Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.
2005-02-01
Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2{sub 1}{sup +} states in {sup 70,72,74}Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident {sup 6}Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global {sup 6}Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for {sup 74}Ge: although for {sup 70,72}Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for {sup 74}Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band.
NASA Astrophysics Data System (ADS)
Mukeru, B.; Lekala, M. L.
2016-08-01
In this paper we analyze the effects of the projectile resonances on the total, Coulomb, and nuclear breakup cross sections as well as on the Coulomb-nuclear interferences at different arbitrary incident energies. It is found that these resonances have non-negligible effects on the total, Coulomb, and nuclear breakup cross sections. Qualitatively, they have no effects on the constructiveness or destructiveness of the Coulomb-nuclear interferences. Quantitatively, we obtained that these resonances increase by 7.38%, 7.58%, and 20.30% the integrated total, Coulomb, and nuclear breakup cross sections, respectively at Elab=35 MeV . This shows that the nuclear breakup cross sections are more affected by the effects of the projectile resonances than their total and Coulomb breakup counterparts. We also obtain that the effects of the resonances on the total, Coulomb, and nuclear breakup cross sections decrease as the incident energy increases.
Dynamical effects in the Coulomb expansion following nuclear fragmentation
Chung, K.C.; Donangelo, R.; Schechter, H.
1987-09-01
The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.
Coulomb effects in low-energy nuclear fragmentation
NASA Technical Reports Server (NTRS)
Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah
1993-01-01
Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.
Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W
2016-01-22
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5 GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.
Alsing, P. M.; Huang, D. H.; Cardimona, D. A.; Apostolova, T.
2003-09-01
A many-body density-matrix theory is derived by including quasiparticle renormalization of kinetic energy and dipole coupling to an external electromagnetic field, as well as the screening and quantum-interference effects. This theory is applied to a three-level resonant asymmetric double-quantum-well system in which the ground subband is coupled to the upper tunneling-split doublet by a strong external electromagnetic field. By using this theory, the quasiparticle energy-level separations and off-diagonal radiative-decay coupling rates, absorption coefficient, refractive-index function, and scaled subband electron density are calculated as functions of incident photon energy. The effects of quasiparticle renormalization on the quantum interference between a pair of optically induced polarizations are analyzed. The quantum interference is shown to be robust against the Coulomb-interaction effect in the mean-field approximation. The roles played by the dephasing rate and electron density are explained.
Strong nuclear couplings as a source of Coulomb rainbow suppression
Keeley, N.; Alamanos, N.; Rusek, K.
2010-09-15
A recent measurement of the {sup 11}Be+{sup 64}Zn quasielastic scattering angular distribution exhibits a non-Fresnel-type pattern, in contrast to {sup 6}He+{sup 64}Zn elastic scattering but similar to that for the elastic scattering of {sup 6}He from heavy targets. We show by means of continuum discretized coupled-channels (CDCC) calculations that this unusual behavior of {sup 11}Be is caused by the much greater importance of nuclear coupling to the continuum in {sup 11}Be compared to {sup 6}He, where Coulomb dipole coupling is mainly responsible for the non-Fresnel-like shape, when present. We also show that the dynamic polarization potentials derived from the CDCC calculations seem to follow a universal form as a function of radius.
Evers, M.; Dasgupta, M.; Hinde, D. J.
2010-04-26
To understand the underlying physical processes that might lead to loss of quantum coherence, high precision quasi-elastic excitation functions at sub-barrier energies were measured. Results show transfer events to high excitation energies, which may be impossible to model in a coherent picture. This points to the need to explicitly include quantum decoherence in nuclear reaction models and ultimately to a new understanding of near Coulomb barrier nuclear reactions.
Proton radiography, nuclear cross sections and multiple Coulomb scattering
Sjue, Sky K.
2015-11-04
The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.
Coulomb and nuclear excitations of narrow resonances in 17Ne
NASA Astrophysics Data System (ADS)
Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.
2016-08-01
New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.
The interference effect of laser-assisted bremsstrahlung emission in Coulomb fields of two nuclei
NASA Astrophysics Data System (ADS)
Li, Ankang; Wang, Jiaxiang; Ren, Na; Wang, Pingxiao; Zhu, Wenjun; Li, Xiaoya; Hoehn, Ross; Kais, Sabre
2013-09-01
In this paper, the spontaneous bremsstrahlung emission from an electron scattered by two fixed nuclei in an intense laser field is investigated in detail based upon the Volkov state and the Dirac-Volkov propagator. It has been found that the fundamental harmonic spectrum from the electron radiation exhibits distinctive fringes, which is dependent not only upon the internucleus distance and orientation but also upon the initial energy of the electron and the laser intensity. By analyzing the differential cross section, we are able to explain these effects in terms of interference among the electron scattering by the nuclei. These results could have promising applications in probing the atomic or molecular dressed potentials in intense laser fields.
NASA Astrophysics Data System (ADS)
Chen, Wei; Khaliullin, Giniyat; Sushkov, Oleg P.
2009-09-01
The role of Coulomb disorder, either of extrinsic origin or introduced by dopant ions in undoped and lightly doped cuprates, is studied. We demonstrate that charged surface defects in an insulator lead to a Gaussian broadening of the angle-resolved photoemisson spectroscopy (ARPES) lines. The effect is due to the long-range nature of the Coulomb interaction. A tiny surface concentration of defects about a fraction of one percent is sufficient to explain the line broadening observed in Sr2CuO2Cl2 , La2CuO4 , and Ca2CuO2Cl2 . Due to the Coulomb screening, the ARPES spectra evolve dramatically with doping, changing their shape from a broad Gaussian form to narrow Lorentzian ones. To understand the screening mechanism and the line-shape evolution in detail, we perform Hartree-Fock simulations with random positions of surface defects and dopant ions. To check validity of the model we calculate the nuclear quadrupole resonance (NQR) line shapes as a function of doping and reproduce the experimentally observed NQR spectra. Our study also indicates opening of a substantial Coulomb gap at the chemical potential. For a surface CuO2 layer the value of the gap is on the order of 10 meV while in the bulk it is reduced to the value about a few meV.
An astrophysical engine that stores gravitational work as nuclear Coulomb energy
NASA Astrophysics Data System (ADS)
Clayton, Donald
2014-03-01
I describe supernovae gravity machines that store large internal nuclear Coulomb energy, 0.80Z2A- 1 / 3MeV per nucleus. Excess of it is returned later by electron capture and positron emission. Decay energy manifests as (1) observable gamma-ray lines (2) light curves of supernovae (3) chemical energy of free carbon dissociated from CO molecules (4) huge abundances of radiogenic daughters. I illustrate by rapid silicon burning, a natural epoch in SN II. Gravitational work produces the high temperatures that photoeject nucleons and alpha particles from heavy nuclei. These are retained by other nuclei to balance photoejection rates (quasiequilibrium). The abundance distribution adjusts slowly as remaining abundance of Z = N 28Si decomposes, so p, n, α recaptures hug the Z = N line. This occurs in milliseconds, too rapidly for weak decay to alter bulk Z/N ratio. The figure displays those quasiequilibrium abundances color-coded to their decays. Z = N = 2k nuclei having k < 11 are stable, whereas k > 10 are radioactive owing to excess Coulomb energy. Weak decays radiate that excess energy weeks later to fuel the four macroscopic energetic phenomena cited. How startling to think of the Coulomb nuclear force as storing cosmic energy and its weak decay releasing macroscopic activation to SNII.
Impact of nuclear dynamics on interatomic Coulombic decay in a He dimer
Sisourat, Nicolas; Kryzhevoi, Nikolai V.; Cederbaum, Lorenz S.; Kolorenc, Premysl; Scheit, Simona
2010-11-15
After simultaneous ionization and excitation of one helium atom within the giant weakly bound helium dimer, the excited ion can relax via interatomic Coulombic decay (ICD) and the excess energy is transferred to ionize the neighboring helium atom. We showed [Sisourat et al. Nature Phys. 6, 508 (2010)] that the distributions of the kinetic energy released by the two ions reflect the nodal structures of the ICD-involved vibrational wave functions. We also demonstrated that energy transfer via ICD between the two helium atoms can take place over more than 14 A. We report here a more detailed analysis of the ICD process and of the impact of the nuclear dynamics on the electronic decay. Nonadiabatic effects during the ICD process and the accuracy of the potential energy curve of helium dimer and of the computed decay rates are also investigated.
Hestand, Nicholas J.; Spano, Frank C.
2015-12-28
The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.
Hestand, Nicholas J; Spano, Frank C
2015-12-28
The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product teth and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in "null-aggregates" which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.
Coulomb Corrections in Deep Inelastic Scattering and the Nuclear Dependence of R =σL /σT
NASA Astrophysics Data System (ADS)
Gaskell, David
2011-04-01
Measurements of Deep Inelastic structure functions from nuclei are typically performed at very high energies, hence effects from the Coulombic acceleration or deceleration of the incident and scattered lepton due to additional protons in a heavy nucleus are typically ignored. However, re-analysis of data taken at SLAC from experiments E140 and E139 indicates that the effect of including Coulomb corrections, while not large, is non-zero and impacts the extracted results non-trivially. In particular, there is a significant impact when these data are used to extrapolate the magnitude of the EMC effect to nuclear matter. In addition, the conclusion from E140 that there is no evidence for a nuclear dependence of R =σL /σT is thrown into question. When combined with recent data from Jefferson Lab, RA -RD at x = 0 . 5 is found to differ from zero by two σ.
Last, Isidore; Jortner, Joshua
2004-11-01
In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for I< or =10(17) W cm(-2)), and the attainment of cluster vertical ionization (CVI) (at I=10(17) W cm(-2) for cluster radius R(0)< or =31 A). Nuclear kinematic effects on heterocluster Coulomb explosion are governed by the kinematic parameter eta=q(C)m(A)/q(A)m(C) for (CA(4))(n) clusters (A=H,D), where q(j) and m(j) (j=A,C) are the ionic charges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)< or
Last, Isidore; Jortner, Joshua
2004-11-01
In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for I< or =10(17) W cm(-2)), and the attainment of cluster vertical ionization (CVI) (at I=10(17) W cm(-2) for cluster radius R(0)< or =31 A). Nuclear kinematic effects on heterocluster Coulomb explosion are governed by the kinematic parameter eta=q(C)m(A)/q(A)m(C) for (CA(4))(n) clusters (A=H,D), where q(j) and m(j) (j=A,C) are the ionic charges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)< or
Nuclear Outsourcing of RNA Interference Components to Human Mitochondria
Bandiera, Simonetta; Rüberg, Silvia; Girard, Muriel; Cagnard, Nicolas; Hanein, Sylvain; Chrétien, Dominique; Munnich, Arnold; Lyonnet, Stanislas; Henrion-Caude, Alexandra
2011-01-01
MicroRNAs (miRNAs) are small non-coding RNAs that associate with Argonaute proteins to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in other cellular compartments. Mitochondria harbour their own genetic system that may be a potential site for miRNA mediated post-transcriptional regulation. We aimed at investigating whether nuclear-encoded miRNAs can localize to and function in human mitochondria. To enable identification of mitochondrial-enriched miRNAs, we profiled the mitochondrial and cytosolic RNA fractions from the same HeLa cells by miRNA microarray analysis. Mitochondria were purified using a combination of cell fractionation and immunoisolation, and assessed for the lack of protein and RNA contaminants. We found 57 miRNAs differentially expressed in HeLa mitochondria and cytosol. Of these 57, a signature of 13 nuclear-encoded miRNAs was reproducibly enriched in mitochondrial RNA and validated by RT-PCR for hsa-miR-494, hsa-miR-1275 and hsa-miR-1974. The significance of their mitochondrial localization was investigated by characterizing their genomic context, cross-species conservation and instrinsic features such as their size and thermodynamic parameters. Interestingly, the specificities of mitochondrial versus cytosolic miRNAs were underlined by significantly different structural and thermodynamic parameters. Computational targeting analysis of most mitochondrial miRNAs revealed not only nuclear but also mitochondrial-encoded targets. The functional relevance of miRNAs in mitochondria was supported by the finding of Argonaute 2 localization to mitochondria revealed by immunoblotting and confocal microscopy, and further validated by the co-immunoprecipitation of the mitochondrial transcript COX3. This study provides the first comprehensive view of the localization of RNA interference components to the mitochondria. Our data outline the molecular
Bystritskiy, Yu. M.; Guskov, A. V.; Pervushin, V. N.; Volkov, M. K.
2009-12-01
The charge pion polarizability is calculated in the Nambu-Jona-Lasinio model, where the quark loops (in the mean field approximation) and the meson loops (in the 1/N{sub c} approximation) are taken into account. We show that quark loop contribution dominates because the meson loops strongly conceal each other. The sigma-pole contribution (m{sub {sigma}}{sup 2}-t){sup -1} plays the main role and contains strong t-dependence of the effective pion polarizability at the region |t|{>=}4M{sub {pi}}{sup 2}. Possibilities of experimental test of this sigma-pole effect in the reaction of Coulomb nuclear scattering are estimated for the COMPASS experiment.
NASA Astrophysics Data System (ADS)
Malakar, Y.; Kaderiya, B.; Pearson, W. L.; Ziaee, F.; Kanaka Raju, P.; Zohrabi, M.; Jensen, K.; Rajput, J.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.
2016-05-01
Halomethanes have recently attracted considerable attention since they often serve as prototype systems for laser-controlled chemistry (e.g., selective bond breaking or concerted elimination reactions), and are important molecules in atmospheric chemistry. Here we combine a femtosecond laser pump-probe setup with coincident 3D ion momentum imaging apparatus to study strong-field induced nuclear dynamics in methane and several of its halogenated derivatives (CH3 I, CH2 I2, CH2 ICl). We apply a time-resolved Coulomb explosion imaging technique to map the nuclear motion on both, bound and continuum potential surfaces, disentangle different fragmentation pathways and, for halogenated molecules, observe clear signatures of vibrational wave packets in neutral or ionized states. Channel-selective and kinetic-energy resolved Fourier analysis of these data allows for unique identification of different electronic states and vibrational modes responsible for a particular structure. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE. K. R. P. and W. L. P. supported by NSF Award No. IIA-143049. K.J. supported by the NSF-REU Grant No. PHYS-1461251.
The Coulomb Dissociation of {sup 8}B: A New Tool in Nuclear Astrophysics
Gai, Moshe
2008-01-24
The GSI1, GSI2 (as well as the RIKEN2 and the corrected GSI2) measurements of the Coulomb Dissociation (CD) of {sup 8}B are in good agreement with the most recent Direct Capture (DC) {sup 7}Be(p,{gamma}){sup 8}B reaction measurement performed at Weizmann and in agreement with the Seattle result. Yet it was claimed that the CD and DC results are sufficiently different and need to be reconciled. We show that these statements arise from a misunderstanding (as well as misrepresentation) of CD experiments. We recall a similar strong statement questioning the validity of the CD method due to an invoked large E2 component that was also shown to arise from a misunderstanding of the CD method. In spite of the good agreement between DC and CD data the slope of the astrophysical cross section factor (S{sub 17}) can not be extracted with high accuracy due to discrepancies among the most recent DC data as well as a discrepancies among the three reports of the GSI CD data. The slope is directly related to the d-wave component that dominates at higher energies. This d-wave component must be subtracted from measured data to extrapolate to zero energy. Hence the uncertainty of the measured slope leads to an additional downward uncertainty ({sub -3.0}{sup +0.0} eV-b) of the extrapolated zero energy cross section factor, S{sub 17}(0). Such an uncertainty is also consistent with the smaller value of S{sub 17}(0) extracted using the ANC method. This uncertainty must be alleviated by future experiments to allow a precise determination of S{sub 17}(0), a goal that so far has not be achieved in spite of strong statement(s) that appeared in the literature.
NASA Astrophysics Data System (ADS)
Malakar, Y.; Zohrabi, M.; Pearson, W. L.; Kaderiya, B.; Kanaka Raju, P.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.
2015-05-01
As a prototypical polyatomic system with well-studied photodissociation dynamics, the iodomethane molecule (CH3I) has recently been used to test novel quantum control schemes, and to investigate charge transfer processes after X-ray absorption. These applications require a detailed understanding of CH3I behavior in intense laser pulses. Here we present the results of a time-resolved Coulomb explosion imaging experiment that maps both, bound and dissociating nuclear wave packets in singly and doubly charged ionic states of CH3I. Measuring energies and emission angles of coincident ionic fragments as a function of time delay between two 25 fs, 800 nm pump and probe pulses, we track the propagation of different dissociation pathways, vibrational motion of the molecule and its impulsive alignment. In particular, a periodic (~ 130 fs) feature in the delay-dependent ion energy spectra can be assigned to C-I stretching vibrations in the two lowest cationic states, and exhibits intriguing correlation with the oscillations observed in the laser pump/X-ray probe experiment on charge transfer at LCLS. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Science, Office of Science, U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
Narozhny, B. N.; Levchenko, A.
2016-04-01
Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.
ERIC Educational Resources Information Center
Fay, Temple H.
2012-01-01
Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…
Experimental and evaluated nuclear plus interference cross sections for light charged particles
Perkins, S.T.; Cullen, D.E.
1980-07-04
Experimental and evaluated integral parameters derived from nuclear plus interference differential elastic scattering cross sections are presented for all projectile/target combinations of the particles p, d, t, /sup 3/He, and ..cap alpha... The data include reaction rates, average fractional energy losses per collision and per unit path length, and average laboratory scattering cosines. The resulting parameters are of potential use in analysis of charged-particle transport.
Elastic scattering of Beryllium isotopes near the Coulomb barrier
Di Pietro, A.; Figuera, P.; Amorini, F.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Papa, M.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.
2011-10-28
In this contribution, results of experiments performed with the three Beryllium isotopes {sup 9,10,11}Be on a medium mass {sup 64}Zn target, at a center of mass energy of {approx_equal}1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the {sup 9,10}Be reactions. In the {sup 11}Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the {sup 11}Be case could be attributed to transfer and/or break-up events.
Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe
2015-04-07
Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.
Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong
2015-04-01
Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.
Baker, S; Robinson, J S; Lein, M; Chirilă, C C; Torres, R; Bandulet, H C; Comtois, D; Kieffer, J C; Villeneuve, D M; Tisch, J W G; Marangos, J P
2008-08-01
We report a new dynamic two-center interference effect in high-harmonic generation from H2, in which the attosecond nuclear motion of H2+ initiated at ionization causes interference to be observed at lower harmonic orders than would be the case for static nuclei. To enable this measurement we utilize a recently developed technique for probing the attosecond nuclear dynamics of small molecules. The experimental results are reproduced by a theoretical analysis based upon the strong-field approximation which incorporates the temporally dependent two-center interference term.
Distorted Coulomb field of the scattered electron
Thomsen, H. D.; Esberg, J.; Andersen, K. K.; Lund, M. D.; Knudsen, H.; Uggerhoej, U. I.; Sona, P.; Mangiarotti, A.; Ketel, T. J.; Dizdar, A.; Ballestrero, S.; Connell, S. H.
2010-03-01
Experimental results for the radiation emission from ultrarelativistic electrons in targets of 0.03%-5% radiation length is presented. For the thinnest targets, the radiation emission is in accordance with the Bethe-Heitler formulation of bremsstrahlung, the target acting as a single scatterer. In this regime, the radiation intensity is proportional to the thickness. As the thickness increases, the distorted Coulomb field of the electron that is the result of the first scattering events, leads to a suppressed radiation emission per interaction, upon subsequent scattering events. In that case, the radiation intensity becomes proportional to a logarithmic function of the thickness, due to the suppression. Eventually, once the target becomes sufficiently thick, the entire radiation process becomes influenced by multiple scattering and the radiation intensity is again proportional to the thickness, but with a different constant of proportionality. The observed logarithmic thickness dependence of radiation intensity at intermediate values of the thickness can be directly interpreted as a manifestation of the distortion of the electron Coulomb field resulting from a scattering event. The Landau-Pomeranchuk-Migdal effect is explored with high primary energy using materials with low nuclear charge (Z). Also, targets that should give rise to the claimed interference effect in high-energy radiation emission from a structured target of thin foils are investigated.
Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.
2014-01-01
RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428
Fan, N.Q.; Clarke, J.
1993-10-19
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.
Fan, Non Q.; Clarke, John
1993-01-01
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-01
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. PMID:26503739
NASA Technical Reports Server (NTRS)
Derrickson, J. H.; Eby, P. B.; Fountain, W. F.; Parnell, T. A.; Dong, B. L.; Gregory, J. C.; Takahashi, Y.; King, D. T.
1988-01-01
Measurements and theoretical predictions of the Coulomb cross section for the production of direct electron pairs by heavy ions in emulsion have been performed. Nuclear track emulsions were exposed to the 1.8 GeV/amu Fe-56 beam at the Lawrence Berkeley Laboratory bevalac and to the 60 and 200 GeV/amu O-16 and the 200 GeV/amu S-32 beam at the European Center for Nuclear Research Super Proton Synchrotron modified to accelerate heavy ions. The calculations combine the Weizsacker-Williams virtual quanta method applicable to the low-energy transfers and the Kelner-Kotov relativistic treatment for the high-energy transfers. Comparison of the measured total electron pair yield, the energy transfer distribution, and the emission angle distribution with theoretical predictions revealed a discrepancy in the frequency of occurrence of the low-energy pairs (less than or = 10 MeV). The microscope scanning criteria used to identify the direct electron pairs is described and efforts to improve the calculation of the cross section for pair production are also discussed.
Vinante, A. Falferi, P.; Mezzena, R.
2014-10-15
Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.
Vinante, A; Mezzena, R; Falferi, P
2014-10-01
Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from (1)H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.
NASA Astrophysics Data System (ADS)
DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta
2012-06-01
Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.
NASA Astrophysics Data System (ADS)
Tseng, Tung-Tse
In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a
Effects of orbital and spin current interference in E1 and M2 nuclear excitations
Goncharova, N. G.
2015-12-15
The interference of contributions from the orbital and spin currents to the E1 and M2 resonances is investigated. The results of the current interference analysis within the shell model are compared with the experimental data.
Sun, Zhen; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru
2011-06-10
Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.
ERIC Educational Resources Information Center
Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg
1998-01-01
Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
Coulomb Interactions in Hanbury Brown-Twiss Experiments with Electrons
ERIC Educational Resources Information Center
Shen, Kan
2009-01-01
This dissertation examines the effect of Coulomb interactions in Hanbury Brown-Twiss (HBT) type experiments with electrons. HBT experiments deal with intensity interference, which is related to the second-order correlation function of the particle field. This is an extension of the usual amplitude interference experiment, such as Young's…
New approach to folding with the Coulomb wave function
Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.
2015-05-15
Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.
Nuclear-wave-packet dynamics mapped out by two-center interference in the HeH2+ molecule
NASA Astrophysics Data System (ADS)
Schüler, M.; Pavlyukh, Y.; Berakdar, J.
2014-06-01
Photoemission from diatomic molecules closely resembles the Young-type double-slit experiment where each of the two atomic sites represents a coherent emission source. When the photoelectron wavelength becomes commensurate with the effective interatomic distance, the resulting spatial interference gives rise to oscillations in the photoionization total and differential cross sections. This phenomenon provides detailed information on the molecular geometry, a fact that can be utilized for probing the nuclear dynamics triggered by the interaction with a laser field. We demonstrate how this coherent wave-packet evolution can be traced by observing the photoelectron angular distribution. Based on ab initio scattering calculations we perform a proof-of-principle reconstruction of the nuclear-wave-packet evolution in the HeH2+ molecule.
Riccio, J.A.; Maturani, D.; Wright, J.; Fleetwood, M.K. )
1990-11-01
The administration of radioisotopes for diagnostic nuclear medicine scans and therapeutic procedures is quite prevalent today. A period of interference with the counting of a radioimmunoassay (RIA) test may occur with the serum of a patient receiving an in vivo radionuclide that decays by gamma emission. Because the logistics of precounting all specimens may be cumbersome and prohibitive, it is important to determine the degree of this interference. In this study, the authors evaluate the potential interference of the most commonly used radioisotopes with RIA studies. For two months (March and August 1988) 10,650 patient serum specimens were counted for significant background gamma radiation before RIA testing. Forty-three patients, on whom 105 RIA tests were performed, were identified as having preassay gamma radiation in their serum. With the use of selective energy windows for each different interfering radionuclide, proportional determinations were made as to the amount of interfering gamma radiation spilling into the iodine 125 test marker window. It was shown that initial whole serum pretest gamma counts as high as 111,000 counts/minute did not significantly affect the results of the RIA. Because of the meticulous washing and decanting procedures required in modern RIA and the monoclonal nature of most antibodies used currently, it appears the degree of nonspecific binding of this potentially interfering radiation is minuscule. The energy level of cobalt 57, however, and many of the other commonly used radioisotopes, overlaps so closely that it is difficult to window for this interference. It is possible, therefore, that this distinction cannot be made and folate and vitamin B12 test systems using cobalt 57 markers may have to be routinely prescreened.
Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.; Mukhamedzhanov, A. M.
2008-12-05
We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures.
Interatomic Coulombic decay in nanodroplets
NASA Astrophysics Data System (ADS)
Sisourat, Nicolas
2014-05-01
Interatomic (molecular) Coulombic decay (ICD) is an ultrafast non-radiative electronic decay process for excited atoms or molecules embedded in a chemical environment. Via ICD, the excited system can get rid of the excess energy, which is transferred to one of the neighbors and ionize it. ICD produces two charged particles next to each other and thus leads to Coulomb explosion. Kinetic energy distribution of the ionic fragments gives information on the dynamics of the decay process. From the theoretical point of view general quantum mechanical equations for describing the decay processes and the subsequent fragmentations are known but are only applicable for rather small systems. During the presentation, a semiclassical approach for modeling ICD and the subsequent fragmentations will be presented. This approach involves a classical treatment for the nuclear motion while retaining a quantum description for the electron dynamics. Such approach has low computational costs and can be used to study much larger systems. Comparison of the results from semiclassical and from quantum mechanical calculations will be shown for simple systems, demonstrating the good performance of the semiclassical method. Results on ICD in nanodroplets will finally be reported.
NASA Astrophysics Data System (ADS)
Seidlitz, M.; Mücher, D.; Reiter, P.; Bildstein, V.; Blazhev, A.; Bree, N.; Bruyneel, B.; Cederkäll, J.; Clement, E.; Davinson, T.; Van Duppen, P.; Ekström, A.; Finke, F.; Fraile, L. M.; Geibel, K.; Gernhäuser, R.; Hess, H.; Holler, A.; Huyse, M.; Ivanov, O.; Jolie, J.; Kalkühler, M.; Kotthaus, T.; Krücken, R.; Lutter, R.; Piselli, E.; Scheit, H.; Stefanescu, I.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.
2011-06-01
The ground state properties of 31Mg indicate a change of nuclear shape at N = 19 with a deformed Jπ = 1 /2+ intruder state as a ground state, implying that 31Mg is part of the "island of inversion". The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31Mg beam. De-excitation γ-rays were detected by the MINIBALL γ-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of 31Mg was extended. Spin and parity assignment of the 945 keV state yielded 5 /2+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32Mg establishes that for the N = 19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.
Maj, Radoslaw; Mrowczynski, Stanislaw
2009-09-15
The correlation function of two identical particles - pions or kaons - interacting via Coulomb potential is computed. The particles are emitted from an anisotropic particle's source of finite lifetime. In the case of pions, the effect of halo is taken into account as an additional particle's source of large spatial extension. The relativistic effects are discussed in detail. The Bowler-Sinyukov procedure to remove the Coulomb interaction is carefully tested. In the absence of halo the procedure is shown to work very well even for an extremely anisotropic source. When the halo is taken into account the free correlation function, which is extracted by means of the Bowler-Sinyukov procedure, is distorted at small relative momenta but the source parameters are still correctly reproduced.
Insights into Nuclear Triaxiality from Interference Effects in E2 Matrix Elements
NASA Astrophysics Data System (ADS)
Allmond, J. M.; Wood, J. L.; Kulp, W. D.
2007-10-01
Recently, we have introduced [1] a triaxial rotor model with independent inertia and E2 tensors. The E2 matrix elements [2] of the osmium isotopes (186, 188, 190, and 192) are studied in the framework of this model (59 of 84 E2 matrix elements deviate by 30% or less). It is shown that interference effects in the inertia tensor (K-mixing) and the E2 tensor can lead to significant reductions in the diagonal E2 matrix elements. In some instances, the diagonal E2 matrix elements may decrease with increasing spin. Additionally, a sum rule for diagonal E2 matrix elements is shown and used to explore missing strength from K-admixtures. [1] J.L. Wood, A-M. Oros-Peusquens, R. Zaballa, J.M. Allmond, and W.D. Kulp, Phys. Rev. C 70, 024308 (2004). [2] C.Y. Wu, D. Cline, T. Czosnyka, A. Backlin, C. Baktash, R.M. Diamond, G.D. Dracoulis, L. Hasselgren, H. Kluge, et al., Nucl. Phys. A607, 178 (1996).
Polonyi, J.
2008-06-15
The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.
... NIGMS Home > Science Education > RNA Interference Fact Sheet RNA Interference Fact Sheet Tagline (Optional) Middle/Main Content Area What is RNA interference? RNA interference (RNAi) is a natural process ...
Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; Steiner, Robert E.
2015-09-04
Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.
Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; Steiner, Robert E.
2015-09-04
Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope ^{234}U and ^{236}U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.
Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.
1998-10-22
Storage rings and Penning traps are being used to study ions in their highest charge states. Both devices must have the capability for ion cooling in order to perform high precision measurements such as mass spectrometry and laser spectroscopy. This is accomplished in storage rings in a merged beam arrangement where a cold electron beam moves at the speed of the ions. In RETRAP, a Penning trap located at Lawrence Livermore National Laboratory, a sympathetic laser/ion cooling scheme has been implemented. In a first step, singly charged beryllium ions are cooled electronically by a tuned circuit and optically by a laser. Then hot, highly charged ions are merged into the cold Be plasma. By collisions, their kinetic energy is reduced to the temperature of the Be plasma. First experiments indicate that the highly charged ions form a strongly coupled plasma with a Coulomb coupling parameter.
Energies of Screened Coulomb Potentials.
ERIC Educational Resources Information Center
Lai, C. S.
1979-01-01
This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Heyde, K.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.
2013-01-01
The radioactive isotope 107In was studied using sub-barrier Coulomb excitation at the REX-ISOLDE facility at CERN. Two γ rays were observed during the experiment, corresponding to the low-lying 11/2+ and 3/2- states. The reduced transition probability of the 11/2+ state was determined with the semiclassical Coulomb excitation code gosia2. The result is discussed in comparison to large-scale shell-model calculations, previous unified-model calculations, and earlier Coulomb excitation measurements in the odd-mass In isotopes.
Ionic Coulomb Blockade in Nanopores
Krems, Matt; Di Ventra, Massimiliano
2014-01-01
Understanding the dynamics of ions in nanopores is essential for applications ranging from single-molecule detection to DNA sequencing. We show both analytically and by means of molecular dynamics simulations that under specific conditions ion-ion interactions in nanopores lead to the phenomenon of ionic Coulomb blockade, namely the build-up of ions inside a nanopore with specific capacitance impeding the flow of additional ions due to Coulomb repulsion. This is the counterpart of electronic Coulomb blockade observed in mesoscopic systems. We discuss the analogies and differences with the electronic case as well as experimental situations in which this phenomenon could be detected. PMID:23307655
Coulomb interactions and fermion condensation
Capstick, S.; Cutkosky, R.E.; Joensen, M.A. ); Wang, K.C. )
1990-08-15
The influence of the Coulomb interaction in states containing massless and flavorless fermion-antifermion pairs is studied, using a continuum formulation within the finite volume {ital S}{sup 3}. Several different forms for the Coulomb interaction are examined, including confining potentials as well as nonconfining potentials. The calculations show that if the interaction is strong enough, the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral character. The condensation does not depend on whether the interaction is confining. It is found that simplified variational approximations are not accurate enough for an adequate description of the states.
Coulomb explosion of "hot spot"
NASA Astrophysics Data System (ADS)
Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.
2016-09-01
The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.
Renormalization in Coulomb gauge QCD
Andrasi, A.; Taylor, John C.
2011-04-15
Research Highlights: > The Hamiltonian in the Coulomb gauge of QCD contains a non-linear Christ-Lee term. > We investigate the UV divergences from higher order graphs. > We find that they cannot be absorbed by renormalization of the Christ-Lee term. - Abstract: In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.
Coulomb gap at finite temperatures
NASA Astrophysics Data System (ADS)
Sarvestani, Masoud; Schreiber, Michael; Vojta, Thomas
1995-08-01
The Coulomb glass, a model of interacting localized electrons in a random potential, exhibits a soft gap, the Coulomb gap, in the single-particle density of states (DOS) g(ɛ,T) close to the chemical potential μ. In this paper we investigate the Coulomb gap at finite temperatures T by means of a Monte Carlo method. We find that the Coulomb gap fills with increasing temperature. In contrast to previous results the temperature dependence is, however, much stronger than g(μ,T)~TD-1 as predicted analytically. It can be described by power laws with the exponents 1.75+/-0.1 for the two-dimensional model and 2.7+/-0.1 for the three-dimensional model. Nevertheless, the relation g(μ,T)~g(ɛ,T=0) with ||ɛ-μ||=kBT seems to be valid, since energy dependence of the DOS at low temperatures has also been found to follow power laws with these exponents.
Entropic Corrections to Coulomb's Law
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Sheykhi, A.
2012-04-01
Two well-known quantum corrections to the area law have been introduced in the literatures, namely, logarithmic and power-law corrections. Logarithmic corrections, arises from loop quantum gravity due to thermal equilibrium fluctuations and quantum fluctuations, while, power-law correction appears in dealing with the entanglement of quantum fields in and out the horizon. Inspired by Verlinde's argument on the entropic force, and assuming the quantum corrected relation for the entropy, we propose the entropic origin for the Coulomb's law in this note. Also we investigate the Uehling potential as a radiative correction to Coulomb potential in 1-loop order and show that for some value of distance the entropic corrections of the Coulomb's law is compatible with the vacuum-polarization correction in QED. So, we derive modified Coulomb's law as well as the entropy corrected Poisson's equation which governing the evolution of the scalar potential ϕ. Our study further supports the unification of gravity and electromagnetic interactions based on the holographic principle.
