Science.gov

Sample records for coulomb energies modele

  1. Energies of Screened Coulomb Potentials.

    ERIC Educational Resources Information Center

    Lai, C. S.

    1979-01-01

    This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)

  2. Energy and momentum preserving Coulomb collision model for kinetic Monte Carlo simulations of plasma steady states in toroidal fusion devices

    SciTech Connect

    Runov, A.M.; Kasilov, S.V.; Helander, P.

    2015-11-01

    A kinetic Monte Carlo model suited for self-consistent transport studies is proposed and tested. The Monte Carlo collision operator is based on a widely used model of Coulomb scattering by a drifting Maxwellian and a new algorithm enforcing the momentum and energy conservation laws. The difference to other approaches consists in a specific procedure of calculating the background Maxwellian parameters, which does not require ensemble averaging and, therefore, allows for the use of single-particle algorithms. This possibility is useful in transport balance (steady state) problems with a phenomenological diffusive ansatz for the turbulent transport, because it allows a direct use of variance reduction methods well suited for single particle algorithms. In addition, a method for the self-consistent calculation of the electric field is discussed. Results of testing of the new collision operator using a set of 1D examples, and preliminary results of 2D modelling in realistic tokamak geometry, are presented.

  3. Coulombic contribution and fat center vortex model

    SciTech Connect

    Rafibakhsh, Shahnoosh; Deldar, Sedigheh

    2007-02-27

    The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.

  4. Coulomb path'' interference in low energy He sup + + He collisions

    SciTech Connect

    Swenson, J.K. ); Burgdoerfer, J. ); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. )

    1990-01-01

    A new interference mechanism, analogous to classic'' double-slit electron scattering, has been identified in low energy ion-atom collisions. This Coulomb path'' interference results from the existence of two trajectories, indistinguishable with respect to laboratory energy and emission angle, along which ejected autoionizing electrons may be scattered by the attractive Coulomb potential of the slowly receding spectator ion. We present a simple semi-classical model for this effect in which we account for the path dependence of the amplitude of the ejected electron following decay of the autoionizing state. Calculated model lineshapes are found to be in excellent agreement with strong angular dependence of the interference structure observed in the He target 2s{sup 2} {sup 1}S autoionizing lineshape measured near 0{degree} following 10 keV He{sup +} + He collisions.

  5. Nonstationary multistate Coulomb and multistate exponential models for nonadiabatic transitions

    SciTech Connect

    Ostrovsky, V. N.

    2003-07-01

    The nonstationary Schroedinger equation is considered in a finite basis of states. The model Hamiltonian matrix corresponds to a single diabatic potential curve with a Coulombic {approx}1/t time dependence. An arbitrary number of other diabatic potential curves are flat, i.e., time independent and have arbitrary energies. Related states are coupled by constant interactions with the Coulomb state. The resulting nonstationary Schroedinger equation is solved by the method of contour integral. Probabilities of transitions to any other state are obtained as t{yields}{infinity} in a simple analytical form for the case when the Coulomb state is populated initially (at instant of time t{yields}+0). The formulas apply both to the cases when a horizontal diabatic potential curve is crossed by the Coulomb one and to a noncrossing situation. In the limit of weak coupling, the transition probabilities are interpreted in terms of a sequence of pairwise Landau-Zener-type transitions. Mapping of the Coulomb model onto an exactly solvable exponential multistate model is established. For the special two-state case, the well-known Nikitin model is recovered.

  6. Coulombic free energy and salt ion association per phosphate of all-atom models of DNA oligomer: dependence on oligomer size.

    PubMed

    Shkel, Irina A; Record, M Thomas

    2012-08-23

    We investigate how the coulombic Gibbs free energy and salt ion association per phosphate charge of DNA oligomers vary with oligomer size (i.e. number of charged residues ∣ZD∣) at 0.15 M univalent salt by non-linear Poisson Boltzmann (NLPB) analysis of all-atom DNA models. Calculations of these quantities ([Formula: see text], [Formula: see text]) are performed for short and long double-stranded (ds) and single-stranded (ss) DNA oligomers, ranging from 4 to 118 phosphates (ds) and from 2 to 59 phosphates (ss). Behaviors of [Formula: see text] and [Formula: see text] as functions of ∣ZD∣ provide a measure of the range of the coulombic end effect and determine the size of an oligomer at which an interior region with the properties (per charge) of the infinite-length polyelectrolyte first appears. This size (10-11 phosphates at each end for ds DNA and 6-9 for ss DNA at 0.15 M salt) is in close agreement with values obtained previously by Monte Carlo and NLPB calculations for cylindrical models of polyions, and by analysis of binding of oligocations to DNA oligomers. Differences in [Formula: see text] and in [Formula: see text] between ss and ds DNA are used to predict effects of oligomeric size and salt concentration on duplex stability in the vicinity of 0.15 M salt. Results of all-atom calculations are compared with results of less structurally detailed models and with experimental data.

  7. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  8. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. I. Calculation of Ne-CO van der Waals spectra.

    PubMed

    Dham, Ashok K; McCourt, Frederick R W; Meath, William J

    2009-06-28

    Exchange-Coulomb model potential energy surfaces have been developed for the Ne-CO interaction. The initial model is a three-dimensional potential energy surface based upon computed Heitler-London interaction energies and literature results for the long-range induction and dispersion energies, all as functions of interspecies distance, the orientation of CO relative to the interspecies axis, and the bond length of the CO molecule. Both a rigid-rotor model potential energy surface, obtained by setting the CO bond length equal to its experimental spectroscopic equilibrium value, and a vibrationally averaged model potential energy surface, obtained by averaging the stretching dependence over the ground vibrational motion of the CO molecule, have been constructed from the full data set. Adjustable parameters in each model potential energy surface have been determined through fitting a selected subset of pure rotational transition frequencies calculated for the (20)Ne-(12)C(12)O isotopolog to precisely known experimental values. Both potential energy surfaces provide calculated results for a wide range of available experimental microwave, millimeter-wave, and midinfrared Ne-CO transition frequencies that are generally far superior to those obtained using the best current literature potential energy surfaces. The vibrationally averaged CO ground state potential energy surface, employed together with a potential energy surface obtained from it by replacing the ground vibrational state average of the CO stretching dependence of the potential energy surface by an average over the first excited CO vibrational state, has been found to be particularly useful for computing and/or interpreting mid-IR transition frequencies in the Ne-CO dimer.

  9. Coulomb-dominated low-energy deuteron stripping

    SciTech Connect

    Austern, N. )

    1991-02-01

    Analysis of a three-body model shows that Coulomb polarization of the deuteron has very little influence on the branching ratio {ital A}({ital d},{ital p})/{ital A}({ital d},{ital n}) for transfer reactions on target nucleus {ital A} at very low deuteron energies (the Oppenheimer-Phillips effect). We see that polarization effects in transfer reactions are not related to the long range of the Coulomb field, but are caused by the more intense fields near the target nucleus. However, even in that region the induced dipole moment is limited by the deuteron binding, and it is small for low {ital Z} targets. We see in addition that the transfer amplitudes tend to be {ital insensitive} to any polarization admixtures in the entrance channel. On the other hand, the branching ratio can be affected by the Coulomb barrier for the bound final-state wave function of the proton, especially for very weakly bound final states. Brief remarks about the relation of stripping theory to special properties of the {ital d}+{ital d} system are included.

  10. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Describes a bonding theory which provides a framework for the description of a wide range of substances and provides quantitative information of remarkable accuracy with far less computational effort than that required of other approaches. Includes applications, such as calculation of bond energies of two binary hydrides (methane and diborane).…

  11. Improved Shell models for screened Coulomb balls

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Kaehlert, H.; Henning, C.; Baumgartner, H.; Filinov, A.

    2006-10-01

    Spherical Coulomb crystals in dusty plasmas [1] are well described by an isotropic Yukawa-type pair interaction and an external parabolic confinement as was shown by extensive molecular dynamics simulations [2]. A much simpler description is possible with analytical shell models which have been derived for Yukawas plasmas in [3,4]. Here we analyze improved Yukawa shell models which include correlations along the lines proposed for Coulomb crystals in [5]. The shell configurations are efficiently evaluated using a Monte Carlo procedure. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005). [4] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E [5] W.D. Kraeft and M. Bonitz, J. Phys. Conf. Ser. 35, 94 (2006).

  12. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. II. Molecular beam scattering and bulk gas phenomena in Ne-CO mixtures.

    PubMed

    Dham, Ashok K; McBane, George C; McCourt, Frederick R W; Meath, William J

    2010-01-14

    Four potential energy surfaces are of current interest for the Ne-CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler-London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the (20)Ne-(12)C(16)O van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne-CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne-CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v=2) in Ne-CO mixtures at T=296 K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives

  13. Isotope shifts and coulomb displacement energies in calcium isotopes

    NASA Astrophysics Data System (ADS)

    Caurier, E.; Poves, A.; Zuker, A.

    1980-10-01

    Isotope shifts, neutron-proton radii differences and Coulomb displacement energies are calculated for calcium isotopes A = 41 to 48. A simple parametrization of the core polarization terms of the effective force in the framework of the Isospin Projected Hartree-Fock (IPHF) method leads to good agreement between theory and experiment.

  14. Coulomb effects in low-energy nuclear fragmentation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  15. Quasi-exactly solvable relativistic soft-core Coulomb models

    SciTech Connect

    Agboola, Davids Zhang, Yao-Zhong

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  16. Isospin effect of Coulomb interaction on the dissipation and fragmentation in intermediate energy heavy ion collisions

    SciTech Connect

    Liu Jianye; Guo Wenjun; Gao Yuanyi; Xing Yongzhong; Li Xiguo

    2004-09-01

    We investigate separately the isospin effects of Coulomb interaction and symmetry potential on the dissipation and fragmentation in the intermediate energy heavy ion collisions by using isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces the reductions of both isospin fractionation ratio and nuclear stopping (momentum dissipation). However, the Coulomb interaction not only does not change obviously the strong isospin effect of the symmetry potential on the isospin fractionation ratio but also does not change obviously that of in-medium two-body collision on the nuclear stopping. On the contrary, the symmetry potential induces the enhancement of the isospin fractionation ratio but it is insensitive to the nuclear stopping. Finally, the competition between the Coulomb interaction and symmetry potential induces the reductions of both isospin fractionation ratio and nuclear stopping for two forms of symmetry potentials in this paper.

  17. Coulomb repulsion and the electron beam directed energy weapon

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-09-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.

  18. Coulomb Energy Differences in T = 1 Mirror Rotational Bands in 50Fe and 50Cr

    NASA Astrophysics Data System (ADS)

    Lenzi, S. M.; Mărginean, N.; Napoli, D. R.; Ur, C. A.; Zuker, A. P.; de Angelis, G.; Algora, A.; Axiotis, M.; Bazzacco, D.; Belcari, N.; Bentley, M. A.; Bizzeti, P. G.; Bizzeti-Sona, A.; Brandolini, F.; von Brentano, P.; Bucurescu, D.; Cameron, J. A.; Chandler, C.; de Poli, M.; Dewald, A.; Eberth, H.; Farnea, E.; Gadea, A.; Garces-Narro, J.; Gelletly, W.; Grawe, H.; Isocrate, R.; Joss, D. T.; Kalfas, C. A.; Klug, T.; Lampman, T.; Lunardi, S.; Martínez, T.; Martínez-Pinedo, G.; Menegazzo, R.; Nyberg, J.; Podolyak, Zs.; Poves, A.; Ribas, R. V.; Rossi Alvarez, C.; Rubio, B.; Sánchez-Solano, J.; Spolaore, P.; Steinhardt, T.; Thelen, O.; Tonev, D.; Vitturi, A.; von Oertzen, W.; Weiszflog, M.

    2001-09-01

    Gamma rays from the N = Z-2 nucleus 50Fe have been observed, establishing the rotational ground state band up to the state Jπ = 11+ at 6.994 MeV excitation energy. The experimental Coulomb energy differences, obtained by comparison with the isobaric analog states in its mirror 50Cr, confirm the qualitative interpretation of the backbending patterns in terms of successive alignments of proton and neutron pairs. A quantitative agreement with experiment has been achieved by exact shell model calculations, incorporating the differences in radii along the yrast bands, and properly renormalizing the Coulomb matrix elements in the pf model space.

  19. Elastic scattering of {sup 9}Li on {sup 208}Pb at energies around the Coulomb barrier

    SciTech Connect

    Cubero, M.; Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Lay, J. A.; Moro, A. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Alcorta, M.; Borge, M. J. G.; Tengblad, O.; Buchmann, L.; Shotter, A.; Walden, P.; Diget, D. G.; Fulton, B.; Fynbo, H. O. U.; Galaviz, D.; Gomez-Camacho, J.; Mukha, I.

    2011-10-28

    We have studied the dynamical effects of the halo structure of {sup 11}Li on the scattering on heavy targets at energies around the Coulomb barrier. This experiment was performed at ISAC-II at TRIUMF with a world record in production of the post-accelerated {sup 11}Li beam. As part of this study we report here on the first measurement of the elastic cross section of the core nucleus, i.e. {sup 9}Li on {sup 208}Pb, at energies around the Coulomb barrier. A preliminary optical model analysis has been performed in order to extract a global optical potential to describe the measured angular distributions.

  20. Low-energy Coulomb excitation of Sr,9896 beams

    NASA Astrophysics Data System (ADS)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  1. A New Hybrid STEP/Coulomb model for Aftershock Forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, S.; Jimenez, A.; Gerstenberger, M.

    2014-12-01

    Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.

  2. A molecular dynamics model for the Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Smith, Roger; Ramasawmy, D.; Kenny, S. D.

    2005-01-01

    The impact of positively charged Arn+ ions, n = 1, 4, 8, incident normally on the (1 0 0) surface of NaCl is studied by Molecular Dynamics (MD) simulations for energies up to 1 keV. The model assumes fixed charges on the ions and the effect of projectile charge is investigated as a function of energy. It is shown that there is a significant enhancement in the sputtering yield at low impact energies due to the attachment of Cl ions to the impacting Ar, which is subsequently ejected from the lattice. The low energy Ar ions can also experience acceleration towards the NaCl crystal due to Coulombic attraction. At energies greater than a few hundred eV the Ar ions implant within the crystal which accommodates the extra charge from these ions. As a result the sputtering yield from the initial impact is reduced but as the dose increases, the yield rises as Na+ ions are preferentially ejected from the lattice. A large proportion of the ejected material is in the form of clusters.

  3. The {sup 6}He Optical Potential at energies around the Coulomb barrier

    SciTech Connect

    Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Moro, A. M.

    2010-04-26

    We present an Optical Model (OM) study of {sup 6}He on {sup 208}Pb elastic scattering data, measured at laboratory energies around the Coulomb barrier (E{sub lab} = 14, 16, 18, 22, and 27 MeV)[1]. For the projectile-target bare interaction, we use the microscopic Sao Paulo Potential (SPP). This bare interaction is supplemented with a Coulomb Dipole Polarization (CDP) potential, as well as a diffuse complex Woods-Saxon potential. Four-body Continuum-Discretized-Coupled-Channels (CDCC) calculations have been performed in order to support the optical model analysis. We have also studied the alpha channel, which is the dominant reaction process. In the analysis of this channel, we compare the angular and energy distributions of the alpha particles measured at 22 MeV, with Distorted Wave Born Approximation (DWBA) calculations.

  4. Coulomb energy differences in analog rotational bands of f7/2-shell nuclei

    NASA Astrophysics Data System (ADS)

    Lenzi, S. M.; Mǎrginean, N.; Napoli, D. R.; Ur, C. A.; Zuker, A. P.; Axiotis, M.; Brandolini, F.; de Angelis, G.; Farnea, E.; Gadea, A.; Martínez-Pinedo, G.; Poves, A.; Sánchez-Solano, J.

    2002-04-01

    Recent experimental and shell model studies of isospin symmetry along the ground state rotational bands in the mirror nuclei 50Fe and 50Cr are presented. This is the heaviest T=1 mirror pair studied so far at high spin. It is shown that the Coulomb energy differences provide a good tool to probe the alignment mechanism at the backbending and that they also give information about the evolution of yrast radii as a function of the angular momentum. .

  5. Coulomb gauge model for hidden charm tetraquarks

    NASA Astrophysics Data System (ADS)

    Xie, W.; Mo, L. Q.; Wang, Ping; Cotanch, Stephen R.

    2013-08-01

    The spectrum of tetraquark states with hidden charm is studied within an effective Coulomb gauge Hamiltonian approach. Of the four independent color schemes, two are investigated, the (qcbar)1(cqbar)1 singlet-singlet (molecule) and the (qc)3(qbarcbar)3 triplet-triplet (diquark), for selected JPC states using a variational method. The predicted masses of triplet-triplet tetraquarks are roughly a GeV heavier than the singlet-singlet states. There is also an interesting flavor dependence with (qqbar)1 (ccbar1) states about half a GeV lighter than (qcbar)1(qbarc)1. The lightest 1++ and 1-- predictions are in agreement with the observed X (3872) and Y (4008) masses suggesting they are molecules with ωJ / ψ and ηhc, rather than D*Dbar* and DDbar, type structure, respectively. Similarly, the lightest isovector 1++ molecule, having a ρJ / ψ flavor composition, has mass near the recently observed charged Zc (3900) value. These flavor configurations are consistent with observed X, Y and Zc decays to ππJ / ψ.

  6. On rate-state and Coulomb failure models

    USGS Publications Warehouse

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  7. Coulomb matrix elements in multi-orbital Hubbard models

    NASA Astrophysics Data System (ADS)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-01

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  8. Quadrupole collectivity beyond N = 28: intermediate-energy Coulomb excitation of (47,48)Ar.

    PubMed

    Winkler, R; Gade, A; Baugher, T; Bazin, D; Brown, B A; Glasmacher, T; Grinyer, G F; Meharchand, R; McDaniel, S; Ratkiewicz, A; Weisshaar, D

    2012-05-04

    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei (47,48)Ar using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.

  9. Quadrupole Collectivity beyond N=28: Intermediate-Energy Coulomb Excitation of Ar47,48

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Gade, A.; Baugher, T.; Bazin, D.; Brown, B. A.; Glasmacher, T.; Grinyer, G. F.; Meharchand, R.; McDaniel, S.; Ratkiewicz, A.; Weisshaar, D.

    2012-05-01

    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei Ar47,48 using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.

  10. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  11. 7Be- and 8B-reaction dynamics at Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Keeley, N.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lay, J. A.; Lin, C. J.; Marquinez-Duran, G.; Martel, I.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Pakou, A.; Rusek, K.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Sava, T.; Sgouros, O.; Stefanini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Teranishi, T.; Toniolo, N.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2016-05-01

    We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV) the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV) nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.

  12. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  13. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.

  14. A solvable model for localized adsorption in a Coulomb system

    SciTech Connect

    Rosinberg, M.L.; Blum, L.; Lebowitz, J.L.

    1986-07-01

    A model for an interface with localized adsorption is presented, in which the surface has a distribution of sticky adhesive sites in contact with a Coulomb fluid. Contrary to the current literature on the electrical double layer the surface charge is in dynamic equilibrium with the bulk fluid. The sum rules obeyed by the one- and two-body correlation functions are investigated. Explicit results are obtained for a solvable model, the two-dimensional one-component plasma at reduced temperature 2. The effect of the granularity of the adsorbed charge on the adsorption isotherm is discussed.

  15. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    NASA Astrophysics Data System (ADS)

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-09-01

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. The corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  16. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    DOE PAGES

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; ...

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using themore » method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.« less

  17. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    SciTech Connect

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  18. A nonlinear Bloch model for Coulomb interaction in quantum dots

    SciTech Connect

    Bidegaray-Fesquet, Brigitte Keita, Kole

    2014-02-15

    In this paper, we first derive a Coulomb Hamiltonian for electron–electron interaction in quantum dots in the Heisenberg picture. Then we use this Hamiltonian to enhance a Bloch model, which happens to be nonlinear in the density matrix. The coupling with Maxwell equations in case of interaction with an electromagnetic field is also considered from the Cauchy problem point of view. The study is completed by numerical results and a discussion about the advisability of neglecting intra-band coherences, as is done in part of the literature.

  19. Analytical approach to quasiperiodic beam Coulomb field modeling

    NASA Astrophysics Data System (ADS)

    Rubtsova, I. D.

    2016-09-01

    The paper is devoted to modeling of space charge field of quasiperiodic axial- symmetric beam. Particle beam is simulated by charged disks. Two analytical Coulomb field expressions are presented, namely, Fourier-Bessel series and trigonometric polynomial. Both expressions permit the integral representation. It provides the possibility of integro-differential beam dynamics description. Consequently, when beam dynamics optimization problem is considered, it is possible to derive the analytical formula for quality functional gradient and to apply directed optimization methods. In addition, the paper presents the method of testing of space charge simulation code.

  20. Comparative studies of Coulomb barrier heights for nuclear models applied to sub-barrier fusion

    NASA Astrophysics Data System (ADS)

    Qu, W. W.; Zhang, G. L.; Zhang, H. Q.; Wolski, R.

    2014-12-01

    Coulomb barrier heights provided by different nuclear interaction models including the Bass model, the proximity potential model, and the double folding model have been applied for experimental data of fusion in terms of a recently proposed energy scaling approach. The results show that the proximity potential description of the barrier heights seems to be closest to the values required by the systematics. It is suggested that the proximity potential model is the most suitable model to calculate the barrier height. However, the double folding model gives the lowest barrier heights.

  1. Comparison of hard-cylinder and screened Coulomb interactions in the modeling of supercoiled DNAs.

    PubMed

    Delrow, J J; Gebe, J A; Schurr, J M

    1997-10-05

    A 1000 base pair (bp) model supercoiled DNA is simulated using spherical screened Coulomb interactions between subunits on one hand and equivalent hard-cylinder interactions on the other. The amplitudes, or effective charges, of the spherical screened Coulomb electrostatic potentials are chosen so that the electrostatic potential surrounding the middle of a linear array of 2001 subunits (31.8 A diameter) closely matches the solution of the nonlinear Poisson-Boltzmann equation for a cylinder with 12 A radius and the full linear charge density of DNA at all distances beyond the 24 A hard-core diameter. This superposition of spherical screened Coulomb potentials is practically identical to the particular solution of the cylindrical linearized Poisson-Boltzmann equation that matches the solution of the nonlinear Poisson-Boltzmann equation at large distances. The interaction energy between subunits is reckoned from the effective charges according to the standard DLVO expression. The equivalent hard-cylinder diameter is chosen following Stigter's protocol for matching second virial coefficients, but for the full linear charge density of DNA. The electrostatic persistence length of the model with screened Coulomb interactions is extremely sensitive to the (arbitrarily) chosen subunit length at the higher salt concentrations. The persistence length of the hard-cylinder model is adjusted to match that of the screened Coulomb model for each ionic condition. Simulations for a superhelix density sigma = -0.05 using a spherical screened Coulomb interaction plus a 24 A hard-cylinder core (SCPHC) potential indicate that the radius of gyration of this 1000 bp DNA actually undergoes a slight increase as the NaCl concentration is raised from 0.01 to 1.0M. Thus, merely softening the potential from hard-cylinder to screened Coulomb form does not produce a large decrease in radius of gyration with increasing NaCl concentration for DNAs of this size. Radii of gyration, static structure

  2. Configurational and energy landscape in one-dimensional Coulomb systems

    NASA Astrophysics Data System (ADS)

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  3. Configurational and energy landscape in one-dimensional Coulomb systems.

    PubMed

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  4. Optimum forward scattering zone for intermediate-energy Coulomb excitation experiments

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Singh, Pardeep; Kharab, Rajesh

    2015-08-01

    Here we present a comparative study of various schemes commonly used for the determination of the safe minimum value of the impact parameter, which decides the maximum value of forward laboratory scattering angle, in intermediate-energy Coulomb excitation experiments. We have found that these are special cases of the recently proposed parameterization scheme in Kumar Rajiv et al., Phys. Rev. C, 81 (2010) 037602. The scheme may be used to demarcate the absorption-free as well as no-flux loss zone for intermediate-energy Coulomb excitation experiments.

  5. Scattering of Halo Nuclei at Energies below and around the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Borge, M. J. G.; Cubero, M.; Fernández-García, J. P.; Moro, A. M.; Pesudo, V.; Acosta, L.; Alcorta, M.; Alvarez, M. A. G.; Bender, P.; Buchmann, L.; Diget, C. A.; Di Pietro, A.; Escrig, D.; Falou, H. A.; Figuera, P. P.; Fulton, B. R.; Fynbo, H. O. U.; Galaviz, D.; Garnsworthy, A.; Gómez-Camacho, J.; Hackman, G.; Kanungo, R.; Lay, J. A.; Madurga, M.; Martel, I.; Mukha, I.; Nilsson, T.; Rodríguez-Gallardo, M.; Rusek, K.; Sánchez-Benítez, A. M.; Rajabali, M.; Sarazin, F.; Shotter, A.; Tengblad, O.; Unsworth, C.; Walden, P.

    The loosely bound structure of halo nuclei is predicted to affect the collisions with heavy targets at energies around the Coulomb barrier. We report here on the results on a series of experiments done at different facilities to study the behaviour of the scattering of the archetype of the halo nuclei: 6He, 11Li, and 11Be on heavy targets at energies below and around the Coulomb barrier. The results are interpreted in the framework of Continuum-Discretized Coupled-Channel calculations (CDCC). The departure from Rutherford scattering is larger than expected. In first approximation the effect certainly scales with the loosely bound character of the projectile.

  6. The MV model of the color glass condensate for a finite number of sources including Coulomb interactions

    DOE PAGES

    McLerran, Larry; Skokov, Vladimir V.

    2016-09-19

    We modify the McLerran–Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran–Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this study we provide a basic formulation of the problem on a lattice.

  7. The MV model of the color glass condensate for a finite number of sources including Coulomb interactions

    NASA Astrophysics Data System (ADS)

    McLerran, Larry; Skokov, Vladimir V.

    2017-01-01

    We modify the McLerran-Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran-Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this paper we provide a basic formulation of the problem on a lattice.

  8. Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy in Superconducting Cuprates

    NASA Astrophysics Data System (ADS)

    Levallois, J.; Tran, M. K.; Pouliot, D.; Presura, C. N.; Greene, L. H.; Eckstein, J. N.; Uccelli, J.; Giannini, E.; Gu, G. D.; Leggett, A. J.; van der Marel, D.

    2016-07-01

    We performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi2 Sr2 CaCu2 O8 -x single crystals: underdoped with Tc=60 , 70, and 83 K; optimally doped with Tc=91 K ; overdoped with Tc=84 , 81, 70, and 58 K; as well as optimally doped Bi2 Sr2 Ca2 Cu3 O10 +x with Tc=110 K . Our first observation is that, as the temperature drops through Tc, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—Tc depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π ,π ).

  9. The model of a level crossing with a Coulomb band: exact probabilities of nonadiabatic transitions

    NASA Astrophysics Data System (ADS)

    Lin, J.; Sinitsyn, N. A.

    2014-05-01

    We derive an exact solution of an explicitly time-dependent multichannel model of quantum mechanical nonadiabatic transitions. Our model corresponds to the case of a single linear diabatic energy level interacting with a band of an arbitrary N states, for which the diabatic energies decay with time according to the Coulomb law. We show that the time-dependent Schrödinger equation for this system can be solved in terms of Meijer functions whose asymptotics at a large time can be compactly written in terms of elementary functions that depend on the roots of an Nth order characteristic polynomial. Our model can be considered a generalization of the Demkov-Osherov model. In comparison to the latter, our model allows one to explore the role of curvature of the band levels and diabatic avoided crossings.

  10. Understanding {sup 6}He induced reactions at energies around the Coulomb barrier

    SciTech Connect

    Moro, A. M.; Arias, J. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Borge, M. J. G.; Escrig, D.; Tengblad, O.; Gomez-Camacho, J.; Rodriguez-Gallardo, M.

    2009-06-03

    Recent developments aimed to understand the observed features arising in the scattering of the Borromean nucleus {sup 6}He on heavy targets are discussed and compared with recent data for {sup 6}He+{sup 208}Pb measured at the RIB facility at Louvain-la-Neuve at energies around the Coulomb barrier. The analysis of the elastic scattering data in terms of the optical model, reveals the presence of a long range absorption mechanism, that manifests in the form of a large value of the imaginary diffuseness parameter. The elastic data have been also compared with three--body CDCC calculations, based on a di-neutron model of {sup 6}He, and four--body CDCC calculations, based on a more realistic three-body model of this nucleus. Finally, the angular and energy distribution of {alpha} particles emitted at backward angles are discussed and compared with different theoretical approaches. We find that these {alpha} particles are produced mainly by a two-neutron transfer mechanism to very excited states in the residual nucleus.

  11. Heavy-ion reactions at energies near the Coulomb barrier

    SciTech Connect

    Satchler, G.R.

    1991-01-01

    The title covers a very broad area of both experimental and theoretical studies. The common characteristic of heavy-ion collisions at these energies, compared to what is usually seen at higher energies, is the important interplay between different reaction channels or internal degrees of freedom. The couplings between the various channels can result in important multistep contributions to a given channel. These often have to be treated explicitly, for example by solving the appropriate set of coupled equations. In contrast, at higher energies the effects of these couplings frequently can be represented in a simple, average way, as is done when one introduces an imaginary part to the optical potential for elastic scattering. At first, it might be thought that the possible importance of multistep transitions would be a strong disadvantage of working at these energies. However, although the analysis of the data becomes more complicate, the study of these terms and their interferences can be a rich source of information. In particular, it can tell us, indirectly, something about transitions between two excited states. Overviews of some of these phenomena have been presented elsewhere; here I have selected two topics as representative. Even then I cannot go into much detail, so perhaps this paper is best regarded as providing some references as the stating point for a literature search

  12. Effective single-band models for the high-Tc cuprates. I. Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Feiner, L. F.; Jefferson, J. H.; Raimondi, R.

    1996-04-01

    Starting with the three-band extended Hubbard model (or d-p model) widely used to represent the CuO2 planes in the high-Tc cuprates, we make a systematic reduction to an effective single-band model using a previously developed cell-perturbation method. The range of parameters for which this mapping is a good approximation is explored in the full Zaanen-Sawatzky-Allen diagram (copper Coulomb repulsion Ud versus charge-transfer energy ɛ), together with an investigation of the validity of a further mapping to an effective charge-spin (t-J-V) model. The variation of the effective single-band parameters with the parameters of the underlying multi-band model is investigated in detail, and the parameter regime where the model represents the high-Tc cuprates is examined for specific features that might distinguish it from the general case. In particular, we consider the effect of Coulomb repulsions on oxygen (Up) and between copper and oxygen (Vpd). We find that the reduction to an effective single-band model is generally valid for describing the low-energy physics, and that Vpd and Up (unless unrealistically large) actually slightly improve the convergence of the cell-perturbation method. Unlike in the usual single-band Hubbard model, the effective intercell hopping and Coulomb interactions are different for electrons and holes. We find that this asymmetry, which vanishes in the extreme Mott-Hubbard regime (Ud<<ɛ), is quite appreciable in the charge-transfer regime (Ud>~ɛ), particularly for the effective Coulomb interactions. We show that for doped holes (forming Zhang-Rice singlets) on neighboring cells the interaction induced by Vpd can even be attractive due to locally enhanced pd hybridization, while this cannot occur for electrons. The Coulomb interaction induced by Up is always repulsive; in addition Up gives rise to a ferromagnetic spin-spin interaction which opposes antiferromagnetic superexchange. We show that for hole-doped systems this leads to a subtle

  13. Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A.; Rapisarda, G. G.; Campajola, L.; Cherubini, S.; Crucillá, V.; Elekes, Z.; Fülöp, Z.; Gialanella, L.; Gulino, M.; Gyürky, G.; Kiss, G.; Cognata, M. La; Lamia, L.; Ordine, A.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Somorjai, E.

    2008-12-01

    Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method applied to the p+d→p+p+n reaction to investigate off-energy shell effects for scattering processes. The three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from 80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross section, which was extracted by employing a simple plane-wave impulse approximation. A detailed formalism was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.

  14. Residue Coulomb Interaction Among Isobars and Its Influence in Symmetry Energy of Neutron-Rich Fragment

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wang, Shan-Shan; Zhang, Yan-Li; Zhao, Yi-Long; Wei, Hui-Ling

    2015-09-01

    The residue Coulomb interaction (RCI), which affects the result of symmetry-energy coefficient of neutron-rich nucleus in isobaric yield ratio (IYR) method, is difficult to be determined. Four RCI approximations are investigated: (i) The M1-RCI adopting the ac/T (the ratio of Coulomb energy coefficient to temperature) determined from the IYR of mirror-nucleus fragments; (ii) The M2-RCI by fitting the difference between IYRs; (iii) The M3-RCI adopting the standard Coulomb energy at a temperature T = 2 MeV; and (iv) Neglecting the RCI among isobars. The M1-, M2- and M3-RCI are no larger than 0.4. In particular, the M2-RCI is very close to zero. The effects of RCI in asym/T of fragment are also studied. The M1- and M4-asym/T are found to be the lower and upper limitations of asym/T, respectively. The M2-asym/T overlaps the M4-asym/T, which indicates that the M2-RCI is negligible in the IYR method, and the RCI among the three isobars can be neglected. The relative consistent low values of M3-asym/T (7.5 ± 2.5) are found in very neutron-rich isobars. Supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province (13HASTIT046), and Young Teacher Project in Henan Normal University (HNU), China

  15. Effective single-band Hubbard model for the cuprates: Coulomb interactions and apical oxygen

    NASA Astrophysics Data System (ADS)

    Feiner, L. F.; Jefferson, J. H.; Raimondi, R.

    1995-02-01

    Starting with the three-band d-p model representing the high- Tc cuprates, we make a systematic reduction to an effective single-band model using a previously developed cell-perturbation method. In particular, we consider the effect of Coulomb repulsions on oxygen ( Up) and between copper and oxygen ( Vpd), and show that the resulting net Coloumb interaction between doped holes on neighbouring cells can be attractive due to locally enhanced pd hybridization, while this cannot occur for electrons. Extending to a five-band model, by including d 3 z2- r2 and apex p z orbitals, we show that there is, in addition to the usual Zhang-Rice singlet, a two-hole cell state which can be low in energy (depending on the proximity of the apicals), and may lead to a breakdown of the effective single-band model.

  16. Coupling of multiple coulomb scattering and energy loss and straggling in HZETRN

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Walker, S. A.; Wilson, J. W.; Singleterry, R. C.; Tweed, J.

    Current developments in HZETRN are focused towards a full three-dimensional and computationally efficient deterministic transport code capable of simulating radiation transport with either space or laboratory boundary conditions One aspect of the new version of HZETRN is the inclusion of small-angle multiple Coulomb scattering of incident ions by target nuclei While the effects of multiple scattering are negligible in the space radiation environment multiple scattering must be included in laboratory transport code simulations to accurately model ion beam experiments to simulate the physical and biological-effective radiation dose and to develop new methods and strategies for light ion radiation therapy In this paper we present the theoretical formalism and computation procedures for incorporating multiple scattering into HZETRN and coupling the ion-nuclear scattering interactions with energy loss and straggling Simulations of the effects of multiple scattering on ion beam characterization will be compared with results from laboratory measurements which include path-length corrections angular and lateral broadening and absorbed dose

  17. Optimal load resistance of a randomly excited nonlinear electromagnetic energy harvester with Coulomb friction

    NASA Astrophysics Data System (ADS)

    Tian, Y. P.; Wang, Y.; Jin, X. L.; Huang, Z. L.

    2014-09-01

    A nonlinear electromagnetic energy harvester directly powering a load resistance is considered in this manuscript. The nonlinearity includes the cubic stiffness and the unavoidable Coulomb friction, and the base excitation is confined to Gaussian white noise. Directly starting from the coupled equations, a novel procedure to evaluate the random responses and the mean output power is developed through the generalized harmonic transformation and the equivalent non-linearization technique. The dependence of the optimal ratio of the load resistance to the internal resistance and the associated optimal mean output power on the internal resistance of the coil is established. The principle of impedance matching is correct only when the internal resistance is infinity, and the optimal mean output power approaches an upper limit as the internal resistance is close to zero. The influence of the Coulomb friction on the optimal resistance ratio and the optimal mean output power is also investigated. It is proved that the Coulomb friction almost does not change the optimal resistance ratio although it prominently reduces the optimal mean output power.

  18. Coulomb breakup of 22C in a four-body model

    NASA Astrophysics Data System (ADS)

    Pinilla, E. C.; Descouvemont, P.

    2016-08-01

    Breakup cross sections are determined for the Borromean nucleus 22C by using a four-body eikonal model, including Coulomb corrections. Bound and continuum states are constructed within a 20C+n +n three-body model in hyperspherical coordinates. We compute continuum states with the correct asymptotic behavior through the R -matrix method. For the n +n potential, we use the Minnesota interaction. As there is no precise experimental information on 21C, we define different parameter sets for the 20C+n potentials. These parameter sets provide different scattering lengths, and resonance energies of an expected 3 /2+ excited state. Then we analyze the 22C ground-state energy and rms radius, as well as E 1 strength distributions and breakup cross sections. The E 1 strength distribution presents an enhancement at low energies. Its amplitude is associated with the low binding energy, rather than with a three-body resonance. We show that the shape of the cross section at low energies is sensitive to the ground-state properties. In addition, we suggest the existence of a low-energy 2+ resonance, which should be observable in breakup experiments.

  19. Small-angle Coulomb collision model for particle-in-cell simulations

    SciTech Connect

    Lemons, Don S. Winske, Dan; Daughton, William; Albright, Brian

    2009-03-20

    We construct and investigate a set of stochastic differential equations that incorporate the physics of velocity-dependent small-angle Coulomb collisions among the plasma particles in a particle-in-cell simulation. Each particle is scattered stochastically from all the other particles in a simulation cell modeled as one or more Maxwellians. Total energy and momentum are conserved by linear transformation of the velocity increments. In two test simulations the proposed 'particle-moment' collision algorithm performs well with time steps as large as 10% of the relaxation time - far larger than a particle-pairing collision algorithm, in which pairs of particles are scattered from one another, requires to achieve the same accuracy.

  20. Coulomb blockade and Coulomb staircase behavior observed at room temperature

    NASA Astrophysics Data System (ADS)

    Uky Vivitasari, Pipit; Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2017-02-01

    A single-electron transistor (SET) consists of source, drain, Coulomb island, and gate to modulate the number of electrons and control the current. For practical applications, it is important to operate a SET at room temperature. One proposal towards the ability to operate at room temperature is to decrease Coulomb island size down to a few nanometres. We investigate a SET using Sn-porphyrin (Sn-por) protected gold nanoparticles (AuNPs) with 1.4 nm in core diameter as a Coulomb island. The fabrication method of nanogap electrodes uses the combination of a top-down technique by electron beam lithography (EBL) and a bottom-up process through electroless gold plating (ELGP) as our group have described before. The electrical measurement was conducted at room temperature (300 K). From current–voltage (I d–V d) characteristics, we obtained clear Coulomb blockade phenomena together with a Coulomb staircase due to a Sn-por protected gold NP as a Coulomb island. Experimental results of I d–V d characteristics agree with a theoretical curve based on using the orthodox model. Clear dI d/dV d peaks are observed in the Coulomb staircase at 9 K which suggest the electron transports through excited energy levels of Au NPs. These results are a big step for obtaining SETs that can operate at room temperature.

  1. Structural relaxation and aging scaling in the Coulomb and Bose glass models

    NASA Astrophysics Data System (ADS)

    Assi, Hiba; Chaturvedi, Harshwardhan; Pleimling, Michel; Täuber, Uwe Claus

    2016-11-01

    We employ Monte Carlo simulations to study the relaxation properties of the two-dimensional Coulomb glass in disordered semiconductors and the three-dimensional Bose glass in type-II superconductors in the presence of extended linear defects. We investigate the effects of adding non-zero random on-site energies from different distributions on the properties of the correlation-induced Coulomb gap in the density of states (DOS) and on the non-equilibrium aging kinetics highlighted by the density autocorrelation functions. We also probe the sensitivity of the system's equilibrium and non-equilibrium relaxation properties to instantaneous changes in the density of charge carriers in the Coulomb glass or flux lines in the Bose glass.

