles.

  8. Evaluation of the association of acute overshift change in pulmonary function and atopy using OSHA cotton dust surveillance data.

    PubMed

    Jennison, E; Jacobs, R R

    1994-05-01

    OSHA surveillance data were collected for 769 individuals employed in four different cotton textile mills. Current workers were asked to complete a questionnaire about personal and family history of atopy or asthma. Both surveillance and survey data were available for 502 individuals. The prevalence of atopy in the population as reported by questionnaire was 18%, while asthma was reported by 4%. Dust levels at the four mills were in compliance with the cotton dust standard during the period of surveillance. No relationship was found between a self-reported history of atopy or asthma and the magnitude or frequency of acute overshift declines in forced expiratory volume during 1 second (FEV1). Nonsmokers had annual changes in FEV1 and forced vital capacity (FVC) comparable to nonexposed populations. In one of the four mills surveyed, annual declines in FEV1 and FVC for current smokers were significantly greater than declines for smokers in the other mills or the general smoking population (p < 0.02). This mill effect was also observed for subjects who were categorized as atopic (p < 0.02). For nonsmokers there appears to be no significant adverse health effect from exposure to the levels of cotton dust observed in these mills.

  9. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions

    NASA Astrophysics Data System (ADS)

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2012-12-01

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  10. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    PubMed

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications.

    PubMed

    Veluswamy, Pandiyarasan; Sathiyamoorthy, Suhasini; Khan, Faizan; Ghosh, Aranya; Abhijit, Majumdar; Hayakawa, Yasuhiro; Ikeda, Hiroya

    2017-02-10

    The central idea of this paper is to innovate a new approach for the development of wearable device materials through the coating of cotton fabric with ZnO and Sb-/Ag-/ZnO composites. The study was designed in order to have a clear understanding of the role of ZnO as well as the modified composite thereof under investigation. Cotton fabric with uniform ZnO/ZnO-composite layers on the surface was successfully synthesized via a solvothermal method. The growth behaviors were investigated by comparing ZnO and ZnO-composites. The structural, morphological, chemical states, optical, electrical and thermopower properties of these fabrics were studied. Nanostructured ZnO-composite fabric had enhanced UV shielding with a value of 83.96. It is found that the ZnO-composite fabrics have increased electrical conductivity. The thermopower value of the ZnO-composite fabric could reach 471.9μVK -1 . Such materials are anticipated to be worthwhile as wearable electronic devices and as protective textiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Co-digestion of agricultural and municipal waste to produce energy and soil amendment

    USDA-ARS?s Scientific Manuscript database

    In agriculture, manure and cotton gin waste are major environmental liabilities. Likewise, grass is an important organic component of municipal waste. These wastes were combined and used as substrates in a two-phase, pilot-scale anaerobic digester to evaluate the potential for biogas (methane) produ...

  13. Carbon coated textiles for flexible energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Kristy; Perez, Carlos R.; McDonough, John K.

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25more » A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².« less

  14. Carbon coated textiles for flexible energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Kristy; Perez, Carlos O; Mcdonough, John

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25more » A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.« less

  15. Smart and Fragrant Garment via Surface Modification of Cotton Fabric With Cinnamon Oil/Stimuli Responsive PNIPAAm/Chitosan Nano Hydrogels.

    PubMed

    Bashari, Azadeh; Hemmatinejad, Nahid; Pourjavadi, Ali

    2017-09-01

    This paper deals with obtaining aromatherapic textiles via applying stimuli-responsive poly N-isopropyl acryl amide (PNIPAAm) /chitosan (PNCS) nano hydrogels containing cinnamon oil on cotton fabric and looks into the treated fabric characteristics as an antibacterial and temperature/pH responsive fabric. The semi-batch surfactant-free dispersion polymerization method was proposed to the synthesis of PNCS nano particles. The incorporation of modified β -cyclodextrin ( β -CD) into the PNCS nanohydrogel was performed in order to prepare a hydrophobic(cinnamon oil) carrier embedded in stimuli-responsive nanohydrogel. The β -CD postloading process of cinnamon oil in to the hydrogel nano particles was performed via ultrasonic bath and exhaustion methods. The antibacterial activity of the treated fabrics at different temperatures demonstrated the preparing new functional bio-antibacterial fabrics with temperature responsiveness.

  16. Oil on the water: Government regulation of a carcinogen in the twentieth-century Lancashire cotton spinning industry.

    PubMed

    Higgins, David; Tweedale, Geoffrey

    2010-01-01

    In the Lancashire cotton textile industry, mule spinners were prone to a chronic and sometimes fatal skin cancer (often affecting the groin). The disease had reached epidemic proportions by the 1920s, which necessitated action by the government, employers, and trade unions. In contrast to previous accounts, this article focuses on the government's reaction to mule spinners' cancer. Using official records in the National Archives, the slow introduction of health and safety measures by the government is explored in detail. Although obstructionism by the employers played a key role, one of the reasons for government inaction was the ambiguity of scientific research on engineering oils. On the other hand, prolonged scientific research suited a government policy that was framed around self regulation - a policy that had proved largely ineffective by the 1950s.

  17. Proposed Expansion of Acme Landfill Operations.

    DTIC Science & Technology

    1982-08-01

    plastic beverage bottles, cardboard, wood, yardwastes, textiles , rubber, and leather. In addition to traditional activities, a central processing center...from food and garden wastes), a considerable portion of the leachate strength may be attributable to the textiles , rubber, leather, wood, paper, and...poisoning); mosquitos which may carry viral diseases such as encephalitis, malaria, and yellow fever; rodents which are carriers of enteric and other

  18. Municipal Solid Waste Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  19. Cost effective dry anaerobic digestion in textile bioreactors: Experimental and economic evaluation.

    PubMed

    Patinvoh, Regina J; Osadolor, Osagie A; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-12-01

    The aim of this work was to study dry anaerobic digestion (dry-AD) of manure bedded with straw using textile-based bioreactor in repeated batches. The 90-L reactor filled with the feedstocks (22-30% total solid) and inoculum without any further treatment, while the biogas produced were collected and analyzed. The digestate residue was also analyzed to check its suitability as bio-fertilizer. Methane yield after acclimatization increased from 183 to 290NmlCH 4 /gVS, degradation time decreased from 136 to 92days and the digestate composition point to suitable bio-fertilizer. The results then used to carry out economical evaluation, which shows dry-AD in textile bioreactors is a profitable method of handling the waste with maximum payback period of 5years, net present value from $7,000 to $9,800,000 (small to large bioreactors) with internal rate of return from 56.6 to 19.3%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The comparison of laser surface designing and pigment printing methods for the product quality

    NASA Astrophysics Data System (ADS)

    Ozguney, Arif Taner

    2007-07-01

    Developing new designs by using the computer and transferring the designs that are obtained to textile surfaces will not only increase and facilitate the production in a more practical manner, but also help you create identical designs. This means serial manufacturing of the products at standard quality and increasing their added values. Moreover, creating textile designs using the laser will also contribute to the value of the product as far as the consumer is concerned because it will not cause any wearing off and deformation in the texture of the fabric unlike the other methods. In the system that has been designed, the laser beam at selected wavelength and intensity was directed onto a selected textile surface and a computer-controlled laser beam source was used to change the colour substances on the textile surface. Pigment printing is also used for designing in textile and apparel sector. In this method, designs are transferred to the fabric manually by using dyestuff. In this study, the denim fabric used for the surfacing trial was 100% cotton, with a weft count per centimeter of 20 and a warp count per centimeter of 27, with fabric weight of 458 g/m 2. The first step was to prepare 40 pieces of denim samples, half of which were prepared manually pigment printing and the other half by using the laser beam. After this, some test applications were done. The tensile strength, tensile extension and some fastness values of designed pieces with two methods were compared according to the international standards.

  1. Functional textiles for atopic dermatitis: a systematic review and meta-analysis.

    PubMed

    Lopes, Cristina; Silva, Diana; Delgado, Luís; Correia, Osvaldo; Moreira, André

    2013-09-01

    Atopic dermatitis (AD) is a relapsing inflammatory skin disease with a considerable social and economic burden. Functional textiles may have antimicrobial and antipruritic properties and have been used as complementary treatment in AD. We aimed to assess their effectiveness and safety in this setting. We carried out a systematic review of three large biomedical databases. GRADE approach was used to rate the levels of evidence and grade of recommendation. Meta-analyses of comparable studies were carried out. Thirteen studies (eight randomized controlled trials and five observational studies) met the eligibility criteria. Interventions were limited to silk (six studies), silver-coated cotton (five studies), borage oil, and ethylene vinyl alcohol (EVOH) fiber (one study each). Silver textiles were associated with improvement in SCORAD (2 of 4), fewer symptoms, a lower need for rescue medication (1 of 2), no difference in quality of life, decreased Staphyloccosus aureus colonization (2 of 3), and improvement of trans-epidermal water loss (1 of 2), with no safety concerns. Silk textile use was associated with improvement in SCORAD and symptoms (2 of 4), with no differences in quality of life or need for rescue medication. With borage oil use only skin erythema showed improvement, and with EVOH fiber, an improvement in eczema severity was reported. Recommendation for the use of functional textiles in AD treatment is weak, supported by low quality of evidence regarding effectiveness in AD symptoms and severity, with no evidence of hazardous consequences with their use. More studies with better methodology and longer follow-up are needed. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Composition and ethanol production potential of cotton gin residues.

    PubMed

    Agblevor, Foster A; Batz, Sandra; Trumbo, Jessica

    2003-01-01

    Cotton gin residue (CGR) collected from five cotton gins was fractionated and characterized for summative composition. The major fractions of the CGR varied widely between cotton gins and consisted of clean lint (5-12%),hulls (16-48%), seeds (6-24%), motes (16-24%), and leaves (14-30%). The summative composition varied within and between cotton gins and consisted of ash (7.9-14.6%), acid-insoluble material (18-26%), xylan (4-15%),and cellulose (20-38%). Overlimed steam-exploded cotton gin waste was readily fermented to ethanol by Escherichia coli KO11. Ethanol yields were feedstock and severity dependent and ranged from 58 to 92.5% of the theoretical yields. The highest ethanol yield was 191 L (50 gal)/t, and the lowest was 120 L (32 gal)/t.

  3. Cotton gin trash in the western United States: Resource inventory and energy conversion characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, S.G.; Quinn, M.W.; Whittier, J.P.

    1993-12-31

    The disposal of wastes associated with the processing of cotton is posing increasing problems for cotton gin operators in the western United States. Traditional disposal methods, such as open-air incineration and landfilling are no longer adequate due to increasing environmental concerns. This paper evaluates the technical, economic and environmental feasibility for cotton gin trash to serve as an energy resource. Cotton gin trash has been quantified, by county, in the five cotton-growing states of the western United States. The energy conversion technology that appears to offer the most promise is gasification. An economic evaluation model has been developed that willmore » allow gin operators to analyze their own situation to determine the profitability of converting gin trash to energy.« less

  4. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    USGS Publications Warehouse

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  5. Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles.

    PubMed

    Forsman, Nina; Lozhechnikova, Alina; Khakalo, Alexey; Johansson, Leena-Sisko; Vartiainen, Jari; Österberg, Monika

    2017-10-01

    Herein we present a simple method to render cellulosic materials highly hydrophobic while retaining their breathability and moisture buffering properties, thus allowing for their use as functional textiles. The surfaces are coated via layer-by-layer deposition of two natural components, cationic poly-l-lysine and anionic carnauba wax particles. The combination of multiscale roughness, open film structure, and low surface energy of wax colloids, resulted in long-lasting superhydrophobicity on cotton surface already after two bilayers. Atomic force microscopy, interference microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to decouple structural effects from changes in surface energy. Furthermore, the effect of thermal annealing on the coating was evaluated. The potential of this simple and green approach to enhance the use of natural cellulosic materials is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 7 CFR 319.8-23 - Treatment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... fumigation of cotton and covers (other than high density cotton free of surface contamination) will be... only lint, linters, or waste, and the bales of which are compressed to a density of 28 or more pounds per cubic foot and are free of surface contamination. (b) An inspector may authorize the substitution...

  7. 7 CFR 319.8-23 - Treatment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fumigation of cotton and covers (other than high density cotton free of surface contamination) will be... only lint, linters, or waste, and the bales of which are compressed to a density of 28 or more pounds per cubic foot and are free of surface contamination. (b) An inspector may authorize the substitution...

  8. 7 CFR 319.8-23 - Treatment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fumigation of cotton and covers (other than high density cotton free of surface contamination) will be... only lint, linters, or waste, and the bales of which are compressed to a density of 28 or more pounds per cubic foot and are free of surface contamination. (b) An inspector may authorize the substitution...

  9. [Advances in microbial production of alkaline polygalacturonate lyase and its application in clean production of textile industry].

    PubMed

    Liu, Long; Wang, Zhihao; Zhang, Dongxu; Li, Jianghua; Du, Guocheng; Chen, Jian

    2009-12-01

    We reviewed the microbial production of alkaline polygalacturonate lyase (PGL) and its application in the clean production of textile industry. Currently PGL is mainly produced by microbial fermentation and Bacillus sp. is an ideal wild strain for PGL production. Microbial PGL production was affected by many factors including the concentration and feeding mode of substrate, cell concentration, agitation speed, aeration rate, pH and temperature. Constructing the recombinant strain provided an effective alternative for PGL production, and the concentration of PGL produced by the recombinant Pichia pastoris reached 1305 U/mL in 10 m3 fermentor. The recombinant Pichia pastoris had the potential to reach the industrial production of PGL. PGL can be applied in bio-scouring process in the pre-treatment of cotton. Compared with the traditional alkaline cooking process, the application of PGL can protect fiber, improve the bio-scouring efficiency, decrease energy consumption and alleviate the environmental pollution. The future research focus will be the molecular directed evolution of PGL to make PGL more suitable for the application of PGL in bio-scouring process to realize the clean production of textile industry.

  10. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling.

    PubMed

    Wang, Lu; Cook, Akiko; Patrick, John W; Chen, Xiao-Ya; Ruan, Yong-Ling

    2014-05-01

    Cotton fibers, the most important source of cellulose for the global textile industry, are single-celled trichomes derived from the ovule epidermis at or just prior to anthesis. Despite progress in understanding cotton fiber elongation and cell-wall biosynthesis, knowledge regarding the molecular basis of fiber cell initiation, the first step of fiber development determining the fiber yield potential, remains elusive. Here, we provide evidence that expression of a vacuolar invertase (VIN) is an early event that is essential for cotton fiber initiation. RNAi-mediated suppression of GhVIN1, a major VIN gene that is highly expressed in wild-type fiber initials, resulted in significant reduction of VIN activity and consequently a fiberless seed phenotype in a dosage dependent manner. The absence of a negative effect on seed development in these fiberless seeds indicates that the phenotype is unlikely to be due to lack of carbon nutrient. Gene expression analyses coupled with in vitro ovule culture experiments revealed that GhVIN1-derived hexose signaling may play an indispensable role in cotton fiber initiation, probably by regulating the transcription of several MYB transcription factors and auxin signaling components that were previously identified as required for fiber initiation. Together, the data represent a significant advance in understanding the mechanisms of cotton fiber initiation, and provide the first indication that VIN-mediated hexose signaling may act as an early event modulating the expression of regulatory genes and hence cell differentiation from the ovule epidermis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Optimisation of the recovery of carotenoids from tomato processing wastes: application on textile dyeing and assessment of its antioxidant activity.

