Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Jia; Sun, Guohua; Li, Hongmei
2012-10-15
Certified reference materials (CRMs) of water content are widely used in the calibration and validation of Karl Fischer coulometry and volumetry. In this study, the water content of the water saturated 1-octanol (WSO) CRM was certified by Karl Fischer coulometry, volumetry and quantitative nuclear magnetic resonance (Q NMR). The water content recovery by coulometry was 99.76% with a diaphragm-less electrode and Coulomat AG anolyte. The relative bias between the coulometry and volumetry results was 0.06%. In Q NMR, the water content of WSO is traceable to the International System (SI) of units through the purity of internal standard. The relative bias of water content in WSO between Q NMR and volumetry was 0.50%. The consistency of results for these three independent methods improves the accuracy of the certification of the RM. The certified water content of the WSO CRM was 4.76% with an expanded uncertainty of 0.09%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evidence for multiple hydrogen-ion donor systems in rain
Sagar V. Krupa; M. R., Jr. Coscio; F. A. Wood
1976-01-01
An integrated analytical system consisting of combined scanning electron microscopy and x-ray analysis, atomic absorption, colorimetry and coulometry was used to study rain water chemistry. The coulometry facilitated the determination in molarities of strong and non-volatile and volatile weak acids. The pH of individual rains in St. Paul - Minneapolis, Minnesota ranged...
Evaluation of measurement uncertainty for purity of a monoterpenic acid by small-scale coulometry
NASA Astrophysics Data System (ADS)
Norte, L. C.; de Carvalho, E. M.; Tappin, M. R. R.; Borges, P. P.
2018-03-01
Purity of the perylic acid (HPe) which is a monoterpenic acid from natural product (NP) with anti-inflammatory and anticancer properties was analyzed by small-scale coulometry (SSC), due to the low availability of HPe on the pharmaceutic market and its high cost. This work aims to present the evaluation of the measurements uncertainty from the purity of HPe by using SSC. Coulometric mean of purity obtained from 5 replicates resulted in 94.23% ± 0.88% (k = 2.06, for an approximately 95% confidence level). These studies aim in the future to develop the production of certified reference materials from NPs.
An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode
ERIC Educational Resources Information Center
DeAngelis, Thomas P.; Heineman, William R.
1976-01-01
Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)
Khan, Zia Ul Haq; Khan, Amjad; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhammad, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah; Khan, Zia Ullah
2018-05-01
Some new pyrimidine derivatives have been synthesised by electrochemical oxidation of catechol (1a) in the existence of 2-mercapto-6-(trifluoromethyl) pyrimidine-4-ol (3) as a nucleophile in aqueous solution using Cyclic Voltammetric and Controlled Potential Coulometry. The catechol has been oxidised to o-quinone through electrochemical method and participative in Michael addition reaction, leading to the development of some new pyrimidine derivatives. The products were achieved in good yield with high pureness. The mechanism of the reaction has been conformed from the Cyclic Voltammetric data and Controlled Potential Coulometry. After purification, the compounds were characterised using modern techniques. The synthesised materials were screened for antimicrobial actions using Gram positive and Gram negative strain of bacteria. These new synthesised pyrimidine derivatives showed very good antimicrobial activity.
Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)
1996-04-01
This purge gas sweeps out the nitrogen and at the same time fills the micro- pore structure of the molecular sieve with the product gas. When the...electrochemical (amperometry, voltametry , polarography, coulometry), (c) spectrometry (mass spectrometry, ultraviolet spectrometry), (d) solid-state
Modern Chemical Technology, Volume 9.
ERIC Educational Resources Information Center
Pecsok, Robert L.; Chapman, Kenneth
This volume is one of the series for the Chemical Technician Curriculum Project (ChemTeC) of the American Chemical Society funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: ion exchange, electrphoresis, dialysis, electrochemistry, corrosion, electrolytic cells, coulometry,…
Coulometric Analysis Experiment for the Undergraduate Chemistry Laboratory
ERIC Educational Resources Information Center
Dabke, Rajeev B.; Gebeyehu, Zewdu; Thor, Ryan
2011-01-01
An undergraduate experiment on coulometric analysis of four commercial household products is presented. A special type of coulometry cell made of polydimethylsiloxane (PDMS) polymer is utilized. The PDMS cell consists of multiple analyte compartments and an internal network of salt bridges. Experimental procedure for the analysis of the acid in a…
Investigation of the Performance of Commercial Batteries; Part II.
ERIC Educational Resources Information Center
Davies, Arthur; And Others
1996-01-01
Describes a project that involves determining, by coulometry, the energy output of different types and makes of 1.5-volt AA cells as a function of EMF and time. Involves measuring the volume of hydrogen gas collected at the cathode from the reduction of hydrogen ions in aqueous sulfuric acid by a current produced by the discharge of an AA battery.…
ERIC Educational Resources Information Center
Padilla Mercado, Jeralyne B.; Coombs, Eri M.; De Jesus, Jenny P.; Bretz, Stacey Lowery; Danielson, Neil D.
2018-01-01
Multifunctional chemical analysis (MCA) systems provide a viable alternative for large scale instruction while supporting a hands-on approach to more advanced instrumentation. These systems are robust and typically use student stations connected to a remote central computer for data collection, minimizing the need for computers at every student…
1984-11-28
indicated by Popov and Geske (8), are: 31 - 2e- 13 and 213 - 2e : 312 [2) N Figure 8 is a plot of the charge required for complete conversion of the -I...and D.H. Geske , J. Amer. Chem. Soc. 80, 1340 (1958). 9. F.C. Anson, Anal. Chem. 38, 54 (1966). -4.. ; ’ : /) /" ’O"- ’,, FIGURE LEGENDS Figure 1
Initial Results from the Deep Drilling of Lake Junin, Perú
NASA Astrophysics Data System (ADS)
Rodbell, D. T.; Abbott, M. B.; Weidhaas, N.; Hatfield, R. G.; Woods, A.; Hillman, A. L.; Tapia, P. M.; Chen, C. Y.; McGee, D.; Stoner, J. S.
2016-12-01
Lake Junín (11.0°S, 76.2°W, 4085 masl) is an intermontane, high-elevation lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. With a maximum water depth of 12m, Lake Junin is dammed at its northern and southern ends by alluvial fans that emanate from glacial valleys in both cordillera. These fans can be traced to moraines that are >250 ka, indicating that the lake is at least this old. During the maximum extent of late Cenozoic glaciation, glaciers reached the lake edge but at no time over the last 1 million years, or more, has Lake Junín been overridden by ice. Lake Junín is thus one of the few lakes in the tropical Andes that predates the maximum extent of glaciation and is in a geomorphic position to record the waxing and waning of alpine glaciers in nearby cordillera. Sediment cores obtained between 1980 and 1996 reveal that sediment deposited during the last glacial cycle ( 30-16 ka) is dominated by glacial flour whereas sediment deposited during the last 16 ka consists predominantly of authigenic calcite (marl) with ostracod carapaces punctuated with intervals of gyttja and peat. In July and August of 2015, piston cores were obtained from three sites in Lake Junin. Multiple overlapping cores from the deepest water site (Site 1) extend to 100 m below lake floor (mblf), and those from two shallow water, paleoglacier-proximal sites (Sites 2 and 3) extend 23 and 51 mblf, respectively. Samples acquired at 8-cm resolution from Site 1 were analyzed for total organic carbon (TOC) and total inorganic carbon [as Ca(Mg)CO3; TIC] by coulometry. Total carbon (TC) was analyzed by combusting 10 mg samples at 1000°C and quantifying the resultant CO2 by coulometry whereas TIC was analyzed by reacting 10 mg samples in 6N H3PO4 and quantifying the resultant CO2 by coulometry; TOC was determined from TOC=TC-TIC. Over the last glacial postglacial cycle (last 30 ka), mean CaCO3 and TOC concentrations in Site 1 cores are higher ( 33% and 7.4%, respectively) than those in shallow water settings ( 9.5% and 4%). Similarly, mean magnetic susceptibility (MS) is lower in Site 1 cores (6.9 SI) than in the most paleoglacier-proximal shallow water site (Site 2, 9.4 SI). Site 1 records 7 glacial and interglacial cycles whereas shallow water locations appear to be dominated by sediment deposited during the last glacial-interglacial cycle.