Li, Rong; Liang, Hong-Ying; Li, Ming-Yong; Lin, Chun-Yan; Shi, Meng-Jie; Zhang, Xiu-Juan
2014-01-01
Fisetin is an effective compound extracted from lacquer which has been used in the treatment of various diseases. Preliminary data indicate that it also exerts specific anti-cancer effects. However, the manner in which fisetin regulates cancer growth remains unknown. In this study, we elucidated interference of fisetin with targets of the nuclear factorκB signal transduction pathway activated by Epstein-Barr virus encoding latent membrane protein 1 (LMP1)in nasopharyngeal carcinoma (NPC) cells, Results showed that fisetin inhibited the survival rate of CNE-LMP1 cells and NF-κB activation caused by LMP1. Fisetin also suppressed nuclear translocation of NF-κB (p65) and IκBα phosphorylation, while inhibiting CyclinD1, all key targets of the NF-κB signal transduction pathway. It was suggested that interference effects of fisetin with signal transduction activated by LMP1 encoded by the Epstein-Barr virus may play an important role in its anticancer potential.
Coulomb drag in quantum circuits.
Levchenko, Alex; Kamenev, Alex
2008-11-21
We study the drag effect in a system of two electrically isolated quantum point contacts, coupled by Coulomb interactions. Drag current exhibits maxima as a function of quantum point contacts gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the nonlinear regime the drag current is proportional to the shot noise of the driving circuit, suggesting that the Coulomb drag experiments may be a convenient way to measure the quantum shot noise. Remarkably, the transition to the nonlinear regime may occur at driving voltages substantially smaller than the temperature.
NASA Astrophysics Data System (ADS)
Körber, R.; Casey, A.; Shibahara, A.; Piscitelli, M.; Cowan, B. P.; Lusher, C. P.; Saunders, J.; Drung, D.; Schurig, Th.
2007-10-01
We describe a compact system for pulsed nuclear magnetic resonance at ultralow magnetic fields on small liquid samples (˜0.14ml) at room temperature. The broadband spectrometer employs an integrated two-stage superconducting quantum interference device current sensor with a coupled energy sensitivity of 50h, in the white noise limit. Environmental noise is screened using a compact arrangement of mu-metal and a superconducting shield. Proton signals in water have been observed down to 93nT (a Larmor frequency of 4.0Hz), with a minimum linewidth of 0.16Hz measured at ˜40Hz. Two-component free induction decays were observed from oil/water mixtures between 275 and 300K.
NASA Astrophysics Data System (ADS)
Wang, Zhigang; Fu, Zhenguo; He, Bin; Hu, Zehua; Zhang, Ping
2016-09-01
The nuclear plus interference scattering (NIS) effect on the stopping power of hot dense beryllium (Be) plasma for multi-MeV protons is theoretically investigated by using the generalized Brown-Preston-Singleton (BPS) model, in which a NIS term is taken into account. The analytical formula of the NIS term is detailedly derived. By using this formula, the density and temperature dependence of the NIS effect is numerically studied, and the results show that the NIS effect becomes more and more important with increasing the plasma temperature or density. Different from the cases of protons traveling through the deuterium-tritium plasmas, for a Be plasma, a prominent oscillation valley structure is observed in the NIS term when the proton's energy is close to Ep=7 MeV . Furthermore, the penetration distance is remarkably reduced when the NIS term is considered.
Yen, Hsiu-Chuan; Li, Shiue-Li; Hsu, Wei-Chien; Tang, Petrus
2014-01-01
High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detecting human mtDNA variants and found that its performance was slightly better than that of denaturing high-performance liquid chromatography (DHPLC). The potential interference from co-amplified NUMTs on screening mtDNA heteroplasmy when using these 2 highly sensitive techniques was further examined by using 2 published primer sets containing a total of 65 primer pairs, which were originally designed to be used with one of the 2 techniques. We confirmed that 24 primer pairs could amplify NUMTs by conducting bioinformatic analysis and PCR with the DNA from 143B-ρ0 cells. Using mtDNA extracted from the mitochondria of human 143B cells and a cybrid line with the nuclear background of 143B-ρ0 cells, we demonstrated that NUMTs could affect the patterns of chromatograms for cell DNA during SN-WAVE/HS analysis of mtDNA, leading to incorrect judgment of mtDNA homoplasmy or heteroplasmy status. However, we observed such interference only in 2 of 24 primer pairs selected, and did not observe such effects during DHPLC analysis. These results indicate that NUMTs can affect the screening of low-level mtDNA variants, but it might not be predicted by bioinformatic analysis or the amplification of DNA from 143B-ρ0 cells. Therefore, using purified mtDNA from cultured cells with proven purity to evaluate the effects of NUMTs from a primer pair on mtDNA detection by using PCR-based high-sensitivity methods prior to the use of a primer pair in real studies would be a more practical strategy.
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Neilson, David; Senatore, Gaetano
2009-05-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas
An entropic understanding of Coulomb force
NASA Astrophysics Data System (ADS)
Cho, Jin-Ho; Kim, Hyosung
2012-02-01
Exploiting Verlinde's proposal on the entropic understanding of Newton's law, we show that Coulomb force could also be understood as an entropically emergent force (rather than as a fundamental force). We apply Kaluza-Klein idea to Verlinde's formalism to obtain Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein momenta separates the interaction due to the momentum flow from the gravitational interaction. The momentum-charge conversion relation results in the precise form of Coulomb interaction.
Coulomb excitation of exotic nuclei at REX-ISOLDE with MINIBALL
NASA Astrophysics Data System (ADS)
Kröll, Th.
2014-03-01
In this contribution nuclear structure studies with post-accelerated radioactive ion beams from the REX-ISOLDE facility at CERN are presented. The method employed is γ-ray spectroscopy with the MINIBALL array following "safe" Coulomb excitation. Recent results concerning the investigation of nuclear shapes are presented and discussed.
Low-energy Coulomb excitation of radioactive ^70Se
NASA Astrophysics Data System (ADS)
Hurst, Aaron
2007-10-01
An isobarically pure beam of ^70Se ions was post accelerated to an energy of 206 MeV using REX-ISOLDE. Coulomb-excitation yields for states in the beam and target nuclei were deduced by recording de-excitation γ rays in the highly segmented MINIBALL γ-ray spectrometer in coincidence with scattered particles in a silicon detector. At these energies, the Coulomb-excitation yield for the 2^+1 state in ^70Se is expected to be strongly sensitive to the sign of the spectroscopic quadrupole moment through the nuclear reorientation effect. Experimental evidence is presented here for a prolate shape for this state, using an earlier published lifetime measurement, reopening the question over whether there are deformed oblate shapes close to the ground state in the neutron-deficient selenium isotopes.
Sharma, Deepak; Bhattacharya, Jayanta
2010-01-01
Differential host-pathogen interactions direct viral replication in infected cells. In HIV-1 infected cells, nuclear export of viral RNA transcripts into cellular cytoplasm is governed by interaction of HIV-1 Rev, Exportin-1 (CRM-1) and DDX3X. Knock down of DDX3X has been shown to drastically impair HIV replication. Here we show that evolutionary forces are responsible for demarking previously unidentified critical functionally important residues on the surface of DDX3X. Using computational approaches, we show that these functional residues, depending on their location, are capable of regulating ATPase and RNA helicase functions of DDX3X. The potential of these residues in designing better blockers against HIV-1 replication was also assessed. Also, using stepwise docking simulations, we could identify DDX3X-CRM-1 interface and its critical functional residues. Our data would help explain the role of DDX3X in HIV-1 Rev function with potential to design new intervention strategies against HIV-1 replication.
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.
2012-07-01
The radioactive isotope 107Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2+ state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to 100Sn . Similar to the transition probabilities for the 2+ states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d_{5/2} and g_{7/2} single-neutron states.
PREFACE: Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.
2006-04-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within
Coulombic contribution and fat center vortex model
Rafibakhsh, Shahnoosh; Deldar, Sedigheh
2007-02-27
The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.
Deep inelastic scattering near the Coulomb barrier
Gehring, J.; Back, B.; Chan, K.
1995-08-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
ERIC Educational Resources Information Center
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
Relativistic Aharonov-Bohm effect in the presence of planar Coulomb potentials
Khalilov, V.R.
2005-01-01
Exact analytic solutions are found to the Dirac equation in 2+1 dimensions for a combination of an Aharonov-Bohm potential and the Lorentz three-vector and scalar Coulomb potentials. By means of the solutions obtained the relativistic quantum Aharonov-Bohm effect is studied for the free (in the presence of a Lorentz three-vector Coulomb potential) and bound fermion states. We obtain the total scattering amplitude in a combination of the Aharonov-Bohm and Lorentz three-vector Coulomb potentials as a sum of two scattering amplitudes. This modifies the expression for the standard Aharonov-Bohm cross section due to the interference of these two amplitudes with each other. We discuss that the observable quantities can be the phases of electron wave functions or the energies of bound states.
Coulomb repulsion in short polypeptides.
Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M
2015-01-01
Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each
Numerical approach to Coulomb gauge QCD
Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.
2008-07-01
We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.
NASA Astrophysics Data System (ADS)
Diriken, J.; Stefanescu, I.; Balabanski, D.; Blasi, N.; Blazhev, A.; Bree, N.; Cederkäll, J.; Cocolios, T. E.; Davinson, T.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Georgiev, G.; Gladnishki, K.; Huyse, M.; Ivanov, O. V.; Ivanov, V. S.; Iwanicki, J.; Jolie, J.; Konstantinopoulos, T.; Kröll, Th.; Krücken, R.; Köster, U.; Lagoyannis, A.; Lo Bianco, G.; Maierbeck, P.; Marsh, B. A.; Napiorkowski, P.; Patronis, N.; Pauwels, D.; Reiter, P.; Seliverstov, M.; Sletten, G.; van de Walle, J.; van Duppen, P.; Voulot, D.; Walters, W. B.; Warr, N.; Wenander, F.; Wrzosek, K.
2010-12-01
The B(E2;Ii→If) values for transitions in 3171Ga40 and 3173Ga42 were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of Ga71,73 at the REX-ISOLDE on-line isotope mass separator facility. The emitted γ rays were detected by the MINIBALL γ-detector array, and B(E2;Ii→If) values were obtained from the yields normalized to the known strength of the 2+→0+ transition in the Sn120 target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity toward lower excitation energy when adding neutrons beyond N=40. This supports conclusions from previous studies of the gallium isotopes, which indicated a structural change in this isotopic chain between N=40 and 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-,3/2- doublet near the ground state in 3173Ga42 differing by at most 0.8 keV in energy.
Coulomb crystallization of sympathetically cooled highly charged ions
NASA Astrophysics Data System (ADS)
Crespo López-Urrutia, José R.
2015-05-01
Wave functions of inner-shell electrons significantly overlap with the nucleus, whereby enormously magnified relativistic, quantum electrodynamic (QED) and nuclear size effects emerge. In highly charged ions (HCI), the relative reduction of electronic correlations contributions improves the visibility of these effects. This well known facts have driven research efforts with HCI, yet the typically high temperatures at which these can be prepared in the laboratory constitutes a serious hindrance for application of laser spectroscopic methods. The solution for this, cooling HCI down to crystallization has remained an elusive target for more than two decades. By applying laser cooling to an ensemble of Be+ ions, we build Coulomb crystals that we use for stopping the motion of HCI and for cooling them. HCI, in this case Ar13+ ions are extracted from an electron beam ion trap with an energy spread of a few 100's of eV, due to the ion temperature within the trap. Carefully timed electric pulses in a potential-gradient decelerate and bunch the HCI. We achieve Coulomb crystallization of these HCI by re-trapping them in a cryogenic linear radiofrequency trap where they are sympathetically cooled through Coulomb interaction with the directly laser-cooled ensemble. Furthermore, we also demonstrate cooling of a single Ar13+ ion by a single Be+ ion, prerequisite for quantum logic spectroscopy with potentially 10-19 relative accuracy. The strongly suppressed thermal motion of the embedded HCI offers novel possibilities for investigation of questions related to the time variation of fundamental constants, parity non-conservation effects, Lorentz invariance and quantum electrodynamics. Achieving a seven orders-of-magnitude decrease in HCI temperature, from the starting point at MK values in the ion source down to the mK range within the Coulomb crystal eliminates the major obstacle for HCI investigation with high precision laser spectroscopy and quantum computation schemes.
Crystallization in two-component Coulomb systems.
Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H
2005-12-01
The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations. PMID:16384315
Quarks in Coulomb gauge perturbation theory
Popovici, C.; Watson, P.; Reinhardt, H.
2009-02-15
Coulomb gauge quantum chromodynamics within the first order functional formalism is considered. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented.
Crystallization in two-component Coulomb systems.
Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H
2005-12-01
The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations.
Coulomb Glass: a Mean Field Study
NASA Astrophysics Data System (ADS)
Mandra, Salvatore; Palassini, Matteo
2012-02-01
We study the Coulomb glass model of disordered localized electrons with long-range Coulomb interaction, which describes systems such as disordered insulators, granular metals, amorphous semiconductors, or doped crystalline semiconductors. Long ago Efros and Shklovskii showed that the long-range repulsion induces a soft Coulomb gap in the single particle density of states at low temperatures. Recent works suggested that this gap is associated to a transition to a glass phase, similar to the Almeida-Thouless transition in spin glasses. In this work, we use a mean field approach to characterize several physical properties of the Coulomb glass. In particular, following a seminal work of Bray and Moore, we show that the Edward-Anderson parameter qEA and the spin glass susceptibility χSG are directly related to spectrum distribution of the Hessian matrix around free energy minima. Using this result, we show that no glass transition is associated to the gap formation.
Coulomb Distortion in the Inelastic Regime
Patricia Solvignon, Dave Gaskell, John Arrington
2009-09-01
The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.
Modelling Coulomb Collisions in Anisotropic Plasmas
NASA Astrophysics Data System (ADS)
Hellinger, P.; Travnicek, P. M.
2009-12-01
Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.
Exploring Interatomic Coulombic Decay by Free Electron Lasers
Demekhin, Philipp V.; Stoychev, Spas D.; Kuleff, Alexander I.; Cederbaum, Lorenz S.
2011-12-30
To exploit the high intensity of laser radiation, we propose to select frequencies at which single-photon absorption is of too low energy and two or more photons are needed to produce states of an atom that can undergo interatomic Coulombic decay (ICD) with its neighbors. For Ne{sub 2} it is explicitly demonstrated that the proposed multiphoton absorption scheme is much more efficient than schemes used until now, which rely on single-photon absorption. Extensive calculations on Ne{sub 2} show how the low-energy ICD electrons and Ne{sup +} pairs are produced for different laser intensities and pulse durations. At higher intensities the production of Ne{sup +} pairs by successive ionization of the two atoms becomes competitive and the respective emitted electrons interfere with the ICD electrons. It is also shown that a measurement after a time delay can be used to determine the contribution of ICD even at high laser intensity.
Ivlev, B.
2011-04-15
Research Highlights: > In tunneling a momentum, tangent to a border of the prebarrier region, is important. > A tangent momentum, transferred under the barrier, is real in contrast to normal one. > Real momenta lead to caustics points under the barrier where new branches are formed. > Resulting eigenstate can be not small after the barrier. > This results in a possibility of penetration through an almost classical barrier. - Abstract: Quantum tunneling through a two-dimensional static barrier becomes unusual when a momentum of an electron has a tangent component with respect to a border of the prebarrier region. If the barrier is not homogeneous in the direction perpendicular to tunneling a fraction of the electron state is waves propagating away from the barrier. When the tangent momentum is zero a mutual interference of the waves results in an exponentially small outgoing flux. The finite tangent momentum destroys the interference due to formation of caustics by the waves. As a result, a significant fraction of the prebarrier density is carried away from the barrier providing a not exponentially small penetration even through an almost classical barrier. The total electron energy is well below the barrier.
Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2007-04-01
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine α-helix chains and three-dimensional diamond pieces.
"Safe" Coulomb excitation of 30Mg.
Niedermaier, O; Scheit, H; Bildstein, V; Boie, H; Fitting, J; von Hahn, R; Köck, F; Lauer, M; Pal, U K; Podlech, H; Repnow, R; Schwalm, D; Alvarez, C; Ames, F; Bollen, G; Emhofer, S; Habs, D; Kester, O; Lutter, R; Rudolph, K; Pasini, M; Thirolf, P G; Wolf, B H; Eberth, J; Gersch, G; Hess, H; Reiter, P; Thelen, O; Warr, N; Weisshaar, D; Aksouh, F; Van den Bergh, P; Van Duppen, P; Huyse, M; Ivanov, O; Mayet, P; Van de Walle, J; Aystö, J; Butler, P A; Cederkäll, J; Delahaye, P; Fynbo, H O U; Fraile, L M; Forstner, O; Franchoo, S; Köster, U; Nilsson, T; Oinonen, M; Sieber, T; Wenander, F; Pantea, M; Richter, A; Schrieder, G; Simon, H; Behrens, T; Gernhäuser, R; Kröll, T; Krücken, R; Münch, M; Davinson, T; Gerl, J; Huber, G; Hurst, A; Iwanicki, J; Jonson, B; Lieb, P; Liljeby, L; Schempp, A; Scherillo, A; Schmidt, P; Walter, G
2005-05-01
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin (nat)Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation gamma-ray yields the B(E2;0(+)gs-->2(+)1) value of 30Mg was determined to be 241(31)e2 fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg resides outside the "island of inversion."
Nonlocal formulation of spin Coulomb drag
NASA Astrophysics Data System (ADS)
D'Amico, I.; Ullrich, C. A.
2013-10-01
The spin Coulomb drag (SCD) effect occurs in materials and devices where charged carriers with different spins exchange momentum via Coulomb scattering. This causes frictional forces between spin-dependent currents that lead to intrinsic dissipation, which may limit spintronics applications. A nonlocal formulation of SCD is developed which is valid for strongly inhomogeneous systems such as nanoscale spintronics devices. This nonlocal formulation of SCD is successfully applied to linewidths of intersubband spin plasmons in semiconductor quantum wells, where experiments have shown that the local approximation fails.
Observation of ionic Coulomb blockade in nanopores
NASA Astrophysics Data System (ADS)
Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra
2016-08-01
Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.
Dynamical correlations in Coulomb drag effect
NASA Astrophysics Data System (ADS)
Tanatar, B.; Davoudi, B.; Hu, B. Y.-K.
2003-05-01
Motivated by recent Coulomb drag experiments in pairs of low-density two-dimensional (2D) electron gases, we investigate the influence of correlation effects on the interlayer drag rate as a function of temperature. We use the self-consistent field method to calculate the intra and interlayer local-field factors Gij( q, T) which embody the short-range correlation effects. We calculate the transresistivity using the screened effective interlayer interactions that result from incorporating these local-field factors within various approximation schemes. Our results suggest that dynamic (frequency dependent) correlations play an important role in enhancing the Coulomb drag rate.
Coulomb sum rule in the quasielastic region
Kim, K. S.; Yu, B. G.; Cheoun, M. K.
2006-12-15
Within a relativistic single particle model, we calculate the Coulomb sum rule of inclusive electron scattering from {sup 40}Ca and {sup 208}Pb in the quasielastic region. Theoretical longitudinal and transverse structure functions are extracted for three-momentum transfers from 300 to 500 MeV/c and compared with the experimental data measured at Bates and Saclay. We find that there is no drastic suppression of the longitudinal structure function and that the Coulomb sum rule depends on the nucleus in our theoretical model.
Coulomb force as an entropic force
Wang Tower
2010-05-15
Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.
NASA Astrophysics Data System (ADS)
Sharma, Arun; Bharti, Arun
2016-03-01
We concurrently study the isospin effects via Coulomb forces and the nuclear equation of state and its momentum dependence on the onset of multifragmentation, i.e., critical energy point, in the light and heavily charged reactions of 40Ar + 45Sc and 84Kr + 197Au , respectively, using the isospin-dependent quantum molecular dynamics model. We find that Coulomb forces influence the onset of multifragmentation and result in the shift of the critical energy point towards lower and higher incident energies with and without their presence, respectively. Also, we observe that the critical energy point is sharper for the heavily charged system of 84Kr + 197Au when compared with the light charged system of 40Ar + 45Sc , where a small dip is observed and thus leads to the dependence of onset of multifragmentation, i.e., the critical energy point, on the reaction asymmetry as well as on the Coulomb forces.
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-01
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Ideal basis sets for the Dirac Coulomb problem: Eigenvalue bounds and convergence proofs
NASA Astrophysics Data System (ADS)
Munger, Charles Thomas
2007-02-01
Basis sets are developed for the Dirac Coulomb Hamiltonian for which the resulting numerical eigenvalues and eigenfunctions are proved mathematically to have all the following properties: to converge to the exact eigenfunctions and eigenvalues, with necessary and sufficient conditions for convergence being known; to have neither missing nor spurious states; to maintain the Coulomb symmetries between eigenvalues and eigenfunctions of the opposite sign of the Dirac quantum number κ; to have positive eigenvalues bounded from below by the corresponding exact eigenvalues; and to have negative eigenvalues bounded from above by -mc2. All these properties are maintained using functions that may be analytic or nonanalytic (e.g., Slater functions or splines); that match the noninteger power dependence of the exact eigenfunctions at the origin, or that do not; or that extend to +∞ as do the exact eigenfunctions, or that vanish outside a cavity of large radius R (convergence then occurring after a second limit, R →∞). The same basis sets can be used without modification for potentials other than the Coulomb, such as the potential of a finite distribution of nuclear charge, or a screened Coulomb potential; the error in a numerical eigenvalue is shown to be second order in the departure of the potential from the Coulomb. In certain bases of Sturmian functions the numerical eigenvalues can be related to the zeros of the Pollaczek polynomials.
Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit"
NASA Astrophysics Data System (ADS)
Carrillo-Bernal, M. A.; Núñez-Yépez, H. N.; Salas-Brito, A. L.; Solis, Didier A.
2015-02-01
In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1 /√{x2+β2 } to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β =0 ). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.
NASA Astrophysics Data System (ADS)
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing
2016-06-01
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing
2016-01-01
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing
2016-01-01
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing
2016-06-22
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less
Coulomb Excitation of Isolde Neutron-Rich Beams Along the Z = 28 Chain
NASA Astrophysics Data System (ADS)
van Duppen, P.
2008-04-01
Results from the recently commissioned REX-ISOLDE (CERN) post-accelerator facility are reported. Coulomb excitation with purified beams of neutron-rich zinc isotopes (including N = 50 80Zn) and with isomeric beams of copper isotopes were performed using the MINIBALL germanium array. The data are compared to large scale shell-model calculations and provide information on the fragility of the N = 40 sub-shell closure, stability of the N = 50 shell closure and the onset of deformation in this region of the nuclear chart. The specific nuclear structure around the Z = 28, N = 40 shells make Coulomb excitation an experimental tool for induced depopulation of a nuclear isomer. The presentation is concluded with a brief overview of the REX-ISOLDE physics program and with an outlook towards the intensity and energy upgrade of the ISOLDE complex (so-called HIE-ISOLDE).
Boltzmann-Langevin theory of Coulomb drag
NASA Astrophysics Data System (ADS)
Chen, W.; Andreev, A. V.; Levchenko, A.
2015-06-01
We develop a Boltzmann-Langevin description of the Coulomb drag effect in clean double-layer systems with large interlayer separation d as compared to the average interelectron distance λF. Coulomb drag arises from density fluctuations with spatial scales of order d . At low temperatures, their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid, and Coulomb drag may be treated in the collisionless approximation. As temperature is raised, the electron mean free path becomes short due to electron-electron scattering. This leads to local equilibration of electron liquid, and consequently drag is determined by hydrodynamic density modes. Our theory applies to both the collisionless and the hydrodynamic regimes, and it enables us to describe the crossover between them. We find that drag resistivity exhibits a nonmonotonic temperature dependence with multiple crossovers at distinct energy scales. At the lowest temperatures, Coulomb drag is dominated by the particle-hole continuum, whereas at higher temperatures of the collision-dominated regime it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by electron-electron collisions ultimately renders a stronger drag effect.
Effective Coulomb logarithm for one component plasma
Khrapak, Sergey A.
2013-05-15
An expression for the effective Coulomb logarithm in one-component-plasma is proposed, which allows to extend the applicability of the classical formula for the self-diffusion coefficient to the strongly coupled regime. The proposed analytical approximation demonstrates reasonable agreement with previous numerical simulation results. Relevance to weakly screened Yukawa systems (and, in particular, complex plasmas) is discussed.
Molecular Dynamics Simulations of Coulomb Explosion
Bringa, E M
2002-05-17
A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.
The Pioneer Anomaly as a Coulomb Attraction
NASA Astrophysics Data System (ADS)
Morris, Steven
2016-06-01
The anomalous acceleration of the Pioneer 10 and Pioneer 11 spacecraft can be explained as a Coulomb attraction between the positively-charged Solar System (due to cosmic rays) and the negatively-charged spacecraft (due to alpha-particle emission from the radioisotope thermoelectric generators).
Nonequilibrium dephasing in Coulomb blockaded quantum dots.
Altland, Alexander; Egger, Reinhold
2009-01-16
We present a theory of zero-bias anomalies and dephasing rates for a Coulomb-blockaded quantum dot, driven out of equilibrium by coupling to voltage biased source and drain leads. We interpret our results in terms of the statistics of voltage fluctuations in the system.
Efficient surface reconstruction using generalized coulomb potentials.
Jalba, Andrei C; Roerdink, Jos B T M
2007-01-01
We propose a novel, geometrically adaptive method for surface reconstruction from noisy and sparse point clouds, without orientation information. The method employs a fast convection algorithm to attract the evolving surface towards the data points. The force field in which the surface is convected is based on generalized Coulomb potentials evaluated on an adaptive grid (i.e., an octree) using a fast, hierarchical algorithm. Formulating reconstruction as a convection problem in a velocity field generated by Coulomb potentials offers a number of advantages. Unlike methods which compute the distance from the data set to the implicit surface, which are sensitive to noise due to the very reliance on the distance transform, our method is highly resilient to shot noise since global, generalized Coulomb potentials can be used to disregard the presence of outliers due to noise. Coulomb potentials represent long-range interactions that consider all data points at once, and thus they convey global information which is crucial in the fitting process. Both the spatial and temporal complexities of our spatially-adaptive method are proportional to the size of the reconstructed object, which makes our method compare favorably with respect to previous approaches in terms of speed and flexibility. Experiments with sparse as well as noisy data sets show that the method is capable of delivering crisp and detailed yet smooth surfaces.
Coulomb's Electrical Measurements. Experiment No. 14.
ERIC Educational Resources Information Center
Devons, Samuel
Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)
Solution of Coulomb system in momentum space
Lin, D.-H.
2008-02-15
The solution of D-dimensional Coulomb system is solved in momentum space by path integral. From which the topological effect of a magnetic flux in the system is given. It is revealed that the flux effect represented by the two-dimensional field of Aharonov-Bohm covers any space-dimensions.
Comparative study of the bound states of static screened Coulomb and cut-off Coulomb potentials
NASA Astrophysics Data System (ADS)
Singh, David; Varshni, Y. P.
1984-05-01
Accurate eigenvalues (eight to six significant figures) and critical screening parameters are calculated for a two-particle system interacting through (a) a static screened Coulomb potential (SSCP), and (b) a cut-off Coulomb potential (COCP). A comparison of the results shows that as far as bound states are concerned it is not possible to simulate a SSCP by a COCP by a suitable scaling of the screening length.
Herschel's Interference Demonstration.
ERIC Educational Resources Information Center
Perkalskis, Benjamin S.; Freeman, J. Reuben
2000-01-01
Describes Herschel's demonstration of interference arising from many coherent rays. Presents a method for students to reproduce this demonstration and obtain beautiful multiple-beam interference patterns. (CCM)
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.
Keller, A J; Lim, J S; Sánchez, David; López, Rosa; Amasha, S; Katine, J A; Shtrikman, Hadas; Goldhaber-Gordon, D
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Coulomb Excitation of the N = 50 nucleus 80Zn
NASA Astrophysics Data System (ADS)
van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.
2008-05-01
Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.
Plunger lifetime measurements after Coulomb excitation at intermediate beam energies
Dewald, A.; Hackstein, M.; Rother, W.; Jolie, J.; Melon, B.; Pissulla, T.; Shimbara, Y.; Starosta, K.; Adrich, P.; Amthor, A. M.; Baumann, T.; Bazin, D.; Bowen, M.; Chester, A.; Dunomes, A.; Gade, A.; Galaviz, D.; Glasmacher, T.; Ginter, T.; Hausmann, M.
2009-01-28
Absolute transition probabilities of the first 2{sup +} state in {sup 110,114}Pd were remeasured using the recoil distance Doppler shift technique following projectile Coulomb excitation at intermediate beam energies for the first time. The {sup 110}Pd experiment served to check the novel technique as well as the method used for the data analysis which is based on the examination of {gamma}-ray lineshapes. Whereas the measured B(E2) value for {sup 110}Pd agrees very well with the literature, the value obtained for {sup 114}Pd differs considerably. The data is also used to test a novel concept, called the valence proton symmetry, which allows one to extrapolate nuclear properties to very neutron rich nuclei.
Coulomb Bound States of Strongly Interacting Photons
NASA Astrophysics Data System (ADS)
Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.
2015-09-01
We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.
Coulomb dissociation of {sup 27} P
Beceiro, S.; Cortina-Gil, D.; Suemmerer, K.
2010-04-26
The {sup 26}Al nucleus has a shorter life-time than the Universe showing that the nucleosynthesis of this element might be an ongoing process in stars. The reaction {sup 26}Si(p,gamma){sup 27} P competes with the production of {sup 26}Al. Coulomb dissociation of {sup 27} P is an indirect method to measure that reaction. An experiment was performed at GSI with a {sup 36}Ar primary beam at 500 MeV to measure this reaction.
Dynamics of Coulombic and gravitational periodic systems.
Kumar, Pankaj; Miller, Bruce N
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology. PMID:27176238
Dynamics of Coulombic and gravitational periodic systems
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Miller, Bruce N.
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology.
NASA Astrophysics Data System (ADS)
Wrzosek-Lipska, K.; Gaffney, L. P.
2016-02-01
Neutron-deficient isotopes of Pt-Hg-Pb-Po-Rn are the classic region in the investigation of shape coexistence in atomic nuclei. A large programme of Coulomb-excitation experiments has been undertaken at the REX-ISOLDE facility in CERN with a number of even-even isotopes in this region. These experiments have been used to probe the electromagnetic properties of yrast and non-yrast states of even-even exotic nuclei, above and below Z = 82. Amongst a large amount of different complementary techniques used to study nuclear structure, Coulomb excitation brings substantial and unique information detailing shape coexistence. In this paper we review the Coulomb-excitation campaign at REX-ISOLDE in the light-lead region together with most recently obtained results. Furthermore, we present some new interpretations that arise from this data and show testing comparisons to state-of-the-art nuclear models.
The secondary supernova machine: Gravitational compression, stored Coulomb energy, and SNII displays
NASA Astrophysics Data System (ADS)
Clayton, Donald D.; Meyer, Bradley S.
2016-04-01
Radioactive power for several delayed optical displays of core-collapse supernovae is commonly described as having been provided by decays of 56Ni nuclei. This review analyses the provenance of that energy more deeply: the form in which that energy is stored; what mechanical work causes its storage; what conservation laws demand that it be stored; and why its release is fortuitously delayed for about 106 s into a greatly expanded supernova envelope. We call the unifying picture of those energy transfers the secondary supernova machine owing to its machine-like properties; namely, mechanical work forces storage of large increases of nuclear Coulomb energy, a positive energy component within new nuclei synthesized by the secondary machine. That positive-energy increase occurs despite the fusion decreasing negative total energy within nuclei. The excess of the Coulomb energy can later be radiated, accounting for the intense radioactivity in supernovae. Detailed familiarity with this machine is the focus of this review. The stored positive-energy component created by the machine will not be reduced until roughly 106 s later by radioactive emissions (EC and β +) owing to the slowness of weak decays. The delayed energy provided by the secondary supernova machine is a few × 1049 erg, much smaller than the one percent of the 1053 erg collapse that causes the prompt ejection of matter; however, that relatively small stored energy is vital for activation of the late displays. The conceptual basis of the secondary supernova machine provides a new framework for understanding the energy source for late SNII displays. We demonstrate the nuclear dynamics with nuclear network abundance calculations, with a model of sudden compression and reexpansion of the nuclear gas, and with nuclear energy decompositions of a nuclear-mass law. These tools identify excess Coulomb energy, a positive-energy component of the total negative nuclear energy, as the late activation energy. If the
Quantifying the {sup 12}C+{sup 12}C sub-Coulomb fusion with the time-dependent wave-packet method
Diaz-Torres, Alexis; Wiescher, Michael
2012-10-20
This contribution provides a preliminary study of the {sup 12}C+{sup 12}C sub-Coulomb fusion reaction using the time-dependent wave-packet method within a nuclear molecular picture. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.
Negative Coulomb Drag in Double Bilayer Graphene.
Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R
2016-07-22
We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491
Negative Coulomb Drag in Double Bilayer Graphene.
Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R
2016-07-22
We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.
Mathematical structure of relativistic Coulomb integrals
NASA Astrophysics Data System (ADS)
Suslov, Sergei K.
2010-03-01
We show that the diagonal matrix elements
Coulomb Repulsion in Miniature Ion Mobility Spectrometry
Xu, J.; Whitten, W.B.; Ramsey, J.M.
1999-08-08
We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.
Coulombic dragging of molecular assemblies on nanotubes
NASA Astrophysics Data System (ADS)
Kral, Petr; Sint, Kyaw; Wang, Boyang
2009-03-01
We show by molecular dynamics simulations that polar molecules, ions and their assemblies could be Coulombically dragged on the surfaces of single-wall carbon and boron-nitride nanotubes by ionic solutions or individual ions moving inside the nanotubes [1,2]. We also briefly discuss highly selective ionic sieves based on graphene monolayers with nanopores [3]. These phenomena could be applied in molecular delivery, separation and desalination.[3pt] [1] Boyang Wang and Petr Kral, JACS 128, 15984 (2006). [0pt] [2] Boyang Wang and Petr Kral, Phys. Rev. Lett. 101, 046103 (2008). [0pt] [3] Kyaw Sint, Boyang Wang and Petr Kral, JACS, ASAP (2008).
Negative Coulomb Drag in Double Bilayer Graphene
NASA Astrophysics Data System (ADS)
Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Levchenko, A.; Dean, C. R.
2016-07-01
We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.
Action principle for Coulomb collisions in plasmas
Hirvijoki, Eero
2016-09-14
In this study, an action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.
Action principle for Coulomb collisions in plasmas
NASA Astrophysics Data System (ADS)
Hirvijoki, Eero
2016-09-01
An action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.
Spatio-temporal correlations in Coulomb clusters
NASA Astrophysics Data System (ADS)
Ash, Biswarup; Chakrabarti, J.; Ghosal, Amit
2016-05-01
The dynamical responses of Coulomb-interacting particles in two-dimensional nanoclusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap symmetry, spatial correlations undergo slow, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Such results stem from the combined effects of confinement and long-range repulsion, making the systems inherently heterogeneous. While particles in a “solid” flow produce dynamic heterogeneities, motion in “liquid” yields an unusually long tail in the distribution of particle displacements. A phenomenological model captures much of the subtleties of our numerical simulations.