    PubMed

    Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk

    2017-01-01

    The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.

  12. Moisture Management Behaviour of Knitted Fabric from Structurally Modified Ring and Vortex Spun Yarn

    NASA Astrophysics Data System (ADS)

    Sharma, Navendu; Kumar, Pawan; Bhatia, Dinesh; Sinha, Sujit Kumar

    2016-10-01

    The acceptability of a new product is decided by its performance, level of improvement in quality and economy of production. The basic aim of generating micro pores in a textile structure is to provide better thermo-physiological comfort by enhancing the breathability and hence improving moisture management behaviour. In the present study, an attempt has been made to create a relatively more open structure through removal of a component. A comparative assessment with a homogeneous and parent yarn was also made. Yarns of two linear densities, each from ring and vortex spinning systems were produced using 100 % polyester and 80:20 polyester/cotton blend. The modified yarn was produced by removing a component, viz; cotton, by treatment with sulphuric acid from the blended yarn. The knitted fabric from modified yarn was found to show significant improvement in air permeability, water vapour permeability and total absorbency while the wicking characteristic was found to decline.

  13. Simple treatment of cotton textile to impart high water repellent properties

    NASA Astrophysics Data System (ADS)

    Ivanova, N. A.; Zaretskaya, A. K.

    2010-12-01

    We describe two methods to impart the water repellency for the surface of cotton fabric, using a commercially available and a laboratory synthesized fluoroalkylsiloxanes. To characterize the wettability and the durability of water repellent properties of hydrophobic coating produced, we have studied the advancing water contact angles, rolling angles and the evolution of water contact angle in time during a continuous contact of the surface with the water drop. The quality of the coatings was also assessed after the washing procedure. The analysis of the wettability of hydrophobized fabrics indicated that a better effect, leading to the superhydrophobic state of the surface, was observed when the surface relief of the fabric with the coating is determined by not only the structure and braiding of the fabric, but also the additional elements of texture created by the aggregates of molecules of hydrophobic agent.

  14. Cleaning of Fire Damaged Watercolor and Textiles Using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.; Haytas, Christy A.

    2000-01-01

    A noncontact technique is described that uses atomic oxygen generated under low pressure in the presence of nitrogen to remove soot from the surface of a test watercolor panel and strips of cotton, wool and silk. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of soot removal from test panels of six basic watercolors (alizarin crimson, burnt sienna, lemon yellow, yellow ochre, cerulean blue and ultramarine blue) and strips of colored cotton, wool and silk was measured using reflectance spectroscopy. The atomic oxygen removed soot effectively from the treated areas and enabled partial recovery of charred watercolors. However, overexposure can result in removal of sizing, bleaching, and weakening of the structure. With the proper precautions, atomic oxygen treatment appears to have great potential to salvage heavily smoke damaged artworks which were previously considered unrestorable.

  15. Kaolinosis in a cotton mill worker.

    PubMed

    Levin, J L; Frank, A L; Williams, M G; McConnell, W; Suzuki, Y; Dodson, R F

    1996-02-01

    A 62-year-old white male employed for 43 years in the polishing room of a cotton textile mill was admitted to a tertiary care center with progressive dyspnea and productive cough that had not responded to therapy for tuberculosis. In spite of aggressive antibiotic therapy and respiratory support, the patient died as a consequence of respiratory failure. Small rounded and irregular opacities had been noted on the chest radiograph. Review of job-site spirometry demonstrated a worsening restrictive pattern over a 4-year period prior to his death. Additional occupational history revealed long-term exposure to kaolin in the polishing room, and pathologic examination of lung tissue confirmed extensive fibrosis and substantial quantities of kaolin. Kaolinosis is a disease typically found among individuals involved in mining or processing this material rather than in user industries. This case illustrates the importance of obtaining a complete occupational history in reaching a diagnosis. The clinicopathologic aspects of kaolinosis are also reviewed.

  16. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.

    PubMed

    Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao

    2015-10-01

    The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible.

  17. QTLs Analysis and Validation for Fiber Quality Traits Using Maternal Backcross Population in Upland Cotton.

    PubMed

    Ma, Lingling; Zhao, Yanpeng; Wang, Yumei; Shang, Lianguang; Hua, Jinping

    2017-01-01

    Cotton fiber is renewable natural fiber source for textile. Improving fiber quality is an essential goal for cotton breeding project. In present study, F 14 recombinant inbred line (RIL) population was backcrossed by the maternal parent to obtain a backcross (BC) population, derived from one Upland cotton hybrid. Three repetitive field trials were performed by randomized complete block design with two replicates in three locations in 2015, together with the BC population, common male parent and the RIL population. Totally, 26 QTLs in BC population explained 5.00-14.17% of phenotype variation (PV) and 37 quantitative trait loci (QTL) were detected in RIL population explaining 5.13-34.00% of PV. Seven common QTLs detected simultaneously in two populations explained PV from 7.69 to 23.05%. A total of 20 QTLs in present study verified the previous results across three environments in 2012. Particularly, qFL-Chr5-2 controlling fiber length on chromosome 5 explained 34.00% of PV, while qFL-Chr5-3 only within a 0.8 cM interval explained 13.93% of PV on average in multiple environments. These stable QTLs explaining great variation offered essential information for marker-assisted selection (MAS) to improve fiber quality traits. Lots of epistasis being detected in both populations acted as one of important genetic compositions of fiber quality traits.

  18. Unexplored possibilities of all-polysaccharide composites.

    PubMed

    Simkovic, Ivan

    2013-06-20

    Composites made solely from polysaccharides are mostly ecological because they can degrade without leaving behind ecologically harmful residues, in contrast to composites which contain synthetic polymers. Herein, the following groups of all-polysaccharide composites (APCs) are discussed: an all-cellulose group that includes cotton composites, cellulose combined with other polysaccharides, as well as those based on chitin/chitosan, heparin, hyaluronan, xylan, glucomannan, pectin, xyloglucan, arabinan, starch, carrageenan, alginate, galactan as one of the components in combination with other polysaccharides. They can be used in medical, paper, food, packing, textile, electronic, mechanical engineering and other applications. The composites were tested for absorptivity, biodegradability, crystallinity, rheology, and mechanical, optical, separation, gelling, pasting, film-forming, adhesive, antimicrobial properties, as well as water vapor permeability, water repellency, dye uptake, and fire-retardancy. Except for food applications, composites based on more than two types of polysaccharides have rarely been used and many possible combinations remain unexplored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Employing response surface methodology (RSM) to improve methane production from cotton stalk.

    PubMed

    Zhang, Han; Khalid, Habiba; Li, Wanwu; He, Yanfeng; Liu, Guangqing; Chen, Chang

    2018-03-01

    China is the largest cotton producer with the cotton output accounting for 25% of the total world's cotton production. A large quantity of cotton stalk (CS) waste is generated which is burned and causes environmental and ecological problems. This study investigated the anaerobic digestibility of CS by focusing on improving the methane yield by applying central composite design of response surface methodology (RSM). The purpose of this study was to determine the best level of factors to optimize the desired output of methane production from CS. Thus, it was necessary to describe the relationship of many individual variables with one or more response values for the effective utilization of CS. The influences of feed to inoculum (F/I) ratio and organic loading (OL) on methane production were investigated. Results showed that the experimental methane yield (EMY) and volatile solid (VS) removal were calculated to be 70.22 mL/gVS and 14.33% at F/I ratio of 0.79 and organic loading of 25.61 gVS/L, respectively. Characteristics of final effluent showed that the anaerobic system was stable. This research laid a foundation for future application of CS to alleviate the problems of waste pollution and energy output.

  20. Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum.

    PubMed

    Bedekar, Priyanka A; Bhalkar, Bhumika N; Patil, Swapnil M; Govindwar, Sanjay P

    2016-10-01

    Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L -1 ) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer's Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.

  1. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system.

    PubMed

    Hao, Juan; Tu, Lili; Hu, Haiyan; Tan, Jiafu; Deng, Fenglin; Tang, Wenxin; Nie, Yichun; Zhang, Xianlong

    2012-10-01

    As the most important natural raw material for textile industry, cotton fibres are an excellent model for studying single-cell development. Although expression profiling and functional genomics have provided some data, the mechanism of fibre development is still not well known. A class I TCP transcription factor (designated GbTCP), encoding 344 amino acids, was isolated from the normalized cDNA library of sea-island cotton fibre (from -2 to 25 days post anthesis). GbTCP was preferentially expressed in the elongating cotton fibre from 5 to 15 days post anthesis. Some expression was also observed in stems, apical buds, and petals. RNAi silencing of GbTCP produced shorter fibre, a reduced lint percentage, and a lower fibre quality than the wild-type plants. Overexpression of GbTCP enhanced root hair initiation and elongation in Arabidopsis and regulated branching. Solexa sequencing and Affymetrix GeneChip analysis indicated that GbTCP positively regulates the level of jasmonic acid (JA) and, as a result, activates downstream genes (reactive oxygen species, calcium signalling, ethylene biosynthesis and response, and several NAC and WRKY transcription factors) necessary for elongation of fibres and root hairs. JA content analysis in cotton also confirmed that GbTCP has a profound effect on JA biosynthesis. In vitro ovule culture showed that an appropriate concentration of JA promoted fibre elongation. The results suggest that GbTCP is an important transcription factor for fibre and root hair development by regulating JA biosynthesis and response and other pathways, including reactive oxygen species, calcium channel and ethylene signalling.

  2. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system

    PubMed Central

    Zhang, Xianlong

    2012-01-01

    As the most important natural raw material for textile industry, cotton fibres are an excellent model for studying single-cell development. Although expression profiling and functional genomics have provided some data, the mechanism of fibre development is still not well known. A class I TCP transcription factor (designated GbTCP), encoding 344 amino acids, was isolated from the normalized cDNA library of sea-island cotton fibre (from –2 to 25 days post anthesis). GbTCP was preferentially expressed in the elongating cotton fibre from 5 to 15 days post anthesis. Some expression was also observed in stems, apical buds, and petals. RNAi silencing of GbTCP produced shorter fibre, a reduced lint percentage, and a lower fibre quality than the wild-type plants. Overexpression of GbTCP enhanced root hair initiation and elongation in Arabidopsis and regulated branching. Solexa sequencing and Affymetrix GeneChip analysis indicated that GbTCP positively regulates the level of jasmonic acid (JA) and, as a result, activates downstream genes (reactive oxygen species, calcium signalling, ethylene biosynthesis and response, and several NAC and WRKY transcription factors) necessary for elongation of fibres and root hairs. JA content analysis in cotton also confirmed that GbTCP has a profound effect on JA biosynthesis. In vitro ovule culture showed that an appropriate concentration of JA promoted fibre elongation. The results suggest that GbTCP is an important transcription factor for fibre and root hair development by regulating JA biosynthesis and response and other pathways, including reactive oxygen species, calcium channel and ethylene signalling. PMID:23105133

  3. Cotton dust and endotoxin exposure-response relationships in cotton textile workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, S.M.; Christiani, D.C.; Eisen, E.A.

    Endotoxin exposure has been implicated in the etiology of lung disease in cotton workers. We investigated this potential relationship in 443 cotton workers from 2 factories in Shanghai and 439 control subjects from a nearby silk mill. A respiratory questionnaire was administered and pre- and postshift forced expiratory volume (FVC) and flow in one second (FEV1) were determined for each worker. Multiple area air samples were analyzed for total elutriated dust concentration (range: 0.15 to 2.5 mg/m3) and endotoxin (range: 0.002 to 0.55 microgram U.S. Reference Endotoxin/m3). The cotton worker population was stratified by current and cumulative dust or endotoxinmore » exposure. Groups were compared for FEV1, FVC, FEV1/FVC%, % change in FEV1 over the shift (delta FEV1%), and prevalences of chronic bronchitis and byssinosis, and linear and logistic regression models were constructed. No dose-response relationships were demonstrated comparing dust concentration to any pulmonary function or symptom variable. A dose-response trend was seen with the current endotoxin level and FEV1, delta FEV1%, and the prevalence of byssinosis and chronic bronchitis, except for the highest exposure level group in which a reversal of the trend was seen. The regression coefficients for current endotoxin exposure were significant (p less than 0.05) in the models for FEV1 and chronic bronchitis but not in the models for delta FEV1% (i.e., acute change in FEV1) or byssinosis prevalence. The coefficient for dust level was never significant in the models.« less

  4. Experimental estimation of migration and transfer of organic substances from consumer articles to cotton wipes: Evaluation of underlying mechanisms.

    PubMed

    Clausen, Per Axel; Spaan, Suzanne; Brouwer, Derk H; Marquart, Hans; le Feber, Maaike; Engel, Roel; Geerts, Lieve; Jensen, Keld Alstrup; Kofoed-Sørensen, Vivi; Hansen, Brian; De Brouwere, Katleen

    2016-01-01

    The aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles and one type of inkjet printed paper were used to establish the mechanisms and model. Kinetic extraction studies in methanol demonstrated existence of matrix diffusion and indicated the presence of a substance surface layer on some articles. Consequently, the proposed substance transfer model considers mechanical transport from a surface film and matrix diffusion in an article with a known initial total substance concentration. The estimated chemical substance transfer values to cotton wipes were comparable to the literature data (relative transfer ∼ 2%), whereas relative transfer efficiencies from spiked substrates were high (∼ 50%). For consumer articles, high correlation (r(2)=0.92) was observed between predicted and measured transfer efficiencies, but concentrations were overpredicted by a factor of 10. Adjusting the relative transfer from about 50% used in the model to about 2.5% removed overprediction. Further studies are required to confirm the model for generic use.

  5. Printing of cotton with eco-friendly, red algal pigment from Gracilaria sp.

    NASA Astrophysics Data System (ADS)

    Moldovan, S.; Ferrandiz, M.; Franco, E.; Mira, E.; Capablanca, L.; Bonet, Mª

    2017-10-01

    Natural dyes represent an emerging trend in the textile industry and eco-fashion due to the increasing awareness of the sustainability concept, which must be applied to the surrounding environment. In the light of the stated problem, the search for alternative sources of dyes, revealed the new, eco-friendly, biodegradable, non-carcinogenic and sustainable colorant matter, the algal biomass. In the present work, the suitability and viability of printing cotton fabrics with pigments obtained from the red macroalgae Gracilaria sp., has been investigated. For this aim, phycoerythrin, the red pigment, was extracted from fresh algal biomass, and used in a laboratory pigment-printing process, employing a natural and synthetic printing paste, for process efficiency comparison. The color values and the rubbing and laundering fastness of the printed substrates were evaluated. Results show that a light pink color can be obtained when applying both tested printing processes, and in terms of color fastness, both printing pastes show good behavior. In conclusion, the algal pigments show a high printing capacity on cotton substrates, either when employing the synthetic conventional paste and; moreover, when applying the more sustainable and eco-friendly natural paste.