Marei, Mohamed M; Roussel, Thomas J; Keynton, Robert S; Baldwin, Richard P
2013-11-25
Remote unattended sensor networks are increasingly sought after to monitor the drinking water distribution grid, industrial wastewater effluents, and even rivers and lakes. One of the biggest challenges for application of such sensors is the issue of in-field device calibration. With this challenge in mind, we report here the use of anodic stripping coulometry (ASC) as the basis of a calibration-free micro-fabricated electrochemical sensor (CF-MES) for heavy metal determinations. The sensor platform consisted of a photo-lithographically patterned gold working electrode on SiO2 substrate, which was housed within a custom stopped-flow thin-layer cell, with a total volume of 2-4 μL. The behavior of this platform was characterized by fluorescent particle microscopy and electrochemical studies utilizing Fe(CN)6(3-/4-) as a model analyte. The average charge obtained for oxidation of 500 μM ferrocyanide after 60s over a 10 month period was 176 μC, corresponding to a volume of 3.65 μL (RSD = 2.4%). The response of the platform to copper concentrations ranging from 50 to 7500 ppb was evaluated, and the ASC results showed a linear dependence of charge on copper concentrations with excellent reproducibility (RSD ≤ 2.5%) and accuracy for most concentrations (≤ 5-10% error). The platform was also used to determine copper and mercury mixtures, where the total metallic content was measurable with excellent reproducibility (RSD ≤ 4%) and accuracy (≤ 6% error). Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales-Arteaga, Maria
This GUM WorkbenchTM propagation of uncertainty is for the coulometric measurement of the plutonium concentration in a Pu standard material (C126) supplied as individual aliquots that were prepared by mass. The C126 solution had been prepared and as aliquoted as standard material. Samples are aliquoted into glass vials and heated to dryness for distribution as dried nitrate. The individual plutonium aliquots were not separated chemically or otherwise purified prior to measurement by coulometry in the F/H Laboratory. Hydrogen peroxide was used for valence adjustment.
Colloidal-gold electrosensor measuring device
Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.
1995-11-21
The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.
Colloidal-gold electrosensor measuring device
Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.
1995-01-01
The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordaro, J.; Holland, M.; Reeves, G.
The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptuniummore » standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.« less
Measurement of Fe2+ ion by coulometry method at incubation of Thiobacillus ferrooxidans.
Tsuda, I; Kato, K; Nozaki, K
1996-12-01
Thiobacillus ferrooxidans is a chemoautotrophic bacterium that is capable of using Fe2+ oxidation by O2 as the sole source of energy for growth and CO2 fixation. The idea of the solar bacterial biomass farm by using of this bacterium is proposed. The incubation experiment of these bacteria was carried out, and the 9K culture medium as the standard medium for T. ferrooxidans was used. The measurement of Fe2+ in the growth stage was carried out as the first step of the experiments to clarify the possibility of this system. The items of measurement were Fe2+ ion density, pH of the medium, bacterium density and quantity of total organic carbon (TOC). The density of Fe2+ ion in the medium was measured by coulometry method. This method has the following advantage, high accuracy (<1%), easy operation, short measurement time (a few minutes) and small sample quantity (about 0.1 ml). The experimental results show that the Fe 2+ ion density is measured as same as the accuracy of pH measurement. At the final stage of the growth, the pH decreased due to the generation of the iron hydroxide (Fe(OH)3). The bacterium density and TOC slightly increased after that Fe2+ runs short. This result shows that the CO2 fixation speed is slower than Fe2+ oxidation speed. It is shown by the experiment that the growth limit of T. ferrooxidans is caused by the disappearance of the Fe2+ ion. It may be possible that the bacterium density increases by the continuous supply of Fe2+ ion.
Electrochemical preparation of single-crystalline Cr 2O 3 from molten salts
NASA Astrophysics Data System (ADS)
Abe, Hideki; Nishida, Kenji; Imai, Motoharu; Kitazawa, Hideaki
2004-06-01
Single crystals of Cr 2O 3 have been grown by means of electrolysis on a 1:100 stoichiometric mixture of CrO 3 and cesium molybdate, Cs 2MoO 4, fused at 1000°C in an ambient atmosphere. Potentiometric measurements on the molten salts have shown the existence of a critical voltage of -320 mV below which hexagonal platelets-shaped single-crystalline Cr 2O 3 is grown on the surface of the working electrode. Coulometry measurements have revealed that the Cr ions are at their highest oxidation state of Cr +6 in the molten electrolyte, which suggests that the electric reduction of Cr +6 to Cr +3 drives the single-crystal growth of Cr 2O 3.
Electrochemical hydrogenation of thiophene on SPE electrodes
NASA Astrophysics Data System (ADS)
Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.
2017-01-01
Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.
Nematollahi, Davood; Feyzi Barnaji, Bahareh; Amani, Ameneh
2015-01-01
With the aim of obtaining information about drug-drug interaction (DDI) between acetaminophen and some of antidepressant drugs (fluoxetine, sertraline and nortriptyline), in the present work we studied the electrochemical oxidation of acetaminophen (paracetamol) in the presence of these drugs by means of cyclic voltammetry and Controlled-potential coulometry. The reaction between N-acetyl-p-benzoquinone-imine (NAPQI) produced from electrooxidation of acetaminophen and antidepressant drugs (see scheme 1) cause to reduce the concentration of NAPQI and decreases the effective concentration of antidepressants. The cyclic voltammetric data were analyzed by digital simulation to measure the homogeneous parameters for the suggesting electrode mechanism. The calculated observed homogeneous rate constants (kobs) for the reaction of electrochemically generated N-acetyl-para benzoquinn-imine with antidepressant drugs was found to vary in the order kobsnortriptyline > kobssertraline > kobsfluxetine at biological pH. PMID:26664378
Uncertainty propagation for the coulometric measurement of the plutonium concentration in MOX-PU4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This GUM WorkbenchTM propagation of uncertainty is for the coulometric measurement of the plutonium concentration in a Pu standard material (C126) supplied as individual aliquots that were prepared by mass. The C126 solution had been prepared and as aliquoted as standard material. Samples are aliquoted into glass vials and heated to dryness for distribution as dried nitrate. The individual plutonium aliquots were not separated chemically or otherwise purified prior to measurement by coulometry in the F/H Laboratory. Hydrogen peroxide was used for valence adjustment. The Pu assay measurement results were corrected for the interference from trace iron in the solutionmore » measured for assay. Aliquot mass measurements were corrected for air buoyancy. The relative atomic mass (atomic weight) of the plutonium from X126 certoficate was used. The isotopic composition was determined by thermal ionization mass spectrometry (TIMS) for comparison but not used in calculations.« less
Koen, E
1975-01-01
Using the method of factor planning of the experiment, the author studies and demonstrates the influence exerted by the potential and time of electrolysis, and by the concentration of the background and elements on the heights of anodal peaks upon simultaneous determination of zinc, cadmium, lead and copper microconcentrations. On the ground of statistical elaboration of the results, the optimal condition for polarographic determination through anodal voltamperometry are outlined. According to the cyclic voltametry method, the electrod processes reversibility for zinc, cadmium and lead, as well as the incomplete reversibility for copper are established; the number of electrons participating in the electrochemical reaction are found using the method of gas coulometry. The possibility of simultaneous determination of the four elements' ultramicroconcentrations after the method of voltamperometry with enrichment is proved. The standard deviation is in the range 3.02 to 4.9.
Modern Directions for Potentiometric Sensors
Bakker, Eric; Chumbimuni-Torres, Karin
2009-01-01
This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473
Zimpl, Milan; Skopalova, Jana; Jirovsky, David; Bartak, Petr; Navratil, Tomas; Sedonikova, Jana; Kotoucek, Milan
2012-01-01
Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in the position 4 precedes the electron acceptance forming a semiquinone radical intermediate which is relatively stable in acidic solutions. Its further reduction is manifested by separated current signal. A positive mesomeric effect of the nonprotonized amino group in the position 7 of the derivative III accelerates the semiquinone reduction yielding a single current wave. The suggested reaction mechanism was verified by means of direct current polarography, differential pulse, cyclic and elimination voltammetry, and coulometry with subsequent GC/MS analysis. The understanding of the mechanism was applied in developing of analytical method for the determination of the studied compounds. PMID:22666117
NASA Astrophysics Data System (ADS)
Momeni, Shima; Nematollahi, Davood
2017-02-01
Electrochemical behavior of acid orange 7 has been exhaustively studied in aqueous solutions with different pH values, using cyclic voltammetry and constant current coulometry. This study has provided new insights into the mechanistic details, pH dependence and intermediate structure of both electrochemical oxidation and reduction of acid orange 7. Surprisingly, the results indicate that a same redox couple (1-iminonaphthalen-2(1H)-one/1-aminonaphthalen-2-ol) is formed from both oxidation and reduction of acid orange 7. Also, an additional purpose of this work is electrochemical synthesis of three new derivatives of 1-amino-4-(phenylsulfonyl)naphthalen-2-ol (3a-3c) under constant current electrolysis via electrochemical oxidation (and reduction) of acid orange 7 in the presence of arylsulfinic acids as nucleophiles. The results indicate that the electrogenerated 1-iminonaphthalen-2(1 H)-one participates in Michael addition reaction with arylsulfinic acids to form the 1-amino-3-(phenylsulfonyl)naphthalen-2-ol derivatives. The synthesis was carried out in an undivided cell equipped with carbon rods as an anode and cathode.