  2. Coulomb three-body effects in low-energy impact ionization of H(1{ital s})

    SciTech Connect

    Roeder, J.; Rasch, J.; Jung, K.; Whelan, C.T.; Ehrhardt, H.; Allan, R.J.; Walters, H.R. |||

    1996-01-01

    The different kinematical and geometrical arrangements that may be used in ({ital e},2{ital e}) studies are briefly reviewed. The ionization of H(1{ital s}) is considered, and within the confines of a relatively simple theoretical model, it is shown how to define experimental setups where one may extract information on the role of Coulomb three-body effects in the incident and final channels. Theoretical and experimental results are presented for coplanar constant geometry where the focus is primarily on incident channel effects. {copyright} {ital 1996 The American Physical Society.}

  3. Topological transitions and freezing in XY models and Coulomb gases with quenched disorder: renormalization via traveling waves

    NASA Astrophysics Data System (ADS)

    Carpentier, David; Le Doussal, Pierre

    2000-11-01

    We study the two dimensional XY model with quenched random phases and its Coulomb gas formulation. A novel renormalization group (RG) method is developed which allows to study perturbatively the glassy low temperature XY phase and the transition at which frozen topological defects (vortices) proliferate. This RG approach is constructed both from the replicated Coulomb gas and, equivalently without the use of replicas, using the probability distribution of the local disorder (random defect core energy). By taking into account the fusion of environments (i.e., charge fusion in the replicated Coulomb gas) this distribution is shown to obey a Kolmogorov's type (KPP) non linear RG equation which admits traveling wave solutions and exhibits a freezing phenomenon analogous to glassy freezing in Derrida's random energy models. The resulting physical picture is that the distribution of local disorder becomes broad below a freezing temperature and that the transition is controlled by rare favorable regions for the defects, the density of which can be used as the new perturbative parameter. The determination of marginal directions at the disorder induced transition is shown to be related to the well studied front velocity selection problem in the KPP equation and the universality of the novel critical behaviour obtained here to the known universality of the corrections to the front velocity. Applications to other two dimensional problems are mentioned at the end.

  4. Step density model of laser sustained ion channel and Coulomb explosion

    SciTech Connect

    Rajouria, Satish Kumar; Malik, H. K.; Tripathi, V. K.; Kumar, Pawan

    2015-02-15

    An analytical model of laser sustained ion channel in plasma is developed, assuming electron density to be zero in the inner region and constant outside. The radius of the channel is such that the ponderomotive force on electrons at the channel boundary is balanced by the channel space charge force. The laser is TM eigen mode of the system with Bessel function profile in the interior and modified Bessel function outside. The channel radius increases with laser intensity and the ratio of laser frequency to plasma frequency. Ion Coulomb explosion of the channel, on longer time scale, produces ion energy distribution, an increasing function of energy with a sharp cutoff equal to electron ponderomotive energy at the channel boundary. At peak laser intensity ≈2×10{sup 19}W/cm{sup 2} at 1 μm wavelength and spot size of 8 μm, the cutoff ion energy in a plasma of density ∼10{sup 19}cm{sup −3} is ∼0.73 MeV.

  5. A grid-based coulomb collision model for PIC codes

    SciTech Connect

    Jones, M.E.; Lemons, D.S.; Mason, R.J.; Thomas, V.A.; Winske, D.

    1996-01-01

    A new method is presented to model the intermediate regime between collisionless and Coulobm collision dominated plasmas in particle-in-cell codes. Collisional processes between particles of different species are treated throuqh the concept of a grid-based {open_quotes}collision field,{close_quotes} which can be particularly efficient for multi-dimensional applications. In this method, particles are scattered using a force which is determined from the moments of the distribution functions accumulated on the grid. The form of the force is such to reproduce themulti-fluid transport equations through the second (energy) moment. Collisions between particles of the same species require a separate treatment. For this, a Monte Carlo-like scattering method based on the Langevin equation is used. The details of both methods are presented, and their implementation in a new hybrid (particle ion, massless fluid electron) algorithm is described. Aspects of the collision model are illustrated through several one- and two-dimensional test problems as well as examples involving laser produced colliding plasmas.

  6. Nonlinear SU(2,1) Model of Multiple Giant Dipole Resonance Coulomb Excitation

    NASA Astrophysics Data System (ADS)

    Hussein, Mahir; de Toledo Piza, Antonio; Vorov, Oleg

    2000-10-01

    We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra^1. Analytical expressions for the multi-phonon transition probabilities are derived. For reasonably small magnitude of nonlinearity x~= 0.15-0.3, the enhancement factor for the Double Giant Resonance excitation probabilities and the cross sections reaches values 1.3-2 compatible^1,2 with experimental data from relativistic ion collision experiments^3. The full 3-dimensional model predicts enhancement of the multiple GDR cross sections at low and high bombarding energies (with the minimum at ~= 1.3 GeV for the Pb+Pb colliding system). Enhancement factors for Double GDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of ^136Xe which requires a larger value. The work has been supported by the FAPESP and by the CNPq. References ^1 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Ann. Phys. (N.Y.), 2000, to appear. ^2 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Phys. Rev. C59,R1242 (1999). ^3 T. Aumann, P.F. Bortignon, and H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998).

  7. Equation satisfied by the energy-density functional for electron-electron mutual Coulomb repulsion

    SciTech Connect

    Joubert, Daniel P.

    2011-10-15

    It is shown that the electron-electron mutual Coulomb repulsion energy-density functional V{sub ee}{sup {gamma}}[{rho}] satisfies the equationV{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]-V{sub ee}{sup {gamma}}[{rho}{sub N-1}{sup {gamma}}]={integral}d{sup 3}r({delta}V{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]/{delta}{rho}{sub N}{sup 1}(r))[{rho}{sub N}{sup 1}(r)-{rho}{sub N-1}{sup {gamma}}(r)], where {rho}{sub N}{sup 1}(r) and {rho}{sub N-1}{sup {gamma}}(r) are N-electron and (N-1)-electron densities determined from the same adiabatic scaled external potential of the N-electron system at coupling strength {gamma}.

  8. Coupling of Multiple Coulomb Scattering with Energy Loss and Straggling in HZETRN

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Wilson, John W.; Walker, Steven A.; Tweed, John

    2007-01-01

    The new version of the HZETRN deterministic transport code based on Green's function methods, and the incorporation of ground-based laboratory boundary conditions, has lead to the development of analytical and numerical procedures to include off-axis dispersion of primary ion beams due to small-angle multiple Coulomb scattering. In this paper we present the theoretical formulation and computational procedures to compute ion beam broadening and a methodology towards achieving a self-consistent approach to coupling multiple scattering interactions with ionization energy loss and straggling. Our initial benchmark case is a 60 MeV proton beam on muscle tissue, for which we can compare various attributes of beam broadening with Monte Carlo simulations reported in the open literature.

  9. Intrinsic deep hole trap levels in Cu2O with self-consistent repulsive Coulomb energy

    NASA Astrophysics Data System (ADS)

    Huang, Bolong

    2016-03-01

    The large error of the DFT+U method on full-filled shell metal oxides is due to the residue of self-energy from the localized d orbitals of cations and p orbitals of the anions. U parameters are selfconsistently found to achieve the analytical self-energy cancellation. The improved band structures based on relaxed lattices of Cu2O are shown based on minimization of self-energy error. The experimentally reported intrinsic p-type trap levels are contributed by both Cu-vacancy and the O-interstitial defects in Cu2O. The latter defect has the lowest formation energy but contributes a deep hole trap level while the Cuvacancy has higher energy cost but acting as a shallow acceptor. Both present single-particle levels spread over nearby the valence band edge, consistent to the trend of defects transition levels. By this calculation approach, we also elucidated the entanglement of strong p-d orbital coupling to unravel the screened Coulomb potential of fully filled shells.

  10. Self-consistent models for Coulomb heated X-ray pulsar atmospheres

    NASA Technical Reports Server (NTRS)

    Harding, A.; Meszaros, S. P.; Kirk, J.; Galloway, D.

    1983-01-01

    Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres.

  11. Interatomic Coulombic decay in a He dimer: Ab initio potential-energy curves and decay widths

    SciTech Connect

    Kolorenc, Premysl; Kryzhevoi, Nikolai V.; Sisourat, Nicolas; Cederbaum, Lorenz S.

    2010-07-15

    The energy gained by either of the two helium atoms in a helium dimer through simultaneous ionization and excitation can be efficiently transferred to the other helium atom, which then ionizes. The respective relaxation process called interatomic Coulombic decay (ICD) is the subject of the present paper. Specifically, we are interested in ICD of the lowest of the ionized excited states, namely, the He{sup +}(n=2)He states, for which we calculated the relevant potential-energy curves and the interatomic decay widths. The full-configuration interaction method was used to obtain the potential-energy curves. The decay widths were computed by utilizing the Fano ansatz, Green's-function methods, and the Stieltjes imaging technique. The behavior of the decay widths with the interatomic distance is examined and is elucidated, whereby special emphasis is given to the asymptotically large interatomic separations. Our calculations show that the electronic ICD processes dominate over the radiative decay mechanisms over a wide range of interatomic distances. The ICD in the helium dimer has recently been measured by Havermeier et al. [Phys. Rev. Lett. 104, 133401 (2010)]. The impact of nuclear dynamics on the ICD process is extremely important and is discussed by Sisourat et al. [Nat. Phys. 6, 508 (2010)] based on the ab initio data computed in the present paper.

  12. Elastic scattering of 17O+208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Nicoletto, M.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Toniolo, N.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Stroe, L.; Vitturi, A.; Watanabe, Y.; Zerva, K.

    2016-05-01

    Within the frame of the commissioning of a new experimental apparatus EXPADES we undertook the measurement of the elastic scattering angular distribution for the system 17O+208Pb at energy around the Coulomb barrier. The reaction dynamics induced by loosely bound Radioactive Ion Beams is currently being extensively studied [4]. In particular the study of the elastic scattering process allows to obtain direct information on the total reaction cross section of the exotic nuclei. In order to understand the effect of the low binding energy on the reaction mechanism it is important to compare radioactive weakly bound nuclei with stable strongly-bound nuclei. In this framework the study of the 17O+208Pb elastic scattering can be considered to be complementary to a previous measurement of the total reaction cross section for the system 17F+208Pb at energies of 86, 90.4 MeV [5, 6]. The data will be compared with those obtained for the neighboring systems 16,18O+208Pb and others available in literature.

  13. Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene.

    PubMed

    Schüler, M; Rösner, M; Wehling, T O; Lichtenstein, A I; Katsnelson, M I

    2013-07-19

    To understand how nonlocal Coulomb interactions affect the phase diagram of correlated electron materials, we report on a method to approximate a correlated lattice model with nonlocal interactions by an effective Hubbard model with on-site interactions U(*) only. The effective model is defined by the Peierls-Feynman-Bogoliubov variational principle. We find that the local part of the interaction U is reduced according to U(*)=U-V[over ¯], where V[over ¯] is a weighted average of nonlocal interactions. For graphene, silicene, and benzene we show that the nonlocal Coulomb interaction can decrease the effective local interaction by more than a factor of 2 in a wide doping range.

  14. Analytical structure and properties of Coulomb wave functions for real and complex energies

    NASA Astrophysics Data System (ADS)

    Humblet, J.

    1984-07-01

    The radical Coulomb wave functions are analysed in their dependence on the energy E considered as a complex parameter. Repulsive and attractive fields are both considered. First turning to the function Φl ∝ r- l-1 Fl introduced by Briet, slightly modifying its definition, and assuming that the angular momentum is also a complex parameter, for which the notation L is used, it is proved that ΦL is an entire function of both E and L. From an expansion of the regular Whittaker function given by Buchholz, the Taylor expansion of ΦL in powers of E and a simple recurrence relation for its coefficients are easily obtained. The expansion of the regular function Fl is readily obtained from that of ΦL for L = l, but the irregular function Gl contains Φl and ∂Φ L/∂L for L = l and - l-1. Having proved that the expansion obtained for ΦL in powers of E can also be regarded as a uniformly convergent series of entire functions of L, the derivative ∂Φ L/∂L can be obtained by term-by-term derivation. This method for obtaining the expansion of Gl is straightforward and leads to a final result involving essentially: (i) the conventional function h(η) = 1/2ψ(1 + iη) + 1/2ψ(1 - iη) - ln η which is singular at η = ∞, i.e., at k = 0; (ii) two entire functions of E, namely Φl and Ψl; the terms of the expansion of the latter in powers of E contain only Bessel functions multiplied by Bernoulli numbers and coefficients easily obtained from a simple recurrence relation. As an application of the above results, the last sections contain: (i) an alternate from of Gl expansion useful in numerical computations; (ii) the definition and expansion of two linearly independent solutions of the Coulomb equation which are entire in E; (iii) the expansion and threshold properties of the outgoing and incoming solutions, Ol and Il, corresponding to those we have obtained for Fl and Gl.

  15. PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain

    NASA Astrophysics Data System (ADS)

    Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.

    2009-12-01

    A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007

  16. Z=50 Shell Gap near Sn100 from Intermediate-Energy Coulomb Excitations in Even-Mass Sn106-112 Isotopes

    NASA Astrophysics Data System (ADS)

    Vaman, C.; Andreoiu, C.; Bazin, D.; Becerril, A.; Brown, B. A.; Campbell, C. M.; Chester, A.; Cook, J. M.; Dinca, D. C.; Gade, A.; Galaviz, D.; Glasmacher, T.; Hjorth-Jensen, M.; Horoi, M.; Miller, D.; Moeller, V.; Mueller, W. F.; Schiller, A.; Starosta, K.; Stolz, A.; Terry, J. R.; Volya, A.; Zelevinsky, V.; Zwahlen, H.

    2007-10-01

    Rare isotope beams of neutron-deficient Sn106,108,110 from the fragmentation of Xe124 were employed in an intermediate-energy Coulomb excitation experiment. The measured B(E2,01+→21+) values for Sn108 and Sn110 and the results obtained for the Sn106 show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. This discrepancy might be explained by contributions of the protons from within the Z=50 shell to the structure of low-energy excited states in this region.

  17. Use of Prandtl-Ishlinskii hysteresis operators for Coulomb friction modeling with presliding

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael; Rachinskii, Dmitrii

    2017-02-01

    Prandtl-Ishlinskii stop-type hysteresis operators allow for modeling elasto-plasticity in the relative stress-strain coordinates including the saturation level of the residual constant-tension flow. This lies in direct equivalence to the force-displacement characteristics of nonlinear Coulomb friction, whose constant average value at unidirectional motion depends on the motion sign only, after the transient presliding phase at each motion reversal. In this work, we analyze and demonstrate the use of Prandtl-Ishlinskii operators for modeling the Coulomb friction with presliding phase. No viscous i.e. velocity-dependent component is considered at this stage, and the constant damping rate of the Coulomb friction is combined with the rate-independent losses of presliding hysteresis. The general case of Prandtl-Ishlinskii operator with a continuous distribution function is considered together with a finite elements case, which is useful for implementation in multiple applications. Finally, identification of parameters is addressed and discussed along with two experimental examples.

  18. Data sensitivity in a hybrid STEP/Coulomb model for aftershock forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, S.; Jimenez Lloret, A.; Gerstenberger, M.

    2014-12-01

    Operational earthquake forecasting is rapidly becoming a 'hot topic' as civil protection authorities seek quantitative information on likely near future earthquake distributions during seismic crises. At present, most of the models in public domain are statistical and use information about past and present seismicity as well as b-value and Omori's law to forecast future rates. A limited number of researchers, however, are developing hybrid models which add spatial constraints from Coulomb stress modeling to existing statistical approaches. Steacy et al. (2013), for instance, recently tested a model that combines Coulomb stress patterns with the STEP (short-term earthquake probability) approach against seismicity observed during the 2010-2012 Canterbury earthquake sequence. They found that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. They suggested that the major reason for this discrepancy was uncertainty in the slip models and, in particular, in the geometries of the faults involved in each complex major event. Here we test this hypothesis by developing a number of retrospective forecasts for the Landers earthquake using hypothetical slip distributions developed by Steacy et al. (2004) to investigate the sensitivity of Coulomb stress models to fault geometry and earthquake slip, and we also examine how the choice of receiver plane geometry affects the results. We find that the results are strongly sensitive to the slip models and moderately sensitive to the choice of receiver orientation. We further find that comparison of the stress fields (resulting from the slip models) with the location of events in the learning period provides advance information on whether or not a particular hybrid model will perform better than STEP.

  19. Effect of data quality on a hybrid Coulomb/STEP model for earthquake forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, Sandy; Jimenez, Abigail; Gerstenberger, Matt; Christophersen, Annemarie

    2014-05-01

    Operational earthquake forecasting is rapidly becoming a 'hot topic' as civil protection authorities seek quantitative information on likely near future earthquake distributions during seismic crises. At present, most of the models in public domain are statistical and use information about past and present seismicity as well as b-value and Omori's law to forecast future rates. A limited number of researchers, however, are developing hybrid models which add spatial constraints from Coulomb stress modeling to existing statistical approaches. Steacy et al. (2013), for instance, recently tested a model that combines Coulomb stress patterns with the STEP (short-term earthquake probability) approach against seismicity observed during the 2010-2012 Canterbury earthquake sequence. They found that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. They suggested that the major reason for this discrepancy was uncertainty in the slip models and, in particular, in the geometries of the faults involved in each complex major event. Here we test this hypothesis by developing a number of retrospective forecasts for the Landers earthquake using hypothetical slip distributions developed by Steacy et al. (2004) to investigate the sensitivity of Coulomb stress models to fault geometry and earthquake slip. Specifically, we consider slip models based on the NEIC location, the CMT solution, surface rupture, and published inversions and find significant variation in the relative performance of the models depending upon the input data.

  20. Energy Models

    EPA Science Inventory

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  1. Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture

    NASA Astrophysics Data System (ADS)

    Stroev, N. E.; Iosilevskiy, I. L.

    2016-11-01

    Non-congruent gas-liquid phase transition (NCPT) have been studied previously in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a uniformly compressible ideal electronic background /BIM(∼)/. The features of NCPT in improved version of the BIM(∼) model for the same mixture on background of non-ideal electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to equation of state of electronic and ionic subsystems were used in present calculations within the Gibbs-Guggenheim conditions of non-congruent phase equilibrium. Parameters of critical point-line were calculated on the entire range of proportions of mixed ions 0 < X < 1. Strong “distillation” effect was found for NCPT in the present BIM(∼) model. Just similar distillation was obtained in the variant of NCPT in dense nuslear matter. The absence of azeotropic compositions was revealed in studied variants of BIM(∼) in contrast to an explicit existence of the azeotropic compositions for the NCPT in chemically reacting plasmas and in astrophysical applications.

  2. Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Carré, Antoine; Berthier, Ludovic; Horbach, Jürgen; Ispas, Simona; Kob, Walter

    2007-09-01

    We show that finite-range alternatives to the standard long-range pair potential for silica by van Beest et al. [Phys. Rev. Lett. 64, 1955 (1990)] might be used in molecular dynamics simulations. We study two such models that can be efficiently simulated since no Ewald summation is required. We first consider the Wolf method, where the Coulomb interactions are truncated at a cutoff distance rc such that the requirement of charge neutrality holds. Various static and dynamic quantities are computed and compared to results from simulations using Ewald summations. We find very good agreement for rc≈10Å. For lower values of rc, the long-range structure is affected which is accompanied by a slight acceleration of dynamic properties. In a second approach, the Coulomb interaction is replaced by an effective Yukawa interaction with two new parameters determined by a force fitting procedure. The same trend as for the Wolf method is seen. However, slightly larger cutoffs have to be used in order to obtain the same accuracy with respect to static and dynamic quantities as for the Wolf method.

  3. Elastic scattering measurement for the system 17O + 58Ni at Coulomb barrier energies with silicon strip detectors exploiting ASIC electronics

    NASA Astrophysics Data System (ADS)

    Signorini, C.; Mazzocco, M.; Molini, P.; Pierroutsakou, D.; Boiano, C.; Manea, C.; Strano, E.; Torresi, D.; Di Meo, P.; Nicoletto, M.; Boiano, A.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; La Commara, M.; Parascandolo, C.; Parascandolo, L.; Sandoli, M.; Soramel, F.; Stroe, L.; Toniolo, N.; Veronese, F.

    2013-03-01

    The quasi elastic scattering of a 17O projectile from a 58Ni target has been studied at beam energies ranging from 42.5 to 55.0 MeV in 2.5 MeV steps. The total reaction cross sections were derived from the measured angular distributions by using an optical model fit within the coupled-channel code FRESCO. These cross sections are very similar to those measured for 17F (loosely bound by 0.6 MeV), mirror nucleus of 17O (tightly bound by 4.14 MeV). This outcome points out that, in this energy range, the small binding energy of the 17F valence proton has negligible influence onto the reactivity of such a loosely bound projectile, contrary to simple expectations, and to what observed for other loosely bound nuclei. The reaction dynamics seems to be influenced mainly by the Coulomb interaction which is similar for both mirror projectiles.

  4. Finite Element Analysis of the Amontons-Coulomb's Model using Local and Global Friction Tests

    SciTech Connect

    Oliveira, M. C.; Menezes, L. F.; Ramalho, A.; Alves, J. L.

    2011-05-04

    In spite of the abundant number of experimental friction tests that have been reported, the contact with friction modeling persists to be one of the factors that determine the effectiveness of sheet metal forming simulation. This difficulty can be understood due to the nature of the friction phenomena, which comprises the interaction of different factors connected to both sheet and tools' surfaces. Although in finite element numerical simulations friction models are commonly applied at the local level, they normally rely on parameters identified based on global experimental tests results. The aim of this study is to analyze the applicability of the Amontons-Coulomb's friction coefficient identified using complementary tests: (i) load-scanning, at the local level and (ii) draw-bead, at the global level; to the numerical simulation of sheet metal forming processes.

  5. The simplest model for non-congruent fluid-fluid phase transition in Coulomb system

    NASA Astrophysics Data System (ADS)

    Stroev, N. E.; Iosilevskiy, I. L.

    2015-11-01

    The simplest model for non-congruent phase transition of gas-liquid type was developed in frames of modified model with no associations of a binary ionic mixture (BIM) on a homogeneous compressible ideal background (or non-ideal) electron gas /BIM(˜)/. The analytical approximation for equation of state equation of state of Potekhin and Chabrier of fully ionized electron-ionic plasma was used for description of the ion-ion correlations (Coulomb non-ideality) in combination with “linear mixture” (LM) approximation. Phase equilibrium for the charged species was calculated according to the Gibbs-Guggenheim conditions. The presently considered BIM(˜) model allows to calculate full set of parameters for phase boundaries of non-congruent variant of phase equilibrium and to study all features for this non-congruent phase transition realization in Coulomb system in comparison with the simpler (standard) forced-congruent evaporation mode. In particular, in BIM(˜) there were reproduced two-dimensional remarkable (“banana-like”) structure of two-phase region P — T diagram and the characteristic non-monotonic shape of caloric phase enthalpy-temperature diagram, similar to the non-congruent evaporation of reactive plasma products in high-temperature heating with the uranium-oxygen system. The parameters of critical points (CP) line were calculated on the entire range of proportions of ions 0 < X < 1, including two reference values, when CP coincides with a point of extreme temperature and extreme pressure, XT and Xp. Finally, it is clearly demonstrated the low-temperature property of non-congruent gas-liquid transition — “distillation”, which is weak in chemically reactive plasmas.

  6. Semiclassical stochastic mechanics for the Coulomb potential with applications to modelling dark matter

    NASA Astrophysics Data System (ADS)

    Neate, Andrew; Truman, Aubrey

    2016-05-01

    Little is known about dark matter particles save that their most important interactions with ordinary matter are gravitational and that, if they exist, they are stable, slow moving and relatively massive. Based on these assumptions, a semiclassical approximation to the Schrödinger equation under the action of a Coulomb potential should be relevant for modelling their behaviour. We investigate the semiclassical limit of the Schrödinger equation for a particle of mass M under a Coulomb potential in the context of Nelson's stochastic mechanics. This is done using a Freidlin-Wentzell asymptotic series expansion in the parameter ɛ = √{ ħ / M } for the Nelson diffusion. It is shown that for wave functions ψ ˜ exp((R + iS)/ɛ2) where R and S are real valued, the ɛ = 0 behaviour is governed by a constrained Hamiltonian system with Hamiltonian Hr and constraint Hi = 0 where the superscripts r and i denote the real and imaginary parts of the Bohr correspondence limit of the quantum mechanical Hamiltonian, independent of Nelson's ideas. Nelson's stochastic mechanics is restored in dealing with the nodal surface singularities and by computing (correct to first order in ɛ) the relevant diffusion process in terms of Jacobi fields thereby revealing Kepler's laws in a new light. The key here is that the constrained Hamiltonian system has just two solutions corresponding to the forward and backward drifts in Nelson's stochastic mechanics. We discuss the application of this theory to modelling dark matter particles under the influence of a large gravitating point mass.

  7. Image method for Coulomb energy for many-body system of charged dielectric spheres

    NASA Astrophysics Data System (ADS)

    Qin, Jian; de Pablo, Juan; Freed, Karl

    2015-03-01

    Ion polarization is important for understanding ion solvation and the stability of ion clusters in polymeric materials which typically exhibit a low and spatially inhomogeneous dielectric permittivity. The simplest approach for modeling ion polarization involves treating the ions as charged spheres with an internal dielectric permittivity differing from that of the medium. The surface polarization contribution to the electrostatic energy for a system of such dielectric spheres can be evaluated perturbatively. We derived closed-form expressions for this energy as a function of the positions of an arbitrary number of polarized surfaces. Our approach is a generalization of the image method for conducting spheres. Using this approach, we calculated the polarization corrections to the cohesion energy for ion clusters and for densely packed ionic crystals. The method can be readily adapted for investigating ion polarization effects in both Monte Carlo and molecular dynamics simulations.

  8. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  9. Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier

    SciTech Connect

    Kuzyakin, R. A. Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2013-06-15

    Within the quantum diffusion approach, the capture of a projectile nucleus by a target nucleus is studied at bombarding energies above and below the Coulomb barrier. The effects of deformation of interacting nuclei and neutron transfer between them on the total and partial capture cross sections and the mean angular momentum of the captured system are studied. The results obtained for the {sup 16}O + {sup 112}Cd, {sup 152}Sm, and {sup 184}W; {sup 19}F +{sup 175}Lu; {sup 28}Si +{sup 94,100}Mo and {sup 154}Sm; {sup 40}Ca +{sup 96}Zr; {sup 48}Ca+ {sup 90}Zr; and {sup 64}Ni +{sup 58,64}Ni, {sup 92,96}Zr, and {sup 100}Mo reactions are in good agreement with available experimental data.

  10. Nucleon-nucleon correlations in heavy ion transfer reactions: Recent investigations at energies far below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Corradi, Lorenzo

    2015-10-01

    Excitation functions of one- and two-neutron transfer channels have been measured for the 96Zr+40Ca and 116Sn+60Ni systems at bombarding energies ranging from the Coulomb barrier to ˜25% below. Target-like recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental transfer probabilities have been compared, in absolute values and in slope, with semiclassical microscopic calculations which incorporate nucleon-nucleon pairing correlations. For the first time in a heavy ion collision, one was able to provide a consistent description of one and two neutron transfer reactions by incorporating, in the reaction mechanism, all known structure information of entrance and exit channels nuclei. In particular, there is no need to introduce any enhancement factor for the description of two neutron transfer, of course very important are the correlations induced by the pairing interaction.

  11. The relationship between afterslip and aftershocks: a study based on Coulomb-Rate-and-State models

    NASA Astrophysics Data System (ADS)

    Cattania, Camilla; Hainzl, Sebastian; Roth, Frank; Wang, Lifeng

    2014-05-01

    The original Coulomb stress hypothesis, as well as most physics based models of aftershock sequences, assume that aftershocks are triggered by the instantaneous coseismic stress: in other words, the stress field is treated as stationary following the mainshock. However, several lines of evidence indicate that postseismic processes may affect aftershock triggering. The cumulative seismic moment of afterslip can be a significant fraction of the coseismic moment, generating comparable stress changes; moreover, afterslip has a similar time dependence as aftershocks, suggesting that the two processes may be linked. Aftershocks themselves contribute to the redistribution of stresses, and they can trigger their own aftershocks: spatial clustering, and the success of statistical models which include secondary triggering (ETAS) suggest that, even though aftershocks typically generate stresses orders of magnitude smaller than the mainshock, they are significant on a local scale. Our goal is to study the effect of postseismically induced stresses in the spatial and temporal distribution of aftershocks. We focus on the two processes described above (afterslip and secondary triggering), and do not consider other phenomena such as poroelastic response and viscoelastic relaxation. We study a period of 250 days following the mainshock, for two case studies: the Parkfield, Mw=6.0 and the Tohoku, Mw=9.0 earthquakes. We model the seismic response to stress changes using the Dieterich constitutive law, derived from a population of faults governed by Rate-and-State dependent friction; we also consider uncertainties in the input stress field using a Monte Carlo technique. We find that modeling secondary triggering systematically improves model performance; afterslip has a less significant overall impact on the model, but in both cases studies we observe clusters of seismicity which, due to their location relative to the coseismic and postseismic slip, are better explained when afterslip

  12. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants

    NASA Astrophysics Data System (ADS)

    Burgos-Mármol, J. Javier; Solans, Conxita; Patti, Alessandro

    2016-06-01

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2+ CH3SO4-, which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.

  13. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants.

    PubMed

    Burgos-Mármol, J Javier; Solans, Conxita; Patti, Alessandro

    2016-06-21

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2 (+) CH3SO4 (-), which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.

  14. Potential energy surfaces in atomic structure: The role of Coulomb correlation in the ground state of helium

    NASA Astrophysics Data System (ADS)

    Salas, L. D.; Arce, J. C.

    2017-02-01

    For the S states of two-electron atoms, we introduce an exact and unique factorization of the internal eigenfunction in terms of a marginal amplitude, which depends functionally on the electron-nucleus distances r1 and r2, and a conditional amplitude, which depends functionally on the interelectronic distance r12 and parametrically on r1 and r2. Applying the variational principle, we derive pseudoeigenvalue equations for these two amplitudes, which cast the internal Schrödinger equation in a form akin to the Born-Oppenheimer separation of nuclear and electronic degrees of freedom in molecules. The marginal equation involves an effective radial Hamiltonian, which contains a nonadiabatic potential energy surface that takes into account all interparticle correlations in an averaged way, and whose unique eigenvalue is the internal energy. At each point (r1,r2) , such surface is, in turn, the unique eigenvalue in the conditional equation. Employing the ground state of He as prototype, we show that the nonadiabatic potential energy surface affords a molecularlike interpretation of the structure of the atom, and aids in the analysis of energetic and spatial aspects of the Coulomb correlation, in particular correlation-induced symmetry breaking and quantum phase transition.

  15. Classical Coulomb blockade of a silicon nanowire dot

    NASA Astrophysics Data System (ADS)

    Huang, Shaoyun; Fukata, Naoki; Shimizu, Maki; Yamaguchi, Tomohiro; Sekiguchi, Takashi; Ishibashi, Koji

    2008-05-01

    Single electron transistors (SETs) have been fabricated with an individual n-type single-crystal silicon nanowire (SiNW) that was grown by a catalytic chemical vapor deposition technique, and their transport properties have been measured in low temperatures. The SiNW-SET in the present work exhibited well pronounced Coulomb oscillations in a wide gate voltage range from -10to10V, featuring in uniform peak height, uniform full width at half maximum, and equidistant peak spacing. The charging energy turned out to be 64μeV. The temperature dependence of Coulomb oscillations revealed that the dot worked within the classical Coulomb blockade model.

  16. Measuring the Fusion Cross-Section of 18,19 O + 12 C with Low-Intensity Beams at Energies Near and Below the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy; Vadas, Justin; Schmidt, Jon; Singh, Varinderjit; Hudan, Sylvie; Desouza, Romualdo; Baby, Lagy; Kuvin, Sean; Wiedenhover, Ingo; Umar, Sait; Oberacker, Volker

    2015-04-01

    Fusion of neutron-rich light nuclei has been proposed as a heat source that triggers an X-ray superburst in the crust of an accreting neutron star. To investigate this hypothesis the total fusion cross-section for beams of low-intensity, neutron-rich nuclei (<105 ions/s) on light targets has been measured at energies near and below the Coulomb barrier. Evaporation residues, resulting from the fusion of oxygen and 12 C nuclei, were identified by their energy and Time-of-flight. Using this technique, the fusion excitation function was measured in the sub-barrier domain down to the 2 mb level. Comparison of the measured fusion excitation function with the predictions of a density constrained TDHF model reveals that the experimental data exhibit a smaller decrease in cross-section with decreasing energy than is theoretically predicted. This difference can be interpreted as a larger tunneling probability for the experimental data as compared to the theoretical predictions. To determine if this difference increases in magnitude with decreasing incident energy improvements have been implemented to enable measurement of the fusion cross-section to an even lower level. Supported by the US DOE under Grand No. DEFG02-88ER-40404.

  17. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  18. Barrier distributions and signatures of transfer channels in the Ca40+Ni58,64 fusion reactions at energies around and below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.

    2014-10-01

    Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.

  19. Modelling of Coulomb stress changes during the great (Mw = 8.8) 1906 Colombia-Ecuador earthquake

    NASA Astrophysics Data System (ADS)

    Mayorga, Edwin F.; Sánchez, John J.

    2016-10-01

    Six alternative models of slip distribution during the 1906 Esmeraldas (Mw = 8.8) megathrust earthquake are used to compute Coulomb stress changes on two types of specific faults and onto optimal strike-slipe faults along the Colombia-Ecuador Pacific region. Coulomb stress changes are in the range -0.5-0.5 MPa projected on specific faults varies spatially depending on target fault configuration (dip and sense of motion): Slip along low-angle reverse faults would be inhibited whereas slip along near-vertical strike-slip faults would be facilitated in the southern rupture region and inhibited in the northern rupture region. The patterns of Coulomb stress changes on optimal strike-slip faults located on the landward side of the 1906 rupture is not strongly dependent on the regional stress tensor, suggests that motion along many faults and fault segments might be facilitated, and exhibits good spatial correlation with shallow seismicity. The modelled 1906 Esmeraldas rupture is compared to the recent 2010 Mw = 8.8 Maule, Chile earthquake and the results may aid in improving current hazard estimates and degree of preparedness in the Colombia-Ecuador Pacific region.

  20. Elastic scattering and transfer reactions for the system 7Be + 58Ni at Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Acosta, L.; Boiano, A.; Boiano, C.; Glodariu, T.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Lay, J. A.; Martel, I.; Mazzocchi, C.; Molini, P.; Parascandolo, C.; Parkar, V. V.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Stroe, L.

    2015-09-01

    We investigated the reaction induced by the Radioactive Ion Beam 7Be on the closed proton shell nucleus 58Ni at 22.0 MeV bombarding energy. The 7Be beam was produced by means of the in-flight technique with the facility EXOTIC at INFN-LNL (Italy). Charged reaction products were mass and charge identified in a rather wide angular range and their energy distributions were analyzed to infer some information on the production mechanism. The relevance of direct processes, especially 3He- and 4He-stripping, as well as compound nucleus reactions is critically reviewed.

  1. Constraining the Symmetry Energy:. a Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    NASA Astrophysics Data System (ADS)

    di Toro, M.; Colonna, M.; Greco, V.; Ferini, G.; Rizzo, C.; Rizzo, J.; Baran, V.; Gaitanos, T.; Prassa, V.; Wolter, H. H.; Zielinska-Pfabe, M.

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e.to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso - EOS are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a "direct" study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected "neutron trapping" effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.

  2. Electronic properties of single-layer antimony: Tight-binding model, spin-orbit coupling, and the strength of effective Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Rudenko, A. N.; Katsnelson, M. I.; Roldán, R.

    2017-02-01

    The electronic properties of single-layer antimony are studied by a combination of first-principles and tight-binding methods. The band structure obtained from relativistic density functional theory is used to derive an analytic tight-binding model that offers an efficient and accurate description of single-particle electronic states in a wide spectral region up to the mid-UV. The strong (λ =0.34 eV) intra-atomic spin-orbit interaction plays a fundamental role in the band structure, leading to splitting of the valence band edge and to a significant reduction of the effective mass of the hole carriers. To obtain an effective many-body model of two-dimensional Sb we calculate the screened Coulomb interaction and provide numerical values for the on-site V¯00 (Hubbard) and intersite V¯i j interactions. We find that the screening effects originate predominantly from the 5 p states, and are thus fully captured within the proposed tight-binding model. The leading kinetic and Coulomb energies are shown to be comparable in magnitude, | t01|/ (V¯00-V¯01) ˜1.6 , which suggests a strongly correlated character of 5 p electrons in Sb. The results presented here provide an essential step toward the understanding and rational description of a variety of electronic properties of this two-dimensional material.

  3. A Coulomb stress model for induced seismicity distribution due to fluid injection and withdrawal in deep boreholes

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Troise, Claudia; Tramelli, Anna; De Natale, Giuseppe

    2013-10-01

    Fluid injection in and withdrawal from wells are basic procedures in mining activities and deep resources exploitation, such as oil and gas extraction, permeability enhancement for geothermal exploitation and waste fluid disposal. All of these activities have the potential to induce seismicity, as exemplified by the 2006 Basel earthquake (ML 3.4). Despite several decades of experience, the mechanisms of induced seismicity are not known in detail, which prevents effective risk assessment and/or mitigation. In this study, we provide an interpretation of induced seismicity based on computation of Coulomb stress changes that result from fluid injection/withdrawal at depth, mainly focused on the interpretation of induced seismicity due to stimulation of a geothermal reservoir. Seismicity is, theoretically, more likely where Coulomb stress changes are larger. For modeling purposes, we simulate the thermodynamic evolution of a system after fluid injection/withdrawal. The associated changes in pressure and temperature are subsequently considered as sources of incremental stress changes, which are then converted to Coulomb stress changes on favourably oriented faults, taking into account the background regional stress. Numerical results are applied to the water injection that was performed to create the fractured reservoir at the enhanced-geothermal-system site, Soultz-sous-Forets (France). Our approach describes well the observed seismicity, and provides an explanation for the different behaviors of a system when fluids are injected or withdrawn.

  4. A multilayer ΔE-E R telescope for breakup reactions at energies around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Ma, Nan-Ru; Lin, Cheng-Jian; Wang, Jian-Song; Yang, Lei; Wang, Dong-Xi; Zheng, Lei; Xu, Shi-Wei; Sun, Li-Jie; Jia, Hui-Ming; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Yang, Yan-Yun; Xu, Xin-Xing; Zhang, Gao-Long; Yang, Feng; He, Jian-Jun; Zhang, Huan-Qiao; Liu, Zu-Hua

    2016-11-01

    The breakup reactions of weakly-bound nuclei at energies around the Coulomb barrier and the corresponding coupling effect on the other reaction channels are hot topics nowadays. To overcome the difficulty in identifying both heavier and lighter fragments simultaneously, a new kind of ionization-chamber based detector telescope has been designed and manufactured. It consists of a PCB ionization chamber and three different thickness silicon detectors installed inside the chamber, which form a multilayer ΔE-E R telescope. The working conditions were surveyed by using an α source. An in-beam test experiment shows that the detector has good particle identification for heavy particles like 17F and 16O as well as light particles like protons and alpha particles. The measured quasi-elastic scattering angular distribution and the related discussions for 17F+208Pb are presented. Supported by National Key Basic Research Development Program of China (2013CB834404) and National Natural Science Foundation of China (11375268, 11475263, U1432127, U1432246).