  6. PROPOSED PROCESS FOR MANAGEMENT OF TEXTILE WASTE FROM REDESIGNED SECONDHAND CLOTHING PRODUCTION IN HAITI: NO-WASTE, RECYCLING AND REPURPOSING

    EPA Science Inventory

    Outputs of this project include a “redesign matrix” created by apparel design faculty members and graduate students and a “biodegradable/recyclable fabric matrix” created by both fiber science and apparel design students and faculty – both with...

  7. Efficient technical solution for recycling textile materials by manufacturing nonwoven geotextiles

    NASA Astrophysics Data System (ADS)

    Leon, A. L.; Potop, G. L.; Hristian, L.; Manea, L. R.

    2016-08-01

    This paper aims to support the concept "circular economy" that was developed recently. It presents an efficient method for creating a closed loop in the Romanian textile industry by recycling textile materials, such as polyacrylonitrile knitted old products (collected from population) and small polyester woven patches from pre-consumer waste (garments manufacturing companies). Because of their properties, nonwoven geotextiles have many advantages in railways reinforcement, slopes stabilization, erosion control, drainage, filtration, paving roads, crops coverings, etc. The nonwoven geotextiles were obtained from three fibrous blends based on recovered fibers (PES and PAN) and fibers at first usage (PP) in different ratios. All experimental variants were processed on the same manufacturing line with the same technological parameters. There were tested the main physical and mechanical parameters and it was applied single factor ANOVA method for thickness, bulk density, air permeability and static puncture strength. The conclusion is that adding PP fibers in the blends represents a very important factor for geotextiles characteristics but it possible to decrease the ratio from economical reasons and still maintain a high quality level of nonwovens.

  8. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    NASA Astrophysics Data System (ADS)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  9. Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation.

    PubMed

    Kadam, Avinash A; Telke, Amar A; Jagtap, Sujit S; Govindwar, Sanjay P

    2011-05-15

    The objective of this study was to develop consortium using Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 to decolorize adsorbed dyes from textile effluent wastewater under solid state fermentation. Among various agricultural wastes rice bran showed dye adsorption up to 90, 62 and 80% from textile dye reactive navy blue HE2R (RNB HE2R) solution, mixture of textile dyes and textile industry wastewater, respectively. Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 showed 62 and 38% decolorization of RNB HE2R adsorbed on rice bran in 24h under solid state fermentation. However, the consortium of Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 (consortium-PA) showed 80% decolorization in 24h. The consortium-PA showed effective ADMI removal ratio of adsorbed dyes from textile industry wastewater (77%), mixture of textile dyes (82%) and chemical precipitate of textile dye effluent (CPTDE) (86%). Secretion of extracellular enzymes such as laccase, azoreductase, tyrosinase and NADH-DCIP reductase and their significant induction in the presence of adsorbed dye suggests their role in the decolorization of RNB HE2R. GCMS and HPLC analysis of product suggests the different fates of biodegradation of RNB HE2R when used Pseudomonas sp. SUK1, A. ochraceus NCIM-1146 and consortium PA. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads.

    PubMed

    Levendis, Y A; Atal, A; Carlson, J B; Quintana, M D

    2001-01-01

    This is a laboratory investigation on the emissions from batch combustion of representative infectious ("red bag") medical waste components, such as medical examination latex gloves and sterile cotton pads. Plastics and cloth account for the majority of the red bag wastes by mass and, certainly, by volume. An electrically heated, horizontal muffle furnace was used for batch combustion of small quantities of shredded fuels (0.5-1.5 g) at a gas temperature of approximately 1000 degrees C. The residence time of the post-combustion gases in the furnace was approximately 1 s. At the exit of the furnace, the following emissions were measured: CO, CO2, NOx, particulates and polynuclear aromatic compounds (PACs). The first three gaseous emissions were measured with continuous gas analyzers. Soot and PAC emissions were simultaneously measured by passing the furnace effluent through a filter (to collect condensed-phase PACs) and a bed of XAD-4 adsorbent (to capture gaseous-phase PACs). Analysis involved soxhlet extraction, followed by gas chromatography-mass spectrometry (GC-MS). Results were contrasted with previously measured emissions from batch combustion of pulverized coal and tire-derived fuel (TDF) under similar conditions. Results showed that the particulate soot) and cumulative PAC emissions from batch combustion of latex gloves were more than an order of magnitude higher than those from cotton pads. The following values are indicative of the relative trends (but not necessarily absolute values) in emission yields: 26% of the mass of the latex was converted to soot, 11% of which was condensed PAC. Only 2% of the mass of cotton pads was converted to soot, and only 3% of the weight of that soot was condensed PAC. The PAC yields from latex were comparable to those from TDF. The PAC yields from cotton were higher than those from coal. A notable exception to this trend was that the three-ring gas-phase PAC yields from cotton were more significant than those from latex. Emission yields of CO and CO2 from batch combustion of cotton were, respectively, comparable and higher than those from latex, despite the fact that the carbon content of cotton was half that of latex. This is indicative of the more effective combustion of cotton. Nearly all of the mass of carbon of cotton gasified to CO and CO2 while only small fractions of the carbon in latex were converted to CO2 and CO (20% and 10%, respectively). Yields of NOx from batch combustions of latex and cotton accounted for 15% and 12%, respectively, of the mass of fuel nitrogen indicating that more fuel nitrogen was converted to NOx in the former case, possibly due to higher flame temperatures. No SO2 emissions were detected, indicating that during the fuel-rich combustion of latex, its sulfur content was converted to other compounds (such as H2S) or remained in the soot.

  11. Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) Singer

    PubMed Central

    Mane, Vijay Panjabrao; Patil, Shyam Sopanrao; Syed, Abrar Ahmed; Baig, Mirza Mushtaq Vaseem

    2007-01-01

    Pleurotus sajor-caju (Fr.) Singer was cultivated on selected agro wastes viz. cotton stalks, groundnut haulms, soybean straw, pigeon pea stalks and leaves and wheat straw, alone or in combinations. Cotton stalks, pigeon pea stalks and wheat straw alone or in combination were found to be more suitable than groundnut haulms and soybean straw for the cultivation. Organic supplements such as groundnut oilseed cake, gram powder and rice bran not only affected growth parameters but also increased yields. Thus bioconversion of lignocellulosic biomass by P. sajor-caju offers a promising way to convert low quality biomass into an improved human food. PMID:17910118

  12. Wearable Contactless Respiration Sensor Based on Multi-Material Fibers Integrated into Textile.

    PubMed

    Guay, Philippe; Gorgutsa, Stepan; LaRochelle, Sophie; Messaddeq, Younes

    2017-05-06

    In this paper, we report on a novel sensor for the contactless monitoring of the respiration rate, made from multi-material fibers arranged in the form of spiral antenna (2.45 GHz central frequency). High flexibility of the used composite metal-glass-polymer fibers permits their integration into a cotton t-shirt without compromising comfort or restricting movement of the user. At the same time, change of the antenna geometry, due to the chest expansion and the displacement of the air volume in the lungs, is found to cause a significant shift of the antenna operational frequency, thus allowing respiration detection. In contrast with many current solutions, respiration is detected without attachment of the electrodes of any kind to the user's body, neither direct contact of the fiber with the skin is required. Respiration patterns for two male volunteers were recorded with the help of a sensor prototype integrated into standard cotton t-shirt in sitting, standing, and lying scenarios. The typical measured frequency shift for the deep and shallow breathing was found to be in the range 120-200 MHz and 10-15 MHz, respectively. The same spiral fiber antenna is also shown to be suitable for short-range wireless communication, thus allowing respiration data transmission, for example, via the Bluetooth protocol, to mobile handheld devices.

  13. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Potential applications of silk sericin, a natural protein from textile industry by-products.

    PubMed

    Aramwit, Pornanong; Siritientong, Tippawan; Srichana, Teerapol

    2012-03-01

    Silk is composed of two major proteins, fibroin (fibrous protein) and sericin (globular, gumming protein). Fibroin has been used in textile manufacturing and for several biomaterial applications, whereas sericin is considered a waste material in the textile industry. Sericin has recently been found to activate the proliferation of several cell-lines and has also shown various biological activities. Sericin can form a gel by itself; however, after mixing with other polymers and cross-linking it can form a film or a scaffold with good characteristics that can be used in the cosmetic and pharmaceutical industries. Sericin is proven to cause no immunological responses, which has resulted in a more acceptable material for biological applications.

  15. 7 CFR 319.8-8 - Lint, linters, and waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Importation and Entry of Cotton and Covers § 319.8-8 Lint, linters, and waste. (a) Compressed to high density. (1)(i) Entry of lint, linters, and waste, compressed to high density, will be authorized subject to... to high density arriving at a port in the State of California where there are no approved fumigation...

  16. Composite Material from By-products and Its Properties

    NASA Astrophysics Data System (ADS)

    Šeps, K.; Broukalová, I.; Vodička, J.

    2017-09-01

    The paper shows an example of utilization of specific textile admixture - fluffs of torn textiles from waste cars in production of composite with aggregate consisting entirely of unsorted recycled concrete. The admixture in the mixture of recycled concrete and cement binder fills the pores and voids in composite. The elaborated composite has working title STEREDconcrete. In the article, basic mechanical-physical properties of the composite are presented also the fire resistance of STEREDconcrete, which was determined in tests.

  17. Portable X-ray fluorescence for the detection of POP-BFRs in waste plastics.

    PubMed

    Sharkey, Martin; Abdallah, Mohamed Abou-Elwafa; Drage, Daniel S; Harrad, Stuart; Berresheim, Harald

    2018-05-17

    The purpose of this study was to establish the efficacy of portable X-ray fluorescence (XRF) instrumentation as a screening tool for a variety of end of life plastics which may contain excess amounts of brominated flame retardants (BFRs), in compliance with European Union (EU) and United Nations Environment Programme (UNEP) legislative limits (low POP concentration limits - LPCLs). 555 samples of waste plastics were collected from eight waste and recycling sites in Ireland, including waste electrical and electronic equipment (WEEE), textiles, polyurethane foams (PUFs), and expanded polystyrene foams. Samples were screened for bromine content, in situ using a Niton™ XL3T GOLDD XRF analyser, the results of which were statistically compared to mass spectrometry (MS)-based measurements of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD) and tetrabromobisphenol-A (TBBP-A) concentrations in the same samples. Regression between XRF and MS for WEEE samples shows that, despite an overall favourable trend, large deviations occur for a cluster of samples indicative of other bromine-based compounds in some samples; even compensating for false-positives due to background interference from electronic components, XRF tends to over-estimate MS-determined BFR concentrations in the 100 to 10,000 mg kg -1 range. Substantial deviations were additionally found between results for PUFs, textiles and polystyrene samples, with the XRF over-estimating BFR concentrations by a factor of up to 1.9; this is likely due to matrix effects influencing XRF measurements. However, expanded (EPS) and extruded polystyrene (XPS) yielded much more reliable estimations of BFR-content due to a dominance of HBCDD in these materials. XRF proved much more reliable as a "pass/fail" screening tool for LPCL compliance (including a prospective LPCL on Deca-BDE based on REACH). Using a conservative threshold of BFR content exceeding legislative limits (710 mg kg -1 bromine attributed to Penta-BDE), XRF mistakenly identifies only 6 % of samples (34/555) as exceeding legislative limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Solid Waste Composition Study at Taman Universiti, Parit Raja, Batu Pahat

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Sani, M. S. A. M.

    2016-07-01

    Solid waste management is recognised as one of the most challenging issues confronted by both the developed and developing countries. The problems rise due to growing population in current years which results in increased generation of waste with various compositions. The aim of this study was to determine the waste compositions at Taman Universiti. Taman Universiti is a mix residential and commercial area which a preferred residential location amongst students and lecturers due to its proximate location to UTHM main campus. The waste collection was carried out for 50 houses on a daily basis. The collection and sorting out method was conducted according to Malaysian Standard MS 2505:2012 and the data was collected and recorded The result showed that the average generation rate of household waste at Taman Universiti was 0.16kg/person/day and the moisture content was approximately ranging from 61%-68%. Household wastes collected were categorized and it consisted of food and organic, paper, rigid plastics, plastics film, baby diapers, glass, tetra pak, household hazardous waste, metal, rubber, textiles, garden waste and leather. The proportion of each wastes were approximately 64.67%, 9.36%, 9.22%, 5.33%, 3.51%, 2.53%, 1.37%, 1.05%, 0.84%, 0.85%, 0.80%, 0.27%, and 0.23%, respectively. Results from the analyses indicated that the food and organic waste are the major composition of household waste at Taman Universiti followed by the paper, rigid plastics, and plastic film. Meanwhile, the proportion of baby diapers, glass, tetra pak, household hazardous waste, metal, rubber, textiles, and garden decreasing accordingly. In addition, leather was recognized as the least category that contributed to the household waste.

  19. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric

    NASA Astrophysics Data System (ADS)

    Vankar, Padma S.; Shukla, Dhara

    2012-06-01

    Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.

  20. Fat from contused adipose tissue may cause yellow discoloration of clothes in blunt trauma victims.

    PubMed

    Geisenberger, D; Wuest, F; Bielefeld, L; Große Perdekamp, M; Pircher, R; Pollak, S; Thierauf-Emberger, A; Huppertz, L M

    2014-12-01

    In some fatalities from intense blunt trauma, the victims' clothes show strikingly yellow discoloration being in topographic correspondence with lacerated skin and crush damage to the underlying fatty tissue. This phenomenon is especially pronounced in light-colored textiles such as underwear made of cotton and in the absence of concomitant blood-staining. The constellation of findings seems to indicate that the fabric has been soaked with liquid body fat deriving from the contused adipose tissue. To check this hypothesis, textiles suspected to be contaminated with fat were investigated in 6 relevant cases. GC-MS-analysis proved the presence of 11 fatty acids. The fatty acid composition was similar to that of human adipose tissue with a high proportion of oleic acid (18:1). In total, the morphological and chemical findings demonstrated that the yellow discoloration of the victims' clothes was caused by fat from traumatized adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Solid Waste Composition and Quantification at Taman Melewar, Parit Raja, Batu Pahat

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Abidin, S. S. S. Z.