NASA Astrophysics Data System (ADS)
Novitskaya, Mariya; Makhnach, Leonid; Ivashkevich, Ludmila; Pankov, Vladimir; Klein, Holger; Rageau, Amélie; David, Jérémy; Gemmi, Mauro; Hadermann, Joke; Strobel, Pierre
2011-12-01
A new black quaternary oxide Sr 5BiNi 2O 9.6 was synthesized by solid state reaction at 1200 °C. Its structure was solved by electron crystallography and X-ray powder refinement, yielding a tetragonal structure with space group I4/ mmm, a=5.3637 (2) Å, c=17.5541(5) Å, Z=4. The structure can be described as a stacking of (Bi,Sr)-O rocksalt slabs and SrNiO 3- δ perovskite slabs. The initial nickel valence is close to +3.1. Thermogravimetry and high-temperature oxygen coulometry showed that this compound has variable oxygen content as a function of temperature and oxygen pressure, and ultimately decomposes when heated in low oxygen pressure above 800 °C. It is a metallic conductor with n-type conduction. Its thermoelectric power was determined and found to be -20 and -38 μV/K at 300 and 650 °C, respectively. Magnetic measurements confirm the nickel valence close to +3 and show evidence of magnetic ordering at 20 K.
NASA Astrophysics Data System (ADS)
Bell, S. A.; Miao, P.; Carroll, P. A.
2018-04-01
Evolved vapor coulometry is a measurement technique that selectively detects water and is used to measure water content of materials. The basis of the measurement is the quantitative electrolysis of evaporated water entrained in a carrier gas stream. Although this measurement has a fundamental principle—based on Faraday's law which directly relates electrolysis current to amount of substance electrolyzed—in practice it requires calibration. Commonly, reference materials of known water content are used, but the variety of these is limited, and they are not always available for suitable values, materials, with SI traceability, or with well-characterized uncertainty. In this paper, we report development of an alternative calibration approach using as a reference the water content of humid gas of defined dew point traceable to the SI via national humidity standards. The increased information available through this new type of calibration reveals a variation of the instrument performance across its range not visible using the conventional approach. The significance of this is discussed along with details of the calibration technique, example results, and an uncertainty evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagannathan, Kaushik; Benson, David M.; Robinson, David B.
Nanofilms of Pd were grown using an electrochemical form of atomic layer deposition (E-ALD) on 100 nm evaporated Au films on glass. Multiple cycles of surface-limited redox replacement (SLRR) were used to grow deposits. Each SLRR involved the underpotential deposition (UPD) of a Cu atomic layer, followed by open circuit replacement via redox exchange with tetrachloropalladate, forming a Pd atomic layer: one E-ALD deposition cycle. That cycle was repeated in order to grow deposits of a desired thickness. 5 cycles of Pd deposition were performed on the Au on glass substrates, resulting in the formation of 2.5 monolayers of Pd.more » Those Pd films were then modified with varying coverages of Pt, also formed using SLRR. The amount of Pt was controlled by changing the potential for Cu UPD, and by increasing the number of Pt deposition cycles. Hydrogen absorption was studied using coulometry and cyclic voltammetry in 0.1 M H 2SO 4 as a function of Pt coverage. The presence of even a small fraction of a Pt monolayer dramatically increased the rate of hydrogen desorption. However, this did not reduce the films’ hydrogen storage capacity. The increase in desorption rate in the presence of Pt was over an order of magnitude.« less
de Aquino, Emerson Vidal; Rohwedder, Jarbas José Rodrigues; Pasquini, Celio
2006-11-01
Monosegmented flow analysis (MSFA) has been used as a flow-batch system to produce a simple, robust, and mechanized titrator that enables true titrations to be performed without the use of standards. This paper also introduces the use of coulometry with monosegmented titration by proposing a versatile flow cell. Coulometric generation of the titrand is attractive for titrations performed in monosegmented systems, because the reagent can be added without increasing the volume of sample injected. Also, biamperomeric and potentiometric detection of titration end-points can increase the versatility of the monosegmented titrator. The cell integrates coulometric generation of the titrand with detection of end-point by potentiometry or biamperometry. The resulting titrator is a flow-batch system in which the liquid monosegment, constrained by the interfaces of the gaseous carrier stream, plays the role of a sample of known volume to be titrated. The system has been used for determination of ascorbic acid, by coulometric generation of I2 with biamperometric detection, and for determination of Fe(II), by coulometric generation of Ce(IV) with potentiometric detection of the end-point, both in feed supplements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledina, M. A.; Bui, N.; Liang, X.
Germanene is a single layer allotrope of Ge, with a honeycomb structure similar to graphene. This report concerns the electrochemical formation of germanene in a pH 4.5 solution. The studies were performed using in situ Electrochemical Scanning Tunneling Microscopy (EC-STM), voltammetry, coulometry, surface X-ray diffraction (SXRD) and Raman spectroscopy to study germanene electrodeposition on Au(111) terraces. The deposition of Ge is kinetically slow and stops after 2–3 monolayers. EC-STM revealed a honeycomb (HC) structure with a rhombic unit cell, 0.44 ± 0.02 nm on a side, very close to that predicted for germanene in the literature. Ideally the HC structuremore » is a continuous sheet, with six Ge atoms around each hole. However, only small domains, surrounded by defects, of this structure were observed in this study. The small coherence length and multiple rotations domains made direct observation with surface X-ray diffraction difficult. Raman spectroscopy was used to investigate the multi-layer Ge deposits. A peak near 290 cm -1, predicted to correspond to germanene, was observed on one particular area of the sample, while the rest resembled amorphous germanium. Electrochemical studies of germanene showed limited stability when exposed to oxygen.« less
Electrochemical Formation of Germanene: pH 4.5
Ledina, M. A.; Bui, N.; Liang, X.; ...
2017-05-27
Germanene is a single layer allotrope of Ge, with a honeycomb structure similar to graphene. This report concerns the electrochemical formation of germanene in a pH 4.5 solution. The studies were performed using in situ Electrochemical Scanning Tunneling Microscopy (EC-STM), voltammetry, coulometry, surface X-ray diffraction (SXRD) and Raman spectroscopy to study germanene electrodeposition on Au(111) terraces. The deposition of Ge is kinetically slow and stops after 2–3 monolayers. EC-STM revealed a honeycomb (HC) structure with a rhombic unit cell, 0.44 ± 0.02 nm on a side, very close to that predicted for germanene in the literature. Ideally the HC structuremore » is a continuous sheet, with six Ge atoms around each hole. However, only small domains, surrounded by defects, of this structure were observed in this study. The small coherence length and multiple rotations domains made direct observation with surface X-ray diffraction difficult. Raman spectroscopy was used to investigate the multi-layer Ge deposits. A peak near 290 cm -1, predicted to correspond to germanene, was observed on one particular area of the sample, while the rest resembled amorphous germanium. Electrochemical studies of germanene showed limited stability when exposed to oxygen.« less
NASA Astrophysics Data System (ADS)
Mohammadpour, Zahra; Zare, Hamid R.
2018-07-01
Nickel-tungsten multi-walled carbon nanotubes (Ni-W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.
NASA Astrophysics Data System (ADS)
Mohammadpour, Zahra; Zare, Hamid R.
2018-03-01
Nickel-tungsten multi-walled carbon nanotubes (Ni-W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.
Hierarchical Porous Carbon Spheres for High-Performance Na-O2 Batteries.