  5. Laser-driven micro-Coulomb charge movement and energy conversion to relativistic electrons

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Palaniyappan, S.; Johnson, R. P.; Shimada, T.; Huang, C.; Gautier, D. C.; Clark, D. D.; Falk, K.; Jung, D.

    2016-09-01

    Development of robust instrumentation has shown evidence for a multi-μC expulsion of relativistic electrons from a sub-μm-thick foil, laser illuminated with 60-70 J on target at 2 × 1020 W/cm2. From previous work and with electron spectroscopy, it is seen that an exponential electron energy distribution is accurate enough to calculate the emitted electron charge and energy content. The 5-10-μC charge for the >100-TW Trident Laser represents the first active measurement of the >50% laser-light-to-electron conversion efficiency. By shorting out the TV/m electric field usually associated with accelerating multi-MeV ions from such targets, one finds that this charge is representative of a multi-MA current of relativistic electrons for diverse applications from electron fast ignition to advanced radiography concepts. Included with the details of the discoveries of this research, shortcomings of the diagnostics and means of improving their fidelity are discussed.

  6. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Boucerredj, N.; Beggas, K.

    2016-10-01

    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  7. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  8. Modified Coulomb and Lorenz gauges in the modeling of low- frequency electromagnetic processes

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Tiukhtina, A. A.; Lavrova, S. R.

    2016-11-01

    The boundary value problem for the quasistationary magnetic approximation of the time-harmonic Maxwell equations in inhomogeneous media is studied. The considered problem is reduced to the variational problem of determining vector magnetic and scalar electric potentials. The special gauges are discussed, that generalize the Coulomb and Lorenz gauges and allow to formulate the problems of the independent definitions of the vector magnetic potential. The correctness of the problems are established under general conditions on the coefficients. The relation between solutions of the problems with different gauges is studied. The equivalence of the problems for potentials to the original boundary value problem is proved.

  9. Quasi-Elastic Reactions of SILICON-28 and Chlorine -37 with LEAD-208 at Energies in the Range of 1 TO 3 Times the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Dixit, Sunil

    Measurements have been made for the quasi-elastic scattering of ^{28}Si on ^{208}Pb at 280 and 420 MeV, and of ^{37}Cl on ^{208}Pb at 190, 330 and 433 MeV incident projectile energies. The elastic and inelastic scattering data, along with existing data at 152, 162, 166, 210, and 225 MeV, for the ^ {28}Si + ^{208} Pb system, and existing data at 250 MeV for the ^{37}Cl + ^ {208}Pb system have been analyzed using a collective model CCBA formalism. The data are well reproduced within this model at the higher energies. However, the ^{208}Pb(3_1 ^-) state predictions require an additional rotational quadrupole reorientation term at the lower energies which exhibit a striking energy dependence in the extracted effective quadrupole moment, the nuclear deformations, and the ratio (M_{rm N} /M_{rm P}) of the neutron to proton multipole matrix elements. These results suggest the possibility of threshold anomalies in the reorientation channel, highlighting the inadequacy of the collective model in describing the inelastic excitation process for heavy-ion reactions near the Coulomb barrier, at least for this state. The transfer data show large quasi-elastic yields for the one-neutron pickup channel, contributing between 50%-87% and 55%-71% of the total neutron transfer cross section as a function of decreasing projectile energy for the ^{28}Si,^ {37}Cl + ^{208} Pb reactions, respectively. The one nucleon transfer data has been analyzed using the finite range DWBA with optical-model parameters deduced from CCBA analysis and spectroscopic factors obtained from the literature. These transfer processes display a strong dependence on the ground state reaction Q-value, projectile mass, and charge. At the higher energies there is a strong deep-inelastic component (Q <= -30 MeV). This corresponds to angular distributions that are predominantly exponential for charged particle transfer greater than two. Finally, the recently observed "slope anomaly" between the one- and two

  10. Ferromagnetism in multiband Hubbard models: From weak to strong Coulomb repulsion

    SciTech Connect

    Penc, K.; Shiba, H.; Mila, F.; Tsukagoshi, T.

    1996-08-01

    We propose a mechanism which can lead to ferromagnetism in Hubbard models containing triangles with different on-site energies. It is based on an effective Hamiltonian that we derive in the strong coupling limit. Considering a one-dimensional realization of the model, we show that in the quarter-filled, insulating case the ground state is actually ferromagnetic in a very large parameter range going from Tasaki{close_quote}s flatband limit to the strong coupling limit of the effective Hamiltonian. This result has been obtained using a variety of analytical and numerical techniques. Finally, the same results are shown to apply away from quarter-filling, in the metallic case. {copyright} {ital 1996 The American Physical Society.}

  11. Coulomb-corrected eikonal description of the breakup of halo nuclei

    SciTech Connect

    Capel, P.; Baye, D.

    2008-11-15

    The eikonal description of breakup reactions diverges because of the Coulomb interaction between the projectile and the target. This divergence is due to the adiabatic, or sudden, approximation usually made, which is incompatible with the infinite range of the Coulomb interaction. A correction for this divergence is analyzed by comparison with the dynamical eikonal approximation, which is derived without the adiabatic approximation. The correction consists in replacing the first-order term of the eikonal Coulomb phase by the first-order of the perturbation theory. This allows taking into account both nuclear and Coulomb interactions on the same footing within the computationally efficient eikonal model. Excellent results are found for the dissociation of {sup 11}Be on lead at 69 MeV/nucleon. This Coulomb-corrected eikonal approximation provides a competitive alternative to more elaborate reaction models for investigating breakup of three-body projectiles at intermediate and high energies.

  12. Radiative capture versus Coulomb dissociation.

    SciTech Connect

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of {sup 8}B have been used to infer the rate of the inverse radiative proton capture on {sup 7}Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed.

  13. Approximate General Coulomb Model for Accretionary Prisms: An Integrated Study of the Kumano Transect, Nankai Subduction Zone, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Skarbek, Rob; Ikari, Matt; Hüpers, Andre; Rempel, Alan; Wilson, Dean; Kitajima, Hiroko

    2014-05-01

    In accretionary wedges, the mechanical and hydrologic properties along splay faults and the plate boundary fault at the base of the wedge are intimately related to properties within the wedge itself, as well as to sedimentation and/or mass wasting at the wedge surface, and accretionary flux at the wedge toe; Coulomb wedge theories tie these processes together and have been successful in their application to convergent margins. Most such theories assume for the sake of simplicity that mechanical parameters (e.g. bulk density, compressibility, frictional strength) and pore pressure are constant throughout the overlying wedge. However, the values of these parameters must necessarily change with depth and distance from the trench. Here, we derive a model for a fully general Coulomb wedge, parameterized using data specific to the Kumano transect at Nankai, to better understand the location of the basal plate interface and the properties of material composing an actively accretionary prism. We use shear strength data collected for incoming sediments at Integrated Ocean Drilling Program Site C0011 of the NanTroSEIZE project to parameterize the wedge's coefficient of friction. Preliminary results of models where the friction coefficient of the wedge decreases with depth, with other parameters constant and zero cohesion, indicate that including depth dependent frictional strength in the wedge decreases the taper angle of the wedge, with the effect becoming more pronounced with distance from the trench. This model will be further refined by including seismically and numerically determined spatial variations in fluid pressure within the wedge, as well as detailed locations of the upper and basal wedge surfaces along the Kumano transect determined from 3-D seismic data.

  14. Coulomb impurity effects on the zero-Landau level splitting of graphene on polar substrates

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Li, Wei-Ping; Li, Zhi-Qing; Wang, Zi-Wu

    2017-04-01

    We theoretically investigate the effects of the Coulomb impurity on the zero-Landau level splitting of graphene on different polar substrates basing on the Fröhlich polaron model, in which the polaron is formed due to the carriers-surface optical phonon coupling. We discuss the influence of Coulomb impurity on the zero-Landau level splitting in the case of weak and strong coupling limits. We find that the splitting energy can be varied in a large scale due to the Coulomb impurity, which provides the possible theoretical explanation for the experimental measurements regarding the energy gap opened and zero-Landau level splitting in Landau quantized graphene.

  15. Coulomb edge effects in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jaskolski, W.; Ayuela, A.

    2014-10-01

    Coulomb effects in graphene nanoribbons with arbitrary edges are investigated with the use of a mean-field Hubbard model. It was recently shown that chiral ribbons with minimal edges, characterized by the translation vector (n,m), have a similar structure of bands localized around the Fermi energy as pure zigzag ribbons (n-m,0). Here we show that these flat bands in both ribbon cases differ in detail due to the perturbation induced by armchair edge nodes. For chiral ribbons the edge bands split at the zone boundary, where the corresponding bands of (n-m,0) zigzag ribbons are degenerate. Coulomb interactions enhance strongly this splitting and at the same time they bring spin into play. We modify each edge keeping global sublattice balance to find that spin degeneracy can be partially lifted. The breaking of spin-degeneracy depends on the asymmetry between the edges and in some cases leads to spin-polarized currents.

  16. Pion polarizability in the Nambu-Jona-Lasinio model and possibilities of its experimental studies in Coulomb nuclear scattering

    SciTech Connect

    Bystritskiy, Yu. M.; Guskov, A. V.; Pervushin, V. N.; Volkov, M. K.

    2009-12-01

    The charge pion polarizability is calculated in the Nambu-Jona-Lasinio model, where the quark loops (in the mean field approximation) and the meson loops (in the 1/N{sub c} approximation) are taken into account. We show that quark loop contribution dominates because the meson loops strongly conceal each other. The sigma-pole contribution (m{sub {sigma}}{sup 2}-t){sup -1} plays the main role and contains strong t-dependence of the effective pion polarizability at the region |t|{>=}4M{sub {pi}}{sup 2}. Possibilities of experimental test of this sigma-pole effect in the reaction of Coulomb nuclear scattering are estimated for the COMPASS experiment.

  17. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.

    PubMed

    Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan

    2015-04-01

    Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.

  18. Investigation of Coulomb stress changes in south Tibet (central Himalayas) due to the 25th April 2015 M W 7.8 Nepal earthquake using a Coulomb stress transfer model

    NASA Astrophysics Data System (ADS)

    Cheng, Xu; Meng, Guojie

    2016-10-01

    After M W 7.8 Nepal earthquake occurred, the rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. We present the calculations of the coseismic stress changes that resulted from the 25th April event using models of regional faults designed according to south Tibet-Nepal structure, and show that some indicative significant stress increases. We calculate static stress changes caused by the displacement of a fault on which dislocations happen and an earthquake occurs. A M W 7.3 earthquake broke on 12 May at a distance of 130 km SEE of the M W 7.8 earthquake, whose focus roughly located on high Coulomb stress change (CSC) site. Aftershocks (first 15 days after the mainshock) are associated with stress increase zone caused by the main rupture. We set receiver faults with specified strikes, dips, and rakes, on which the stresses imparted by the source fault are resolved. Four group normal faults to the north of the Nepal earthquake seismogenic fault were set as receiver faults and variant results followed. We provide a discussion on Coulomb stress transfer for the seismogenic fault, which is useful to identify potential future rupture zones.

  19. Simple approach for the bound-state energy spectrum of the generalized exponential-cosine Coulomb potential.

    PubMed

    Moulay, M; Mansouri, A; Houamer, S

    2003-01-01

    Based on the series expansion formalism, a relatively simple approach is proposed to solve the eigenvalues problems with partially screened and screened exponential-cosine Coulomb potentials. This approach is used to derive solutions to the Schrödinger equation with the two forms of potentials. The eigenenergies are explicitly deduced from solving the obtained corresponding polynomial equations. For illustration, high accuracy results have been obtained in the entire range of parameter values of these potential forms, with no constraints or adjustable constants. The present approach compares well, with existing methods, the results of which are precisely recovered as particular cases and does allow solutions to eigenvalues problems with any combination of potential parameters.

  20. Coulomb-Rate-and-State models with time dependent stresses: the role of afterslip and secondary triggering

    NASA Astrophysics Data System (ADS)

    Cattania, C.; Hainzl, S.; Roth, F.; Wang, L.

    2013-12-01

    Large earthquakes are known to trigger aftershocks by redistributing stresses in the crust, and a correlation between the location of aftershocks and positive Coulomb stress changes has been repeatedly observed. Mainshocks also trigger aseismic phenomena which can in turn modify the stress field, such as afterslip, viscoelastic and poroelastic response of the crust; moreover, aftershocks themselves contribute to the a relocalization of stresses. These processes have the potential to trigger seismicity; and while most physics based forecasting models neglect postseismic stresses, several lines of evidence suggest that both processes play a role in triggering earthquakes. The cumulative moment of afterslip can be a significant fraction of the mainshock moment, producing comparable stress changes; and while stress changes induced by individual aftershocks are orders of magnitude smaller than those due to the mainshocks, they can still be large in the near field, and the cumulative contribution of small events can be significant. The clustering of aftershocks, and the success of statistical models with cascade triggering (such as ETAS) suggest that secondary triggering may be an important aspect to model. Our goal is to study the impact of afterslip and secondary triggering in models based on Coulomb stresses. We model the seismic response to stress changes following the Dieterich constitutive law, derived from Rate and State frictional behavior on an infinite population of faults. We focus on the first 250 days from the mainshock, for two case studies: the Parkfield, Mw=6.0 and the Tohoku, Mw=9.0 earthquakes. For each case, we consider a starting model with only coseismic stresses; a model with afterslip; a model with secondary triggering; and a model with both processes. Model parameters (ta and Aσ) are inverted separately for each model. We find that in both cases, the treating aftershocks as stress sources leads to a significant improvement in model performance

  1. Campus Energy Modeling Platform

    SciTech Connect

    Sides, Scott; Kemper, Travis; Larsen, Ross; Graf, Peter

    2014-09-19

    NREL's Campus Energy Modeling project provides a suite of simulation tools for integrated, data driven energy modeling of commercial buildings and campuses using Simulink. The tools enable development of fully interconnected models for commercial campus energy infrastructure, including electrical distribution systems, district heating and cooling, onsite generation (both conventional and renewable), building loads, energy storage, and control systems.

  2. Initial results of a full kinetic simulation of RF H{sup −} source including Coulomb collision process

    SciTech Connect

    Mochizuki, S.; Shibata, T.; Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.

    2015-04-08

    In order to evaluate Electron Energy Distribution Function (EEDF) more correctly for radio frequency inductively coupled plasma (RF-ICP) in hydrogen negative ion sources, the Electromagnetic Particle-In-Cell (EM-PIC) simulation code has been improved by taking into account electron-electron Coulomb collision. Binary collision model is employed to model Coulomb collision process and we have successfully modeled it. The preliminary calculation including Coulomb collision has been done and it is shown that Coulomb collision doesn’t have significant effects under the condition: electron density n{sub e} ∼ 10{sup 18} m{sup −3} and high gas pressure p{sub H{sub 2}} = 3 Pa, while it is necessary to include Coulomb collision under high electron density and low gas pressure conditions.

  3. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.

    PubMed

    Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf

    2014-10-28

    Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated

  4. The Mechanics of Coulomb Wedges: Comparison Between a Numerical Model (Boundary Element Method) and a Sand-Box Experiment.

    NASA Astrophysics Data System (ADS)

    Del Castello, M.; Cooke, M.

    2006-12-01

    Fold and thrust belts have been successfully modelled using either physical or numerical methods in recent years. The two methods have well-known advantages and drawbacks for investigating contractional processes. In this work we have applied the Boundary Element Method code in order to closely reproduce successive snapshots of deformation accumulated within a sand-box experiment. Our numerical models provide a quantitative mechanical analysis of the deformation observed in analogue models of non-cohesive Coulomb wedges during an underthrusting/accretion transition. Model results show that the total work done by the contracting wedge increases during the underthrusting stage up to a critical value when the propagation of a frontal thrust significantly reduces the work required for further deformation. This transition occurs when the energetic cost of developing a new forethrust is less than the benefit of growing this new fault. The elastic numerical model predicts the location of the maximum shear stress on the basal dècollement just prior to the propagation of the sole thrust as well as the energetically most viable position for the nucleation of new forethrust ramp. These positions do not coincide. Furthermore, the forethrust within the sandbox experiment develops at the energetically favoured position rather than the location of greatest shear stress suggesting that the new thrust ramps develop first ahead and then link down and backward to the propagating basal dècollement. As a result, the most efficient location for a new thrust ramp is where gravitational, frictional, internal and propagation work terms are optimally combined. The trade-off between the dominant frictional and internal work terms is fuelled by overburden weight, which reduces slip on thrust ramps until the internal work stored in the surrounding deforming material reaches a critical value. The correlation of our numerical results with analogue experiments validates use of the principle of

  5. Investigation of complete and incomplete fusion dynamics of {sup 20}Ne induced reactions at energies above the Coulomb barrier

    SciTech Connect

    Singh, D.; Ali, R.; Kumar, Harish; Ansari, M. Afzal; Rashid, M. H.; Guin, R.

    2014-08-14

    Experiment has been performed to explore the complete and incomplete fusion dynamics in heavy ion collisions using stacked foil activation technique. The measurement of excitation functions of the evaporation residues produced in the {sup 20}Ne+{sup 165}Ho system at projectile energies ranges ≈ 4-8 MeV/nucleon have been done. Measured cumulative and direct cross-sections have been compared with the theoretical model code PACE-2, which takes into account only the complete fusion process. The analysis indicates the presence of contributions from incomplete fusion processes in some α-emission channels following the break-up of the projectile {sup 20}Ne in the nuclear field of the target nucleus {sup 165}Ho.

  6. Diffusion in Coulomb crystals

    SciTech Connect

    Hughto, J.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2011-07-15

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions ''hop'' in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter {Gamma}=175 to Coulomb parameters up to {Gamma}=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  7. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  8. Trivial center element and Coulombic potential of the thick center vortex model

    NASA Astrophysics Data System (ADS)

    Ahmadi, Alireza; Rafibakhsh, Shahnoosh

    2017-01-01

    The thick center vortex potentials in the SU(3) gauge group have been calculated by means of the modified inter-quark potential which consists of two terms. One term is the result of the area law fall-off for the large Wilson loop which leads to the linear potentials. The second term represents vacuum fluctuations leading to the perimeter law fall-off believed to contain the trivial center element. We introduce a new Gaussian flux limited to vary in a finite region of space which causes the corresponding group factor to have only some small deviations from the trivial center element. So, this flux increases the role of the trivial center element and W0 is enhanced in the induced potential of the model at small quark separations. Using both trivial and non-trivial center elements in the potential between static color sources, results in the correct 3-ality dependence at large quark separations and a very good agreement with Casimir scaling at short and intermediate distances. In fact, the ratios of the potential of each representation to that of the fundamental one have been improved - in comparison with the previous work on the short distance potentials, remarkably. So, one might use the thick center vortex model to describe the inter-quark potential of every regime.

  9. Coulomb impurities in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-Lin; Li, Guo; Yang, Ning

    2017-03-01

    Introducing a powerful method, we obtain the exact solutions for a Coulomb impurity in two-dimensional infinite and finite topological insulators. The level order and zero-energy degeneracy of the spectra are found to be quite different between topological trivial and nontrivial phases. For quantum dots of topological insulator, the variation of the edge and Coulomb states with dot size, Coulomb potential, and magnetic field are clearly shown. It is found that for small dots the edge states can be strongly coupled with the Coulomb states and for large dots the edge states are insensitive to the Coulomb fields but sensitive to the magnetic fields.

  10. Ordering in classical Coulombic systems.

    SciTech Connect

    Schiffer, J. P.

    1998-01-22

    The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity {Lambda} (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than {approximately}175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4].

  11. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  12. Orbital ice: An exact Coulomb phase on the diamond lattice

    SciTech Connect

    Chern Giawei; Wu Congjun

    2011-12-15

    We demonstrate the existence of an orbital Coulomb phase as the exact ground state of a p-orbital exchange Hamiltonian on the diamond lattice. The Coulomb phase is an emergent state characterized by algebraic dipolar correlations and a gauge structure resulting from local constraints (ice rules) of the underlying lattice models. For most ice models on the pyrochlore lattice, these local constraints are a direct consequence of minimizing the energy of each individual tetrahedron. On the contrary, the orbital ice rules are emergent phenomena resulting from the quantum orbital dynamics. We show that the orbital ice model exhibits an emergent geometrical frustration by mapping the degenerate quantum orbital ground states to the spin-ice states obeying the 2-in-2-out constraints on the pyrochlore lattice. We also discuss possible realization of the orbital ice model in optical lattices with p-band fermionic cold atoms.

  13. Numerical approach to Coulomb gauge QCD

    SciTech Connect

    Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.

    2008-07-01

    We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.

  14. Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: A modified static remainder approach

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; Samsonidze, Georgy; Jain, Manish; Cohen, Marvin L.; Louie, Steven G.

    2013-04-01

    Ab initio GW calculations are a standard method for computing the spectroscopic properties of many materials. The most computationally expensive part in conventional implementations of the method is the generation and summation over the large number of empty orbitals required to converge the electron self-energy. We propose a scheme to reduce the summation over empty states by the use of a modified static remainder approximation, which is simple to implement and yields accurate self-energies for both bulk and molecular systems requiring a small fraction of the typical number of empty orbitals.

  15. Proton focusing driven by laser triggered Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Wang, W. Q.; Yin, Y.; Zou, D. B.; Yu, T. P.; Ge, Z. Y.; Xu, H.; Zhuo, H. B.; Shao, F. Q.

    2017-03-01

    A mechanism of the acceleration and focusing of quasi-monoenergetic proton beams from a thin arched carbon-hydrogen target irradiated by a relativistic-intensity laser pulse is investigated by multi-dimensional particle-in-cell (PIC) simulations. As an intense linearly polarized laser pulse impinges on the thin target, a considerable number of electrons are evacuated, leading to Coulomb explosion in the excess positive charges left behind. Accompanying with the acceleration, the protons are focused ballistically in the Coulomb field, which is mainly contributed by the carbon ions. It is demonstrated that a quasi-monoenergetic proton bunch with the energy-density as high as 1017 J/m3 is produced by using a laser pulse with the intensity of 1021 W/cm2. An analytical model is proposed to predict the proton energy and the focal position, which is fairly consistent with PIC simulations.

  16. Recent developments in Coulomb breakup calculations

    SciTech Connect

    Capel, P.

    2008-05-12

    The theory of reactions applied to Coulomb breakup of loosely-bound projectiles is reviewed. Both the Continuum Discretized Coupled Channel (CDCC) and time-dependent models are described. Recent results about sensitivity of breakup calculations to the projectile wave function are reviewed. Analyses of the extraction of radiative-capture cross section from Coulomb breakup measurements are presented. Current developments in breakup theory are also mentioned.

  17. Quantum partner-dance in the 12C + 12C system yields sub-Coulomb fusion resonances

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Wiescher, Michael

    2014-03-01

    A preliminary study of the 12C + 12C sub-Coulomb fusion reaction using the time-dependent wave-packet method is presented. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.

  18. Dynamical effects in the Coulomb expansion following nuclear fragmentation

    SciTech Connect

    Chung, K.C.; Donangelo, R.; Schechter, H.

    1987-09-01

    The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.

  19. Craters in concrete slabs due to detonation - drawbacks of material models with a Mohr-Coulomb yield surface

    NASA Astrophysics Data System (ADS)

    Conrad, Markus

    2015-09-01

    Numerical simulations have been performed with a commercial distributed explicit FE-solver and the results have been compared with experiments. High explosive was placed in front of different concrete slabs with the dimension 100 × 100 × 16 cm. Some of the results of the simulations, in particular the profile of the craters, are not in agreement with the test results. Therefore the key characteristics of the constitutive equation based on Mohr-Coulomb yield surfaces and a damage evolution linked to the plastic strain has been reviewed.

  20. Proton radiography, nuclear cross sections and multiple Coulomb scattering

    SciTech Connect

    Sjue, Sky K.

    2015-11-04

    The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.

  1. Coulomb-tail effect of electron-electron interaction on nonsequential double ionization

    NASA Astrophysics Data System (ADS)

    Zhou, Yueming; Huang, Cheng; Lu, Peixiang

    2011-08-01

    With the classical ensemble model, we investigate the manifestations of the Coulomb tail of electron-electron interaction in nonsequential double ionization by comparing the results from the short-range electron-electron interaction with those from the Coulombic electron-electron interaction. At the intensity below the recollision threshold, the two-electron momentum distributions in the direction parallel to the laser polarization show an anticorrelated behavior for the Coulombic electron-electron interaction while a correlated behavior for the short-range interaction, which indicates the responsibility of the Coulomb tail of the electron-electron interaction for the experimentally observed anticorrelated emission [Y. Liu, S. Tschuch, A. Rudenko, M. Durr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.053001 101, 053001 (2008)]. In the transverse direction, for the Coulombic electron-electron interaction, the two electrons exhibit no effect of repulsion at an intensity below the recollision threshold while a strong repulsion effect at an intensity above the threshold, which becomes weaker as the laser intensity further increases. Back analysis shows that the role of the Coulomb tail of electron-electron interaction leads asymmetric energy sharing (AES) to be prevalent at recollision. This AES results in the two electrons leaving the ion at different times or with different initial momenta, which is responsible for the anticorrelated behavior in the parallel direction and the intensity-dependent repulsion effect in the transverse direction.

  2. Coulomb-tail effect of electron-electron interaction on nonsequential double ionization

    SciTech Connect

    Zhou Yueming; Huang Cheng; Lu Peixiang

    2011-08-15

    With the classical ensemble model, we investigate the manifestations of the Coulomb tail of electron-electron interaction in nonsequential double ionization by comparing the results from the short-range electron-electron interaction with those from the Coulombic electron-electron interaction. At the intensity below the recollision threshold, the two-electron momentum distributions in the direction parallel to the laser polarization show an anticorrelated behavior for the Coulombic electron-electron interaction while a correlated behavior for the short-range interaction, which indicates the responsibility of the Coulomb tail of the electron-electron interaction for the experimentally observed anticorrelated emission [Y. Liu, S. Tschuch, A. Rudenko, M. Durr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, Phys. Rev. Lett. 101, 053001 (2008)]. In the transverse direction, for the Coulombic electron-electron interaction, the two electrons exhibit no effect of repulsion at an intensity below the recollision threshold while a strong repulsion effect at an intensity above the threshold, which becomes weaker as the laser intensity further increases. Back analysis shows that the role of the Coulomb tail of electron-electron interaction leads asymmetric energy sharing (AES) to be prevalent at recollision. This AES results in the two electrons leaving the ion at different times or with different initial momenta, which is responsible for the anticorrelated behavior in the parallel direction and the intensity-dependent repulsion effect in the transverse direction.

  3. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  4. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    NASA Astrophysics Data System (ADS)

    Ongonwou, F.; Tetchou Nganso, H. M.; Ekogo, T. B.; Kwato Njock, M. G.

    2016-12-01

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  5. Coulomb excitation of C{sub 60} molecules

    SciTech Connect

    Esbensen, H.; Berry, H.G.; Cheng, S.

    1995-08-01

    The ionization and dissociation of C{sub 60} molecules in the Coulomb field from fast, highly-charged xenon ions was measured recently at ATLAS. The Coulomb excitation was modeled as a coherent excitation of the giant plasmon resonance. Guided by photo-absorption measurements, single-plasmon excitations were identified with the production of single-charged C{sub 60}{sup +} molecular ions. The calculated cross sections do indeed reproduce the beam energy-dependence of the measured C{sub 60}{sup +} yield. The calculations show that single-plasmon excitations are responsible for about half of the total reaction cross section. The other half, i.e., multiplasmon excitations, leads to multiple ionization and dissociation of the molecule.

  6. New approach to folding with the Coulomb wave function

    SciTech Connect

    Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.

    2015-05-15

    Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.

  7. Breit and Quantum Electrodynamics Energy Contributions in Multielectron Atoms from the Relativistic Screened Hydrogenic Model

    NASA Astrophysics Data System (ADS)

    Di Rocco, Héctor O.; Lanzini, Fernando

    2016-04-01

    The correction to the Coulomb repulsion between two electrons due to the exchange of a transverse photon, referred to as the Breit interaction, as well as the main quantum electrodynamics contributions to the atomic energies (self-energy and vacuum polarization), are calculated using the recently formulated relativistic screened hydrogenic model. Comparison with the results of multiconfiguration Dirac-Hartree-Fock calculations and experimental X- ray energies is made.

  8. Coulomb gauge ghost propagator and the Coulomb form factor

    NASA Astrophysics Data System (ADS)

    Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  9. Coulomb glass in the random phase approximation

    NASA Astrophysics Data System (ADS)

    Basylko, S. A.; Onischouk, V. A.; Rosengren, A.

    2002-01-01

    A three-dimensional model of the electrons localized on randomly distributed donor sites of density n and with the acceptor charge uniformly smeared on these sites, -Ke on each, is considered in the random phase approximation (RPA). For the case K=1/2 the free energy, the density of the one-site energies (DOSE) ɛ, and the pair OSE correlators are found. In the high-temperature region (e2n1/3/T)<1 (T is the temperature) RPA energies and DOSE are in a good agreement with the corresponding data of Monte Carlo simulations. Thermodynamics of the model in this region is similar to the one of an electrolyte in the regime of Debye screening. In the vicinity of the Fermi level μ=0 the OSE correlations, depending on sgn(ɛ1.ɛ2) and with very slow decoupling law, have been found. The main result is that even in the temperature range where the energy of a Coulomb glass is determined by Debye screening effects, the correlations of the long-range nature between the OSE still exist.

  10. Deep inelastic scattering near the Coulomb barrier

    SciTech Connect

    Gehring, J.; Back, B.; Chan, K.

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  11. Global Energy Futures Model

    SciTech Connect

    Malczynski, Leonard; Baker, Arnold; Beyeler, Walt; Conrad, Stephen; Harris, David; Harris, Paul; Rexroth, Paul; Bixler, and Nathan

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data from 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.

  12. An Application of the Direct Coulomb Electron Pair Production Process to the Energy Measurement of the "VH-Group" in the "Knee" Region of the "All-Particle" Energy Spectrum

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Wu, J.; Christl, M. J.; Fountain, W. F.; Parnell, T. A.

    1999-01-01

    The "all-particle" cosmic ray energy spectrum appears to be exhibiting a significant change in the spectral index just above approximately 3000 TeV. This could indicate (1) a change in the propagation of the cosmic rays in the galactic medium, and/or (2) the upper limit of the supernova shock wave acceleration mechanism, and/or (3) a new source of high-energy cosmic rays. Air shower and JACEE data indicate the spectral change is associated with a composition change to a heavier element mixture whereas DICE does not indicate this. A detector concept will be presented that utilizes the energy dependence of the production of direct Coulomb electron-positron pairs by energetic heavy ions. Monte Carlo simulations of a direct electron pair detector consisting of Pb target foils interleaved with planes of 1-mm square scintillating optical fibers will be discussed. The goal is to design a large area, non-saturating instrument to measure the energy spectrum of the individual cosmic ray elements in the "VH-group" for energies greater than 10 TeV/nucleon.

  13. Optical Model Potentials for {alpha}-Particles Scattering around the Coulomb Barrier on Medium-Mass Nuclei

    SciTech Connect

    Avrigeanu, M.; Roman, F.L.; Avrigeanu, V.

    2005-05-24

    Following a semi-microscopic and phenomenological analyses of {alpha}-particle elastic scattering on A{approx}100 nuclei at energies below 32 MeV, a regional optical potential is involved in (n,{alpha}) reaction cross-sections analysis for the stable Mo isotopes. Focus on the uncertainties in the OMP parameters found to describe the {alpha}-particle emission from excited compound residual nuclei is thus obtained, looking for understanding of the related questions on the basis of microscopic models.

  14. Electric-hexadecapole (24-pole) Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Chidichimo, Marita C.; Stastna, Marek

    1996-03-01

    We obtain the quantal zero-energy-loss limit of the radial integrals arising in the nonrelativistic atomic excitation of electric-hexadecapole transitions. We compare these results to the classical limit and the WKB approximation. We show the different behavior of the Coulomb integrals in the WKB approximation in the cases of repulsive and attractive potentials as functions of the Sommerfeld number η.

  15. Coulomb Logarithm, Version 1.0

    SciTech Connect

    Singleton, Robert

    2016-11-23

    Clog is a library of charged particle stopping powers and related Coulomb logarithm processes in a plasma. The stopping power is a particularly useful quantity for plasma physics, as it measures the energy loss of per unit length of charged particle as it traverses a plasma. Clog's primary stopping power is the BPS (Brown-Preston-Singleton) theory.

  16. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  17. Momentum correlation in the three-body Coulomb continuum problem

    NASA Astrophysics Data System (ADS)

    Zhang, Suimeng

    2000-09-01

    Following the work of Berakdar (1996 Phys. Rev. A 53 2316), momentum correlation in the three-body Coulomb continuum problem is considered by the introduction of effective Sommerfeld parameters for both the symmetric and the asymmetric geometry. The triple differential cross sections for electron impact ionization of atomic helium at incident energies of 50 eV in the asymmetric geometry are calculated. Results of this approach are compared with the absolute measurements, the results of the BBK model without modification, the convergent close-coupling calculations and the results of our earlier model.

  18. Electronic structure of a deformable trimer with a coulomb interaction and a variable number of electrons

    SciTech Connect

    Aplesnin, S. S.; Piskunova, N. I.

    2011-01-15

    The electronic spectrum of a trimer with a variable number of electrons has been calculated in the Hubbard model by exact diagonalization. The dependences of the chemical potential shift, magnetic moment, and energy level splitting near the chemical potential on the magnetic field, Coulomb interaction between the electrons located at the vertices of the triangle, trimer deformation, and three-center interaction have been established. The removal of magnetic degeneracy in the trimer when the intersite Coulomb and three-center interactions are taken into account and the formation of a singlet pair of electrons under trimer deformation have been detected.

  19. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    PubMed Central

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; Savelyev, Evgeny; Obaid, Razib; Kaderiya, Balram; Augustin, Sven; Schnorr, Kirsten; Dumitriu, Ileana; Osipov, Timur; Bilodeau, René; Kilcoyne, David; Kumarappan, Vinod; Rudenko, Artem; Berrah, Nora; Rolles, Daniel

    2016-01-01

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model. PMID:27910943

  20. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging

    NASA Astrophysics Data System (ADS)

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; Savelyev, Evgeny; Obaid, Razib; Kaderiya, Balram; Augustin, Sven; Schnorr, Kirsten; Dumitriu, Ileana; Osipov, Timur; Bilodeau, René; Kilcoyne, David; Kumarappan, Vinod; Rudenko, Artem; Berrah, Nora; Rolles, Daniel

    2016-12-01

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  1. Closed-form solutions for the hollow sphere model with Coulomb and Drucker-Prager materials under isotropic loadings

    NASA Astrophysics Data System (ADS)

    Thoré, Philippe; Pastor, Franck; Pastor, Joseph; Kondo, Djimedo

    2009-05-01

    Though the solution to the limit analysis problem of the hollow sphere model—with a von Mises matrix and under spherical symmetry—is well known, it is not available, to our knowledge, for both isotropic loadings (tension and compression) in the case of a Coulomb matrix and partially for a Drucker-Prager matrix. In the present Note, we establish in a unified framework, for this class of materials, closed-form solutions for stress and strain fields in a hollow sphere under external isotropic tension and compression. These analytical results not only give useful reference solutions, but can also be considered as a part of a trial velocity field in the hollow sphere submitted to an arbitrary loading. Comparisons with 3D finite element-based limit analysis approaches and with recent results in the literature are provided. In addition to the established analytical results, we present a rigorous evaluation of a recent Gurson-type macroscopic criterion corresponding to the Drucker-Prager hollow sphere under an arbitrary loading, by means of the previous 3D limit analysis codes. To cite this article: Ph. Thoré et al., C. R. Mecanique 337 (2009).

  2. Crystal structure representations for machine learning models of formation energies

    SciTech Connect

    Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole; Armiento, Rickard

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  3. Coulomb interaction effects on the Majorana states in quantum wires.

    PubMed

    Manolescu, A; Marinescu, D C; Stanescu, T D

    2014-04-30

    The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands.

  4. Quasi-elastic Coulomb response function for finite systems and elimination of the Landau ghost in the relativistic σ-ω model

    NASA Astrophysics Data System (ADS)

    Kazuhiro, Tanaka; Wolfgang, Bentz; Akito, Arima

    1990-11-01

    The quasi-elastic Coulomb response function of finite nuclei including vacuum polarization effects is investigated in the relativistic σ-ω model. For the consistent elimination of the Landau ghost in meson propagators, the description of the ground state and the response function of the system is formulated utilizing the effective action method, and the effects of the ghost elimination on the nuclear matter response function are discussed. Finite system calculations are performed for 12C (|q|= 300, 400, 550 MeV) and 40Ca (|q|= 410, 500, 550 MeV) , in which particle-hole continuum states are fully taken into account by the method of continuum RPA, while the vacuum polarization effects are included by the local density approximation. The effects of the particle-hole effective interaction and the medium modified single-nucleon form factor on the response function are also discussed.

  5. Limit analysis and homogenization of porous materials with Mohr-Coulomb matrix. Part II: Numerical bounds and assessment of the theoretical model

    NASA Astrophysics Data System (ADS)

    Pastor, F.; Anoukou, K.; Pastor, J.; Kondo, D.

    2016-06-01

    This second part of the two-part study is devoted to the numerical Limit Analysis of a hollow sphere model with a Mohr-Coulomb matrix and its use for the assessment of theoretical results. Brief background and fundamental of the static and kinematic approaches in the context of numerical limit analysis are first recalled. We then present the hollow sphere model, together with its axisymmetric FEM discretization and its mechanical position. A conic programming adaptation of a previous iterative static approach, based on a piecewise linearization (PWL) of the plasticity criterion, was first realized. Unfortunately, the resulting code, no more than the PWL one, did not allow sufficiently refined meshes for loss of convergence of the conic optimizer. This problem was solved by using the projection algorithm of Ben Tal and Nemriovski (BTN) and the (interior point) linear programming code XA. For the kinematic approach, a first conic adaptation appeared also inefficient. Then, an original mixed (but fully kinematic) approach dedicated to the general Mohr-Coulomb axisymmetric problem was elaborated. The final conic mixed code appears much more robust than the classic one when using the conic code MOSEK, allowing us to take into account refined numerical meshes. After a fine validation in the case of spherical cavities and isotropic loadings (for which the exact solution is known) and comparison to previous (partial) results, numerical lower and upper bounds (a posteriori verified) of the macroscopic strength are provided. These bounds are used to assess and validate the theoretical results of the companion (part I) paper. Effects of the friction angle as well as that of the porosity are illustrated.

  6. A new approach for modelling lattice energy in finite crystal domains

    NASA Astrophysics Data System (ADS)

    Bilotsky, Y.; Gasik, M.

    2015-09-01

    Evaluation of internal energy in a crystal lattice requires precise calculation of lattice sums. Such evaluation is a problem in the case of small (nano) particles because the traditional methods are usually effective only for infinite lattices and are adapted to certain specific potentials. In this work, a new method has been developed for calculation of lattice energy. The method is a generalisation of conventional geometric probability techniques for arbitrary fixed lattices in a finite crystal domain. In our model, the lattice energy for wide range of two- body central interaction potentials (including long-range Coulomb potential) has been constructed using absolutely convergent sums. No artificial cut-off potential or periodical extension of the domain (which usually involved for such calculations) have been made for calculation of the lattice energy under this approach. To exemplify the applications of these techniques, the energy of Coulomb potential has been plotted as the function of the domain size.

  7. Extended Glauber Model of Antiproton-Nucleus Annihilation for All Energies and Mass Numbers

    SciTech Connect

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2014-01-01

    Previous analytical formulas in the Glauber model for high-energy nucleus-nucleus collisions developed by Wong are utilized and extended to study Antiproton-nucleus annihilations for both high and low energies, after taking into account the effects of Coulomb and nuclear interactions, and the change of the antiproton momentum inside a nucleus. The extended analytical formulas capture the main features of the experimental antiproton-nucleus annihilation cross sections for all energies and mass numbers. At high antiproton energies, they exhibit the granular property for the lightest nuclei and the black-disk limit for the heavy nuclei. At low antiproton energies, they display the effect of the antiproton momentum increase due to the nuclear interaction for the light nuclei, and the effect of the magnification due to the attractive Coulomb interaction for the heavy nuclei.