    2016-07-01

    The poor management of solid waste is noticeable through the increasing of the solid waste each year and the difficulties in disposing the waste in the current available landfill. This study was undertaken to analyze the quantity and composition of waste generation in Taman melewar. Taman Melewar is a student residential area and this study is focusing on student's daily waste composition. The objective of this study was to identify the amount of solid waste generation, analyze and classify the composition of solid waste in Taman Melewar. The waste collection was conducted for 50 houses on a daily basis for two weeks. The average household waste generation rate was 0.082 kg/person/day. Organic waste was the major constituent of waste production. The average of organic waste represents about 72.4% followed by paper (9%), plastics film (5.5%), plastics rigid (4.7%), napkins (3.8%), tetrapek (1.3%), glass (1.1%), household hazardous waste (0.85%), textiles (0.52%), metal (0.51%) and rubber (0.34%). The moisture content was ranging from 27.67% to 28.68%. An evaluation was made based on student's behavior towards waste production and recycling. In conclusion, the results revealed that organic waste is the highest waste generated and recycling habits is also poor in Taman Melewar.

  2. [Life-cycle assessment of single-use versus reusable surgical drapes (cellulose/polyethylene-mixed cotton system)].

    PubMed

    Dettenkofer, M; Griesshammer, R; Scherrer, M; Daschner, F

    1999-04-01

    Surgical drapes made of cotton are under increasing competition with various disposable products and reusable draping systems (e.g., made of synthetic fabrics like polyester). When making a choice to use one of these medical devices in practical surgery, major aspects like handling, hygienic safety and costs, but also environmental effects have to be taken into account. In this study a mixed system for patient drapes (reusable cotton drapes combined with a reduced set of impermeable single-use drapes made of cellulose/polyethylene) was compared to a system that is only based on single-use drapes with regard to ecology [life-cycle assessment (LCA)]. The medical literature was reviewed to assess important medical aspects of the use of patient drapes, resulting in the statement that there are no conclusive arguments to support a clear hygienic superiority of one of these alternatives. Based on the conditions assumed and stated, the results of the LCA indicate that the mixed draping system is associated with two times more total energy consumption. In addition, more water is needed and more CO2 emissions are produced. However, draping with the single-use product results in more clinical waste. Regarding water pollution no system proved superior. It is difficult to compare and weigh various environmental aspects like the polluting cultivation of cotton in distant countries (reusable drapes) and the higher figure of transportation necessary to deliver the single-use product within Germany. It is an important disadvantage of the mixed system that it combines the ecological burden of both cotton drapes and the single-use alternative.

  3. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana.

    PubMed

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia; Fei-Baffoe, Bernard; Mensah, Moses Y

    2015-12-01

    Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition of waste, sorting and separation efficiency and per capita of waste. Results show that rate of waste generation in Ghana was 0.47 kg/person/day, which translates into about 12,710 tons of waste per day per the current population of 27,043,093. Nationally, biodegradable waste (organics and papers) was 0.318 kg/person/day and non-biodegradable or recyclables (metals, glass, textiles, leather and rubbers) was 0.096 kg/person/day. Inert and miscellaneous waste was 0.055 kg/person/day. The average household waste generation rate among the metropolitan cities, except Tamale, was high, 0.72 kg/person/day. Metropolises generated higher waste (average 0.63 kg/person/day) than the municipalities (0.40 kg/person/day) and the least in the districts (0.28 kg/person/day) which are less developed. The waste generation rate also varied across geographical locations, the coastal and forest zones generated higher waste than the northern savanna zone. Waste composition was 61% organics, 14% plastics, 6% inert, 5% miscellaneous, 5% paper, 3% metals, 3% glass, 1% leather and rubber, and 1% textiles. However, organics and plastics, the two major fractions of the household waste varied considerably across the geographical areas. In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was achieved. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Scalable and Environmentally Benign Process for Smart Textile Nanofinishing.

    PubMed

    Feng, Jicheng; Hontañón, Esther; Blanes, Maria; Meyer, Jörg; Guo, Xiaoai; Santos, Laura; Paltrinieri, Laura; Ramlawi, Nabil; Smet, Louis C P M de; Nirschl, Hermann; Kruis, Frank Einar; Schmidt-Ott, Andreas; Biskos, George

    2016-06-15

    A major challenge in nanotechnology is that of determining how to introduce green and sustainable principles when assembling individual nanoscale elements to create working devices. For instance, textile nanofinishing is restricted by the many constraints of traditional pad-dry-cure processes, such as the use of costly chemical precursors to produce nanoparticles (NPs), the high liquid and energy consumption, the production of harmful liquid wastes, and multistep batch operations. By integrating low-cost, scalable, and environmentally benign aerosol processes of the type proposed here into textile nanofinishing, these constraints can be circumvented while leading to a new class of fabrics. The proposed one-step textile nanofinishing process relies on the diffusional deposition of aerosol NPs onto textile fibers. As proof of this concept, we deposit Ag NPs onto a range of textiles and assess their antimicrobial properties for two strains of bacteria (i.e., Staphylococcus aureus and Klebsiella pneumoniae). The measurements show that the logarithmic reduction in bacterial count can get as high as ca. 5.5 (corresponding to a reduction efficiency of 99.96%) when the Ag loading is 1 order of magnitude less (10 ppm; i.e., 10 mg Ag NPs per kg of textile) than that of textiles treated by traditional wet-routes. The antimicrobial activity does not increase in proportion to the Ag content above 10 ppm as a consequence of a "saturation" effect. Such low NP loadings on antimicrobial textiles minimizes the risk to human health (during textile use) and to the ecosystem (after textile disposal), as well as it reduces potential changes in color and texture of the resulting textile products. After three washes, the release of Ag is in the order of 1 wt %, which is comparable to textiles nanofinished with wet routes using binders. Interestingly, the washed textiles exhibit almost no reduction in antimicrobial activity, much as those of as-deposited samples. Considering that a realm of functional textiles can be nanofinished by aerosol NP deposition, our results demonstrate that the proposed approach, which is universal and sustainable, can potentially lead to a wide number of applications.

  5. Isolation and functional characterization of a cotton ubiquitination-related promoter and 5'UTR that drives high levels of expression in root and flower tissues.

    PubMed

    Viana, Antonio A B; Fragoso, Rodrigo R; Guimarães, Luciane M; Pontes, Naiara; Oliveira-Neto, Osmundo B; Artico, Sinara; Nardeli, Sarah M; Alves-Ferreira, Marcio; Batista, João A N; Silva, Maria C M; Grossi-de-Sa, Maria F

    2011-11-24

    Cotton (Gossypium spp.) is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2) family member with no previous characterization. Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2) and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2) and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues.

  6. Isolation and functional characterization of a cotton ubiquitination-related promoter and 5'UTR that drives high levels of expression in root and flower tissues

    PubMed Central

    2011-01-01

    Background Cotton (Gossypium spp.) is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2) family member with no previous characterization. Results Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2) and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. Conclusions uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2) and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues. PMID:22115195

  7. Phosphorus use efficiency by cotton measured through 32P isotope technique

    NASA Astrophysics Data System (ADS)

    Marcante, N. C.; Muraoka, T.; Camacho, M. A.; César, F. R. C. F.; Bruno, I. P.

    2012-04-01

    Deficiency of phosphorus (P) is the major limitation to agricultural production in the Brazilian Savannah (Cerrado), which is naturally poor in this nutrient. Most of the P applied by fertilizer in Cerrado soils are converted into low solubility forms and can not be easily absorbed by plants. This occurs for characteristics of adsorption, conditioned by the predominance of low pH and aluminum and iron oxides in the clay fraction. The development of genotypes and cultivars with greater capacity to grow up in soils with low P availability ('phosphorus efficiency') is interesting to improve the agriculture in these areas in a sustainable way. Cotton (Gossypium spp.) is the main product for the fibers used nationally and globally in the textile chain. This study aim was to evaluate the efficiency of absorption and utilization of P by cotton cultivars/genotypes grown in Cerrado soil by the isotopic dilution technique. The soil classified as Ultisols, was labeled with the radioisotope 32P.The experiment was conducted in a greenhouse in a completely randomized design factorial 2 x 17. Factors were considered two levels of P (insufficient = 20 mg kg-1 and sufficient = 120 mg kg-1) and 17 genetic materials of cotton recommended for Cerrado region. Phosphorus levels influenced significantly the shoots dry matter production, the P content and accumulation, the 32P specific activity, the L value and L value less seed cotton P by cultivars and genotypes. The hierarchical clustering analysis used to verify the similarities between the cultivars and genotypes of cotton, classified them into internally homogeneous groups and heterogeneous between different groups. Cultivars FMT 523, FM 910 and CNPA GO 2043 were the most responsive to phosphate fertilizer in sufficient level of P, while the genotype Barbadense 01 and cultivars FM 966LL, IPR Jataí, BRS Aroeira and BRS Buriti were most efficient absorbing P in soils with insufficient level.

  8. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  9. 40 CFR 258.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; stone, glass, clay, and concrete products; textile manufacturing; transportation equipment; and water... the MSWLF unit meets the conditions of § 258.1(f)(1). Open burning means the combustion of solid waste...

  10. 40 CFR 258.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; stone, glass, clay, and concrete products; textile manufacturing; transportation equipment; and water... the MSWLF unit meets the conditions of § 258.1(f)(1). Open burning means the combustion of solid waste...

  11. 40 CFR 258.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; stone, glass, clay, and concrete products; textile manufacturing; transportation equipment; and water... the MSWLF unit meets the conditions of § 258.1(f)(1). Open burning means the combustion of solid waste...

  12. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites.

    PubMed

    Liu, Xia; Zhao, Bo; Zheng, Hua-Jun; Hu, Yan; Lu, Gang; Yang, Chang-Qing; Chen, Jie-Dan; Chen, Jun-Jian; Chen, Dian-Yang; Zhang, Liang; Zhou, Yan; Wang, Ling-Jian; Guo, Wang-Zhen; Bai, Yu-Lin; Ruan, Ju-Xin; Shangguan, Xiao-Xia; Mao, Ying-Bo; Shan, Chun-Min; Jiang, Jian-Ping; Zhu, Yong-Qiang; Jin, Lei; Kang, Hui; Chen, Shu-Ting; He, Xu-Lin; Wang, Rui; Wang, Yue-Zhu; Chen, Jie; Wang, Li-Jun; Yu, Shu-Ting; Wang, Bi-Yun; Wei, Jia; Song, Si-Chao; Lu, Xin-Yan; Gao, Zheng-Chao; Gu, Wen-Yi; Deng, Xiao; Ma, Dan; Wang, Sen; Liang, Wen-Hua; Fang, Lei; Cai, Cai-Ping; Zhu, Xie-Fei; Zhou, Bao-Liang; Jeffrey Chen, Z; Xu, Shu-Hua; Zhang, Yu-Gao; Wang, Sheng-Yue; Zhang, Tian-Zhen; Zhao, Guo-Ping; Chen, Xiao-Ya

    2015-09-30

    Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11-20 Mya, which likely contributed to genomic divergences. Among the 2,483 genes preferentially expressed in fiber, a cell elongation regulator, PRE1, is strikingly At biased and fiber specific, echoing the A-genome origin of spinnable fiber. The expansion of the PRE members implies a genetic factor that underlies fiber elongation. Mature cotton fiber consists of nearly pure cellulose. G. barbadense and G. hirsutum contain 29 and 30 cellulose synthase (CesA) genes, respectively; whereas most of these genes (>25) are expressed in fiber, genes for secondary cell wall biosynthesis exhibited a delayed and higher degree of up-regulation in G. barbadense compared with G. hirsutum, conferring an extended elongation stage and highly active secondary wall deposition during extra-long fiber development. The rapid diversification of sesquiterpene synthase genes in the gossypol pathway exemplifies the chemical diversity of lineage-specific secondary metabolites. The G. barbadense genome advances our understanding of allopolyploidy, which will help improve cotton fiber quality.

  13. Comparative Analysis of Soft Computing Models in Prediction of Bending Rigidity of Cotton Woven Fabrics

    NASA Astrophysics Data System (ADS)

    Guruprasad, R.; Behera, B. K.

    2015-10-01

    Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.

  14. The Chemistry and Perception of Fluorescent White Textile Materials

    NASA Astrophysics Data System (ADS)

    Xu, Changhai

    Cationic bleach activators (CBA) are precursors to perhydroxyl compounds that, when activated, have higher oxidation potential and potentially improved bleaching performance compared to common oxidizing agents such as hydrogen peroxide. CBAs were first reported in 1997 by Proctor & Gamble Co., and have been further developed at North Carolina State University. To date, an effective low temperature bleaching system has not been developed that offers sufficient economic improvement over existing bleaching systems. The primary purpose of this research was to develop new methods and understand key variables required for achieving enhanced whiteness of textile materials using bleach activators with or without the presence of fluorescence. A new optimized low temperature bleaching system using novel lactam-based bleach activators was developed and the effect of UV content of light sources on the whiteness of fluorescent white textile materials was evaluated. A novel class of bleach activators was synthesized by introducing benzoylcaprolactam group into a stilbene system shown as follows:* While solubility, purification and hydrolytic stability of the compounds were problematic, a new approach to low pH (pH 7-9) and low temperature (50-70°C) bleaching was found using a butyrolactam-based cationic bleach activator, N-[4-(triethylammonio methyl)benzoyl]-butyrolactam chloride (TBBC), using a central composite design (CCD) of experiment. The CCD bleaching experiments showed that cationic bleach activators are less effective with high concentrations of hydrogen peroxide in high alkaline solutions. Also a 2FI model predicted the optimized bleaching performance on 100% cotton at near neutral pH and temperatures around 50°C, in which the dosage of TBBC is the most important factor affecting the bleaching performance. This prediction was validated experimentally during bleaching of bamboo and cotton fibers. In addition, this study confirmed the hypothesis that cationic bleach activators have inherent substantivity to cellulosic fibers and that the substantivity enhances bleach effectiveness. This cationic activated bleach system was effective for cotton bleaching and the bleaching performance is superior to that of conventional peroxide bleaching. TBBC was also applied to bamboo cellulosic fibers, which exhibit excessive strength loss during conventional hot bleaching. Under optimized conditions of 5 g/L TBBC, 50°C, 30 min and pH 7.0, TBBC-based bleaching of bamboo fibers produced CIE Whiteness Index (CIE WI) values of 58.20 compared to untreated bamboo which had CIE WI values of 10.77. Hence, the TBBC bleach activator method is effective at bleaching bamboo fibers. Besides chemical bleaching, the fluorescent whitening was another approach to increase the whiteness of materials. Since the whiteness of fluorescent white materials is produced by absorbing UV light and emitting visible blue light, the UV content of light sources has a significant effect on the perception of whiteness. This research addresses the common light sources used in color matching booths. The pilot data is collected by measuring spectral radiance and spectral irradiance, which is used for analysis of the UV effect on the whiteness of fluorescent white materials. The whitening performance of a fluorescent brightening agent (FBA) is dependent on the energy and intensity of the incident UV light. No data have been reported in the open literature that shows the UV emission of standard lamps used in viewing booths. Indeed, standards pertaining to lighting do not require or recommend the standardization of the UV content in any lamps. Hence, the spectroradiometric quantification of UV emission of a series of standard viewing booths is a requirement for establishment of a methodology to determine the effect of radiometric variability in standard sources on visual perception of fluorescent white materials. The radiance measurement data collected from measuring the radiance of light sources (including daylight simulation, incandescent, horizon daylight, cool white fluorescence, and Ultralume 30) in a SpectraLight III color viewing booth and the irradiance of these light sources over a PTFE diffuse reflectance standard, AATCC textile UV calibration standard and some fluorescent whitened fabric samples showed the inadequacy of UV content of these light sources in the SpectraLight III. *Please refer to dissertation for diagram.