Electronic ground state properties of Coulomb blockaded quantum dots
NASA Astrophysics Data System (ADS)
Patel, Satyadev Rajesh
Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling
Green's operator for Hamiltonians with Coulomb plus polynomial potentials
NASA Astrophysics Data System (ADS)
Kelbert, E.; Hyder, A.; Demir, F.; Hlousek, Z. T.; Papp, Z.
2007-07-01
The Hamiltonian of a Coulomb plus polynomial potential in the Coulomb-Sturmian basis has an infinite symmetric band-matrix structure. A band matrix can always be considered as a block-tridiagonal matrix. So, the corresponding Green's operator can be given as a matrix-valued continued fraction. As examples, we calculate Green's operator for the Coulomb plus linear and quadratic confinement potential problems and determine the energy levels.
Coulomb excitation of radioactive {sup 79}Pb
Lister, C.J.; Blumenthal, D.; Davids, C.N.
1995-08-01
The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.
Transport Through a Coulomb Blockaded Majorana Nanowire
NASA Astrophysics Data System (ADS)
Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd
In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.
Keller, A J; Lim, J S; Sánchez, David; López, Rosa; Amasha, S; Katine, J A; Shtrikman, Hadas; Goldhaber-Gordon, D
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior. PMID:27541473
Effect of Coulomb interaction on multi-electronwave packet dynamics
Shiokawa, T.; Takada, Y.; Konabe, S.; Hatsugai, Y.; Muraguchi, M.; Endoh, T.; Shiraishi, K.
2013-12-04
We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.
Determination of the triton D-state parameter D2 from sub-Coulomb (d-->, t) measurements
NASA Astrophysics Data System (ADS)
Sen, S.; Knutson, L. D.
1982-07-01
Measurements of the tensor analyzing powers for sub-Coulomb (d-->, t) reactions on 91Zr at Ed=5 MeV and 147Sm at Ed=6.5 MeV are presented. The measurements are analyzed to obtain values of the triton D-state parameter D2. The results are found to be in good agreement with the D2 values derived from previous sub-Coulomb measurements, and lend support to the contention that analyzing power measurements for sub-Coulomb (d-->, t) reactions provide reliable information about the D-state components. NUCLEAR REACTIONS 91Zr(d-->, t), Ed=5.0 MeV, 147Sm(d-->, t), Ed=6.5 MeV; measured polarization parameters T20(θ), T21(θ), T22(θ) deduced D2. Enriched targets, DWBA analysis.
Dalitz plot analysis of Coulomb exploding O3 in ultrashort intense laser fields
NASA Astrophysics Data System (ADS)
Matsuda, Akitaka; Takahashi, Eiji J.; Hishikawa, Akiyoshi
2007-09-01
The three-body Coulomb explosion of O3, O33+→O++O++O+, in ultrashort intense laser fields (2×1015W/cm2) is studied with two different pulse durations (9 and 40fs) by the coincidence momentum imaging method. In addition to a decrease in the total kinetic energy release, a broadening in the Dalitz plot distribution [Philos. Mag. 44, 1068 (1953)] is observed when the pulse duration is increased from 9 to 40fs. The analysis based on a simple Coulomb explosion model shows that the geometrical structure of O3 remains almost unchanged during the interaction with the few-cycle intense laser fields, while a significant structural deformation along all the three vibrational coordinates, including the antisymmetric stretching coordinate, is identified in the 40fs intense laser fields. The observed nuclear dynamics are discussed in terms of the population transfer to the excited states of O3.
Analysis of uncertainties in α -particle optical-potential assessment below the Coulomb barrier
NASA Astrophysics Data System (ADS)
Avrigeanu, V.; Avrigeanu, M.
2016-08-01
Background: Recent high-precision measurements of α -induced reaction data below the Coulomb barrier have pointed out questions about the α -particle optical-model potential (OMP) which are still unanswered within various mass ranges. Purpose: The applicability of previous optical potential and eventual uncertainties and/or systematic errors of the OMP assessment at low energies can be further considered on this basis. Method: Nuclear model parameters based on the analysis of recent independent data, particularly γ -ray strength functions, have been involved within statistical model calculation of the (α ,x ) reaction cross sections. Results: The above-mentioned potential provides a consistent description of the recent α -induced reaction data with no empirical rescaling factors of the γ and/or nucleon widths. Conclusions: A suitable assessment of α -particle optical potential below the Coulomb barrier should involve the statistical-model parameters beyond this potential on the basis of a former analysis of independent data.
Elastic Coulomb breakup of 34Na
NASA Astrophysics Data System (ADS)
Singh, G.; Shubhchintak, Chatterjee, R.
2016-08-01
Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our
Guo, Wen-Chao; Liu, Xin-Ping; Fu, Kai-Yun; Shi, Ji-Feng; Lü, Feng-Gong; Li, Guo-Qing
2015-08-01
Our previous results revealed that RNA interference-aided knockdown of Leptinotarsa decemlineata FTZ-F1 (LdFTZ-F1) reduced 20E titer, and impaired pupation. In this study, we characterized a putative LdHR3 gene, an early-late 20E-response gene upstream of LdFTZ-F1. Within the first, second and third larval instars, three expression peaks of LdHR3 occurred just before the molt. In the fourth (final) larval instar 80 h after ecdysis and prepupal stage 3 days after burying into soil, two LdHR3 peaks occurred. The LdHR3 expression peaks coincide with the peaks of circulating 20E level. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdHR3 expression in the final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene Ldshd repressed the expression. Moreover, Hal rescued the transcript levels in the Ldshd-silenced larvae. Thus, 20E peaks activate the expression of LdHR3. Furthermore, ingesting dsRNA against LdHR3 successfully knocked down the target gene, and impaired pupation. Finally, knockdown of LdHR3 upregulated the transcription of three ecdysteroidogenesis genes (Ldphm, Lddib and Ldshd), increased 20E titer, and activated the expression of two 20E-response genes (LdEcR and LdFTZ-F1). Thus, LdHR3 functions in regulation of pupation in the Colorado potato beetle. PMID:26005119
Ion Coulomb Crystals and Their Applications
NASA Astrophysics Data System (ADS)
Drewsen, Michael
The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].
The ghost propagator in Coulomb gauge
Watson, P.; Reinhardt, H.
2011-05-23
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Ferroelectric instability under screened Coulomb interactions.
Wang, Yong; Liu, Xiaohui; Burton, J D; Jaswal, Sitaram S; Tsymbal, Evgeny Y
2012-12-14
We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO(3), we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity in displacive ferroelectrics and open opportunities for using doped ferroelectrics in novel electronic devices. PMID:23368377
The ghost propagator in Coulomb gauge
NASA Astrophysics Data System (ADS)
Watson, P.; Reinhardt, H.
2011-05-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Known-to-Unknown Approach to Teach about Coulomb's Law
ERIC Educational Resources Information Center
Thamburaj, P. K.
2007-01-01
Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…
Low-energy fusion caused by an interference
NASA Astrophysics Data System (ADS)
Ivlev, B.
2013-03-01
Fusion of two deuterons at room-temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions; for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not negligible probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.
Hwang, Seong-min Kim, Kiwoong; Kyu Yu, Kwon; Lee, Seong-Joo; Hyun Shim, Jeong; Körber, Rainer; Burghoff, Martin
2014-02-10
In ultra-low field nuclear magnetic resonance (ULF-NMR) with strong prepolarization field (B{sub p}), type-II superconducting pick-up coils may be vulnerable to flux pinning from the strong B{sub p}. Pick-up coils made of NbTi, Nb, and Pb were evaluated in terms of acquired NMR signal quality. The type-II pick-up coils showed degraded signals above 61 mT maximum exposure, while the Pb pick-up coil exhibited no such degradation. Furthermore, a negative counter pulse following a strong B{sub p} was shown to follow magnetic hysteresis loop to unpin the trapped flux in the type-II pick-up coil and restore the NMR signal.
ERIC Educational Resources Information Center
Trefil, James
1983-01-01
Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)
NASA Astrophysics Data System (ADS)
Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Bang, W.; Quevedo, H. J.; Consoli, F.; de Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.
2016-08-01
In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.
Computation of doses for large-angle Coulomb scattering of proton pencil beams.
Ciangaru, George; Sahoo, Narayan; Zhu, X Ronald; Sawakuchi, Gabriel O; Gillin, Michael T
2009-12-21
In this work we present a study of the impact of considering higher order terms in Molière's multiple Coulomb scattering (MCS) theory for the purpose of calculating scanning proton pencil beam lateral dose profiles in water. The proton beam profile in air, just before entering the target medium, was modeled with a sum of Gaussians fitted with measured data. The subsequent proton scattering in water was described using the three-term Molière distribution, which covers both small- and large-angle scatterings. We compared measured and computed lateral dose profiles at the 2 cm and at the near-Bragg peak depths for proton pencil beams with energies of 72.5 MeV, 121.2 MeV, 163.9 MeV and 221.8 MeV. At shallow depths, the Coulomb interaction model provided a good description of the profiles for all energies, except for 221.8 MeV. At the near-Bragg peak depths, the Coulomb interaction model provided a good description of the profiles only for the 72.5 MeV. The observed discrepancies may be attributed to the additional contributions from nuclear interactions, which may be quantified only after an accurate description of the MCS. The analysis presented in this work did not require user-adjustable parameters and may be carried out in a similar way for any other media, depths and proton energies.
NASA Astrophysics Data System (ADS)
Nakata, Yoshiki
2016-02-01
The most important component of quantum optics is laser interference. Interference patterns are formed by splitting a coherent beam into multiple beams and correlating them. This study introduces a variety of beam correlators and discusses their characteristics. Beam correlator basics such as interference region in terms of pulse width, group delay dispersion effects on pulse width, optical delay adjustment, and interference pattern simulation are explained. A discussion of the history of interference processing begins with the method in 1967 and continues through the advancement of shorter wavelengths and pulse widths. The recent techniques of solid-liquid-solid for 3D nanofabrication, duplicated structures with laser-induced periodic surface structure, processing inside transparent materials, and 2D and 3D periodic structures fabricated by photo-sensitization are also presented.
NASA Astrophysics Data System (ADS)
Chen, Hsin-Hsien; Huang, Kai-Wen; Yang, Hong-Chang; Horng, Herng-Er; Liao, Shu-Hsien
2013-08-01
This study presents an optimization of the detection coil of high-Tc superconducting quantum interference device (SQUID)-based nuclear magnetic resonance (NMR) in microtesla fields for discriminating a minimum amount of liver tumor in rats by characterizing the longitudinal relaxation rate, T1-1, of tested samples. The detection coil, which was coupled to the SQUID through a flux transformer, was optimized by varying the copper wires' winding turns and diameters. When comparing the measured NMR signals, we found that the simulated NMR signal agrees with simulated signals. When discriminating liver tumors in rats, the averaged longitudinal relaxation rate was observed to be T1-1 = 3.3 s-1 for cancerous liver tissue and T1-1 = 6.6 s-1 for normal liver tissue. The results suggest that it can be used to successfully discriminate cancerous liver tissue from normal liver tissues in rats. The minimum amount of samples that can be detected is 0.2 g for liver tumor and 0.4 g for normal liver tissue in 100 μT fields. The specimen was not damaged; it can be used for other pathological analyses. The proposed method provides more possibilities for examining undersized specimens.
Characterizing intra-exciton Coulomb scattering in terahertz excitations
Zybell, S.; Eßer, F.; Helm, M.; Bhattacharyya, J.; Winnerl, S.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.
2014-11-17
An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.
Positron scattering from hydrogen atom with screened Coulomb potentials
Ghoshal, Arijit; Nayek, Sujay; Kamali, M. Z. M.; Ratnavelu, K.
2014-03-05
Elastic positron-hydrogen collisions with screened Coulomb potentials have been investigated using a second-order distorted wave Born approximation in the momentum space. Two types of potentials have been considered, namely, static screened Coulomb potential and exponential cosine-screened Coulomb potential. Using a simple variationally determined hydrogenic wave function it has been possible to obtain the scattering amplitude in a closed form. A detailed study has been made on the differential and total cross sections in the energy range 20–300 eV.
Characterizing intra-exciton Coulomb scattering in terahertz excitations
NASA Astrophysics Data System (ADS)
Zybell, S.; Bhattacharyya, J.; Winnerl, S.; Eßer, F.; Helm, M.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.
2014-11-01
An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.
Spatio-temporal correlations in Coulomb clusters
NASA Astrophysics Data System (ADS)
Ghosal, Amit; Ash, Biswarup; Chakrabarti, Jaydeb
Dynamical response of Coulomb-particles in nanoclusters are investigated at different temperatures characterizing their solid-like (Wigner molecule) and liquid-like behavior. The density correlations probe spatio-temporal relaxation, uncovering distinct behavior at multiple time scales in these systems. They show a stretched-Gaussian or stretched-exponential spatial decay at long times in circular and irregular traps. Interplay of confinement and long-range nature of interactions yields spatially correlated motion of the particles in string-like paths, leaving the system heterogeneous even at long times. While particles in a `solid' flow producing dynamic heterogeneities, their random motion in `liquid' defies central limit theorem. Distinguishing the two confinements, temperature dependent motional signatures serve as a criterion for the crossover between `solid' and `liquid'. The irregular Wigner molecule turns into a nearly homogeneous liquid over a much wider temperature window compared to the circular case. The temperature dependence of different relaxation time scales builds crucial insights. A phenomenological model, relating the unusual dynamics to the heterogeneous nature of the diffusivities in the system, captures much of the subtleties of our numerical simulations.
Strong Coulomb Coupling in the Todorov Equation
NASA Astrophysics Data System (ADS)
Bawin, M.; Cugnon, J.; Sazdjian, H.
A positronium-like system with strong Coulomb coupling, considered in its pseudoscalar sector, is studied in the framework of relativistic quantum constraint dynamics with the Todorov choice for the potential. Case’s method of self-adjoint extension of singular potentials, which avoids explicit introduction of regularization cut-offs, is adopted. It is found that, as the coupling constant α increases, the bound state spectrum undergoes an abrupt change at the critical value α=αc=1/2. For α>αc, the mass spectrum displays, in addition to the existing states for α<αc, a new set of an infinite number of bound states concentrated in a narrow band starting at mass W=0; all the states have indefinitely oscillating wave functions near the origin. In the limit α→αc from above, the oscillations disappear and the narrow band of low-lying states shrinks to a single massless state with a mass gap with the rest of the spectrum. This state has the required properties to represent a Goldstone boson and to signal spontaneous breakdown of chiral symmetry.
Electron attraction mediated by Coulomb repulsion.
Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S
2016-07-21
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter. PMID:27443742
Femtosecond Laser-Induced Coulomb Explosion Imaging
NASA Astrophysics Data System (ADS)
Karimi, Reza; Liu, Wing-Ki; Sanderson, Joseph
2016-07-01
We review recent progress in the field of Coulomb imaging using femtosecond laser pulses of variable length, referred to as Femtosecond Multiple Pulse Length Spectroscopy (FEMPULS). This method introduces a multi-dimensional approach to the study of the molecular dynamics of the multiply ionized triatomic molecules: CO2, OCS, and N2O. We describe the experimental setup used and the approaches needed to optimize the multi-particle detection, coincidence technique. The results show the degree of high resolution imaging which can be achieved with few cycle pulses, and how the onset of charge resonance enhanced ionization (CREI) can be observed as pulse length is increased. By coupling pulse length variation with Dalitz and Newton plotting techniques, stepwise processes can be identified for all three molecules, giving insight into the dynamics, particularly on the 3+ state, which has been revealed as the doorway state to CREI. Finally, in the case of OCS, pulse length variation is shown to have the potential as a control mechanism, as it modulates the ratio of stepwise to concerted processes.
Coulomb Collision Algorithms for Particle Codes
NASA Astrophysics Data System (ADS)
Cohen, Bruce
2006-04-01
This paper surveys some of the particle code algorithms used to model Coulomb collisions in fully ionized plasmas, e.g., pair-wise operators such as the Takizuka-Abe^1 scheme and extensions^2, Langevin equation collision operators^3,4, and partially linearized gyrokinetic collisions operators for strongly magnetized plasmas.^5,6,7 Some recent experience is reported.^8 Issues such as physics completeness, accuracy, and comparative algorithm performance are highlighted. 1. T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977). 2. K. Nanbu, Phys. Rev. E 55, 4642 (1997). 3. M.E. Jones, et al., J. Comp. Phys. 123, 169 (1996). 4. W.M. Manheimer, M. Lampe, and G. Joyce, et al., J. Comp. Phys. 138, 565 (1997). 5. X.Q. Xu and M.N. Rosenbluth, Phys. Fluids B 3, 627 (1991). 6. A.M. Dimits and B.I. Cohen, Phys. Rev. E 49, 709 (1994). 7. Z. Lin, W. M. Tang, and W. W. Lee, Phys.Plasmas 2, 2975 (August 1995). 8. B.I. Cohen, et al., ``Effects of ion-ion collisions and inhomogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering,'' accepted for publication in Phys. Plasmas (2006).
Coulomb gauge ghost Dyson-Schwinger equation
NASA Astrophysics Data System (ADS)
Watson, P.; Reinhardt, H.
2010-12-01
A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum), which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until forced to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery picture of confinement is explored.
Electron attraction mediated by Coulomb repulsion
NASA Astrophysics Data System (ADS)
Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.
2016-07-01
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.
2014-10-01
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε{sup −2}) or O(ε{sup −2}(lnε){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε{sup −3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10{sup −5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε^{–2}) or (ε^{–2}(lnε)^{2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε^{–3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10^{–5}. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Electromagnetic interference analysis for CSRH
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Zhi-Jun; Liu, Yu-Ying; Yan, Yi-Hua; Ji, Guo-Shu
2006-06-01
The electromagnetic interference tolerance is discussed in this paper, the radio spectrum assignment and the sensitivity of interference measurement equipment are described. Interference to CSRH and forecast from synchronous orbit satellite, and interference due to low and middle orbit satellite are analysed. Transmission formula of interference from mobile base and conservative estimation from pulse radar are presented.
The generalized Coulomb interactions for relativistic scalar bosons
NASA Astrophysics Data System (ADS)
Zarrinkamar, S.; Panahi, H.; Rezaei, M.
2016-07-01
Approximate analytical solutions of Duffin-Kemmer-Petiau (DKP) equation are obtained for the truncated Coulomb, generalized Cornell, Richardson and Song-Lin potentials via the quasi-exact analytical ansatz approach.
Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-05-13
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.
Charles Augustin Coulomb and the fundamental law of electrostatics
NASA Astrophysics Data System (ADS)
Falconer, Isobel
2004-10-01
In his famous experiment on the inverse square law of electrostatics, Coulomb neither defined electric charge nor gave reliable measurements of the force-distance relation. Yet the experiment has often been viewed as the basis of the fundamental law of electrostatics. This paper discusses Coulomb's life, showing the context within which he was working, how he arrived at the experiment, and the use he made of it. Physics in France in the late 18th century was undergoing a transformation from a science of holistic observation and explanations to one of universal laws and exact measurement. Coulomb was both a subject of, and an important contributor to, this change, and these two aspects are evident in his approach to the experiment and to the later uptake of his results. The reaction in the rest of Europe was initially less favourable, and the ultimate fame of Coulomb's experiment was dependent on the triumph of French mathematical physics in the 19th century.
Thermodynamic properties of the magnetized Coulomb crystal lattices
NASA Astrophysics Data System (ADS)
Kozhberov, A. A.
2016-08-01
It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.
Multifragmentation: Surface and Coulomb instabilities of sheets, bubbles, and donuts
Moretto, L.G.; Tso, Kin; Wozniak, G.J.
1993-08-01
Disks, bubbles, and donuts have been observed in dynamical calculations of heavy ion collisions. These shapes are subject to a variety of surface and Coulomb instabilities. These instabilities are identified and analyzed in terms of their relevance to multifragmentation.
NASA Astrophysics Data System (ADS)
Weatherford, Charles; Gebremedhin, Daniel
2016-03-01
A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step size choice for each element that is based on a Taylor series expansion. The method is applied to solve for the eigenpairs of the one-dimensional soft-coulomb potential and the hard-coulomb limit is studied. The method is then used to calculate a numerical solution of the Kohn-Sham differential equation within the local density approximation is presented and is applied to the helium atom. Supported by the National Nuclear Security Agency, the Nuclear Regulatory Commission, and the Defense Threat Reduction Agency.
Diffusion and Coulomb separation of ions in dense matter.
Beznogov, M V; Yakovlev, D G
2013-10-18
We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars. PMID:24182248
A New Hybrid STEP/Coulomb model for Aftershock Forecasting
NASA Astrophysics Data System (ADS)
Steacy, S.; Jimenez, A.; Gerstenberger, M.
2014-12-01
Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.
Aftershock triggering by complete Coulomb stress changes
Kilb, Debi; Gomberg, J.; Bodin, P.
2002-01-01
We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.
Elastic scattering of vortex electrons provides direct access to the Coulomb phase
NASA Astrophysics Data System (ADS)
Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.
2016-10-01
Vortex electron beams are freely propagating electron waves carrying adjustable orbital angular momentum with respect to the propagation direction. Such beams were experimentally realized just a few years ago and are now used to probe various electromagnetic processes. So far, these experiments used the single vortex electron beams, either propagating in external fields or impacting a target. Here, we investigate the elastic scattering of two such aligned vortex electron beams and demonstrate that this process allows one to experimentally measure features which are impossible to detect in the usual plane-wave scattering. The scattering amplitude of this process is well approximated by two plane-wave scattering amplitudes with different momentum transfers, which interfere and give direct experimental access to the Coulomb phase. This phase (shift) affects the scattering of all charged particles and has thus received significant theoretical attention but was never probed experimentally. We show that a properly defined azimuthal asymmetry, which has no counterpart in plane-wave scattering, allows one to directly measure the Coulomb phase as function of the scattering angle.
Dealing with LOFAR interference
NASA Astrophysics Data System (ADS)
Offringa, André
2011-07-01
LOFAR is a new radio telescope built in and around the Netherlands that will probe the universe between 10 and 200 MHz. Most of LOFAR's hardware has been installed and the next step is writing the required algorithms to process LOFAR's data. One such algorithm is the detection of interference. Since LOFAR is built in a populated environment, care has to be taken to deal with interference from terrestrial origin. A detection pipeline was written that removes interference in an automated way. This pipeline is now in use and the radio environment around LOFAR is being analyzed. Results show a relatively benign radio environment with a loss of data of a few per cent due to interference.
NASA Astrophysics Data System (ADS)
Allmond, J. M.
2016-09-01
The synthesis of Coulomb excitation and β decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., < I_2^π allel M(E2)allel I_1^π > matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural interpretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the Eγ5 attenuation factor. These weak decay branches can often be determined with high precision from β-decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and β decay. Preliminary results of new weak decay branches following β decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.
Allmond, James M
2016-01-01
The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.
NASA Astrophysics Data System (ADS)
Vysotsky, M. I.
2014-04-01
The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.
Immunizing digital systems against electromagnetic interference
NASA Astrophysics Data System (ADS)
Ewing, P. D.; Korsah, K.; Antonescu, C.
This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.
An exact factorization perspective on quantum interferences in nonadiabatic dynamics.
Curchod, Basile F E; Agostini, Federica; Gross, E K U
2016-07-21
Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface-the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrast to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities. PMID:27448870
An exact factorization perspective on quantum interferences in nonadiabatic dynamics
NASA Astrophysics Data System (ADS)
Curchod, Basile F. E.; Agostini, Federica; Gross, E. K. U.
2016-07-01
Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrast to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.
Vacuum polarization in sub-coulomb 12C- 12C scattering (II)
NASA Astrophysics Data System (ADS)
Trautmann, D.; Baur, G.; Vetterli, D.; Egelhof, P.; Henneck, R.; Jaskòla, M.; Mühry, H.; Sick, I.
In order to extract the effect of vacuum polarization from 12C- 12C elastic scattering data, a detailed theoretical study of the low-energy Mott cross section is performed. It is shown that the contributions of nuclear interaction, Coulomb excitation, bremsstrahlung can be neglected, while radiative corrections and nuclear polarizability can be described by a small additional potential. Screening by atomic electrons is corrected by a screening function, which acts on all potentials. Relativistic effects are accounted for using the "Todorov equation". In order to overcome numerical difficulties for very long range potentials a WKB approximation and a semiquantal approach are discussed and compared. The study shows that the first-order vacuum-polarization potential contributes most to the correction of the cross section. All other contributions are at least one order of magnitude smaller.
Coulomb versus physical string tension on the lattice
NASA Astrophysics Data System (ADS)
Burgio, Giuseppe; Quandt, Markus; Reinhardt, Hugo; Vogt, Hannes
2015-08-01
From continuum studies it is known that the Coulomb string tension σC gives an upper bound for the physical (Wilson) string tension σW [D. Zwanziger, Phys. Rev. Lett. 90, 102001 (2003)]. How does such a relationship translate to the lattice, however? In this paper we give evidence that on the lattice, while the two string tensions are related at zero temperature, they decouple at finite temperature. More precisely, we show that on the lattice the Coulomb gauge confinement scenario is always tied to the spatial string tension, which is known to survive the deconfinement phase transition and to cause screening effects in the quark-gluon plasma. Our analysis is based on the identification and elimination of center vortices, which allows us to control the physical string tension and study its effect on the Coulomb gauge observables. We also show how alternative definitions of the Coulomb potential may sense the deconfinement transition; however, a true static Coulomb gauge order parameter for the phase transition is still elusive on the lattice.
Generalized Multiphoton Quantum Interference
NASA Astrophysics Data System (ADS)
Tillmann, Max; Tan, Si-Hui; Stoeckl, Sarah E.; Sanders, Barry C.; de Guise, Hubert; Heilmann, René; Nolte, Stefan; Szameit, Alexander; Walther, Philip
2015-10-01
Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.
Understanding ghost interference
NASA Astrophysics Data System (ADS)
Qureshi, Tabish; Chingangbam, Pravabati; Shafaq, Sheeba
2016-08-01
The ghost interference observed for entangled photons is theoretically analyzed using wave-packet dynamics. It is shown that ghost interference is a combined effect of virtual double-slit creation due to entanglement, and quantum erasure of which-path information for the interfering photon. For the case where the two photons are of different color, it is shown that fringe width of the interfering photon depends not only on its own wavelength, but also on the wavelength of the other photon which it is entangled with.
Imaging quantum Hall Coulomb islands inside a quantum ring
NASA Astrophysics Data System (ADS)
Martins, Frederico; Hackens, Benoit; Faniel, Sebastien; Bayot, Vincent; Pala, Marco; Sellier, Hermann; Huant, Serge; Desplanque, Ludovic; Wallart, Xavier
2011-03-01
In the quantum Hall regime near integer filling factors, electrons are transmitted through edge states confined at the borders of the device. In mesoscopic samples, however, edge states may be sufficiently close to allow electrons to tunnel, or to be transmitted through localized states (``Coulomb islands''). Here, we use the biased tip of a low temperature scanning gate microscope to alter tunneling through quantum Hall Coulomb islands localized inside a quantum ring patterned in an InGaAs/InAlAs heterostructure. Simultaneously, we map the quantum ring resistance and observe different sets of concentric resistance fringes, due to charging/discharging of each Coulomb island. Tuning the magnetic field and the tip voltage, we reveal the rich and complex behaviour of these fringes.
Weak interaction rate Coulomb corrections in big bang nucleosynthesis
Smith, Christel J.; Fuller, George M.
2010-03-15
We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner big bang nucleosynthesis (BBN) code. We have also added the zero-temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest {approx}0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN, and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the weak neutron-proton interconversion processes in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.
Nonasymptotic analysis of relativistic electron scattering in the Coulomb field
NASA Astrophysics Data System (ADS)
Feranchuk, I. D.; Skoromnik, O. D.
2010-11-01
It is shown that the conventional Born series for relativistic electron scattering in the Coulomb field cannot be used for calculating the scattering characteristics. The differential cross section at small scattering angles is found on the basis of the Furry-Sommerfeld-Maue solution of the Dirac equation. Propagation of the electron wave packet is considered in order to separate the incident and scattered fluxes. It is shown that the total scattering cross section proves to be finite but depends on the distance r between the scattering center and the observation point. It is also shown that the polarization characteristics of the scattered beam are changed due to the long-range character of the Coulomb potential. The results can be important because Coulomb scattering is often used for normalization of experimental data in high-energy physics.
Interference and radioastronomy
NASA Astrophysics Data System (ADS)
Thompson, A. R.; Vanden Bout, Paul A.; Gergely, Tomas E.
1991-11-01
The vulnerabilty of radio astronomy to the growing flood of interfering sources ranging from garage door openers to digital audio broadcast satellites is reviewed. Technical solutions to these problems are briefly examined, and work that needs to be done in the international regulatory system to ameliorate the interference is addressed. An overview is given of existing regulations.
Quantum interference in polyenes
Tsuji, Yuta; Hoffmann, Roald; Movassagh, Ramis; Datta, Supriyo
2014-12-14
The explicit form of the zeroth Green's function in the Hückel model, approximated by the negative of the inverse of the Hückel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments – if coherence in probe connections can be arranged – in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.
On rate-state and Coulomb failure models
Gomberg, J.; Beeler, N.; Blanpied, M.
2000-01-01
We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified
Lifetime Measurements and Coulomb Excitation of Light Hg Nuclei
NASA Astrophysics Data System (ADS)
Petts, A.; Butler, P. A.; Grahn, T.; Blazhev, A.; Bree, N.; Bruyneel, B.; Cederkäll, J.; Clement, E.; Cocolios, T. E.; Dewald, A.; Eberth, J.; Fraile, L.; Fransen, C.; Hornillos, M. B. Gómez; Greenlees, P. T.; Görgen, A.; Guttormsen, M.; Hadynska, K.; Helariutta, K.; Herzberg, R.-D.; Huyse, M.; Jenkins, D. G.; Jolie, J.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Knapen, S.; Kröll, T.; Krü; cken, R.; Larsen, A. C.; Leino, M.; Ljungvall, J.; Maierbeck, P.; Marley, P. L.; Melon, B.; Napiorkowski, P. J.; Nyman, M.; Page, R. D.; Pakarinen, J.; Pascovici, G.; Patronis, N.; Peura, P. J.; Piselli, E.; Pissulla, Th.; Rahkila, P.; Reiter, P.; Sarén, J.; Scheck, M.; Scholey, C.; Semchenkov, A.; Siem, S.; Stefanescu, I.; Sorri, J.; Uusitalo, J.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Weisshaar, D.; Wenander, F.; Zielinska, M.
2009-01-01
Two complementary experimental programs have taken place to investigate the origin and evolution of shape coexistence in the light mercury region. Recoil Distance Doppler-shift measurements were performed at the University of Jyväskylä utilizing the Köln plunger device in conjunction with the JUROGAM+RITU+GREAT setup. In addition, Coulomb excitation measurements of 184,186,188Hg were performed at REX-ISOLDE using the MINIBALL Ge-detector array. The results of the lifetime measurements of the yrast states up to Iπ = 10+ in 182Hg are reported. Preliminary analysis of the Coulomb excitation data is also discussed.
Hydrodynamic Coulomb drag of strongly correlated electron liquids
NASA Astrophysics Data System (ADS)
Apostolov, S. S.; Levchenko, A.; Andreev, A. V.
2014-03-01
We develop a theory of Coulomb drag in ultraclean double layers with strongly correlated carriers. In the regime where the equilibration length of the electron liquid is shorter than the interlayer spacing the main contribution to the Coulomb drag arises from hydrodynamic density fluctuations. The latter consist of plasmons driven by fluctuating longitudinal stresses, and diffusive modes caused by temperature fluctuations and thermal expansion of the electron liquid. We express the drag resistivity in terms of the kinetic coefficients of the electron fluid. Our results are nonperturbative in interaction strength and do not assume Fermi-liquid behavior of the electron liquid.
Convergence of Feynman integrals in Coulomb gauge QCD
Andraši, A.; Taylor, J.C.
2014-12-15
At 2-loop order, Feynman integrals in the Coulomb gauge are divergent over the internal energy variables. Nevertheless, it is known how to calculate the effective action, provided that the external gluon fields are all transverse. We show that, for the two-gluon Greens function as an example, the method can be extended to include longitudinal external fields. The longitudinal Greens functions appear in the BRST identities. As an intermediate step, we use a flow gauge, which interpolates between the Feynman and Coulomb gauges.
Higher-order dynamical effects in Coulomb dissociation
Esbensen, H.; Bertsch, G.F.; Bertulani, C.A.
1995-08-01
Coulomb dissociation is a technique commonly used to extract the dipole response of nuclei far from stability. This technique is applicable if the dissociation is dominated by dipole transitions and if first-order perturbation theory is valid. In order to assess the significance of higher-order processes we solve numerically the time evolution of the wave function for a two-body breakup in the Coulomb field from a high Z target. We applied this method to the breakup reactions: {sup 11}Be {yields} {sup 10}Be + n and {sup 11}Li {yields} +2n. The latter is treated as a two-body breakup, using a di-neutron model.
Lifetime Measurements and Coulomb Excitation of Light Hg Nuclei
Petts, A.; Butler, P. A.; Grahn, T.; Herzberg, R.-D.; Page, R. D.; Pakarinen, J.; Scheck, M.; Blazhev, A.; Bruyneel, B.; Dewald, A.; Eberth, J.; Fransen, C.; Jolie, J.; Melon, B.; Pascovici, G.; Pissulla, Th.; Reiter, P.; Warr, N.; Weisshaar, D.; Bree, N.
2009-01-28
Two complementary experimental programs have taken place to investigate the origin and evolution of shape coexistence in the light mercury region. Recoil Distance Doppler-shift measurements were performed at the University of Jyvaeskylae utilizing the Koeln plunger device in conjunction with the JUROGAM+RITU+GREAT setup. In addition, Coulomb excitation measurements of {sup 184,186,188}Hg were performed at REX-ISOLDE using the MINIBALL Ge-detector array. The results of the lifetime measurements of the yrast states up to I{sup {pi}} = 10{sup +} in {sup 182}Hg are reported. Preliminary analysis of the Coulomb excitation data is also discussed.
Primary Thermometry in the Intermediate Coulomb Blockade Regime
NASA Astrophysics Data System (ADS)
Feshchenko, A. V.; Meschke, M.; Gunnarsson, D.; Prunnila, M.; Roschier, L.; Penttilä, J. S.; Pekola, J. P.
2013-10-01
We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.
Mechanical vibrations induced resonant breakdown of the Coulomb blockade
NASA Astrophysics Data System (ADS)
Pogosov, A. G.; Budantsev, M. V.; Shevyrin, A. A.; Plotnikov, A. E.; Bakarov, A. K.; Toropov, A. I.