  8. Coulomb explosion induced by intense ultrashort laser pulses in two-dimensional clusters

    SciTech Connect

    Mijoule, Vincent; Lewis, Laurent J.; Meunier, Michel

    2006-03-15

    The phenomenon of Coulomb explosion is studied through qualitative numerical simulations of clusters irradiated with intense ultrashort laser pulses. We introduce a semiquantum approach which allows us to model two different types of materials--akin to rare gases and dielectrics--and which is appropriate for both low- and high-energy domains, i.e., the thermodynamic regime and the Coulomb explosion regime. Through a detailed study of clusters submitted to laser pulses of various intensities, we demonstrate that Coulomb explosion is the process responsible for cluster explosion under femtosecond laser pulses. We examine the differences in the dynamics of explosion of rare-gas clusters as a function of the wavelength of the incident laser radiation. For dielectric clusters, our simulations reveal a fragmented explosion mechanism; the influence of the size of the cluster is also studied.

  9. Semiclassical Coulomb field

    SciTech Connect

    Polonyi, J.

    2008-06-15

    The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.

  10. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    , condensed matter and ultra-cold plasmas. One hundred and thirty participants came from twenty countries and four continents to participate in the conference. Those giving presentations were asked to contribute to this special issue to make a representative record of an interesting conference. We thank the International Advisory Board and the Programme Committee for their support and suggestions. We thank the Local Organizing Committee (Stefania De Palo, Vittorio Pellegrini, Andrea Perali and Pierbiagio Pieri) for all their efforts. We highlight for special mention the dedication displayed by Andrea Perali, by Rocco di Marco for computer support, and by our tireless conference secretary Fiorella Paino. The knowledgeable guided tour of the historic centre of Camerino given by Fiorella Paino was appreciated by many participants. It is no exaggeration to say that without the extraordinary efforts put in by these three, the conference could not have been the success that it was. For their sustained interest and support we thank Fulvio Esposito, Rector of the University of Camerino, Fabio Beltram, Director of NEST, Scuola Normale Superiore, Pisa, and Daniel Cox, Co-Director of ICAM, University of California at Davis. We thank the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA for providing a video record of the conference on the web (found at http://sccs2008.df.unicam.it/). Finally we thank the conference sponsors for their very generous support: the University of Camerino, the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA, the International Centre for Theoretical Physics ICTP Trieste, and CNR-INFM DEMOCRITOS Modeling Center for Research in Atomistic Simulation, Trieste. Participants at the International Conference on Strongly Coupled Coulomb Systems (SCCS) (University of Camerino, Italy, 29 July-2 August 2008).

  11. Coulomb excitations for a short linear chain of metallic shells

    SciTech Connect

    Zhemchuzhna, Liubov; Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong; Gao, Bo

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  12. Energy dependence of the optical potentials for the 9Be +208Pb and 9Be +209Bi systems at near-Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Yu, N.; Zhang, H. Q.; Gomes, P. R. S.; Jia, H. M.; Lubian, J.; Lin, C. J.

    2015-04-01

    We analyze the energy dependence of the interacting optical potential, at near barrier energies, for two systems involving the weakly bound projectile 9Be and the heavy 208Pb and 209Bi targets, by the simultaneous fit of elastic scattering angular distributions and fusion excitation functions. The approach used consists of dividing the optical potential into two parts. A short-range potential VF+i WF that is responsible for fusion, and a superficial potential VDR+i WDR for direct reactions. It is found, for both systems studied, that the fusion imaginary potential WF presents the usual threshold anomaly (TA) observed in tightly bound systems, whereas the direct reaction imaginary potential WDR shows a breakup threshold anomaly (BTA) behavior. Both potentials satisfy the dispersion relation. The direct reaction polarization potential predominates over the fusion potential and so a net overall behavior is found to follow the BTA phenomenon.

  13. Positive and Negative Coulomb Drag in a 1D Quantum Circuit

    NASA Astrophysics Data System (ADS)

    Laroche, Dominique; Gervais, Guillaume; Lilly, Mike; Reno, John

    2012-02-01

    We report Coulomb drag measurements between tunable vertically-coupled quantum wires. The wires are fabricated in a GaAs/AlGaAs double quantum well heterostructure with a 15 nm barrier separating the quantum wells. The Coulomb drag signal is mapped out versus the number of subbands occupied in each wire, and regions of both positive and negative drag are observed (D. Laroche et. al. Nature Nanotechnology, doi:10.1038/nnano.2011.182). The observation of negative Coulomb drag at a high one-dimensional electronic density is not predicted by the usual momentum-transfer model for Coulomb drag and shows that the existing picture of the drag effect in one-dimension is incomplete. In order to clarify the origin of this negative signal, temperature dependencies of the Coulomb drag are presented both in the positive and in the negative drag regimes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. The Influence of Localized Glacial Erosion on Exhumation Paths in Accreting Coulomb Wedges: Insights from Particle Velocimetry Analysis of Sandbox Models

    NASA Astrophysics Data System (ADS)

    Newman, P. J.; Davis, K.; Haq, S. S. B.; Ridgway, K.

    2015-12-01

    Glacial erosion can have an impact on the location and development of faults in mountain belts. The rapid removal and deposition of rock, in some cases, is thought to affect the initiation of slip on older fault structures, or cause the development of new structures within the older part of the wedge. We present cross-sectional data from both erosional and non-erosional sandbox models of Coulomb wedges in order to quantify the impact of localized erosion on the location of and slip on deformational structures, as well as the general path of material through a wedge. To do this, we employ Lagrangian particle tracking velocimetry (PTV) using the open-source Python PTV toolkit trackpy, among a suite of other data analysis tools. We are able to extract robust and reliable sets of particle trajectories from a series of images without the need for predefined markers or marker-beds, instead identifying and tracking natural variations in sand color as individual particles. By comparing the motion of particles in cross-section to the local surface topography over an entire experiment, we determine a high-resolution record of exhumation rates, in addition to simple uplift rates. These comparisons are further informed by the use of high-definition Eulerian particle image velocimetry (PIV), which provides quantitative data about the distribution of deformation and instantaneous material displacements throughout a cross-sectional view of a Coulomb wedge. This allows us to interpret these pathways in relation to the behavior of active structures and general wedge morphology. In our experiments, we observe that localized glacial erosion has an impact on material pathways, in the form of an increased rate of exhumation locally, more vertical trajectories towards surface below the zone of erosion, and reactivation of older structures to maintain force balance within the entire wedge.

  15. PREFACE: Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within

  16. Molecular dynamics simulation of Coulomb explosion, melting and shock wave creation in silicon after an ionization pulse

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Chen, Di; Wang, Jing; Shao, Lin

    2014-04-01

    Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion is linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.

  17. Traceable Coulomb blockade thermometry

    NASA Astrophysics Data System (ADS)

    Hahtela, O.; Mykkänen, E.; Kemppinen, A.; Meschke, M.; Prunnila, M.; Gunnarsson, D.; Roschier, L.; Penttilä, J.; Pekola, J.

    2017-02-01

    We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods are demonstrated: numerical fitting of the full conductance curve and measuring the height of the conductance dip. The complete uncertainty analysis shows that using either analysis method the relative combined standard uncertainty (k  =  1) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 0.5%. In this temperature range, both analysis methods produced temperature estimates that deviated from 0.39% to 0.67% from the reference temperatures provided by a superconducting reference point device calibrated against the Provisional Low Temperature Scale of 2000.

  18. Coseismic and postseismic Coulomb stress changes on intra-continental dip-slip faults and the role of viscoelastic relaxation in the lower crust: insights from 3D finite-element models

    NASA Astrophysics Data System (ADS)

    Bagge, Meike; Hampel, Andrea

    2016-04-01

    Investigating the stress interaction of faults plays a crucial role for assessing seismic hazard of a region. The calculation of Coulomb stress changes allows quantifying stress changes on so-called receiver faults in the surrounding of a source fault that was ruptured during an earthquake. Positive Coulomb stress changes bring receiver faults closer to failure, while a negative value indicates a delay of the next earthquake. Besides the coseismic ('static') stress changes, postseismic ('transient') stress changes induced by postseismic viscoelastic relaxation occur. Here we use 3D finite-element models with arrays of normal or thrust faults to study the coseismic stress changes and the stress changes arising from postseismic relaxation in the lower crust. The lithosphere is divided into an elastic upper crust, a viscoelastic lower crust and a viscoelastic lithospheric mantle. Gravity is included in the models. Driven by extension or shortening of the model, slip on the fault planes develops in a self-consistent way. We modelled an earthquake on a 40-km-long source fault with a coseismic slip of 2 m and calculated the displacement fields and Coulomb stress changes during the coseismic and postseismic phases. The results for the coseismic phase (Bagge and Hampel, Tectonophysics in press) show that synthetic receiver faults in the hanging wall and footwall of the source fault exhibit a symmetric distribution of the coseismic Coulomb stress changes on each fault, with large areas of negative stress changes but also some smaller areas of positive values. In contrast, faults positioned in along-strike prolongation of the source fault and outside of its hanging wall and footwall undergo mostly positive stress changes. Postseismic stress changes caused by viscous flow modify the static stress changes in a way that the net Coulomb stress changes on the receiver faults change significantly through space and time. Our models allow deciphering the combined effect of stress

  19. Energy System Modeling with REopt

    SciTech Connect

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan; Olis, Dan; Elgqvist, Emma; DiOrio, Nick; Walker, Andy

    2016-07-15

    This poster details how REopt - NREL's software modeling platform for energy systems integration and optimization - can help to model energy systems. Some benefits of modeling with REopt include optimizing behind the meter storage for cost and resiliency, optimizing lab testing, optimizing dispatch of utility scale storage, and quantifying renewable energy impact on outage survivability.

  20. Feynman rules for Coulomb gauge QCD

    SciTech Connect

    Andrasi, A.; Taylor, J.C.

    2012-10-15

    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel. - Highlights: Black-Right-Pointing-Pointer In Coulomb gauge QCD, we re-express Christ-Lee terms in the Hamiltonian as pseudo-Feynman integrals. Black-Right-Pointing-Pointer This gives a subgraph structure, and allows the ordinary renormalization process. Black-Right-Pointing-Pointer It also leads to cancellation of energy-divergences.

  1. Transfer vs. Breakup in the interaction of the 7Be Radioactive Ion Beam with a 58Ni target at Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Acosta, L.; Boiano, A.; Boiano, C.; Fierro, N.; Glodariu, T.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Martel, I.; Mazzocchi, C.; Molini, P.; Pakou, A.; Parascandolo, C.; Parkar, V. V.; Patronis, N.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2014-03-01

    We measured for the first time 7Be elastically scattered nuclei as well as 3,4He reaction products from a 58Ni target at 22.3 MeV beam energy. The data were analyzed within the optical model formalism to extract the total reaction cross section. Extensive kinematical, Distorted Wave Born Approximation (DWBA)and Continuum Discretized Coupled Channel (CDCC) calculations were performed to investigate the 3,4He originating mechanisms and the interplay between different reaction channels.

  2. Positron scattering from hydrogen atom with screened Coulomb potentials

    SciTech Connect

    Ghoshal, Arijit; Nayek, Sujay; Kamali, M. Z. M.; Ratnavelu, K.

    2014-03-05

    Elastic positron-hydrogen collisions with screened Coulomb potentials have been investigated using a second-order distorted wave Born approximation in the momentum space. Two types of potentials have been considered, namely, static screened Coulomb potential and exponential cosine-screened Coulomb potential. Using a simple variationally determined hydrogenic wave function it has been possible to obtain the scattering amplitude in a closed form. A detailed study has been made on the differential and total cross sections in the energy range 20–300 eV.

  3. Coulomb drag between helical Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Kainaris, N.; Gornyi, I. V.; Levchenko, A.; Polyakov, D. G.

    2017-01-01

    We theoretically study Coulomb drag between two helical edges with broken spin-rotational symmetry, such as would occur in two capacitively coupled quantum spin Hall insulators. For the helical edges, Coulomb drag is particularly interesting because it specifically probes the inelastic interactions that break the conductance quantization for a single edge. Using the kinetic equation formalism, supplemented by bosonization, we find that the drag resistivity ρD exhibits a nonmonotonic dependence on the temperature T . In the limit of low T ,ρD vanishes with decreasing T as a power law if intraedge interactions are not too strong. This is in stark contrast to Coulomb drag in conventional quantum wires, where ρD diverges at T →0 irrespective of the strength of repulsive interactions. Another unusual property of Coulomb drag between the helical edges concerns higher T for which, unlike in the Luttinger liquid model, drag is mediated by plasmons. The special type of plasmon-mediated drag can be viewed as a distinguishing feature of the helical liquid—because it requires peculiar umklapp scattering only available in the presence of a Dirac point in the electron spectrum.

  4. Dark-energy thermodynamic models

    SciTech Connect

    Besprosvany, Jaime; Izquierdo, German

    2010-12-07

    We study cosmological consequences of dark-energy thermodynamic models. The assumption that dark energy is conformed of quanta, and an extensivity argument generalize its equation of state. This implies that dark energy and another key component exchange energy. The energy densities of dark energy and the other component then tend asymptotically to a constant, thus explaining the coincidence of dark matter and dark energy today. On the other hand, a model of non-relativistic particles in a Bose-Einstein condensate, with a short-range attractive interaction, produces acceleration. It is shown that the phantom-acceleration regime, at the beginning of the universe, solves the horizon problem.

  5. Thermodynamic properties of the magnetized Coulomb crystal lattices

    NASA Astrophysics Data System (ADS)

    Kozhberov, A. A.

    2016-08-01

    It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.

  6. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    SciTech Connect

    Goto, I. Nishioka, S.; Abe, S.; Hatayama, A.; Miyamoto, K.; Mattei, S.; Lettry, J.

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  7. Coulomb Bound States of Strongly Interacting Photons

    NASA Astrophysics Data System (ADS)

    Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.

    2015-09-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  8. Inventory of state energy models

    SciTech Connect

    Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

    1980-03-31

    These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

  9. Elastic scattering of 9Be+51V near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Morales-Rivera, J. C.; Martinez-Quiroz, E.; Belyaeva, T. L.; Aguilera, E. F.; Lizcano, D.; Amador-Valenzuela, P.

    2016-05-01

    Elastic scattering angular distributions for the 9Be+51V system were measured at three near Coulomb barrier energies, Elab = 16.35, 17.44 and 18.53 MeV. The data were analyzed by using a Semimicroscopic Optical Model. This combines a microscopic calculation of the mean-field double folding potential and a phenomenological construction of the dynamical polarization potential. The calculations reproduced the data very well and the total reaction cross sections were also calculated.

  10. Coulomb crystallization of highly charged ions.

    PubMed

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  11. Debye screening for two-dimensional Coulomb systems at high temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Shih

    1987-10-01

    The grand canonical ensemble of a two-dimensional Coulomb system with±1 charges is proved to have screening phenomena in its high-temperature region. The Coulomb potential in a finite region Λ is assumed to be (-ΔΛ)-1, where Δ Λ is the Laplacian with zero boundary conditions on Λ. The hard-core condition is not assumed. The model is set up by separating (-ΔΛ)-1 into a shortrange part and a long-range part depending on a parameter λ. The self-energies are subtracted only for the short-range part and therefore a choice of λ is a choice of subtraction of self-energies. The method of proof is in general the same as that of Brydges-Federbush "Debye screening," except that here a modification for the short-range part of the potentials is needed.

  12. National Energy Modeling System (NEMS)

    DOE Data Explorer

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  13. Cation Recombination Energy/Coulomb Repulsion Effects in ETD/ECD as Revealed by Variation of Charge per Residue at Fixed Total Charge

    PubMed Central

    Mentinova, Marija; Crizer, David M.; Baba, Takashi; McGee, William M.; Glish, Gary L.; McLuckey, Scott A.

    2013-01-01

    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) experiments in electrodynamic ion traps operated in the presence of a bath gas in the 1–10 mTorr range have been conducted on a common set of doubly protonated model peptides of the form X(AG)nX (X = lysine, arginine, or histidine, n=1, 2, or 4). The partitioning of reaction products was measured using thermal electrons, anions of azobenzene, and anions of 1,3-dinitrobenzene as reagents. Variation of n alters the charge per residue of the peptide cation, which affects recombination energy. The ECD experiments showed that H-atom loss is greatest for the n=1 peptides and decreases as n increases. Proton transfer in ETD, on the other hand, is expected to increase as charge per residue decreases (i.e., as n increases). These opposing tendencies were apparent in the data for the K(AG)nK peptides. H-atom loss appeared to be more prevalent in ECD than in ETD and is rationalized on the basis of either internal energy differences, differences in angular momentum transfer associated with the electron capture versus electron transfer processes, or a combination of the two. The histidine peptides showed the greatest extent of charge reduction without dissociation, the arginine peptides showed the greatest extent of side-chain cleavages, and the lysine peptides generally showed the greatest extent of partitioning into the c/z•-product ion channels. The fragmentation patterns for the complementary c- and z•-ions for ETD and ECD were found to be remarkably similar, particularly for the peptides with X = lysine. PMID:23568028

  14. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  15. Thermoelectrics with Coulomb-coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Thierschmann, Holger; Sánchez, Rafael; Sothmann, Björn; Buhmann, Hartmut; Molenkamp, Laurens W.

    2016-12-01

    In this article we review the thermoelectric properties of three terminal devices with Coulomb-coupled quantum dots (QDs) as observed in recent experiments [1,2]. The system we consider consists of two Coulomb-blockade QDs, one of which can exchange electrons with only a single reservoir (heat reservoir), while the other dot is tunnel coupled with two reservoirs at a lower temperature (conductor). The heat reservoir and the conductor interact only via the Coulomb coupling of the quantum dots. It has been found that two regimes have to be considered. In the first one, the heat flow between the two systems is small. In this regime, thermally driven occupation fluctuations of the hot QD modify the transport properties of the conductor system. This leads to an effect called thermal gating. Experiments have shown how this can be used to control charge flow in the conductor by means of temperature in a remote reservoir. We further substantiate the observations with model calculations, and implications for the realisation of an all-thermal transistor are discussed. In the second regime, the heat flow between the two systems is relevant. Here the system works as a nanoscale heat engine, as proposed recently (Sánchez and Büttiker [3]). We review the conceptual idea, its experimental realisation and the novel features arising in this new kind of thermoelectric device such as decoupling of heat and charge flow. xml:lang="fr"

  16. Dynamical coupling of electrons and nuclei for Coulomb explosion of argon trimers in intense laser fields

    NASA Astrophysics Data System (ADS)

    Xie, Xiguo; Wu, Chengyin; Yuan, Zongqiang; Ye, Difa; Wang, Peng; Deng, Yongkai; Fu, Libin; Liu, Jie; Liu, Yunquan; Gong, Qihuang

    2015-08-01

    We have experimentally and theoretically studied the fragmentation dynamics of argon trimer (A r3) in intense laser fields. By coincidently measuring the momentum vectors, we obtained the emission geometry of the three fragmental ions produced in the three-body fragmentation process. In addition to the direct Coulomb explosion channels, we observed the indirect Coulomb explosion channels with Rydberg excitation. We have further developed a classical polyatomic molecular ensemble model, in which all interactions among electrons and nuclei are fully included, to simulate the fragmentation dynamics of argon trimer in intense laser fields. The experimental observations have been reproduced by the model calculation. The simulations show that the Rydberg excitation modifies the kinetic energy release as well as the emission geometry of fragmental ions during the explosion process. The study provides insight into the correlation dynamics of electrons and nuclei of many-body physics driven by intense laser fields.

  17. Regions in Energy Market Models

    SciTech Connect

    Short, W.

    2007-02-01

    This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  18. Regions in Energy Market Models

    SciTech Connect

    2009-01-18

    This report explores the different options for spatial resolution of an energy market model and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  19. The Energy Conservation Curriculum Model.

    ERIC Educational Resources Information Center

    Haveman, Jacqueline E.; O'Connell, Kathryn

    Described is a model which responds to the need for a systematic, conceptual framework for understanding energy. The specific vehicle for enhancing this understanding for the model is postsecondary adult vocational education. The model is intended to assist educators in designing and developing curricula tailored to the needs and interests of…

  20. Nanoplasmonic renormalization and enhancement of Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Rusina, Anastasia; Klimov, Victor I.; Stockman, Mark I.

    2008-08-01

    In this paper we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing dressed interaction explicitly for an important example of metal-dielectric nanoshells which exhibits a rich resonant behavior in magnitude and phase. This interaction is used to describe the nanoplasmonic-enhanced F¨orster resonant energy transfer (FRET) between nanocrystal quantum dots near a nanoshell.

  1. Nanoplasmonic renormalization and enhancement of Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Durach, M.; Rusina, A.; Klimov, V. I.; Stockman, M. I.

    2008-10-01

    In this paper, we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing the dressed interaction explicitly for an important example of metal-dielectric nanoshells which exhibits a rich resonant behavior in magnitude and phase. This interaction is used to describe the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between nanocrystal quantum dots near a nanoshell.

  2. Action principle for Coulomb collisions in plasmas

    DOE PAGES

    Hirvijoki, Eero

    2016-09-14

    In this study, an action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.

  3. Holographic Ricci Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2012-03-01

    In this paper, we consider holographic Ricci dark energy model, and by using general relativity equations obtain time-dependent density of the Universe. We show that the resulting density in independent of space curvature.

  4. a Field-Theoretical Investigation of 2-D Coulomb Systems with Short-Range Yukawa Repulsion.

    NASA Astrophysics Data System (ADS)

    Jargocki, Krzysztof Piotr

    The two-dimensional Coulomb gas, consisting of positive and negative charges, is an important system which, on one hand, is equivalent to the vortex sector of the planar X-Y model, and, on the other, to the sine-Gordon field theory. In most treatments the charged particles are assumed to have a repulsive hard core which prevents arbitrarily close approaches. In the present work a new regularization scheme based on a soft short-range Yukawa repulsion between the Coulomb gas particles is presented. This formulation is transcribed into a local sine-Gordon-like field theory involving two Bose fields, one the original massless sine -Gordon field corresponding to the long-range Coulomb interaction and an auxiliary massive field corresponding to the short -range Yukawa repulsion. The resulting Lagrangian is not Hermitian. Using the techniques of functional integration, an effective field theory involving the Coulomb field alone is obtained by integrating out the massive field. The resulting Lagrangian is now Hermitian. Then a generalization of Peierls' inequality is used to make a variational calculation of the ground state energy of the Coulomb system. Unlike in the pure sine-Gordon case the theory has a well-defined ground state energy for (beta)q('2) > 2 (or (beta)c('2) > 8(pi)). A new method is used to derive the Kosterlitz -Thouless renormalization group equations, starting with the original sine-Gordon-like theory. The equations are identical to those found previously by other authors. A wave function renormalization is found to be necessary in addition to the normal ordering discussed by Coleman. A fermionized version of the theory is obtained, using the dictionary provided by Kogut and Susskind, which involves two Fermi fields and an electromagnetic potential. Position -space correlation functions are calculated at the critical point. The effective potential is computed in the one -loop approximation. A nonlinear field theory with derivative couplings is found to

  5. 100% DD Energy Model Update

    SciTech Connect

    None, None

    2011-06-30

    The Miami Science Museum energy model has been used during DD to test the building's potential for energy savings as measured by ASHRAE 90.1-2007 Appendix G. This standard compares the designed building's yearly energy cost with that of a code-compliant building. The building is currently on track show 20% or better improvement over the ASHRAE 90.1-2007 Appendix G baseline; this performance would ensure minimum compliance with both LEED 2.2 and current Florida Energy Code, which both reference a less strict version of ASHRAE 90.1. In addition to being an exercise in energy code compliance, the energy model has been used as a design tool to show the relative performance benefit of individual energy conservation measures (ECMs). These ECMs are areas where the design team has improved upon code-minimum design paths to improve the energy performance of the building. By adding ECMs one a time to a code-compliant baseline building, the current analysis identifies which ECMs are most effective in helping the building meet its energy performance goals.

  6. Coulomb explosion of the hot spot of micropinches

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Oreshkin, E. V.

    2017-01-01

    It has been shown that the generation of hard X-ray radiation, electron beam, and high energy ions that have been detected in experiments on compressing pinches can be related to the Coulomb explosion of a micropinch hot spot, which is formed due to the outflow of the material. In the outflow process, the plasma temperature in the hot spot increases and conditions appear for the transition of electrons to the regime of continuous acceleration. The exit of runaway electrons from the hot spot region leads to the creation of a positive bulk charge, then to a Coulomb explosion. Conditions under which electrons pass to the continuous acceleration regime have been determined and estimates of the ion kinetic energy upon a Coulomb explosion have been obtained.

  7. Coulomb effects in three- and four-nucleon scattering: A mask of the 3N force

    SciTech Connect

    Deltuva, A.; Fonseca, A. C.; Sauer, P. U.

    2008-04-29

    Recent progress on the solution of ab initio three- and four-nucleon scattering equations in momentum space that include the correct treatment of the Coulomb interaction is reviewed; results for specific observables in reactions initiated by p+d, p+{sup 3}He and n+{sup 3}He indicate that the inclusion of the Coulomb interaction is paramount to validate two- and three-nucleon force models. Three- and four-nucleon force effects in {sup 4}He binding energy and four-nucleon scattering observables are studied for the first time. The effect of the four-nucleon force is found to be much smaller than the effect of the three-nucleon force.

  8. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    DOE PAGES

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; ...

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less

  9. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    NASA Astrophysics Data System (ADS)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-01

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  10. Nonlinear organic plasmonics: Applications to optical control of Coulomb blocking in nanojunctions

    SciTech Connect

    Fainberg, B. D.; Li, G.

    2015-08-03

    Purely organic materials with negative and near-zero dielectric permittivity can be easily fabricated. Here, we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser pulses that enable us to obtain near-zero dielectric permittivity during a short time. Our consideration is based on the model of the interaction of strong (phase modulated) laser pulse with organic molecules developed by one of the authors before, extended to the dipole-dipole intermolecular interactions in the condensed matter. We have proposed to use non-steady-state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium.

  11. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    SciTech Connect

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  12. Self-consistent inclusion of classical large-angle Coulomb collisions in plasma Monte Carlo simulations

    SciTech Connect

    Turrell, A.E. Sherlock, M.; Rose, S.J.

    2015-10-15

    Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.

  13. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    NASA Astrophysics Data System (ADS)

    Brogi, Bharat Bhushan; Chand, Shyam; Ahluwalia, P. K.

    2015-06-01

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ɛ + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  14. A New Feature of the Screened Coulomb Potential in Momentum Space

    NASA Astrophysics Data System (ADS)

    Watanabe, Takashi; Hiratsuka, Yasuhisa; Oryu, Shinsho; Togawa, Yoshio

    2017-03-01

    A Coulomb equivalent screened Coulomb potential is proposed for solving the Schrödinger equation and/or the Calogero first order differential equation, where some critical range bands are obtained. Phase shifts for "any" two-charged particle system (from electron-electron to heavy ion-heavy ion) are reproduced by using the universal critical range bands and the appropriate Sommerfeld parameter over a very wide energy region. A Coulomb-like off-shell amplitude is introduced using two-potential theory without employing the usual Coulomb renormalization method.

  15. Coulomb Thrusting Application Study

    DTIC Science & Technology

    2006-01-20

    the nearest region of the magnetosphere is known as the ionosphere. The ionosphere is created as upper atmospheric gasses are ionized through ultra...The ionosphere is created as upper atmospheric gasses are ionized through ultra- violet radiation and cosmic rays. The iono- sphere plasma is...point charge model is used instead of the three-dimensional charge distribution. As the separation distances are increased, it is antici- pated that

  16. Simultaneous analysis of the elastic scattering and breakup channel for the reaction 11Li+208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Fernández-García, J. P.; Cubero, M.; Acosta, L.; Alcorta, M.; Alvarez, M. A. G.; Borge, M. J. G.; Buchmann, L.; Diget, C. A.; Falou, H. A.; Fulton, B.; Fynbo, H. O. U.; Galaviz, D.; Gómez-Camacho, J.; Kanungo, R.; Lay, J. A.; Madurga, M.; Martel, I.; Moro, A. M.; Mukha, I.; Nilsson, T.; Rodríguez-Gallardo, M.; Sánchez-Benítez, A. M.; Shotter, A.; Tengblad, O.; Walden, P.

    2015-10-01

    We present a detailed analysis of the elastic scattering and breakup channel for the reaction of 11Li on 208Pb at incident laboratory energies of 24.3 and 29.8 MeV, measured at the radioactive ion beam facility of TRIUMF, in Vancouver, Canada. A large yield of 9Li fragments was detected by four charged particle telescopes in a wide angular range. The experimental angular and energy distributions of these 9Li fragments have been compared to coupled-reaction-channel and continuum-discretized coupled-channel calculations. The large production of 9Li fragments at small angles can be explained by considering a direct breakup mechanism, while at medium-large angles a competition between direct breakup and neutron transfer to the continuum of the 208Pb target was observed.

  17. Three-body Coulomb systems using generalized angular-momentum S states

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Sims, J. S.

    1974-01-01

    An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.

  18. Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hu, Y.

    2004-12-01

    The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.

  19. Convergence of Feynman integrals in Coulomb gauge QCD

    SciTech Connect

    Andraši, A.; Taylor, J.C.

    2014-12-15

    At 2-loop order, Feynman integrals in the Coulomb gauge are divergent over the internal energy variables. Nevertheless, it is known how to calculate the effective action, provided that the external gluon fields are all transverse. We show that, for the two-gluon Greens function as an example, the method can be extended to include longitudinal external fields. The longitudinal Greens functions appear in the BRST identities. As an intermediate step, we use a flow gauge, which interpolates between the Feynman and Coulomb gauges.

  20. Running Coulomb potential and Lamb shift in QCD

    SciTech Connect

    Hoang, Andre H.; Manohar, Aneesh V.; Stewart, Iain W.

    2001-07-01

    The QCD {beta} function and the anomalous dimensions for the Coulomb potential and the static potential first differ at three loop order. We evaluate the three loop ultrasoft anomalous dimension for the Coulomb potential and give the complete three loop running. Using this result, we calculate the leading logarithmic Lamb shift for a heavy-quark{endash}antiquark bound state, which includes all contributions to the binding energies of the form m{alpha}{sub s}{sup 4}({alpha}{sub s}ln{alpha}{sub s}){sup k}, k{ge}0.

  1. Finiteness of the Coulomb gauge QCD perturbative effective action

    SciTech Connect

    Andraši, A.; Taylor, J.C.

    2015-05-15

    At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ–Lee term which was inserted into the Hamiltonian.

  2. Thermodynamic functions of the hcp Coulomb crystal lattice

    NASA Astrophysics Data System (ADS)

    Kozhberov, A. A.; Baiko, D. A.

    2015-10-01

    One-component Coulomb crystals of ions with hexagonal close-packed (hcp) lattice likely form in the crust of strongly-magnetized neutron stars (magnetars). In this work we present a detailed study of vibration modes and thermodynamic properties of such crystals in a wide range of temperatures at zero magnetic field. In contrast to typically considered lattices, the phonon spectrum of the system exhibits a peculiar crossing of the acoustic modes near the Brillouin zone center in certain directions of the wavevector. It is demonstrated that in the field-free regime the Helmholtz free energy of the hcp Coulomb crystal is always higher than those of the Coulomb crystals with body-centered cubic and face-centered cubic lattices. The results of our numerical calculations are fitted by simple analytic expressions.

  3. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  4. Separable wave equation for three Coulomb interacting particles

    NASA Astrophysics Data System (ADS)

    Colavecchia, F. D.; Gasaneo, G.; Garibotti, C. R.

    1998-02-01

    We consider a separable approximation to the Schrödinger equation for the three-body Coulomb problem and found its exact solution above the ionization threshold. This wave function accounts for different possible asymptotic behaviors and reduces to the well-known product of three two-body Coulomb waves (C3) for scattering conditions. The momenta and position-dependent modifications recently proposed for the Sommerfeld parameters, as an improvement to the C3 model, are analyzed. We show how these changes can be included in our model as a suitable physically based variations in the separable approximation for the wave equation.

  5. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Fang, Jingyue; Chang, Shengli; Qin, Shiqiao; Zhang, Xueao; Xu, Hui

    2017-02-01

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode.

  6. Energy Model of Neuron Activation.

    PubMed

    Romanyshyn, Yuriy; Smerdov, Andriy; Petrytska, Svitlana

    2017-02-01

    On the basis of the neurophysiological strength-duration (amplitude-duration) curve of neuron activation (which relates the threshold amplitude of a rectangular current pulse of neuron activation to the pulse duration), as well as with the use of activation energy constraint (the threshold curve corresponds to the energy threshold of neuron activation by a rectangular current pulse), an energy model of neuron activation by a single current pulse has been constructed. The constructed model of activation, which determines its spectral properties, is a bandpass filter. Under the condition of minimum-phase feature of the neuron activation model, on the basis of Hilbert transform, the possibilities of phase-frequency response calculation from its amplitude-frequency response have been considered. Approximation to the amplitude-frequency response by the response of the Butterworth filter of the first order, as well as obtaining the pulse response corresponding to this approximation, give us the possibility of analyzing the efficiency of activating current pulses of various shapes, including analysis in accordance with the energy constraint.

  7. Spin incoherent effects in momentum resolved tunneling, transport, and Coulomb drag in Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory

    2006-03-01

    In a one dimensional electron gas at low enough density the magnetic exchange energy J between neighboring electrons is exponentially suppressed relative to the Fermi energy, EF. At finite temperature T, the energy hierarchy J << T << EF can be reached, and we refer to this as the spin incoherent (SI) Luttinger liquid state. By using a model of a fluctuating Wigner solid, we theoretically explore the signatures of spin incoherence in the single particle Green’s function[1], momentum resolved tunneling[2], transport[3], and Coulomb drag[4]. In the SI Green’s function the spin modes of a Luttinger liquid (LL) are thermally washed out leaving only singular behavior from the charge modes. The charge modes are broadened in momentum space by an amount of order kF and the energy dependence of the tunneling density of states qualitatively changes from the low energy suppression of the LL regime to a possible low energy divergence in the SI regime. Such a state may be probed directly in momentum resolved tunneling between parallel quantum wires. Deep in the SI regime, the physics of transport and Coulomb drag can be mapped onto spinless electrons. Various crossovers in temperature and for finite systems connected to Fermi liquid leads are discussed. Both transport and Coulomb drag may exhibit interesting non-monotonic temperature dependence. [1] G. A. Fiete and L. Balents, Phys. Rev. Lett. 93, 226401 (2004). [2] G. A. Fiete, J. Qian, Y. Tserkovnyak, and B. I. Halperin, Phys. Rev. B 72, 045315 (2005). [3] G. A. Fiete, K. Le Hur, and L. Balents, Phys. Rev. B 72, 125416 (2005). [4] G. A. Fiete, K. Le Hur, and L. Balents, Submitted, cond-mat/0511715.

  8. The mystery of Coulomb friction in sediment transport

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Duran, Orencio

    Nearly all analytical models of sediment transport in Newtonian fluid (e.g., air or water) are based on Bagnold's assumption of a constant Coulomb friction coefficient (particle-shear-pressure-ratio, μ) at the interface (zb) between sediment bed and transport layer. In fact, this assumption is the main reason why these models predict the sediment load (and subsequently the sediment transport rate) to be proportional to the excess shear stress (τ -τt), a scaling which has been confirmed in many wind-tunnel and flume experiments. Attempts to explain why μ (zb) is constant have usually been based on the sliding-friction analogy or rheology arguments. However, here we analytically derive μ (zs) √{ 3} - 1 , where zs is the location at which the production rate of particle fluctuation energy is maximal. Our derivation is based on the assumption that the rate of collisional transfer of horizontal into vertical kinetic energy is typically much larger than the rate of energy dissipation. Using state-of-the-art numerical simulations of sediment transport in Newtonian fluid, we validate all assumptions and approximation involved in our derivation. Interestingly, the location zs can significantly deviate from zb depending on the simulated conditions. We acknowledge support from grants National Natural Science Foundation of China (Nos. 1151101041 and 41376095) and Natural Science Foundation of Zhejiang Province (No. LR16E090001).

  9. Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures.

    PubMed

    Chatzieleftheriou, Stavros; Adendorff, Matthew R; Lagaros, Nikos D

    2016-10-24

    The potential energy of molecules and nanostructures is commonly calculated in the molecular mechanics formalism by superimposing bonded and nonbonded atomic energy terms, i.e. bonds between two atoms, bond angles involving three atoms, dihedral angles involving four atoms, nonbonded terms expressing the Coulomb and Lennard-Jones interactions, etc. In this work a new, generalized numerical simulation is presented for studying the mechanical behavior of three-dimensional nanostructures at the atomic scale. The energy gradient and Hessian matrix of such assemblies are usually computed numerically; a potential energy finite element model is proposed herein where these two components are expressed analytically. In particular, generalized finite elements are developed that express the interactions among atoms in a manner equivalent to that invoked in simulations performed based on the molecular dynamics method. Thus, the global tangent stiffness matrix for any nanostructure is formed as an assembly of the generalized finite elements and is directly equivalent to the Hessian matrix of the potential energy. The advantages of the proposed model are identified in terms of both accuracy and computational efficiency. In the case of popular force fields (e.g., CHARMM), the computation of the Hessian matrix by implementing the proposed method is of the same order as that of the gradient. This analysis can be used to minimize the potential energy of molecular systems under nodal loads in order to derive constitutive laws for molecular systems where the entropy and solvent effects are neglected and can be approximated as solids, such as double stranded DNA nanostructures. In this context, the sequence dependent stretch modulus for some typical base pairs step is calculated.

  10. Coulomb and nuclear effects in breakup and reaction cross sections

    NASA Astrophysics Data System (ADS)

    Descouvemont, P.; Canto, L. F.; Hussein, M. S.

    2017-01-01

    We use a three-body continuum discretized coupled channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li+208Pb . For breakup, we investigate various aspects, such as the role of the α +t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention to different definitions of the reaction cross section which exist in the literature and which may induce small, but significant, differences in the numerical values.

  11. Rapid Energy Modeling Workflow Demonstration

    DTIC Science & Technology

    2013-10-31

    FormIt allows for the creation of building models in the field using an iOS or Android tablet . The final class of software is the energy...survey, we have seen an explosion in the use of personal devices such as laptops and tablets , associated increases in plug loads would not have...FormIt App for iOS and Android tablets currently; browser version in beta. Can be used to create geo-referenced and scaled conceptual building

  12. Thermodynamic properties of screened Coulomb balls

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Baumgartner, H.; Filinov, A.

    2006-10-01

    Complex plasmas in parabolic traps [1,2], especially Coulomb balls, can easily reach a strongly coupled state which is of great current interest in many fields, including trapped ions, ultracold plasmas and condensed matter. The advantage of the dust crystals is the direct experimental access to the individual particle positions, allowing for precision comparisons with theoretical models and numerical simulations. In this work the dependence of melting points of mesoscopic spherical crystals on the screening and particle number is analyzed. We present analytical results which are compared with simulation and experimental data [3,4,5]. It is shown that the influence of the screening on structural properties of these mesoscopic systems exhibts also a strong impact on the melting behavior. This analysis is based on Metropolis thermodynamic Monte Carlo simulations to obtain first principle thermodynamic properties of the strongly correlated Coulomb clusters. Finally, our results allow to propose a new non-invasive diagnostic to determine the dust temperature. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004).[2] P. Ludwig, S. Kosse and M. Bonitz, Phys. Rev. E 71, 046403 (2005).[3] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [4] O.S. Vaulina, S.A. Khrapak and G.E. Morfill, Phys. Rev. E 66, 016404 (2002). [5] J.P. Schiffer, Phys. Rev. Lett. 88, 205003 (2002)

  13. Coulomb crystallization in classical and quantum systems

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael

    2007-11-01

    Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter

  14. Tabletop nucleosynthesis driven by cluster Coulomb explosion.

    PubMed

    Last, Isidore; Jortner, Joshua

    2006-10-27

    Coulomb explosion of completely ionized (CH4)n, (NH3)n, and (H2O)n clusters will drive tabletop nuclear reactions of protons with 12C6+, 14N7+, and 16O8+ nuclei, extending the realm of nuclear reactions driven by ultraintense laser-heterocluster interaction. The realization for nucleosynthesis in exploding cluster beams requires complete electron stripping from the clusters (at laser intensities I(M) > or = 10(19) W cm(-2)), the utilization of nanodroplets of radius 300-700 A for vertical ionization, and the attainment of the highest energies for the nuclei (i.e., approximately 30 MeV for heavy nuclei and approximately 3 MeV for protons).