  15. CPW-fed wearable antenna at 2.4 GHz ISM band

    NASA Astrophysics Data System (ADS)

    Muhammad, Zuraidah; Shah, S. M.; Abidin, Z. Z.; Asyhap, Adel Y. I.; Mustam, S. M.; Ma, Y.

    2017-09-01

    A wearable antenna working in 2.4 GHz for Industrial, Scientific and Medical (ISM) radio bands is presented in this work. The proposed antenna is a rectangular textile antenna with a coplanar waveguide (CPW) feeding on a cotton jeans as the substrate material. The antenna has a compact size with dimensions of 30 × 30 mm2 which makes it an attractive solution in a wearable antenna construction. The linear characteristics of the antenna are investigated to evaluate the performance of the antenna. The simulation and measurements results are compared and they agree well with each other.

  16. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling.

    PubMed

    Zhou, Ying; Zhang, Ze-Ting; Li, Mo; Wei, Xin-Zheng; Li, Xiao-Jie; Li, Bing-Ying; Li, Xue-Bao

    2015-02-01

    Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14-3-3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14-3-3L, Gh14-3-3e and Gh14-3-3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14-3-3 RNAi transgenic plants were significantly shorter than those of wild type. This 'short fibre' phenotype of the 14-3-3 RNAi cotton could be partially rescued by application of 2,4-epibrassinolide (BL). Expression levels of the BR-related and fibre-related genes were altered in the Gh14-3-3 transgenic fibres. Furthermore, we identified Gh14-3-3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14-3-3L/e/h were required for Gh14-3-3-GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14-3-3 proteins. Additionally, 14-3-3-regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14-3-3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    PubMed Central

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-01-01

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078

  18. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.

    PubMed

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-09-07

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.

  19. Silver-loaded seaweed-based cellulosic fiber improves epidermal skin physiology in atopic dermatitis: safety assessment, mode of action and controlled, randomized single-blinded exploratory in vivo study.

    PubMed

    Fluhr, Joachim W; Breternitz, Maria; Kowatzki, Doreen; Bauer, Andrea; Bossert, Joerg; Elsner, Peter; Hipler, Uta-Christina

    2010-08-01

    The epidermal part of the skin is the major interface between the internal body and the external environment. The skin has a specific physiology and is to different degrees adapted for protection against multiple exogenous stress factors. Clothing is the material with the longest and most intensive contact to human skin. It plays a critical role especially in inflammatory dermatoses or skin conditions with an increased susceptibility of bacterial and fungal infections like atopic dermatitis. Previously, we have shown a dose-dependent antibacterial and antifungal activity of silver-loaded seaweed-based cellulosic fibres. We studied the mode of action of silver-loaded seaweed-based cellulosic fiber and performed a broad safety assessment. The principal aim was to analyse the effects of wearing the textile on epidermal skin physiology in 37 patients with atopic dermatitis in a controlled, randomized single-blinded in vivo study. Furthermore, the sensitization potential was tested in a patch test in 111 panellists. We could demonstrate in vitro a dose-dependent scavenging of induced reactive oxygen species by silver-loaded seaweed-based cellulosic fibers. Safety assessment of these fibres showed no detectable release of silver ions. Furthermore, ex vivo assessment after 24 h application both in healthy volunteers and patients with atopic dermatitis by sequential tape stripping and subsequently raster electron microscopy and energy dispersive microanalysis analysis revealed no detectable amounts of silver in any of stratum corneum layers. Serum analysis of silver showed no detectable levels. The in vivo patch testing of 111 volunteers revealed no sensitization against different SeaCell Active (SeaCell GmbH, Rudolstadt, Germany) containing fabrics. The in vivo study on 37 patients with known atopic dermatitis and mild-to-moderate eczema on their arms were randomly assigned to either silver-loaded seaweed fibre T-shirts or to cotton T-shirts for 8 weeks. A significant reduction in Staphylococcus aureus colonization was detectable for the silver T-shirts compared with cotton T-shirts without any changes in non-pathogenic surface bacteria colonization. Furthermore, a more pronounced improvement in barrier function (transepidermal water loss) was observed in mildly involved eczema areas during the first 4 weeks of the study. Stratum corneum hydration and surface pH improved in both treatment groups over time. The tested silver-loaded seaweed fibre can be regarded as safe and seams to be suited for application in bio-active textiles in atopic dermatitis based on its positive in vivo activity.

  20. Characterization of ecofriendly polyethylene fiber from plastic bag waste

    NASA Astrophysics Data System (ADS)

    Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus

    2017-08-01

    This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.

  1. Removal of Pb(II) from aqueous solutions using waste textiles/poly(acrylic acid) composite synthesized by radical polymerization technique.

    PubMed

    Zhou, Tao; Xia, Fafa; Deng, Yue; Zhao, Youcai

    2018-05-01

    Waste textiles (WTs) are the inevitable outcome of human activity and should be separated and recycled in view of sustainable development. In this work, WT was modified through grafting with acrylic acid (AA) via radical polymerization process using ceric ammonium nitrate (CAN) as an initiator and microwave and/or UV irradiation as energy supply. The acrylic acid-grafted waste textiles (WT-g-AA) thus obtained was then used as an adsorbent to remove Pb(II) from Pb(II)-containing wastewater. The effects of pH, initial concentrations of Pb(II) and adsorbent dose were investigated, and around 95% Pb(II) can be removed from the aqueous solution containing 10mg/L at pH6.0-8.0. The experimental adsorption isotherm data was fitted to the Langmuir model with maximum adsorption capacity of 35.7mg Pb/g WT-g-AA. The Pb-absorbed WT-g-AA was stripped using dilute nitric acid solution and the adsorption capacity of Pb-free material decreased from 95.4% (cycle 1) to 91.1% (cycle 3). It was considered that the WT-g-AA adsorption for Pb(II) may be realized through the ion-exchange mechanism between COOH and Pb(II). The promising results manifested that WT-g-AA powder was an efficient, eco-friendly and reusable adsorbent for the removal of Pb(II) from wastewater. Copyright © 2017. Published by Elsevier B.V.

  2. Solidification and stabilization of the incinerated wastewater sludge from textile industry

    NASA Astrophysics Data System (ADS)

    Aziz, Hamidi Abdul; Ghazali, Miskiah Fadzilah; Omran, Abdelnaser; Umar, Muhammad

    2017-10-01

    This paper describes the investigation of solidification and stabilization (S/S) process for the safe disposal of incinerated wastewater sludge produced from a textile industry in Penang, Malaysia. Physical and chemical properties of the samples were first characterized. Various ratios of ordinary Portland cement (OPC) as a binder were used to immobilize the metals. The leachability of metals in these cement-based waste materials was studied by standard toxicity characteristic leaching procedure (TCLP) and the mechanical strength was tested by a compressive strength test. TCLP results showed the ability of OPC to immobilize various metals such as Zn, Cu, Fe, Al, Ti, and K within the limits set by USEPA and Malaysia Environment Quality Act, 1974. However, the strength of the solidified matrixes was generally lower than the control specimens, ranging from 1-23 Mpa, which was well above the specified limit of 414 kPa for such matrices for their disposal in landfills.

  3. Contact Irritancy and Toxicity of Permethrin-Treated Clothing for Ixodes scapularis, Amblyomma americanum, and Dermacentor variabilis Ticks (Acari: Ixodidae).

    PubMed

    Prose, Robert; Breuner, Nicole E; Johnson, Tammi L; Eisen, Rebecca J; Eisen, Lars

    2018-05-24

    Clothing treated with the pyrethroid permethrin is available in the United States as consumer products to prevent tick bites. We used tick bioassays to quantify contact irritancy and toxicity of permethrin-treated clothing for three important tick vectors of human pathogens: the blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae); the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae); and the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae). We first demonstrated that field-collected I. scapularis nymphs from Minnesota were as susceptible as laboratory-reared nymphs to a permethrin-treated textile. Field ticks examined in bioassays on the same day they were collected displayed contact irritancy by actively dislodging from a vertically oriented permethrin-treated textile, and a forced 1-min exposure resulted in all ticks being unable to move normally, thus posing no more than minimal risk of biting, 1 h after contact with the treated textile. Moreover, we documented lack of normal movement for laboratory-reared I. scapularis nymphs by 1 h after contact for 1 min with a wide range of permethrin-treated clothing, including garments made from cotton, synthetic materials, and blends. A comparison of the impact of a permethrin-treated textile across tick species and life stages revealed the strongest effect on I. scapularis nymphs (0% with normal movement 1 h after a 1-min exposure), followed by A. americanum nymphs (14.0%), I. scapularis females (38.0%), D. variabilis females (82.0%), and A. americanum females (98.0%). Loss of normal movement for all ticks 1 h after contact with the permethrin-treated textile required exposures of 1 min for I. scapularis nymphs, 2 min for A. americanum nymphs, and 5 min for female I. scapularis, D. variabilis, and A. americanum ticks. We conclude that use of permethrin-treated clothing shows promise to prevent bites by medically important ticks. Further research needs are discussed.

  4. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-01-01

    Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.

  5. Heterologous expression of Aspergillus aculeatus endo-polygalacturonase in Pichia pastoris by high cell density fermentation and its application in textile scouring.

    PubMed

    Abdulrachman, Dede; Thongkred, Paweena; Kocharin, Kanokarn; Nakpathom, Monthon; Somboon, Buppha; Narumol, Nootsara; Champreda, Verawat; Eurwilaichitr, Lily; Suwanto, Antonius; Nimchua, Thidarat; Chantasingh, Duriya

    2017-02-16

    Removal of non-cellulosic impurities from cotton fabric, known as scouring, by conventional alkaline treatment causes environmental problems and reduces physical strength of fabrics. In this study, an endo-polygalacturonase (EndoPG) from Aspergillus aculeatus produced in Pichia pastoris was evaluated for its efficiency as a bioscouring agent while most current bioscouring process has been performed using crude pectinase preparation. The recombinant EndoPG exhibited a specific activity of 1892.08 U/mg on citrus pectin under the optimal condition at 50 °C, pH 5.0 with a V max and K m of 65,451.35 μmol/min/mL and 15.14 mg/mL, respectively. A maximal activity of 2408.70 ± 26.50 U/mL in the culture supernatant was obtained by high cell density batch fermentation, equivalent to a 4.8 times greater yield than that from shake-flask culture. The recombinant enzyme was shown to be suitable for application as a bioscouring agent, in which the wettability of cotton fabric was increased by treatment with enzyme at 300 U/mL scouring solution at 40 °C, pH 5.0 for 1 h. The bio-scoured fabric has comparable wettability to that obtained by conventional chemical scouring, but has higher tensile strength. The work has demonstrated for the first time functions of A. aculeatus EndoPG on bioscouring in eco-textile processing. EndoPG alone was shown to possess effective scouring activity. High expression level and homogeneity could be achieved in bench-scale bioreactor.

  6. Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments.

    PubMed

    García-Olalla, Oscar; Alegre, Enrique; Fernández-Robles, Laura; Fidalgo, Eduardo; Saikia, Surajit

    2018-04-25

    Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments.

  7. Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments

    PubMed Central

    García-Olalla, Oscar; Saikia, Surajit

    2018-01-01

    Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments. PMID:29693590

  8. Wearable Contactless Respiration Sensor Based on Multi-Material Fibers Integrated into Textile

    PubMed Central

    Guay, Philippe; Gorgutsa, Stepan; LaRochelle, Sophie; Messaddeq, Younes

    2017-01-01

    In this paper, we report on a novel sensor for the contactless monitoring of the respiration rate, made from multi-material fibers arranged in the form of spiral antenna (2.45 GHz central frequency). High flexibility of the used composite metal-glass-polymer fibers permits their integration into a cotton t-shirt without compromising comfort or restricting movement of the user. At the same time, change of the antenna geometry, due to the chest expansion and the displacement of the air volume in the lungs, is found to cause a significant shift of the antenna operational frequency, thus allowing respiration detection. In contrast with many current solutions, respiration is detected without attachment of the electrodes of any kind to the user’s body, neither direct contact of the fiber with the skin is required. Respiration patterns for two male volunteers were recorded with the help of a sensor prototype integrated into standard cotton t-shirt in sitting, standing, and lying scenarios. The typical measured frequency shift for the deep and shallow breathing was found to be in the range 120–200 MHz and 10–15 MHz, respectively. The same spiral fiber antenna is also shown to be suitable for short-range wireless communication, thus allowing respiration data transmission, for example, via the Bluetooth protocol, to mobile handheld devices. PMID:28481252

  9. Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.

    PubMed

    Philpott, Matthew; Summers, Ian R

    2015-01-01

    Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.

  10. What Happens during Natural Protein Fibre Dissolution in Ionic Liquids.

    PubMed

    Chen, Jingyu; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene

    2014-08-28

    Here, we monitor the dissolution of several natural protein fibres such as wool, human hair and silk, in various ionic liquids (ILs). The dissolution of protein-based materials using ILs is an emerging area exploring the production of new materials from waste products. Wool is a keratin fibre, which is extensively used in the textiles industry and as a result has considerable amounts of waste produced each year. Wool, along with human hair, has a unique morphology whereby the outer layer, the cuticle, is heavily cross linked with disulphide bonds, whereas silk does not have this outer layer. Here we show how ILs dissolve natural protein fibres and how the mechanism of dissolution is directly related to the structure and morphology of the wool fibre.

  11. Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration.

    PubMed

    Ma, Zhuanzhuan; Pan, Gangwei; Xu, Helan; Huang, Yiling; Yang, Yiqi

    2015-06-25

    Cellulosic fibers with high aspect ratio have been firstly obtained from cornhusks via controlled swelling in organic solvent and simultaneous tetramethylammonium hydroxide (TMAOH) post treatment within restricted depth. Cornhusks, with around 42% cellulose content, are a copious and inexpensive source for natural fibers. However, cornhusk fibers at 20tex obtained via small-molecule alkaline extraction were too coarse for textile applications. Continuous NaOH treatment would result in fine fibers but with length of about 0.5-1.5mm, too short for textile use. In this research, post treatment using TMAOH and under controlled swelling significantly reduced fineness of cornhusk fibers from 21.3±2.88 to 5.72±0.21tex. Fiber length was reduced from 105.47±10.03 to47.2±27.4mm. The cornhusk fibers had more oriented microstructures and cellulose content increased to 84.47%. Besides, cornhusk fibers had similar tenacity, longer elongation, and lower modulus compared to cotton and linen, which endowed them with durability and flexibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fashion garment manufacturing - FGM and cyclability theory

    NASA Astrophysics Data System (ADS)

    Mendes, F. D.; Dos Santos, M. C. L.