Sun, Bing; Kretschmer, Katja; Xie, Xiuqiang; Munroe, Paul; Peng, Zhangquan; Wang, Guoxiu
2017-12-01
As a new family member of room-temperature aprotic metal-O 2 batteries, Na-O 2 batteries, are attracting growing attention because of their relatively high theoretical specific energy and particularly their uncompromised round-trip efficiency. Here, a hierarchical porous carbon sphere (PCS) electrode that has outstanding properties to realize Na-O 2 batteries with excellent electrochemical performances is reported. The controlled porosity of the PCS electrode, with macropores formed between PCSs and nanopores inside each PCS, enables effective formation/decomposition of NaO 2 by facilitating the electrolyte impregnation and oxygen diffusion to the inner part of the oxygen electrode. In addition, the discharge product of NaO 2 is deposited on the surface of individual PCSs with an unusual conformal film-like morphology, which can be more easily decomposed than the commonly observed microsized NaO 2 cubes in Na-O 2 batteries. A combination of coulometry, X-ray diffraction, and in situ differential electrochemical mass spectrometry provides compelling evidence that the operation of the PCS-based Na-O 2 battery is underpinned by the formation and decomposition of NaO 2 . This work demonstrates that employing nanostructured carbon materials to control the porosity, pore-size distribution of the oxygen electrodes, and the morphology of the discharged NaO 2 is a promising strategy to develop high-performance Na-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jagannathan, Kaushik; Benson, David M.; Robinson, David B.; ...
2016-01-01
Nanofilms of Pd were grown using an electrochemical form of atomic layer deposition (E-ALD) on 100 nm evaporated Au films on glass. Multiple cycles of surface-limited redox replacement (SLRR) were used to grow deposits. Each SLRR involved the underpotential deposition (UPD) of a Cu atomic layer, followed by open circuit replacement via redox exchange with tetrachloropalladate, forming a Pd atomic layer: one E-ALD deposition cycle. That cycle was repeated in order to grow deposits of a desired thickness. 5 cycles of Pd deposition were performed on the Au on glass substrates, resulting in the formation of 2.5 monolayers of Pd.more » Those Pd films were then modified with varying coverages of Pt, also formed using SLRR. The amount of Pt was controlled by changing the potential for Cu UPD, and by increasing the number of Pt deposition cycles. Hydrogen absorption was studied using coulometry and cyclic voltammetry in 0.1 M H 2SO 4 as a function of Pt coverage. The presence of even a small fraction of a Pt monolayer dramatically increased the rate of hydrogen desorption. However, this did not reduce the films’ hydrogen storage capacity. The increase in desorption rate in the presence of Pt was over an order of magnitude.« less
Dar, Riyaz Ahmad; Brahman, Pradeep Kumar; Tiwari, Sweety; Pitre, Krishna Sadashiv
2012-10-01
The electrochemical behavior of quinine was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV) using surfactant. The reduction peak current of quinine increases remarkably in presence of 1% CTAB. Its electrochemical behavior is quasi-reversible in the Britton-Robinson buffers of pH 10.38 by exhibiting the well-defined single cathodic and anodic waves and the ratio of I(p)(a)/I(p)(c) approaching one at the scan rate of 500 mVs(-1). On the basis of CV, SWV and Coulometry, electrochemical reduction mechanism of quinine has been proposed which has shown that protonation occurs on the nitrogen of the quinoline moiety. Linearity was obtained when the peak currents (I(p)) were plotted against concentrations of quinine in the range of 30.0-230.0 ng mL(-1) with a detection limit of 0.132 ng mL(-1) in SWV and 90.0-630.0 ng mL(-1) with a detection limit of 0.238 ng mL(-1) in DPV. Fast and sensitive SWV has been applied for the quantitative analysis of quinine in bark of Cinchona sp. and in soft drinks and a good recovery was obtained. The accuracy and precision of the method are determined and validated statistically. No interferences from other food additives were observed. The relative standard deviation for intraday and interday assay was 0.89 and 0.73% (n=3) respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Pai, Rekha S; Walsh, Kevin M; Crain, Mark M; Roussel, Thomas J; Jackson, Douglas J; Baldwin, Richard P; Keynton, Robert S; Naber, John F
2009-06-15
A scalable and rather inexpensive solution to producing microanalytical systems with "on-chip" three-dimensional (3D) microelectrodes is presented in this study, along with applicability to practical electrochemical (EC) detection scenarios such as preconcentration and interferant removal. This technique to create high-aspect-ratio (as much as 4:1) gold microstructures in constrained areas involved the modification of stud bump geometry with microfabricated silicon molds via an optimized combination of temperature, pressure, and time. The microelectrodes that resulted consisted of an array of square pillars approximately 18 microm tall and 20 microm wide on each side, placed at the end of a microfabricated electrophoresis channel. This technique increased the active surface area of the microelectrodes by as much as a factor of 50, while mass transfer and, consequently, preconcentration collection efficiencies were increased to approximately 100%, compared to approximately 30% efficiency for planar nonmodified microelectrodes (samples that were used included the neurotransmitters dopamine and catechol). The 3D microelectrodes were used both in a stand-alone configuration, for direct EC detection of model catecholamine analytes, and, more interestingly, in dual electrode configurations for EC sample processing prior to detection downstream at a second planar electrode. In particular, the 3D electrodes were shown to be capable of performing coulometry or complete (100%) redox conversion of analyte species over a wide range of concentrations, from 4.3 microM to 4.4 mM, in either plug-flow or continuous-flow formats.
Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors.
Alves, Ester; Lukoyanov, Nikolay; Serrão, Paula; Moura, Daniel; Moreira-Rodrigues, Mónica
2016-06-01
Phenylethanolamine-N-methyltransferase knockout (Pnmt-KO) mice are unable to synthesize epinephrine and display reduced contextual fear. However, the precise mechanism responsible for impaired contextual fear learning in these mice is unknown. Our aim was to study the mechanism of epinephrine-dependent contextual learning. Wild-type (WT) or Pnmt-KO (129x1/SvJ) mice were submitted to a fear conditioning test either in the absence or in the presence of epinephrine, isoprenaline (non-selective β-adrenoceptor agonist), fenoterol (selective β2-adrenoceptor agonist), epinephrine plus sotalol (non-selective β-adrenoceptor antagonist), and dobutamine (selective β1-adrenoceptor agonist). Catecholamines were separated by reverse-phase HPLC and quantified by electrochemical detection. Blood glucose was measured by coulometry. Re-exposure to shock context induced higher freezing in WT and Pnmt-KO mice treated with epinephrine and fenoterol than in mice treated with vehicle. In addition, freezing response in Pnmt-KO mice was much lower than in WT mice. Freezing induced by epinephrine was blocked by sotalol in Pnmt-KO mice. Epinephrine and fenoterol treatment restored glycemic response in Pnmt-KO mice. Re-exposure to shock context did not induce a significant difference in freezing in Pnmt-KO mice treated with dobutamine and vehicle. Aversive memories are best retained if moderately high plasma epinephrine concentrations occur at the same moment as the aversive stimulus. In addition, epinephrine increases context fear learning by acting on peripheral β2-adrenoceptors, which may induce high levels of blood glucose. Since glucose crosses the blood-brain barrier, it may enhance hippocampal-dependent contextual learning.
New Signal Readout Principle for Solid-Contact Ion-Selective Electrodes.
Vanamo, Ulriika; Hupa, Elisa; Yrjänä, Ville; Bobacka, Johan
2016-04-19
A novel approach to signal transduction concerning solid-contact ion-selective electrodes (SC-ISE) with a conducting polymer (CP) as the solid contact is investigated. The method presented here is based on constant potential coulometry, where the potential of the SC-ISE vs the reference electrode is kept constant using a potentiostat. The change in the potential at the interface between the ion-selective membrane (ISM) and the sample solution, due to the change in the activity of the primary ion, is compensated with a corresponding but opposite change in the potential of the CP solid contact. This enforced change in the potential of the solid contact results in a transient reducing/oxidizing current flow through the SC-ISE. By measuring and integrating the current needed to transfer the CP to a new state of equilibrium, the total cumulated charge that is linearly proportional to the change of the logarithm of the primary ion activity is obtained. In this work, different thicknesses of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) were used as solid contact. Also, coated wire electrodes (CWEs) were included in the study to show the general validity of the new approach. The ISM employed was selective for K(+) ions, and the selectivity of the membrane under implementation of the presented transduction mechanism was confirmed by measurements performed with a constant background concentration of Na(+) ions. A unique feature of this signal readout principle is that it allows amplification of the analytical signal by increasing the capacitance (film thickness) of the solid contact of the SC-ISE.