  15. Higher-order dynamical effects in Coulomb dissociation

    SciTech Connect

    Esbensen, H.; Bertsch, G.F.; Bertulani, C.A.

    1995-08-01

    Coulomb dissociation is a technique commonly used to extract the dipole response of nuclei far from stability. This technique is applicable if the dissociation is dominated by dipole transitions and if first-order perturbation theory is valid. In order to assess the significance of higher-order processes we solve numerically the time evolution of the wave function for a two-body breakup in the Coulomb field from a high Z target. We applied this method to the breakup reactions: {sup 11}Be {yields} {sup 10}Be + n and {sup 11}Li {yields} +2n. The latter is treated as a two-body breakup, using a di-neutron model.

  16. Comment on "Structure effects in the 15N(n ,γ )16N radiative capture reaction from the Coulomb dissociation of 16N"

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-05-01

    In their recent study Neelam, Shubhchintak, and Chatterjee have claimed that "it would certainly be useful to perform a Coulomb dissociation experiment to find the low-energy capture cross section for the reaction" 15N(n ,γ )16N. However, it is obvious that a Coulomb dissociation experiment cannot constrain this capture cross section because the dominating branchings of the capture reaction lead to excited states in 16N, which do not contribute in a Coulomb dissociation experiment. An estimate of the total 15N(n ,γ )16N cross section from Coulomb dissociation of 16N requires a precise knowledge of the γ -ray branchings in the capture reaction. Surprisingly, the calculation of Neelam, Shubhchintak, and Chatterjee predicts a strongly energy-dependent ground-state branching of the order of 0.05% to 0.6% at energies between 100 and 500 keV, which is almost 2 orders of magnitude below calculations in the direct capture model. Additionally, this calculation of Neelam, Shubhchintak, and Chatterjee deviates significantly from the expected energy dependence for p -wave capture.

  17. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  18. Relativistic Coulomb excitation of 88Kr

    NASA Astrophysics Data System (ADS)

    Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.

    2016-11-01

    To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.

  19. Monoenergetic collimated nano-Coulomb electron beams driven by crossed laser beams

    SciTech Connect

    Wang Jingwei; Murakami, M.; Weng, S. M.; Ruhl, H.; Luan Shixia; Yu Wei

    2013-07-08

    Monoenergetic collimated electron acceleration by two crossed laser beams is investigated through an analytical model and particle-in-cell simulations. Electron bunches with a total charge of order nano-Coulombs are accelerated by the axial electric field formed by the crossed laser beams to nearly 760 MeV with an energy spread of 2.7%. The transverse components of both electric and magnetic fields vanish along the axis, making the electron beam highly collimated. This acceleration scheme appears promising in producing high quality electron beams.

  20. Coulomb-nuclear interference in 56 MeV deuteron breakup at extreme forward angle

    NASA Astrophysics Data System (ADS)

    Samanta, C.; Kanungo, Rituparna; Mukherjee, Sanjukta; Basu, D. N.

    1995-02-01

    Recently measured 12C(d,pn) 12C breakup data show a dip in the energy integrated cross section below a momentum transfer ∼ 117 MeV/ c. We analyse these data by the prior form distorted-wave Born approximation theory. Although the double humped structure of the θp = θn = 0° data exhibit the dominance of Coulomb-breakup, the pronounced asymmetry of the energy sharing data cannot be explained through Coulomb breakup only. A closer agreement to the data is obtained through Coulomb-nuclear interference and an unusual optical potential of longer range in the exit channel.

  1. Coulomb gauge approach for charmonium meson and hybrid radiative transitions

    SciTech Connect

    Gou, Peng; Yepez-Martínez, Tochtli; Szczepaniak, Adam P.

    2015-01-22

    We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.

  2. Modeling energy transport in nanostructures

    NASA Astrophysics Data System (ADS)

    Pattamatta, Arvind

    Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermal management and energy conversion. Example of thermal management in micro/nano electronic devices is the use of efficient nanostructured materials to alleviate 'hot spots' in integrated circuits. Examples in the manipulation of heat flow and energy conversion include nanostructures for thermoelectric energy conversion, thermophotovoltaic power generation, and data storage. One of the major challenges in Metal-Oxide Field Effect Transistor (MOSFET) devices is to study the 'hot spot' generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Prediction of hotspot temperature and position in MOSFET devices is necessary for improving thermal design and reliability of micro/nano electronic devices. Thermoelectric properties are among the properties that may drastically change at nanoscale. The efficiency of thermoelectric energy conversion in a material is measured by a non-dimensional figure of merit (ZT) defined as, ZT = sigmaS2T/k where sigma is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, and k is the thermal conductivity. During the last decade, advances have been made in increasing ZT using nanostructures. Three important topics are studied with respect to energy transport in nanostructure materials for micro/nano electronic and thermoelectric applications; (1) the role of nanocomposites in improving the thermal efficiency of thermoelectric devices, (2) the interfacial thermal resistance for the semiconductor/metal contacts in thermoelectric devices and for metallic interconnects in micro/nano electronic devices, (3) the

  3. A Coulomb collision algorithm for weighted particle simulations

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Combi, Michael R.

    1994-01-01

    A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.

  4. Perturbed Coulomb potentials in the Klein-Gordon equation via the asymptotic iteration method

    SciTech Connect

    Barakat, T.

    2009-03-15

    The asymptotic iteration method is used to construct the exact energy eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed Lorentz vector and Lorentz scalar Coulombic potentials. Highly accurate and rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or a Lorentz scalar linear potential, V(r)=-{lambda}{sub 1}/r+krandV(r)=-{lambda}{sub 1}/randW(r)=kr, respectively, are obtained.

  5. B(E1) Strengths from Coulomb excitation of 11Be

    SciTech Connect

    Summers, N C; Pain, S D; Orr, N A; Catford, W N; Angelique, J C; Ashwood, N I; Bouchat, V; Clarke, N M; Curtis, N; Freer, M; Fulton, B R; Hanappe, F; Labiche, M; Loucey, J L; Lemmon, R C; Mahboub, D; Ninane, A; Normand, G; Nunes, F M; Soic, N; Stuttge, L; Timis, C N; Thompson, I; Winfield, J S; Ziman, V

    2007-03-06

    The B(E1;1/2{sup +}{yields} 1/2{sup -}) strength for {sup 11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for {sup 11}Be+{sup 208}Pb at 38.6 MeV/nucleon is reported. The B(E1) strength of 0.105(12) e{sup 2}fm{sup 2} derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, in contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e{sup 2}fm{sup 2}. This value is in good agreement with the value deduced independently from the lifetime of the 1/2{sup -} state in {sup 11}Be, and has a comparable precision.

  6. NEMS - National Energy Modeling System: An Overview

    EIA Publications

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  7. Energy Blocks — A Physical Model for Teaching Energy Concepts

    NASA Astrophysics Data System (ADS)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams. Activities and analogies like Energy Theater and Richard Feynman's blocks, as well as the popular money (or wealth) analogy, can also be very effective. The goal of this paper is to describe a physical model of Feynman's blocks that can be employed by instructors to help students learn the following energy-related concepts: 1. The factors affecting each individual mechanical energy storage mode (this refers to what has been traditionally called a form of energy, and while the Modeling Method of instruction is not the focus of this paper, much of the energy related language used is specific to the Modeling Method). For example, how mass or height affects gravitational energy; 2. Energy conservation; and 3. The graphical relationships between the energy storage mode and a factor affecting it. For example, the graphical relationship between elastic energy and the change in length of a spring.

  8. Coulomb fission in dielectric dication clusters: experiment and theory on steps that may underpin the electrospray mechanism.

    PubMed

    Chen, Xiaojing; Bichoutskaia, Elena; Stace, Anthony J

    2013-05-16

    A series of five molecular dication clusters, (H2O)n(2+), (NH3)n(2+), (CH3CN)n(2+), (C5H5N)n(2+), and (C6H6)n(2+), have been studied for the purpose of identifying patterns of behavior close to the Rayleigh instability limit where the clusters might be expected to exhibit Coulomb fission. Experiments show that the instability limit for each dication covers a range of sizes and that on a time scale of 10(-4) s ions close to the limit can undergo either Coulomb fission or neutral evaporation. The observed fission pathways exhibit considerable asymmetry in the sizes of the charged fragments, and are associated with kinetic (ejection) energies of ~0.9 eV. Coulomb fission has been modeled using a theory recently formulated to describe how charged particles of dielectric materials interact with one another (Bichoutskaia et al. J. Chem. Phys. 2010, 133, 024105). The calculated electrostatic interaction energy between separating fragments accounts for the observed asymmetric fragmentation and for the magnitudes of the measured ejection energies. The close match between theory and experiment suggests that a significant fraction of excess charge resides on the surfaces of the fragment ions. The experiments provided support for a fundamental step in the electrospray ionization (ESI) mechanism, namely the ejection from droplets of small solvated charge carriers. At the same time, the theory shows how water and acetonitrile may behave slightly differently as ESI solvents. However, the theory also reveals deficiencies in the point-charge image-charge model that has previously been used to quantify Coulomb fission in the electrospray process.

  9. Improved atomic model for charge transfer in multielectron ion-atom collisions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Lin, C. D.; Tunnell, L. N.

    1980-07-01

    Electron capture to the K shell of projectiles from the K and other subshells of multielectron target atoms is studied in the intermediate energy region using the single-active-electron approximation and the two-state, two-center atomic eigenfunction expansion method. It is concluded that the theoretical capture cross section is not sensitive to the atomic models used at high collision energies where the projectile velocity v is near or greater than the orbital velocity ve of the active electron. For vCoulomb model potentials is illustrated. Capture cross sections for a few collision systems are obtained and compared with experimental data when available to illustrate the reliability of the present model.

  10. Coulomb explosion of large polyatomic molecules assisted by nonadiabatic charge localization.

    PubMed

    Markevitch, Alexei N; Romanov, Dmitri A; Smith, Stanley M; Levis, Robert J

    2004-02-13

    The electron-nuclear dynamics of the Coulomb explosion of a large polyatomic molecule, anthracene, is probed using kinetic energy distributions of produced H+ ions. The kinetic energy release of ejected protons exceeds 30 eV for anthracene exposed to 10(14) W cm(-2), 800 nm pulses of 60 fs duration. We propose a strong-field charge localization model, based on nonadiabatic dynamics of charge distribution in a (multiply) ionized molecule; the charge localization lasts many laser periods and is sustained through successive ionizations of the molecular ion. The model explains quantitatively the dependence of the H+ kinetic energy on the laser intensity. Dissociative ionization of a polyatomic molecule enabled by long-lived charge localization is a new type of electron-nuclear dynamics and is essential for understanding the pathways of molecular or ionic fragmentation in strong fields.

  11. Coulomb chronometry to probe the decay mechanism of hot nuclei

    NASA Astrophysics Data System (ADS)

    Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2015-12-01

    In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.

  12. Quantum solution for the one-dimensional Coulomb problem

    SciTech Connect

    Nunez-Yepez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2011-06-15

    The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys. 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correct--such as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is not its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.

  13. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  14. Can Coulomb repulsion for charged particle beams be overcome?

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-01-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into a small spots at large distances from the defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Since the nonreversible terms should be small, it might be possible to construct an electron beam directed energy weapon.

  15. Directory of Energy Information Administration models, 1990

    SciTech Connect

    Not Available

    1990-06-04

    This directory revises and updates the Directory of Energy Information Administration Models, DOE/EIA-0293(89), Energy Information Administration (EIA), US Department of Energy, May 1989. The major changes are the inclusion of the Building Energy End-Use Model (BEEM-PC), Residential Energy End-Use Model (REEM-PC), the Refinery Yield Model Spreadsheet System (RYMSS-PC), and the Capital Stock Model (CAPSTOCK-PC). Also, the following models have been inactivated: Energy Disaggregated Input-Output Model (EDIO), Household Model of Energy (HOME3-PC), Commercial Sector Energy Model (CSEM-PC), Outer Continental Shelf Oil and Gas Supply Model (OCSM), and the Stock Module of the Intermediate Future Forecasting System (STOCK). This directory contains descriptions about each basic and auxiliary model, including the title, acronym, purpose, and type, followed by more detailed information on characteristics, uses, and requirements. For developing models, limited information is provided. Sources for additional information are identified. Included in this directory are 38 EIA models active as of March 1, 1990, as well as the PC-AEO Forecasting Model Overview and the three Subsystems for the Short-Term Integrated Forecasting System (STIFS) Model. Models that run on personal computers are identified by PC'' as part of the acronym.

  16. Nuclear binding energies from a Bogomol'nyi-Prasad-Sommerfield Skyrme model

    NASA Astrophysics Data System (ADS)

    Adam, C.; Naya, C.; Sanchez-Guillen, J.; Wereszczynski, A.

    2013-11-01

    Recently, within the space of generalized Skyrme models, a submodel with a Bogomol'nyi-Prasad-Sommerfield (BPS) bound was identified that reproduces some bulk properties of nuclear matter already on a classical level and, as such, constitutes a promising field theory candidate for the detailed and reliable description of nuclei and hadrons. Here we extend and further develop these investigations by applying the model to the calculation of nuclear binding energies. Concretely, we calculate these binding energies by including the classical soliton energies, the excitation energies from the collective coordinate quantization of spin and isospin, the electrostatic Coulomb energies, and a small explicit isospin symmetry breaking, which accounts for the mass difference between proton and neutron. The integrability properties of the BPS Skyrme model allow, in fact, for an analytical calculation of all contributions, which may then be compared with the semi-empirical mass formula. We find that for heavier nuclei, where the model is expected to be more accurate on theoretical grounds, the resulting binding energies are already in excellent agreement with their physical values. This result provides further strong evidence for the viability of the BPS Skyrme model as a distinguished starting point and lowest-order approximation for the detailed quantitative investigation of nuclear and hadron physics.

  17. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.

    PubMed

    Jackson, M I; Hiley, M J; Yeadon, M R

    2011-10-13

    In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly.

  18. Long-ranged contributions to solvation free energies from theory and short-ranged models

    NASA Astrophysics Data System (ADS)

    Remsing, Richard C.; Liu, Shule; Weeks, John D.

    2016-03-01

    Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object.

  19. Long-ranged contributions to solvation free energies from theory and short-ranged models

    PubMed Central

    Remsing, Richard C.; Liu, Shule; Weeks, John D.

    2016-01-01

    Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object. PMID:26929375

  20. Hybrid Energy System Modeling in Modelica

    SciTech Connect

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  1. Process modeling and industrial energy use

    SciTech Connect

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  2. Role of the Permanent Dipole Moment in Coulomb Explosion

    NASA Astrophysics Data System (ADS)

    Zhang, Cai-Ping; Miao, Xiang-Yang

    2013-10-01

    By numerically solving the non-Born—Oppenheimer time-dependent Schrödinger equation in a few-cycle chirped laser field (5-fs, 800-nm), the effect of the permanent dipole moment on the Coulomb explosion is studied by the kinetic-energy-release spectra with the “virtual detector" method. The results indicate that with the effect of the permanent dipole moment, different multiphoton processes for heteronuclear and homonuclear diatomic molecular ions may take place when the wave packets transit from the ground state (1sσg) to the first excited state (2pσu), and then move along the excited potential curve, and finally charge-resonant enhanced ionization occurs at critical internuclear distance. As a result, despite the similar ionization probabilities for these two systems at higher vibrational level with larger chirp parameter β, the structure of the Coulomb explosion spectrum for the former is prominently different from that for the latter.

  3. Elastic scattering of Beryllium isotopes near the Coulomb barrier

    SciTech Connect

    Di Pietro, A.; Figuera, P.; Amorini, F.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Papa, M.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.

    2011-10-28

    In this contribution, results of experiments performed with the three Beryllium isotopes {sup 9,10,11}Be on a medium mass {sup 64}Zn target, at a center of mass energy of {approx_equal}1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the {sup 9,10}Be reactions. In the {sup 11}Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the {sup 11}Be case could be attributed to transfer and/or break-up events.

  4. Renormalization group analysis of graphene with a supercritical Coulomb impurity

    NASA Astrophysics Data System (ADS)

    Nishida, Yusuke

    2016-08-01

    We develop a field-theoretic approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial-wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power-law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.

  5. Crystallization in two-component Coulomb systems.

    PubMed

    Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H

    2005-12-02

    The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations.

  6. Interparticle potential energy for D -dimensional electromagnetic models from the corresponding scalar ones

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Helayël-Neto, José; Correia, Gilson; Brito, Gustavo; de Almeida, José; Herdy, Wallace

    2016-05-01

    Using a method based on the generating functional plus a kind of "correspondence principle"—which acts as a bridge between the electromagnetic and scalar fields—it is shown that the interparticle potential energy concerning a given D -dimensional electromagnetic model can be obtained in a simple way from that related to the corresponding scalar system. The D -dimensional electromagnetic potential for a general model containing higher derivatives is then found from the corresponding scalar one and the behavior of the former is analyzed at large as well as small distances. In addition, we investigate the presence of ghosts in the four-dimensional version of the potential associated with the model above and analyze the reason why the Coulomb singularity is absent from this system. The no-go theorem by Ostrogradski is demystified as well.

  7. Electron attraction mediated by Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.

    2016-07-01

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  8. Electron attraction mediated by Coulomb repulsion.

    PubMed

    Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S

    2016-07-21

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  9. Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves

    SciTech Connect

    Laha, U.; Bhoi, J.

    2013-01-15

    By exploiting the theory of ordinary differential equations, with judicious use of boundary conditions, interacting Green's functions and their integral transforms together with certain properties of higher transcendental functions, useful analytical expressions for the off-shell Jost solutions for motion in Coulomb and Coulomb-nuclear potentials are derived in maximal reduced form through different approaches to the problem in the representation space. The exact analytical expressions for the off-shell Jost solutions for Coulomb and Coulomb-like potentials are believed to be useful for the description of the charged particle scattering/reaction processes.

  10. Dynamic energy models and carbon mitigation policies

    NASA Astrophysics Data System (ADS)

    Tilley, Luke A.

    In this dissertation I examine a specific class of energy models and their implications for carbon mitigation policies. The class of models includes a production function capable of reproducing the empirically observed phenomenon of short run rigidity of energy use in response to energy price changes and long run exibility of energy use in response to energy price changes. I use a theoretical model, parameterized using empirical data, to simulate economic performance under several tax regimes where taxes are levied on capital income, investment, and energy. I also investigate transitions from one tax regime to another. I find that energy taxes intended to reduce energy use can successfully achieve those goals with minimal or even positive impacts on macroeconomic performance. But the transition paths to new steady states are lengthy, making political commitment to such policies very challenging.

  11. Directory of Energy Information Administration models 1996

    SciTech Connect

    1996-07-01

    This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

  12. Stability characterizations of fixtured rigid bodies with Coulomb friction

    SciTech Connect

    PANG,J.S.; TRINKLE,JEFFREY C.

    2000-02-15

    This paper formally introduces several stability characterizations of fixtured three-dimensional rigid bodies initially at rest and in unilateral contact with Coulomb friction. These characterizations, weak stability and strong stability, arise naturally from the dynamic model of the system, formulated as a complementarity problem. Using the tools of complementarity theory, these characterizations are studied in detail to understand their properties and to develop techniques to identify the stability classifications of general systems subjected to known external loads.

  13. Directory of Energy Information Administration Models 1994

    SciTech Connect

    Not Available

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

  14. Scripted Building Energy Modeling and Analysis (Presentation)

    SciTech Connect

    Macumber, D.

    2012-10-01

    Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

  15. World energy projection system: Model documentation

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  16. G-corrected holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Honari-Jafarpour, M.

    2013-08-01

    Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in s- r plane compare with original holographic dark energy model.

  17. Implosive Interatomic Coulombic decay in the simplest molecular anion

    NASA Astrophysics Data System (ADS)

    Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila

    2016-05-01

    Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.

  18. Structure Effects in Collisions Induced by Halo and Weakly Bound Nuclei around the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Scuderi, V.; di Pietro, A.; Acosta, L.; Amorini, F.; Borge, M. J. G.; Figuera, P.; Fisichella, M.; Fraile, L. M.; Gomez-Camacho, J.; Jeppesen, H.; Lattuada, M.; Martel, I.; Milin, M.; Musumarra, A.; Papa, M.; Pellegriti, M. G.; Raabe, R.; Randisi, G.; Rizzo, F.; Santonocito, D.; Sanchez, E. M. R.; Scalia, G.; Tengblad, O.; Torresi, D.; Vidal, A. M.; Zadro, M.

    In this contribution, results concerning different reaction channels for the collisions induced by the three Be isotopes, 9,10,11Be, on a 64Zn target at energies around the Coulomb barrier will be presented. The experiments with the radioactive 10,11Be beams were performed at REX-ISOLDE (CERN) whereas the experiment with the stable weakly bound 9Be beam was performed at LNS Catania. Elastic scattering angular distributions have been measured for the three systems 9,10,11Be + 64Zn at the same center of mass energy. The angular distributions were analyzed with optical potentials and reaction cross sections were obtained from optical model calculations, performed with the code PTOLEMY. For the 11Be + 64Zn reaction, the break-up angular distribution was also measured.

  19. Strong-field ionization and Coulomb explosion of argon clusters by few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Mathur, D.; Rajgara, F. A.; Holkundkar, A. R.; Gupta, N. K.

    2010-08-01

    Energy distributions are measured for ions emitted upon Coulomb explosion of Arn clusters (n=400-900) upon irradiation by intense three-cycle pulses (10 fs) of 800-nm laser light of peak intensity 5×1014Wcm-2. With few-cycle pulses, there is insufficient time for the cluster to undergo expansion; this results in overall dynamics that are significantly different from those in the many-cycle regime. The peak ion energies are much lower than those obtained when 100-fs pulses of the same intensity are used; they are almost independent of the size of the cluster (over the range 400-900 atoms). Ion yields are measured to be larger in the direction that is perpendicular to the laser-polarization vector than along it. Model molecular dynamics calculations are used to qualitatively rationalize this unexpected anisotropy in terms of shielding by a spatially asymmetric electronic-charge cloud within the cluster.

  20. Coulomb crystallization of sympathetically cooled highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, José R.

    2015-05-01

    Wave functions of inner-shell electrons significantly overlap with the nucleus, whereby enormously magnified relativistic, quantum electrodynamic (QED) and nuclear size effects emerge. In highly charged ions (HCI), the relative reduction of electronic correlations contributions improves the visibility of these effects. This well known facts have driven research efforts with HCI, yet the typically high temperatures at which these can be prepared in the laboratory constitutes a serious hindrance for application of laser spectroscopic methods. The solution for this, cooling HCI down to crystallization has remained an elusive target for more than two decades. By applying laser cooling to an ensemble of Be+ ions, we build Coulomb crystals that we use for stopping the motion of HCI and for cooling them. HCI, in this case Ar13+ ions are extracted from an electron beam ion trap with an energy spread of a few 100's of eV, due to the ion temperature within the trap. Carefully timed electric pulses in a potential-gradient decelerate and bunch the HCI. We achieve Coulomb crystallization of these HCI by re-trapping them in a cryogenic linear radiofrequency trap where they are sympathetically cooled through Coulomb interaction with the directly laser-cooled ensemble. Furthermore, we also demonstrate cooling of a single Ar13+ ion by a single Be+ ion, prerequisite for quantum logic spectroscopy with potentially 10-19 relative accuracy. The strongly suppressed thermal motion of the embedded HCI offers novel possibilities for investigation of questions related to the time variation of fundamental constants, parity non-conservation effects, Lorentz invariance and quantum electrodynamics. Achieving a seven orders-of-magnitude decrease in HCI temperature, from the starting point at MK values in the ion source down to the mK range within the Coulomb crystal eliminates the major obstacle for HCI investigation with high precision laser spectroscopy and quantum computation schemes.

  1. A Modified Dark Energy Model and Quintessence

    NASA Astrophysics Data System (ADS)

    Zare Dehnavi, Naser; Fathi, Mohsen; Tavakoli, Farhad

    2013-11-01

    The observational data indicate that about 70 % of the total energy density of the current state universe has been occupied by Dark Energy. This is said to be the cause of the accelerated expansion of universe. In this letter we shall use a curvature constant as a scalar field in the quintessence Dark Energy model, for an isotropic universe. Connected to the so-called model, we will specify a definite dynamical field equation from the initial action of the theory.

  2. Is the ground state of Yang-Mills theory Coulombic?

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  3. Modeling of battery energy storage in the National Energy Modeling System

    SciTech Connect

    Swaminathan, S.; Flynn, W.T.; Sen, R.K.

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  4. Modeling and planning distributed energy systems online

    NASA Astrophysics Data System (ADS)

    Wieler, Susana

    Sustainable energy is a core concern worldwide for the foreseeable future. Technologically, its key trends are distributed and renewable energy resources and smart grid capabilities. At the same time, a global need for sustainable energy is meeting increasingly diverse energy policy and economics. To plan with such complex contexts and systems, a novel distributed energy software tool and its initial implementation is presented: the Energy Systems Evaluator Online (ESEO). Its contributions include: (1) A flexible model framework that can simulate current and expected distributed energy systems; (2) An architecture specifying the modular design needed for distributed energy planning software in general; (3) A working implementation as the first general energy planning tool deployed via the Internet with collaborative capabilities.

  5. Energy Modeling for the Artisan Food Center

    SciTech Connect

    Goel, Supriya

    2013-05-01

    The Artisan Food Center is a 6912 sq.ft food processing plant located in Dayton, Washington. PNNL was contacted by Strecker Engineering to assist with the building’s energy analysis as a part of the project’s U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) submittal requirements. The project is aiming for LEED Silver certification, one of the prerequisites to which is a whole building energy model to demonstrate compliance with American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) 90.1 2007 Appendix G, Performance Rating Method. The building incorporates a number of energy efficiency measures as part of its design and the energy analysis aimed at providing Strecker Engineering with the know-how of developing an energy model for the project as well as an estimate of energy savings of the proposed design over the baseline design, which could be used to document points in the LEED documentation. This report documents the ASHRAE 90.1 2007 baseline model design, the proposed model design, the modeling assumptions and procedures as well as the energy savings results in order to inform the Strecker Engineering team on a possible whole building energy model.

  6. Electron interactions in graphene through an effective Coulomb potential

    NASA Astrophysics Data System (ADS)

    Rodrigues, Joao N. B.; Adam, Shaffique

    A recent numerical work [H.-K. Tang et al, PRL 115, 186602 (2015)] considering graphene's π-electrons interacting through an effective Coulomb potential that is finite at short-distances, stressed the importance of the sp2 -electrons in determining the semimetal to Mott insulator phase transition in graphene. Some years ago, I. F. Herbut [PRL 97, 146401 (2006)] studied such a transition by mapping graphene's π-electrons into a Gross-Neveu model. From a different perspective, D. T. Son [PRB 75, 235423 (2007)] put the emphasis on the long-range interactions by modelling graphene as Dirac fermions interacting through a bare Coulomb potential. Here we build on these works and explore the phase diagram of Dirac fermions interacting through an effective Coulomb-like potential screened at short-distances. The interaction potential used allows for analytic results that controllably switch between the two perspectives above. This work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM medium-sized centre program) and by the Singapore Ministry of Education and Yale-NUS College (R-607-265-01312).

  7. Cold chemistry with electronically excited Ca{sup +} Coulomb crystals

    SciTech Connect

    Gingell, Alexander D.; Bell, Martin T.; Oldham, James M.; Softley, Timothy P.; Harvey, Jeremy N.

    2010-11-21

    Rate constants for chemical reactions of laser-cooled Ca{sup +} ions and neutral polar molecules (CH{sub 3}F, CH{sub 2}F{sub 2}, or CH{sub 3}Cl) have been measured at low collision energies (/k{sub B}=5-243 K). Low kinetic energy ensembles of {sup 40}Ca{sup +} ions are prepared through Doppler laser cooling to form ''Coulomb crystals'' in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca{sup +} ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of {sup 40}Ca{sup +} involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state ({sup 2}S{sub 1/2}) and the combined excited states ({sup 2}D{sub 3/2} and {sup 2}P{sub 1/2}) of {sup 40}Ca{sup +}. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.

  8. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    PubMed

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  9. Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems

    NASA Astrophysics Data System (ADS)

    Stegmann, Philipp; König, Jürgen

    2017-03-01

    We discuss the possibility to generate in Coulomb-blockade systems steady states that violate detailed balance. This includes both voltage biased and non-biased scenarios. The violation of detailed balance yields that the charge-transfer statistics for electrons tunneling into an island experiencing strong Coulomb interaction is different from the statistics for tunneling out. This can be experimentally tested by time-resolved measurement of the island's charge state. We demonstrate this claim for two model systems.

  10. Modeling global and regional energy futures

    NASA Astrophysics Data System (ADS)

    Rethinaraj, T. S. Gopi

    A rigorous econometric calibration of a model of energy consumption is presented using a comprehensive time series database on energy consumption and other socioeconomic indicators. The future of nuclear power in the evolving distribution of various energy sources is also examined. An important consideration for the long-term future of nuclear power concerns the rate of decline of the fraction of energy that comes from coal, which has historically declined on a global basis about linearly as a function of the cumulative use of coal. The use of fluid fossil fuels is also expected to eventually decline as the more readily extractable deposits are depleted. The investigation here is restricted to examining a comparatively simple model of the dynamics of competition between nuclear and other competing energy sources. Using a defined tropical/temperate disaggregation of the world, region-specific modeling results are presented for population growth, GDP growth, energy use, and carbon use compatible with a gradual transition to energy sustainability. Results for the fractions of energy use from various sources by grouping nine commercial primary energy sources into pairs of competing fuel categories are presented in combination with the idea of experiential learning and resource depletion. Analysis based on this division provides estimates for future evolution of the fractional shares, annual use rates, cumulative use of individual energy sources, and the economic attractiveness of spent nuclear fuel reprocessing. This unified approach helps to conceptualize and understand the dynamics of evolution of importance of various energy resources over time.

  11. Towards increased policy relevance in energy modeling

    SciTech Connect

    Worrell, Ernst; Ramesohl, Stephan; Boyd, Gale

    2003-07-29

    Historically, most energy models were reasonably equipped to assess the impact of a subsidy or change in taxation, but are often insufficient to assess the impact of more innovative policy instruments. We evaluate the models used to assess future energy use, focusing on industrial energy use. We explore approaches to engineering-economic analysis that could help improve the realism and policy relevance of engineering-economic modeling frameworks. We also explore solutions to strengthen the policy usefulness of engineering-economic analysis that can be built from a framework of multi-disciplinary cooperation. We focus on the so-called ''engineering-economic'' (or ''bottom-up'') models, as they include the amount of detail that is commonly needed to model policy scenarios. We identify research priorities for the modeling framework, technology representation in models, policy evaluation and modeling of decision-making behavior.

  12. Coulomb dissociation and momentum distributions for [sup 11]Li [yields] [sup 9]Li + n + n breakup reactions

    SciTech Connect

    Esbensen, H.

    1993-01-01

    Momentum distributions for the [sup 11]Li [yields] [sup 9]Li+n+n breakup reaction, generated by Coulomb dipole excitations, axe calculated in a 3-body model for [sup 11]Li. The relative momentum distribution of the two neutrons is in good agreement with recent 3-body coincidence measurements but the momentum distribution for the [sup 9]Li recoil and the decay energy spectrum are much narrower than observed. These discrepancies may be due to higher order dynamical effects which have been ignored.

  13. Coulomb dissociation and momentum distributions for {sup 11}Li {yields} {sup 9}Li + n + n breakup reactions

    SciTech Connect

    Esbensen, H.

    1993-03-01

    Momentum distributions for the {sup 11}Li {yields} {sup 9}Li+n+n breakup reaction, generated by Coulomb dipole excitations, axe calculated in a 3-body model for {sup 11}Li. The relative momentum distribution of the two neutrons is in good agreement with recent 3-body coincidence measurements but the momentum distribution for the {sup 9}Li recoil and the decay energy spectrum are much narrower than observed. These discrepancies may be due to higher order dynamical effects which have been ignored.

  14. Absolute Cross Sections for Proton Induced Reactions on 147,149Sm Below the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Gheorghe, I.; Filipescu, D.; Glodariu, T.; Bucurescu, D.; Cata-Danil, I.; Cata-Danil, G.; Deleanu, D.; Ghita, D.; Ivascu, M.; Lica, R.; Marginean, N.; Marginean, R.; Mihai, C.; Negret, A.; Sava, T.; Stroe, L.; Toma, S.; Sima, O.; Sin, M.

    2014-05-01

    Cross sections for 147,149Sm(p,n)147,149Eu and 147,149Sm(p, γ)148,150Eu were measured using the activation method. The results are compared to the predictions of the Hauser-Feshbach statistical model. Different γ-ray strength functions have been tested against the experimental values. In the case of 150Eu, in order to reproduce the experimental isomeric population cross sections, various scenarios for unknown branching ratios of certain discrete states have been discussed. The results provide constraints for the optical model parameters dedicated to this insufficiently known area of isotopes. Such cross sections for (p, γ) reactions at energies below the Coulomb barrier are valuable for p-process nucleosynthesis calculations.

  15. Aftershock triggering by complete Coulomb stress changes

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.; Bodin, P.

    2002-01-01

    We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.

  16. On Kinetics Modeling of Vibrational Energy Transfer

    NASA Technical Reports Server (NTRS)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  17. The National Energy Modeling System: An overview

    SciTech Connect

    Not Available

    1994-05-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

  18. Energy models for sunflower oil expression

    SciTech Connect

    Farsaie, A.; Singh, M.S.

    1985-01-01

    Effects of expression and pre-processing conditions on sunflower oil production in a static press were studied. Models to predict input energy for sunflower oil expression were developed for four seed types. Input energy was found to be the lowest for whole seed at low seed moisture content, whereas, at higher moisture content, coarsely ground seed required the lowest input energy. Maximum net energy was required in the case of ground seeds. In the case of whole seed, maximum net energy was required at the lowest moisture level. 9 references.

  19. Coulomb wave functions in momentum space

    DOE PAGES

    Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; ...

    2015-10-15

    We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10-1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.« less

  20. Coulomb wave functions in momentum space

    SciTech Connect

    Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; Elster, Ch.; Nunes, F. M.; Arbanas, G.; Escher, J. E.; Hlophe, L.

    2015-10-15

    We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical bar in the range of 10-1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.

  1. Comparison of COULOMB-2, NASCAP-2k and SPIS codes for geostationary spacecrafts charging

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Makletsov, Andrei; Sinolits, Vadim

    In developing of international standards for spacecraft charging, it is necessary to compare results of spacecraft charging modeling obtained with various models. In the paper, electrical potentials for spacecraft 3D models were calculated with COULOMB-2, NASCAP-2k [1] and SPIS [2] software, and the comparison of obtained values was performed. To compare COULOMB-2 and NASCAP-2k codes we used a 3D geometrical model of a spacecraft given in [1]. Parameters of spacecraft surface materials were taken from [1], too. For COULOMB-2 and SPIS cross validation, we carried out calculations with SPIS code through SPENVIS web-interface and with COULOMB-2 software for a spacecraft geometrical model given in SPIS test examples [2]. In both cases, we calculated distributions of electric potentials on the spacecraft surface and visualized the obtained distributions with color code. Pictures of the surface potentials distribution calculated with COULOMB-2 and SPIS software are in good qualitative agreement. Absolute values of surface potentials calculated with these codes for different plasma conditions, are close enough. Pictures of the surface potentials distribution calculated for the spacecraft model [1] with COULOMB-2 software completely correspond to actual understanding of physical mechanisms of differential spacecraft surface charging. In this case, we compared only calculated values of the surface potential for the same space plasma conditions because the potential distributions on the spacecraft surface are absent in [1]. For all the plasma conditions considered, COULOMB-2 model gives higher absolute values of negative potential, than NASCAP-2k model. Differences in these values reach 2-3 kV. The possible explanations of the divergences indicated above are distinctions in calculation procedures of primary plasma currents and secondary emission currents. References 1. Ferguson D.С., Wimberly S.C. 51st AIAA Aerospace Science Meeting 2013 (AIAA 2013-0810). 2. http://dev.spis.org/projects/spine/home/spis

  2. Coulomb collisions of ring current particles: Indirect source of heat for the ionosphere

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1975-01-01

    The additional energy requirements of the topside ionosphere during a magnetic storm are less than one quarter of the ring current energy. This energy is supplied largely by Coulomb collisions of ring current protons of energy less than about 20 keV with background thermal electrons which conduct the heat to the ionosphere. Past criticisms are discussed of this mechanism for the supply of energy to the SAR-arc and neighboring regions of the ionosphere.

  3. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  4. Three-body Coulomb continuum problem

    NASA Astrophysics Data System (ADS)

    Berakdar, J.; Briggs, J. S.

    1994-06-01

    A symmetric representation of the three-body Coulomb continuum wave function as a product of three two-body Coulomb wave functions is modified to allow for three-body effects whereby the Sommerfeld parameter describing the strength of interaction of any two particles is affected by the presence of the third particle. This approach gives excellent agreement with near-threshold absolute (e,2e) ionization cross sections. In particular a recently observed deep minimum in noncoplanar geometry is reproduced for the first time.

  5. Modeling High Energy Density Plasmas

    NASA Astrophysics Data System (ADS)

    Albritton, J. R.; Liberman, D. A.; Wilson, B. G.

    1999-11-01

    Ultra-short-pulse lasers are being used to form plasmas at near normal/solid density, heating a target in a time shorter than that on which it can expand. Radiative signatures of the dense plasma conditions are a key diagnostic, and typically require the support of modeling for their design and interpretation. Modeling also often serves to guide the experimental program of work. Here we report on our first attempts to use the INFERNO average-atom atomic model to a construct detailed-configuration-accounting description of the plasma equation-of-state, that is, its distribution of ionization and excitation states, and further, its radiative line, edge, and continuum features.

  6. Comparing Mohr Coulomb and Drucker Prager function in three dimensional analysis on rock

    NASA Astrophysics Data System (ADS)

    Okay Aksoy, C.; Safak, Suleyman

    2010-05-01

    Rapid development is happening in the solution of engineering problems in recent years. The most important of all, develops in the area of computer software with no doubt. There are many programs that are finite element, finite different boundary element based. Some of these programmes use the Mohr-Coulomb failure criterion for the purpose of mining problems. This function is not very suitable in the solution of three dimension elasto-plastic problems. Mohr-Coulomb and Drucker-Prager functions are defined in a very similar manner. However, Mohr-Coulomb elastic-plastic model does not represent hardening behavior exhibited by most geologic materials and no yield under stress. On the other hand, Drucker-Prager plasticity model is an approximation of the Mohr-Coulomb failure criterion. Both, Mohr-Coulumb and Drucker-Prager fonctions have been analyzed with Gauss Elimination Method and Newton-Raphson Method, respectively and clearer results can be obtained by adopting the Drucker-Prager function to the Mohr-Coulomb function. Keywords: Drucker-Prager, Mohr-Coulomb, Rock Mechanics.