    2017-10-01

    This article, derived from an ongoing research, presents the possibilities of reducing the inappropriate disposal of textile residues generated by the fabric cutting sector of the Fashion Garment Manufacturing (FGM). The raw material used is very varied, resulting in a large number of productive processes. FGM produces clothing that has as its main features a short life cycle, a high rate of diversification and differentiation, and small production batches, resulting in few similar parts. The production process is differentiated according to the characteristics of the fabric and the look of the garment. During the production process, at least 10% of textile waste is generated during the cutting process, which is constantly discarded in an inadequate way. The Cyclability theory is researched aiming at the possibility of reduction in the generation of waste and elimination of inappropriate disposal. The case study presents the action research carried out in three small Brazilian companies to study the applicability of the Cyclability theory.

  13. Impact of industrial effluents on the biochemical composition of fresh water fish Labeo rohita.

    PubMed

    Muley, D V; Karanjkar, D M; Maske, S V

    2007-04-01

    In acute toxicity (96 hr) experiment the fingerlings of freshwater fish Labeo rohita was exposed to tannery, electroplating and textile mill effluents. The LC0 and LC50 concentrations were 15% and 20% for tannery effluents, 3% and 6% for electroplating effluents and 18% and 22% for textile mill effluents respectively. It was found that, electroplating effluent was more toxic than tannery and textile mill wastes. After acute toxicity experiments for different industrial effluents, various tissues viz. gill, liver, muscle and kidney were obtained separately from control, LC0 and LC50 groups. These tissues were used for biochemical estimations. The glycogen content in all the tissues decreased considerably upon acute toxicity of three industrial effluents except muscle in LC50 group of tannery effluent and kidney in LC50 group of textile mill effluent, when compared to control group. The total protein content decreased in all tissues in three effluents except gills in LC50 group of tannery effluent, kidney in LC50 group of electroplating effluent and kidney in LC0 group of textile mill effluent. In general total lipid content decreased in all tissues after acute exposure when compared to control group. The results obtained in the present study showed that, the industrial effluents from tannery, electroplating and textile mills caused marked depletion in biochemical composition in various tissues of the fish Labeo rohita after acute exposure.

  14. Exposure of women to trace elements through the skin by direct contact with underwear clothing.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2017-01-02

    Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.

  15. Postcards from the edge: Trash-2-Cash communication tools used to support inter-disciplinary work towards a design driven material innovation (DDMI) methodology

    NASA Astrophysics Data System (ADS)

    Earley, R.; Hornbuckle, R.

    2017-10-01

    In this paper postcards from the EU funded Horizon 2020 Trash-2-Cash (2015-2018) project - completed by workshop participants - are presented in three tables with a focus on how they contributed to the building of communication channels, shared understanding and methods in this inter-disciplinary consortium work. The Trash-2-Cash project aims to support better waste utilisation, improve material efficiency, contribute to reduction of landfill area needs, whilst also producing high-value commercial products. Novel materials will drive the generation of new textile fibres that will utilize paper and textile fibre waste, originating from continuously increasing textile consumption. The inter-disciplanarity of the participants is key to achieving the project aims - but communication between sectors is challenging due to diverse expertise and levels of experience; language and cultural differences can also be barriers to collaboration as well. Designing easy and accessible, even fun, communication tools are one of the ways to help build relationships. The cards reviewed were used in Prato (November 2015), Helsinki (February 2016) and London (November 2016). This paper concludes with insights for the ongoing development of the project communications work towards the Design Driven Material Innovation (DDMI) methodology, due to be presented at the end of the project in 2018.

  16. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum).

    PubMed

    Guo, Kai; Du, Xueqiong; Tu, Lili; Tang, Wenxin; Wang, Pengcheng; Wang, Maojun; Liu, Zhen; Zhang, Xianlong

    2016-05-01

    High-quality cotton fibre equates to a more comfortable textile. Fibre length is an important index of fibre quality. Hydrogen peroxide (H2O2) acts as a signalling molecule in the regulation of fibre elongation. Results from in vitro ovule culture suggest that the alteration of fibre cell H2O2 levels affects fibre development. Ascorbate peroxidase (APX) is an important reactive oxygen species (ROS) scavenging enzyme, and we found that GhAPX1AT/DT encoded one member of the previously unrealized group of cytosolic APXs (cAPXs) that were preferentially expressed during the fibre elongation stage. Transgenic cottons with up- and down-regulation of GhAPX1AT/DT were generated to control fibre endogenous levels of H2O2 Suppression of all cAPX (IAO) resulted in a 3.5-fold increase in H2O2 level in fibres and oxidative stress, which significantly suppressed fibre elongation. The fibre length of transgenic lines with over-expression or specific down-regulation of GhAPX1AT/DT did not show any obvious change. However, the fibres in the over-expression lines exhibited higher tolerance to oxidative stress. Differentially expressed genes (DEGs) in fibres at 10 days post-anthesis (DPA) of IAO lines identified by RNA-seq were related to redox homeostasis, signalling pathways, stress responses and cell wall synthesis, and the DEGs that were up-regulated in IAO lines were also up-regulated in the 10 DPA and 20 DPA fibres of wild cotton compared with domesticated cotton. These results suggest that optimal H2O2 levels and redox state regulated by cytosolic APX are key mechanisms regulating fibre elongation, and dysregulation of the increase in H2O2 induces oxidative stress and results in shorter fibres by initiating secondary cell wall-related gene expression. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Particle-Based Geometric and Mechanical Modelling of Woven Technical Textiles and Reinforcements for Composites

    NASA Astrophysics Data System (ADS)

    Samadi, Reza

    Technical textiles are increasingly being engineered and used in challenging applications, in areas such as safety, biomedical devices, architecture and others, where they must meet stringent demands including excellent and predictable load bearing capabilities. They also form the bases for one of the most widespread group of composite materials, fibre reinforced polymer-matrix composites (PMCs), which comprise materials made of stiff and strong fibres generally available in textile form and selected for their structural potential, combined with a polymer matrix that gives parts their shape. Manufacturing processes for PMCs and technical textiles, as well as parts and advanced textile structures must be engineered, ideally through simulation, and therefore diverse properties of the textiles, textile reinforcements and PMC materials must be available for predictive simulation. Knowing the detailed geometry of technical textiles is essential to predicting accurately the processing and performance properties of textiles and PMC parts. In turn, the geometry taken by a textile or a reinforcement textile is linked in an intricate manner to its constitutive behaviour. This thesis proposes, investigates and validates a general numerical tool for the integrated and comprehensive analysis of textile geometry and constitutive behaviour as required toward engineering applications featuring technical textiles and textile reinforcements. The tool shall be general with regards to the textiles modelled and the loading cases applied. Specifically, the work aims at fulfilling the following objectives: 1) developing and implementing dedicated simulation software for modelling textiles subjected to various load cases; 2) providing, through simulation, geometric descriptions for different textiles subjected to different load cases namely compaction, relaxation and shear; 3) predicting the constitutive behaviour of the textiles undergoing said load cases; 4) identifying parameters affecting the textile geometry and constitutive behaviour under evolving loading; 5) validating simulation results with experimental trials; and 6) demonstrating the applicability of the simulation procedure to textile reinforcements featuring large numbers of small fibres as used in PMCs. As a starting point, the effects of reinforcement configuration on the in-plane permeability of textile reinforcements, through-thickness thermal conductivity of PMCs and in-plane stiffness of unidirectional and bidirectional PMCs were quantified systematically and correlated with specific geometric parameters. Variability was quantified for each property at a constant fibre volume fraction. It was observed that variability differed strongly between properties; as such, the simulated behaviour can be related to variability levels seen in experimental measurements. The effects of the geometry of textile reinforcements on the aforementioned processing and performance properties of the textiles and PMCs made from these textiles was demonstrated and validated, but only for simple cases as thorough and credible geometric models were not available at the onset of this work. Outcomes of this work were published in a peer-reviewed journal [101]. Through this thesis it was demonstrated that predicting changes in textile geometry prior and during loading is feasible using the proposed particle-based modelling method. The particle-based modelling method relies on discrete mechanics and offers an alternative to more traditional methods based on continuum mechanics. Specifically it alleviates issues caused by large strains and management of intricate, evolving contact present in finite element simulations. The particle-based modelling method enables credible, intricate modelling of the geometry of textiles at the mesoscopic scale as well as faithful mechanical modelling under load. Changes to textile geometry and configuration due to the normal compaction pressure, stress relaxation, in-plane shear and other types of loads were successfully predicted.

  18. Assessing the environmental impacts of freshwater consumption in LCA.

    PubMed

    Pfister, Stephan; Koehler, Annette; Hellweg, Stefanie

    2009-06-01

    A method for assessing the environmental impacts of freshwater consumption was developed. This method considers damages to three areas of protection: human health, ecosystem quality, and resources. The method can be used within most existing life-cycle impact assessment (LCIA) methods. The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. The relative impact of water consumption in LCIA was analyzed with a case study on worldwide cotton production. The importance of regionalized characterization factors for water use was also examined in the case study. In arid regions, water consumption may dominate the aggregated life-cycle impacts of cotton-textile production. Therefore, the consideration of water consumption is crucial in life-cycle assessment (LCA) studies that include water-intensive products, such as agricultural goods. A regionalized assessment is necessary, since the impacts of water use vary greatly as a function of location. The presented method is useful for environmental decision-support in the production of water-intensive products as well as for environmentally responsible value-chain management.

  19. Micro-CT features of intermediate gunshot wounds covered by textiles.

    PubMed

    Giraudo, Chiara; Fais, Paolo; Pelletti, Guido; Viero, Alessia; Miotto, Diego; Boscolo-Berto, Rafael; Viel, Guido; Montisci, Massimo; Cecchetto, Giovanni; Ferrara, Santo Davide

    2016-09-01

    The analysis of gunshot residue (GSR) on the clothing and the underlying skin of the victim may play an important role in the reconstruction of the shooting incident. The aim of the present study was to test micro-computed tomography (micro-CT) for the analysis of firearm wounds experimentally produced on human skin covered by textiles. Firing trials were performed on 60 sections of human calves enveloped by a single layer of fabric (cotton or jeans or leather or nylon) and 15 controls consisting of bare calves. Experimental firings were conducted in a ballistic laboratory at three different muzzle-to-target distances (5, 15, and 30 cm), using a .32 ACP pistol (Beretta Mod. 81) loaded with full-jacketed bullets coming from the same production lot (7.65 × 17 mm, Browning SR). The visual inspection revealed the classic pattern of GSR distribution on the fabrics and the skin of control samples, while only a dark ring around the entrance lesion was identified on the skin beneath the fabrics. Micro-CT analysis showed the presence of radiopaque material on all entrance wounds, with a statistically significant difference between cases and controls. No differences were found among specimens covered by fabrics, with regard to the firing distance and the type of clothing. No GSR-like deposits were detected in exit wounds. Our results suggest that micro-CT analysis may be a useful screening tool for differentiating entry from exit gunshot wounds when the covering textiles are contaminated, damaged, or missing.

  20. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    PubMed

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  1. Electroactive polymer-based devices for e-textiles in biomedicine.

    PubMed

    Carpi, Federico; De Rossi, Danilo

    2005-09-01

    This paper describes the early conception and latest developments of electroactive polymer (EAP)-based sensors, actuators, electronic components, and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of progress and useful tools in several biomedical fields, such as biomonitoring, rehabilitation, and telemedicine. After a brief outline on ongoing research and the first products on e-textiles under commercial development, this paper presents the most highly performing EAP-based devices developed by our lab and other research groups for sensing, actuation, electronics, and energy generation/storage, with reference to their already demonstrated or potential applicability to electronic textiles.

  2. What Happens during Natural Protein Fibre Dissolution in Ionic Liquids

    PubMed Central

    Chen, Jingyu; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene

    2014-01-01

    Here, we monitor the dissolution of several natural protein fibres such as wool, human hair and silk, in various ionic liquids (ILs). The dissolution of protein-based materials using ILs is an emerging area exploring the production of new materials from waste products. Wool is a keratin fibre, which is extensively used in the textiles industry and as a result has considerable amounts of waste produced each year. Wool, along with human hair, has a unique morphology whereby the outer layer, the cuticle, is heavily cross linked with disulphide bonds, whereas silk does not have this outer layer. Here we show how ILs dissolve natural protein fibres and how the mechanism of dissolution is directly related to the structure and morphology of the wool fibre. PMID:28788183

  3. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    PubMed

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW).

  4. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres.

    PubMed

    Landi, Daniele; Gigli, Silvia; Germani, Michele; Marconi, Marco

    2018-05-01

    The management of end-of-life tyres (ELTs) is regulated by several national and international legislations aiming to promote the recovery of materials and energy from this waste. The three main materials used in tyres are considered: rubber (main product), which is currently reused in other closed-loop applications; steel, which is used for the production of virgin materials; and textile fibres (approximately 10% by weight of ELTs), which are mainly incinerated for energy recovery (open-loop scenario). This study aims to propose and validate a new closed-loop scenario for textile fibres based on material reuse for bituminous conglomerates. The final objective is to verify the technical, environmental, financial, and economic feasibility of the proposed treatment process and reuse scenario. After characterization of the textile material, which is required to determine the technological feasibility, a specific process has been developed to clean, compact, and prepare the fibres for subsequent reuse. A life cycle assessment (LCA) has been carried out to quantify the environmental benefits of reusing the fibres. Finally, a cost benefit analysis based on the LCA results was conducted to establish the long-term financial and economic sustainability. From a technological point of view, the tyre textile fibres could be a promising substitute to the reinforcement cellulose commonly used in asphalts as long as the fibres are properly prepared (compaction and pellet production) for application in the standard bituminous conglomerate production process. From an environmental point of view, relevant benefits in terms of global warming potential and acidification potential reduction were observed in comparison with the standard incineration for energy recovery (respectively -86% and -45%). Moreover, the proposed scenario can be considered as financially viable in the medium to long term (cumulative generated cash flow is positive after the 5th year) and economically sustainable (expected net present value of more than €3,000,000 and economic rate of return of approximately 30%). Finally, the sensitivity and risk analyses show that no specific issues are foreseen for the future implementation in real industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    NASA Astrophysics Data System (ADS)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  6. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  7. Hazardous Waste Cleanup: Clariant Corporation in Fair Lawn, New Jersey

    EPA Pesticide Factsheets

    Clariant Corporation is located on a 13.55-acre on Fairlawn Avenue and Third Street, in the Borough of Fair Lawn, New Jersey, since 1945. It manufactures several products used by the textile and paper industries, including softeners, brighteners and dyes.