Manasfi, Tarek; Temime-Roussel, Brice; Coulomb, Bruno; Vassalo, Laurent; Boudenne, Jean-Luc
2017-05-01
An undesirable consequence of disinfection is the formation of chemical contaminants known as disinfection byproducts (DBPs). Chronic exposure to DBPs has been linked to adverse health effects. The occurrence of DBPs in chlorinated pools filled with seawater (such as thalassotherapy pools and pools in spas) has received little attention so far. The present study evaluated the speciation and levels of disinfection byproducts in indoor swimming pools filled with seawater and treated with chlorine. Water and air samples were collected from three indoor swimming pools located in Southern France. Several classes of DBPs including trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetaldehydes were analyzed in water. Halogenated volatile organic compounds were analyzed in air. Extractable organic halides (EOX) contents were determined using combustion/micro-coulometry system. The speciation of DBPs identified in the three pools was predominantly brominated. The mean (arithmetic) concentration of bromoform, dibromoacetic acid, tribromoacetic acid, dibromoacetonitrile and bromal hydrate in the three pools was 79.2, 72.9, 59.9, 26.9 and 10.0μg/L, respectively. By weight, HAAs represented the most abundant chemical class followed by THMs. In air, bromoform was the most abundant THM occurring at a mean concentration of 133.2μg/m 3 in the three pools. The mean EOX level was 706μgCl - /L for the three pools. In average, the quantified DBPs accounted for only 14% of EOX, thus 86% of EOX remained unknown. Further research is warranted to identify the unknown DBPs. Copyright © 2017 Elsevier GmbH. All rights reserved.
A passive ozone sampler based on a reaction with iodide.
Yanagisawa, Y
1994-02-01
A new passive sampler for ozone and its simple analytical system have been developed. Because it is small and sensitive, the sampler can be used for determining personal exposures to ozone and oxidants and for multilocation measurements. The sampler consists of an electrode, a spacer, and several layers of membrane filters and Teflon meshes. The electrode is a carbon paper disk coated with nylon-6 polymer and potassium iodide. The membrane filters are used to remove interferences. A sampling rate of ozone is controlled by the spacer and Teflon meshes. Iodine is liberated by an oxidation reaction of potassium iodide with ozone. The iodine is stabilized by forming a charge transfer complex with nylon-6 and is accumulated in the nylon-6 layer. The amount of iodine, which is proportional to the level of ozone exposure, is quantified by constant current coulometry. The discharge time of a galvanic battery is measured using the electrode as a positive electrode and a zinc plate as a counter electrode. A time-weighted average concentration of ozone is derived from the discharge time after exposing the electrode to ozone. The effects of various environmental conditions on the sampler's performance were investigated. The results indicated that the sampler showed a linear response to ozone exposure up to 1,450 parts per billion for every hour of use (ppb.hour). The minimum detectable exposure was about 400 ppb.hour. The effects of surface wind velocity, temperature, and humidity were small. However, a relative humidity below 20% resulted in an underestimation of the ozone concentration. Because the electrode requires no pretreatment and the analytical method is very simple, this method is suitable for large-scale studies of personal exposures to ozone and oxidants using multilocation measurements.
Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.
We introduce a new family of complexes with the general formula [Ru n(tda)(py)2] m+ (n = 2, m = 0, 1; n = 3, m = 1, 2 +; n = 4, m = 2, 3 2+), with tda 2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru IV(OH)(tda-κ-N 3O)(py) 2] +, 4H +, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3 2+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), includingmore » solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H + can be generated potentiometrically, or voltammetrically, from 3 2+, and both coexist in solution. While complex 3 2+ is not catalytically active, the catalytic performance of complex 4H + is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s –1 at pH 7.0 and 50,000 s –1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H +, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less
NASA Astrophysics Data System (ADS)
Bove, C. B.; Ries, J. B.; Davies, S. W.; Westfield, I. T.; Castillo, K.
2016-02-01
Rising atmospheric carbon dioxide (pCO2) has caused ocean temperature to increase and ocean pH to decrease, raising concerns about the health of marine organisms. Previous studies have shown that corals are particularly vulnerable to these stressors, most likely due to their narrow thermal tolerance and use of carbonate ions in calcification, although response patterns vary across taxa. We conducted laboratory experiments for 95 days to investigate the independent and interactive effects of ocean warming (28, 31 °C) and acidification on the calcification rate and skeletal properties of four abundant and ubiquitously distributed Caribbean coral species (Pseudodiploria strigosa, Siderastrea siderea, Porites astreoides, Undaria tenuifolia) collected from nearshore and forereef environments of the Belize Barrier Reef. Aragonite saturation states of 3.9, 3.2, 2.2, and 0.7, constrained by total alkalinity measured via closed-cell potentiometric titration and dissolved inorganic carbon measured via coulometry, were attained by sparging natural seawater with air-CO2 mixtures formulated at 280, 400, 700, and 2800 ppmv pCO2, respectively. Temperature and pCO2 were fully crossed (N=3 tanks per treatment) and corals were gradually exposed to treatment conditions over a 30-day period, followed by an additional 30-day acclimation. Rates of linear skeletal extension were measured relative to a calcein spike emplaced in the coral skeletons at the start of the experiment, and net calcification rates were determined from coral buoyant weights obtained every 30 days. Initial results show that corals in all treatments continued to calcify on a net basis, however, the effect of warming on net calcification rates of P. asteroids and U. tenuifolia became more negative at lower saturation states. In addition, nearshore U. tenuifolia calcified faster than forereef conspecifics in all treatments.
Sauvain, J-J; Vu Duc, T; Guillemin, M
2003-07-01
Workers' exposure to diesel exhaust in a bus depot, a truck repair workshop and an underground tunnel was determined by the measuring of elemental carbon (EC) and 15 carcinogenic polycyclic aromatic compounds (PACs) proposed by the US Department of Health and Human Services/National Toxicology Program (NTP). Based on these concentration data, the genotoxic PAC contribution to the diesel-exhaust particle (DEP) lung-cancer risk was calculated. Respirable particulate matter was collected during the summer and winter of 2001 (except for in the underground situation) and analysed by coulometry for EC and by GC-MS methods for PACs. The use of potency equivalence factors (PEFs) allowed the studied PAC concentrations to be expressed as benzo[a]pyrene equivalents (B[a]P(eq)). We then calculated the lung-cancer risk due to PACs and DEPs by multiplying the B[a]P(eq) and EC concentrations by the corresponding unit risk factor. The ratio of these two risks values has been considered as an estimate of the genotoxic contribution to the DEP cancer risk. For the bus depot and truck repair workshop, exposure to EC and PACs has been shown to increase by three to six times and ten times, respectively, during winter compared to summer. This increase has been attributed mainly to a decrease in ventilation during the cold. With the PEF approach, the B[a]P(eq) concentration is five-times higher than if only benzo[ a]pyrene (B[a]P) is considered. Dibenzopyrenes contribute an important part to this increase. A simple calculation based on unit risk factors indicates that the studied PAC contribution to the total lung-cancer risk attributed to DEPs is in the range of 3-13%. The 15 NTP PACs represent a small but non-negligible part of lung-cancer risk with regard to diesel exposure. From this point of view, the dibenzopyrene family are important compounds to be considered.
NASA Astrophysics Data System (ADS)
Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.
2017-12-01
Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.
Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T; Jiménez, María S; Pérez-Arantegui, Josefina; Castillo, Juan R
2016-01-21
The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for dealing with complex samples. Single- and multi-method approaches applied to solve the nanometrological challenges posed by a variety of stakeholders are also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex
Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.; ...
2015-07-30
We introduce a new family of complexes with the general formula [Ru n(tda)(py)2] m+ (n = 2, m = 0, 1; n = 3, m = 1, 2 +; n = 4, m = 2, 3 2+), with tda 2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru IV(OH)(tda-κ-N 3O)(py) 2] +, 4H +, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3 2+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), includingmore » solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H + can be generated potentiometrically, or voltammetrically, from 3 2+, and both coexist in solution. While complex 3 2+ is not catalytically active, the catalytic performance of complex 4H + is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s –1 at pH 7.0 and 50,000 s –1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H +, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyr, A.