2011-12-01
Influence of forced mechanical vibrations of a suspended single-electron transistor on electron tunneling through the quantum dot limited by the Coulomb blockade is investigated. It is shown that mechanical oscillations of the quantum dot lead to the Coulomb blockade breakdown, shown in sharp resonant peaks in the transistor conductance dependence on the excitation frequency at values corresponding to the mechanical oscillations eigen modes. The observed effect is presumably connected with oscillations of the mutual electrical capacitances between the quantum dot and surrounding electrodes.
Negative Coulomb drag in a one-dimensional wire.
Yamamoto, M; Stopa, M; Tokura, Y; Hirayama, Y; Tarucha, S
2006-07-14
We observed negative Coulomb drag for parallel coupled quantum wires, in which electrons flow in the opposite directions between the wires. This only occurred under the conditions of strong correlation in the wires, that is, low density, high magnetic field, and low temperature, and cannot be addressed by a standard theory of momentum transfer. We propose a Coulomb drag model in which formation of a Wigner crystal state in the drag wire and a particle-like state in the drive wire is taken into account.
Geometrically-frustrated pseudogap phase of Coulomb liquids
NASA Astrophysics Data System (ADS)
Pramudya, Y.; Terletska, H.; Pankov, S.; Manousakis, E.; Dobrosavljević, V.
2012-06-01
We study a class of models with long-range repulsive interactions of the generalized Coulomb form V(r)∼1/rα. We show that decreasing the interaction exponent in the regime α
Coulomb-damped resonant generators using piezoelectric transduction
NASA Astrophysics Data System (ADS)
Miller, L. M.; Mitcheson, P. D.; Halvorsen, E.; Wright, P. K.
2012-06-01
Switching interface circuits employed with piezoelectric energy harvesters can increase the electrical damping considerably over that achievable with passive rectifiers. We show that a piezoelectric harvester coupled to certain types of switching circuits becomes a Coulomb-damped resonant generator. This allows analysis of such harvester systems within a well-known framework and, subject to practical constraints, allows the optimal electrical damping to be achieved. In the piezoelectric pre-biasing technique, the Coulomb damping is set by a pre-bias voltage whose optimal value is derived as a function of piezoelectric harvester parameters.
Lappas, Martha; Yee, Kirin; Permezel, Michael; Rice, Gregory E
2005-03-01
There is much evidence to indicate a role for adipocytokines in insulin resistance and/or type 2 diabetes mellitus. In experimental models, oral salicylates, through their ability to interfere with the nuclear factor-kappa B (NF-kappa B) transcription pathway, have been demonstrated to reverse insulin resistance. The aim of this study was to investigate whether NF-kappa B regulates the release of adipocytokines in human adipose tissue and skeletal muscle. Human sc adipose tissue and skeletal muscle (obtained from normal pregnant women) were incubated in the absence (control) or presence of two NF-kappa B inhibitors sulfasalazine (1.25, 2.5, and 5 mm) and BAY 11-7082 (25, 50, and 100 microm). After an 18-h incubation, the tissues were collected, and NF-kappa B p65 DNA-binding activity and I kappa B kinase (IKK-beta) and insulin receptor-beta protein expression were assessed by ELISA and Western blotting, respectively. The incubation medium was collected, and the release of TNF-alpha, IL-6, IL-8, resistin, adiponectin, and leptin was quantified by ELISA. Treatment of adipose tissue and skeletal muscle with sulfasalazine and BAY 11-7082 significantly inhibited the release of IL-6, IL-8, and TNF-alpha; NF-kappa B p65 DNA-binding activity; and IKK-beta protein expression (P < 0.05, by Newman-Keuls test). There was no effect of sulfasalazine and BAY 11-7082 on resistin, adiponectin, or leptin release. Both sulfasalazine and BAY 11-7082 increased the adipose tissue and skeletal muscle expression of insulin receptor-beta. The data presented in this study demonstrate that the IKK-beta/NF-kappa B transcription pathway is a key regulator of IL-6, IL-8, and TNF-alpha release from adipose tissue and skeletal muscle. Control of the IKK-beta/NF-kappa B pathway may therefore provide an alternative therapeutic strategy for regulating aberrant cytokine release and thereby alleviating insulin resistance in type 2 diabetes mellitus.
Fundamentals in Nuclear Physics
NASA Astrophysics Data System (ADS)
Basdevant, Jean-Louis, Rich, James, Spiro, Michael
This course on nuclear physics leads the reader to the exploration of the field from nuclei to astrophysical issues. Much nuclear phenomenology can be understood from simple arguments such as those based on the Pauli principle and the Coulomb barrier. This book is concerned with extrapolating from such arguments and illustrating nuclear systematics with experimental data. Starting with the basic concepts in nuclear physics, nuclear models, and reactions, the book covers nuclear decays and the fundamental electro-weak interactions, radioactivity, and nuclear energy. After the discussions of fission and fusion leading into nuclear astrophysics, there is a presentation of the latest ideas about cosmology. As a primer this course will lay the foundations for more specialized subjects. This book emerged from a series of topical courses the authors delivered at the Ecole Polytechnique and will be useful for graduate students and for scientists in a variety of fields.
Interference reflection microscopy.
Barr, Valarie A; Bunnell, Stephen C
2009-12-01
Interference reflection microscopy (IRM) is an optical technique used to study cell adhesion or cell mobility on a glass coverslip. The interference of reflected light waves generates images with high contrast and definition. IRM can be used to examine almost any cell that will rest upon a glass surface, although it is most useful in examining sites of close contact between a cell and substratum. This unit presents methods for obtaining IRM images of cells with particular emphasis on IRM imaging with a laser scanning confocal microscope (LSCM), as most LSCM are already capable of recording these images without any modification of the instrument. Techniques are presented for imaging fixed and live cells, as well as simultaneous multi-channel capture of fluorescence and reflection images.
Exchange Coulomb interaction in nanotubes: Dispersion of Langmuir waves
Andreev, P. A. Ivanov, A. Yu.
2015-07-15
The microscopic derivation of the Coulomb exchange interaction for electrons located on the nanotubes is presented. The derivation is based on the many-particle quantum hydrodynamic method. We demonstrate the effect of curvature of the nanocylinders on the force of exchange interaction. We calculate corresponding dispersion dependencies for electron oscillations on the nanotubes.
Accurate Coulomb blockade thermometry up to 60 kelvin.
Meschke, M; Kemppinen, A; Pekola, J P
2016-03-28
We demonstrate experimentally a precise realization of Coulomb blockade thermometry working at temperatures up to 60 K. Advances in nano-fabrication methods using electron beam lithography allow us to fabricate uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading precision of about 1%. PMID:26903107
Coulomb energy of uniformly charged spheroidal shell systems
NASA Astrophysics Data System (ADS)
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K.; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.
Coulomb energy of uniformly charged spheroidal shell systems.
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions. PMID:25871108
Using the Screened Coulomb Potential to Illustrate the Variational Method
ERIC Educational Resources Information Center
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto
2012-01-01
The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…
Coulomb gauge approach for charmonium meson and hybrid radiative transitions
Gou, Peng; Yepez-Martínez, Tochtli; Szczepaniak, Adam P.
2015-01-22
We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.
Multiple Coulomb ordered strings of ions in a storage ring.
Hasse, R W
2001-04-01
We explain that the anomalous frequency shifts of very close masses obtained in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other are captured into a single string if their thermal clouds overlap and give up their identity.
Hamiltonian flow in Coulomb gauge Yang-Mills theory
Leder, Markus; Reinhardt, Hugo; Pawlowski, Jan M.; Weber, Axel
2011-01-15
We derive a new functional renormalization group equation for Hamiltonian Yang-Mills theory in Coulomb gauge. The flow equations for the static gluon and ghost propagators are solved under the assumption of ghost dominance within different diagrammatic approximations. The results are compared to those obtained in the variational approach and the reliability of the approximations is discussed.
Interpolating the Coulomb phase of little string theory
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi
2015-12-03
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less
Magnetic control of Coulomb scattering and terahertz transitions among excitons
NASA Astrophysics Data System (ADS)
Bhattacharyya, J.; Zybell, S.; Eßer, F.; Helm, M.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Breddermann, B.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.
2014-03-01
Time-resolved terahertz quenching studies of the magnetoexcitonic photoluminescence from GaAs/AlGaAs quantum wells are performed. A microscopic theory is developed to analyze the experiments. Detailed experiment-theory comparisons reveal a remarkable magnetic-field controllability of the Coulomb and terahertz interactions in the excitonic system.
Closed Form Expressions for an Integral Involving the Coulomb Potential
NASA Astrophysics Data System (ADS)
Mcisaac, K.; Gottschalk, J. E.; Maslen, E. N.
1986-12-01
Expressions for an integral related to the Coulomb potential are given. The expressions are in terms of logarithms and polynomials or logarithms and sums of Legendre polynomials. Identities relating an infinite sum of Legendre polynomials to a finite sum of Legendre polynomials can be deduced. This expression can be used in the domain to t → 1, z → 1 where quadrature fails.
Interpolating the Coulomb phase of little string theory
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi
2015-12-03
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.
Finiteness of the Coulomb gauge QCD perturbative effective action
Andraši, A.; Taylor, J.C.
2015-05-15
At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ–Lee term which was inserted into the Hamiltonian.
Interpolating the Coulomb phase of little string theory
NASA Astrophysics Data System (ADS)
Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi
2015-12-01
We study up to 8-derivative terms in the Coulomb branch effective action of (1, 1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU( k) SYM and DSLST respectively, for k = 2 , 3 , 4 , 5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2 , 0) little string theory.
On Coulomb collisions in bi-Maxwellian plasmas
Hellinger, Petr; Travnicek, Pavel M.
2009-05-15
Collisional momentum and energy transport in bi-Maxwellian plasmas with a drift velocity along the ambient magnetic field are calculated from both the Fokker-Planck and Boltzmann integral approximations. The transport coefficients obtained from the two approaches are identical to the leading order (proportional to the Coulomb logarithm) and are presented here in a closed form involving generalized double hypergeometric functions.
Low-energy Coulomb excitation of neutron-rich zinc isotopes
NASA Astrophysics Data System (ADS)
van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.
2009-01-01
At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.
Coulomb excitation of 68,70Cu: first use of postaccelerated isomeric beams.
Stefanescu, I; Georgiev, G; Ames, F; Aystö, J; Balabanski, D L; Bollen, G; Butler, P A; Cederkäll, J; Champault, N; Davinson, T; De Maesschalck, A; Delahaye, P; Eberth, J; Fedorov, D; Fedosseev, V N; Fraile, L M; Franchoo, S; Gladnishki, K; Habs, D; Heyde, K; Huyse, M; Ivanov, O; Iwanicki, J; Jolie, J; Jonson, B; Kröll, Th; Krücken, R; Kester, O; Köster, U; Lagoyannis, A; Liljeby, L; Lo Bianco, G; Marsh, B A; Niedermaier, O; Nilsson, T; Oinonen, M; Pascovici, G; Reiter, P; Saltarelli, A; Scheit, H; Schwalm, D; Sieber, T; Smirnova, N; Van De Walle, J; Van Duppen, P; Zemlyanoi, S; Warr, N; Weisshaar, D; Wenander, F
2007-03-23
We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon. Gamma rays were detected with the MINIBALL spectrometer. The 6- beam was used to study the multiplet of states (3-, 4-, 5-, 6-) arising from the pi2p3/2 nu 1g9/2 configuration. The 4- state of the multiplet was populated via Coulomb excitation and the B(E2;6--->4-) value was determined in both nuclei. The results obtained illustrate the fragile stability of the Z=28 shell and N=40 subshell closures. A comparison with large-scale shell-model calculations using the 56Ni core shows the importance of the proton excitations across the Z=28 shell gap to the understanding of the nuclear structure in the neutron-rich nuclei with N approximately 40.
Dalitz plot analysis of Coulomb exploding O{sub 3} in ultrashort intense laser fields
Matsuda, Akitaka; Takahashi, Eiji J.; Hishikawa, Akiyoshi
2007-09-21
The three-body Coulomb explosion of O{sub 3}, O{sub 3}{sup 3+}{yields}O{sup +}+O{sup +}+O{sup +}, in ultrashort intense laser fields (2x10{sup 15} W/cm{sup 2}) is studied with two different pulse durations (9 and 40 fs) by the coincidence momentum imaging method. In addition to a decrease in the total kinetic energy release, a broadening in the Dalitz plot distribution [Philos. Mag. 44, 1068 (1953)] is observed when the pulse duration is increased from 9 to 40 fs. The analysis based on a simple Coulomb explosion model shows that the geometrical structure of O{sub 3} remains almost unchanged during the interaction with the few-cycle intense laser fields, while a significant structural deformation along all the three vibrational coordinates, including the antisymmetric stretching coordinate, is identified in the 40 fs intense laser fields. The observed nuclear dynamics are discussed in terms of the population transfer to the excited states of O{sub 3}.
B(E1) Strengths from Coulomb excitation of 11Be
Summers, N C; Pain, S D; Orr, N A; Catford, W N; Angelique, J C; Ashwood, N I; Bouchat, V; Clarke, N M; Curtis, N; Freer, M; Fulton, B R; Hanappe, F; Labiche, M; Loucey, J L; Lemmon, R C; Mahboub, D; Ninane, A; Normand, G; Nunes, F M; Soic, N; Stuttge, L; Timis, C N; Thompson, I; Winfield, J S; Ziman, V
2007-03-06
The B(E1;1/2{sup +}{yields} 1/2{sup -}) strength for {sup 11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for {sup 11}Be+{sup 208}Pb at 38.6 MeV/nucleon is reported. The B(E1) strength of 0.105(12) e{sup 2}fm{sup 2} derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, in contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e{sup 2}fm{sup 2}. This value is in good agreement with the value deduced independently from the lifetime of the 1/2{sup -} state in {sup 11}Be, and has a comparable precision.
Recent developments in heavy-ion fusion reactions around the Coulomb barrier
NASA Astrophysics Data System (ADS)
Hagino, K.; Rowley, N.; Yao, J. M.
2016-06-01
The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.
Compact Collision Kernels for Hard Sphere and Coulomb Cross Sections; Fokker-Planck Coefficients
Chang Yongbin; Shizgal, Bernie D.
2008-12-31
A compact collision kernel is derived for both hard sphere and Coulomb cross sections. The difference between hard sphere interaction and Coulomb interaction is characterized by a parameter {eta}. With this compact collision kernel, the calculation of Fokker-Planck coefficients can be done for both the Coulomb and hard sphere interactions. The results for arbitrary order Fokker-Planck coefficients are greatly simplified. An alternate form for the Coulomb logarithm is derived with concern to the temperature relaxation in a binary plasma.
Interference competition and species coexistence.
Amarasekare, Priyanga
2002-01-01
Interference competition is ubiquitous in nature. Yet its effects on resource exploitation remain largely unexplored for species that compete for dynamic resources. Here, I present a model of exploitative and interference competition with explicit resource dynamics. The model incorporates both biotic and abiotic resources. It considers interference competition both in the classical sense (i.e. each species suffers a net reduction in per capita growth rate via interference from, and interference on, the other species) and in the broad sense (i.e. each species suffers a net reduction in per capita growth rate via interference from, but can experience an increase in growth rate via interference on, the other species). Coexistence cannot occur under classical interference competition even when the species inferior at resource exploitation is superior at interference. Such a trade-off can, however, change the mechanism of competitive exclusion from dominance by the superior resource exploiter to a priority effect. Now the inferior resource exploiter can exclude the superior resource exploiter provided it has a higher initial abundance. By contrast, when interference is beneficial to the interacting species, coexistence is possible via a trade-off between exploitation and interference. These results hold regardless of whether the resource is biotic or abiotic, indicating that the outcome of exploitative and interference competition does not depend on the exact nature of resource dynamics. The model makes two key predictions. First, species that engage in costly interference mechanisms (e.g. territoriality, overgrowth or undercutting, allelopathy and other forms of chemical competition) should not be able to coexist unless they also engage in beneficial interference mechanisms (e.g. predation or parasitism). Second, exotic invasive species that displace native biota should be superior resource exploiters that have strong interference effects on native species with little
Coulomb excitation of 29,30Na: Mapping the borders of the island of inversion
NASA Astrophysics Data System (ADS)
Seidlitz, M.; Reiter, P.; Altenkirch, R.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cederkäll, J.; Davinson, T.; De Witte, H.; DiJulio, D. D.; Diriken, J.; Gaffney, L. P.; Geibel, K.; Georgiev, G.; Gernhäuser, R.; Huyse, M.; Kesteloot, N.; Kröll, T.; Krücken, R.; Lutter, R.; Pakarinen, J.; Radeck, F.; Scheck, M.; Schneiders, D.; Siebeck, B.; Sotty, C.; Steinbach, T.; Taprogge, J.; Van Duppen, P.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.; Woods, P. J.; Wrzosek-Lipska, K.
2014-02-01
Nuclear shell evolution in neutron-rich Na nuclei around N =20 was studied by determining reduced transition probabilities, i.e., B (E2) and B (M1) values, in order to map the border of the island of inversion. To this end Coulomb-excitation experiments, employing radioactive 29,30Na beams with a final beam energy of 2.85 MeV/nucleon, were performed at REX-ISOLDE, CERN. De-excitation γ rays were detected by the MINIBALL γ-ray spectrometer in coincidence with scattered particles in a segmented Si detector. Transition probabilities to excited states were deduced. The measured B (E2) values agree well with shell-model predictions, supporting the idea that in the Na isotopic chain the ground-state wave function contains significant intruder admixture already at N =18, with N =19 having an almost pure two-particle-two-hole deformed ground-state configuration.
NASA Astrophysics Data System (ADS)
Zielińska, M.; Gaffney, L. P.; Wrzosek-Lipska, K.; Clément, E.; Grahn, T.; Kesteloot, N.; Napiorkowski, P.; Pakarinen, J.; Van Duppen, P.; Warr, N.
2016-04-01
With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA.
Gorelik, M. L.; Rykovanov, V. S.; Urin, M. G.
2010-12-15
Within a semimicroscopic approach, basic relaxation parameters of the isobaric analog resonance and of the charge-exchange giant monopole resonance, which is an overtone of the isobaric analog resonance, are interpreted in terms of the mean Coulomb field of a nucleus. The continuum version of the random-phase approximation, allowance for an approximate isospin conservation in nuclei in an explicit form, and a phenomenological description of the fragmentation effect are basic ingredients of the approach used. The aforementioned parameters were calculated for a number of magic and near-magic nuclei by using a partly self-consistent phenomenological nuclear mean field and the isovector part of the Landau-Migdal interaction in the particle-hole channel. The results of the calculations are compared with corresponding experimental data.
Coulomb dissociation of 27P at 500 MeV/u
NASA Astrophysics Data System (ADS)
Marganiec, J.; Beceiro Novo, S.; Typel, S.; Langer, C.; Wimmer, C.; Alvarez-Pol, H.; Aumann, T.; Boretzky, K.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Datta-Pramanik, U.; Elekes, Z.; Fulop, Z.; Galaviz, D.; Geissel, H.; Giron, S.; Greife, U.; Hammache, F.; Heil, M.; Hoffman, J.; Johansson, H.; Kiselev, O.; Kurz, N.; Larsson, K.; Le Bleis, T.; Litvinov, Yu. A.; Mahata, K.; Muentz, C.; Nociforo, C.; Ott, W.; Paschalis, S.; Plag, R.; Prokopowicz, W.; Rodríguez Tajes, C.; Rossi, D. M.; Simon, H.; Stanoiu, M.; Stroth, J.; Sümmerer, K.; Wagner, A.; Wamers, F.; Weick, H.; Wiescher, M.; R3B Collaboration
2016-04-01
The proton-capture reaction 26Si(p ,γ )27P was studied via Coulomb dissociation (CD) of 27P at an incident energy of about 500 MeV/u. The three lowest-lying resonances in 27P have been populated and their resonance strengths have been measured. In addition, a nonresonant direct-capture component was clearly identified and its astrophysical S factor measured. The experimental results are compared to Monte Carlo simulations of the CD process using a semiclassical model. Our thermonuclear reaction rates show good agreement with the rates from a recent compilation. With respect to the nuclear structure of 27P we have found evidence for a negative-parity intruder state at 2.88-MeV excitation energy.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus ^{238}U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.
Holographic interference filters
NASA Astrophysics Data System (ADS)
Diehl, Damon W.
Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.
Sensors Locate Radio Interference
NASA Technical Reports Server (NTRS)
2009-01-01
After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.
Indirect methods in nuclear astrophysics
NASA Astrophysics Data System (ADS)
Bertulani, C. A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.
2016-04-01
We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.
The one-dimensional Coulomb lattice fluid capacitor
NASA Astrophysics Data System (ADS)
Démery, Vincent; Dean, David S.; Hammant, Thomas C.; Horgan, Ronald R.; Podgornik, Rudolf
2012-08-01
The one-dimensional Coulomb lattice fluid in a capacitor configuration is studied. The model is formally exactly soluble via a transfer operator method within a field theoretic representation of the model. The only interactions present in the model are the one-dimensional Coulomb interaction between cations and anions and the steric interaction imposed by restricting the maximal occupancy at any lattice site to one particle. Despite the simplicity of the model, a wide range of intriguing physical phenomena arise, some of which are strongly reminiscent of those seen in experiments and numerical simulations of three-dimensional ionic liquid based capacitors. Notably, we find regimes where over-screening and density oscillations are seen near the capacitor plates. The capacitance is also shown to exhibit strong oscillations as a function of applied voltage. It is also shown that the corresponding mean-field theory misses most of these effects. The analytical results are confirmed by extensive numerical simulations.
Stationary entanglement between two nanomechanical oscillators induced by Coulomb interaction
NASA Astrophysics Data System (ADS)
Qin, Wu; Yin, Xiao; Zhi-Ming, Zhang
2016-01-01
We propose a scheme for entangling two nanomechanical oscillators by Coulomb interaction in an optomechanical system. We find that the steady-state entanglement of two charged nanomechanical oscillators can be obtained when the coupling between them is stronger than a critical value which relies on the detuning. Remarkably, the degree of entanglement can be controlled by the Coulomb interaction and the frequencies of the two charged oscillators. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012, 60978009, and 11574092), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Changjiang Scholar and Innovative Research Team in University, China (Grant No. IRT1243).
Coulomb Traps and Charge Transport in Molecular Solids
NASA Astrophysics Data System (ADS)
Scher, Harvey
2000-03-01
A major result of experimental studies of a diverse assortment of disordered molecular solids is the observation of a common pattern in the charge transport properties. The transport ranges from charge transfer between molecules doped in an inert polymer to motion along the silicon backbone of polysilylenes. The pattern is the unusual combination of Poole Frenkel-like electric field dependence and non-Arrhenius temperature dependence of the mobility. The latter feature has been especially puzzling. We study the drift mobility of a molecular polaron in the presence of an applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. The key electric field and temperature dependencies of the mobility measurements are well reproduced by this model. Our conclusion is that this nearly universal transport behavior arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.
Renormalization group analysis of graphene with a supercritical Coulomb impurity
NASA Astrophysics Data System (ADS)
Nishida, Yusuke
2016-08-01
We develop a field-theoretic approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial-wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power-law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.
Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.
2015-01-01
In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955
Characterization of ion Coulomb crystals for fundamental sciences
NASA Astrophysics Data System (ADS)
Okada, Kunihiro; Ichikawa, Masanari; Wada, Michiharu
2015-11-01
We performed classical molecular dynamics (MD) simulations in order to search the conditions for efficient sympathetic cooling of highly charged ions (HCIs) in a linear Paul trap. Small two-component ion Coulomb crystals consisting of laser-cooled ions and HCIs were characterized by the results of the MD simulations. We found that the spatial distribution is determined by not only the charge-to-mass ratio but also the space charge effect. Moreover, the simulation results suggest that the temperature of HCIs do not necessarily decrease with increasing the number of laser-cooled ions in the cases of linear ion crystals. We also determined the cooling limit of sympathetically cooled 165Ho14+ ions in small linear ion Coulomb crystals. The present results show that sub-milli-Kelvin temperatures of at least 10 Ho14+ ions will be achieved by sympathetic cooling with a single laser-cooled Be+.
Interplay of Coulomb interaction and spin-orbit coupling
NASA Astrophysics Data System (ADS)
Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian
2016-07-01
We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .
Coulomb excitation of C{sub 60} molecules
Esbensen, H.; Berry, H.G.; Cheng, S.
1995-08-01
The ionization and dissociation of C{sub 60} molecules in the Coulomb field from fast, highly-charged xenon ions was measured recently at ATLAS. The Coulomb excitation was modeled as a coherent excitation of the giant plasmon resonance. Guided by photo-absorption measurements, single-plasmon excitations were identified with the production of single-charged C{sub 60}{sup +} molecular ions. The calculated cross sections do indeed reproduce the beam energy-dependence of the measured C{sub 60}{sup +} yield. The calculations show that single-plasmon excitations are responsible for about half of the total reaction cross section. The other half, i.e., multiplasmon excitations, leads to multiple ionization and dissociation of the molecule.
Coulomb attraction in optical spectra of quantum discs
NASA Astrophysics Data System (ADS)
Adolph, B.; Glutsch, S.; Bechstedt, F.
1994-06-01
We present a theory which describes the influence of the Coulomb interaction on the optical spectra of quantum discs within the envelope function formalism. Starting from a non-local Elliott formula luminescence is traced back to two-particle wave functions and energies. They are solutions of the corresponding Schrödinger equation for an electron-hole pair under the influence of the Coulomb attraction and confinement potentials determined by the spatial variation of the band edges of the considered microstructure. We present a complete numerical solution of the two-particle problem for flat quantum dots, i.e. discs for which the size quantization in growth direction is much stronger than that in the xy-plane. We discuss two different situations, single discs with infinite and finite confinement potentials. Resulting theoretical lineshapes are compared with luminescence spectra obtained recently for quantum discs fabricated by laser-induced thermal cation interdiffusion in quantum-well structures.
Silicon-based Coulomb blockade thermometer with Schottky barriers
NASA Astrophysics Data System (ADS)
Tuboltsev, V.; Savin, A.; Rogozin, V. D.; Räisänen, J.
2014-04-01
A hybrid Coulomb blockade thermometer (CBT) in form of an array of intermittent aluminum and silicon islands connected in series via tunnel junctions was fabricated on a thin silicon-on-insulator (SOI) film. Tunnel barriers in the micrometer size junctions were formed by metal-semiconductor Schottky contacts between aluminium electrodes and heavily doped silicon. Differential conductance through the array vs. bias voltage was found to exhibit characteristic features of competing thermal and charging effects enabling absolute temperature measurements over the range of ˜65 to ˜500 mK. The CBT performance implying the primary nature of the thermometer demonstrated for rather trivial architecture attempted in this work paves a route for introduction of Coulomb blockade thermometry into well-developed contemporary SOI technology.
Structural phase transitions and topological defects in ion Coulomb crystals
Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.
2014-11-19
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.
Conductance of a proximitized nanowire in the Coulomb blockade regime
NASA Astrophysics Data System (ADS)
van Heck, B.; Lutchyn, R. M.; Glazman, L. I.
2016-06-01
We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.
``Perfect'' Coulomb Drag in a Bilayer Quantum Hall System
NASA Astrophysics Data System (ADS)
Nandi, D.; Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2012-02-01
We report Coulomb drag measurements in Corbino geometry which reveal that equal but oppositely directed electrical currents can freely propagate across the insulating bulk of the bilayer quantized Hall state at νT=1 even when the two 2D layers are electrically isolated and interlayer tunneling has been heavily suppressed by an in-plane magnetic field. This effect, which we dub ``perfect'' Coulomb drag, reflects the transport of charge neutral excitons across the bulk of the 2D system. The equal magnitude of the drive and drag currents is lost at high current and when either the temperature or effective separation between the two 2D layers is increased. In each of these cases, ordinary quasiparticle charge transport across the annulus has grown to dominate over exciton transport.
Coulomb chronometry to probe the decay mechanism of hot nuclei
NASA Astrophysics Data System (ADS)
Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration
2015-12-01
In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.
Phase diagram of the Kane-Mele-Coulomb model
NASA Astrophysics Data System (ADS)
Hohenadler, M.; Parisen Toldin, F.; Herbut, I. F.; Assaad, F. F.
2014-08-01
We determine the phase diagram of the Kane-Mele model with a long-range Coulomb interaction using an exact quantum Monte Carlo method. Long-range interactions are expected to play a role in honeycomb materials because the vanishing density of states in the semimetallic weak-coupling phase suppresses screening. According to our results, the Kane-Mele-Coulomb model supports the same phases as the Kane-Mele-Hubbard model. The nonlocal part of the interaction promotes short-range sublattice charge fluctuations, which compete with antiferromagnetic order driven by the onsite repulsion. Consequently, the critical interaction for the magnetic transition is significantly larger than for the purely local Hubbard repulsion. Our numerical data are consistent with SU (2) Gross-Neveu universality for the semimetal to antiferromagnet transition, and with 3D XY universality for the quantum spin Hall to antiferromagnet transition.
Ion wake effects on the Coulomb ion drag in complex dusty plasmas
Ki, Dae-Han; Jung, Young-Dae
2010-09-06
The ion wake effects on the Coulomb drag force are investigated in complex dusty plasmas. It is shown that the ion wake effects significantly enhance the Coulomb ion drag force. It is also found that the ion wake effects on the Coulomb drag force increase with an increase in the Debye length. In addition, the ion wake effects on the momentum transfer cross section and Coulomb drag force are found to be increased with increasing thermal Mach number, i.e., decreasing plasma temperature. It is also found that the Coulomb ion drag force would be stronger for smaller dust grains.
Reconfiguration and Control of Non-Equal Mass Three-Craft Coulomb Formation
NASA Astrophysics Data System (ADS)
Ting, Wang; Guangqing, Xia; Nan, Zhao
2016-03-01
The paper studied reconfiguration of Coulomb formation from three-craft system to four-craft system. Assumed that three-craft Coulomb system already formed a triangle configuration, then, the fourth Coulomb craft is scheduled to join the existing system so as to form a new static configuration. New possible configurations such as quadrilateral in 2-dimension and tetrahedron in 3-dimension for four-craft Coulomb formation are discussed in the paper. The processing of reconfiguration will not change the original origin and triangle formation. Through the Particle Swarm Optimization (PSO) algorithm, the mass, the charge and the position of the fourth Coulomb craft can be calculated for these configurations.
Resonances in the two-center Coulomb systems
NASA Astrophysics Data System (ADS)
Seri, Marcello; Knauf, Andreas; Esposti, Mirko Degli; Jecko, Thierry
2016-09-01
We investigate the existence of resonances for two-center Coulomb systems with arbitrary charges in two dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schrödinger operator. We construct the resolvent kernels of the operators and prove that they can be extended analytically to the second Riemann sheet. The resonances are then analyzed by means of perturbation theory and numerical methods.
Coulomb expansion of laser-excited ion plasmas.
Feldbaum, D; Morrow, N V; Dutta, S K; Raithel, G
2002-10-21
We determine the electric field in mm-sized clouds of cold Rb+ ions, produced by photoionization of laser-cooled 87Rb atoms in a magneto-optical trap, using the Stark effect of embedded Rydberg atoms. The dependence of the electric field on the time delay between the ion plasma production and the probe of the electric field reflects the Coulomb expansion of the plasma. Our experiments and models show expansion times <1micros.
Tryptic y ++ Fragment Ion Distributions Are Guided by Coulombic Repulsion
NASA Astrophysics Data System (ADS)
Irikura, Karl K.; Merle, John K.; Simón-Manso, Yamil
2012-03-01
Ideal tryptic peptides contain only a single basic residue, located at the C-terminus. Collisional fragmentation of their doubly- or triply-protonated ions generates doubly-charged y ++ fragment ions with modest intensities. The size distribution of the y ++ fragments, when averaged over many spectra, corresponds closely to the expectations from charge-directed backbone cleavage and a Coulomb-Boltzmann distribution of mobile protons. This observation should be helpful in developing mechanistic models for y ++ formation.
Stability characterizations of fixtured rigid bodies with Coulomb friction
PANG,J.S.; TRINKLE,JEFFREY C.
2000-02-15
This paper formally introduces several stability characterizations of fixtured three-dimensional rigid bodies initially at rest and in unilateral contact with Coulomb friction. These characterizations, weak stability and strong stability, arise naturally from the dynamic model of the system, formulated as a complementarity problem. Using the tools of complementarity theory, these characterizations are studied in detail to understand their properties and to develop techniques to identify the stability classifications of general systems subjected to known external loads.
Coulomb interactions in sharp tip pulsed photo field emitters
NASA Astrophysics Data System (ADS)
Cook, Ben; Kruit, Pieter
2016-10-01
Photofield emitters show great potential for many single electron pulsed applications. However, for the brightest pulses > 10 11 A / ( m 2 sr V ) , our simulations show that Poisson statistics and stochastic Coulomb interactions limit the brightness and increase the energy spread even with an average of a single electron per pulse. For the systems, we study we find that the energy spread is probably the limiting factor for most applications.
Coulomb field scattering in Born-Infeld electrodynamics
Tennant, Daniel
2011-02-15
In the context of Born-Infeld electrodynamics, the electromagnetic fields interact with each other via their nonlinear couplings. A calculation will be performed where an incoming electromagnetic plane wave scatters off a Coulomb field in the geometrical optics approximation. In addition to finding the first-order angle of deflection, exact solutions for the trajectory will also be found. The possibility of electromagnetic bound states will be discussed.
Bobadilla, E
1996-06-01
This official document is statement of the President of the Chilean Nuclear Energy Commission, Dr. Eduardo Bobadilla, about the nuclear policy of the Chilean State, Thanks to the international policy adopted by presidents Aylwin (1990-1994) and his successor Frei Ruiz Tagle (1994-), a nuclear development plan, protected by the Chilean entrance to the nuclear weapons non proliferation treaty and Tlatelolco Denuclearization treaty, has started. Chile will be able to develop without interference, an autonomous nuclear electrical system and other pacific uses of nuclear energy. Chile also supports a new international treaty to ban nuclear weapon tests.
Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages
NASA Astrophysics Data System (ADS)
Grabert, Hermann
2015-12-01
The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.
Implosive Interatomic Coulombic decay in the simplest molecular anion
NASA Astrophysics Data System (ADS)
Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila
2016-05-01
Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.