  8. Material Property Database and Environmental Attribute Models for NM Science Research

    DTIC Science & Technology

    2011-03-28

    3 Goals 1. Provide place "to go " for initial information 2. Basic understanding of what types of information you might need to... MWCNT , SWCNT, Fullerene, Waste • Aluminum ...,. Explosive, propellant • Silver ...,. Coatings, textiles, polymers • Titanium dioxide

  9. Purification of liquid products of cotton wipes biotransformation with the aid of Trichoderma viridae in orbital flight

    NASA Astrophysics Data System (ADS)

    Viacheslav, Ilyin; Korshunov, Denis

    Recovery of various organic wastes in space flight is an actual problem of modern astronautics and future interplanetary missions. Currently, organic waste are incinerated in the dense layers of the Earth's atmosphere in cargo containers. However, this method of anthropogenic waste treatment is not environmentally compatible with future interplanetary missions, and is not suitable due to planetary quarantine requirements. Furthermore, the maintaining of a closed ecosystem in spaceship is considered as one of the main ways of ensuring the food and air crew in the long term fully autonomous space expedition. Such isolated ecosystem is not conceivable without biotransformation of organic waste. In this regard, currently new ways of recycling organic waste are currently developed. The most promising method is a method for processing organic waste using thermophilic anaerobic microbial communities.However, the products of anaerobic fermentation of solid organic materials contain significant amounts of organic impurities, which often give them sour pH. This presents a significant problem because it does not allow to use this fluid as process water without pretreatment. Fermentation products - alcohols, volatile fatty acids other carbonaceous substances must be withdrawn.One way to solve this problem may be the use of microorganisms biodestructors for recycling organic impurities in the products of anaerobic biodegradation Under the proposed approach, the metabolic products (having acidic pH) of primary biotransformation of solid organic materials are used as media for the cultivation of fungi. Thus, cellulosic wastes are recycled in two successive stages. The aim of this work was to test the effectiveness of post-treatment liquid products of biodegradation of hygienic cotton wipes (common type of waste on the ISS) by the fungus Trichoderma viridae under orbital flight. The study was conducted onboard biosatellite Bion -M1, where was placed a bioreactor, designed to carry out the fermentation in space flight. For aerobic post-treatment of substrates remaining after biodegradation of cotton wipe there was selected a strain of the fungus Trihoderma viridae, able to grow at a slightly acid environment , and to bring the pH to neutral values. Bioreactor working volume of 40 ml, where 20 ml of liquid subjected to post-treatment was placed. Strain Trihoderma viridae, isolated from ISS environment, showed steady growth in terms identical to those of pre- cultivation. Efficiency of purification was assessed using the method of gas chromatography-mass spectrometry comparing the amount and concentration of the volatile organic compounds in the samples. It turned out that the number of compounds detected in the flight sample almost halved compared to the original sample obtained after biodegradation gauze anaerobic bacteria. The total concentration of volatile impurities dropped 6 times. Thus, despite the limited resource of oxygen, due to lack of aeration in the bioreactor strain Trihoderma viridae demonstrated the ability to perform aerobic purification of substrate obtained after anaerobic biodegradation of cotton wipes under orbital flight.

  10. Amount of Testosterone on Laundered Clothing After Use of Testosterone Topical 2% Solution by Healthy Male Volunteers.

    PubMed

    Satonin, Darlene K; Ni, Xiao; Mitchell, Malcolm I; Joly, Hellen; Muram, David; Small, David S

    2016-02-01

    Testosterone 2% solution (Axiron) applied to armpit(s) is used for replacement therapy in men with a deficiency of endogenous testosterone. To determine the amount of testosterone on subjects' T-shirts 12 hours after applying testosterone solution, the residual testosterone on subjects' T-shirts after laundering, and the testosterone transferred to unworn textile items during laundering with worn T-shirts. Healthy males ≥18 years old applied 2 × 1.5 mL of testosterone 2% solution to both axillae (total testosterone dose: 120 mg) and dressed in cotton long-sleeved T-shirts after a ≥3-minute waiting period. T-shirts were worn 12 hours before being removed and cut into halves, after which a 10 × 10 cm sample of each armpit area was excised for testosterone quantification before or after laundering with samples of unworn textiles. Testosterone on worn T-shirts before and after laundering, and on unworn textiles laundered with the worn T-shirts. Twelve subjects enrolled and completed, with only minor adverse events. Mean testosterone in unwashed worn T-shirts was 7603 μg, with high between-subject variability (3359 μg to 13,069 μg), representing 13% of the dose to 1 armpit. Mean testosterone in worn, laundered T-shirts was 260 μg (7.55 μg to 1343 μg), representing 3% of the dose to 1 armpit. Mean transferred testosterone to other textiles during laundering ranged from 69 μg on texturized Dacron 56T Double to 10,402 μg on 87/13 nylon/Lycra knit, representing 0.0382% to 5.78% of the dose to 1 armpit. Thirteen percent of the testosterone applied to axillae was transferred to T-shirts during wear. Ninety-seven percent of the transferred testosterone was removed from the T-shirts during washing, some of which was then absorbed to various degrees by other textiles. Clinical implications of these findings and biological activity of the remaining/transferred testosterone are unknown. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  11. Performance of a contact textile-based light diffuser for photodynamic therapy.

    PubMed

    Khan, Tania; Unternährer, Merthan; Buchholz, Julia; Kaser-Hotz, Barbara; Selm, Bärbel; Rothmaier, Markus; Walt, Heinrich

    2006-03-01

    Medical textiles offer a unique contact opportunity that could provide value-added comfort, reliability, and safety for light or laser-based applications. We investigated a luminous textile diffuser for use in photodynamic therapy. Textile diffusers are produced by an embroidery process. Plastic optical fibers are bent and sewn into textile to release light by macrobending. A reflective backing is incorporated to improve surface homogeneity, intensity, and safety. Clonogenic assay (MCF-7 cells) and trypan blue exclusion (NuTu19 cells) tests were performed in vitro using 0.1μg/ml m-THPC with three textile diffusers and a standard front lens diffuser. Heating effects were studied in solution and on human skin. PDT application in vivo was performed with the textile diffuser on equine sarcoids (three animals, 50mW/cm(2), 10-20J) and eight research animals. Lastly, computer simulations were performed to see how the textile diffuser might work on a curved object. At low fluency rate, there is a trend for the textile diffuser to have lower survival rates than the front lens diffuser for both cell lines. The textile diffuser was observed to retain more heat over a long period (>1min). All animals tolerated the treatments well and showed similar initial reactions. The simulations showed a likely focusing effect in a curved geometry. The initial feasibility and application using a textile-based optical diffuser has been demonstrated. Possibilities that provide additional practical advantages of the textile diffuser are discussed.

  12. Assessment of applicability index for better management of municipal solid waste: a case study of Dhanbad, India.

    PubMed

    Yadav, Pooja; Samadder, S R

    2018-06-01

    Selection of suitable municipal solid waste management (MSWM) options is one of the major challenges in urban areas of the developing countries. Success of MSWM requires accurate data of generation rate, composition and physico-chemical characteristics of solid wastes. Improper handling of solid waste can have significant environmental and aesthetical impacts. The present study proposes a new method (applicability index - P ik values) for identifying the most appropriate disposal option with the help of applicability values of Composting-C P , Incineration-I P and Landfill-L P for individual components of MSW based on the results of the physico-chemical analysis of the collected representative solid waste samples from the study area, Dhanbad, India. The mean values of moisture content, carbon, hydrogen, oxygen, nitrogen, sulfur, volatile organic carbon, fixed carbon, ash content, density and calorific values (CV) of individual components were used as input values in this process. Based on the proposed applicability index (P ik ), the highest P ik values were obtained for incineration (I P ) for plastics, polythene, paper, coconut shell, wood, cardboard, textile, thermocol (polystyrene), rubber, sugarcane bagasse, cow dung and leather wastes (I P  > C P  > L P ) due to high CV of these solid waste components; the highest P ik values were obtained for composting (C P ) of kitchen waste (C P  > I P  > L P ); and the highest P ik values for inert wastes were obtained for landfill option (L P  > I P  > C P ). The highest P ik value for a particular waste for a specific treatment option signifies that the waste is suitable for treatment/disposal using that option.

  13. Recycling waste-paper

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1990-01-01

    Perhaps 80 percent of papermaking energy is expended in chemical pulping of vegetable cellulose, a natural polymer. Commercial supplies of wood, bagasse, cotton and flax are valued as renewable resources and bio-mass assets; however, few enterprises will salvage waste-paper and cardboard from their trash. A basic experiment in the Materials Lab uses simple equipment to make crude handsheets. Students learn to classify secondary fibers, identify contraries, and estimate earnings.

  14. El Salvador.

    PubMed

    1987-11-01

    The Central American republic of El Salvador lies on the Pacific with a south coast between Guatemala and Honduras. The climate rises from tropical maritime along the coast to subtropical hill and valley strip to a mountainous interior. The population consists of 98% Mestizo and 10% Indian, totaling 5.1 million, growing at 2.4 annually. Literacy varies from 40-60%; the infant mortality rate is 71/1000, and the life expectancy is 63-66 years. The economy is based on agricultural products as coffee, sugar and cotton and light industry such as textiles and petroleum refining, but due to political unrest, the 1986 earthquake, and fluctuating commodity prices, inflation runs about 36% and the per capita income is $700. El Salvador takes pride in its independence since 1821, but its history is marked by revolutions and control of government, military and ecclesiastical power by "the fourteen families." The current democratic government, considered to be the result of a fair election, is undertaking land reform and participates in the Central American peace process.

  15. Siting industrial waste land disposal facilities in Thailand: A risk based approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fingleton, D.J.; Habegger, L.; Peters, R.

    The Thailand Industrial Works Department (IWD) has established a toxic industrial waste Central Treatment and Stabilization Center (CTSC) for textile dyeing and electroplating industries located in the Thonburi region of the Bangkok metropolitan area. Industrial waste is treated, stabilized, and stored at the CTSC. Although the IWD plans to ship the stabilized sludge to the Ratchaburi Province in western Thailand for burial, the location for the land disposal site has not been selected. Assessing the relative health risks from exposure to toxic chemicals released from an industrial waste land disposal site is a complicated, data-intensive process that requires a multidisciplinarymore » approach. This process is further complicated by the unique physical and cultural characteristics exhibited by the rapidly industrializing Thai economy. The purpose of this paper is to describe the research approach taken and to detail the constraints to health risk assessments in Thailand. issues discussed include data availability and quality, effectiveness of control or mitigation methods, cultural differences, and the basic assumptions inherent in many of the risk assessment components.« less

  16. 48 CFR 225.7002-2 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the Army. (iii) The Secretary of the Navy. (iv) The Secretary of the Air Force. (v) The Director... simplified acquisition threshold. (k) Acquisitions of waste and byproducts of cotton or wool fiber for use in...

  17. 48 CFR 225.7002-2 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of the Army. (iii) The Secretary of the Navy. (iv) The Secretary of the Air Force. (v) The Director... simplified acquisition threshold. (k) Acquisitions of waste and byproducts of cotton or wool fiber for use in...

  18. 48 CFR 225.7002-2 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the Army. (iii) The Secretary of the Navy. (iv) The Secretary of the Air Force. (v) The Director... simplified acquisition threshold. (k) Acquisitions of waste and byproducts of cotton or wool fiber for use in...

  19. 48 CFR 225.7002-2 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the Army. (iii) The Secretary of the Navy. (iv) The Secretary of the Air Force. (v) The Director... simplified acquisition threshold. (k) Acquisitions of waste and byproducts of cotton or wool fiber for use in...

  20. Analysis of a bio-electrochemical reactor containing carbon fiber textiles for the anaerobic digestion of tomato plant residues.

    PubMed

    Hirano, Shin-Ichi; Matsumoto, Norio

    2018-02-01

    A bio-electrochemical system packed with supporting material can promote anaerobic digestion for several types of organic waste. To expand the target organic matters of a BES, tomato plant residues (TPRs), generated year-round as agricultural and cellulosic waste, were treated using three methanogenic reactors: a continuous stirred tank reactor (CSTR), a carbon fiber textile (CFT) reactor, and a bio-electrochemical reactor (BER) including CFT with electrochemical regulation (BER + CFT). CFT had positive effects on methane fermentation and methanogen abundance. The microbial population stimulated by electrochemical regulation, including hydrogenotrophic methanogens, cellulose-degrading bacteria, and acetate-degrading bacteria, suppressed acetate accumulation, as evidenced by the low acetate concentration in the suspended fraction in the BER + CFT. These results indicated that the microbial community in the BER + CFT facilitated the efficient decomposition of TPR and its intermediates such as acetate to methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The effect of low-temperature laundering and detergents on the survival of Escherichia coli and Staphylococcus aureus on textiles used in healthcare uniforms.

    PubMed

    Riley, K; Williams, J; Owen, L; Shen, J; Davies, A; Laird, K

    2017-05-10

    To determine the survival of Escherichia coli and Staphylococcus aureus on cotton and polyester and the effectiveness of low-temperature laundering and detergents on the removal of micro-organism from healthcare laundry. Survival of E. coli and S. aureus on polyester or cotton was assessed over 3 weeks and the efficacy of a domestic wash (40 and 60°C) and a range of detergents was also determined. Both bacteria were able to survive on cotton (5 log (10) ) and polyester (0·28 log (10) ) for up to 3 weeks. Laundering at 40°C resulted in a 3·5 log (10) removal of the initial 7·7 log (10) inoculum and some cross-contamination to sterile fabrics (3 log (10) ). Increasing the temperature to 60°C resulted in the complete removal of the initial inoculum. This study shows that most of the micro-organisms are removed at 40°C, however, those cells still remaining may have the potential for further contamination to the clinical environment and patients. National Health Service (NHS) nurses are required to domestically launder their uniforms at 60°C to ensure safe removal of micro-organisms, 33% of NHS staff questioned said they launder their uniforms at 40°C, which could potentially result in transmission of hospital-acquired infections. © 2017 The Society for Applied Microbiology.

  2. Applications of pectinases in the commercial sector: a review.

    PubMed

    Kashyap, D R; Vohra, P K; Chopra, S; Tewari, R

    2001-05-01

    Pectinases are one of the upcoming enzymes of fruit and textile industries. These enzymes break down complex polysaccharides of plant tissues into simpler molecules like galacturonic acids. The role of acidic pectinases in bringing down the cloudiness and bitterness of fruit juices is well established. Recently, there has been a good number of reports on the application of alkaline pectinases in the textile industry for the retting and degumming of fiber crops, production of good quality paper, fermentation of coffee and tea, oil extractions and treatment of pectic waste water. This review discusses various types of pectinases and their applications in the commercial sector.