  7. Coulomb excitation of levels in 143Nd and 145Nd

    NASA Astrophysics Data System (ADS)

    Drǎgulescu, E.; Ivaşcu, M.; Mihu, R.; Popescu, D.; Semenescu, G.; Paar, V.; Vretenar, D.

    1984-04-01

    The low-lying states of 143Nd and 154Nd have been studied by means of Coulomb excitation with 16O and α-particles. Angular distribution measurements were carried out for some transitions in 145Nd with 11.2 MeV α-particles. Level energy decay schemes and B(E2)↑ values were measured for two states in 143Nd and for six states in 145Nd. Some spin assignments have been established for the 145Nd nucleus. 143Nd and 145Nd have been theoretically described by coupling one and three particles, respectively, to quadrupole vibrations, and rather good agreement with experiment was achieved.

  8. Photodetachment of hydrogen negative ions with screened Coulomb interaction

    SciTech Connect

    Zhang, Song Bin; Chen, Xiang Jun; Wang, Jian Guo; Janev, R. K.; Qu, Yi Zhi

    2010-06-15

    The effects of Coulomb interaction screening on photodetachment cross sections of hydrogen negative ions below the n =2 excitation threshold is investigated by using the R-matrix method with pseudostates. The contributions of Feshbach and shape resonances to H{sup -} photodetachment cross section are presented when screening length (D) varies from D = {infinity} to D = 4.6 a.u. It is found that the interaction screening has dramatic effects on the photodetachment cross sections of hydrogen negative ions in the photoelectron energy region around the n = 2 excitation threshold by strongly affecting the evolution of near-threshold resonances.

  9. The distinguishable cluster approach from a screened Coulomb formalism.

    PubMed

    Kats, Daniel

    2016-01-28

    The distinguishable cluster doubles equations have been derived starting from an effective screened Coulomb formalism and a particle-hole symmetric formulation of the Fock matrix. A perturbative triples correction to the distinguishable cluster with singles and doubles (DCSD) has been introduced employing the screened integrals. It is shown that the resulting DCSD(T) method is more accurate than DCSD for reaction energies and is less sensitive to the static correlation than coupled cluster with singles and doubles with a perturbative triples correction.

  10. Quantum confinement and Coulomb blockade in isolated nanodiamond crystallites

    NASA Astrophysics Data System (ADS)

    Bolker, Asaf; Saguy, Cecile; Tordjman, Moshe; Kalish, Rafi

    2013-07-01

    We present direct experimental evidence of quantum confinement effects in single isolated nanodiamonds by scanning tunneling spectroscopy. For grains smaller than 4.5 nm, the band gap was found to increase with decreasing nanodiamond size and a well-defined, evenly spaced, 12-peak structure was observed on the conduction band side of the conductance curves. We attribute these peaks to the Coulomb blockade effect, reflecting the 12-fold degeneracy of the first electron-energy level in the confined nanodiamond. The present results shed light on the size dependence of the electronic properties of single nanodiamonds and are of major importance for future nanodiamond-based applications.

  11. Dynamic screening of the three-body coulomb interactions

    NASA Astrophysics Data System (ADS)

    Zhang-jin, Chen

    1998-03-01

    The BBK approach is modified by the introduction of effective Sommerfeld parameters for both symmetric and asymmetric geometries, according to the fact that the strength of any particular two-body Coulomb interaction is affected by the presence of the third particle. The triple differential cross sections for electron impact ionization of atomic helium at incident energies of 40 and 50 eV in asymmetric geometry are calculated. Results of this approach are found to be in good agreement with the absolute measurements and the only existing theoretical results of the convergent close-coupling method.

  12. Observations of Coulomb explosion in doubly charged atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Gotts, N. G.; Lethbridge, P. G.; Stace, A. J.

    1992-01-01

    Coulomb explosion has been promoted in a range of doubly charged atomic and molecular clusters. In these new experiments, mass selected clusters of Ar2+n, (CO2)2+n, (H2O)2+n, (H2O)nH2+2, (CH3CN)nH2+2, and (C6H6)2+n have been subjected to collisional activation with a background gas. For species close to the Coulomb cutoff, each collision removes sufficient atoms or molecules (approximately six) as to render the clusters unstable. As a result, charge separation occurs and part (≂30%) of the Coulomb repulsion energy is released in the form of center of mass kinetic energy in the fragments. The remaining Coulomb energy appears as internal excitation in the fragments and subsequently leads to extensive evaporation. It is shown that the latter process is continuing even 10-6 s after Coulomb explosion. All the molecular systems studied show evidence of asymmetric charge separation, with some singly charged fragments containing up to 65% of the initial cluster mass. A detailed quantitative analysis of the results is made difficult by the very broad range of fragment ion sizes.

  13. Impacts of Model Building Energy Codes

    SciTech Connect

    Athalye, Rahul A.; Sivaraman, Deepak; Elliott, Douglas B.; Liu, Bing; Bartlett, Rosemarie

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  14. Directory of energy information administration models 1995

    SciTech Connect

    1995-07-13

    This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

  15. Directory of Energy Information Administration Models 1993

    SciTech Connect

    Not Available

    1993-07-06

    This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

  16. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE PAGES

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  17. World Energy Projection System model documentation

    SciTech Connect

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  18. QCD parton model at collider energies

    SciTech Connect

    Ellis, R.K.

    1984-09-01

    Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at ..sqrt..S = 0.54 TeV are compared with data. 21 references.

  19. Energy modelling: Clean grids with current technology

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2016-05-01

    The need for new energy storage is often seen as an obstacle to integrating renewable electricity into national power systems. Modelling shows that existing technologies could provide significant emissions reductions in the US without the need for storage, however.

  20. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    NASA Astrophysics Data System (ADS)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-03-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancelation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude.

  1. World Energy Projection System Plus Model Documentation: Main Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  2. World Energy Projection System Plus Model Documentation: Greenhouse Gases Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. World Energy Projection System Plus Model Documentation: Refinery Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  4. World Energy Projection System Plus Model Documentation: Electricity Model

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. World Energy Projection System Plus Model Documentation: Coal Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  6. World Energy Projection System Plus Model Documentation: Industrial Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  7. World Energy Projection System Plus Model Documentation: Residential Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  8. World Energy Projection System Plus Model Documentation: Transportation Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  9. World Energy Projection System Plus Model Documentation: District Heat Model

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  10. World Energy Projection System Plus Model Documentation: Natural Gas Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. One-dimensional Coulomb-like problem in general case of deformed space with minimal length

    NASA Astrophysics Data System (ADS)

    Samar, M. I.; Tkachuk, V. M.

    2016-08-01

    In general case of deformed Heisenberg algebra leading to the minimal length, we present a definition of the inverse of position operator which is linear and two-sided. Our proposal is based on the functional analysis of the position operator. Using this definition, 1D Coulomb-like problem is studied. We find exactly the energy spectrum and the eigenfunctions for the 1D Coulomb-like potential in deformed space with arbitrary function of deformation. We analyze the energy spectrum for different partial cases of deformation function and find that the correction caused by the deformation highly depends on the type of the deformation function.

  12. Coulomb Drag and Magnetotransport in Graphene Double Layers

    NASA Astrophysics Data System (ADS)

    Tutuc, Emanuel

    2013-03-01

    Graphene double layers, a set of two closely spaced graphene monolayers seperated by an ultra-thin dielectric, represent an interesting electron system to explore correlated electron states. We discuss the fabrication of such samples using a layer-by-layer transfer approach, the electron transport in individual layers at zero and in a high magnetic field, and Coulomb drag measurements. Coulomb drag, probed by flowing a drive current in one layer, and measuring the voltage drop in the opposite layer provides a direct measurement of the electron-electron scattering between the two layers, and can be used to probe the electron system ground state. Coulomb drag in graphene, measured as a function of both layer densities and temperature reveals two distinct regimes: (i) diffusive drag at elevated temperatures, above 50 K, and (ii) mesoscopic fluctuations-dominated drag at low temperatures. A second topic discussed here is a technique that allows a direct measurement of the Fermi energy in an electron system with an accuracy independent of the sample size, using a graphene double layer heterostructure. The underlying principle of the technique is that an interlayer bias applied to bring the top layer to the charge neutrality point is equal to the Fermi energy of the bottom layer, which in effect renders the top graphene layer a resistively detected Kelvin probe. We illustrate this method by measuring the Fermi velocity, Landau level spacing, and Landau level broadening in monolayer graphene. Work done in collaboration with S. Kim, I. Jo, J. Nah, D. Dillen, K. Lee, B. Fallahazad, Z. Yao, and S. K. Banerjee. We thank ONR, NRI, and NSF for support.

  13. Microscopic model analysis of the 6He, 6Li+28Si total reaction cross sections at the energy range 5-50 A MeV

    SciTech Connect

    Lukyanov, K. V.; Kukhtina, I. N.; Lukyanov, V. K.; Penionzhkevich, Yu. E.; Sobolev, Yu. G.; Zemlyanaya, E. V.

    2007-05-22

    The existing and some preliminary experimental data on the total cross sections of the 4,6He, 6,7Li+28Si reactions at energies E=5-50 A MeV are demonstrated. The data on 6Li,6He+28Si are analyzed in the framework of the microscopic optical potential with real and imaginary parts obtained with a help of the double-folding procedure and by using the current models of densities of the projectile nuclei. Besides, the microscopic double-folding Coulomb potential is calculated and its effect on cross sections is compared with that when one applies the traditional Coulomb potential of the uniform charge distribution. The semi-microscopic potentials are constructed from both the renormalized microscopic potentials and their derivatives to take into account collective motion effect and to improve an agreement with experimental data.

  14. Energy-based models for environmental biotechnology.

    PubMed

    Rodríguez, Jorge; Lema, Juan M; Kleerebezem, Robbert

    2008-07-01

    Environmental biotechnology is evolving. Current process objectives include the production of chemicals and/or energy carriers (biofuels) in addition to the traditional objective of removing pollutants from waste. To maximise product yields and minimise biomass production, future processes will rely on anaerobic microbial communities. Anaerobic processes are characterised by small Gibbs energy changes in the reactions catalysed, and this provides clear thermodynamic process boundaries. Here, a Gibbs-energy-based methodology is proposed for mathematical modelling of energy-limited anaerobic ecosystems. This methodology provides a basis for the description of microbial activities as a function of environmental factors, which will allow enhanced catalysis of specific reactions of interest for process development.

  15. Solution of Coulomb system in momentum space

    SciTech Connect

    Lin, D.-H.

    2008-02-15

    The solution of D-dimensional Coulomb system is solved in momentum space by path integral. From which the topological effect of a magnetic flux in the system is given. It is revealed that the flux effect represented by the two-dimensional field of Aharonov-Bohm covers any space-dimensions.

  16. Modeling Innovations Advance Wind Energy Industry

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  17. Policy modeling for industrial energy use

    SciTech Connect

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of

  18. A semiclassical extended electron model

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, J. F.; Bruce, S. A.

    2017-03-01

    The self-energy of a given charge distribution is the energy required to assemble the distribution by bringing in the constituent charges from infinity. Particularly, for a pointlike distribution ( e.g., a classical electron) the self-energy is infinity. Thus a modification of the Coulomb potential is required in order to have a finite value for this energy. Here we present a model for a charged particle consisting of a potential well together with a combination of Coulomb and Yukawa-like potentials. This leads us to finding an approximate value attributed to its self-energy. We subsequently discuss the non-relativistic electron-electron scattering problem.

  19. Signatures of subband quantization in the Coulomb blockade regime of a disordered quantum wire

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2017-01-01

    We report experiments on the two-terminal conductance of a long disordered quantum wire in a perpendicular magnetic field. Pronouncedly enhanced magnetoconductance in magnetic fields of intermediate strength is observed in the Coulomb blockade regime, which is well explained using the boundary roughness scattering and the subband quantization of the quantum wire, by modeling the disordered quantum wire as that of a quantum dot defined in a quantum wire. Assuming a parabolic constriction in the disordered quantum wire, we further obtained the magnetic field dependence of high energy levels in the quantum dot and the gate voltage dependence of the effective width of the quantum wire. Our results may provide useful information for further studies on integrated structures in on-chip laboratories.

  20. Analysis of Coulomb breakup experiments of {sup 8}B with a dynamical eikonal approximation

    SciTech Connect

    Goldstein, G.; Capel, P.; Baye, D.

    2007-08-15

    Various measurements of the Coulomb breakup of {sup 8}B are analyzed within the dynamical eikonal approximation using a single description of {sup 8}B. We obtain a good agreement with experiment for different observables measured between 40 and 80 MeV/nucleon. A simple {sup 7}Be-p potential model description of {sup 8}B seems sufficient to describe all observables. In particular, the asymmetry in parallel-momentum distributions due to E1-E2 interferences is well reproduced without any scaling. The projectile-target nuclear interactions seem negligible if data are selected at forward angles. On the contrary, like in previous analyses we observe a significant influence of higher-order effects. The accuracy of astrophysical S factors for the {sup 7}Be(p,{gamma}){sup 8}B reaction at stellar energies extracted from breakup measurements therefore seems difficult to evaluate.

  1. An O(h2) Coulomb singularity correction for the Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Aberg, Daniel; Sadigh, Babak; Schleife, Andre; Oppelstrup, Tomas

    2014-03-01

    We present an improved numerical correction, at no extra computational cost, for the Coulomb singularity in the Bethe Salpeter equation for bound excitonic states. This method leads to modifications of the off-diagonal matrix elements of the Bethe-Salpeter matrix with quadratic scaling of the asymptotic error. This method is particularly well suited for systems where hybrid Brillouin sampling schemes are ineffective, e.g., systems with an indirect fundamental band gap or large supercells containing defects. Numerical results are presented for the binding energy of the ground state excitons in the two-band model as well as the scintillator material CsI. Prepared by LLNL under Contract DE-AC52-07NA27344. Funding provided by NA-22.

  2. Analysis of Coulomb breakup experiments of B8 with a dynamical eikonal approximation

    NASA Astrophysics Data System (ADS)

    Goldstein, G.; Capel, P.; Baye, D.

    2007-08-01

    Various measurements of the Coulomb breakup of B8 are analyzed within the dynamical eikonal approximation using a single description of B8. We obtain a good agreement with experiment for different observables measured between 40 and 80 MeV/nucleon. A simple Be7-p potential model description of B8 seems sufficient to describe all observables. In particular, the asymmetry in parallel-momentum distributions due to E1-E2 interferences is well reproduced without any scaling. The projectile-target nuclear interactions seem negligible if data are selected at forward angles. On the contrary, like in previous analyses we observe a significant influence of higher-order effects. The accuracy of astrophysical S factors for the Be7(p,γ)B8 reaction at stellar energies extracted from breakup measurements therefore seems difficult to evaluate.

  3. On the Navier-Stokes system with the Coulomb friction law boundary condition

    NASA Astrophysics Data System (ADS)

    Bălilescu, Loredana; San Martín, Jorge; Takahashi, Takéo

    2017-02-01

    We propose a new model for the motion of a viscous incompressible fluid. More precisely, we consider the Navier-Stokes system with a boundary condition governed by the Coulomb friction law. With this boundary condition, the fluid can slip on the boundary if the tangential component of the stress tensor is too large. We prove the existence and uniqueness of weak solution in the two-dimensional problem and the existence of at least one solution in the three-dimensional case, together with regularity properties and an energy estimate. We also propose a fully discrete scheme of our problem using the characteristic method, and we present numerical simulations in two physical examples.

  4. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    SciTech Connect

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  5. Dynamical Coulomb blockade theory of plasmon-mediated light emission from a tunnel junction

    NASA Astrophysics Data System (ADS)

    Xu, F.; Holmqvist, C.; Rastelli, G.; Belzig, W.

    2016-12-01

    Inelastic tunneling of electrons can generate the emission of photons with energies intuitively limited by the applied bias voltage. However, experiments indicate that more complex processes involving the interaction of electrons with plasmon polaritons lead to photon emission with overbias energies. We recently proposed a model of this observation in Phys. Rev. Lett. 113, 066801 (2014), 10.1103/PhysRevLett.113.066801, in analogy to the dynamical Coulomb blockade, originally developed for treating the electromagnetic environment in mesoscopic circuits. This model describes the correlated tunneling of two electrons interacting with a local plasmon-polariton mode, represented by a resonant circuit, and shows that the overbias emission is due to the non-Gaussian fluctuations. Here we extend our model to study the overbias emission at finite temperature. We find that the thermal smearing strongly masks the overbias emission. Hence, the detection of the correlated tunneling processes requires temperatures kBT much lower than the bias energy e V and the plasmon energy ℏ ω0 , a condition which is fortunately realized experimentally.

  6. 17O+58Ni scattering and reaction dynamics around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Strano, E.; Torresi, D.; Mazzocco, M.; Keeley, N.; Boiano, A.; Boiano, C.; Di Meo, P.; Guglielmetti, A.; La Commara, M.; Molini, P.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Grebosz, J.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Nicoletto, M.; Pakou, A.; Rusek, K.; Sgouros, O.; Soukeras, V.; Stroe, L.; Toniolo, N.; Vitturi, A.; Watanabe, Y.; Zerva, K.

    2016-08-01

    This work aims at investigating the projectile binding energy influence on the reaction dynamics, introducing new results and new data analysis methods in order to overcome some typically encountered problems, such as the identification of reaction products differing by few mass units and the discrimination of direct reaction processes. The 17O+58Ni collision was studied at five near-barrier energies employing a compact experimental setup consisting of four double-sided silicon strip detectors (DSSSDs). Different reaction processes, namely the elastic and inelastic scattering and the 1 n stripping, were discriminated by means of a detailed analysis of the experimental energy spectra based on Monte Carlo simulations. The elastic scattering angular distributions were investigated within the framework of the optical model using Woods-Saxon and double-folding potentials. The total reaction cross sections were extracted and the reduced cross sections compared with those obtained for 17F (Sp=0.600 MeV), the mirror nucleus of 17O (Sn=4.143 MeV), and for the tightly bound 16O projectile. The 17O+58Ni total reaction cross sections were larger than those for 16O on the same target at the lowest energies studied, becoming identical, within errors, as the incident energy increased above the Coulomb barrier. This behavior was related to a strong contribution from the 1 n -stripping channel at the lowest energies.

  7. Pore fluid pressure, apparent friction, and Coulomb failure

    USGS Publications Warehouse

    Beeler, N.M.; Simpson, R.W.; Hickman, S.H.; Lockner, D.A.

    2000-01-01

    Many recent studies of stress-triggered seismicity rely on a fault failure model with a single free parameter, the apparent coefficient of friction, presumed to be a material constant with possible values 0 ≤ μ′ ≤ 1. These studies may present a misleading view of fault strength and the role of pore fluid pressure in earthquake failure. The parameter μ′ is intended to incorporate the effects of both friction and pore pressure, but is a material constant only if changes in pore fluid pressure induced by changes in stress are proportional to the normal stress change across the potential failure plane. Although specific models of fault zones permit such a relation, neither is it known that fault zones within the Earth behave this way, nor is this behavior expected in all cases. In contrast, for an isotropic homogeneous poroelastic model the pore pressure changes are proportional to changes in mean stress, μ′ is not a material constant, and −∞ ≤ μ′ ≤ +∞. Analysis of the change in Coulomb failure stress for tectonically loaded reverse and strike-slip faults shows considerable differences between these two pore pressure models, suggesting that such models might be distinguished from one another using observations of triggered seismicity (e.g., aftershocks). We conclude that using the constant apparent friction model exclusively in studies of Coulomb failure stress is unwise and could lead to significant errors in estimated stress change and seismic hazard.

  8. Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Kievsky, A.; Viviani, M.

    2016-12-01

    In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the S-matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.

  9. Revolutions in energy through modeling and simulation

    SciTech Connect

    Tatro, M.; Woodard, J.

    1998-08-01

    The development and application of energy technologies for all aspects from generation to storage have improved dramatically with the advent of advanced computational tools, particularly modeling and simulation. Modeling and simulation are not new to energy technology development, and have been used extensively ever since the first commercial computers were available. However, recent advances in computing power and access have broadened the extent and use, and, through increased fidelity (i.e., accuracy) of the models due to greatly enhanced computing power, the increased reliance on modeling and simulation has shifted the balance point between modeling and experimentation. The complex nature of energy technologies has motivated researchers to use these tools to understand better performance, reliability and cost issues related to energy. The tools originated in sciences such as the strength of materials (nuclear reactor containment vessels); physics, heat transfer and fluid flow (oil production); chemistry, physics, and electronics (photovoltaics); and geosciences and fluid flow (oil exploration and reservoir storage). Other tools include mathematics, such as statistics, for assessing project risks. This paper describes a few advancements made possible by these tools and explores the benefits and costs of their use, particularly as they relate to the acceleration of energy technology development. The computational complexity ranges from basic spreadsheets to complex numerical simulations using hardware ranging from personal computers (PCs) to Cray computers. In all cases, the benefits of using modeling and simulation relate to lower risks, accelerated technology development, or lower cost projects.

  10. Stringy Model of Cosmological Dark Energy

    SciTech Connect

    Aref'eva, Irina Ya.

    2007-11-20

    A string field theory (SFT) nonlocal model of the cosmological dark energy providing w<-1 is briefly surveyed. We summarize recent developments and open problems, as well as point out some theoretical issues related with others applications of the SFT nonlocal models in cosmology, in particular, in inflation and cosmological singularity.

  11. Coulomb breakup of neutron-rich 29,30Na isotopes near the island of inversion

    NASA Astrophysics Data System (ADS)

    Rahaman, A.; Datta, Ushasi; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chakraborty, S.; Chartier, M.; Cortina-Gil, D.; De Angelis, G.; Diaz Fernandez, P.; Emling, H.; Ershova, O.; Fraile, L. M.; Geissel, H.; Gonzalez-Diaz, D.; Johansson, H.; Jonson, B.; Kalantar-Nayestanaki, N.; Kröll, T.; Krücken, R.; Kurcewicz, J.; Langer, C.; Le Bleis, T.; Leifels, Y.; Marganiec, J.; Münzenberg, G.; Najafi, M. A.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Plag, R.; Reifarth, R.; Ricciardi, M. V.; Rigollet, C.; Rossi, D.; Scheidenberger, C.; Scheit, H.; Simon, H.; Taylor, J. T.; Togano, Y.; Typel, S.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Winfield, J. S.; Yakorev, D.; Zoric, M.

    2017-04-01

    First results are reported on the ground state configurations of the neutron-rich 29,30Na isotopes, obtained via Coulomb dissociation (CD) measurements. The invariant mass spectra of these nuclei have been obtained through measurement of the four-momenta of all decay products after Coulomb excitation of those nuclei on a 208Pb target at energies of 400–430 MeV/nucleon using the FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated inclusive CD cross-sections (CD) of 89 (7) mb and 167 (13) mb for one neutron removal from 29Na and 30Na, respectively, have been extracted up to an excitation energy of 10 MeV. The major part of one neutron removal, CD cross-sections of those nuclei populate the core, in its ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of 29Na (3/{2}+) and 30Na ({2}+) is the d-orbital with a small contribution from the s-orbital, which are coupled with the ground state of the core. One of the major components of the ground state configurations of these nuclei are 28Na{}{gs}({1}+)\\otimes {ν }s,d and 29Na{}{gs}(3/{2}+)\\otimes {ν }s,d, respectively. The ground state spin and parity of these nuclei obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the s and d orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with shell model calculation using the MCSM suggests a lower limit of around 4.3 MeV of the sd–pf shell gap in 30Na.

  12. Improved diagnostic model for estimating wind energy

    SciTech Connect

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  13. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  14. Interacting Dark Energy Models and Observations

    NASA Astrophysics Data System (ADS)

    Shojaei, Hamed; Urioste, Jazmin

    2017-01-01

    Dark energy is one of the mysteries of the twenty first century. Although there are candidates resembling some features of dark energy, there is no single model describing all the properties of dark energy. Dark energy is believed to be the most dominant component of the cosmic inventory, but a lot of models do not consider any interaction between dark energy and other constituents of the cosmic inventory. Introducing an interaction will change the equation governing the behavior of dark energy and matter and creates new ways to explain cosmic coincidence problem. In this work we studied how the Hubble parameter and density parameters evolve with time in the presence of certain types of interaction. The interaction serves as a way to convert dark energy into matter to avoid a dark energy-dominated universe by creating new equilibrium points for the differential equations. Then we will use numerical analysis to predict the values of distance moduli at different redshifts and compare them to the values for the distance moduli obtained by WMAP (Wilkinson Microwave Anisotropy Probe). Undergraduate Student

  15. Coulomb excitations of monolayer germanene

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes.

  16. Coulomb excitations of monolayer germanene

    PubMed Central

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  17. Coulomb-corrected molecular orbital tomography of nitrogen

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; He, Lixin; Lan, Pengfei; Zhu, Xiaosong; Li, Yang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Lu, Peixiang

    2016-03-01

    High-order harmonic generation (HHG) from aligned molecules has provided a promising way to probe the molecular orbital with an Ångström resolution. This method, usually called molecular orbital tomography (MOT) replies on a simple assumption of the plane-wave approximation (PW), which has long been questioned due to that PW approximation is known to be valid in the keV energy region. However, the photon energy is usually no more than 100 eV in HHG. In this work, we experimentally reconstruct the highest occupied molecular orbital (HOMO) of nitrogen (N2) by using a Coulomb-corrected MOT (CCMOT) method. In our scheme, the molecular continuum states are described by a Coulomb wave function instead of the PW approximation. With CCMOT, the reconstructed orbital is demonstrated to agree well with the theoretical prediction and retain the main features of the HOMO of N2. Compared to the PW approximation method, the CCMOT shows a significant improvement in eliminating the artificial structures caused by PW approximation.

  18. Interatomic Coulombic decay cascades in multiply excited neon clusters

    PubMed Central

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-01-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  19. Interatomic Coulombic decay cascades in multiply excited neon clusters

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-12-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.

  20. Laser-Driven Recollisions under the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Keil, Th.; Popruzhenko, S. V.; Bauer, D.

    2016-12-01

    Photoelectron spectra obtained from the ab initio solution of the time-dependent Schrödinger equation can be in striking disagreement with predictions by the strong-field approximation (SFA), not only at low energy but also around twice the ponderomotive energy where the transition from the direct to the rescattered electrons is expected. In fact, the relative enhancement of the ionization probability compared to the SFA in this regime can be several orders of magnitude. We show for which laser and target parameters such an enhancement occurs and for which the SFA prediction is qualitatively good. The enhancement is analyzed in terms of the Coulomb-corrected action along analytic quantum orbits in the complex-time plane, taking soft recollisions under the Coulomb barrier into account. These recollisions in complex time and space prevent a separation into sub-barrier motion up to the "tunnel exit" and subsequent classical dynamics. Instead, the entire quantum path up to the detector determines the ionization probability.

  1. Coulomb-corrected molecular orbital tomography of nitrogen.

    PubMed

    Zhai, Chunyang; He, Lixin; Lan, Pengfei; Zhu, Xiaosong; Li, Yang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Lu, Peixiang

    2016-03-22

    High-order harmonic generation (HHG) from aligned molecules has provided a promising way to probe the molecular orbital with an Ångström resolution. This method, usually called molecular orbital tomography (MOT) replies on a simple assumption of the plane-wave approximation (PW), which has long been questioned due to that PW approximation is known to be valid in the keV energy region. However, the photon energy is usually no more than 100 eV in HHG. In this work, we experimentally reconstruct the highest occupied molecular orbital (HOMO) of nitrogen (N2) by using a Coulomb-corrected MOT (CCMOT) method. In our scheme, the molecular continuum states are described by a Coulomb wave function instead of the PW approximation. With CCMOT, the reconstructed orbital is demonstrated to agree well with the theoretical prediction and retain the main features of the HOMO of N2. Compared to the PW approximation method, the CCMOT shows a significant improvement in eliminating the artificial structures caused by PW approximation.

  2. Energy laboratory data and model directory

    NASA Astrophysics Data System (ADS)

    Lahiri, S.; Carson, J.

    1981-07-01

    Over the past several years M.I.T. faculty, staff, and students have produced a substantial body of research and analysis relating to the production, conversion,, and use of energy in domestic and international markets. Much of this research takes the form of models and associated data bases that have enduring value in policy studies (models) and in supporting related research and modeling efforts (date). For such models and data it is important to ensure that the useful life cycle does not end with the conclusion of the research project. This directory is an important step in extending the usefulness of models and data bases available at the M.I.T. Energy Laboratory. It will be updated from time to time to include new models and data bases that have been developed, or significant changes that have occurred.

  3. Building Energy Model Development for Retrofit Homes

    SciTech Connect

    Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

    2012-09-30

    Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This “true up” procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The “trued” post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the “true up” procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or

  4. Coulomb excitation of states in 238U

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1994-05-01

    Twenty-two states in 238U have been observed with 18 MeV 4He ions on a thick target. Eight 2 + states between 966 and 1782 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and /or populated by the γ-ray decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.10 to 3.0 W.u. (281 W.u. for the first 2 + state). For the 3 states, the B(E3, 0 → 3 -) values are 7.1, 7.8, and 24.2 W.u. Several of the 2 + states have decay branches to the one-phonon states with B(E2) values between 27 and 56 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if these 2 + states are considered to be collective two-phonon excitations. However, the excitation energies of these 2 + states with respect to the one-phonon states are only 1.3 to 1.6. The B(E1) values for 17 transitions between the positive- and negative-parity states range between 10 -3 and 10 -7 W.u. The B(E1) branching ratios for many of these transitions have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the one-phonon octupole quadruplet in deformed nuclei. The general features of the experimental results for the B(E3) values are reproduced by the microscopic calculations of Neergård and Vogel when the Coriolis coupling between the states of the octupole quadruplet is included.

  5. Modeling Ultraviolet (UV) Light Emitting Diode (LED) Energy Propagation in Reactor Vessels

    DTIC Science & Technology

    2014-03-27

    urban wastewater effluent than a single wavelength used alone (Chevremont, Farnet, Coulomb, & Boudenne, 2012; Oguma, Kita, Sakai, Murakami...into waste streams. Certain chemicals may be detrimental to the effectiveness of municipal wastewater treatment plants. This can lead to reduced...introduced to wastewater treatment plants. One of these methods includes an Advanced Oxidation Process (AOP) which uses ultraviolet (UV) energy and

  6. New Exact Solution of Dirac-Coulomb Equation with Exact Boundary Condition

    NASA Astrophysics Data System (ADS)

    Chen, Ruida

    2008-04-01

    It usually writes the boundary condition of the wave equation in the Coulomb field as a rough form without considering the size of the atomic nucleus. The rough expression brings on that the solutions of the Klein-Gordon equation and the Dirac equation with the Coulomb potential are divergent at the origin of the coordinates, also the virtual energies, when the nuclear charges number Z>137, meaning the original solutions do not satisfy the conditions for determining solution. Any divergences of the wave functions also imply that the probability density of the meson or the electron would rapidly increase when they are closing to the atomic nucleus. What it predicts is not a truth that the atom in ground state would rapidly collapse to the neutron-like. We consider that the atomic nucleus has definite radius and write the exact boundary condition for the hydrogen and hydrogen-like atom, then newly solve the radial Dirac-Coulomb equation and obtain a new exact solution without any mathematical and physical difficulties. Unexpectedly, the K value constructed by Dirac is naturally written in the barrier width or the equivalent radius of the atomic nucleus in solving the Dirac equation with the exact boundary condition, and it is independent of the quantum energy. Without any divergent wave function and the virtual energies, we obtain a new formula of the energy levels that is different from the Dirac formula of the energy levels in the Coulomb field.

  7. Coulombic wall slip of concentrated soft-particle suspensions

    NASA Astrophysics Data System (ADS)

    Adams, Michael; Liu, Wei; Zhang, Zhibing; Fryer, Peter

    2013-06-01

    The coefficients of friction of concentrated soft-particle suspensions (tomato paste and a microgel suspension) were measured as a function of the slip velocity for a number of substrates. The data are interpreted using a micro-elastohydrodynamic model that is consistent with significant bulk frictional dissipation and an increase in the number of particle-wall contacts with increasing normal stress. The origin of the Coulombic slip, which has not been observed previously for pastes, is ascribed to the sensitivity of the lubricating film thickness.

  8. Triaxiality near the 110Ru ground state from Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  9. A nuclear fragmentation energy deposition model

    NASA Technical Reports Server (NTRS)

    Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)

    1991-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.

  10. Supersymmetric cosmological FRW model and dark energy

    SciTech Connect

    Rosales, J. J.; Tkach, V. I.

    2010-11-15

    In this work we consider a flat cosmological model with a set of fluids in the framework of supersymmetric cosmology. The obtained supersymmetric algebra allowed us to take quantum solutions. It is shown that only in the case of a cosmological constant do we have a condition between the density of dark energy {rho}{sub {Lambda}} and density energy of matter {rho}{sub M}, {rho}{sub {Lambda}>}2{rho}{sub M}.

  11. Characterizing emerging industrial technologies in energy models

    SciTech Connect

    Laitner, John A.; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  12. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    PubMed

    Przybytek, Michal; Helgaker, Trygve

    2013-08-07

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  13. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-01

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γH = 2) and eight (γ1st = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (α _min^G=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d4 with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step—namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  14. Dynamic model of the threshold displacement energy

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Kupchishin, A. A.

    2017-01-01

    A dynamic (cascade-probability) model for calculating the threshold displacement energy of knocked-out atoms (Ed) was proposed taking into account the influence of the instability zone (spontaneous recombination). General expression was recorded for Ed depending on the formation energy of interstitial atoms Ef and vacancies Ei, on the energy transfer coefficient α and the number of interactions i needed to move the atom out of the instability zone. The parameters of primary particles were calculated. Comparison of calculations with experimental data gives a satisfactory agreement.

  15. Cosmological constraints on superconducting dark energy models

    NASA Astrophysics Data System (ADS)

    Keresztes, Zoltán; Gergely, László Á.; Harko, Tiberiu; Liang, Shi-Dong

    2015-12-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge-invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential V , is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In other words, dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively, are confronted with type IA supernovae and Hubble parameter data. In the electric case, a good fit is obtained along a narrow inclined stripe in the Ωm-ΩV parameter plane, which includes the Λ cold dark matter limit as the best fit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution. In the magnetic case the cosmological test selects either (i) parameter ranges of the superconducting dark energy allowing for the standard baryonic sector plus dark matter or (ii) a unified superconducting dark matter and dark energy model, additionally including only the baryonic sector.

  16. Modeling the quasistatic energy transport between nanoparticles

    NASA Astrophysics Data System (ADS)

    Panasyuk, George Y.; Yerkes, Kirk L.

    2015-12-01

    We consider phononic energy transport between nanoparticles mediated by a quantum particle. The nanoparticles are considered as thermal reservoirs described by ensembles of finite numbers of harmonic oscillators within the Drude-Ullersma model having, in general, unequal mode spacings Δ1 and Δ2, which amount to different numbers of atoms in the nanoparticles. The quasistatic energy transport between the nanoparticles on the time scale t ˜1 /Δ1 ,2 is investigated using the generalized quantum Langevin equation. We find that double degeneracy of system's eigenfrequencies, which occurs in the case of identical nanoparticles, is removed when the mode spacings become unequal. The equations describing the dynamics of the averaged eigenmode energies are derived and solved, and the resulting expression for the energy current between the nanoparticles is obtained and explored. Unlike the case when the thermodynamic limit is assumed resulting in time-independent energy current, finite-size effects result in temporal behavior of the energy current that evinces reversibility features combined with decay and possesses peculiarities at time moments t =2 π n /Δ1+2 π m /Δ2 for non-negative integers n and m . When Δ1 ,2→0 , an expression for the heat current obtained previously under assumption of the thermodynamic limit is reproduced. The energy current between two platinum nanoparticles mediated by a carbon oxide molecule is considered as an application of the developed model.

  17. Modeling the quasistatic energy transport between nanoparticles.

    PubMed

    Panasyuk, George Y; Yerkes, Kirk L

    2015-12-01

    We consider phononic energy transport between nanoparticles mediated by a quantum particle. The nanoparticles are considered as thermal reservoirs described by ensembles of finite numbers of harmonic oscillators within the Drude-Ullersma model having, in general, unequal mode spacings Δ(1) and Δ(2), which amount to different numbers of atoms in the nanoparticles. The quasistatic energy transport between the nanoparticles on the time scale t∼1/Δ(1,2) is investigated using the generalized quantum Langevin equation. We find that double degeneracy of system's eigenfrequencies, which occurs in the case of identical nanoparticles, is removed when the mode spacings become unequal. The equations describing the dynamics of the averaged eigenmode energies are derived and solved, and the resulting expression for the energy current between the nanoparticles is obtained and explored. Unlike the case when the thermodynamic limit is assumed resulting in time-independent energy current, finite-size effects result in temporal behavior of the energy current that evinces reversibility features combined with decay and possesses peculiarities at time moments t=2πn/Δ(1)+2πm/Δ(2) for non-negative integers n and m. When Δ(1,2)→0, an expression for the heat current obtained previously under assumption of the thermodynamic limit is reproduced. The energy current between two platinum nanoparticles mediated by a carbon oxide molecule is considered as an application of the developed model.

  18. The Effects of Static Coulomb, Normal and Shear Stress Changes on Earthquake Occurrence in Southern California

    NASA Astrophysics Data System (ADS)

    Strader, A. E.; Jackson, D. D.

    2011-12-01

    Deng & Sykes (1997) found a strong correlation between receiver earthquake location and positive increase in Coulomb stress (ΔCFF). Assuming a coefficient of friction of 0.6, and resolving stresses onto assumed fault planes with uniform orientation parallel to average Pacific-North American plate motion, they found that only 15% of receiver earthquakes occur in "stress shadows" where the Coulomb stress change should impede faulting. We extended their study by adding two source earthquakes (Hector Mine, 1999 and El Mayor-Cucupah, 2010), and calculating the stress changes at the locations of 134 receiver earthquakes with magnitude 4.4 and greater after 1999. We examined shear stress, normal stress, and Coulomb stress, resolving stresses onto four different hypothetical fault planes: smoothed seismicity-based planes, a weighted average of nearby fault-plane orientations, and the two nodal planes of weighed average moment tensors of nearby earthquakes. We also computed shear, normal, and Coulomb stress histories oriented according to the four choices of fault orientation, and tested the effect of total stress change on receiver earthquake magnitude. Our chi square test results indicate that, with 95% confidence, receiver earthquakes do not tend to avoid stress shadows, and that the choice of plane onto which stress is resolved does not affect the result. On average, 39% of earthquakes occur at the time of maximum stress at the event location, with no significant variation depending on the choice of rupture plane or type of stress change. We found no correlation between earthquake magnitude and total stress change at the events' locations. These results suggest that instantaneous cumulative Coulomb stress, as we and Deng & Sykes modeled it, does not strongly control the locations of future earthquakes. The lack of correlation between Coulomb stress change and magnitude suggests that modeled Coulomb stress change does not control the size of earthquakes once they

  19. Modelling Students' Construction of Energy Models in Physics.

    ERIC Educational Resources Information Center

    Devi, Roshni; And Others

    1996-01-01

    Examines students' construction of experimentation models for physics theories in energy storage, transformation, and transfers involving electricity and mechanics. Student problem solving dialogs and artificial intelligence modeling of these processes is analyzed. Construction of models established relations between elements with linear causal…

  20. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd106

    DOE PAGES

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.; ...