Instabilities of Coulomb phases and quark confinement in QCD
Asorey, Manuel; Santagata, Alessandro
2009-01-01
The Gribov picture to quark confinement is based on the Coulomb phase instability due to the very large values that the effective α{sub s} coupling constant can reach in the infrared regime. The Gribov instability is driven by a vacuum decay into light quarks beyond a critical value of the coupling constant α{sub s}3π(1-√(2/3))/4 (for SU(3) gauge group). From first principles it has been shown the existence of an instability of the Coulomb phase in pure gauge theories for α≥√(2), much beyond the Gribov critical value. In this paper we analyze the effect of dynamical quarks in the instability of the Coulomb phase. We find a critical value of the coupling α=√(3) where a quark-antiquark pair creation mechanism leads to vacuum instability. However, the new critical value turns out to be larger than the pure gauge critical value α=√(2), unlike it is expected in the standard Gribov scenario. The result is analytically derived from first principles and provides further consistency to the picture where quark confinement is mainly driven by gluonic fluctuation instabilities.
Electron interactions in graphene through an effective Coulomb potential
NASA Astrophysics Data System (ADS)
Rodrigues, Joao N. B.; Adam, Shaffique
A recent numerical work [H.-K. Tang et al, PRL 115, 186602 (2015)] considering graphene's π-electrons interacting through an effective Coulomb potential that is finite at short-distances, stressed the importance of the sp2 -electrons in determining the semimetal to Mott insulator phase transition in graphene. Some years ago, I. F. Herbut [PRL 97, 146401 (2006)] studied such a transition by mapping graphene's π-electrons into a Gross-Neveu model. From a different perspective, D. T. Son [PRB 75, 235423 (2007)] put the emphasis on the long-range interactions by modelling graphene as Dirac fermions interacting through a bare Coulomb potential. Here we build on these works and explore the phase diagram of Dirac fermions interacting through an effective Coulomb-like potential screened at short-distances. The interaction potential used allows for analytic results that controllably switch between the two perspectives above. This work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM medium-sized centre program) and by the Singapore Ministry of Education and Yale-NUS College (R-607-265-01312).
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428
Coulomb Blockade Oscillations in Coupled Single-Electron Transistors
NASA Astrophysics Data System (ADS)
Shin, Mincheol; Lee, Seongjae; Park, Kyoung Wan
2000-03-01
The system we consider in this work is parallel coupled single-electron transistors (SETs) at strong coupling. For weak coupling, the transport characteristics of our coupled SETs are the same as those of the single SET, with the stability diagram exhibiting usual Coulomb diamonds. When the coupling becomes sufficiently strong, however, electron-hole binding and transport become important. In contrast to the previous works carried out in the cotunneling-dominating Coulomb blockade regime [1,2], we study e-h binding in the sequential-tunneling-dominating conducting regime. The major findings in this work are that the Coulomb diamonds in the conducting regime break up into fine internal structures at strong coupling, and that, although the cotunneling processes are much less frequent, they nonetheless play a crucial role. [1] D. V. Averin, A. N. Korotkov, and Yu. V. Nazarov, Phys. Rev. Lett. 66, 2818 (1991). [2] M. Matters, J. J. Versluys, and J. E. Mooij, Phys. Rev. Lett. 78, 2469 (1997).
Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François
2016-03-01
Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521
Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François
2016-03-01
Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons.
Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François
2016-01-01
Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521
Graphene quantum interference photodetector
Voss, Paul L
2015-01-01
Summary In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency. PMID:25821713
Graphene quantum interference photodetector.
Alam, Mahbub; Voss, Paul L
2015-01-01
In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach-Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.
Optically bistable interference filter
NASA Astrophysics Data System (ADS)
Feng, Weiting
1990-07-01
In general the temperature dependence of refractive index of coating materials is usually small. The most notable exception being the lead telluride. Thinfilm filters made of PbTe possess anomalously high nortlinearily in refractive index. We have investigated the phenomenon theoretically and experimexitally. 2 . BISTABLE CHARACTERISTICS OF INTERFERENCE FILTERS It can be proved that the transmittance and reflectance of a twin-cavity NLIF which consists of two F-B filters coupled by a single low-index are given by 2 a(1r1 )(1-r0) T --i. -. (1) -d (1r01) (1r12) (1-i-Fsin 4)(1+sin p) where a r01 F . Te phase change of the cavity 0 IS 2r0dnAI0D (2) 2k5dT 1k where the absorbtance A 00 the initial detunning of fresonance and the first term on the right side of the equation(1)-(2) the output characteristics of the NLIF can be calculated. 3 . EXPERIMENTAL CASE The interference filters suggested to be used in my research will be made by vacuum deposition with a thermal source. The filters will be made according to the prescripti The dominant mechanism responsible for d(nhl) must be the change in the refractive index. A low limit on the OB switch-on time is found to be O. 35us and switch-off time is 5. 5us. 4. REFERENCES 1. W. T. Feng " Temperature effects on properties of zinc selenide and lead telluride" to be published in Infrared Physics. 2. H. S. Carslaw Conduction
Jackson, M I; Hiley, M J; Yeadon, M R
2011-10-13
In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. PMID:21889150
Satellite-based interference analyzer
NASA Technical Reports Server (NTRS)
Varice, H.; Johannsen, K.; Sabaroff, S.
1977-01-01
System identifies terrestrial sources of radiofrequency interference and measures their frequency spectra and amplitudes. Designed to protect satellite communication networks, system measures entire noise spectrum over selected frequency band and can raster-scan geographical region to locate noise sources. Once interference is analyzed, realistic interference protection ratios are determined and mathematical models for predicting ratio-frequency noise spectra are established. This enhances signal-detection and locates optimum geographical positions and frequency bands for communication equipment.
Quantum Interference in Graphene Nanoconstrictions.
Gehring, Pascal; Sadeghi, Hatef; Sangtarash, Sara; Lau, Chit Siong; Liu, Junjie; Ardavan, Arzhang; Warner, Jamie H; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A
2016-07-13
We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Pérot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.
10 CFR 960.4-2-8 - Human interference.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... of the permanent markers and records required by 10 CFR part 60, taking into account...
10 CFR 960.4-2-8 - Human interference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... activities by future generations at or near the site will not be likely to affect waste containment...
10 CFR 960.4-2-8 - Human interference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... activities by future generations at or near the site will not be likely to affect waste containment...
10 CFR 960.4-2-8 - Human interference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... activities by future generations at or near the site will not be likely to affect waste containment...
10 CFR 960.4-2-8 - Human interference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Human interference. 960.4-2-8 Section 960.4-2-8 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... activities by future generations at or near the site will not be likely to affect waste containment...
Photocurrent Control in a Magnetic Field through Quantum Interference
NASA Astrophysics Data System (ADS)
Rao, Kiran Murti
Quantum-mechanical interference between excitation pathways can be used to inject photocurrents optically in semiconductors, the properties of which can be coherently controlled through the phases and polarizations of the optical pulses. In this thesis, coherent photocurrent control is investigated theoretically for two-dimensional semiconductor systems in a perpendicular magnetic field. The semiconductor systems are subjected to optical pulses with centre frequencies o 0 and 2o0, which excite interband transitions through one- and two-photon processes, selection rules for which are determined from envelope wave functions. It is shown using time-dependent perturbation theory that the interference between one- and two-photon pathways connecting a particular valence Landau level to two different but adjacent conduction Landau levels manifests itself as electron currents that rotate counterclockwise, while interference between pathways connecting two adjacent valence Landau levels to a particular conduction Landau level manifests itself as hole currents that rotate clockwise. The initial directions of the currents can be controlled by adjusting the polarizations and a relative phase parameter of the pulses. The analysis is performed for a GaAs quantum well, monolayer graphene and bilayer graphene. For GaAs, the equally spaced Landau levels in each band lead to electron currents rotating at a single frequency and hole currents rotating at a different frequency. Monolayer and bilayer graphene allow currents with multiple frequency components as well as other peculiarities resulting from additional interference processes not present for GaAs. The photocurrents in all of these systems radiate in the terahertz regime. This radiation is calculated for realistic experimental conditions, with scattering and relaxation processes accounted for phenomenologically. Finally, the effect of Coulomb interactions on the coherent control process is considered for an undoped Ga
Developmental Change in Proactive Interference.
ERIC Educational Resources Information Center
Kail, Robert
2002-01-01
Two studies examined age-related change in proactive interference from previously learned material. The meta-analysis of 26 studies indicated that proactive interference decreased with age. The cross-sectional study found that third through sixth graders' and college students' recall was accurate on Trial 1, but became less so over Trials 2…
Interference Phenomenon with Mobile Displays
ERIC Educational Resources Information Center
Trantham, Kenneth
2015-01-01
A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…
Output Interference in Recognition Memory
ERIC Educational Resources Information Center
Criss, Amy H.; Malmberg, Kenneth J.; Shiffrin, Richard M.
2011-01-01
Dennis and Humphreys (2001) proposed that interference in recognition memory arises solely from the prior contexts of the test word: Interference does not arise from memory traces of other words (from events prior to the study list or on the study list, and regardless of similarity to the test item). We evaluate this model using output…
Serum indices: managing assay interference.
Farrell, Christopher-John L; Carter, Andrew C
2016-09-01
Clinical laboratories frequently encounter samples showing significant haemolysis, icterus or lipaemia. Technical advances, utilizing spectrophotometric measurements on automated chemistry analysers, allow rapid and accurate identification of such samples. However, accurate quantification of haemolysis, icterus and lipaemia interference is of limited value if laboratories do not set rational alert limits, based on sound interference testing experiments. Furthermore, in the context of increasing consolidation of laboratories and the formation of laboratory networks, there is an increasing requirement for harmonization of the handling of haemolysis, icterus and lipaemia-affected samples across different analytical platforms. Harmonization may be best achieved by considering both the analytical aspects of index measurement and the possible variations in the effects of haemolysis, icterus and lipaemia interferences on assays from different manufacturers. Initial verification studies, followed up with ongoing quality control testing, can help a laboratory ensure the accuracy of haemolysis, icterus and lipaemia index results, as well as assist in managing any biases in index results from analysers from different manufacturers. Similarities, and variations, in the effect of haemolysis, icterus and lipaemia interference in assays from different manufacturers can often be predicted from the mechanism of interference. Nevertheless, interference testing is required to confirm expected similarities or to quantify differences. It is important that laboratories are familiar with a number of interference testing protocols and the particular strengths and weaknesses of each. A rigorous approach to all aspects of haemolysis, icterus and lipaemia interference testing allows the analytical progress in index measurement to be translated into improved patient care. PMID:27147624
Supersonic Wave Interference Affecting Stability
NASA Technical Reports Server (NTRS)
Love, Eugene S.
1958-01-01
Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.
Interference phenomenon with mobile displays
NASA Astrophysics Data System (ADS)
Trantham, Kenneth
2015-07-01
A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state physics such as direct and reciprocal lattice vectors.
Extreme ultraviolet Talbot interference lithography.
Li, Wei; Marconi, Mario C
2015-10-01
Periodic nanopatterns can be generated using lithography based on the Talbot effect or optical interference. However, these techniques have restrictions that limit their performance. High resolution Talbot lithography is limited by the very small depth of focus and the demanding requirements in the fabrication of the master mask. Interference lithography, with large DOF and high resolution, is limited to simple periodic patterns. This paper describes a hybrid extreme ultraviolet lithography approach that combines Talbot lithography and interference lithography to render an interference pattern with a lattice determined by a Talbot image. As a result, the method enables filling the arbitrary shaped cells produced by the Talbot image with interference patterns. Detailed modeling, system design and experimental results using a tabletop EUV laser are presented. PMID:26480070
Sagnac interference in carbon nanotubes
NASA Astrophysics Data System (ADS)
Bishara, Waheb; Refael, Gil; Bockrath, Marc
2008-10-01
The Sagnac interference mode arises when two interfering counterpropogating beams traverse a loop, but with their velocities detuned by a small amount 2u , with vR/L=vF±u . In this paper we perform a perturbative nonequilibrium calculation of Sagnac interference in single-channel wires as well as armchair nanotube loops. We study the dependence of the Sagnac conductance oscillations on temperature and interactions. We find that the Sagnac interference is not destroyed by strong interactions, but becomes weakly dependent on the velocity detuning u . In armchairs nanotubes with typical interaction strength, 0.25≤g≤0.5 , we find that the necessary temperature for observing the interference effect, TSAG is also only weakly dependent on the interaction, and is enhanced by a factor of 8 relative to the temperature necessary for observing Fabry-Pérot interference in the same system, TFP .
Developmental change in proactive interference.
Kail, Robert
2002-01-01
The aim of the present research was to examine age-related change in proactive interference, which refers to impaired recall due to interference from material presented previously. Study 1 was a meta-analysis based on 26 studies that included 82 data sets. The results indicated that proactive interference decreased between 4 and 13 years of age. In Study 2, children from grades 3 through 6 and college students (N = 125) were administered a short-term memory task in which they briefly remembered sets of three words. For all ages, recall was accurate on Trial 1. However, recall became less accurate over Trials 2 through 4, particularly for the younger children in the sample. In addition, structural equation modeling revealed that age-related change in interference was linked to age-related change in speed of information processing. Results are discussed in terms of the nature of age-related change in interference.
Coulomb excitation of neutron-rich Cd isotopes
NASA Astrophysics Data System (ADS)
Ilieva, S.; Thürauf, M.; Kröll, Th.; Krücken, R.; Behrens, T.; Bildstein, V.; Blazhev, A.; Bönig, S.; Butler, P. A.; Cederkäll, J.; Davinson, T.; Delahaye, P.; Diriken, J.; Ekström, A.; Finke, F.; Fraile, L. M.; Franchoo, S.; Fransen, Ch.; Georgiev, G.; Gernhäuser, R.; Habs, D.; Hess, H.; Hurst, A. M.; Huyse, M.; Ivanov, O.; Iwanicki, J.; Kent, P.; Kester, O.; Köster, U.; Lutter, R.; Mahgoub, M.; Martin, D.; Mayet, P.; Maierbeck, P.; Morgan, T.; Niedermeier, O.; Pantea, M.; Reiter, P.; Rodríguez, T. R.; Rolke, Th.; Scheit, H.; Scherillo, A.; Schwalm, D.; Seidlitz, M.; Sieber, T.; Simpson, G. S.; Stefanescu, I.; Thiel, S.; Thirolf, P. G.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Weinzierl, W.; Weisshaar, D.; Wenander, F.; Wiens, A.; Winkler, S.
2014-01-01
The isotopes Cd122,124,126 were studied in a "safe" Coulomb-excitation experiment at the radioactive ion-beam facility REX-ISOLDE at CERN. The reduced transition probabilities B (E2;0g .s.+→21+) and limits for the quadrupole moments of the first 2+ excited states in the three isotopes were determined. The onset of collectivity in the vicinity of the Z =50 and N =82 shell closures is discussed by comparison with shell model and beyond mean-field calculations.
Calculation of relativistic effects in sub Coulomb heavy ion scattering
NASA Astrophysics Data System (ADS)
Hencken, Kai; Trautmann, Dirk
1991-06-01
Relativistic corrections for the elastic scattering of heavy ions in the sub Coulomb regime are given. The case of two identical particles is treated especially. The deviation from the Rutherford (Mott) cross section is calculated by using the Todorov equation and the Darwin Hamiltonian, resp. It is shown, that both approches lead to the same results for small kinetic energies. Furthermore we discuss the applicability of the WKB method for calculating the phase shifts and the possibility of using a classical perturbative approach in the case of nonidentical particles.
A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors
Nia, Iman Hassani; Mohseni, Hooman
2014-07-28
Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.
Analytical approach to quasiperiodic beam Coulomb field modeling
NASA Astrophysics Data System (ADS)
Rubtsova, I. D.
2016-09-01
The paper is devoted to modeling of space charge field of quasiperiodic axial- symmetric beam. Particle beam is simulated by charged disks. Two analytical Coulomb field expressions are presented, namely, Fourier-Bessel series and trigonometric polynomial. Both expressions permit the integral representation. It provides the possibility of integro-differential beam dynamics description. Consequently, when beam dynamics optimization problem is considered, it is possible to derive the analytical formula for quality functional gradient and to apply directed optimization methods. In addition, the paper presents the method of testing of space charge simulation code.
Heavy quarks, gluons and the confinement potential in Coulomb gauge
Popovici, Carina; Watson, Peter; Reinhardt, Hugo
2011-05-23
We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.
The Coulomb excitations of Bernal bilayer graphene under external fields
Wu, Jhao-Ying; Lin, Ming-Fa
2014-03-31
We study the field effects on the Coulomb excitation spectrum of Bernal bilayer graphene by using the tight-binding model and the random-phase approximation. The electric field opens the band gap and creates the saddle points, the latter brings about a prominent interband plasmon. On the other hand, the magnetic field induces the dispersionless Landau levels (LLs) that causes the inter-LL plasmons. The two kinds of field-induced plasmon modes can be further tuned by the magnitude of momentum transfer and the field strength. The predicted results may be further validated by the inelastic light-scattering or high-resolution electron-energy-loss spectroscopy (HREELLS)
Coulomb blockade and superuniversality of the theta angle.
Burmistrov, I S; Pruisken, A M M
2008-08-01
Based on the Ambegaokar-Eckern-Schön approach to the Coulomb blockade, we develop a complete quantum theory of the single electron transistor. We identify a previously unrecognized physical observable in the problem that, unlike the usual average charge on the island, is robustly quantized for any finite value of the tunneling conductance as the temperature goes to absolute zero. This novel quantity is fundamentally related to the nonsymmetrized current noise of the system. Our results display all of the superuniversal topological features of the theta angle concept that previously arose in the theory of the quantum Hall effect.
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.
Sahin, Buyukdagli; Ralf, Blossey
2014-07-16
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics. PMID:24920153
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Astrophysics Data System (ADS)
Marshall, J. R.
1999-09-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
A nonlinear Bloch model for Coulomb interaction in quantum dots
Bidegaray-Fesquet, Brigitte Keita, Kole
2014-02-15
In this paper, we first derive a Coulomb Hamiltonian for electron–electron interaction in quantum dots in the Heisenberg picture. Then we use this Hamiltonian to enhance a Bloch model, which happens to be nonlinear in the density matrix. The coupling with Maxwell equations in case of interaction with an electromagnetic field is also considered from the Cauchy problem point of view. The study is completed by numerical results and a discussion about the advisability of neglecting intra-band coherences, as is done in part of the literature.
Is the Coulomb sum rule violated in nuclei?
NASA Astrophysics Data System (ADS)
Morgenstern, J.; Meziani, Z.-E.
2001-08-01
Guided by the experimental confirmation of the validity of the Effective Momentum Approximation (EMA) in quasi-elastic scattering off nuclei, we have re-examined the extraction of the longitudinal and transverse response functions in medium-weight and heavy nuclei. In the EMA we have performed a Rosenbluth separation of the available world data on 40Ca, 48Ca, 56Fe, 197Au, 208Pb and 238U. We find that the longitudinal response function for these nuclei is "quenched" and that the Coulomb sum is not saturated, at odds with claims in the literature.
Heavy quarks, gluons and the confinement potential in Coulomb gauge
NASA Astrophysics Data System (ADS)
Popovici, Carina; Watson, Peter; Reinhardt, Hugo
2011-05-01
We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.
Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam
2015-06-24
Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.
NASA Astrophysics Data System (ADS)
Przybytek, Michal; Helgaker, Trygve
2013-08-01
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γH = 2) and eight (γ1st = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (α _min^G=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d4 with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step—namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems
Przybytek, Michal; Helgaker, Trygve
2013-08-01
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems
Ejection anisotropy in three-atom Coulomb explosions
NASA Astrophysics Data System (ADS)
Zhao, K.; Hill, W. T.
2005-01-01
Coulomb explosion imaging has been used to explore anisotropies in the fragment angular distribution associated with the symmetric six-electron Coulomb explosion channel of C O2 and N O2 induced by 100 fs , 1015 W/ cm2 radiation at 800 nm and leading to doubly charged atomic ions. Specific precursor molecular geometries (bond angles prior to explosion) and orientations of the molecular axis (the line connecting the two outer atoms in the system) relative to the polarization axis were isolated for analysis by exploiting the correlation among the atomic ions ejected simultaneously. The effective orientation of the precursor molecular axis is preferentially along the polarization axis for both C O2 and N O2 with respective distributions and widths of cos39 θ (Δθ≃22°) and cos25 θ (Δθ≃27°) , which are substantially narrower than that of H2 , cos19 θ (Δθ≃31°) . The widths and distributions are found to be nearly independent of bond angle over a wide range of bond angles (35° and 55° for C O2 and N O2 , respectively). The narrowing of the width of the distribution from H2 to C O2 , combined with the independence of bond angle are consistent with (1) an increasing moment of inertia, (2) an increasing final charge state, and (3) an increasing precursor molecular ion ionization stage.
Coulomb interaction effects on the Majorana states in quantum wires.
Manolescu, A; Marinescu, D C; Stanescu, T D
2014-04-30
The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands. PMID:24722427
Coulomb-corrected molecular orbital tomography of nitrogen
Zhai, Chunyang; He, Lixin; Lan, Pengfei; Zhu, Xiaosong; Li, Yang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Lu, Peixiang
2016-01-01
High-order harmonic generation (HHG) from aligned molecules has provided a promising way to probe the molecular orbital with an Ångström resolution. This method, usually called molecular orbital tomography (MOT) replies on a simple assumption of the plane-wave approximation (PW), which has long been questioned due to that PW approximation is known to be valid in the keV energy region. However, the photon energy is usually no more than 100 eV in HHG. In this work, we experimentally reconstruct the highest occupied molecular orbital (HOMO) of nitrogen (N2) by using a Coulomb-corrected MOT (CCMOT) method. In our scheme, the molecular continuum states are described by a Coulomb wave function instead of the PW approximation. With CCMOT, the reconstructed orbital is demonstrated to agree well with the theoretical prediction and retain the main features of the HOMO of N2. Compared to the PW approximation method, the CCMOT shows a significant improvement in eliminating the artificial structures caused by PW approximation. PMID:27000666
Coupling strength in Coulomb and Yukawa one-component plasmas
Ott, T.; Bonitz, M.; Stanton, L. G.; Murillo, M. S.
2014-11-15
In a non-ideal classical Coulomb one-component plasma (OCP), all thermodynamic properties are known to depend only on a single parameter—the coupling parameter Γ. In contrast, if the pair interaction is screened by background charges (Yukawa OCP) the thermodynamic state depends, in addition, on the range of the interaction via the screening parameter κ. How to determine in this case an effective coupling parameter has been a matter of intensive debate. Here we propose a consistent approach for defining and measuring the coupling strength in Coulomb and Yukawa OCPs based on a fundamental structural quantity, the radial pair distribution function (RPDF). The RPDF is often accessible in experiments by direct observation or indirectly through the static structure factor. Alternatively, it is directly computed in theoretical models or simulations. Our approach is based on the observation that the build-up of correlation from a weakly coupled system proceeds in two steps: First, a monotonically increasing volume around each particle becomes devoid of other particles (correlation hole), and second (upon further increase of the coupling), a shell structure emerges around each particle giving rise to growing peaks of the RPDF. Using molecular dynamics simulation, we present a systematic study for the dependence of these features of the RPDF on Γ and κ and derive a simple expression for the effective coupling parameter.
Exact linearized Coulomb collision operator in the moment expansion
Ji, Jeong -Young; Held, Eric D.
2006-10-05
In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less
Coulomb excitation of a {sup 78}Rb radioactive beam.
Schwartz, J.
1998-11-18
In order to test the feasibility of Coulomb excitation of radioactive projectiles with low beam energies and intensities, they have produced a secondary radioactive beam of {sup 78}Rb and Coulomb re-excited it. The beam was produced in the fusion evaporation reaction {sup 24}Mg({sup 58}Ni,3pn){sup 78}Rb at a beam energy of 260 MeV, using the Argonne National Laboratory ATLAS accelerator. The residues of interest were separated from other reaction products and non-interacting beam using the Fragment Mass Analyzer (FMA). The beam leaving the FMA was {sup 78}Kr and {sup 78}Rb{sup gs,m1,m2}, which was refocused onto a {sup 58}Ni secondary target. They have extracted a spectrum of {gamma}-rays associated with re-excitation of A = 78 isobars. The re-excitation of stable {sup 78}Kr was observed, which serves as a reference. Gamma-rays associated with excitation of {sup 78}Rb{sup gs,m1,m2} were also seen. The measured yields indicate that all the {sup 78}Rb states are highly deformed.
Coulomb effects on pions produced in heavy-ion reactions
Sullivan, J.P.
1981-11-01
Double differential cross sections for the production of ..pi../sup +/ and ..pi../sup -/ near the velocity of the incident beam for pion lab angles less than 40 degrees are presented. The experimental apparatus and the techniques are discussed. Beams of /sup 20/Ne with E/A from 80 to 655 MeV and /sup 40/Ar with E/A = 535 MeV incident on Be, C, NaF, KC1, Cu, and U targets were used. A sharp peak in the ..pi../sup -/ spectrum and a depression in the ..pi../sup +/ spectrum were observed at zero degrees near the incident beam velocity. The effect is explained in terms of Coulomb interactions between the pions and fragments of the incident beam. Least squares fits to the data using the Coulomb correction formulas of Gyulassy and Kauffman and an effective projectile fragment charge are made. The relationship between these data and previously measured pion production and projectile fragmentation data is discussed. The data are also compared to some theoretical models. A simple expression is given for the differential cross section as a function of the projectile mass, target mass, and beam energy.
Mechanical model of the Lorentz force and Coulomb interaction
NASA Astrophysics Data System (ADS)
Dmitriyev, Valery
2008-09-01
The centripetal and Coriolis accelerations experienced by a cart traveling over a rotating turntable are usually calculated proceeding from the known kinematics of the problem. Respective forces can be regarded as due to the entrainment of the cart in the moving solid environs. We extend the approach to the general case of a particle entrained in the flow of the surrounding medium. The expression for the driving force on the particle obtained from the kinematics of the entrainment prescribed appears to be isomorphic to the Lorentz and Coulomb force on a positive electric charge. The inverse direction of the electromagnetic force on a negative charge implies that a growing applied flow induces the upstream motion of the particle. A possible microscopic mechanism for it may be the Magnus force dynamics of a kink in a vortex tangle. The loop on a straight vortex filament can be taken as a model of the electron, the loop with a cavitation models the positron. The Lorentz force is concerned with the Coriolis acceleration. The Coulomb interaction is due to the centripetal or centrifugal force that arises in the turbophoresis of the kink in the perturbation field generated in the medium by the center of pressure.
Exact linearized Coulomb collision operator in the moment expansion
Ji, Jeong -Young; Held, Eric D.
2006-10-05
In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collision operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.
Coulomb attraction in the optical spectra of quantum disks
NASA Astrophysics Data System (ADS)
Adolph, B.; Glutsch, S.; Bechstedt, F.
1993-11-01
In this paper we present a theory that describes the influence of the Coulomb interaction between electrons and holes on the optical spectra of flat quantum dots within the envelope-function formalism. Starting from a nonlocal Elliott-like formula, absorption and luminescence characteristics are traced back to properties of two-particle wave functions and energies, which are solutions of the corresponding Schrödinger equation for an electron-hole pair under the influence of the Coulomb attraction and confinement potentials, determined by the spatial variation of the band edges of the considered microstructure. We present a complete numerical solution of the two-particle problem for flat quantum dots, i.e., disks for which the size quantization in the growth direction is much stronger than that in the perpendicular plane. The resulting theoretical line shapes are compared with luminescence spectra obtained recently for quantum dots fabricated by laser-induced thermal cation interdiffusion in quantum-well structures.
Pore fluid pressure, apparent friction, and Coulomb failure
Beeler, N.M.; Simpson, R.W.; Hickman, S.H.; Lockner, D.A.
2000-01-01
Many recent studies of stress-triggered seismicity rely on a fault failure model with a single free parameter, the apparent coefficient of friction, presumed to be a material constant with possible values 0 ≤ μ′ ≤ 1. These studies may present a misleading view of fault strength and the role of pore fluid pressure in earthquake failure. The parameter μ′ is intended to incorporate the effects of both friction and pore pressure, but is a material constant only if changes in pore fluid pressure induced by changes in stress are proportional to the normal stress change across the potential failure plane. Although specific models of fault zones permit such a relation, neither is it known that fault zones within the Earth behave this way, nor is this behavior expected in all cases. In contrast, for an isotropic homogeneous poroelastic model the pore pressure changes are proportional to changes in mean stress, μ′ is not a material constant, and −∞ ≤ μ′ ≤ +∞. Analysis of the change in Coulomb failure stress for tectonically loaded reverse and strike-slip faults shows considerable differences between these two pore pressure models, suggesting that such models might be distinguished from one another using observations of triggered seismicity (e.g., aftershocks). We conclude that using the constant apparent friction model exclusively in studies of Coulomb failure stress is unwise and could lead to significant errors in estimated stress change and seismic hazard.
Coulomb correlations in the honeycomb lattice: Role of translation symmetry
NASA Astrophysics Data System (ADS)
Liebsch, Ansgar; Wu, Wei
2013-05-01
The effect of Coulomb correlations in the half-filled Hubbard model of the honeycomb lattice is studied within the dynamical cluster approximation (DCA) combined with exact diagonalization (ED) and continuous-time quantum Monte Carlo (QMC), for unit cells consisting of six-site rings. The important difference between this approach and the previously employed cluster dynamical mean-field theory (CDMFT) is that DCA preserves the translation symmetry of the system, while CDMFT violates this symmetry. As the Dirac cones of the honeycomb lattice are the consequence of perfect long-range order, DCA yields semimetallic behavior at small on-site Coulomb interactions U, whereas CDMFT gives rise to a spurious excitation gap even for very small U. This basic difference between the two cluster approaches is found regardless of whether ED or QMC is used as the impurity solver. At larger values of U, the lack of translation symmetry becomes less important, so that the CDMFT reveals a Mott gap, in qualitative agreement with large-scale QMC calculations. In contrast, the semimetallic phase obtained in DCA persists even at U values where CDMFT and large-scale QMC consistently show Mott-insulating behavior.
Modal interference fiber optic sensor
NASA Astrophysics Data System (ADS)
Kondrat, Marcin; Szustakowski, Mieczyslaw; Gorka, Andrzej; Palka, Norbert; Zyczkowski, Marek; Niznik, Sylwester
2004-11-01
Modal Interference Fiber Optic Sensor (MIFOS) for permanent monitoring of the network is presented. A mechanical disturbance of a fiber cable influences on intensity distribution at the end-face of a multimode fiber. Variations in interfering images are analysed by means of a digital processing unit that determines the alarm in case of unauthorized access along the whole length of the fiber. A contrast of an interference pattern and a procedure of fiber optic selection for the sensor are shown. A simple criterion that bases on changes of local maximums positions of the interference patterns is applied. A laboratory arrangement of the sensor and its experimental research are shown.
Optical interference with digital holograms
NASA Astrophysics Data System (ADS)
Gossman, David; Perez-Garcia, Benjamin; Hernandez-Aranda, Raul I.; Forbes, Andrew
2016-07-01
In 1804, Thomas Young reported the observation of fringes in the intensity of light, and attributed it to the concept of interference between coherent sources. In this paper, we revisit this famous experiment and show how it can easily be demonstrated with digital holography. We look closely at the concept of interference with light and ask, "fringes in what?" We then show that depending on how light interferes, fringe patterns in observables other than intensity can be seen. We explain this conceptually and demonstrate it experimentally. We provide a holistic approach to the topic, aided by modern laboratory practices for a straightforward demonstration of the underlying physics.
Profiler/satellite interference analysis
NASA Astrophysics Data System (ADS)
Chadwick, R. B.
1987-02-01
An engineering analysis of potential radio interference between the Wind Profiler Demonstration Network and three NOAA satellite-based systems is presented. These three systems are: Geostationary Operational Environmental Satellite (GOES) system, the Search and Rescue Satellite (SARSAT) system, and the TIROS series Data Collection System (TDCS). The Profiler considered in this analysis is the UHF Wind Profiler to be supplied by Sperry Corporation under a contract awarded June 1986. The analysis is based on the interference-to-noise ratio at the satellite receiver. Several engineering changes have been made to the original contract to reduce potential interference. The effects of these changes are presented.
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Astrophysics Data System (ADS)
Marshall, J. R.
1999-09-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
Nuclear annihilation by antinucleons
Lee, Teck-Ghee; Wong, Cheuk-Yin
2016-01-25
We examine the momentum dependence ofmore » $$\\bar p$$$p$ and $$\\bar n$$$p$ annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar p p$$ Coulomb interaction. Compared to the $$\\bar n p$$ annihilation cross section, the $$\\bar p p$$ annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below $$p_{\\rm lab} <$$ 500 MeV/$c$$, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP {\\bb 30}, 423 (1956)] at $$p_{\\rm lab}\\sim 500$ MeV/$c$. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar n$$ and $$\\bar p$$ interaction with nuclei and the results compare well with experimental data.« less
Nuclear Astrophysics with the Trojan Horse Method
NASA Astrophysics Data System (ADS)
Spitaleri, Claudio
2015-04-01
In stars nuclear reactions take place at physical conditions that make very hard their measurements in terrestrial laboratories. Indeed in astrophysical environments nuclear reactions between charged nuclei occur at energies much lower than the Coulomb barrier and the corresponding cross section values lie in the nano or picobarn regime, that makes their experimental determination extremely difficult. This is due to the very small barrier Coulomb penetration factor, which produces an exponential fall off of the cross section as a function of energy. Additionally, the presence of the electron screening needs to be properly taken into account when dealing with cross section measurements at low-energies. The Trojan Horse Method (THM) represents an independent experimental technique, allowing one to measure astrophysical S(E)-factor bared from both Coulomb penetration and electron screening effects. The main advantages and the most recent results are here shown and discussed.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Airport Control Tower Stations § 87.425 Interference. Control towers and RCOs must not cause harmful interference to control towers or RCOs at adjacent airports. If interference between adjacent control towers...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Airport Control Tower Stations § 87.425 Interference. Control towers and RCOs must not cause harmful interference to control towers or RCOs at adjacent airports. If interference between adjacent control towers...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Airport Control Tower Stations § 87.425 Interference. Control towers and RCOs must not cause harmful interference to control towers or RCOs at adjacent airports. If interference between adjacent control towers...
Stimulus Structure, Discrimination, and Interference
ERIC Educational Resources Information Center
Runquist, Willard N.
1975-01-01
The general purpose of this experiment was to determine whether differences in stimulus discrimination, as determined by the MIR (missing-item recognition) test, are correlated with interference in recall, as demanded by the discriminative coding hypothesis. (Author/RK)
Interference of quantum market strategies
NASA Astrophysics Data System (ADS)
Piotrowski, Edward W.; Sładkowski, Jan; Syska, Jacek
2003-02-01
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper is devoted to the analysis of interference of quantum strategies in quantum market games.