This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations during the R/V John V. Vickers oceanographic cruise in the Pacific Ocean (Section P13). Conducted as part of the World Ocean Circulation Experiment (WOCE) and the National Oceanic and Atmospheric Administration's Climate and Global Change Program, the cruise began in Los Angeles, California, on August 4, 1992, with a transit line (Leg 0) to Dutch Harbor, Alaska. On August 16, the ship departed Dutch Harbor on Leg 1 of WOCE section P13. On September 15, the R/Vmore » John V. Vickers arrived in Kwajalein, Marshall Islands, for emergency repairs, and after 11 days in port departed for Leg 2 of Section P13 on September 26. The cruise ended on October 21 in Noumea, New Caledonia. Measurements made along WOCE Section P13 included pressure, temperature, salinity [measured by a conductivity, temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO{sub 2} , and TALK. The TCO{sub 2} was measured by coulometry using a Single-Operator Multiparameter Metabolic Analyzer (SOMMA). The overall precision and accuracy of the analyses was {+-}2 {micro}mol/kg. Samples collected for TALK were measured by potentiometric titration; precision was {+-}2 {micro}mol/kg. The CO{sub 2} -related measurements aboard the R/V John V. Vickers were supported by the U.S. Department of Energy. The WOCE Section P13 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 90 data-retrieval routine files, a documentation file, and this printed report, which describes the contents and format of all files as well as the procedures and methods used to obtain the data. Instructions on how to access the data are provided.« less
Rock magnetic signature of paleoenvironmental changes in the Izu Bonin rear arc over the last 1 Ma
NASA Astrophysics Data System (ADS)
Kars, Myriam; Vautravers, Maryline; Musgrave, Robert; Kodama, Kazuto
2015-04-01
During April and May 2014, IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu-Bonin rear arc, in order to understand, among other objectives, the compositional evolution of the arc since the Miocene and track the missing half of the subduction factory. The good recovery of mostly fine grained sediments at this site enables a high resolution paleontological and rock magnetic studies. Particularly, variations in magnetic properties and mineralogy are well documented. Natural remanent magnetization and magnetic susceptibility vary with a saw-tooth pattern. Routine rock magnetic measurements performed on about 400 samples in the first 120 meters of Hole U1437B showed that pseudo single domain to multidomain magnetite is the main carrier of the remanence. The origin of magnetite is likely detrital. The magnetic susceptibility variations depend on many factors (e.g. lithology, magnetic mineralogy, and also dilution by the carbonate matrix). The magnetic susceptibility is also used as a proxy, at first order, for magnetic minerals concentration. In order to highlight changes in magnetic minerals concentration, it's necessary to correct for the carbonate dilution effect. Onboard and onshore carbonate measurements by coulometry show that the carbonate content of the samples can be up to ~60%. About 70 samples were measured onshore. After correcting the susceptibility by the carbonate content measured on the same samples, it appears that the pattern of the magnetic susceptibility before and after correction is similar. Then the magnetic susceptibility variations do not result from carbonate dilution but reflect fluctuating influx of the detrital sediment component. The delta O18 variations obtained on foraminifers (N. dutertrei) show MIS 1 to MIS 25 over the studied interval covering the last 1 Ma (see Vautravers et al., this meeting). Rock magnetic properties, concentration and grain size variations of the magnetic minerals will be compared to climatic proxies in order to investigate the rock magnetic signature of climate changes in the Izu Bonin rear arc in the Late Pleistocene.
Şengül, Abdurrahman; Doğan, H Zekeriya; Altındal, Ahmet; Özkaya, Ali Rıza; Salih, Bekir; Bekaroğlu, Özer
2012-07-07
The phthalodinitrile derivative (3) was prepared by the reaction of 4,4'-(octahydro-4,7-methano-5H-inden-5-ylidene)bisphenol (1) and 4-nitrophthalonitrile (2) with dry DMF as the solvent in the presence of the base K(2)CO(3) by the method of nucleophilic substitution of an activated nitro group in an aromatic ring. The template reaction of 3 with the corresponding metal salts gave the novel bi-nuclear ball-type metallophthalocyanines, MPcs {M = Co (4), Cu (5), Zn (6)}. Newly synthesized compounds were characterized by elemental analysis, UV-vis, FT-IR (ATR), MALDI-TOF mass and (1)H-NMR spectroscopy techniques. The electronic spectra exhibit an intense π→π* transition of characteristic Q and B bands of the Pc core. The dielectric properties and interface between the spin coated films of 4-6 and a p-type silicon substrate have been studied by fabricating metal-insulator-semiconductor capacitors. The results indicated that the frequency dependence of the dielectric permittivity, ε'(ω), exhibits non-Debye type relaxation for all the temperatures investigated. The ac conductivity results indicated that the conduction mechanism can be explained by a hopping model at low temperatures (<430 K) and a free band conduction mechanism at high temperatures (≥430 K). The density of interface state calculations on these novel compounds showed that the combination of Au/4/p-Si is a promising structure with a high dielectric constant and a low interface trap density suitable for metal-oxide-semiconductor devices. The electrochemical properties of the Pc complexes were examined by cyclic voltammetry, differential voltammetry and controlled potential coulometry on platinum in non-aqueous media. The complexes showed ring-based and/or metal-based mixed-valence behaviours as a result of the remarkable interaction between the two Pc rings and/or metal centres. The mixed-valence splitting values for the complexes suggested that the mixed valence species are considerably stable. The Vulcan XC-72(VC)/Nafion(Nf)/4 modified glassy carbon electrode showed much a higher catalytic performance towards oxygen reduction than those of VC/Nf/5 and VC/Nf/6 modified ones.
Immunological biomarkers in salt miners exposed to salt dust, diesel exhaust and nitrogen oxides.
Backé, Eva; Lotz, Gabriele; Tittelbach, Ulrike; Plitzko, Sabine; Gierke, Erhardt; Schneider, Wolfram Dietmar
2004-06-01
Air pollutants can affect lung function and also the immune system. In a study about lung function of salt miners in relation to the complex exposure in a salt mine, we also analysed selected immunological parameters and inflammation markers in the blood of miners. Effect of salt dust, diesel exhaust, nitrogen oxides (NOx) and smoking on the biomarkers was analysed. Blood was drawn from 286 salt miners, and the soluble intercellular adhesion molecule-1 (s-ICAM), monocyte chemotactic protein (MCP-1) and clara cell protein (CC16) were analysed by an immunoassay, blood profile was done and lymphocyte subpopulations (CD3, CD3/CD4, CD3/CD8, CD19, NK-cells, CD3/HLA-DR) were determined by flow cytometry. Salt dust was measured by two-step gravimetry (personal sampling). Diesel exhaust was measured as elemental carbon concentration by coulometry. NOx were determined by an electrochemical cell method. Differences between non-smokers, former smokers and active smokers were analysed by analysis of variance. Linear regression analysis to describe exposure-response relationships was done with regard to confounding factors [smoking, inflammatory diseases, time of blood drawing, respiratory infection and body-mass index (BMI)]. Significant differences between non-smokers and active smokers were found for most of the leukocyte types (e.g. granulocytes P = 0.000, lymphocytes P = 0.002, T-cells P = 0.033) and for some soluble parameters (ICAM P = 0.000, IgM P = 0.007, IgE P = 0.035). Increasing numbers of total lymphocytes, T-cells and HLA-DR positive T-cells in relation to exposure were found by linear regression analysis (e.g. for inhalable dust:total lymphocytes P = 0.011, T-cells P = 0.061, HLA-DR positive T-cells P = 0.007). CONCLUSION. Comparison of immunological markers in non-smokers and active smokers confirms leukocytosis and inflammation following tobacco consumption. The combined exposure of salt dust, diesel exhaust and NOx seems to influence the immune system. Together, the results suggest that the analysis of leukocytes and their subsets can complete other investigations (lung function, questionnaire) to monitor exposure-response relationships in occupational studies investigating the effect of inhaled substances. Longitudinal studies will be necessary to determine the predictive value of the immunological changes. Copyright 2004 Springer-Verlag
NASA Astrophysics Data System (ADS)
Noren, A.; Brady, K.; Myrbo, A.; Ito, E.
2007-12-01
Lacustrine sediment cores comprise an integral archive for the determination of continental paleoclimate, for their potentially high temporal resolution and for their ability to resolve spatial variability in climate across vast sections of the globe. Researchers studying these archives now have a large, nationally-funded, public facility dedicated to the support of their efforts. The LRC LacCore Facility, funded by NSF and the University of Minnesota, provides free or low-cost assistance to any portion of research projects, depending on the specific needs of the project. A large collection of field equipment (site survey equipment, coring devices, boats/platforms, water sampling devices) for nearly any lacustrine setting is available for rental, and Livingstone-type corers and drive rods may be purchased. LacCore staff can accompany field expeditions to operate these devices and curate samples, or provide training prior to device rental. The Facility maintains strong connections to experienced shipping agents and customs brokers, which vastly improves transport and importation of samples. In the lab, high-end instrumentation (e.g., multisensor loggers, high-resolution digital linescan cameras) provides a baseline of fundamental analyses before any sample material is consumed. LacCore staff provide support and training in lithological description, including smear-slide, XRD, and SEM analyses. The LRC botanical macrofossil reference collection is a valuable resource for both core description and detailed macrofossil analysis. Dedicated equipment and space for various subsample analyses streamlines these endeavors; subsamples for several analyses may be submitted for preparation or analysis by Facility technicians for a fee (e.g., carbon and sulfur coulometry, grain size, pollen sample preparation and analysis, charcoal, biogenic silica, LOI, freeze drying). The National Lacustrine Core Repository now curates ~9km of sediment cores from expeditions around the world, and stores metadata and analytical data for all cores processed at the facility. Any researcher may submit sample requests for material in archived cores. Supplies for field (e.g., polycarbonate pipe, endcaps), lab (e.g., sample containers, pollen sample spike), and curation (e.g., D-tubes) are sold at cost. In collaboration with facility users, staff continually develop new equipment, supplies, and procedures as needed in order to provide the best and most comprehensive set of services to the research community.