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factorsmore » of the 2+1 and 4+1 states in 106Cd were measured to be g(2+1) = +0.398(22) and g(4+1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ(106Cd; 2+1) = 7.0(3) ps and τ(106Cd; 4+1) = 2.5(2) ps. The mean life τ(106Cd; 2+2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ(106Cd; 4+3) = 1.1(1) ps and τ(106Cd; 3–1) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4+1) of 106Cd is found to be only 59% of the g(2+1). This difference cannot be explained by either shell-model or collective-model calculations.« less

  1. Magnetic moment and lifetime measurements of Coulomb-excited states in 106Cd

    NASA Astrophysics Data System (ADS)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K.-H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-01

    Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. Results: The g factors of the 21+ and 41+ states in 106Cd were measured to be g (21+)=+0.398 (22 ) and g (41+)=+0.23 (5 ) . A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ (106Cd;21+)=7.0 (3 )ps and τ (106Cd;41+)=2.5 (2 )ps . The mean life τ (106Cd;22+)=0.28 (2 )ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ (106Cd;43+)=1.1 (1 )ps and τ (106Cd;31-)=0.16 (1 )ps were determined for the first time. Conclusions: The newly measured g (41+) of 106Cd is found to be only 59% of the g (21+) . This difference cannot be explained by either shell-model or collective-model calculations.

  2. Coulomb interaction on spin-1 particles

    NASA Astrophysics Data System (ADS)

    Owen, D. A.; Barrett, R. C.

    2003-11-01

    Using the electro-weak theory, we find the lowest order perturbative correction to a spin-1 particle in an external Coulomb field. We show this leads to a correction of order (Zα)4 and is independent of the mass of the external field. Previous work with Duffin-Kemmer-Petiau (see Nedjadi and Barrett [J. Math. Phys. 35 (1994) 4517]) and the Proca equation has failed to produce this correction.

  3. Generalized oscillator strength and Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Chidichimo, Marita C.; Thorsley, Michael D.

    2003-02-01

    Coulomb interaction is characterized by two nondimensional fundamental quantities: the Sommerfeld parameter η and the adiabaticity parameter ξ=ηf-ηi. In this different approach, we choose these variables to describe the behavior of the generalized oscillator strength (GOS). The expression we obtain is valid for scattering of electrons, positrons, and nuclei by arbitrary targets. We present asymptotic expansions, in the quantal and semiclassical approximation, of the electric dipole GOS.

  4. OSeMOSYS Energy Modeling Using an Extended UTOPIA Model

    ERIC Educational Resources Information Center

    Lavigne, Denis

    2017-01-01

    The OSeMOSYS project offers open-access energy modeling to a wide audience. Its relative simplicity makes it appealing for academic research and governmental organizations to study the impacts of policy decisions on an energy system in the context of possibly severe greenhouse gases emissions limitations. OSeMOSYS is a tool that enhances the…

  5. Random free energy barrier hopping model for ac conduction in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Murti, Ram; Tripathi, S. K.; Goyal, Navdeep; Prakash, Satya

    2016-03-01

    The random free energy barrier hopping model is proposed to explain the ac conductivity (σac) of chalcogenide glasses. The Coulomb correlation is consistently accounted for in the polarizability and defect distribution functions and the relaxation time is augmented to include the overlapping of hopping particle wave functions. It is observed that ac and dc conduction in chalcogenides are due to same mechanism and Meyer-Neldel (MN) rule is the consequence of temperature dependence of hopping barriers. The exponential parameter s is calculated and it is found that s is subjected to sample preparation and measurement conditions and its value can be less than or greater than one. The calculated results for a - Se, As2S3, As2Se3 and As2Te3 are found in close agreement with the experimental data. The bipolaron and single polaron hopping contributions dominates at lower and higher temperatures respectively and in addition to high energy optical phonons, low energy optical and high energy acoustic phonons also contribute to the hopping process. The variations of hopping distance with temperature is also studied. The estimated defect number density and static barrier heights are compared with other existing calculations.

  6. Computational Analysis of Intermolecular Coulombic Decay Effects in DNA nucleotide Photoionization

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Robertson, J.; Andrianarijaona, V. M.

    2016-03-01

    Intermolecular Coulombic Decay (ICD) is the process of how electrons return to their original state after excitation and how this affects their immediate environment. In a previous research presentationwe had considered the hypothetical applications of Intermolecular Coulombic Decay on the adhesiveness of coding proteins within DNA molecules. This presentation is a continuation of the previous in that the results of our DFT-based computational calculations of the ionization potentials of nucleotides and their excitation energies will be presented, as well as how they influence their surroundings. Author would like to acknowledge the PUC Student Senate for financial assistance.

  7. A shortcut through the Coulomb gas method for spectral linear statistics on random matrices

    NASA Astrophysics Data System (ADS)

    Deelan Cunden, Fabio; Facchi, Paolo; Vivo, Pierpaolo

    2016-04-01

    In the last decade, spectral linear statistics on large dimensional random matrices have attracted significant attention. Within the physics community, a privileged role has been played by invariant matrix ensembles for which a two-dimensional Coulomb gas analogy is available. We present a critical revision of the Coulomb gas method in random matrix theory (RMT) borrowing language and tools from large deviations theory. This allows us to formalize an equivalent, but more effective and quicker route toward RMT free energy calculations. Moreover, we argue that this more modern viewpoint is likely to shed further light on the interesting issues of weak phase transitions and evaporation phenomena recently observed in RMT.

  8. Directory of Energy Information Administration Model Abstracts

    SciTech Connect

    Not Available

    1986-07-16

    This directory partially fulfills the requirements of Section 8c, of the documentation order, which states in part that: The Office of Statistical Standards will annually publish an EIA document based on the collected abstracts and the appendices. This report contains brief statements about each model's title, acronym, purpose, and status, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. All models active through March 1985 are included. The main body of this directory is an alphabetical list of all active EIA models. Appendix A identifies major EIA modeling systems and the models within these systems, and Appendix B identifies active EIA models by type (basic, auxiliary, and developing). EIA also leases models developed by proprietary software vendors. Documentation for these proprietary models is the responsibility of the companies from which they are leased. EIA has recently leased models from Chase Econometrics, Inc., Data Resources, Inc. (DRI), the Oak Ridge National Laboratory (ORNL), and Wharton Econometric Forecasting Associates (WEFA). Leased models are not abstracted here. The directory is intended for the use of energy and energy-policy analysts in the public and private sectors.

  9. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  10. Slave rotor approach to dynamically screened Coulomb interactions in solids

    NASA Astrophysics Data System (ADS)

    Krivenko, I. S.; Biermann, S.

    2015-04-01

    Recent studies of dynamical screening of the electronic Coulomb interactions in solids have revived interest in lattice models of correlated fermions coupled to bosonic degrees of freedom (Hubbard-Holstein-type models). We propose a new dynamical mean-field-based approach to dynamically screened Coulomb interactions. In the effective Anderson-Holstein model, a transformation to slave rotors [S. Florens and A. Georges, Phys. Rev. B 66, 165111 (2002), 10.1103/PhysRevB.66.165111] is performed to decouple the dynamical part of the interaction. This transformation allows for a systematic derivation and analysis of recently introduced approximate schemes for the solution of dynamical impurity problems, in particular, the Bose factor ansatz within the dynamic atomic limit approximation (DALA) with and without Lang-Firsov correction. More importantly still, it suggests an optimized choice for a Bose factor in the sense of the variational principle of Feynman and Peierls. We demonstrate the accuracy of our scheme and present a comparison to calculations within the DALA.

  11. Finsler-type modification of the Coulomb law

    NASA Astrophysics Data System (ADS)

    Itin, Yakov; Lämmerzahl, Claus; Perlick, Volker

    2014-12-01

    Finsler geometry is a natural generalization of pseudo-Riemannian geometry. It can be motivated e.g. by a modified version of the Ehlers-Pirani-Schild axiomatic approach to space-time theory. Also, some scenarios of quantum gravity suggest a modified dispersion relation which could be phrased in terms of Finsler geometry. On a Finslerian space-time, the universality of free fall is still satisfied but local Lorentz invariance is violated in a way not covered by standard Lorentz invariance violation schemes. In this paper we consider a Finslerian modification of Maxwell's equations. The corrections to the Coulomb potential and to the hydrogen energy levels are computed. We find that the Finsler metric corrections yield a splitting of the energy levels. Experimental data provide bounds for the Finsler parameters.

  12. Variable deceleration parameter and dark energy models

    NASA Astrophysics Data System (ADS)

    Bishi, Binaya K.

    2016-03-01

    This paper deals with the Bianchi type-III dark energy model and equation of state parameter in a first class of f(R,T) gravity. Here, R and T represents the Ricci scalar and trace of the energy momentum tensor, respectively. The exact solutions of the modified field equations are obtained by using (i) linear relation between expansion scalar and shear scalar, (ii) linear relation between state parameter and skewness parameter and (iii) variable deceleration parameter. To obtain the physically plausible cosmological models, the variable deceleration parameter with the suitable substitution leads to the scale factor of the form a(t) = [sinh(αt)] 1 n, where α and n > 0 are arbitrary constants. It is observed that our models are accelerating for 0 < n < 1 and for n > 1, transition phase from deceleration to acceleration. Further, we have discussed physical properties of the models.

  13. FAST TRACK COMMUNICATION: Attosecond photoelectron interference in the separable Coulomb Volkov continuum

    NASA Astrophysics Data System (ADS)

    Yudin, G. L.; Patchkovskii, S.; Corkum, P. B.; Bandrauk, A. D.

    2007-03-01

    We develop a description of laser-assisted x-ray photoionization based on a sudden approximation approach. By splitting the system evolution into three time stages we find necessary and sufficient conditions for spatial and temporal separation of Coulomb and Volkov continuum solutions. Using the separable Coulomb-Volkov wavefunction we present an analytical non-relativistic quantum theory of attosecond photoionization. It applies for arbitrary x-ray parameters, with both Coulomb continuum and laser field treated non-perturbatively. The theory provides a firm basis for characterizing photoelectron phase and atomic and molecular wavefunctions, by extracting them from experimental data. Using the molecular hydrogen ion as a test case, we display a variety of photoelectron interference sources in energy- and angular-resolved spectra for different pulse durations, chirps and delay times between x-ray pulse replicas.

  14. Relativistic Aharonov-Bohm effect in the presence of planar Coulomb potentials

    SciTech Connect

    Khalilov, V.R.

    2005-01-01

    Exact analytic solutions are found to the Dirac equation in 2+1 dimensions for a combination of an Aharonov-Bohm potential and the Lorentz three-vector and scalar Coulomb potentials. By means of the solutions obtained the relativistic quantum Aharonov-Bohm effect is studied for the free (in the presence of a Lorentz three-vector Coulomb potential) and bound fermion states. We obtain the total scattering amplitude in a combination of the Aharonov-Bohm and Lorentz three-vector Coulomb potentials as a sum of two scattering amplitudes. This modifies the expression for the standard Aharonov-Bohm cross section due to the interference of these two amplitudes with each other. We discuss that the observable quantities can be the phases of electron wave functions or the energies of bound states.

  15. Coulomb Excitation of 78,80Se and the radioactive 84Se (N = 50) isotopes

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.; Padilla-Rodal, E.; Garcia-Ruiz, R. F.; Allmond, J. M.; Batchelder, J. C.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2011-10-01

    Coulomb excitation is a purely electromagnetic excitation process of nuclear states due to the Coulomb field of two colliding nuclei. It is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. We have measured the B(E2) value of various nuclei in the mass A ~ 80 region using particle-gamma coincidences with the HyBall and Clarion arrays at HRIBF. The Coulomb excitation of various projectile-target combinations (ASe on 12C, 24Mg, 27Al and 50Ti) allow the use of consistency cross checks and the systematic study of isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions.We present new results for 78Se, 80Se and the radioactive nucleus 84Se (N = 50). Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy and CONACyT Grant 103366.

  16. Low rank factorization of the Coulomb integrals for periodic coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas

    2017-03-01

    We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O (N4) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.

  17. Super-Coulombic atom-atom interactions in hyperbolic media.

    PubMed

    Cortes, Cristian L; Jacob, Zubin

    2017-01-25

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  18. Super-Coulombic atom–atom interactions in hyperbolic media

    PubMed Central

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media. PMID:28120826

  19. Super-Coulombic atom-atom interactions in hyperbolic media

    NASA Astrophysics Data System (ADS)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  20. Development of an energy storage tank model

    NASA Astrophysics Data System (ADS)

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  1. Coulomb excitation of radioactive Na21 and its stable mirror Ne21

    NASA Astrophysics Data System (ADS)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2008-10-01

    The low-energy structures of the mirror nuclei Ne21 and radioactive Na21 have been examined by using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ~5×106 ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm2 natTi target. Scattered beam and target particles were detected by the segmented Si detector BAMBINO, while γ rays were observed by using two TIGRESS HPGe clover detectors perpendicular to the beam axis. For each isobar, Coulomb excitation from the (3)/(2)+ ground state to the first excited (5)/(2)+ state was observed and B(E2) values were determined by using the 2+→0+ de-excitation in Ti48 as a reference. The ϕ segmentation of BAMBINO was used to deduce tentative assignments for the signs of the mixing ratios between the E2 and M1 components of the transitions. The resulting B(E2)↑ values are 131±9e2 fm4 (25.4±1.7 W.u.) for Ne21 and 205±14e2 fm4 (39.7±2.7 W.u.) for Na21. The fit to the present data and the known lifetimes determined E2/M1 mixing ratios and B(M1)↓ values of δ=(-)0.0767±0.0027 and 0.1274±0.0025μN2 and δ=(+)0.0832±0.0028 and 0.1513±0.0017μN2 for Ne21 and Na21, respectively (with Krane and Steffen sign convention). By using the effective charges ep=1.5e and en=0.5e, the B(E2) values produced by the p-sd shell model are 30.7 and 36.4 W.u. for Ne21 and Na21, respectively. This analysis resolves a significant discrepancy between a previous experimental result for Na21 and shell-model calculations.

  2. Low-energy physics of three-orbital impurity model with Kanamori interaction

    NASA Astrophysics Data System (ADS)

    Horvat, Alen; Žitko, Rok; Mravlje, Jernej

    2016-10-01

    We discuss the low-energy physics of the three-orbital Anderson impurity model with the Coulomb interaction term of the Kanamori form which has orbital SO(3) and spin SU(2) symmetry and describes systems with partially occupied t2 g shells. We focus on the case with two electrons in the impurity that is relevant to Hund's metals. Using the Schrieffer-Wolff transformation we derive an effective Kondo model with couplings between the bulk and impurity electrons expressed in terms of spin, orbital, and orbital quadrupole operators. The bare spin-spin Kondo interaction is much smaller than the orbit-orbit and spin-orbital couplings or is even ferromagnetic. Furthermore, the perturbative scaling equations indicate faster renormalization of the couplings related to orbital degrees of freedom compared to spin degrees of freedom. Both mechanisms lead to a slow screening of the local spin moment. The model thus behaves similarly to the related quantum impurity problem with a larger SU(3) orbital symmetry (Dworin-Narath interaction) where this was first observed. We find that the two problems actually describe the same low-energy physics since the SU(3) symmetry is dynamically established through the renormalization of the splittings between the orbital and quadrupole coupling constants to zero. The perturbative renormalization group results are corroborated with the numerical-renormalization group (NRG) calculations. The dependence of spin Kondo temperatures and orbital Kondo temperatures as a function of interaction parameters, the hybridization, and the impurity occupancy is calculated and discussed.

  3. World Energy Projection System Plus Model Documentation: Commercial Model

    EIA Publications

    2016-01-01

    The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.

  4. Energy Blocks--A Physical Model for Teaching Energy Concepts

    ERIC Educational Resources Information Center

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  5. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    ERIC Educational Resources Information Center

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  6. A Model School Facility for Energy (with Related Video)

    ERIC Educational Resources Information Center

    Spangler, Seth; Crutchfield, Dave

    2011-01-01

    Energy modeling can be a powerful tool for managing energy-reduction concepts for an institution. Different types of energy models are developed at various stages of a project to provide data that can verify or disprove suggested energy-efficiency measures. Education institutions should understand what an energy model can do and, more important,…

  7. Development of an Integrated Global Energy Model

    SciTech Connect

    Krakowski, R.A.

    1999-07-08

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

  8. Simple implementation of general dark energy models

    SciTech Connect

    Bloomfield, Jolyon K.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk

    2014-03-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data.

  9. Coulomb explosion of CS2 molecule under an intense femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Xiao, Wang; Jian, Zhang; Shi-An, Zhang; Zhen-Rong, Sun

    2016-05-01

    We experimentally demonstrate the Coulomb explosion process of CS2 molecule under a near-infrared (800 nm) intense femtosecond laser field by a DC-sliced ion imaging technique. We obtain the DC-sliced images of these fragment ions S+, S2+, CS+, and CS2+ by breaking one C-S bond, and assign their Coulomb explosion channels by considering their kinetic energy release and angular distribution. We also numerically simulate the dissociation dynamics of parent ions by a Coulomb potential approximation, and obtain the time evolution of Coulomb energy and kinetic energy release, which indicates that the dissociation time of parent ions decreases with the increase of the charge number k. These experimental and theoretical results can serve as a useful benchmark for those researchers who work in the related area. Project supported by the National Natural Science Foundation of China (Grant Nos. 51132004 and 11474096), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14JC1401500). We acknowledge the support of the NYU-ECNU Institute of Physics at NYU Shanghai, China.

  10. Vacuum energy in the bag model

    NASA Astrophysics Data System (ADS)

    Candelas, P.

    1986-04-01

    The vacuum energy of the Yang-Mills field is examined for the conditions of the bag model. The dominance of high-frequency effects results in a vacuum energy that decomposes naturally into a volume energy, a surface energy, and higher shape energies. These quantities are identified with the parameters of the bag model. The imposition of confining boundary conditions for all frequencies is shown to be inconsistent since this would result in the bag constant and certain of the shape tensions being infinite. The manner in which the boundary conditions should be relaxed at high frequency is discussed. The most naive procedure for relaxing the boundary conditions, which is to apply confining conditions only on modes of frequency less than some cutoff frequency, results in a negative bag constant and surface tension and would render the vacuum unstable against the spontaneous breaking of Poincaré invariance. Consideration of the manner by which the interacting electromagnetic field avoids a similar instability suggests that a more realistic way to relax the boundary conditions on the bag surface is to endow the vacuum exterior to the bag with a frequency-dependent dielectric constant and magnetic permeability. In this picture the stability of the vacuum is restored, the surface tension is finite and positive, and the bag constant is zero at least to lowest order in the coupling. It is pointed out that the fermion contributions to the bag constant and the surface tension may relate to the spontaneous breaking of chiral invariance. The aim throughout is to examine the bag model, as it relates to vacuum energy, strictly in its own terms with an emphasis on questions of principle. All too often is heard the alibi that since the theory itself is only approximate, the mathematics need be no better. In truth the opposite follows. Granted that the model represents but a part of nature, we are to find what such an ideal picture implies, a result strictly derived serves to test

  11. Observing and modeling Earths energy flows

    SciTech Connect

    Stevens B.; Schwartz S.

    2012-05-11

    This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds

  12. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute

  13. Nondynamical correlation energy in model molecular systems

    NASA Astrophysics Data System (ADS)

    Chojnacki, Henryk

    The hypersurfaces for the deprotonation processes have been studied at the nonempirical level for H3O+, NH+4, PH+4, and H3S+ cations within their correlation consistent basis set. The potential energy curves were calculated and nondynamical correlation energies analyzed. We have found that the restricted Hartree-Fock wavefunction leads to the improper dissociation limit and, in the three latest cases requires multireference description. We conclude that these systems may be treated as a good models for interpretation of the proton transfer mechanism as well as for testing one-determinantal or multireference cases.

  14. Nonlinear energy principle for model current sheets

    SciTech Connect

    Yoon, Peter H.; Lui, Anthony T.Y.

    2006-01-15

    It is demonstrated on the basis of exact invariants of nonlinear Vlasov equation and model current sheets that the change in magnetic topology (i.e., reconnection) in a finite closed system leads to the conversion of magnetic-field energy to particle energy. It is also shown that the volume-averaged conversion efficiency diminishes as the spatial average is taken over larger and larger system size, while it increases when the system size becomes smaller. This finding may have an important implication for numerical simulation of reconnection processes under finite geometry.

  15. Unified optical-model approach to low-energy antiproton annihilation on nuclei and to antiprotonic atoms

    NASA Astrophysics Data System (ADS)

    Batty, C. J.; Friedman, E.; Gal, A.

    2001-07-01

    A successful unified description of p¯ nuclear interactions near E=0 is achieved using a p¯ optical potential within a folding model, V opt˜ v¯∗ρ , where a p¯p potential v¯ is folded with the nuclear density ρ. The potential v¯ fits very well the measured p¯p -annihilation cross sections at low energies ( p L<200 MeV /c) and the 1s and 2p spin-averaged level shifts and widths for the p¯H atom. The density-folded optical potential V opt reproduces satisfactorily the strong-interaction level shifts and widths over the entire periodic table, for A>10, as well as the few low-energy p¯-annihilation cross sections measured on Ne. Both v¯ and V opt are found to be highly absorptive, which leads to a saturation of reaction cross sections in hydrogen and on nuclei. Predictions are made for p¯-annihilation cross sections over the entire periodic table at these very low energies and the systematics of the calculated cross sections as function of A, Z and E is discussed and explained in terms of a Coulomb-modified strong-absorption model. Finally, optical potentials which fit simultaneously low-energy p¯- 4He observables for E<0 as well as for E>0 are used to assess the reliability of extracting Coulomb modified p¯ nuclear scattering lengths directly from the data. The relationship between different kinds of scattering lengths is discussed and previously published systematics of the p¯ nuclear scattering lengths is updated.

  16. Limit analysis and homogenization of porous materials with Mohr-Coulomb matrix. Part I: Theoretical formulation

    NASA Astrophysics Data System (ADS)

    Anoukou, K.; Pastor, F.; Dufrenoy, P.; Kondo, D.

    2016-06-01

    The present two-part study aims at investigating the specific effects of Mohr-Coulomb matrix on the strength of ductile porous materials by using a kinematic limit analysis approach. While in the Part II, static and kinematic bounds are numerically derived and used for validation purpose, the present Part I focuses on the theoretical formulation of a macroscopic strength criterion for porous Mohr-Coulomb materials. To this end, we consider a hollow sphere model with a rigid perfectly plastic Mohr-Coulomb matrix, subjected to axisymmetric uniform strain rate boundary conditions. Taking advantage of an appropriate family of three-parameter trial velocity fields accounting for the specific plastic deformation mechanisms of the Mohr-Coulomb matrix, we then provide a solution of the constrained minimization problem required for the determination of the macroscopic dissipation function. The macroscopic strength criterion is then obtained by means of the Lagrangian method combined with Karush-Kuhn-Tucker conditions. After a careful analysis and discussion of the plastic admissibility condition associated to the Mohr-Coulomb criterion, the above procedure leads to a parametric closed-form expression of the macroscopic strength criterion. The latter explicitly shows a dependence on the three stress invariants. In the special case of a friction angle equal to zero, the established criterion reduced to recently available results for porous Tresca materials. Finally, both effects of matrix friction angle and porosity are briefly illustrated and, for completeness, the macroscopic plastic flow rule and the voids evolution law are fully furnished.

  17. Nonlinear modeling of thermoacoustically driven energy cascade

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo; Lodato, Guido

    2016-11-01

    We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.

  18. Energy/economic model analysis. Energy economic modeling system. Final report

    SciTech Connect

    Nesbitt, D.M.; Oman, D.B.

    1980-06-01

    The Decision Focus Incorporated (DFI) Energy-Economy Model used in this study is an integrating model designed in part to focus on two budget-related decisions. Specifically, the DFI model provides a robust but simple way of computing the benefits of successful RandD both in the aggregate and at the level of individual RandD projects.

  19. A novel teleparallel dark energy model

    NASA Astrophysics Data System (ADS)

    Otalora, Giovanni

    2016-12-01

    Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group SO(1, 4). It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution (ωϕ = -1), (ii) a quintessence-type solution with ωϕ ≥-1, or (iii) a phantom-type ωϕ < -1 dark energy.

  20. Enhancement of the Coulomb collision rate by individual particle wakes

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott; Scheiner, Brett

    2013-09-01

    Charged particles moving in a plasma leave a trailing wake in their electric potential profile associated with the response function of the medium. For superthermal particles, these wakes can cause significant departures from the oft-assumed screened Coulomb potential profile. The wakes extend the interaction length scale beyond the Debye screening length for collisions between fast test particles and field particles in their wake. This can increase the Coulomb collision rate for velocities beyond the thermal speed. To demonstrate this effect, we consider the relaxation rate due to electron-electron collisions of an electron distribution function with initially depleted tails, as is common near boundary sheaths or double layers. This problem is related to Langmuir's paradox. We compare the standard Landau (Fokker-Planck) collision operator, which does not account for wakes, with the Lenard-Balescu collision operator, which includes wake effects through the linear dielectric response function. For this distribution, the linear dielectric is described by the incomplete plasma dispersion function. We compare the collision operators directly as well as the relaxation rate determined from a hybrid kinetic-fluid model. S. D. Baalrud, Phys. Plasmas 20, 012118 (2013).

  1. Absence of exponential clustering in quantum Coulomb fluids

    NASA Astrophysics Data System (ADS)

    Alastuey, A.; Martin, Ph. A.

    1989-12-01

    We show that the quantum corrections to the classical correlations of a Coulomb fluid do not decay exponentially fast for all values of the thermodynamical parameters. Specifically, the ħ4 term in the Wigner-Kirkwood expansion of the equilibrium charge-charge correlations of the quantum one-component plasma is found to decay like ||r||-10. More generally, using functional integration, we present a diagrammatic representation of the ħ expansion of the correlations in a multicomponent fluid with a locally regularized Coulomb potential and Maxwell-Boltzmann statistics. The ħ2n terms are found to decay algebraically for all n>=2. Furthermore, an analysis of the hierarchy equations for the correlations provides upper bounds that are compatible with the findings of the perturbative expansion. Except for the monopole, all higher-order multipole sum rules do not hold, in general, in the quantum system. This violation of the multipole sum rules as well as the related algebraic tails are due to the intrinsic quantum fluctuations that prevent a perfect organization of the screening clouds. This phenomenon is illustrated in a simpler model where the large-distance correlations between two quantum particles embedded in a classical plasma can be exactly computed.

  2. Particle Diffusion Due to Coulomb Scattering

    SciTech Connect

    V. Lebedev and S. Nagaitsev

    2002-06-03

    Conventionally, the multiple and single particle scattering in a storage ring are considered to be independent. Such an approach is simple and often yields sufficiently accurate results. Nevertheless, there is a class of problems where such an approach is not adequate and the single and multiple scattering need to be considered together. This can be achieved by solving an integro-differential equation for the particle distribution function, which correctly treats particle Coulomb scattering in the presence of betatron motion. A derivation of the equation is presented in the article. A numerical solution for one practical case is also considered.

  3. Scripted Building Energy Modeling and Analysis: Preprint

    SciTech Connect

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  4. Measurement of the 92,93,94,100Mo(γ,n) reactions by Coulomb Dissociation

    NASA Astrophysics Data System (ADS)

    Göbel, K.; Adrich, P.; Altstadt, S.; Alvarez-Pol, H.; Aksouh, F.; Aumann, T.; Babilon, M.; Behr, K.-H.; Benlliure, J.; Berg, T.; Böhmer, M.; Boretzky, K.; Brünle, A.; Beyer, R.; Casarejos, E.; Chartier, M.; Cortina-Gil, D.; Chatillon, A.; Datta Pramanik, U.; Deveaux, L.; Elvers, M.; Elze, T. W.; Emling, H.; Erhard, M.; Ershova; Fernandez-Dominguez, B.; Geissel, H.; Górska, M.; Heftrich, T.; Heil, M.; Hellstroem, M.; Ickert, G.; Johansson, H.; Junghans, A. R.; Käppeler, F.; Kiselev, O.; Klimkiewicz, A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindenberg, K.; Litvinov, Y. A.; Maierbeck, P.; Movsesyan, A.; Müller, S.; Nilsson, T.; Nociforo, C.; Paar, N.; Palit, R.; Paschalis, S.; Plag, R.; Prokopowicz, W.; Reifarth, R.; Rossi, D. M.; Schnorrenberger, L.; Simon, H.; Sonnabend, K.; Sümmerer, K.; Surówka, G.; Vretenar, D.; Wagner, A.; Walter, S.; Waluś, W.; Wamers, F.; Weick, H.; Weigand, M.; Winckler, N.; Winkler, M.; Zilges, A.

    2016-01-01

    The Coulomb Dissociation (CD) cross sections of the stable isotopes 92,94,100Mo and of the unstable isotope 93Mo were measured at the LAND/R3B setup at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Experimental data on these isotopes may help to explain the problem of the underproduction of 92,94Mo and 96,98Ru in the models of p-process nucleosynthesis. The CD cross sections obtained for the stable Mo isotopes are in good agreement with experiments performed with real photons, thus validating the method of Coulomb Dissociation. The result for the reaction 93Mo(γ,n) is especially important since the corresponding cross section has not been measured before. A preliminary integral Coulomb Dissociation cross section of the 94Mo(γ,n) reaction is presented. Further analysis will complete the experimental database for the (γ,n) production chain of the p-isotopes of molybdenum.

  5. Probing interband coulomb interactions in semiconductor nanostructures with 2D double-quantum coherence spectroscopy.

    PubMed

    Velizhanin, Kirill A; Piryatinski, Andrei

    2011-05-12

    Employing the interband exciton scattering model, we have derived a closed set of equations determining the 2D double-quantum coherence signal sensitive to the interband Coulomb interactions (i.e., many-body Coulomb interactions leading to the couplings between exciton and biexciton bands) in semiconductor nanostructures such as nanocrystals, quantum wires, wells, and carbon nanotubes. Our general analysis of 2D double-quantum coherence resonances has demonstrated that the interband Coulomb interactions lead to new cross-peaks whose appearance can be interpreted as a result of exciton and biexciton state mixing. The presence of the strongly coupled resonant states and weakly coupled background of off-resonant states can significantly simplify cross-peak analysis by eliminating the congested background spectrum. Our simulations of the 2D double-quantum coherence signal in PbSe NCs have validated this approach.

  6. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  7. Coulomb-stable triply charged diatomic: HeY3+

    NASA Astrophysics Data System (ADS)

    Wesendrup, Ralf; Pernpointner, Markus; Schwerdtfeger, Peter

    1999-11-01

    Accurate relativistic coupled-cluster calculations show that the triply charged species HeY3+ is a stable molecule and represents the lightest diatomic trication that does not undergo a Coulomb fragmentation into charged fragments. The diatomic potential-energy curve is approximated by an extended Morse potential, and vibrational-rotational constants for HeY3+ are predicted (Re=224.3 pm, D0=0.394 eV, ωe=437 cm-1, ωexe=15.8 cm-1, Be=0.877 cm-1). It is further shown that the He-Y3+ bond can basically be described as a charge-induced dipole interaction.

  8. Slow Interatomic Coulombic Decay of Multiply Excited Neon Clusters

    NASA Astrophysics Data System (ADS)

    Iablonskyi, D.; Nagaya, K.; Fukuzawa, H.; Motomura, K.; Kumagai, Y.; Mondal, S.; Tachibana, T.; Takanashi, T.; Nishiyama, T.; Matsunami, K.; Johnsson, P.; Piseri, P.; Sansone, G.; Dubrouil, A.; Reduzzi, M.; Carpeggiani, P.; Vozzi, C.; Devetta, M.; Negro, M.; Calegari, F.; Trabattoni, A.; Castrovilli, M. C.; Faccialà, D.; Ovcharenko, Y.; Möller, T.; Mudrich, M.; Stienkemeier, F.; Coreno, M.; Alagia, M.; Schütte, B.; Berrah, N.; Kuleff, A. I.; Jabbari, G.; Callegari, C.; Plekan, O.; Finetti, P.; Spezzani, C.; Ferrari, E.; Allaria, E.; Penco, G.; Serpico, C.; De Ninno, G.; Nikolov, I.; Diviacco, B.; Di Mitri, S.; Giannessi, L.; Prince, K. C.; Ueda, K.

    2016-12-01

    Ne clusters (˜5000 atoms ) were resonantly excited (2 p →3 s ) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.

  9. Quantum Coulomb systems: some exact results in the atomic limit

    NASA Astrophysics Data System (ADS)

    Ballenegger, V.; Martin, Ph. A.

    2002-04-01

    We review a number of exact results concerning the recombined electron-proton gas. The recombination problem can be formulated in precise terms in the atomic limit. In this limit one lets the density and the temperature tend to zero in a coupled way so that the resulting energy-entropy balance favors the formation of certain chemical species. This enables to develop a clear understanding of the dielectric versus conducting behavior in the system. In particular, we give a first principle derivation of the dielectric constant of the dilute atomic gas without presupposing the existence of atoms. The analysis relies on the path integral representation of the Coulomb gas together with Mayer diagrammatic techniques.

  10. Fusion of 48Ti+58Fe and 58Ni+54Fe below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Courtin, S.; Bourgin, D.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Mijatović, T.; Montanari, D.; Pagliaroli, M.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Toniolo, N.; Torresi, D.

    2015-12-01

    Background: No data on the fusion excitation function of 48Ti+58Fe in the energy region near the Coulomb barrier existed prior to the present work, while fusion of 58Ni+54Fe was investigated in detail some years ago, down to very low energies, and clear evidence of fusion hindrance was noticed at relatively high cross sections. 48Ti and 58Fe are soft and have a low-lying quadrupole excitation lying at ≈800 -900 keV only. Instead, 58Ni and 54Fe have a closed shell (protons and neutrons, respectively) and are rather rigid. Purpose: We aim to investigate (1) the possible influence of the different structures of the involved nuclei on the fusion excitation functions far below the barrier and, in particular, (2) whether hindrance is observed in 48Ti+58Fe , and to compare the results with current coupled-channels models. Methods: 48Ti beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used. The experimental setup was based on an electrostatic beam separator, and fusion-evaporation residues (ERs) were detected at very forward angles. Angular distributions of ERs were measured. Results: Fusion cross sections of 48Ti+58Fe have been obtained in a range of nearly six orders of magnitude around the Coulomb barrier, down to σ ≃2 μ b . The sub-barrier cross sections of 48Ti+58Fe are much larger than those of 58Ni+54Fe . Significant differences are also observed in the logarithmic derivatives and astrophysical S factors. No evidence of hindrance is observed, because coupled-channels calculations using a standard Woods-Saxon potential are able to reproduce the data in the whole measured energy range. Analogous calculations for 58Ni+54Fe predict clearly too large cross sections at low energies. The two fusion barrier distributions are wide and display a complex structure that is only qualitatively fit by calculations. Conclusions: It is pointed out that all these different trends originate from the dissimilar low-energy nuclear structures of

  11. Influence of the coulomb interaction on the liquid-gas phase transition and nuclear multifragmentation.

    PubMed

    Gulminelli, F; Chomaz, Ph; Raduta, Al H; Raduta, Ad R

    2003-11-14

    The liquid-gas phase transition is analyzed from the topologic properties of the event distribution in the observables space. A multicanonical formalism allows one to directly relate the standard phase transition with neutral particles to the case where the nonsaturating Coulomb interaction is present, and to interpret the Coulomb effect as a deformation of the probability distributions and a rotation of the order parameter. This formalism is applied to a statistical multifragmentation model and consequences for the nuclear multifragmentation phase transitions are drawn.

  12. Effects of Coulomb-like potential on γ-rigid prolate nuclei considering minimal length formalism

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Hassanabadi, H.; Sobhani, H.

    2016-10-01

    We determine the energy eigenvalues and eigenstates of the Bohr Hamiltonian for γ-rigid prolate nuclei with the Coulomb-like potential in minimal length formalism. We first show corresponding Hamiltonian of γ-rigid prolate nuclei then investigate the effects of minimal length parameter in energy levels and obtain the transition rates. Ordinary results are recovered for the vanishing minimal length parameter and for the clarity of our results, some instructive graphs have been prepared.

  13. Scalar vertex operator for bound-state QED in the Coulomb gauge

    SciTech Connect

    Holmberg, Johan

    2011-12-15

    Adkins's result [Phys. Rev. D 34, 2489 (1986)] for the time component of the renormalized vertex operator in Coulomb-gauge QED is separated according to its tensor structure and some of the Feynman parameter integrals are carried out analytically, yielding a form suited for numerical bound-state QED calculations. This modified form is applied to the evaluation of the self-energy shift to the binding energy in hydrogenic ions of high nuclear charge.

  14. Applications of GARCH models to energy commodities

    NASA Astrophysics Data System (ADS)

    Humphreys, H. Brett

    This thesis uses GARCH methods to examine different aspects of the energy markets. The first part of the thesis examines seasonality in the variance. This study modifies the standard univariate GARCH models to test for seasonal components in both the constant and the persistence in natural gas, heating oil and soybeans. These commodities exhibit seasonal price movements and, therefore, may exhibit seasonal variances. In addition, the heating oil model is tested for a structural change in variance during the Gulf War. The results indicate the presence of an annual seasonal component in the persistence for all commodities. Out-of-sample volatility forecasting for natural gas outperforms standard forecasts. The second part of this thesis uses a multivariate GARCH model to examine volatility spillovers within the crude oil forward curve and between the London and New York crude oil futures markets. Using these results the effect of spillovers on dynamic hedging is examined. In addition, this research examines cointegration within the oil markets using investable returns rather than fixed prices. The results indicate the presence of strong volatility spillovers between both markets, weak spillovers from the front of the forward curve to the rest of the curve, and cointegration between the long term oil price on the two markets. The spillover dynamic hedge models lead to a marginal benefit in terms of variance reduction, but a substantial decrease in the variability of the dynamic hedge; thereby decreasing the transactions costs associated with the hedge. The final portion of the thesis uses portfolio theory to demonstrate how the energy mix consumed in the United States could be chosen given a national goal to reduce the risks to the domestic macroeconomy of unanticipated energy price shocks. An efficient portfolio frontier of U.S. energy consumption is constructed using a covariance matrix estimated with GARCH models. The results indicate that while the electric

  15. Coulomb excitation of radioactive {sup 79}Pb

    SciTech Connect

    Lister, C.J.; Blumenthal, D.; Davids, C.N.

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  16. Thermal and log-normal distributions of plasma in laser driven Coulomb explosions of deuterium clusters

    NASA Astrophysics Data System (ADS)

    Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Bang, W.; Quevedo, H. J.; Consoli, F.; de Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-08-01

    In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.

  17. Four-body calculation of {sup 6}He breakup with the Coulomb-corrected eikonal method

    SciTech Connect

    Baye, D.; Capel, P.; Descouvemont, P.; Suzuki, Y.

    2009-02-15

    The elastic breakup of a three-body projectile on a target is studied within the eikonal approximation with full account of final-state interactions. Bound and scattering states are calculated in hyperspherical coordinates on a Lagrange mesh. A correction is introduced to avoid the divergence of breakup cross sections due to the Coulomb interaction. The eikonal approximation allows the direct calculation of various cross sections, and in particular multidifferential cross sections can be obtained. The model is applied to the breakup of {sup 6}He on {sup 208}Pb. The {sup 6}He halo nucleus is described within a three-body {alpha}+n+n model involving effective {alpha}n and nn interactions. The eikonal phase is obtained from optical potentials between {alpha} and n, and the target. Around 0.8 MeV, the total breakup cross sections exhibit a narrow 2{sup +} resonant peak superimposed over a broad bump corresponding to a 1{sup -} resonance. These results suffer from a disagreement with experimental data at 240 MeV/nucleon, where cross sections are much smaller at low energies. The obtained E1 strength distribution resembles other theoretical results and reopens a long-standing problem about the existence of a 1{sup -} low-energy resonance in the {sup 6}He continuum.

  18. Effect of Coulomb interaction on multi-electronwave packet dynamics

    SciTech Connect

    Shiokawa, T.; Takada, Y.; Konabe, S.; Hatsugai, Y.; Muraguchi, M.; Endoh, T.; Shiraishi, K.

    2013-12-04

    We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.

  19. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  20. Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer.