Optical interference with noncoherent states
NASA Astrophysics Data System (ADS)
Sagi, Yoav; Firstenberg, Ofer; Fisher, Amnon; Ron, Amiram
2003-03-01
We examine a typical two-source optical interference apparatus consisting of two cavities, a beam splitter, and two detectors. We show that field-field interference occurs even when the cavities are not initially in coherent states but rather in other nonclassical states. However, we find that the visibility of the second-order interference, that is, the expectation values of the detectors’ readings, changes from 100%, when the cavities are prepared in coherent states, to zero visibility when they are initially in single Fock states. We calculate the fourth-order interference, and for the latter case find that it corresponds to a case where the currents oscillate with 100% visibility, but with a random phase for every experiment. Finally, we suggest an experimental realization of the apparatus with nonclassical sources.
Interference problems for nongeostationary satellites
NASA Technical Reports Server (NTRS)
Sollfrey, W.
1984-01-01
The interference problems faced by nongeostationary satellites may be of major significance. A general discussion indicates the scope of the problems and describes several configurations of importance. Computer programs are described, which are employed by NASA/JPL and the U.S. Air Force Satellite Control Facility to provide interference-free scheduling of commands and data transmission. Satellite system mission planners are not concerned with the precise prediction of interference episodes, but rather with the expected total amount of interference, the mean and maximum duration of events, and the mean spacing between episodes. The procedures in the theory of probability developed by the author which permit calculation of such quantities are described and applied to several real cases. It may be anticipated that the problems will become steadily worse in the future as more and more data transmissions attempt to occupy the same frequency band.
Interference Colors in Thin Films.
ERIC Educational Resources Information Center
Armstrong, H. L.
1979-01-01
Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)
Triaxial rotor model description of quadrupole interference in collective nuclei: The P3 term
NASA Astrophysics Data System (ADS)
Allmond, J. M.; Wood, J. L.; Kulp, W. D.
2009-08-01
The triaxial rotor model with independent inertia and electric quadrupole tensors is applied to the P3 term, P3=<01||T̂(E2)||21><21||T̂(E2)||22><22||T̂(E2)||01>, which is a standard measure of quadrupole interference in collective nuclei. It is shown that the model naturally explains nuclei with anomalous signs for their P3 terms. Measurements of Q(21) in multiple-step Coulomb excitation can be significantly dependent on the sign of this term. The example of Pt194 is considered.
The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions
Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.
2014-05-09
Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.
Rainbow scattering in nuclear collisions
Berezhnoi-breve, Y.A.; Kuznichenko, A.V.; Onishchenko, G.M.; Pilipenko, V.V.
1987-03-01
The evolution of ideas about the rainbow phenomenon resulting from the refraction and reflection of light in water drops is briefly reviewed. The rainbow scattering of particles in quantum mechanics is treated on the basis of the semiclassical approximation, and the nuclear and Coulomb ''rainbows'' are discussed. Rainbow scattering of light ions by nuclei at energies Eapprox. >25--30 MeV/nucleon is considered. The results of theoretical analysis of experimental data on rainbow scattering are presented. The behavior of the nuclear part of the scattering phase shift deduced from experiment is discussed. The manifestation of rainbow scattering in quasielastic nuclear processes is considered.
Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.
Lehtinen, J S; Zakharov, K; Arutyunov, K Yu
2012-11-01
Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state--the Coulomb blockade. When exposed to rf radiation, the internal Bloch oscillations can be synchronized with the external rf drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS--the QPS junction.
Influence of Coulomb screening on lateral lasing in VECSELs.
Wang, Chengao; Malloy, Kevin; Sheik-Bahae, Mansoor
2015-12-14
Parasitic lateral lasing in certain optically pumped semiconductor disc lasers drains the gain of the vertical mode and thus causes power scaling degradation and premature rollover in surface emitting operation. We have observed this effect in both multiple quantum wells (MQW) (GaInAs/GaAs) and double heterostructures (DHS) (GaInP/GaAs/GaInP) under pulsed excitation even when the gain chip lateral dimensions are much larger than the diameter of the pump laser. Lateral lasing occurs persistently between cleaved facets at a band-tail wavelength much longer than the peak of the gain. We show that the effect of bandgap renormalization due to Coulomb screening explains this phenomena. Exploiting the simple analytical plasma theory of bulk semiconductors (Banyai & Koch, 1986), we can account for such an effect in double heterostructures. PMID:26699044
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Sub-barrier Coulomb excitation of 107Sn
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cederkall, J.; Ekström, A.; Fahlander, C.; Hjorth-Jensen, M.; Is459 Collaboration
2012-09-01
A Coulomb excitation experiment in inverse kinematics has been carried out at the REX-ISOLDE facility in order to study the properties of low-lying excited states in 107Sn. The measured γ ray spectrum has been compared with predicted γ ray spectra from a combined shell-model and GOSIA analysis. In this approach, a set of matrix elements, generated within the shell-model framework, based on a realistic nucleon-nucleon interaction and a set of single-particle energies relative to 100Sn, is used as input. Comparison between the calculated and predicted spectra can be used to help identify the placement of the single-neutron states in 101Sn. In particular, the results can potentially provide clues on the ordering of the two lowest-lying orbits; the g7/2 and d5/2 states.
Phase diagram of a bulk 1d lattice Coulomb gas
NASA Astrophysics Data System (ADS)
Démery, V.; Monsarrat, R.; Dean, D. S.; Podgornik, R.
2016-01-01
The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreening, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble. We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density ordered phases, separated by a first-order phase transition at low temperature; the solid state at full packing can be ordered or not, depending on the temperature. This phase diagram, which is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the confined system.
Coulomb gauge confinement in the heavy quark limit
Popovici, C.; Watson, P.; Reinhardt, H.
2010-05-15
The relationship between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential is investigated. By rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative solution is presented. It is found that there is a direct connection between the string tension and the temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.
Intermediate-energy Coulomb excitation of {sup 30}Na
Ettenauer, S.; Adrich, P.; Bazin, D.; Campbell, C. M.; Lecouey, J.-L.; Mueller, W. F.; Yoneda, K.; Zwahlen, H.; Cook, J. M.; Davies, A. D.; Dinca, D.-C.; Gade, A.; Glasmacher, T.; Terry, J. R.; Otsuka, T.; Reynolds, R. R.; Riley, L. A.; Utsuno, Y.
2008-07-15
The neutron-rich nucleus {sup 30}Na in the vicinity of the 'Island of Inversion' was investigated using intermediate-energy Coulomb excitation. A single {gamma}-ray transition was observed and attributed to the 3{sub 1}{sup +}{yields}2{sub gs}{sup +} decay. A transition probability of B(E2;2{sub gs}{sup +}{yields}3{sub 1}{sup +})=147(21) e{sup 2} fm{sup 4} was determined and found in agreement with a previous experiment and with large-scale shell-model calculations. Evidence for the strong excitation of the 4{sub 1}{sup +} state predicted by the shell-model calculations was not observed.
Investigation of uncertainty components in Coulomb blockade thermometry
Hahtela, O. M.; Heinonen, M.; Manninen, A.; Meschke, M.; Savin, A.; Pekola, J. P.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.
2013-09-11
Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.
Evolution of interatomic Coulombic decay in the time domain.
Trinter, F; Williams, J B; Weller, M; Waitz, M; Pitzer, M; Voigtsberger, J; Schober, C; Kastirke, G; Müller, C; Goihl, C; Burzynski, P; Wiegandt, F; Bauer, T; Wallauer, R; Sann, H; Kalinin, A; Schmidt, L Ph H; Schöffler, M; Sisourat, N; Jahnke, T
2013-08-30
During the past 15 years a novel decay mechanism of excited atoms has been discovered and investigated. This so-called interatomic Coulombic decay (ICD) involves the chemical environment of the electronically excited atom: the excitation energy is transferred (in many cases over long distances) to a neighbor of the initially excited particle usually ionizing that neighbor. It turned out that ICD is a very common decay route in nature as it occurs across van der Waals and hydrogen bonds. The time evolution of ICD is predicted to be highly complex, as its efficiency strongly depends on the distance of the atoms involved and this distance typically changes during the decay. Here we present the first direct measurement of the temporal evolution of ICD using a novel experimental approach.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites.
Wang, He; Valkunas, Leonas; Cao, Thu; Whittaker-Brooks, Luisa; Fleming, Graham R
2016-08-18
Methylammonium lead iodide (CH3NH3PbI3) hybrid perovskite in the tetragonal and orthorhombic phases have different exciton binding energies and demonstrate different excitation kinetics. Here, we explore the role that crystal structure plays in the kinetics via fluence dependent transient absorption spectroscopy. We observe stronger saturation of the free carrier concentration under high pump energy density in the orthorhombic phase relative to the tetragonal phase. We attribute this phenomenon to small dielectric constant, large exciton binding energy, and weak Coulomb screening, which results in difficult exciton dissociation under high light intensity in the orthorhombic phase. At higher excitation intensities, we observe a coherent phonon with an oscillation frequency of 23.4 cm(-1) at 77 K, whose amplitude tracks the increase of the first-order lifetime. PMID:27485190
Effect of on-chip filter on Coulomb blockade thermometer
NASA Astrophysics Data System (ADS)
Roschier, L.; Gunnarsson, D.; Meschke, M.; Savin, A.; Penttilä, J. S.; Prunnila, M.
2012-12-01
Coulomb Blockade Thermometer (CBT) is a primary thermometer based on electric conductance of normal tunnel junction arrays. One limitation for CBT use at the lowest temperatures has been due to environmental noise heating. To improve on this limitation, we have done measurements on CBT sensors fabricated with different on-chip filtering structures in a dilution refrigerator with a base temperature of 10 mK. The CBT sensors were produced with a wafer scale tunnel junction process. We present how the different on-chip filtering schemes affect the limiting saturation temperatures and show that CBT sensors with proper on-chip filtering work at temperatures below 20 mK and are tolerant to noisy environment.
Investigation of uncertainty components in Coulomb blockade thermometry
NASA Astrophysics Data System (ADS)
Hahtela, O. M.; Meschke, M.; Savin, A.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.; Heinonen, M.; Manninen, A.; Pekola, J. P.
2013-09-01
Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.
Coulomb impurity scattering in topological insulator thin films
Yin, Gen; Wickramaratne, Darshana; Lake, Roger K.; Zhao, Yuanyuan
2014-07-21
Inter-surface coupling in thin-film topological insulators can reduce the surface state mobility by an order of magnitude in low-temperature transport measurements. The reduction is caused by a reduction in the group velocity and an increased s{sub z} component of the surface-state spin which weakens the selection rule against large-angle scattering. An intersurface potential splits the degenerate bands into a Rashba-like bandstructure. This reduces the intersurface coupling, it largely restores the selection rule against large angle scattering, and the ring-shaped valence band further reduces backscattering by requiring, on average, larger momentum transfer for backscattering events. The effects of temperature, Fermi level, and intersurface potential on the Coulomb impurity scattering limited mobility are analyzed and discussed.
Nonlinear screening in large two-dimensional Coulomb clusters.
Kong, Minghui; Vagov, A; Partoens, B; Peeters, F M; Ferreira, W P; Farias, G A
2004-11-01
The distortion due to a fixed point impurity with variable charge placed in the center of a classical harmonically confined two-dimensional (2D) large Coulomb cluster is studied. We find that the net topological charge (N(-)-N+ ) of the system is always equal to six independent of the position and charge of the impurity. In comparison with a 2D cluster without impurity charge, only the breathing mode remains unchanged. The screening length is found to be a highly nonlinear function of the impurity charge. For values of the impurity charge smaller than the charge of the other particles, the system has almost the same screening strength. When the impurity charge is larger, the screening length is strongly enhanced. This result can be explained by the competition between the different forces active in the system.
Nonlinear screening in large two-dimensional Coulomb clusters
Kong, Minghui; Vagov, A.; Partoens, B.; Peeters, F.M.; Ferreira, W.P.; Farias, G.A.
2004-11-01
The distortion due to a fixed point impurity with variable charge placed in the center of a classical harmonically confined two-dimensional (2D) large Coulomb cluster is studied. We find that the net topological charge (N{sub -}-N{sub +}) of the system is always equal to six independent of the position and charge of the impurity. In comparison with a 2D cluster without impurity charge, only the breathing mode remains unchanged. The screening length is found to be a highly nonlinear function of the impurity charge. For values of the impurity charge smaller than the charge of the other particles, the system has almost the same screening strength. When the impurity charge is larger, the screening length is strongly enhanced. This result can be explained by the competition between the different forces active in the system.
Bounded solutions of neutral fermions with a screened Coulomb potential
Castro, Antonio S. de . E-mail: castro@feg.unesp.br
2005-11-01
The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength.
Dynamic analysis of a structure with Coulomb friction
Shah, V.N.; Gilmore, C.B.
1982-01-01
A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by a pseudoforce vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.
Dynamic analysis of a structure with Coulomb friction
Shah, V.N.; Gilmore, C.B.
1982-01-01
A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by pseudo-force vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.
Quantum mechanics of Drude oscillators with full Coulomb interaction
NASA Astrophysics Data System (ADS)
Sadhukhan, M.; Manby, Frederick R.
2016-09-01
Drude oscillators provide a harmonic description of charge fluctuations and are widely studied as a model system and for ab initio calculations. In the dipole approximation the Hamiltonian describing the interaction of Drudes is quadratic, so it can be diagonalized exactly, but the energy diverges at short range. Here we consider the quantum mechanics of Drude oscillators interacting through the full Coulombic Hamiltonian for which the interaction energy does not have this defect. This protypical model for interactions between matter includes electrostatics, induction, and dispersion. Potential energy curves for rare-gas dimers are very closely matched by Drude correlation energies plus a single exponential function. The exact and accurate results presented here help to delineate between the basic properties of the physical model and the effects that arise from the dipole approximation.
Intermediate-energy Coulomb excitation of {sup 52}Fe
Yurkewicz, K.L.; Brown, B.A.; Campbell, C.M.; Church, J.A.; Dinca, D.-C.; Glasmacher, T.; Olliver, H.; Terry, J.R.; Bazin, D.; Gade, A.; Mueller, W.F.; Honma, M.; Mizusaki, T.; Otsuka, T.; Riley, L.A.
2004-09-01
The nucleus {sup 52}Fe with (N=Z=26) has been investigated using intermediate-energy Coulomb excitation in inverse kinematics. A reduced transition probability of B(E2;0{sub 1}{sup +}{yields}2{sub 1}{sup +})=817(102) e{sup 2} fm{sup 4} to the first excited 2{sup +} state at 849.0(5) keV was deduced. The increase in excitation strength B(E2{up_arrow}) with respect to the even-mass neighbor {sup 54}Fe (B(E2{up_arrow})=620(50) e{sup 2} fm{sup 4}) agrees with shell-model expectations as the magic number N=28 is approached. This measurement completes the systematics of reduced transition strengths to the first excited 2{sup +} state for the even-even N=Z nuclei up to mass A=56.
Relativistic Aharonov{endash}Bohm{endash}Coulomb problem
Hagen, C.R.; Park, D.K.
1996-10-01
The ((2+1)-dimensional) Aharonov{endash}Bohm effect is analyzed for a spin-1/2 particle in the case that a 1/{ital r} potential is present. Scalar and vector couplings are each considered. It is found that the approach in which the flux tube is given a finite radius that is taken to zero only after a matching of boundary conditions does not give physically meaningful results. Specifically, the operations of taking the limit of zero flux tube radius and the Galilean limit do not commute. Thus there appears to be no satisfactory solution of the relativistic Aharonov{endash}Bohm{endash}Coulomb problem using the finite radius flux tube method. Copyright {copyright} 1996 Academic Press, Inc.
First-principles calculations of shear moduli for Monte Carlo-simulated Coulomb solids
NASA Technical Reports Server (NTRS)
Ogata, Shuji; Ichimaru, Setsuo
1990-01-01
The paper presents a first-principles study of the shear modulus tensor for perfect and imperfect Coulomb solids. Allowance is made for the effects of thermal fluctuations for temperatures up to the melting conditions. The present theory treats the cases of the long-range Coulomb interaction, where volume fluctuations should be avoided in the Ewald sums.
Coulomb explosion dynamics of triatomic molecules in laser pulses ranging from 7 to 200fs
NASA Astrophysics Data System (ADS)
Karimi, Reza; Wales, Benji; Bissone, Eric; Légaré, Francois; Kieffer, Jean-Claude; Sanderson, Joseph
2012-11-01
Femtosecond laser pulses from 7fs to 200fs have been used to explore the ionization process and dissociation dynamics of triatomic molecules. Time and position sensitive detection allows us to detect each fragment ion in coincidence. We observe and characterize which ionization channels are Coulombic and which are non-Coulombic, and we observe concerted and stepwise processes which involve metastable fragment ions.
Multicomponent ionic diffusion in porewaters: Coulombic effects revisited
NASA Astrophysics Data System (ADS)
Boudreau, Bernard P.; Meysman, Filip J. R.; Middelburg, Jack J.
2004-05-01
The diffusion of an ion in porewaters cannot occur independently of the other ions in solution as a result of Coulombic coupling, as well as from other effects not considered here. Unfortunately, a longstanding disagreement exists about the correct form and meaning of the equations that describe Coulombic coupling in porewaters, i.e., Ben-Yaakov [Am. J. Sci. 281 (1981) 974] vs. Lasaga [Am. J. Sci. 281 (1981) 981]. This paper re-examines this controversy by reformulating the problem starting from fundamental concepts of mass and charge conservation. We show that these antagonistic formulations are both valid and, in fact, equivalent, when the different interpretations of charge balance are resolved. Most of the disagreements between Ben-Yaakov and Lasaga are then shown to result from differing methods of solution, not fundamental disparities in their models. We note, however, that the explanation for the concept of "stationary" gradients of nonreacting ions as given Ben-Yaakov is inaccurate, and such gradients do lead to diffusive fluxes that are counterbalanced by electrochemical migrational fluxes to produce no net flux (excluding advective flux). We further find that the bicarbonate diffusive flux will not balance the diffusional charge flux of sulfate during its reduction if advection is present. This latter imbalance generates compensating fluxes in the other nonreacting ions. We have applied our theory to a simplified case of sulfate reduction in a marine sediment. The results show that nonreacting ions do diffuse and that with normally expected values of porewater advection, the ratio of the bicarbonate to the sulfate flux can be far different than the ideal value of -2.
Dynamic stresses, coulomb failure, and remote triggering: corrected
Hill, David P.
2012-01-01
Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes <1 MPa are capable of triggering seismicity at sites remote from the generating mainshock under appropriate conditions. Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10 km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.
Coulomb problem in non-commutative quantum mechanics
Galikova, Veronika; Presnajder, Peter
2013-05-15
The aim of this paper is to find out how it would be possible for space non-commutativity (NC) to alter the quantum mechanics (QM) solution of the Coulomb problem. The NC parameter {lambda} is to be regarded as a measure of the non-commutativity - setting {lambda}= 0 which means a return to the standard quantum mechanics. As the very first step a rotationally invariant NC space R{sub {lambda}}{sup 3}, an analog of the Coulomb problem configuration space (R{sup 3} with the origin excluded) is introduced. R{sub {lambda}}{sup 3} is generated by NC coordinates realized as operators acting in an auxiliary (Fock) space F. The properly weighted Hilbert-Schmidt operators in F form H{sub {lambda}}, a NC analog of the Hilbert space of the wave functions. We will refer to them as 'wave functions' also in the NC case. The definition of a NC analog of the hamiltonian as a hermitian operator in H{sub {lambda}} is one of the key parts of this paper. The resulting problem is exactly solvable. The full solution is provided, including formulas for the bound states for E < 0 and low-energy scattering for E > 0 (both containing NC corrections analytic in {lambda}) and also formulas for high-energy scattering and unexpected bound states at ultra-high energy (both containing NC corrections singular in {lambda}). All the NC contributions to the known QM solutions either vanish or disappear in the limit {lambda}{yields} 0.
Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials
Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan
2015-07-14
Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.
Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas
NASA Astrophysics Data System (ADS)
Hagelaar, G. J. M.
2016-02-01
This paper investigates the effects of electron-electron and electron-ion Coulomb collisions on the electron distribution function and transport coefficients obtained from the Boltzmann equation for simple dc gas discharge conditions. Expressions are provided for the full Coulomb collision terms acting on both the isotropic and anisotropic parts of the electron distribution function, which are then incorporated in the freeware Boltzmann equation solver BOLSIG+. Different Coulomb collision effects are demonstrated and discussed on the basis of BOLSIG+ results for argon gas. It is shown that the anisotropic part of the electron-electron collision term, neglected in previous work, can in certain cases have a large effect on the electron mobility and is essential when describing the transition towards the Coulomb-collision dominated regime characterized by Spitzer transport coefficients. Finally, a brief overview is presented of the discharge conditions for which different Coulomb collision effects occur in different gases.
Initial results of a full kinetic simulation of RF H- source including Coulomb collision process
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Mattei, S.; Shibata, T.; Nishida, K.; Hatayama, A.; Lettry, J.
2015-04-01
In order to evaluate Electron Energy Distribution Function (EEDF) more correctly for radio frequency inductively coupled plasma (RF-ICP) in hydrogen negative ion sources, the Electromagnetic Particle-In-Cell (EM-PIC) simulation code has been improved by taking into account electron-electron Coulomb collision. Binary collision model is employed to model Coulomb collision process and we have successfully modeled it. The preliminary calculation including Coulomb collision has been done and it is shown that Coulomb collision doesn't have significant effects under the condition: electron density ne ˜ 1018 m-3 and high gas pressure pH2 = 3 Pa, while it is necessary to include Coulomb collision under high electron density and low gas pressure conditions.
NASA Astrophysics Data System (ADS)
Tu, X. L.; Sun, Y.; Zhang, Y. H.; Xu, H. S.; Kaneko, K.; Litvinov, Yu A.; Wang, M.
2014-02-01
The recent advances in nuclear mass measurement have sparked discussions on the isospin-symmetry breaking reflected in the Coulomb displacement energy (CDE). The current data suggested that the regular phase of the odd-even staggering in CDE for the T = 1/2 mirror nuclei persists up to A = 67 and changes at A = 69. Shell-model calculations using the modern GXPF1A and JUN45 effective interactions with a proper treatment of the Coulomb and isospin-nonconserving forces cannot describe the observation. Inspired by recent work (Kaneko 2013 Phys. Rev. Lett. 110 172505), we investigate the systematic behavior of CDE along the N = Z line up to the heaviest available masses. Starting from A ≈ 65, a systematic deviation is observed between the experimental data and the model estimations assuming the nucleus as a homogeneously charged sphere. Possibilities that may resolve the conflict between the experimental mass and theoretical expectations for the 69Br-region are discussed, and new mass experiments are called for.
New Interference Mechanism Controls Ultracold Chemistry
NASA Astrophysics Data System (ADS)
Kendrick, Brian K.; Hazra, Jisha; Balakrishnan, N.
2016-05-01
A newly discovered interference mechanism has been shown to control the outcome of ultracold chemical reactions. The mechanism originates from the unique properties associated with ultracold collisions, namely: (1) isotropic (s-wave) scattering and (2) an effective quantization of the scattering phase shift (which originates from the bound state structure of the molecule). These two properties can lead to maximum constructive or destructive interference between two interfering reaction pathways (such as exchange and non-exchange in systems with two or more identical nuclei). If the molecular system exhibits a conical intersection, then the associated geometric phase is shown to act as a ``quantum switch'' which can turn the reactivity on or off. Reaction rate coefficients for the O + OH --> H + O2 and H + H2, reactions are presented which explicitly demonstrate the effect. Experimentalists might exploit this new mechanism to control ultracold reactions by the application of external electric or magnetic fields or by the selection of a particular nuclear spin state. This work was supported in part by the LDRD program (Grant No. 20140309ER) at LANL (B.K.) and by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).
Sub-Barrier Coulomb Excitation of 106,108,110Sn
NASA Astrophysics Data System (ADS)
Ekström, A.; Cederkäll, J.; Fahlander, C.; Hjorth-Jensen, M.; Ames, F.; Butler, P. A.; Davinson, T.; Eberth, J.; Georgiev, G.; Gorgen, A.; Górska, M.; Habs, D.; Huyse, M.; Ivanov, O.; Iwanicki, J.; Kester, O.; Köster, U.; Marsh, B. A.; Reiter, P.; Scheit, H.; Schwalm, D.; Siem, S.; Stefanescu, I.; Tveten, G. M.; van de Walle, J.; van Duppen, P.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Zielinska, M.
2008-05-01
The reduced transition probabilities between the first excited 2+ state and the 0+ ground state, B(E20+-->2+), have been measured in 106,108,110Sn using sub-barrier Coulomb excitation in inverse kinematics at REX-ISOLDE. The results are, B(E20+-->2+) = 0.220(22), 0.226(17), and 0.228(32)e2b2, for 110Sn, 108Sn, and 106Sn, respectively. The results for 106,108Sn are preliminary. De-excitation γ-rays were detected by the MINIBALL Ge-array. The B(E2) reveals detailed information about the nuclear wave function. A shell model prediction based on an effective CD-Bonn interaction in the ν(0g7/2,2s,1d,0h11/2) model space using eeffν = 1.0 e follows the experimental values for the neutron rich Sn isotopes, but fails to reproduce the results presented here.
Coupling of multiple coulomb scattering and energy loss and straggling in HZETRN
NASA Astrophysics Data System (ADS)
Mertens, C. J.; Walker, S. A.; Wilson, J. W.; Singleterry, R. C.; Tweed, J.
Current developments in HZETRN are focused towards a full three-dimensional and computationally efficient deterministic transport code capable of simulating radiation transport with either space or laboratory boundary conditions One aspect of the new version of HZETRN is the inclusion of small-angle multiple Coulomb scattering of incident ions by target nuclei While the effects of multiple scattering are negligible in the space radiation environment multiple scattering must be included in laboratory transport code simulations to accurately model ion beam experiments to simulate the physical and biological-effective radiation dose and to develop new methods and strategies for light ion radiation therapy In this paper we present the theoretical formalism and computation procedures for incorporating multiple scattering into HZETRN and coupling the ion-nuclear scattering interactions with energy loss and straggling Simulations of the effects of multiple scattering on ion beam characterization will be compared with results from laboratory measurements which include path-length corrections angular and lateral broadening and absorbed dose
NASA Astrophysics Data System (ADS)
Jiao, Li-Guang; Ho, Yew Kam
2014-05-01
The screened Coulomb potential (SCP) has been extensively used in atomic physics, nuclear physics, quantum chemistry and plasma physics. However, an accurate calculation for atomic resonances under SCP is still a challenging task for various methods. Within the complex-scaling computational scheme, we have developed a method utilizing the modified Bessel functions to calculate doubly-excited resonances in two-electron atomic systems with configuration interaction-type basis. To test the validity of our method, we have calculated S- and P-wave resonance states of the helium atom with various screening strengths, and have found good agreement with earlier calculations using different methods. Our present method can be applied to calculate high-lying resonances associated with high excitation thresholds of the He+ ion, and with high-angular-momentum states. The derivation and calculation details of our present investigation together with new results of high-angular-momentum states will be presented at the meeting. Supported by NSC of Taiwan.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less
Octupole deformation in 144,146Ba measured by Coulomb excitation of radioactive beams
NASA Astrophysics Data System (ADS)
Bucher, Brian; Zhu, Shaofei; ANL, LBNL, LLNL, Rochester, Florida State, Liverpool, Maryland, Notre Dame, Ohio, W. Scotland Collaboration
2015-10-01
The exotic, neutron-rich 144Ba (t1 / 2 = 11.5 s) and 146Ba (t1 / 2 = 2.2 s) nuclei are expected to exhibit some of the strongest octupole correlations in A < 200 systems. Up to now, evidence for such strong octupole correlations has been inferred from observations of low-lying negative-parity states and from the interleaving of positive- and negative-parity levels in the ground-state band. However, the E1 transition strengths are very different in these two nuclei, with two orders of magnitude reduction in 146Ba. In this experiment, we measure the octupole strength directly by Coulomb excitation of post-accelerated 144,146Ba beams produced at CARIBU using CHICO2 and GRETINA. In 144Ba, we found B(E3;3 -->0) = 48(-34+ 25) W.u., a value considerably larger than theoretical predictions, while preliminary results for 146Ba are also indicative of strong octupole collectivity. The experimental conditions, the analysis, and the results from these challenging new measurements will be presented. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DOE DE-AC52-07NA27344 (LLNL), and NSF.
1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure
NASA Astrophysics Data System (ADS)
Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume
We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.
Interatomic Coulombic decay following resonant core excitation of Ar in argon dimer
Miteva, T.; Chiang, Y.-C.; Kuleff, A. I.; Gokhberg, K. Cederbaum, L. S.; Kolorenč, P.
2014-08-14
A scheme utilizing excitation of core electrons followed by the resonant-Auger – interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p{sub 3/2} → 4s, 2p{sub 1/2} → 4s, and 2p{sub 3/2} → 3d core excitations of Ar in Ar{sub 2}. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.
Single Photon diffraction and interference
NASA Astrophysics Data System (ADS)
Hodge, John
2015-04-01
A previous paper based on the Scalar Theory of Everything studied photon diffraction and interference (IntellectualArchive, Vol.1, No. 3, P. 20, Toronto, Canada July 2012. http://intellectualarchive.com/?link=item&id=597). Several photons were required in the experiment at the same time. Interference experiments with one photon in the experiment at a time also showed interference patterns. The previous paper with the Bohm Interpretation, models of the screen and mask, and the Transaction Interpretation of Quantum Mechanics were combined. The reverse wave required by the Transaction Interpretation was provided by a reflected plenum wave rather than a reverse time wave. The speed of the plenum wave was assumed to be much faster than the speed of photons/light. Using the assumptions of Fraunhofer diffraction resulted in the same equation for the photon distribution on a screen as the intensity pattern of the Fraunhofer diffraction. (http://myplace.frontier.com/ ~ jchodge/)
Whirling waves in Interference experiments
NASA Astrophysics Data System (ADS)
Sinha, Urbasi; Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna
2014-03-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well- known text books in quantum mechanics implicitly and/or explicitly use this assumption, the wave function hypothesis, which is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from non-classical paths in interference experiments which provide a measurable deviation from the wave function hypothesis. A direct experimental demonstration for the existence of these non-classical paths is hard. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence. I will also describe some ongoing experimental efforts towards testing our theoretical findings.
Interference of probabilities in dynamics
Zak, Michail
2014-08-15
A new class of dynamical systems with a preset type of interference of probabilities is introduced. It is obtained from the extension of the Madelung equation by replacing the quantum potential with a specially selected feedback from the Liouville equation. It has been proved that these systems are different from both Newtonian and quantum systems, but they can be useful for modeling spontaneous collective novelty phenomena when emerging outputs are qualitatively different from the weighted sum of individual inputs. Formation of language and fast decision-making process as potential applications of the probability interference is discussed.
Interference-based molecular transistors
Li, Ying; Mol, Jan A.; Benjamin, Simon C.; Briggs, G. Andrew D.
2016-01-01
Molecular transistors have the potential for switching with lower gate voltages than conventional field-effect transistors. We have calculated the performance of a single-molecule device in which there is interference between electron transport through the highest occupied molecular orbital and the lowest unoccupied molecular orbital of a single molecule. Quantum interference results in a subthreshold slope that is independent of temperature. For realistic parameters the change in gate potential required for a change in source-drain current of two decades is 20 mV, which is a factor of six smaller than the theoretical limit for a metal-oxide-semiconductor field-effect transistor. PMID:27646692
Interference of diffusive light waves.
Schmitt, J M; Knüttel, A; Knutson, J R
1992-10-01
We examine interference effects resulting from the superposition of photon-density waves produced by coherently modulated light incident upon a turbid medium. Photon-diffusion theory is used to derive expressions for the ac magnitude and phase of the aggregate diffusive wave produced in full- and half-space volumes by two sources. Using a frequency-domain spectrometer operating at 410 MHz, we verify interference patterns predicted by the model in scattering samples having optical properties similar to those of skin tissue. Potential imaging applications of interfering diffusive waves are discussed in the context of the theoretical and experimental results.
[Progress of RNA interference mechanism].
Yan, Fei; Cheng, Zhuo-Min
2005-01-01
RNA interference (RNAi) is a phenomenon that the double-stranded RNA (dsRNA) intermediates the degradation of complementary mRNA found in many organisms. This is a specifically mechanism involved in kinds of proteins to complete the interference function. Structure of siRNA affects which strand will be assembled into RISC. Another role of siRNA is directing RITS complex to bind with homologue chromosome, and then induces heterochromatinization. Although systemic silence induced by dsRNA is observed in Caenorhabditis elegans and plants, this progress is probably transmembrane protein-dependent, and mostly, the systemic silencing is controlled by multi-factors.
Interference-based molecular transistors.
Li, Ying; Mol, Jan A; Benjamin, Simon C; Briggs, G Andrew D
2016-01-01
Molecular transistors have the potential for switching with lower gate voltages than conventional field-effect transistors. We have calculated the performance of a single-molecule device in which there is interference between electron transport through the highest occupied molecular orbital and the lowest unoccupied molecular orbital of a single molecule. Quantum interference results in a subthreshold slope that is independent of temperature. For realistic parameters the change in gate potential required for a change in source-drain current of two decades is 20 mV, which is a factor of six smaller than the theoretical limit for a metal-oxide-semiconductor field-effect transistor. PMID:27646692
Fusion of 48Ti+58Fe and 58Ni+54Fe below the Coulomb barrier
NASA Astrophysics Data System (ADS)
Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Courtin, S.; Bourgin, D.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Mijatović, T.; Montanari, D.; Pagliaroli, M.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Toniolo, N.; Torresi, D.
2015-12-01
Background: No data on the fusion excitation function of 48Ti+58Fe in the energy region near the Coulomb barrier existed prior to the present work, while fusion of 58Ni+54Fe was investigated in detail some years ago, down to very low energies, and clear evidence of fusion hindrance was noticed at relatively high cross sections. 48Ti and 58Fe are soft and have a low-lying quadrupole excitation lying at ≈800 -900 keV only. Instead, 58Ni and 54Fe have a closed shell (protons and neutrons, respectively) and are rather rigid. Purpose: We aim to investigate (1) the possible influence of the different structures of the involved nuclei on the fusion excitation functions far below the barrier and, in particular, (2) whether hindrance is observed in 48Ti+58Fe , and to compare the results with current coupled-channels models. Methods: 48Ti beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used. The experimental setup was based on an electrostatic beam separator, and fusion-evaporation residues (ERs) were detected at very forward angles. Angular distributions of ERs were measured. Results: Fusion cross sections of 48Ti+58Fe have been obtained in a range of nearly six orders of magnitude around the Coulomb barrier, down to σ ≃2 μ b . The sub-barrier cross sections of 48Ti+58Fe are much larger than those of 58Ni+54Fe . Significant differences are also observed in the logarithmic derivatives and astrophysical S factors. No evidence of hindrance is observed, because coupled-channels calculations using a standard Woods-Saxon potential are able to reproduce the data in the whole measured energy range. Analogous calculations for 58Ni+54Fe predict clearly too large cross sections at low energies. The two fusion barrier distributions are wide and display a complex structure that is only qualitatively fit by calculations. Conclusions: It is pointed out that all these different trends originate from the dissimilar low-energy nuclear structures of
The Simplest Double Slit: Interference and Entanglement in Double Photoionization of H2
Akoury , D.; Kreidi, K.; Jahnke , T.; Weber, Th.; Staudte , A.; Schoffler, M.; Neumann, N.; Titze , J.; Schmidt, L. Ph. H.; Czasch , A.; Jagutzki, O.; Costa Fraga, R. A.; Grisenti , R. E.; Diez Muino, R.; Cherepkov, N. A.; Semenov , S. K.; Ranitovic, P.; Cocke , C. L.; Osipov, T.; Adaniya , H.; Thompson, J. C.; Prior , M. H.; Belkacem, A.; Landers , A. L.; Schmidt-Bocking, H.; Dorner, R.