NASA Astrophysics Data System (ADS)
Horvath, K. M.; Connolly, B. D.; Westfield, I. T.; Chow, E.; Castillo, K. D.; Ries, J. B.
2013-05-01
The Intergovernmental Panel on Climate Change (IPCC) predicts that atmospheric pCO2 will increase to ca. 550-950 ppm by the end of the century, primarily due to the anthropogenic combustion of fossil fuels, deforestation, and cement production. This is predicted to cause SST to increase by 1-3 °C and seawater pH to decrease by 0.1-0.3 units. Laboratory studies have shown that warming depresses calcification rates of scleractinian corals and that acidification yields mixed effects on coral calcification. With both warming and ocean acidification predicted for the next century, we must constrain the interactive effects of these two CO2-induced stressors on scleractinian coral calcification. Here, we present the results of experiments designed to assess the response of the scleractinian coral Siderastrea siderea to both ocean warming and acidification. Coral fragments (12/tank) were reared for 60 days under three temperatures (25.1± 0.02 °C, 28.0± 0.02 °C, 31.8± 0.02 °C) at near modern pCO2 (436 ± 7) and near the highest IPCC estimate for atmospheric pCO2 for the year 2100 AD (883 ± 16). Each temperature and pCO2 treatment was executed in triplicate and contained similarly sized S. Siderea fragments obtained from the same suite of coral colonies equitably distributed amongst the nearshore, backreef, and forereef zones of the Mesoamerican Barrier Reef System off the coast of southern Belize. Individual coral fragments were hand fed Artemia sp. to satiation twice weekly. Weekly seawater samples (250 ml) were collected and analyzed for dissolved inorganic carbon via coulometry and total alkalinity via closed-cell potentiometric titration. Seawater pCO2, pH, carbonate ion concentration, bicarbonate ion concentration, aqueous CO2, and aragonite saturation state (ΩA) were calculated with the program CO2SYS. Under near-modern atmospheric pCO2 of ca. 436 ± 7 ppm, seawater warming from 25 to 28 to 32°C caused coral calcification rates (estimated from change in buoyant weight) to decrease nearly linearly. Under the high-pCO2 treatment, warming exerted a parabolic effect on calcification rate, i.e., calcification rate increased from 25 to 28 °C and then declined from 28 to 32 ° C. Under each of the three temperature treatments, increasing atmospheric pCO2 cause calcification rates to significantly decline (p < 0.006). These findings reveal that for the range of atmospheric pCO2 and seawater temperatures predicted by the IPCC for the end of this century, seawater warming is predicted to have the more negative impact on calcification rates of the coral S. siderea. Nevertheless, these experiments reveal that the effect of the predicted CO2-induced ocean acidification may be severe and, perhaps most importantly, that it is the combination of ocean warming and acidification that yields the least favorable outcome for calcification by this coral species.
Mineralization of atmospheric CO2 via fluid reaction with mafic/ultramafic rocks
NASA Astrophysics Data System (ADS)
Westfield, I. T.; Kendall, T. A.; Ries, J. B.
2011-12-01
Atmospheric CO2 has increased nearly 50% since the Industrial Revolution, due primarily to increased fossil fuel combustion, cement production, and deforestation. Although subterranean reservoirs are presently considered the most viable sink for anthropogenically liberated CO2, concerns exist over the stability of these systems and their impacts on regional tectonics, aquifers, and subterranean microbial ecosystems. Direct mineralization of CO2 at the Earth's surface provides an alternative capable of generating useful carbon-negative mineral byproducts that may be used to supplement or replace conventional carbon-positive building materials, like cement. However, mineralization of anthropogenic CO2 requires large sources of alkalinity to convert CO2 to CO32-, and divalent cations (e.g., Mg2+, Ca2+, Fe2+, etc.) to bond with the aqueous CO32-. Ultramafic and mafic rocks, such as peridotites, serpentinites, and basalts, are globally abundant, naturally occurring sources of the divalent cations, and alkalinity required for CO2 mineralization. Here, we present the results of accelerated reactions between ultramafic/mafic rocks, water, and CO2/N2 gases, aimed at quantifying the carbonation potential of mafic/ultramafic rocks. Rock-fluid-gas batch reactions were carried out in vented 4 L borosilicate glass flasks filled with 3 L DI water and 200 g acetone-washed, 49-180μm-diameter grains of four ultramafic/mafic rock types: peridotite, dunite, websterite and basalt. Each of the four rock-water mixtures was reacted under pure CO2 and pure N2 and at 25 and 200 °C, for a total of 16 reactions. Mixtures were continuously heated and stirred for 14 days. Samples (330 mL) were obtained at 0, 1, 6, 24, 48, 96, 168, and 336 hrs and filtered at 0.4 μm. The pH of filtered samples was measured with a single-junction Ag/AgCl glass electrode, salinity was determined with a conductivity probe, total alkalinity (TA) was determined by closed-cell potentiometric Gran titration, and DIC was determined by coulometry (all calibrated with certified reference materials). [CO32-], [HCO3-], and [OH-] were calculated from TA and DIC. For all reactions, pH (range: 5.5 - 9.7), TA, DIC, [CO32-], and [HCO3-] increased dramatically within the first several hours of the experiment, and then either steadily increased, plateaued, or declined, in some cases increasing again after the decline. After the initial spike, DIC increased with time under 25 °C, but decreased under 200 °C. Salinity and [OH-] increased steadily throughout most reactions. Lack of correlation of abrupt, short-lived declines in pH, TA, DIC, [CO32-], and [HCO3-] with [OH-] between 24 and 48 hrs at 200 °C suggests sudden precipitation of carbonate minerals, rather than production of silicic acid. Temperature generally increased reaction rates to a greater extent under CO2 than under N2, and substantially more OH- ions were liberated from rocks at 200 °C than at 25 °C. Reaction kinetics will be further constrained from mineralogy, elemental composition, and carbonate content of reaction products, enabling more precise quantification of the carbonation potential of the ultramafic/mafic rock types.
Elements in human serum—CCQM-K139
NASA Astrophysics Data System (ADS)
Shin, Richard; Dewi, Fransiska; Tong, Benny; Wah, Leung Ho; Saxby, David; Armishaw, Paul; Ivanova, Veronika; Feng, Liuxing; Wang, Jun; Estela del Castillo Busto, M.; Fisicaro, Paola; Rienitz, Olaf; Fung, Wai-Hong; Ho-pan Yau, Michael; Yim, Yong-Hyeon; Buzoianu, Mirella; Can, Suleyman Z.; Ari, Betul; Cankur, Oktay; Goenaga Infante, Heidi; Pérez-Zambra, Ramiro; Ferreira, Elizabeth; Long, Stephen
2018-01-01
Elements in human serum serve as important biomarkers and their levels reflect the well-being of an individual. Electrolytes such as sodium (Na) and chloride (Cl) are crucial in maintaining the normal distribution of water, osmotic pressure and electrical neutrality in the body. Trace element such as copper (Cu) plays a part in many oxidation-reduction reactions and metalloenzymes. The majority of selenium (Se) exists as selenoproteins which are cofactors in the glutathione peroxidase activity that protects the body against free radicals. Phosphorus (P) is required for strong bones and teeth. It is also indispensable for growth, maintenance and repair of tissues and cells. The key comparison CCQM-K139: elements in human serum was coordinated by the Health Sciences Authority, Singapore. This comparison aimed to enable participating National Metrology Institutes (NMIs) and Designated Institutes (DIs) to demonstrate their competence in the determination of elements (electrolytes and essential elements) in human serum. The five measurands (Na, Cl, Cu, Se and P) selected for this comparison were not covered in the last two comparisons in the clinical area (CCQM-K14 and CCQM-K107) and offered different analytical challenges. Their concentration levels were within the normal biological range. They were also within the range of existing calibration and measurement capability (CMC) claims in the International Bureau of Weights and Measures' Key Comparison Database (BIPM KCDB). Ten institutes participated in the comparison for Na, eight for Cl, eleven for Cu, six for Se and eight for P. For the analysis of Na, Cu, Se and P, most of the participating institutes employed microwave-assisted digestion and acid digestion (with or without heating) sample dissolution. For the analysis of Cl, in addition to the microwave-assisted digestion and acid digestion, a wider variety of techniques were employed. These included matrix separation, alkaline extraction and coulometric titration. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were the two most commonly used instrumental techniques. Other techniques used included ion chromatography (IC), flame atomic absorption spectrometry (FAAS), titration and micro-coulometry. The medians were used as the estimators of Key Comparison Reference Values (KCRVs) for all measurands. The KCRVs (+/- standard uncertainty) for Na, Cl, Cu, Se and P (in mg/kg) were 3346 (+/- 14), 3871 (+/- 22), 1.151 (+/- 0.007), 0.1292 (+/- 0.0007) and 125.70 (+/- 0.35), respectively. The k-factor of 2 was used for the estimation of the expanded uncertainties of the KCRVs. The degree of equivalence and its associated uncertainty were calculated for each submitted result. For the five measurands, most participating institutes were able to demonstrate their capabilities in the determination of elements in human serum. CMC claims based on elements covered in this study may include other elements with similar core competencies, such as zinc (Zn), potassium (K), magnesium (Mg), calcium (Ca) and iron (Fe), in a wide range of biological materials. The measurands should be at similar concentration range and analysed using the same measurement technique(s) applied in this key comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandon, Lav; Colletti, Lisa M.; Drake, Lawrence R.