    PubMed

    Goker, A; Aksu, H

    2016-01-21

    We study the electron transmission through a Coulomb blockaded quantum emitter coupled to metal nanoparticles possessing plasmon resonances by employing the time-dependent non-crossing approximation. We find that the coupling of the nanoparticle plasmons with the excitons results in a significant enhancement of the conductance through the discrete state with higher energy beyond the unitarity limit while the other discrete state with lower energy remains Coulomb blockaded. We show that boosting the plasmon-exciton coupling well below the Kondo temperature increases the enhancement adding another quantum of counductance upon saturation. Finite bias and increasing emitter resonance energy tend to reduce this enhancement. We attribute these observations to the opening of an additional transport channel via the plasmon-exciton coupling.

  1. Two-particle separation energy trends in the superdeformed well.

    PubMed

    Wilson, A N; Korichi, A; Siem, S; Astier, A; Bazzacco, D; Bednarczyk, P; Bergström, M H; Chmel, S; Cullen, D M; Davidson, P M; Görgen, A; Hannachi, F; Hübel, H; Kintz, N; Lauritsen, T; Lopez-Martens, A; Lunardi, S; Naguleswaran, S; Nyakó, B M; Rejmund, M; Schönwasser, G; Schück, C; Sharpey-Schafer, J F; Timar, J; Wadsworth, R; Libert, J

    2010-04-23

    A measurement of the energy and spin of superdeformed states in 190Hg, obtained through the observation of transitions directly linking superdeformed and normal states, expands the number of isotopes in which binding energies at superdeformation are known. Comparison with neighboring nuclei shows that two-proton separation energies are higher in the superdeformed state than in the normal state, despite the lower Coulomb barrier and lower total binding energy. This unexpected result provides a critical test for nuclear models.

  2. Two-Particle Separation Energy Trends in the Superdeformed Well

    SciTech Connect

    Wilson, A. N.; Davidson, P. M.; Korichi, A.; Hannachi, F.; Lopez-Martens, A.; Rejmund, M.; Schueck, C.; Siem, S.; Astier, A.; Bazzacco, D.; Lunardi, S.; Bednarczyk, P.; Kintz, N.; Naguleswaran, S.; Bergstroem, M. H.; Chmel, S.; Goergen, A.; Huebel, H.; Schoenwasser, G.; Cullen, D. M.

    2010-04-23

    A measurement of the energy and spin of superdeformed states in {sup 190}Hg, obtained through the observation of transitions directly linking superdeformed and normal states, expands the number of isotopes in which binding energies at superdeformation are known. Comparison with neighboring nuclei shows that two-proton separation energies are higher in the superdeformed state than in the normal state, despite the lower Coulomb barrier and lower total binding energy. This unexpected result provides a critical test for nuclear models.

  3. Distributed Energy Resources Market Diffusion Model

    SciTech Connect

    Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

    2006-06-16

    Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase

  4. Coulomb correlation effects in the quasiparticle band structure of ferromagnetic rare-earth insulators

    NASA Astrophysics Data System (ADS)

    Nolting, W.; Borgiel, W.; Borstel, G.

    1988-05-01

    We present a method for calculating the temperature dependence of the electronic quasiparticle density of states (QDOS) of a ferromagnetic rare-earth insulator like EuO. Special attention is devoted to how the ``localized'' ferromagnetism manifests itself in x-ray photoemission and bremsstrahlung isochromat spectra. Our study includes the first six conduction bands of EuO (the first five are Eu 5d like, the sixth is mainly of Eu 6s character) as well as the rather flat 4f levels. The starting point is an extended d-f exchange model, the main parts of which are an exchange interaction between 4f moments and conduction electrons, a Coulomb repulsion between highly correlated 4f electrons, and a hybridization of 4f with conduction-band states. We use an exact T=0 relationship between spin-up quasiparticle energies and one-electron Bloch energies ɛm(k) for an optimal determination of the latter by performing a self-consistent, spin-polarized band-structure calculation based on density-functional theory. For finite temperatures the model is approximately solved by a many-body procedure. The QDOS exhibits a striking temperature dependence mainly due to the d-f exchange. Two 4f-like peaks appear in the spin-polarized QDOS, the low-energy one being occupied, the high-energy one being empty. The temperature dependence of the localized ferromagnetism appears in the QDOS as a temperature-dependent shift of spectral weight between the low- and the high-energy peak.

  5. Exact analytical solutions of continuity equation for electron beams precipitating in Coulomb collisions

    SciTech Connect

    Dobranskis, R. R.; Zharkova, V. V.

    2014-06-10

    The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained by using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.

  6. Elastic model for dinucleosome structure and energy

    NASA Astrophysics Data System (ADS)

    Fatemi, Hashem; Khodabandeh, Fatemeh; Mohammad-Rafiee, Farshid

    2016-04-01

    The equilibrium structure of a dinucleosome is studied using an elastic model that takes into account the force and torque balance conditions. Using the proper boundary conditions, it is found that the conformational energy of the problem does not depend on the length of the linker DNA. In addition it is shown that the two histone octamers are almost perpendicular to each other, and the linker DNA in short lengths is almost straight. These findings could shed some light on the role of DNA elasticity in the chromatin structure.

  7. New Method for Calculating the Potential Energy of Deformed Nuclei within the Liquid-Drop Model

    SciTech Connect

    Kurmanov, R.S.; Kosenko, G.I.

    2004-11-01

    The method that we previously developed for going over from double volume integrals to double surface integrals in calculating the Coulomb energy of nuclei that have a sharp surface is generalized to the case of nuclei where the range of nuclear forces is finite and where the nuclear surface is diffuse. New formulas for calculating the Coulomb and the nuclear energy of deformed nuclei are obtained within this approach. For a spherically symmetric nucleus, in which case there is an analytic solution to the problem in question, the results are compared with those that are quoted in the literature, and it is shown that the respective results coincide identically. A differential formulation of the method developed previously by Krappe, Nix, and Sierk for going over from double volume integrals to double surface integrals is proposed here on the basis of the present approach.

  8. The ghost propagator in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2011-05-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  9. The ghost propagator in Coulomb gauge

    SciTech Connect

    Watson, P.; Reinhardt, H.

    2011-05-23

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  10. Ion Coulomb Crystals and Their Applications

    NASA Astrophysics Data System (ADS)

    Drewsen, Michael

    The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].

  11. Gauge Theories on the Coulomb Branch

    NASA Astrophysics Data System (ADS)

    Schwarz, John H.

    We construct the world-volume action of a probe D3-brane in AdS5 × S5 with N units of flux. It has the field content, symmetries, and dualities of the U(1) factor of 𝒩 = 4 U(N + 1) super Yang-Mills theory, spontaneously broken to U(N) × U(1) by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a highly effective action (HEA). We construct an SL(2, Z) multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that they reproduce the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a soliton bubble, which is interpreted as a phase boundary.

  12. Simulating Coulomb collisions in a magnetized plasma

    SciTech Connect

    Hinton, Fred L.

    2008-04-15

    The problem of simulating ion-ion Coulomb collisions in a plasma in a strong magnetic field is considered. No assumption is made about the ion distribution function except that it is independent of the gyrophase angle, consistent with the assumption that the ion gyrofrequency is much larger than the ion-ion collision frequency. A Langevin method is presented which time-advances the components of a particle's velocity parallel and perpendicular to the magnetic field, without following the rapidly changing gyrophase. Although the standard Monte Carlo procedure, which uses random sampling, can be used, it is also possible to use a deterministic sampling procedure, where the samples are determined by the points which would be used in a numerical quadrature formula for moments of the Fokker-Planck Green's function. This should reduce the sampling noise compared with the Monte Carlo collision method.

  13. A coulombic hypothesis of mitochondrial oxidative phosphorylation.

    PubMed

    Malpress, F H

    1984-08-21

    A coulombic hypothesis of mitochondrial oxidative phosphorylation is presented, founded upon the evidence for negative fixed charge formation during electron transport chain activity. The intermediary force is electrostatic (psi H) and not electrochemical (delta mu H). The electrochemical potential of the chemiosmotic hypothesis is identified as a "phantom" parameter which owes its delusive existence to the procedures by which it is measured. The connection between psi H and the conditional delta mu H values is examined; it entails the use of a variable conversion factor, f, where delta mu H (mV) = f psi H, and the concept of the "protonic status" of the diffuse double layer. A number of problems which beset the chemiosmotic view are reappraised in the light of the new interpretation, and find authentic solutions.

  14. Known-to-Unknown Approach to Teach about Coulomb's Law

    ERIC Educational Resources Information Center

    Thamburaj, P. K.

    2007-01-01

    Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…

  15. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Rowley, N.; Yao, J. M.

    2016-06-01

    The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.

  16. Probing Coulomb stress triggering effects for a Mw > 6.0 earthquake sequence from 1997 to 2014 along the periphery of the Bayan Har block on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Xu, Caijun; Freymueller, Jeffrey T.; Li, Zhenhong

    2017-01-01

    Recently there have occurred the Manyi-Kangding earthquake sequence, including the 1997 Manyi, 2001 Kokoxili, 2008 Yutian, 2008 Wenchuan, 2010 Yushu, 2013 Lushan, 2014 Yutian and 2014 Kangding earthquakes, along the periphery of the Bayan Har block on the northern Tibetan Plateau. We employ the Coulomb failure model to probe the stress triggering effects on this sequence in terms of coseismic, postseismic and interseismic Coulomb stress changes. We examine the Coulomb stress changes from both the Manyi-Kangding sequence and other large earthquakes from 1411 to 2012 around the Bayan Har block and interseismic tectonic stressing. We use a stratified spherical postseismic relaxation model to compute postseismic Coulomb stress changes. We develop an explicit spherical least-squares collocation model to calculate interseismic Coulomb stress changes. Our results indicate that when merely considering triggering effects because of earthquakes from the Manyi-Kangding sequence, the compounded Coulomb stress changes of the coseismic and postseismic Coulomb stress changes are generally insignificant, except for the 2013 Lushan earthquake (0.14 bar). This general insignificance of Coulomb stress changes imparted by the Manyi-Kangding sequence agrees with previous studies, although interseismic Coulomb stress changes always load each hypocenter. On the other hand, when surrounding prior M ≥ 6.0 earthquakes are considered, we found that the compounded Coulomb stress changes become significant, ranging from 0.14 to 10.4 bars according to the constant apparent friction Coulomb failure model with an intermediate coefficient of 0.4. Therefore, all eight earthquakes are well explained by Coulomb stress changes when thoroughly considering large earthquakes around the Bayan Har block. Our findings indicate the importance of considering a broader group of neighboring large earthquakes for Coulomb stress analysis.

  17. Thermonuclear model for high energy transients

    SciTech Connect

    Woosley, S.E.

    1982-01-01

    The thermonuclear model for x- and ..gamma..-ray bursts is discussed. Different regimes of nuclear burning are reviewed, each appropriate to a given range of (steady state) accretion rate. Accretion rates in the range 10/sup -14/ to 10/sup -8/ Msub solar y/sup -1/ all appear capable of producing x-ray transients of various durations and intervals. Modifications introduced by radiatively driven mass loss, the thermal inertia of the envelope, different burning mechanisms, and two-dimensional considerations are discussed as are difficulties encountered when the thermonuclear model is confronted with observations of rapidly recurrent bursts (less than or equal to 10 min), and super-Eddington luminosities and temperatures. Results from a numerical simulation of a combined hydrogen-helium runaway initiated at pycnonuclear density are presented for the first time. The thermonuclear model for ..gamma..-ray bursts is also reviewed and updated, particularly with regard to the breakdown of the steady state hypothesis employed in previous work. Solely on the basis of nuclear instability, ..gamma..-ray bursts of various types appear possible for a very broad variety of accretion rates (approx. 10/sup -17/ to approx. 10/sup -11/ Msub solar y/sup -1/) although other considerations may restrict this range. The thermonuclear model appears capable of yielding a great diversity of high energy transient phenomena for various accretion rates, magnetic field configurations, and neutron star envelope histories.

  18. Chameleon dark energy models with characteristic signatures

    SciTech Connect

    Gannouji, Radouane; Moraes, Bruno; Polarski, David; Mota, David F.; Winther, Hans A.; Tsujikawa, Shinji

    2010-12-15

    In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today {gamma}{sub 0} can have significant dispersion on scales relevant for large scale structures. The values of {gamma}{sub 0} can be even smaller than 0.2 with large variations of {gamma} on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the {Lambda}-cold-dark-matter ({Lambda}CDM) model in future high-precision observations.

  19. Approximate Coulomb distortion effects in (e,e{sup {prime}}p) reactions

    SciTech Connect

    Kim, K.S.; Wright, L.E.

    1997-07-01

    In this paper we apply a well-tested approximation of electron Coulomb distortion effects to the exclusive reaction (e,e{sup {prime}}p) in the quasielastic region. We compare the approximate treatment of Coulomb distortion effects to the exact distorted wave Born approximation evaluated by means of partial wave analysis to gauge the quality of our approximate treatment. We show that the approximate Mo/ller potential has a plane-wave-like structure and hence permits the separation of the cross section into five terms which depend on bilinear products of transforms of the transition four current elements. These transforms reduce to Fourier transforms when Coulomb distortion is not present, but become modified with the inclusion of Coulomb distortion. We investigate the application of the approximate formalism to a model of {sup 208}Pb(e,e{sup {prime}}p) using Dirac-Hartree single particle wave functions for the ground state and relativistic optical model wave functions for the continuum proton. We show that it is still possible to extract, albeit with some approximation, the various structure functions from the experimentally measured data even for heavy nuclei. {copyright} {ital 1997} {ital The American Physical Society}

  20. Direct probe of the variability of Coulomb correlation in iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Vilmercati, P.; Cheney, C. Parks; Bondino, F.; Magnano, E.; Malvestuto, M.; McGuire, M. A.; Sefat, A. S.; Sales, B. C.; Mandrus, D.; Singh, D. J.; Johannes, M. D.; Mannella, N.

    2012-06-01

    We use core-valence-valence Auger spectra to probe the Coulomb repulsion between holes in the valence band of Fe pnictide superconductors. By comparing the two-hole final-state spectra to density functional theory calculations of the single-particle density of states, we extract a measure of the electron correlations that exist in these systems. Our results show that the Coulomb repulsion is highly screened and can definitively be considered as weak. We also find that there are differences between the 1111 and 122 families and even a small variation as a function of the doping x in Ba(Fe1-xCox)2As2. We discuss how the values of the hole-hole Coulomb repulsion obtained from our study relate to the onsite Coulomb parameter U used in model and first-principles calculations based on dynamical mean field theory and establish an upper bound for its effective value. Our results impose stringent constraints on model-based phase diagrams that vary with the quantity U or U/W by restricting the latter to a rather small range of values.

  1. Solution of D dimensional Dirac equation for coulombic potential using NU method and its thermodynamics properties

    SciTech Connect

    Cari, C. Suparmi, A. Yunianto, M. Husein, A. S.

    2016-02-08

    The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.

  2. Solution of D dimensional Dirac equation for coulombic potential using NU method and its thermodynamics properties

    NASA Astrophysics Data System (ADS)

    Cari, C.; Suparmi, A.; Yunianto, M.; Husein, A. S.

    2016-02-01

    The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.

  3. Photoelectron imaging as a probe of the repulsive Coulomb barrier in the photodetachment of antimony tartrate dianions

    NASA Astrophysics Data System (ADS)

    West, Christopher W.; Bull, James N.; Woods, David A.; Verlet, Jan R. R.

    2016-02-01

    A photoelectron imaging study of the text-book antimony tartrate dianion is presented. The vertical and adiabatic detachment energies are determined to be 2.5 ± 0.1 eV and 2.1 ± 0.2 eV, respectively. The photoelectron spectra exhibit a typical cut-off due to the presence of the repulsive Coulomb barrier (RCB) and the photoelectron images are highly anisotropic. Using a simple model for the RCB combined with classical molecular dynamics simulations, the photoelectron images were calculated and compared with experiment. Very good overall agreement between the simulations and experiments was achieved when the photodetachment occurs along a specific molecular axis.

  4. Density functional formulation of the random-phase approximation for inhomogeneous fluids: Application to the Gaussian core and Coulomb particles

    NASA Astrophysics Data System (ADS)

    Frydel, Derek; Ma, Manman

    2016-06-01

    Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, hλ(r ,r') , in which interactions λ u (r ,r') are gradually switched on as λ changes from 0 to 1. The function hλ(r ,r') is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed set. In the present work we use the closure cλ(r ,r') ≈-λ β u (r ,r') , known as the random-phase approximation (RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.

  5. Application of the complex scaling method in solving three-body Coulomb scattering problem

    NASA Astrophysics Data System (ADS)

    Lazauskas, R.

    2017-03-01

    The three-body scattering problem in Coulombic systems is a widespread, yet unresolved problem using the mathematically rigorous methods. In this work this long-term challenge has been undertaken by combining distorted waves and Faddeev–Merkuriev equation formalisms in conjunction with the complex scaling technique to overcome the difficulties related with the boundary conditions. Unlike the common belief, it is demonstrated that the smooth complex scaling method can be applied to solve the three-body Coulomb scattering problem in a wide energy region, including the fully elastic domain and extending to the energies well beyond the atom ionization threshold. A newly developed method is used to study electron scattering on the ground states of hydrogen and positronium atoms as well as a {e}++{{H}}({n}=1)\\rightleftarrows {{p}}+{Ps}({n}=1) reaction. Where available, obtained results are compared with the experimental data and theoretical predictions, proving the accuracy and efficiency of the newly developed method.

  6. Many-body effects of Coulomb interaction on Landau levels in graphene

    NASA Astrophysics Data System (ADS)

    Sokolik, A. A.; Zabolotskiy, A. D.; Lozovik, Yu. E.

    2017-03-01

    In strong magnetic fields, massless electrons in graphene populate relativistic Landau levels with the square-root dependence of each level energy on its number and magnetic field. Interaction-induced deviations from this single-particle picture were observed in recent experiments on cyclotron resonance and magneto-Raman scattering. Previous attempts to calculate such deviations theoretically using the unscreened Coulomb interaction resulted in overestimated many-body effects. This work presents many-body calculations of cyclotron and magneto-Raman transitions in single-layer graphene in the presence of Coulomb interaction, which is statically screened in the random-phase approximation. We take into account self-energy and excitonic effects as well as Landau level mixing, and achieve good agreement of our results with the experimental data for graphene on different substrates. The important role of a self-consistent treatment of the screening is found.

  7. Elastic Scattering and Reaction Mechanisms of the Halo Nucleus {sup 11}Be around the Coulomb Barrier

    SciTech Connect

    Di Pietro, A.; Figuera, P.; Papa, M.; Santonocito, D.; Randisi, G.; Scuderi, V.; Amorini, F.; Fisichella, M.; Lattuada, M.; Pellegriti, M. G.; Rizzo, F.; Scalia, G.; Torresi, D.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.; Vidal, A. Maira; Fraile, L. M.

    2010-07-09

    Collisions induced by {sup 9,10,11}Be on a {sup 64}Zn target at the same c.m. energy were studied. For the first time, strong effects of the {sup 11}Be halo structure on elastic-scattering and reaction mechanisms at energies near the Coulomb barrier are evidenced experimentally. The elastic-scattering cross section of the {sup 11}Be halo nucleus shows unusual behavior in the Coulomb-nuclear interference peak angular region. The extracted total-reaction cross section for the {sup 11}Be collision is more than double the ones measured in the collisions induced by {sup 9,10}Be. It is shown that such a strong enhancement of the total-reaction cross section with {sup 11}Be is due to transfer and breakup processes.

  8. Analytic model for low energy excitation states and phase transitions in spin-ice systems

    NASA Astrophysics Data System (ADS)

    López-Bara, F. I.; López-Aguilar, F.

    2017-04-01

    Low energy excitation states in magnetic structures of the so-called spin-ices are produced via spin flips among contiguous tetrahedra of their crystal structure. These spin flips generate entities which mimic magnetic dipoles in every two tetrahedra according to the dumbbell model. When the temperature increases, the spin-flip processes are transmitted in the lattice, generating so-called Dirac strings, which constitute structural entities that can present mimetic behavior similar to that of magnetic monopoles. In recent studies of both specific heat and ac magnetic susceptibility, two (even possibly three) phases have been shown to vary the temperature. The first of these phases presents a sharp peak in the specific heat and another phase transition occurs for increasing temperature whose peak is broader than that of the former phase. The sharp peak occurs when there are no free individual magnetic charges and temperature of the second phase transition coincides with the maximum proliferation of free deconfined magnetic charges. In the present paper, we propose a model for analyzing the low energy excitation many-body states of these spin-ice systems. We give analytical formulas for the internal energy, specific heat, entropy and their temperature evolution. We study the description of the possible global states via the nature and structure of their one-body components by means of the thermodynamic functions. Below 0.37 K, the Coulomb-like magnetic charge interaction can generate a phase transition to a condensation of pole–antipole pairs, possibly having Bose–Einstein structure which is responsible for the sharp peak of the first phase transition. When there are sufficient free positive and negative charges, the system tends to behave as a magnetic plasma, which implies the broader peak in the specific heat appearing at higher temperature than the sharper experimental peak.

  9. Dynamic stresses, coulomb failure, and remote triggering: corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes <1  MPa are capable of triggering seismicity at sites remote from the generating mainshock under appropriate conditions. Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10  km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.

  10. Phenomenological and semi-microscopic analysis for 16O and 12C elastically scattering on the nucleus of 16O and 12C at Energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Hamada, Sh; Burtebayev, N.; Amangeldi, N.; Gridnev, K. A.; Rusek, K.; Kerimkulov, Zh; Maltsev, N.

    2012-09-01

    The nuclear burning process proceeds from the conservation of the most abundant element hydrogen to helium, then from helium to carbon and oxygen, and then from these to heavier elements. Some of the key reactions for the carbon and oxygen burning stages of the nucleosynthesis are 12C+12C and 16O+16O leading to all possible final states. This paper contains the experimental measurements of 12C+12C and 16O+16O angular distributions performed at the cyclotron DC-60 in Astana, Kazakhstan. The extracted beam of 16O and 12C was accelerated up to two energies 1.75 and 1.5 MeV/n and then directed to an Al2O3 target of thickness 20 μg/cm2 and a carbon self-supporting target of thickness 17.4 μg/cm2. The angular distribution calculations were performed using both the phenomenological optical potential (SPI-GENOA) code and the double folding potential (FRESCO) code.

  11. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  12. Electron transport in discontinuous gold films and the effect of Coulomb blockade and percolation

    SciTech Connect

    Mueller, K.-H.; Yajadda, M. M. A.

    2012-06-15

    Understanding the electron transport in disordered assemblies of weakly coupled nano-sized metal clusters is important for many applications. Here, we investigate experimentally and theoretically the electron transport properties of metal cluster assemblies in the form of discontinuous gold films. Discontinuous films of different average island size are produced by sputter deposition, and the resistance and the non-linear current-voltage (I-V) characteristics of the films are measured as a function of temperature. To interpret the experimental electron transport data, a conduction percolation model is employed where broad probability distributions for both the tunnel junction gaps and the Coulomb blockade energies are used. Excellent agreement between experimental data and model calculations is found. In particular, the non-Arrhenius resistive behavior, the I-V power-law behavior, and the I-V characteristics at large bias voltage are all shown to be due to a conduction percolation mechanism governing disordered networks of nano-sized metal islands connected by tunnel junctions.

  13. Developing an Energy Performance Modeling Startup Kit

    SciTech Connect

    none,

    2012-10-01

    In 2011, the NAHB Research Center began assessing the needs and motivations of residential remodelers regarding energy performance remodeling. This report outlines: the current remodeling industry and the role of energy efficiency; gaps and barriers to adding energy efficiency into remodeling; and support needs of professional remodelers to increase sales and projects involving improving home energy efficiency.

  14. Rapid Energy Modeling Workflow Demonstration Project

    DTIC Science & Technology

    2014-01-01

    energy conservation measures, and to identify facilities that are in greatest need of improvement . In the last several years, it has become...energy conservation measures automatically, identify facilities that are in greatest need of improvement , and enhance scalability of energy evaluations...existing facilities, to compare tradeoffs between energy conservation measures, and to identify facilities that are in greatest need of improvement

  15. Strong Coulomb scattering effects on low frequency noise in monolayer WS2 field-effect transistors

    NASA Astrophysics Data System (ADS)

    Joo, Min-Kyu; Yun, Yoojoo; Yun, Seokjoon; Lee, Young Hee; Suh, Dongseok

    2016-10-01

    When atomically thin semiconducting transition metal dichalcogenides are used as a channel material, they are inevitably exposed to supporting substrates. This situation can lead to masking of intrinsic properties by undesired extrinsic doping and/or additional conductance fluctuations from the largely distributed Coulomb impurities at the interface between the channel and the substrate. Here, we report low-frequency noise characteristics in monolayer WS2 field-effect transistors on silicon/silicon-oxide substrate. To mitigate the effect of extrinsic low-frequency noise sources, a nitrogen annealing was carried out to provide better interface quality and to suppress the channel access resistance. The carrier number fluctuation and the correlated mobility fluctuation (CNF-CMF) model was better than the sole CNF one to explain our low-frequency noise data, because of the strong Coulomb scattering effect on the effective mobility caused by carrier trapping/detrapping at oxide traps. The temperature-dependent field-effect mobility in the four-probe configuration and the Coulomb scattering parameters are presented to support this strong Coulomb scattering effect on carrier transport in monolayer WS2 field-effect transistor.

  16. Early Design Energy Analysis Using Building Information Modeling Technology

    DTIC Science & Technology

    2011-11-01

    for building energy use are derived from several key Federal policy instruments. Key Federal laws and statutes that govern building energy use include...energy analysis The first step of energy modeling is to develop an energy model at the ma- cro level. It includes exploring different building shapes...own, how to export the necessary gbXML file, and how to use Green Building Studio™. Re- ports of their experience are due to CERL within a couple of

  17. Transport properties of an Aharonov-Bohm ring with strong interdot Coulomb interaction.

    PubMed

    Liu, Yu-Shen; Chen, Hao; Yang, Xi-Feng

    2007-06-20

    Based on the Keldysh Green's function technique and the equation-of-motion method, we investigate theoretically the electronic transport properties of an Aharonov-Bohm ring with embedded coupled double quantum dots connected to two electrodes in a symmetrical parallel configuration in the presence of strong interdot Coulomb interaction. Special attention is paid to the effects of the interdot Coulomb interaction on the transport properties. It has been shown numerically that the interdot Coulomb interaction gives rise to four electronic states in the ring. The quantum interferences between two strongly coupled electronic states and two weakly coupled ones lead to two Breit-Wigner and two Fano resonances in the linear conductance spectrum with the magnetic flux switched on or the imbalance between the energy levels of two quantum dots. The positions and shapes of the four resonances can be controlled by adjusting the magnetic flux through the device or energy levels of the two quantum dots. When the Fermi energy levels in the leads sweep across the weakly coupled electronic states, the negative differential conductance (NDC) is developed in the current-voltage characteristics for the non-equilibrium case.

  18. From simple to complex reactions: Nuclear collisions near the Coulomb barrier

    SciTech Connect

    Rehm, K.E.

    1992-12-01

    Collisions between two heavy nuclei produce a diverse spectrum of reaction modes which is much wider than that observed in light ion studies. For the latter case, two processes are observed: direct reactions and compound nucleus formation. Heavy ion reaction studies on the other hand have identified additional processes such as deep-inelastic scattering, incomplete fusion and quasi-fission reactions. While the boundaries between the various processes are usually not well defined, it is generally accepted that with increasing overlap of the two nuclei the interaction evolves from distant collisions where only elastic scattering and Coulomb excitation processes occur, through grazing-type collisions associated with quasi-elastic reactions to deep-inelastic and fusion-fission processes requiring a substantial nuclear overlap. Varying the bombarding energy is a convenient way to change the overlap of the two nuclei. Measurements of excitation functions can thus probe the onset and the interplay of the various reaction modes. Experiments at bombarding energies in the vicinity of the Coulomb barrier are particularly suited for comparisons with theoretical predictions since the small number of degrees of freedom involved in the interaction greatly simplifies the calculations. In the first part of this contribution a short overview is given on the status of heavy ion reaction studies at energies in the vicinity of the Coulomb barrier. In the second part two experiments, one involving simple and the other studying complex reactions, are discussed in more detail.

  19. From simple to complex reactions: Nuclear collisions near the Coulomb barrier

    SciTech Connect

    Rehm, K.E.

    1992-01-01

    Collisions between two heavy nuclei produce a diverse spectrum of reaction modes which is much wider than that observed in light ion studies. For the latter case, two processes are observed: direct reactions and compound nucleus formation. Heavy ion reaction studies on the other hand have identified additional processes such as deep-inelastic scattering, incomplete fusion and quasi-fission reactions. While the boundaries between the various processes are usually not well defined, it is generally accepted that with increasing overlap of the two nuclei the interaction evolves from distant collisions where only elastic scattering and Coulomb excitation processes occur, through grazing-type collisions associated with quasi-elastic reactions to deep-inelastic and fusion-fission processes requiring a substantial nuclear overlap. Varying the bombarding energy is a convenient way to change the overlap of the two nuclei. Measurements of excitation functions can thus probe the onset and the interplay of the various reaction modes. Experiments at bombarding energies in the vicinity of the Coulomb barrier are particularly suited for comparisons with theoretical predictions since the small number of degrees of freedom involved in the interaction greatly simplifies the calculations. In the first part of this contribution a short overview is given on the status of heavy ion reaction studies at energies in the vicinity of the Coulomb barrier. In the second part two experiments, one involving simple and the other studying complex reactions, are discussed in more detail.

  20. Three-body quantum Coulomb problem: Analytic continuation

    NASA Astrophysics Data System (ADS)

    Turbiner, A. V.; Lopez Vieyra, J. C.; Olivares Pilón, H.

    2016-08-01

    The second (unphysical) critical charge in the three-body quantum Coulomb system of a nucleus of positive charge Z and mass mp, and two electrons, predicted by Stillinger has been calculated to be equal to ZB∞ = 0.904854 and ZBmp = 0.905138 for infinite and finite (proton) mass mp, respectively. It is shown that in both cases, the ground state energy E(Z) (analytically continued beyond the first critical charge Zc, for which the ionization energy vanishes, to ReZ

  1. A new graphene composite with a high coulombic efficiency

    NASA Astrophysics Data System (ADS)

    Protich, Z.; Wong, P.; Santhanam, K. S. V.

    2016-11-01

    Zinc-graphene composite has been electrolytically produced for the first time using a graphene quantum dot (GQD) electrode. The electrochemical reduction of zinc ion at a GQD electrode is shifted to a lesser negative potential with the complimentary anodic peak due to the oxidation of the composite shifted towards a positive potential as compared to zinc ion reduction in the GQD bath. The coulombic efficiency of the composite represents a gain of nearly 10% over the conventional Zn/Zn2+ in the energy storage systems. In galvanostatic electrolysis, the deposition of zinc-graphene composite is carried out under neutral and acidic conditions. The X-ray diffraction of the electrolytically prepared composite shows distinct features of 2 theta reflection at 8° due to (001) plane of graphene, in addition to the characteristic reflections at 38.9°,43.2°, 54.3°, 70.1° and 90° arising from Zn at (002), (100), (101), (102) and (110). A large scale preparation of the zinc-graphene composite has been achieved at a zinc plate as the working electrode in the GQD bath. The composite is stable up to 250 °C. Scanning electron microscopic (SEM) and energy dispersion X-ray analysis (EDAX) shows a string like structure with peaks for carbon and zinc in EDAX.

  2. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    NASA Astrophysics Data System (ADS)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  3. Interatomic and intermolecular Coulombic decay: the coming of age story

    NASA Astrophysics Data System (ADS)

    Jahnke, T.

    2015-04-01

    In pioneering work by Cederbaum et al an excitation mechanism was proposed that occurs only in loosely bound matter (Cederbaum et al 1997 Phys. Rev. Lett. 79 4778): it turned out, that (in particular) in cases where a local Auger decay is energetically forbidden, an excited atom or molecule is able to decay in a scheme which was termed ‘interatomic Coulombic decay’ (or ‘intermolecular Coulombic decay’) (ICD). As ICD occurs, the excitation energy is released by transferring it to an atomic or molecular neighbor of the initially excited particle. As a consequence the neighboring atom or molecule is ionized as it receives the energy. A few years later the existence of ICD was confirmed experimentally (Marburger et al 2003 Phys. Rev. Lett. 90 203401; Jahnke et al 2004 Phys. Rev. Lett. 93 163401; Öhrwall et al 2004 Phys. Rev. Lett. 93 173401) by different techniques. Since this time it has been found that ICD is not (as initially suspected) an exotic feature of van der Waals or hydrogen bonded systems, but that ICD is a very general and common feature occurring after a manifold of excitation schemes and in numerous weakly bound systems, as revealed by more than 200 publications. It was even demonstrated, that ICD can become more efficient than a local Auger decay in some system. This review will concentrate on recent experimental investigations on ICD. It will briefly introduce the phenomenon and give a short summary of the ‘early years’ of ICD (a detailed view on this episode of investigations can be found in the review article by U Hergenhahn with the same title (Hergenhahn 2011 J. Electron Spectrosc. Relat. Phenom. 184 78)). More recent articles will be presented that investigate the relevance of ICD in biological systems and possible radiation damage of such systems due to ICD. The occurrence of ICD and ICD-like processes after different excitation schemes and in different systems is covered in the middle section: in that context the helium dimer (He2

  4. Coulomb gauge ghost Dyson-Schwinger equation

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2010-12-01

    A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum), which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until forced to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery picture of confinement is explored.

  5. Femtosecond Laser-Induced Coulomb Explosion Imaging

    NASA Astrophysics Data System (ADS)

    Karimi, Reza; Liu, Wing-Ki; Sanderson, Joseph

    2016-07-01

    We review recent progress in the field of Coulomb imaging using femtosecond laser pulses of variable length, referred to as Femtosecond Multiple Pulse Length Spectroscopy (FEMPULS). This method introduces a multi-dimensional approach to the study of the molecular dynamics of the multiply ionized triatomic molecules: CO2, OCS, and N2O. We describe the experimental setup used and the approaches needed to optimize the multi-particle detection, coincidence technique. The results show the degree of high resolution imaging which can be achieved with few cycle pulses, and how the onset of charge resonance enhanced ionization (CREI) can be observed as pulse length is increased. By coupling pulse length variation with Dalitz and Newton plotting techniques, stepwise processes can be identified for all three molecules, giving insight into the dynamics, particularly on the 3+ state, which has been revealed as the doorway state to CREI. Finally, in the case of OCS, pulse length variation is shown to have the potential as a control mechanism, as it modulates the ratio of stepwise to concerted processes.

  6. Multilevel Monte Carlo simulation of Coulomb collisions

    SciTech Connect

    Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.

    2014-10-01

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε{sup −2}) or O(ε{sup −2}(lnε){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε{sup −3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10{sup −5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  7. Correlation functions of Coulomb branch operators

    NASA Astrophysics Data System (ADS)

    Gerchkovitz, Efrat; Gomis, Jaume; Ishtiaque, Nafiz; Karasik, Avner; Komargodski, Zohar; Pufu, Silviu S.

    2017-01-01

    We consider the correlation functions of Coulomb branch operators in four-dimensional N = 2 Superconformal Field Theories (SCFTs) involving exactly one antichiral operator. These extremal correlators are the "minimal" non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt ∗ equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N = 2 SQCD.

  8. Multilevel Monte Carlo simulation of Coulomb collisions

    DOE PAGES

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; ...

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less

  9. Multilevel Monte Carlo simulation of Coulomb collisions

    SciTech Connect

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  10. Statefinder Diagnostic for the Yang-Mills Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Zhao, Wen

    We study the statefinder parameters in the Yang-Mills condensate dark energy models, and find that the evolving trajectories of these models are different from those of other dark energy models. We also define two eigenfunctions of the Yang-Mills condensate dark energy models. The values of these eigenfunctions are quite close to zero if the equation of state of the Yang-Mills condensate is not far from -1, which can be used to simply differentiate between the Yang-Mills condensate models and other dark energy models.

  11. Residential energy demand models: Current status and future improvements

    NASA Astrophysics Data System (ADS)

    Peabody, G.

    1980-12-01

    Two models currently used to analyze energy use by the residential sector are described. The ORNL model is used to forecast energy use by fuel type for various end uses on a yearly basis. The MATH/CHRDS model analyzes variations in energy expenditures by households of various socioeconomic and demographic characteristics. The essential features of the ORNL and MATH/CHRDS models are retained in a proposed model and integrated into a framework that is more flexible than either model. The important determinants of energy use by households are reviewed.

  12. Verification of Coulomb order in a storage ring

    SciTech Connect

    Hasse, Rainer W.

    1999-12-10

    We verify theoretically that the anomalous longitudinal temperature reduction of strongly electron cooled heavy ions in the ESR at very low density is explained by the fact that there is no intrabeam scattering and that the particles by their Coulomb repulsion cannot pass each other any more. At the achievable momentum spreads Coulomb order is reached at particle distances of the order of centimeters. It is also shown that under the given experimental conditions in the proton NAP-M experiment of 1980 intrabeam heating counteracts Coulomb order.

  13. Verification of Coulomb Order in a Storage Ring

    SciTech Connect

    Rainer W. Hasse

    1999-12-31

    We verify theoretically that the anomalous longitudinal temperature reduction of strongly electron cooled heavy ions in the ESR at very low density is explained by the fact that there is no intrabeam scattering and that the particles by their Coulomb repulsion cannot pass each other any more. At the achievable momentum spreads Coulomb order is reached at particle distances of the order of centimeters. It is also shown that under the given experimental conditions in the proton NAP-M experiment of 1980 intrabeam heating counteracts Coulomb order.

  14. Two-craft Coulomb formation study about circular orbits and libration points

    NASA Astrophysics Data System (ADS)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  15. A model for Long-term Industrial Energy Forecasting (LIEF)

    SciTech Connect

    Ross, M. ||; Hwang, R.

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  16. Analog Microcontroller Model for an Energy Harvesting Round Counter

    DTIC Science & Technology

    2012-07-01

    Technical Report ARWSB-TR-12012 Analog Microcontroller Model for an Energy Harvesting Round Counter Sara...YYYY) 06-06-2012 2. REPORT TYPE FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Analog Microcontroller Model for an Energy ... Microcontroller The greatest energy requirements of the round counter circuitry are associated with the Microchip PIC12LF1822 microcontroller [4]. An analog

  17. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  18. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    PubMed

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  19. Coulomb stress analysis of West Halmahera earthquake mw=7.2 to mount Soputan and Gamalama volcanic activities

    NASA Astrophysics Data System (ADS)

    Sinaga, G. H. D.; Zarlis, M.; Sitepu, M.; Prasetyo, R. A.; Simanullang, A.

    2017-02-01

    West Halmahera is the convergency of three plates, namely the Philippines plate, the Eurasian plate, and the Pasific plate. The location of the West Halmahera is located in the thress plates, so the Western Halmahera potentially earthquake-prone areas. Some events increased activity of Mount Soputan and Mount Gamalama preceded by a massive earthquake. This research was conducted in the BMKG Region I Medan. This research uses Coulomb Stress Model. Coulomb Stress Model was used to show increasing and decreasing stress consequence from earthquake in the area of West Halmahera. Data such as the earthquake magnitude, earthquake depth, and Focal Mechanism required as input models. The data obtained from BMKG, Global CMT, and PVMBG. The result of data analyzed show an increase in the coulomb stress distribution at Mount Soputan 0.023 bar and 0.007 bar in mountain Gamalama. This stress followed by increased volcanic activity of the mount Soputan and mount Gamalama with freatic eruption type.

  20. Laser-Driven Ultra-Relativistic Plasmas - Nuclear Fusion in Coulomb Shock Waves, Rouge Waves, and Background Matter

    DTIC Science & Technology

    2015-05-05

    non-relativistic matter , radiation, and dark energy components. - 10 - In application to astrophysics and cosmology, our theory can describe the...AND SUBTITLE LASER-DRIVEN ULTRA-RELATIVISTIC PLASMAS - NUCLEAR FUSION IN COULOMB SHOCK WAVES, ROUGE WAVES, AND BACKGROUND MATTER . 5a.  CONTRACT