2007-09-18
The wave nature of particles is rarely seen in nature. One reason is their very short de Broglie wavelengths in most situations. However, even with wavelengths close to the size of their surroundings, they couple to their environment, e.g. by gravity, Coulomb interaction, or thermal radiation. These couplings shift the phase of the waves, often in an uncontrolled way, hence yielding varying amounts of decoherence i.e. loss of phase integrity. Decoherence is thought to be a main cause of the transition from quantum to classical behavior. How much interaction is necessary and how big an environment is needed to induce the onset of classical behavior? Here we show that a photoelectron and two protons form a minimum particle/slit system, and that a minimum environment can be no more than a single additional electron. We observe interference 'fringes' in the angular distribution of a single electron and the loss of fringe visibility caused by its Coulomb interaction with a second electron. While, at the same time, the correlated momenta of the entangled electron pair continue to exhibit quantum interference.
Suprasegmental Aspects of Reading Interference.
ERIC Educational Resources Information Center
Westbrook, Colston R.
Information is presented in this paper regarding suprasegmental features of Black English thay may cause reading interference for some Black children. Much of the research concerning reading problems of many Afro-American students stresses the segmental differences of the phonology, the morphology, the syntax, and lexical selection between two…
Political Interference in Climate Science
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2007-02-01
``All of us have a right to our own views about the seriousness of global warming,'' U.S. Rep. Henry Waxman (D-Calif.), chair of the House Oversight and Government Reform Committee, said at a 30 January committee hearing held to examine political interference in climate science. ``But we don't have a right to our own science.''
"Quantum Interference with Slits" Revisited
ERIC Educational Resources Information Center
Rothman, Tony; Boughn, Stephen
2011-01-01
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…
Fano Interference in Classical Oscillators
ERIC Educational Resources Information Center
Satpathy, S.; Roy, A.; Mohapatra, A.
2012-01-01
We seek to illustrate Fano interference in a classical coupled oscillator by using classical analogues of the atom-laser interaction. We present an analogy between the dressed state picture of coherent atom-laser interaction and a classical coupled oscillator. The Autler-Townes splitting due to the atom-laser interaction is analogous to the…
Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene.
König-Otto, J C; Mittendorff, M; Winzer, T; Kadi, F; Malic, E; Knorr, A; Berger, C; de Heer, W A; Pashkin, A; Schneider, H; Helm, M; Winnerl, S
2016-08-19
The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects. PMID:27588881
Large ion Coulomb crystals: A near-ideal medium for coupling optical cavity modes to matter
NASA Astrophysics Data System (ADS)
Dantan, A.; Albert, M.; Marler, J. P.; Herskind, P. F.; Drewsen, M.
2009-10-01
We present an investigation of the coherent coupling of various transverse field modes of an optical cavity to ion Coulomb crystals. The obtained experimental results, which include the demonstration of identical collective coupling rates for different transverse modes of a cavity field to ions in the same large Coulomb crystal, are in excellent agreement with theoretical predictions. The results furthermore suggest that Coulomb crystals in the future may serve as near-ideal media for high-fidelity multimode quantum information processing and communication purposes, including the generation and storage of single-photon qubits encoded in different transverse modes.
Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene
NASA Astrophysics Data System (ADS)
König-Otto, J. C.; Mittendorff, M.; Winzer, T.; Kadi, F.; Malic, E.; Knorr, A.; Berger, C.; de Heer, W. A.; Pashkin, A.; Schneider, H.; Helm, M.; Winnerl, S.
2016-08-01
The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects.
Lee, C. M. E-mail: apkschan@cityu.edu.hk; Chan, K. S. E-mail: apkschan@cityu.edu.hk
2014-07-28
Employing numerical diagonalization, we study the optical properties of an electron in a monolayer-graphene magnetic dot bound to an off-center negatively charged Coulomb impurity based on the massless Dirac-Weyl model. Numerical results show that, since the electron-hole symmetry is broken by the Coulomb potential, the optical absorption spectra of the magnetic dot in the presence of a Coulomb impurity are different between the electron states and the hole states. Effects of both the magnetic field and the dot size on the absorption coefficient are presented as functions of the incident photon energies.
Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy
NASA Astrophysics Data System (ADS)
Kharchenko, V. F.
2016-11-01
Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.
Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers
NASA Astrophysics Data System (ADS)
Trinter, F.; Schöffler, M. S.; Kim, H.-K.; Sturm, F. P.; Cole, K.; Neumann, N.; Vredenborg, A.; Williams, J.; Bocharova, I.; Guillemin, R.; Simon, M.; Belkacem, A.; Landers, A. L.; Weber, Th.; Schmidt-Böcking, H.; Dörner, R.; Jahnke, T.
2014-01-01
In 1997, it was predicted that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part. It was recently suggested that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes for more localized and targeted cancer radiation therapy.
Le probleme quantique bicomplexe du potentiel de Coulomb
NASA Astrophysics Data System (ADS)
Mathieu, Jeremie
In this master's thesis, is gathered a great part of my work on bicomplex quantum mechanics. Bicomplex numbers are the second order multicomplex generalization of complex numbers. Equipped with the standard addition and multiplication, they form an algebraic structure called a commutative ring with unity and are one of many known generalizations of the real number system. It has been almost eighty years since it's been proposed to use an algebra of a superior dimension than the one of complex numbers to construct the mathematical formalism of quantum mechanics. However it's only been since less than a decade ago that the idea of using the bicomplex numbers to do so has been seriously considered. In that sense, the complete resolution of the quantum harmonic oscillator in a bicomplex Hilbert space was the first major achievement of this ambitious project. This thesis, by article style, is a continuation of this work of generalization. It presents, by an axiomatic approach, the complete differential solution of the bicomplex quantum Coulomb potential problem and half of its algebraic solution.
Coulomb problem for a Z>Z_cr nucleus
NASA Astrophysics Data System (ADS)
Kuleshov, V. M.; Mur, V. D.; Narozhny, N. B.; Fedotov, A. M.; Lozovik, Yu E.; Popov, V. S.
2015-08-01
A closed-form equation is derived for the critical nucleus charge Z=Z_cr at which a discrete level with the Dirac quantum number touches the lower continuum of the Dirac equation solutions. For the Coulomb potential cut off rectangularly at the short distance r0 = R{\\hbar}/(mc), R \\ll {1}, the critical nucleus charge values are obtained for several values of κ and R. It is shown that the partial scattering matrix of elastic positron-nucleus scattering, Sκ = \\exp(2iδκ(\\varepsilon_p)), is also unitary for Z>Z_cr. For this range, the scattering phase δ κ (\\varepsilon _p) is calculated as a function of the positron energy E_p = \\varepsilonp mc2, as are the positions and widths of quasidiscrete levels corresponding to the scattering matrix poles. The implication is that the single-particle approximation for the Dirac equation is valid not only for Z but also for Z>Z_cr and that there is no spontaneous creation of e^+e^- pairs from the vacuum.
Three-body quantum Coulomb problem: Analytic continuation
NASA Astrophysics Data System (ADS)
Turbiner, A. V.; Lopez Vieyra, J. C.; Olivares Pilón, H.
2016-08-01
The second (unphysical) critical charge in the three-body quantum Coulomb system of a nucleus of positive charge Z and mass mp, and two electrons, predicted by Stillinger has been calculated to be equal to ZB∞ = 0.904854 and ZBmp = 0.905138 for infinite and finite (proton) mass mp, respectively. It is shown that in both cases, the ground state energy E(Z) (analytically continued beyond the first critical charge Zc, for which the ionization energy vanishes, to ReZ
The mystery of Coulomb friction in sediment transport
NASA Astrophysics Data System (ADS)
Pähtz, Thomas; Duran, Orencio
Nearly all analytical models of sediment transport in Newtonian fluid (e.g., air or water) are based on Bagnold's assumption of a constant Coulomb friction coefficient (particle-shear-pressure-ratio, μ) at the interface (zb) between sediment bed and transport layer. In fact, this assumption is the main reason why these models predict the sediment load (and subsequently the sediment transport rate) to be proportional to the excess shear stress (τ -τt), a scaling which has been confirmed in many wind-tunnel and flume experiments. Attempts to explain why μ (zb) is constant have usually been based on the sliding-friction analogy or rheology arguments. However, here we analytically derive μ (zs) √{ 3} - 1 , where zs is the location at which the production rate of particle fluctuation energy is maximal. Our derivation is based on the assumption that the rate of collisional transfer of horizontal into vertical kinetic energy is typically much larger than the rate of energy dissipation. Using state-of-the-art numerical simulations of sediment transport in Newtonian fluid, we validate all assumptions and approximation involved in our derivation. Interestingly, the location zs can significantly deviate from zb depending on the simulated conditions. We acknowledge support from grants National Natural Science Foundation of China (Nos. 1151101041 and 41376095) and Natural Science Foundation of Zhejiang Province (No. LR16E090001).
Effects of Coulomb quadrupole excitation in heavy-ion reactions
NASA Astrophysics Data System (ADS)
Cheoun, Myung-Ki; Choi, K. S.; Kim, K. S.; Kim, T. H.; So, W. Y.
2016-09-01
For 12C + 184W, 18O + 184W, and 20Ne + 208Pb systems, we investigate the suppression of the ratios P E = σ el/ σ RU by using the Coulomb quadrupole excitation (CQE) potentials. In order to explain the effect of the CQE potentials, we first use a well-known Love's CQE potential, and reproduce the experimental P E data well by using this potential. We also introduce a simple CQE potential written as W CQE( r) = - W P / r n , which is much simpler than the conventional Love's potential, to investigate the suppression of the P E ratios. Using this potential, we perform a χ2 analysis to find the adjustable parameter n, then, we find that the best fit parameters n ≈ 5 is close to the lowest order term, 1/ r 5. Consequently, we find that using the simple CQE potential explains the experimental P E data and that the ratio P E depends on the n values sensitively.
A molecular dynamics model for the Coulomb explosion
NASA Astrophysics Data System (ADS)
Smith, Roger; Ramasawmy, D.; Kenny, S. D.
2005-01-01
The impact of positively charged Arn+ ions, n = 1, 4, 8, incident normally on the (1 0 0) surface of NaCl is studied by Molecular Dynamics (MD) simulations for energies up to 1 keV. The model assumes fixed charges on the ions and the effect of projectile charge is investigated as a function of energy. It is shown that there is a significant enhancement in the sputtering yield at low impact energies due to the attachment of Cl ions to the impacting Ar, which is subsequently ejected from the lattice. The low energy Ar ions can also experience acceleration towards the NaCl crystal due to Coulombic attraction. At energies greater than a few hundred eV the Ar ions implant within the crystal which accommodates the extra charge from these ions. As a result the sputtering yield from the initial impact is reduced but as the dose increases, the yield rises as Na+ ions are preferentially ejected from the lattice. A large proportion of the ejected material is in the form of clusters.
Enhanced current noise correlations in a Coulomb-Majorana device
NASA Astrophysics Data System (ADS)
Lü, Hai-Feng; Lu, Hai-Zhou; Shen, Shun-Qing
2016-06-01
Majorana bound states (MBSs) nested in a topological nanowire are predicted to manifest nonlocal correlations in the presence of a finite energy splitting between the MBSs. However, the signal of the nonlocal correlations has not yet been detected in experiments. A possible reason is that the energy splitting is too weak and seriously affected by many system parameters. Here we investigate the charging energy induced nonlocal correlations in a hybrid device of MBSs and quantum dots. The nanowire that hosts the MBSs is assumed in proximity to a mesoscopic superconducting island with a finite charging energy. Each end of the nanowire is coupled to one lead via a quantum dot with resonant levels. With a floating superconducting island, the devices show a negative differential conductance and giant super-Poissonian shot noise, due to the interplay between the nonlocality of the MBSs and dynamical Coulomb blockade effect. When the island is strongly coupled to a bulk superconductor, the current cross correlations at small lead chemical potentials are negative by tuning the dot energy levels. In contrast, the cross correlation is always positive in a non-Majorana setup. This difference may provide a signature for the existence of the MBSs.
Three-body quantum Coulomb problem: Analytic continuation
NASA Astrophysics Data System (ADS)
Turbiner, A. V.; Lopez Vieyra, J. C.; Olivares Pilón, H.
2016-08-01
The second (unphysical) critical charge in the three-body quantum Coulomb system of a nucleus of positive charge Z and mass mp, and two electrons, predicted by Stillinger has been calculated to be equal to ZB∞ = 0.904854 and ZBmp = 0.905138 for infinite and finite (proton) mass mp, respectively. It is shown that in both cases, the ground state energy E(Z) (analytically continued beyond the first critical charge Zc, for which the ionization energy vanishes, to ReZ
Dynamics of Dollard asymptotic variables. Asymptotic fields in Coulomb scattering
NASA Astrophysics Data System (ADS)
Morchio, G.; Strocchi, F.
2016-03-01
Generalizing Dollard’s strategy, we investigate the structure of the scattering theory associated to any large time reference dynamics UD(t) allowing for the existence of Møller operators. We show that (for each scattering channel) UD(t) uniquely identifies, for t →±∞, asymptotic dynamics U±(t); they are unitary groups acting on the scattering spaces, satisfy the Møller interpolation formulas and are interpolated by the S-matrix. In view of the application to field theory models, we extend the result to the adiabatic procedure. In the Heisenberg picture, asymptotic variables are obtained as LSZ-like limits of Heisenberg variables; their time evolution is induced by U±(t), which replace the usual free asymptotic dynamics. On the asymptotic states, (for each channel) the Hamiltonian can by written in terms of the asymptotic variables as H = H±(qout/in,pout/in), H±(q,p) the generator of the asymptotic dynamics. As an application, we obtain the asymptotic fields ψout/in in repulsive Coulomb scattering by an LSZ modified formula; in this case, U±(t) = U0(t), so that ψout/in are free canonical fields and H = H0(ψout/in).
Laser-initiated Coulomb explosion imaging of small molecules
NASA Astrophysics Data System (ADS)
Brichta, Jean-Paul
Momentum vectors of fragment ions produced by the Coulomb explosion of COz+2 (z = 3 - 6) and CSz+2 (z = 3 - 13) in an intense laser field (˜50 fs, 1 x 1015 W/cm2) are determined by the triple coincidence imaging technique. The molecular structure from symmetric and asymmetric explosion channels is reconstructed from the measured momentum vectors using a novel simplex algorithm that can be extended to study larger molecules. Physical parameters such as bend angle and bond lengths are extracted from the data and are qualitatively described using an enhanced ionization model that predicts the laser intensity required for ionization as a function of bond length using classical, over the barrier arguments. As a way of going beyond the classical model, molecular ionization is examined using a quantum-mechanical, wave function modified ADK method. The ADK model is used to calculate the ionization rates of H2, N 2 and CO2 as a function of initial vibrational level of the molecules. A strong increase in the ionization rate, with vibrational level, is found for H2, while N2 and CO2 show a lesser increase. The prospects for using ionization rates as a diagnostic for vibrational level population are assessed.
Coulomb drag and tunneling studies in quantum Hall bilayers
NASA Astrophysics Data System (ADS)
Nandi, Debaleena
The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon. Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an over-damped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I -- V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.
Symmetry and boundness of four-particle coulomb systems
Rebane, T. K.
2012-04-15
The problem of boundness of a{sup +}b{sup +}c{sup -}d{sup -} four-particle Coulomb systems (quadrions) is studied versus the masses of the particles involved. Inequalities that make it possible to deduce that, if some reference quadrions form a bound state, the same is true for a large number of quadrions formed by particles having various masses were derived. A compendium of calculations for energies of reference systems that possess various symmetries [positronium molecules (e{sup +}e{sup +}e{sup -}e{sup -}) and quadrions of the a{sup +}b{sup +}b{sup -}b{sup -}, a{sup +}b{sup +}a{sup --}, and a{sup +}a{sup +}b{sup -}c{sup -} types] is given, and groups of bound asymmetric quadrions corresponding to them are determined. An inequality for kinetic energies of particles that makes it possible to find out, by using asymmetric reference systems, whether specific quadrions are bound is obtained. It is shown that the boundness of many quadrions is ensured by the boundness of respective three-particle systems. The entire body of the present results permits proving that, of the total number of 406 quadrions containing electrons, muons, pions, kaons, protons, deuterons, and tritons and their antiparticles, 227 quadrions are bound.
NASA Astrophysics Data System (ADS)
Liliani, N.; Nugraha, A. M.; Diningrum, J. P.; Sulaksono, A.
2016-05-01
We have studied the effects of tensor coupling of ω and ρ meson terms, the Coulomb exchange term in local density approximation, and various isoscalar-isovector coupling terms of relativistic mean-field model on the properties of nuclear matter, finite nuclei, and superheavy nuclei. We found that for the same fixed value of symmetry energy J or its slope L the presence of tensor coupling of ω and ρ meson terms and the Coulomb exchange term yields thicker neutron skin thickness of 208Pb. We also found that the roles of tensor coupling of ω and ρ meson terms, the Coulomb-exchange term in local density approximation, and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei vary depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range, especially in binding energies. We also observed that for some particular nuclei, the corresponding experimental data of binding energies are rather less compatible with the presence of the Coulomb-exchange term in local density approximation and they tend to disfavor the presence of isoscalar-isovector coupling term with too-high Λ value. Furthermore, we have found that these terms influence the detail properties of 292120 superheavy nucleus such as binding energies, the magnitude of two-nucleon gaps, single-particle spectra, neutron densities, neutron skin thicknesses, and mean-square charge radii. However, the shell-closure predictions of 208Pb and 292120 nuclei are not affected by the presence of these terms.
HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous
1993-01-01
Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.
EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE
NASA Technical Reports Server (NTRS)
Glass, C. E.
1994-01-01
New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow
Solution of two-body relativistic bound state equations with confining plus Coulomb interactions
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Kahana, David E.; Norbury, John W.
1992-01-01
Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.
Deconvoluting nonaxial recoil in Coulomb explosion measurements of molecular axis alignment
NASA Astrophysics Data System (ADS)
Christensen, Lauge; Christiansen, Lars; Shepperson, Benjamin; Stapelfeldt, Henrik
2016-08-01
We report a quantitative study of the effect of nonaxial recoil during Coulomb explosion of laser-aligned molecules and introduce a method to remove the blurring caused by nonaxial recoil in the fragment-ion angular distributions. Simulations show that nonaxial recoil affects correlations between the emission directions of fragment ions differently from the effect caused by imperfect molecular alignment. The method, based on analysis of the correlation between the emission directions of the fragment ions from Coulomb explosion, is used to deconvolute the effect of nonaxial recoil from experimental fragment angular distributions. The deconvolution method is then applied to a number of experimental data sets to correct the degree of alignment for nonaxial recoil, to select optimal Coulomb explosion channels for probing molecular alignment, and to estimate the highest degree of alignment that can be observed from selected Coulomb explosion channels.
Shadangi, Asit Ku.; Rout, G. C.
2015-05-15
We report here a microscopic model study of ultrasonic attenuation in f-electron systems based on Periodic Anderson Model in which Coulomb interaction is considered within a mean-field approximation for a weak interaction. The Phonon is coupled to the conduction band and f-electrons. The phonon Green's function is calculated by Zubarev's technique of the Green's function method. The temperature dependent ultrasonic attenuation co-efficient is calculated from the imaginary part of the phonon self-energy in the dynamic and long wave length limit. The f-electron occupation number is calculated self-consistently in paramagnetic limit of Coulomb interaction. The effect of the Coulomb interaction on ultrasonic attenuation is studied by varying the phonon coupling parameters to the conduction and f-electrons, hybridization strength, the position of f-level and the Coulomb interaction Strength. Results are discussed on the basis of experimental results.
Collective modes in charge-density waves and long-range Coulomb interactions
NASA Astrophysics Data System (ADS)
Virosztek, Attila; Maki, Kazumi
1993-07-01
We study theoretically the collective modes in charge-density waves in the presence of long-range Coulomb interaction. We find that earlier works by Takada and his collaborators are inadequate since they introduced inconsistent approximations in evaluating a variety of correlation functions. The amplitude mode is unaffected by the Coulomb interaction, while the phase mode splits into the phason with linear dispersion (i.e., acoustic mode) and the optical mode with an energy gap in the presence of the Coulomb interaction. In particular, we establish the temperature dependence of the phason velocity vφ. A comparison with recent neutron-scattering data on the phason velocity in the charge-density wave of a single crystal of blue bronze K0.3MoO3 indicates that mean-field theory which includes the long-range Coulomb interaction gives an excellent description of the observed phason velocity.
New insights into the application of the Coulomb model in real-time
NASA Astrophysics Data System (ADS)
Catalli, Flaminia; Chan, Chung-Han
2012-02-01
The Coulomb model for stress change estimation is considered one of the most powerful physics-based forecasting tools, even though its calculations are affected by uncertainties due to the large number of a priori assumptions needed. The aim of this paper is to suggest a straightforward and reliable strategy to apply the Coulomb model for real-time forecasting. This is done by avoiding all dispensable assumptions, thus reducing the corresponding uncertainties. We demonstrate that the depth at which calculations are made is a parameter of utmost importance and apply the Coulomb model to three sequences in different tectonic regimes: Umbria-Marche (normal), Landers (strike-slip), and Chi-Chi (thrust). In each case the results confirm that when applying the Coulomb model: (i) the depth of calculation plays a fundamental role; (ii) depth uncertainties are not negligible; (iii) the best forecast at a given location is obtained by selecting the maximum stress change over the whole seismogenic depth range.
Coulomb effect on photoelectron momentum distributions in orthogonal two-color laser fields
NASA Astrophysics Data System (ADS)
Yu, ShaoGang; Wang, YanLan; Lai, XuanYang; Huang, YiYi; Quan, Wei; Liu, XiaoJun
2016-09-01
We theoretically investigate the electron momentum distributions in orthogonally polarized two-color pulses with the Coulomb-Volkov distorted-wave approximation (CVA) theory and focus on the role of the Coulomb potential in the electron momentum distributions by comparing the CVA results with the strong-field approximation (SFA) simulations. Our results show that in comparison with the SFA simulations, the electron momentum distributions in CVA are in better agreement with the experimental observations and the time-dependent Schrödinger equation calculations. By analyzing the phase of the dipole moment, we find that the change of the electron momentum distributions in CVA can be ascribed to the different Coulomb corrections of the phases, which give rise to an enhanced contribution from the forward-rescattering electron and, on the other hand, a decrease of the contribution from the direct electron in the presence of the Coulomb potential.
REM sleep rescues learning from interference.
McDevitt, Elizabeth A; Duggan, Katherine A; Mednick, Sara C
2015-07-01
Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost. PMID:25498222
REM sleep rescues learning from interference.
McDevitt, Elizabeth A; Duggan, Katherine A; Mednick, Sara C
2015-07-01
Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost.
Damji, A.A.; Snyder, R.E.; Ellinger, D.C.; Witkowski, F.X.; Allen, P.S.
1988-11-01
An electrocardiographic (ECG) unit suitable for cardiac-synchronized nuclear magnetic resonance imaging in high magnetic fields is presented. The unit includes lossy transmission lines as ECG leads in order to suppress radio frequency (RF) interference in the electrocardiogram. The unit's immunity to RF interference is demonstrated.
Subcritical solution of the Yang-Mills Schroedinger equation in the Coulomb gauge
Epple, D.; Reinhardt, H.; Schleifenbaum, W.; Szczepaniak, A. P.
2008-04-15
In the Hamiltonian approach to Coulomb gauge Yang-Mills theory, the functional Schroedinger equation is solved variationally resulting in a set of coupled Dyson-Schwinger equations. These equations are solved self-consistently in the subcritical regime defined by infrared-finite form factors. It is shown that the Dyson-Schwinger equation for the Coulomb form factor fails to have a solution in the critical regime where all form factors have infrared divergent power laws.
Additional {alpha}-particle optical potential tests below the Coulomb barrier
Avrigeanu, M.; Avrigeanu, V.
2010-03-15
New results of ({alpha},{gamma}) and ({alpha},n) reaction cross section measurements close to the reaction thresholds support the setting up of recent parameters of the {alpha}-particle optical model potential (OMP) below the Coulomb barrier. Particular features of the {alpha}-particle optical potential at energies below the Coulomb barrier explain the failure of using the OMP parameters obtained by analysis of only {alpha}-particle elastic scattering at higher energies.
Dynamic properties of a Josephson junction balanced comparator with Coulomb blockade
NASA Astrophysics Data System (ADS)
Askerzade, I. N.
2016-09-01
The dynamics of a Josephson junction balanced comparator with Coulomb blockade has been analyzed. An expression for the time resolution in the case of a linearly increasing gating voltage pulse has been derived with regard to the Bloch inductance. It has been shown that the time resolution depends on the Bloch inductance of small Josephson junctions. Estimates have confirmed the feasibility of a subpicosecond time resolution for balance Josephson comparators with Coulomb blockade.
On the Klein-Gordon oscillator subject to a Coulomb-type potential
NASA Astrophysics Data System (ADS)
Bakke, K.; Furtado, C.
2015-04-01
By introducing the scalar potential as modification in the mass term of the Klein-Gordon equation, the influence of a Coulomb-type potential on the Klein-Gordon oscillator is investigated. Relativistic bound states solutions are achieved to both attractive and repulsive Coulomb-type potentials and the arising of a quantum effect characterized by the dependence of angular frequency of the Klein-Gordon oscillator on the quantum numbers of the system is shown.
Coulomb scattering in the presence of a low-frequency laser field
Banerji, J.; Mittleman, M.H.
1982-12-01
The cross section for scattering by a Coulomb potential, cut off at large distance, in the presence of a low-frequency laser field, is obtained as a power series in the laser frequency. The long-range nature of the potential introduces a change in the leading term (..omega../sup 0/) as well as a new term proportional to ..omega../n..omega... It is also found that the Coulomb cutoff parameter can, under some circumstances, become an observable.
Energy spectrum of the low-lying gluon excitations in the Coulomb gauge
Szczepaniak, Adam P.; Krupinski, Pawel
2006-06-01
We compute the energy spectrum of low-lying gluonic excitations in the presence of static quark-antiquark sources using Coulomb gauge and the quasiparticle representation. Within the valence sector of the Fock space we reproduce both, the overall normalization and the ordering of the spin-parity multiplets. We discus how the interactions induced by the nonabelian Coulomb kernel are central in to fine structure of the spectrum.
Silicon superconducting quantum interference device
Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.
2015-08-17
We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.
Interference techniques in fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dogan, Mehmet
We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the
Modified Coulomb-Dipole Theory for 2e Photoionization
NASA Technical Reports Server (NTRS)
2004-01-01
In the light of recent experiment on 2e photoionization of Li near threshold, we have considered a modification of the Coulomb-dipole theory, retaining the basic assumption that the threshold is dominated by asymmetric events in phase space [implies r(sub 1), k(sub 1)) greater than or equal to 2(r(sub 2), k(sub )]. In this region [in a collinear model, 2/r(sub 12) approached + 2/(r(sub 1)+r(sub 2)] the interaction reduces to V(rIsub 1) is greater than or equal to 2r(sub 2) is identically equal to [(-Z/r(sub 2)-(A-1)/r(sub 1)] + [(-2r(sub 2)/r(sub 1 exp 2)] is identically equal to V(sub c)+[V(sub d)]. For two electron emission Z = 2, thus both electrons see a Coulomb potential (V(sub c)) asymptotically, albeit each seeing a different charge. The residual potential (V(sub d)) is dipole in character. Writing the total psi = psi (sub c) + psi(sub d) = delta psi, and noting that. (T+V(sub c)-E)psy(sub c) = 0 and (T+V(sub c))psi(sub d) = 0 can be solved exactly, we find, substituting psi into the complete Schrod. Eq., that delta psi = -(H-E)(exp -1)(V(sub d) psi(sub 0)+V(sub c psi (sub 1). Using the fact that the absolute value of V(sub c) is much more than the absolute value of V(sub d) in almost all of configuration space, we can replace H by H(sub 0) in 9H-E)(exp -1) to obtain an improved approximation psi (improved) = psi(sub c) + psi(sub d) -(H(sub 0)-E)(exp -1) (V(sub c) psi (sub 0) + V(sub c) psi(sub 1). Here's the Green's function (H(sub 0)-E)(exp -1), can be exhibited explicitly, but the last term in psi (improved) is small, compared to the first two terms. Inserting them into the transition matrix element, which one handles in the usual way, we obtain in the limit E approaches 0, the threshold law: Q(E) alpha E + M(E)E(exp 5/4) + higher order (Eq. 1a). The modulation function, M(E), is a well-defined (but very non-trivial integral, but it is expected to be well approximated by a sinusoidal function containing a dipole phase term (M(E) = c sin[alpha log (E
Oculomotor interference of bimodal distractors.
Heeman, Jessica; Nijboer, Tanja C W; Van der Stoep, Nathan; Theeuwes, Jan; Van der Stigchel, Stefan
2016-06-01
When executing an eye movement to a target location, the presence of an irrelevant distracting stimulus can influence the saccade metrics and latency. The present study investigated the influence of distractors of different sensory modalities (i.e. auditory, visual and audiovisual) which were presented at various distances (i.e. close or remote) from a visual target. The interfering effects of a bimodal distractor were more pronounced in the spatial domain than in the temporal domain. The results indicate that the direction of interference depended on the spatial layout of the visual scene. The close bimodal distractor caused the saccade endpoint and saccade trajectory to deviate towards the distractor whereas the remote bimodal distractor caused a deviation away from the distractor. Furthermore, saccade averaging and trajectory deviation evoked by a bimodal distractor was larger compared to the effects evoked by a unimodal distractor. This indicates that a bimodal distractor evoked stronger spatial oculomotor competition compared to a unimodal distractor and that the direction of the interference depended on the distance between the target and the distractor. Together, these findings suggest that the oculomotor vector to irrelevant bimodal input is enhanced and that the interference by multisensory input is stronger compared to unisensory input. PMID:27164053
Quantum interference in plasmonic circuits
NASA Astrophysics Data System (ADS)
Heeres, Reinier W.; Kouwenhoven, Leo P.; Zwiller, Valery
2013-10-01
Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.
47 CFR 74.1203 - Interference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... cause limited interference to its primary station's signal, provided it does not disrupt the existing..., provided it does not disrupt the existing service of its primary station or cause such interference...
Superconducting Quantum Interference Single-Electron Transistor
NASA Astrophysics Data System (ADS)
Enrico, Emanuele; Giazotto, Francesco
2016-06-01
We propose the concept of a quantized single-electron source based on the interplay between Coulomb blockade and magnetic flux-controllable superconducting proximity effect. We show that flux dependence of the induced energy gap in the density of states of a nanosized metallic wire can be exploited as an efficient tunable energy barrier which enables charge-pumping configurations with enhanced functionalities. This control parameter strongly affects the charging landscape of a normal metal island with non-negligible Coulombic energy. Under a suitable evolution of a time-dependent magnetic flux the structure behaves like a turnstile for single electrons in a fully electrostatic regime.
Collectivity in the light radon nuclei measured directly via Coulomb excitation
NASA Astrophysics Data System (ADS)
Gaffney, L. P.; Robinson, A. P.; Jenkins, D. G.; Andreyev, A. N.; Bender, M.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cocolios, T. E.; Davinson, T.; Deacon, A. N.; De Witte, H.; DiJulio, D.; Diriken, J.; Ekström, A.; Fransen, Ch.; Freeman, S. J.; Geibel, K.; Grahn, T.; Hadinia, B.; Hass, M.; Heenen, P.-H.; Hess, H.; Huyse, M.; Jakobsson, U.; Kesteloot, N.; Konki, J.; Kröll, Th.; Kumar, V.; Ivanov, O.; Martin-Haugh, S.; Mücher, D.; Orlandi, R.; Pakarinen, J.; Petts, A.; Peura, P.; Rahkila, P.; Reiter, P.; Scheck, M.; Seidlitz, M.; Singh, K.; Smith, J. F.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Wenander, F.; Wimmer, K.; Wrzosek-Lipska, K.; Zielińska, M.
2015-06-01
Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z =82 and the neutron midshell at N =104 . Purpose: Evidence for shape coexistence has been inferred from α -decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of 202Rn and 204Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E 2 ) matrix element connecting the ground state and first excited 21+ state was extracted for both 202Rn and 204Rn, corresponding to B (E 2 ;21+→01+) =29-8+8 and 43-12+17 W.u., respectively. Additionally, E 2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in 202Rn. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.
47 CFR 27.1221 - Interference protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Interference protection. 27.1221 Section 27... Technical Standards § 27.1221 Interference protection. (a) Interference protection will be afforded to BRS... height benchmark (hbm). (c) Protection for receiving antennas not exceeding the height benchmark....
Code of Federal Regulations, 2012 CFR
2012-10-01
... station to correct any condition of interference which results from the radiation of radio frequency... a low-power TV or TV translator station causes interference to a CATV system by radiations within.... When a low-power TV or TV translator station causes interference to a BRS or EBS system by...
49 CFR 193.2633 - Interference currents.
Code of Federal Regulations, 2011 CFR
2011-10-01
...: FEDERAL SAFETY STANDARDS Maintenance § 193.2633 Interference currents. (a) Each component that is subject to electrical current interference must be protected by a continuing program to minimize the... 49 Transportation 3 2011-10-01 2011-10-01 false Interference currents. 193.2633 Section...
49 CFR 193.2633 - Interference currents.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: FEDERAL SAFETY STANDARDS Maintenance § 193.2633 Interference currents. (a) Each component that is subject to electrical current interference must be protected by a continuing program to minimize the... 49 Transportation 3 2012-10-01 2012-10-01 false Interference currents. 193.2633 Section...
49 CFR 193.2633 - Interference currents.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: FEDERAL SAFETY STANDARDS Maintenance § 193.2633 Interference currents. (a) Each component that is subject to electrical current interference must be protected by a continuing program to minimize the... 49 Transportation 3 2014-10-01 2014-10-01 false Interference currents. 193.2633 Section...