This report discusses the process used to prove in the SRNL-Rev.2 coulometer for isotopic data analysis used in the special plutonium material project. In May of 2012, the PAR 173 coulometer system that had been the workhorse of the Plutonium Assay team since the early 1970s became inoperable. A new coulometer system had been purchased from Savannah River National Laboratory (SRNL) and installed in August of 2011. Due to funding issues the new system was not qualified at that time. Following the failure of the PAR 173, it became necessary to qualify the new system for use in Process 3401a,more » Plutonium Assay by Controlled Coulometry. A qualification plan similar to what is described in PQR -141a was followed. Experiments were performed to establish a statistical summary of the performance of the new system by monitoring the repetitive analysis of quality control sample, PEOL, and the assay of plutonium metals obtained from the Plutonium Exchange Program. The data for the experiments was acquired using work instructions ANC125 and ANC195. Figure 1 shows approximately 2 years of data for the PEOL material obtained using the PAR 173. The required acceptance criteria for the sample are that it returns the correct value for the quality control material of 88.00% within 2 sigma (95% Confidence Interval). It also must meet daily precision standards that are set from the historical data analysis of decades of data. The 2 sigma value that is currently used is 0.146 % as evaluated by the Statistical Science Group, CCS-6. The average value of the PEOL quality control material run in 10 separate days on the SRNL-03 coulometer is 87.98% with a relative standard deviation of 0.04 at the 95% Confidence interval. The date of data acquisition is between 5/23/2012 to 8/1/2012. The control samples are run every day experiments using the coulometer are carried out. It is also used to prove an instrument is in statistical control before any experiments are undertaken. The total number of replicate controls run with the new coulometer to date, is n=18. This value is identical to that calculated by the LANL statistical group for this material from data produced by the PAR 173 system over the period of October 2007 to May 2011. The final validation/verification test was to run a blind sample over multiple days. AAC participates in a plutonium exchange program which supplies blind Pu metal samples to the group on a regular basis. The Pu material supplied for this study was ran using the PAR 173 in the past and more recently with the new system. Table 1a contains the values determined through the use of the PAR 173 and Table 1b contains the values obtained with the new system. The Pu assay value obtained on the SRNL system is for paired analysis and had a value of 98.88+/-0.07% RSD at 95% CI. The Pu assay value (decay corrected to July 2012) of the material determined in prior measurements using the PAR173 is 99.05 +/- 0.06 % RSD at 95% CI. We believe that the instrument is adequate to meet the needs of the program.« less
Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.
2007-01-01
Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most consistent and interpretable information for age estimations of soil/sediment deposited during the 1900s. For several cores, isotopic 14C and 137Cs data allowed the 1963-64 nuclear weapons testing (NWT) peak-activity datum to be placed within a few-centimeter depth interval. In some cores, a too old 14C age (when compared to 137Cs and microstratigraphic-marker data) is the probable result of old carbon bound to clay minerals incorporated into the organic soil/sediment. Elemental Pb coupled with Pb source-function data allowed age estimation for soil/sediment that accumulated during the late 1920s through the 1980s. Exotic pollen (for example, Vigna unguiculata and Alternanthera philoxeroides) and other microstratigraphic indicators (for example, carbon spherules) allowed age estimations for marsh soil/sediment deposited during the settlement of New Orleans (1717-20) through the early 1900s. For this study, MRDP distributary and swamp environments were each represented by only one core, backswamp environment by two cores, all other environments by three or more cores. MRDP core data for the surface meter soil/sediment indicate that (1) coastal marshes, abandoned distributaries, and swamps have regional SOC-storage values >16 kg m-2; (2) swamps and abandoned distributaries have the highest SOC storage values (swamp, 44.8 kg m-2; abandoned distributary, 50.9 kg m-2); (3) fresh-to-brackish marsh environments have the second highest site-specific SOC-storage values; and (4) site-specific marsh SOC storage values decrease as the salinity of the environment increases (fresh-marsh, 36.2 kg m-2; intermediate marsh, 26.2 kg m-2; brackish marsh, 21.5 kg m-2). This inverse relation between salinity and SOC storage is opposite the regional systematic increase in SOC storage with increasing salinity that is evident when SOC storage is mapped by linking pedon data to SSURGO map units (fresh marsh, 47 kg m-2; intermediate marsh, 67 kg m-2; brackish marsh, 75 kg m-2; and salt marsh, 80 kg m-2). MRDP core data for this study also indicate that levees and backswamp have regional SOC-storage values <16 kg m-2. Group-mean SOC storage for cores from these environments are natural levee (17.0 kg m-2) and backswamp (14.1 kg m-2). An estimate for the SOC inventory in the surface meter of soil/sediment in the MRDP can be made using the SSURGO mapped portion of the coastal-marsh vegetative-type map (13,236 km2, land-only area) published by the Louisiana Department of Wildlife and Fisheries and U.S. Geological Survey (1997). This area has a SOC inventory (surface meter) of 677 Tg (slightly more than 2 percent of the 30,289 Tg SOC inventory for the MRB). The MRDP (6,180 km2, land-only area) has an estimated SOC inventory of 397 Tg. Most of the MRDP is located within the SSURGO mapped coastal marshlands. The entire MRDP, including water, has an area of about 10,800 km2. Using the ratio of total MRDP area to SSURGO mapped MRDP area as an adjustment, the MRDP SOC inventory is estimated at 694 Tg. This larger estimate of 694 Tg for the SOC inventory is probably more realistic, because it is reasonable to assume that the marsh sediments overlain by shallow water have comparable SOC storage to that of the adjacent land areas. MRDP core data for this study indicate that there is some variability in long-term SOC mass-accumulation rates for centuries and millennia and that this variability may indicate important geologic changes or changes in land use. However, the consistency of the range in rates of SOC accumulation through time suggests a remarkable degree of marsh sustainability throughout the Holocene, including the recent period of significant marsh modification/channelization for human use. One example of marsh sustainability is its present ability to function as a SOC sink even with Louisiana's large-scale coastal land loss during the last several decades. With coastal-marsh restoration efforts, this sink potential will increase. Looking to the future, a total of 1,101 g m-2 yr-1 SOC is projected to be lost from all of coastal Louisiana (U.S. Army Corps of Engineers, Louisiana Coastal Area (LCA) subprovinces 1-4; not just the MRDP) through coastal erosion from year 2000 to 2050. This translates to a projected SOC-loss rate of about 0.20 percent per year. The recent Hurricanes Katrina and Rita, which devastated the Louisiana coast during late August and late September 2005, transformed about 259 km2 (100 mi2) of marsh to open water (U.S. Geological Survey, 2005). To the extent that some or all of this land loss is permanent, this result equates to a SOC loss of about 15 Tg. This estimate is based on the year-2000 15,153-km2 land area for the LCA study area that includes LCA subprovince 4. Using the year-2000 land area, the LCA study area had an estimated SOC inventory of 858 Tg. The estimated 15 Tg SOC loss attributable to Hurricanes Katrina and Rita is 1.7 percent of the year-2000 LCA inventory and 2.3 percent of the year-2000 MRDP inventory. If this SOC loss is included in the projection for the year 2050, then the MRDP would either remain a source with a net SOC loss of 3 Tg or become a weak sink with a net SOC gain of 4 Tg. These estimates are lower bounds for potential SOC flux because they are only for the surface meter of landmass.