  3. Development of 2D and 3D structured textile batteries processing conductive material with Tailored Fiber Placement (TFP)

    NASA Astrophysics Data System (ADS)

    Normann, M.; Grethe, T.; Zöll, K.; Ehrmann, A.; Schwarz-Pfeiffer, A.

    2017-10-01

    In recent years smart textiles have gained a significant increase of attention. Electrotherapeutic socks, light emitting dresses or shirts with integrated sensors, having the ability to process data of vital parameters, are just a few examples and the full potential is not yet exhausted: Smart textiles are not only used for clothing purposes. Sensors for the care of the elderly, light applications for home textiles and monitoring systems in the automotive section are promising fields for the future. For all these electrical and electronic features, the supply of power is needed. The most common used power supplies, however, are not flexible, often not lightweight and therefore a huge problem for the integration into textile products. In recent projects, textile-based batteries are being developed. Metal-coated fabrics and yarns (e.g. silver, copper, nickel, zinc) as well as carbon based materials were used to create textile based energy sources. This article gives an overview of textile based electrochemical cells by combining different conductive yarns and a gel-electrolyte. The available materials will be processed by embroidering utilizing tailored fiber placement (TFP). The electrical characteristics of different embroidered patterns and material combinations are examined.

  4. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.

    PubMed

    Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y

    2016-10-06

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  5. Towards sustainable solid waste management: Investigating household participation in solid waste management

    NASA Astrophysics Data System (ADS)

    Akil, A. M.; Ho, C. S.

    2014-02-01

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.

  6. [Occupational asthma in the Tunisian central region: etiologies and professional status].

    PubMed

    Chatti, S; Maoua, M; Rhif, H; Dahmoul, M; Abbassi, A; Mlaouah, A J; Hadj Salah, H; Debbabi, F; Mrizak, N

    2011-10-01

    To study the etiologies of occupational asthma and determine its impact on the professional status of asthmatic subjects. The authors carried out a descriptive study on all of the cases of asthma recognized as an occupational disease and declared in the private sector over nine years (2000-2008) in the Tunisian central region. Cases (219) of occupational asthma were listed, accounting for 16.8% of all of the occupational diseases recognized during the period studied. Occupational asthma concerned young adults (40±8.2 years), with a predominance of women (67.7%). The textile sector dominated (74.9%). The majority of the employees were exposed to high molecular weight allergens (82.3%) and cotton dust was the principal offending agent (75.3%). Involuntary unemployment was observed in about half of the cases (46.6%) and was associated with an age lower or equal to 35 years (p = 0.01) and under 15 years of professional seniority (p=0.03). Occupational asthma in the Tunisian central region prevails in the textile sector thereby justifying the reinforcement of preventive measures in this branch of industry. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. A novel medical bandage with enhanced clothing comfort

    NASA Astrophysics Data System (ADS)

    Oğlakcioğlu, N.; Sari, B.; Bedez Üte, T.; Marmarali, A.

    2016-07-01

    Compression garments are special textile products which apply a pressure on needed body zones for supporting medical, sport or casual activities. Medical bandages are a group of these garments and they have a very common usage for compression effect on legs or arms. These bandages are generally produced by using synthetic raw materials such as polyamide or polyester fibres. Medical bandages are in contact with skin. Even if the synthetic fibres are used, they may cause both comfort and health problems like allergies. Nowadays in textile sector, the expectations of clients include using of natural fibres as far as possible in all garments. Natural fibres have good advantages such as breathability, softness, moisture management ability, non-allergenic and ecologic structure and these characteristics present optimum utilization conditions. In this study, tubular medical bandages were manufactured by using core spun yarns (sheath fibres are selected as tencel, bamboo and cotton, core material is elastane) and their pressure and comfort (air and water vapour permeability) characteristics were investigated. The results indicated that the bandages have good comfort abilities beside adequate pressure values for compression effect. These garments can constitute a new production field for medical bandages with their comfort properties in addition to pressure characteristics.

  8. Bioengineering of a cellulosic fabric for insecticide delivery via grafted cyclodextrin.

    PubMed

    Romi, Roberto; Lo Nostro, Pierandrea; Bocci, Eugenio; Ridi, Francesca; Baglioni, Piero

    2005-01-01

    beta-Cyclodextrin (beta-CD) can be easily grafted onto cellulosic textiles through covalent bonds. In such a way beta-CD empty cavities provide an efficient tool for entrapping different kinds of hydrophobic molecules on the surface of the fabric and releasing them slowly in time. The capability of cyclodextrins to include hydrophobic molecules such as fragrances, antimicrobial agents, and other chemicals can be then exploited to produce new grafted textiles with peculiar and useful performances. In this work we report the inclusion of two different products, the pyrethroid insecticide permethrin (PERM) and the insect repellent N,N-diethyl-m-toluamide (DEET), into beta-CD molecules grafted on cotton fabric. UV-vis spectrophotometry and thermal analysis confirmed the presence of the guest molecules on the fabric surface. Bioassays were carried out on two mosquito species of medical importance, Aedes aegypti and Anopheles stephensi; knock down effect and mortality were measured using standard World Health Organization (WHO) cone tests. Repellency and irritancy (blood feeding inhibition) were also measured using cage tests and a baited tunnel device. PERM-treated fabrics kept the insecticidal/irritant efficacy even for a long time after the treatment, whereas DEET activity lasted more shortly.

  9. Production of cellulosic ethanol from cotton processing residues after pretreatment with dilute sodium hydroxide and enzymatic hydrolysis.

    PubMed

    Fockink, Douglas Henrique; Maceno, Marcelo Adriano Corrêa; Ramos, Luiz Pereira

    2015-01-01

    In this study, production of cellulosic ethanol from two cotton processing residues was investigated after pretreatment with dilute sodium hydroxide. Pretreatment performance was investigated using a 2(2) factorial design and the highest glucan conversion was achieved at the most severe alkaline conditions (0.4g NaOH g(-1) of dry biomass and 120°C), reaching 51.6% and 38.8% for cotton gin waste (CGW) and cotton gin dust (CGD), respectively. The susceptibility of pretreated substrates to enzymatic hydrolysis was also investigated and the best condition was achieved at the lowest total solids (5wt%) and the highest enzyme loading (85mg of Cellic CTec2 g(-1) of dry substrate). However, the highest concentration of fermentable sugars - 47.8 and 42.5gL(-1) for CGD and CGW, respectively - was obtained at 15wt% total solids using this same enzyme loading. Substrate hydrolysates had no inhibitory effects on the fermenting microorganism. Copyright © 2015. Published by Elsevier Ltd.

  10. Solid waste composition analysis and recycling evaluation: Zaatari Syrian Refugees Camp, Jordan.

    PubMed

    Saidan, Motasem N; Drais, Ammar Abu; Al-Manaseer, Ehab

    2017-03-01

    There is a need for Municipal Solid Waste (MSW) stream characterization and composition analysis to allow for an accurate estimation of its recycling potential and for effective management of the entire system. Recycling provides employment and a livelihood for vulnerable social groups such as refugees. The aim of this paper is to determine the composition of MSW in Zaatari Syrian Refugee Camp, where approximately 430,000 Syrian refugees have passed through the camp. The representative waste samples and analysis included household waste and commercial waste produced by the refugees in the selected districts in Zaatari. The waste sampling was performed in 2015 over two seasons to ensure that the seasonal fluctuations in the composition of the waste stream are taken into consideration. Hand sorting was used for classifying the collected wastes into the categories and subcategories. The organic waste represents the main waste category with 53% of the total MSW, while plastics, textile, and paper and cardboard are 12.85%, 10.22% and 9%, respectively. Moreover, the MSW composition percentage in Zaatari Camp is similar to that in municipalities in Jordan with slight disparity. The potential recyclable materials market has been investigated in this study. Plastics and paper and cardboard have significant potential to be separated and collected for recycling purposes. Financial revenues of potential recyclables have been analyzed based on local prices. Recycling model in the camp is also proposed based on the present study findings. Consequently, these results should be taken as a baseline for all Syrian refugees camps in the Middle East, as well as, in Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Men's Clothing Practices

    ERIC Educational Resources Information Center

    Margerum, B. Jean; And Others

    1977-01-01

    An informal consumer interview study, using 187 men, was conducted to highlight directions that clothing and textiles education and research might take. Mentioned most often were problems of fabric durability and garment construction as well as size and fit. Suggestions for curbing economic waste in the male fashion industry and implications for…

  12. Hesperetin-loaded lipid-core nanocapsules in polyamide: a new textile formulation for topical drug delivery

    PubMed Central

    Menezes, Paula dos Passos; Frank, Luiza Abrahão; Lima, Bruno dos Santos; de Carvalho, Yasmim Maria Barbosa Gomes; Serafini, Mairim Russo; Quintans-Júnior, Lucindo José; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski; Araújo, Adriano Antunes de Souza

    2017-01-01

    Chronic venous insufficiency is characterized by chronic reflux disorder of blood from the peripheral to the central vein, with subsequent venous hypertension and resulting changes in the skin. Traditionally, nonsurgical treatments relied on the use of compression therapy, and more recently a variety of flavonoids have been shown to have positive effects. There have also been developments of more effective drug delivery systems using various textiles and nanotechnology to provide new therapeutic options. Our objective was to use nanotechnology to develop a new formulation containing hesperetin (Hst), a substance not previously used in the treatment of chronic venous insufficiency, impregnated into textile fibers as a possible alternative treatment of venous diseases. We prepared the nanocapsules using the interfacial deposition of preformed polymer method with an Hst concentration of 0.5 mg/mL and then characterized the size and distribution of particles. To quantify the Hst in the samples, we developed an analytical method using high-performance liquid chromatography. Studies of encapsulation efficiency (98.81%±0.28%), microscopy, drug release (free-Hst: 104.96%±12.83%; lipid-core nanocapsule-Hst: 69.90%±1.33%), penetration/permeation, drug content (0.46±0.01 mg/mL) and the effect of washing the textile after drug impregnation were performed as part of the study. The results showed that nanoparticles of a suitable size and distribution with controlled release of the drug and penetration/permeation into the skin layers were achieved. Furthermore, it was established that polyamide was able to hold more of the drug, with a 2.54 times higher content than the cotton fiber; after one wash and after five washes, this relation was 2.80 times higher. In conclusion, this is a promising therapeutic alternative to be further studied in clinical trials. PMID:28352176

  13. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    PubMed

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  14. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.

    PubMed

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2018-01-01

    This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO 3 ), sodium chloride (NaCl), citric acid (H 3 Cit), acetic acid (AcOH), hydrogen peroxide (H 2 O 2 ), acetone (Me 2 CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H 3 Cit, H 2 O 2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H 3 Cit for olive pomace and H 2 O 2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.

    PubMed

    Zhang, Huihui; Qiao, Yan; Lu, Zhisong

    2016-11-30

    Textile-based supercapacitors have recently attracted much attention owing to their great potential as energy storage components in wearable electronics. However, fabrication of a high-performance, fully printed, and ultraflexible supercapacitor based on a single textile still remains a great challenge. Herein, a facile, low-cost, and textile-compatible method involving screen printing and transfer printing is developed to construct all-solid-state supercapacitors on a single silk fabric. The system exhibits a high specific capacitance of 19.23 mF cm -2 at a current density of 1 mA cm -2 and excellent cycling stability with capacitance retention of 84% after 2000 charging/discharging cycles. In addition, the device possesses superior mechanical stability with stable performance and structures after 100 times of bending and twisting. A butterfly-patterned supercapacitor was manufactured to demonstrate the compatibility of the printing approaches to textile aesthetics. This work may provide a facile and versatile approach for fabricating rationally designed ultraflexible textile-based power-storage elements for potential applications in smart textiles and stretchable/flexible electronics.

  16. The role of intergenerational influence in waste education programmes: the THAW project.

    PubMed

    Maddox, P; Doran, C; Williams, I D; Kus, M

    2011-12-01

    Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity (www.wastewatch.org.uk), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the "reduce, reuse and recycle message" home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project in these areas, an average increase of 8.6% was recorded in recycling set out rates which led to a 4.3% increase in paper recycling tonnages and an 8.7% increase in tonnages of cans, glass and textiles collected for recycling. Correspondingly, there was a 4.5% fall in tonnages of residual waste. Waste Watch's THAW project was the first serious attempt to measure the intergenerational influence of an education programme on behaviour at home (i.e. other than schools' own waste). It clearly shows that household recycling behaviour can be positively impacted by intergenerational influence via a practical school-based waste education model. However, although the model could potentially have a big impact if rolled out nationally, it will require seed funding and the long-term durability of the model has not yet been fully quantified. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

    PubMed Central

    Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk

    2016-01-01

    Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes. PMID:28335276

  18. Green piezoelectric for autonomous smart textile

    NASA Astrophysics Data System (ADS)

    Lemaire, E.; Borsa, C. J.; Briand, D.

    2015-12-01

    In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.

  19. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.

    2016-01-01

    Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.

  20. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1).

    PubMed

    Gilbert, Matthew K; Turley, Rickie B; Kim, Hee Jin; Li, Ping; Thyssen, Gregory; Tang, Yuhong; Delhom, Christopher D; Naoumkina, Marina; Fang, David D

    2013-06-17

    Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutant in Upland cotton (Gossypium hirsutum) which exhibits an early cessation of fiber elongation resulting in very short fibers (< 6 mm) at maturity. This presents an excellent model system for studying the underlying molecular and cellular processes involved with cotton fiber elongation. Previous reports have characterized Li1 at early cell wall elongation and during later secondary cell wall synthesis, however there has been very limited analysis of the transition period between these developmental time points. Physical and morphological measurements of the Li1 mutant fibers were conducted, including measurement of the cellulose content during development. Affymetrix microarrays were used to analyze transcript profiles at the critical developmental time points of 3 days post anthesis (DPA), the late elongation stage of 12 DPA and the early secondary cell wall synthesis stage of 16 DPA. The results indicated severe disruption to key hormonal and other pathways related to fiber development, especially pertaining to the transition stage from elongation to secondary cell wall synthesis. Gene Ontology enrichment analysis identified several key pathways at the transition stage that exhibited altered regulation. Genes involved in ethylene biosynthesis and primary cell wall rearrangement were affected, and a primary cell wall-related cellulose synthase was transcriptionally repressed. Linkage mapping using a population of 2,553 F2 individuals identified SSR markers associated with the Li1 genetic locus on chromosome 22. Linkage mapping in combination with utilizing the diploid G. raimondii genome sequences permitted additional analysis of the region containing the Li1 gene. The early termination of fiber elongation in the Li1 mutant is likely controlled by an early upstream regulatory factor resulting in the altered regulation of hundreds of downstream genes. Several elongation-related genes that exhibited altered expression profiles in the Li1 mutant were identified. Molecular markers closely associated with the Li1 locus were developed. Results presented here will lay the foundation for further investigation of the genetic and molecular mechanisms of fiber elongation.

Top