49 CFR 193.2633 - Interference currents.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: FEDERAL SAFETY STANDARDS Maintenance § 193.2633 Interference currents. (a) Each component that is subject to electrical current interference must be protected by a continuing program to minimize the... 49 Transportation 3 2010-10-01 2010-10-01 false Interference currents. 193.2633 Section...
49 CFR 193.2633 - Interference currents.
Code of Federal Regulations, 2013 CFR
2013-10-01
...: FEDERAL SAFETY STANDARDS Maintenance § 193.2633 Interference currents. (a) Each component that is subject to electrical current interference must be protected by a continuing program to minimize the... 49 Transportation 3 2013-10-01 2013-10-01 false Interference currents. 193.2633 Section...
Van Hooydonk, G
2000-11-01
Following recent work in search for a universal function (Van Hooydonk, Eur. J. Inorg. Chem., (1999), 1617), we test four symmetric +/- a(n)Rn potentials for reproducing molecular potential energy curves (PECs). Classical gauge symmetry for 1/R-potentials results in generic left right asymmetric PECs. A pair of symmetric perturbed Coulomb potentials is quantitatively in accordance with observed PECs. For a bond, a four-particle system, charge inversion (a parity effect, atom chirality) is the key to explain this shape generically. A parity adapted Hamiltonian reduces from ten to two terms and to a soluble Bohr-like formula, a Kratzer (1 - Re/R)2 potential. The result is similar to the combined action of spin and wave function symmetry upon the Hamiltonian in Heitler-London theory. Analytical perturbed Coulomb functions varying with (1 - Re/R) scale attractive and repulsive branches of PECs for 13 bonds H2, HF, LiH, KH, AuH, Li2, LiF, KLi, NaCs, Rb2, RbCs, Cs2 and I2 in a single straight line. The 400 turning points for 13 bonds are reproduced with a deviation of 0.007 A at both branches. For 230 points at the repulsive side, the deviation is 0.003 A. The perturbed electrostatic Coulomb law is a universal molecular function. Ab initio zero molecular parameter functions give PECs of acceptable quality, just using atomic ionisation energies. The function can be used as a model potential for inverting levels and gives a first principle's comparison of short- and long-range interactions, important for the study of cold atoms. Wave-packet dynamics, femto-chemistry applied to the crossing of covalent and ionic curves, can provide evidence for this theory. We anticipate this scale/shape invariant scheme applies to smaller scales in nuclear and high-energy particle physics. For larger gravitational scales (Newton 1/R potentials), problems with super-unification are discussed. Reactions between hydrogen and antihydrogen, feasible in the near future, will probably produce
NASA Astrophysics Data System (ADS)
Van Hooydonk, G.
2000-11-01
Following recent work in search for a universal function (Van Hooydonk, Eur. J. Inorg. Chem., (1999), 1617), we test four symmetric ± anRn potentials for reproducing molecular potential energy curves (PECs). Classical gauge symmetry for 1/ R-potentials results in generic left-right asymmetric PECs. A pair of symmetric perturbed Coulomb potentials is quantitatively in accordance with observed PECs. For a bond, a four-particle system, charge inversion (a parity effect, atom chirality) is the key to explain this shape generically. A parity adapted Hamiltonian reduces from ten to two terms and to a soluble Bohr-like formula, a Kratzer (1- Re/ R) 2 potential. The result is similar to the combined action of spin and wave function symmetry upon the Hamiltonian in Heitler-London theory. Analytical perturbed Coulomb functions varying with (1- Re/ R) scale attractive and repulsive branches of PECs for 13 bonds H 2, HF, LiH, KH, AuH, Li 2, LiF, KLi, NaCs, Rb 2, RbCs, Cs 2 and I 2 in a single straight line. The 400 turning points for 13 bonds are reproduced with a deviation of 0.007 Å at both branches. For 230 points at the repulsive side, the deviation is 0.003 Å. The perturbed electrostatic Coulomb law is a universal molecular function. Ab initio zero molecular parameter functions give PECs of acceptable quality, just using atomic ionisation energies. The function can be used as a model potential for inverting levels and gives a first principle's comparison of short- and long-range interactions, important for the study of cold atoms. Wave-packet dynamics, femto-chemistry applied to the crossing of covalent and ionic curves, can provide evidence for this theory. We anticipate this scale/shape invariant scheme applies to smaller scales in nuclear and high-energy particle physics. For larger gravitational scales (Newton 1/ R potentials), problems with super-unification are discussed. Reactions between hydrogen and antihydrogen, feasible in the near future, will probably
IETS and quantum interference: Propensity rules in the presence of an interference feature
Lykkebo, Jacob; Solomon, Gemma C.; Gagliardi, Alessio; Pecchia, Alessandro
2014-09-28
Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low current or a particular line shape in current-voltage curves, depending on the position of the interference feature. Second, we consider how inelastic electron tunneling spectroscopy can be used to probe the presence of an interference feature by identifying vibrational modes that are selectively suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference.
Long working distance interference microscope
Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.
2004-04-13
Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.
Comparison of COULOMB-2, NASCAP-2k and SPIS codes for geostationary spacecrafts charging
NASA Astrophysics Data System (ADS)
Novikov, Lev; Makletsov, Andrei; Sinolits, Vadim
In developing of international standards for spacecraft charging, it is necessary to compare results of spacecraft charging modeling obtained with various models. In the paper, electrical potentials for spacecraft 3D models were calculated with COULOMB-2, NASCAP-2k [1] and SPIS [2] software, and the comparison of obtained values was performed. To compare COULOMB-2 and NASCAP-2k codes we used a 3D geometrical model of a spacecraft given in [1]. Parameters of spacecraft surface materials were taken from [1], too. For COULOMB-2 and SPIS cross validation, we carried out calculations with SPIS code through SPENVIS web-interface and with COULOMB-2 software for a spacecraft geometrical model given in SPIS test examples [2]. In both cases, we calculated distributions of electric potentials on the spacecraft surface and visualized the obtained distributions with color code. Pictures of the surface potentials distribution calculated with COULOMB-2 and SPIS software are in good qualitative agreement. Absolute values of surface potentials calculated with these codes for different plasma conditions, are close enough. Pictures of the surface potentials distribution calculated for the spacecraft model [1] with COULOMB-2 software completely correspond to actual understanding of physical mechanisms of differential spacecraft surface charging. In this case, we compared only calculated values of the surface potential for the same space plasma conditions because the potential distributions on the spacecraft surface are absent in [1]. For all the plasma conditions considered, COULOMB-2 model gives higher absolute values of negative potential, than NASCAP-2k model. Differences in these values reach 2-3 kV. The possible explanations of the divergences indicated above are distinctions in calculation procedures of primary plasma currents and secondary emission currents. References 1. Ferguson D.С., Wimberly S.C. 51st AIAA Aerospace Science Meeting 2013 (AIAA 2013-0810). 2. http://dev.spis.org/projects/spine/home/spis
Perceptual interference decays over short unfilled intervals.
Schulkind, M D
2000-09-01
The perceptual interference effect refers to the fact that object identification is directly related to the amount of information available at initial exposure. The present article investigated whether perceptual interference would dissipate when a short, unfilled interval was introduced between exposures to a degraded object. Across three experiments using both musical and pictorial stimuli, identification performance increased directly with the length of the unfilled interval. Consequently, significant perceptual interference was obtained only when the interval between exposures was relatively short (< 500 msec for melodies; < 300 msec for pictures). These results are consistent with explanations that attribute perceptual interference to increased perceptual noise created by exposures to highly degraded objects. The data also suggest that perceptual interference is mediated by systems that are not consciously controlled by the subject and that perceptual interference in the visual domain decays more rapidly than perceptual interference in the auditory domain. PMID:11105520
Familiarity interferes with filial imprinting.
van Kampen, H S; de Vos, G J
1996-10-01
The present study was performed to investigate whether and how pre-exposure to an object affects subsequent filial imprinting to that object. In Experiment 1 junglefowl chicks (Gallus gallus spadiceus) were first exposed to either a red object alone (control group), or a red and a yellow object simultaneously (experimental group; phase 1). Subsequently, all chicks were exposed to the yellow object in the presence of a black and blue one (phase 2). At the end of phase 1, most experimental chicks had developed a preference for the red object over the yellow one. At the end of phase 2, preferences of experimental chicks were shifted away from the yellow object towards the novel black and blue object, relative to preferences of control chicks. This shows that pre-exposure may interfere with imprinting. Experiment 2 revealed that when control chicks were tested with the yellow object at the end of phase 1, filial responses were as strong as in experimental chicks. This shows that the yellow object had not acquired control over filial behaviour during phase 1, and also that the relatively impaired imprinting on that object in phase 2 was not due to reduced generalization from the red object. One possible explanation why pre-exposure may interfere with imprinting is that familiarity alters the level of attention attracted by an object, a mechanism suggested to underlie 'latent inhibition' in conditioning. PMID:24897630
Motor interference in interactive contexts
Chinellato, Eris; Castiello, Umberto; Sartori, Luisa
2015-01-01
Action observation and execution share overlapping neural substrates, so that simultaneous activation by observation and execution modulates motor performance. Previous literature on simple prehension tasks has revealed that motor influence can be two-sided: facilitation for observed and performed congruent actions and interference for incongruent actions. But little is known of the specific modulations of motor performance in complex forms of interaction. Is it possible that the very same observed movement can lead either to interference or facilitation effects on a temporally overlapping congruent executed action, depending on the context? To answer this question participants were asked to perform a reach-to-grasp movement adopting a precision grip (PG) while: (i) observing a fixation cross, (ii) observing an actor performing a PG with interactive purposes, (iii) observing an actor performing a PG without interactive purposes. In particular, in the interactive condition the actor was shown trying to pour some sugar on a large cup located out of her reach but close to the participant watching the video, thus eliciting in reaction a complementary whole-hand grasp. Notably, fine-grained kinematic analysis for this condition revealed a specific delay in the grasping and reaching components and an increased trajectory deviation despite the observed and executed movement’s congruency. Moreover, early peaks of trajectory deviation seem to indicate that socially relevant stimuli are acknowledged by the motor system very early. These data suggest that interactive contexts can determine a prompt modulation of stimulus–response compatibility effects. PMID:26113835
NASA Astrophysics Data System (ADS)
Yuan, Kai-Jun; Bian, Xue-Bin; Bandrauk, André D.
2014-08-01
We study two-center electron interference in molecular photoionization processes by intense attosecond circularly polarized extreme ultraviolet (XUV) laser pulses in both symmetric H2+ and nonsymmetric HHe2+ one-electron diatomic systems. Simulations from numerical solutions of time-dependent Schrödinger equations for the oriented symmetric molecular ion H2+ exhibit a signature of interference with double peaks (minima) in molecular attosecond photoelectron energy spectra (MAPES) at critical angles ϑc between the continuum electron momentum pe and the molecular internuclear R axis. The interference patterns are shown to be influenced by the molecular Coulomb potential, leading to a shift of the critical angle ϑc. Dependence of the two-center interference on the pulse ellipticity is also investigated. Furthermore, it is found that the interference phenomena are critically sensitive to the molecular orbital symmetry. For the nonsymmetric molecular ion HHe2+, such double peaks in MAPES also occur, thus suggesting a method for imaging orbitals in molecules by intense ultrashort circularly polarized XUV pulses on the attosecond time scale.
Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge
Reinhardt, H. Schleifenbaum, W.
2009-04-15
We study the Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss' law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss' law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schroedinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the Gribov region chosen. In this sense, the Dyson-Schwinger equations alone do not provide the full non-abelian quantum gauge theory, but subsidiary conditions must be required. Implications of Gribov copy effects for lattice calculations of the infrared behaviour of gauge-fixed propagators are discussed. We compute the ghost-gluon vertex and provide a sensible truncation of Dyson-Schwinger equations. Approximations of the variational approach to the 3 + 1 dimensional theory are checked by comparison to the 1 + 1 dimensional case.
NASA Astrophysics Data System (ADS)
Anoukou, K.; Pastor, F.; Dufrenoy, P.; Kondo, D.
2016-06-01
The present two-part study aims at investigating the specific effects of Mohr-Coulomb matrix on the strength of ductile porous materials by using a kinematic limit analysis approach. While in the Part II, static and kinematic bounds are numerically derived and used for validation purpose, the present Part I focuses on the theoretical formulation of a macroscopic strength criterion for porous Mohr-Coulomb materials. To this end, we consider a hollow sphere model with a rigid perfectly plastic Mohr-Coulomb matrix, subjected to axisymmetric uniform strain rate boundary conditions. Taking advantage of an appropriate family of three-parameter trial velocity fields accounting for the specific plastic deformation mechanisms of the Mohr-Coulomb matrix, we then provide a solution of the constrained minimization problem required for the determination of the macroscopic dissipation function. The macroscopic strength criterion is then obtained by means of the Lagrangian method combined with Karush-Kuhn-Tucker conditions. After a careful analysis and discussion of the plastic admissibility condition associated to the Mohr-Coulomb criterion, the above procedure leads to a parametric closed-form expression of the macroscopic strength criterion. The latter explicitly shows a dependence on the three stress invariants. In the special case of a friction angle equal to zero, the established criterion reduced to recently available results for porous Tresca materials. Finally, both effects of matrix friction angle and porosity are briefly illustrated and, for completeness, the macroscopic plastic flow rule and the voids evolution law are fully furnished.
Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method
NASA Astrophysics Data System (ADS)
Garrido, E.; Kievsky, A.; Viviani, M.
2016-10-01
In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the {S} -matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.
NASA Astrophysics Data System (ADS)
Anoukou, K.; Pastor, F.; Dufrenoy, P.; Kondo, D.
2016-06-01
The present two-part study aims at investigating the specific effects of Mohr-Coulomb matrix on the strength of ductile porous materials by using a kinematic limit analysis approach. While in the Part II, static and kinematic bounds are numerically derived and used for validation purpose, the present Part I focuses on the theoretical formulation of a macroscopic strength criterion for porous Mohr-Coulomb materials. To this end, we consider a hollow sphere model with a rigid perfectly plastic Mohr-Coulomb matrix, subjected to axisymmetric uniform strain rate boundary conditions. Taking advantage of an appropriate family of three-parameter trial velocity fields accounting for the specific plastic deformation mechanisms of the Mohr-Coulomb matrix, we then provide a solution of the constrained minimization problem required for the determination of the macroscopic dissipation function. The macroscopic strength criterion is then obtained by means of the Lagrangian method combined with Karush-Kuhn-Tucker conditions. After a careful analysis and discussion of the plastic admissibility condition associated to the Mohr-Coulomb criterion, the above procedure leads to a parametric closed-form expression of the macroscopic strength criterion. The latter explicitly shows a dependence on the three stress invariants. In the special case of a friction angle equal to zero, the established criterion reduced to recently available results for porous Tresca materials. Finally, both effects of matrix friction angle and porosity are briefly illustrated and, for completeness, the macroscopic plastic flow rule and the voids evolution law are fully furnished.
NASA Astrophysics Data System (ADS)
Pastor, Franck; Pastor, Joseph; Kondo, Djimedo
2015-03-01
The paper is devoted to a numerical Limit Analysis of a hollow cylindrical model with a Coulomb solid matrix (of confocal boundaries) considered in the case of a generalized plane strain. To this end, the static approach of Pastor et al. (2008) [18] for Drucker-Prager materials is first extended to Coulomb problems. A new mixed-but rigorously kinematic-code is elaborated for Coulomb problems in the present case of symmetry, resulting also in a conic programming approach. Owing to the good conditioning of the resulting optimization problems, both methods give very close bounds by allowing highly refined meshes, as verified by comparing to existing exact solutions. In a second part, using the identity of Tresca (as special case of Coulomb) and von Mises materials in plane strain, the codes are used to assess the corresponding results of Mariani and Corigliano (2001) [13] and of Madou and Leblond (2012) [11] for circular and elliptic cylindrical voids in a von Mises matrix. Finally, the Coulomb problem is investigated, also in terms of projections on the coordinate planes of the principal macroscopic stresses.
On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants
NASA Astrophysics Data System (ADS)
Manschot, Jan; Pioline, Boris; Sen, Ashoke
2013-05-01
In previous work we have shown that the equivariant index of multi-centered {N}=2 black holes localizes on collinear configurations along a fixed axis. Here we provide a general algorithm for enumerating such collinear configurations and computing their contribution to the index. We apply this machinery to the case of black holes described by quiver quantum mechanics, and give a systematic prescription — the Coulomb branch formula — for computing the cohomology of the moduli space of quiver representations. For quivers without oriented loops, the Coulomb branch formula is shown to agree with the Higgs branch formula based on Reineke's result for stack invariants, even when the dimension vector is not primitive. For quivers with oriented loops, the Coulomb branch formula parametrizes the Poincaré polynomial of the quiver moduli space in terms of single-centered (or pure-Higgs) BPS invariants, which are conjecturally independent of the stability condition (i.e. the choice of Fayet-Iliopoulos parameters) and angular-momentum free. To facilitate further investigation we provide a M athematica package "CoulombHiggs.m" implementing the Coulomb and Higgs branch formulae.
The coexistence curve of finite charged nuclear matter
Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.; Albergo, S.; Bieser, F.; Brady, F.P.; Caccia, Z.; Cebra, D.A.; Chacon, A.D.; Chance, J.L.; Choi, Y.; Costa, S.; Gilkes, M.L.; Hauger, J.A.; Hirsch, A.S.; Hjort, E.L.; Insolia, A.; Justice, M.; Keane, D.; Kintner, J.C.; Lindenstruth, V.; Lisa, M.A.; Matis, H.S.; McMahan, M.; McParland, C.; Muller, W.F.J.; Olson, D.L.; Partlan, M.D.; Porile, N.T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H.G.; Romanski, J.; Romero, J.L.; Russo, G.V.; Sann, H.; Scharenberg, R.P.; Scott, A.; Shao, Y.; Srivastava, B.K.; Symons, T.J.M.; Tincknell, M.; Tuve, C.; Wang , S.; Warren, P.; Wieman, H.H.; Wienold, T.; Wolf, K.
2001-01-01
The multifragmentation data of the ISiS Collaboration and the EOS Collaboration are examined. Fisher's droplet formalism, modified to account for Coulomb energy, is used to determine the critical exponents {tau} and {sigma}, the surface energy coefficient c{sub 0}, the pressure-temperature-density coexistence curve of finite nuclear matter and the location of the critical point.
RNA Interference for Antimetastatic Therapy.
Dahlmann, Mathias; Stein, Ulrike
2015-01-01
The suppression of genes involved in tumor progression, metastasis formation, or therapy resistance by RNA interference is a promising tool to treat cancer disease. Efficient delivery of interfering molecules and their sustained presence in tumor cells are required for therapeutic success. This chapter describes a method of systemic application of shRNA expression plasmid via tail vein injection in xenograft mice, causing the sustained reduction of target gene expression in the primary tumor. By choosing S100A4 as a metastasis driving target gene, this therapeutic approach restricted the formation of distant colorectal cancer metastases after intrasplenic transplantation. In vivo imaging of bioluminescent cancer cells allows the monitoring of tumor growth and metastasis formation over time. End point analysis of the trial included scoring of the metastatic burden and the quantification of target gene expression in the tumor. Average S100A4 expression in tumor tissues was reduced by 30 %, causing a 70 % decrease of liver metastases. PMID:26072407
Can bacterial interference prevent infection?
Reid, G; Howard, J; Gan, B S
2001-09-01
The concept that one bacterial species can interfere with the ability of another to colonize and infect the host has at its foundation the prerequisite that bacteria must attach to biological surfaces to cause infection. Although this is an over-simplification of pathogenesis, it has led to studies aimed at creating vaccines that block adhesion events. Arguably, the use of commensal bacteria (also referred to as "normal flora", "indigenous" or "autochthonous" microorganisms) to inhibit pathogens has even greater potential than vaccine use, because these bacteria are natural competitors of pathogens and their action does not require host immune stimulation. Exogenous application of commensal organisms (probiotics) has been shown to reduce the risk of infections in the gut, urogenital tract and wound sites. To manipulate and optimize these effects, further studies are required to understand cell signaling amongst commensals and pathogens within biofilms adherent to host tissues. The potential for new therapeutic regimens using probiotics is significant and worthy of further study.
RNA interference and antiviral therapy
Ma, Yan; Chan, Chu-Yan; He, Ming-Liang
2007-01-01
RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed. PMID:17876887
Fermi-Edge Transmission Resonance in Graphene Driven by a Single Coulomb Impurity
NASA Astrophysics Data System (ADS)
Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Nath Pal, Atindra; Ghosh, Arindam
2014-07-01
The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e2/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.
Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics
NASA Astrophysics Data System (ADS)
Quan, Wei; Hao, Xiaolei; Chen, Yongju; Yu, Shaogang; Xu, Songpo; Wang, Yanlan; Sun, Renping; Lai, Xuanyang; Wu, Chengyin; Gong, Qihuang; He, Xiantu; Liu, Xiaojun; Chen, Jing
2016-06-01
In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.
Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics
Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing
2016-01-01
In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904
Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.
Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A
2016-02-01
To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision. PMID:26932090
Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.
von Keyserlingk, C W; Simon, S H; Rosenow, Bernd
2015-09-18
Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding. PMID:26431008
On the Klein–Gordon oscillator subject to a Coulomb-type potential
Bakke, K. Furtado, C.
2015-04-15
By introducing the scalar potential as modification in the mass term of the Klein–Gordon equation, the influence of a Coulomb-type potential on the Klein–Gordon oscillator is investigated. Relativistic bound states solutions are achieved to both attractive and repulsive Coulomb-type potentials and the arising of a quantum effect characterized by the dependence of angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system is shown. - Highlights: • Interaction between the Klein–Gordon oscillator and a modified mass term. • Relativistic bound states for both attractive and repulsive Coulomb-type potentials. • Dependence of the Klein–Gordon oscillator frequency on the quantum numbers. • Relativistic analogue of a position-dependent mass system.
Double-island Coulomb blockade in (Ga,Mn)As nanoconstrictions
NASA Astrophysics Data System (ADS)
Geißler, S.; Pfaller, S.; Utz, M.; Bougeard, D.; Donarini, A.; Grifoni, M.; Weiss, D.
2015-05-01
We report on a systematic study of the Coulomb-blockade effects in nanofabricated narrow constrictions in thin (Ga,Mn)As films. Different low-temperature transport regimes have been observed for decreasing constriction sizes: the Ohmic, the single-electron tunneling (SET), and a completely insulating regime. In the SET, complex stability diagrams with nested Coulomb diamonds and anomalous conductance suppression in the vicinity of charge degeneracy points have been observed. We rationalize these observations in the SET with a double ferromagnetic island model coupled to ferromagnetic leads. Its transport characteristics are analyzed in terms of a modified orthodox theory of Coulomb blockade which takes into account the energy dependence of the density of states in the metallic islands.
Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.
von Keyserlingk, C W; Simon, S H; Rosenow, Bernd
2015-09-18
Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding.
Coulomb corrections to the extrinsic spin-Hall effect of a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Hankiewicz, E. M.; Vignale, G.
2006-03-01
We develop the microscopic theory of the extrinsic spin-Hall conductivity of a two-dimensional electron gas, including skew-scattering, side-jump, and Coulomb interaction effects. We find that while the spin-Hall conductivity connected with the side jump is independent of the strength of electron-electron interactions, the skew-scattering term is reduced by the spin-Coulomb drag, so the total spin current and the total spin-Hall conductivity are reduced for typical experimental mobilities. Further, we predict that in paramagnetic systems the spin-Coulomb drag reduces the spin accumulations in two different ways: (i) directly through the reduction of the skew-scattering contribution, and (ii) indirectly through the reduction of the spin diffusion length. Explicit expressions for the various contributions to the spin-Hall conductivity are obtained using an exactly solvable model of the skew scattering.
Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.
Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam
2014-07-11
The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime. PMID:25062215
The perirhinal cortex and recognition memory interference
Watson, H.C.; Lee, A. C. H.
2013-01-01
There has recently been an increase in interest in the effects of visual interference on memory processing, with the aim of eluciating the role of the perirhinal cortex (PRC) in recognition memory. One view argues that the PRC processes highly complex conjunctions of object features, and recent evidence from rodents suggests that these representations may be vital for buffering against the effects of pre-retrieval interference on object recognition memory. To investigate whether PRC-dependent object representations play a similar role in humans, we used functional magnetic resonance imaging to scan neurologically healthy participants while they carried out a novel interference-match-to-sample task. This paradigm was specifically designed to concurrently assess the impact of object vs. spatial interference, on recognition memory for objects or scenes, while keeping constant the amount of object and scene information presented across all trials. Activity at retrieval was examined, within an anatomically defined PRC region of interest, according to the demand for object or scene memory, following a period of object compared to spatial interference. Critically, we found greater PRC activity for object memory following object interference, compared to object memory following scene interference, and no difference between object and scene interference for scene recognition. These data demonstrate a role for the human PRC following a period of object, but not scene, interference, during object recognition memory, and emphasize the importance of representational content to mnemonic processing. PMID:23447626
Hyperspectral imaging camera using wavefront division interference.
Bahalul, Eran; Bronfeld, Asaf; Epshtein, Shlomi; Saban, Yoram; Karsenty, Avi; Arieli, Yoel
2016-03-01
An approach for performing hyperspectral imaging is introduced. The hyperspectral imaging is based on Fourier transform spectroscopy, where the interference is performed by wavefront division interference rather than amplitude division interference. A variable phase delay between two parts of the wavefront emanating from each point of an object is created by a spatial light modulator (SLM) to obtain variable interference patterns. The SLM is placed in the exit pupil of an imaging system, thus enabling conversion of a general imaging optical system into an imaging hyperspectral optical system. The physical basis of the new approach is introduced, and an optical apparatus is built. PMID:26974085
Computational Analysis of Intermolecular Coulombic Decay Effects in DNA nucleotide Photoionization
NASA Astrophysics Data System (ADS)
Vargas, E. L.; Robertson, J.; Andrianarijaona, V. M.
2016-03-01
Intermolecular Coulombic Decay (ICD) is the process of how electrons return to their original state after excitation and how this affects their immediate environment. In a previous research presentationwe had considered the hypothetical applications of Intermolecular Coulombic Decay on the adhesiveness of coding proteins within DNA molecules. This presentation is a continuation of the previous in that the results of our DFT-based computational calculations of the ionization potentials of nucleotides and their excitation energies will be presented, as well as how they influence their surroundings. Author would like to acknowledge the PUC Student Senate for financial assistance.
Spin and the Coulomb gap in the half-filled lowest Landau level
NASA Astrophysics Data System (ADS)
Eisenstein, J. P.; Khaire, T.; Nandi, D.; Finck, A. D. K.; Pfeiffer, L. N.; West, K. W.
2016-09-01
The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each at half-filling of the lowest Landau level, is found to depend sensitively on the presence of an in-plane magnetic field. Especially at low electron density, the width of the Coulomb gap at first increases sharply with in-plane field, but then abruptly levels off. This behavior appears to coincide with the known transition from partial to complete spin polarization of the half-filled lowest Landau level. The tunneling gap therefore opens a window onto the spin configuration of two-dimensional electron systems at high magnetic field.
Effect of increasing disorder on the critical behavior of a Coulomb system
NASA Astrophysics Data System (ADS)
Overlin, Michael H.; Wong, Lee A.; Yu, Clare C.
2004-12-01
We have performed a Monte Carlo study of a classical three-dimensional Coulomb system in which we systematically increase the positional disorder. We start from a completely ordered system and gradually transition to a Coulomb glass. The phase transition as a function of temperature is second order for all values of disorder. We use finite size scaling to determine the transition temperature TC and the critical exponent ν . We find that TC decreases and that ν increases with increasing disorder. We also observe changes in the specific heat, the single-particle density of states, and the staggered occupation as a function of disorder and temperature.
Shell model based Coulomb excitation γ-ray intensity calculations in 107Sn
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cederkall, J.; Ekström, A.; Fahlander, C.; Hjorth-Jensen, M.
2012-10-01
In this work, we present recent shell model calculations, based on a realistic nucleon-nucleon interaction, for the light 107, 109Sn nuclei. By combining the calculations with the semi-classical Coulomb excitation code GOSIA, a set of γ-ray intensities has been generated. The calculated intensities are compared with the data from recent Coulomb excitation studies in inverse kinematics at the REX-ISOLDE facility with the nucleus 107Sn. The results are discussed in the context of the ordering of the single-particle orbits relative to 100Sn.
On the drift mobility of a molecular polaron in the presence of Coulomb traps
NASA Astrophysics Data System (ADS)
Rackovsky, S.; Scher, H.
1999-08-01
We study the drift mobility of a molecular polaron in the presence of an external applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. It is shown that the unusual combination of Poole-Frenkel-like field dependence and non-Arrhenius temperature dependence of the mobility, measured experimentally in molecular films, is well reproduced by this model. Our key result is that this nearly universal experimental behavior of the mobility arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.
Strong-field S -matrix theory with final-state Coulomb interaction in all orders
NASA Astrophysics Data System (ADS)
Faisal, F. H. M.
2016-09-01
During the last several decades the so-called Keldysh-Faisal-Reiss or strong-field approximation (SFA) has been highly useful for the analysis of atomic and molecular processes in intense laser fields. However, it is well known that SFA does not account for the final-state Coulomb interaction which is, however, unavoidable for the ubiquitous ionization process. In this Rapid Communication we solve this long-standing problem and give a complete strong-field S -matrix expansion that accounts for the final-state Coulomb interaction in all orders, explicitly.
Elastic scattering of {sup 9}Li on {sup 208}Pb at energies around the Coulomb barrier
Cubero, M.; Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Lay, J. A.; Moro, A. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Alcorta, M.; Borge, M. J. G.; Tengblad, O.; Buchmann, L.; Shotter, A.; Walden, P.; Diget, D. G.; Fulton, B.; Fynbo, H. O. U.; Galaviz, D.; Gomez-Camacho, J.; Mukha, I.
2011-10-28
We have studied the dynamical effects of the halo structure of {sup 11}Li on the scattering on heavy targets at energies around the Coulomb barrier. This experiment was performed at ISAC-II at TRIUMF with a world record in production of the post-accelerated {sup 11}Li beam. As part of this study we report here on the first measurement of the elastic cross section of the core nucleus, i.e. {sup 9}Li on {sup 208}Pb, at energies around the Coulomb barrier. A preliminary optical model analysis has been performed in order to extract a global optical potential to describe the measured angular distributions.
Hamiltonian Approach to Yang-Mills Theory in Coulomb Gauge--Revisited
Reinhardt, Hugo; Campagnari, Davide R.; Leder, Markus; Burgio, Giuseppe; Quandt, Markus; Pawlowski, Jan M.; Weber, Axel
2011-05-24
I briefly review results obtained within the variational Hamiltonian approach to Yang-Mills theory in Coulomb gauge and confront them with recent lattice data. The variational approach is extended to non-Gaussian wave functionals including three- and four-gluon kernels in the exponential of the vacuum wave functional and used to calculate the three-gluon vertex. A new functional renormalization group flow equation for Hamiltonian Yang-Mills theory in Coulomb gauge is solved for the gluon and ghost propagator under the assumption of ghost dominance. The results are compared to those obtained in the variational approach.
If Coulomb's law were not inverse square: The charge distribution inside a solid conducting sphere
NASA Astrophysics Data System (ADS)
Spencer, Ross L.
1990-04-01
The distribution of charge between concentric conducting shells has been at the heart of the most sensitive tests of the exponent in Coulomb's law since the days of Henry Cavendish. But it appears that no one has ever answered the question of how an excess of charge would distribute itself throughout the interior of a solid conductor if Coulomb's law were other than inverse square. Spherically symmetric solutions to this problem have been found under the assumption that the potential of a point charge varies either as e-kr/r or as 1/rn.
One-dimensional Coulomb-like problem in general case of deformed space with minimal length
NASA Astrophysics Data System (ADS)
Samar, M. I.; Tkachuk, V. M.
2016-08-01
In general case of deformed Heisenberg algebra leading to the minimal length, we present a definition of the inverse of position operator which is linear and two-sided. Our proposal is based on the functional analysis of the position operator. Using this definition, 1D Coulomb-like problem is studied. We find exactly the energy spectrum and the eigenfunctions for the 1D Coulomb-like potential in deformed space with arbitrary function of deformation. We analyze the energy spectrum for different partial cases of deformation function and find that the correction caused by the deformation highly depends on the type of the deformation function.
A shortcut through the Coulomb gas method for spectral linear statistics on random matrices
NASA Astrophysics Data System (ADS)
Deelan Cunden, Fabio; Facchi, Paolo; Vivo, Pierpaolo
2016-04-01
In the last decade, spectral linear statistics on large dimensional random matrices have attracted significant attention. Within the physics community, a privileged role has been played by invariant matrix ensembles for which a two-dimensional Coulomb gas analogy is available. We present a critical revision of the Coulomb gas method in random matrix theory (RMT) borrowing language and tools from large deviations theory. This allows us to formalize an equivalent, but more effective and quicker route toward RMT free energy calculations. Moreover, we argue that this more modern viewpoint is likely to shed further light on the interesting issues of weak phase transitions and evaporation phenomena recently observed in RMT.
Nuclear structure and sub-barrier fusion
Esbensen, H. . Cyclotron Lab. Argonne National Lab., IL )
1990-01-01
The influence of nuclear structure on heavy-ion fusion and elastic scattering, at energies near and below the Coulomb barrier, is discussed within the coupled channels formalism. The coupled channels approach provides a consistent description of the enhancement of sub-barrier fusion and the energy dependence of the effective potential for elastic scattering. This is illustrated by comparison to the data for several systems. 48 refs., 4 figs.
Triaxial rotor model description of quadrupole interference in collective nuclei: The P{sub 3} term
Allmond, J. M.; Wood, J. L.; Kulp, W. D.
2009-08-15
The triaxial rotor model with independent inertia and electric quadrupole tensors is applied to the P{sub 3} term, P{sub 3}=<0{sub 1}||T(E2)||2{sub 1}><2{sub 1}||T(E2)||2{sub 2}><2{sub 2}||T(E2)||0{sub 1}>, which is a standard measure of quadrupole interference in collective nuclei. It is shown that the model naturally explains nuclei with anomalous signs for their P{sub 3} terms. Measurements of Q(2{sub 1}) in multiple-step Coulomb excitation can be significantly dependent on the sign of this term. The example of {sup 194}Pt is considered.
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve.
Ma, Jing-Min; Zhao, Jia; Zhang, Kai-Cheng; Peng, Ya-Jing; Chi, Feng
2011-01-01
Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively.PACS numbers: PMID:21711779
Nuclear Structure Research at TRIUMF
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.
2007-04-01
The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.