Compensated count-rate circuit for radiation survey meter
Todd, Richard A.
1981-01-01
A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.
Compensated count-rate circuit for radiation survey meter
Todd, R.A.
1980-05-12
A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.
Henry, J.J.
1961-09-01
A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.
Linear-log counting-rate meter uses transconductance characteristics of a silicon planar transistor
NASA Technical Reports Server (NTRS)
Eichholz, J. J.
1969-01-01
Counting rate meter compresses a wide range of data values, or decades of current. Silicon planar transistor, operating in the zero collector-base voltage mode, is used as a feedback element in an operational amplifier to obtain the log response.
The AGS Ggamma Meter and Calibrating the Gauss Clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, Leif
2014-03-31
During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than themore » AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).« less
Dead-time compensation for a logarithmic display rate meter
Larson, John A.; Krueger, Frederick P.
1988-09-20
An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.
Dead-time compensation for a logarithmic display rate meter
Larson, J.A.; Krueger, F.P.
1987-10-05
An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.
Data system for multiplexed water-current meters
NASA Technical Reports Server (NTRS)
Ramsey, C. R.
1977-01-01
Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.
Extended range radiation dose-rate monitor
Valentine, Kenneth H.
1988-01-01
An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.
De Cocker, K; Cardon, G; De Bourdeaudhuij, I
2006-01-01
Objectives To evaluate if inexpensive Stepping Meters are valid in counting steps in adults in free living conditions. Methods For six days, 35 healthy volunteers wore a criterion Yamax Digiwalker and five Stepping Meters every day until all 973 pedometers had been tested. Steps were recorded daily, and the differences between counts from the Digiwalker and the Stepping Meter were expressed as a percentage of the valid value of the Digiwalker step counts. The criterion used to determine if a Stepping Meter was valid was a maximum deviation of 10% from the Digiwalker step counts. Results A total of 252 (25.9%) Stepping Meters met the criterion, whereas 74.1% made an overestimation or underestimation of more than 10%. In more than one third (36.6%) of the invalid Stepping Meters, the deviation was greater than 50%. Most (64.8%) of the invalid pedometers overestimated the actual steps taken. Conclusions Inexpensive Stepping Meters cannot be used in community interventions as they will give participants the wrong message. PMID:16790485
Arduino based radiation survey meter
NASA Astrophysics Data System (ADS)
Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee
2016-01-01
This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.
A burst-mode photon counting receiver with automatic channel estimation and bit rate detection
NASA Astrophysics Data System (ADS)
Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.
2016-04-01
We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati
This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The surveymore » meter measurement results are found to be linear for dose rates below 3500 µSv/hr.« less
Ogino, Haruyuki; Hattori, Takatoshi
2013-01-01
This paper focuses on the surface contamination control of slightly contaminated property after the Fukushima nuclear accident. The operational level for the unconditional release of contaminated properties is calculated in counts per minute (cpm) to enable the use of a typical Geiger-Muller (GM) survey meter with a 50-mm bore, on the basis of the surficial clearance level of 10 Bq cm−2 for 134Cs and 137Cs derived in the previous studies of the authors. By applying a factor for the conversion of the unit surface contamination to the count rate of a survey meter widely used after the Fukushima accident, the operational level for the unconditional release of contaminated properties was calculated to be 2300 cpm on average and 23 000 cpm at the highest-contamination part. The calculated numerical values of the operational levels are effective as long as the typical GM survey meter is used in the radiation measurement. PMID:23778575
Anigstein, Robert; Erdman, Michael C.; Ansari, Armin
2017-01-01
The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of 60Co, 137Cs, and 241Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides. PMID:27115229
Anigstein, Robert; Erdman, Michael C; Ansari, Armin
2016-06-01
The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of Co, Cs, and Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides.
A Conceptual Design For A Spaceborne 3D Imaging Lidar
NASA Technical Reports Server (NTRS)
Degnan, John J.; Smith, David E. (Technical Monitor)
2002-01-01
First generation spaceborne altimetric approaches are not well-suited to generating the few meter level horizontal resolution and decimeter accuracy vertical (range) resolution on the global scale desired by many in the Earth and planetary science communities. The present paper discusses the major technological impediments to achieving few meter transverse resolutions globally using conventional approaches and offers a feasible conceptual design which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction.
NASA Astrophysics Data System (ADS)
Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie
The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.
Fission meter and neutron detection using poisson distribution comparison
Rowland, Mark S; Snyderman, Neal J
2014-11-18
A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.
Search for optical bursts from the gamma ray burst source GBS 0526-66
NASA Astrophysics Data System (ADS)
Seetha, S.; Sreenivasaiah, K. V.; Marar, T. M. K.; Kasturirangan, K.; Rao, U. R.; Bhattacharyya, J. C.
1985-08-01
Attempts were made to detect optical bursts from the gamma-ray burst source GBS 0526-66 during Dec. 31, 1984 to Jan. 2, 1985 and Feb. 23 to Feb. 24, 1985, using the one meter reflector of the Kavalur Observatory. Jan. 1, 1985 coincided with the zero phase of the predicted 164 day period of burst activity from the source (Rothschild and Lingenfelter, 1984). A new optical burst photon counting system with adjustable trigger threshold was used in parallel with a high speed photometer for the observations. The best time resolution was 1 ms and maximum count rate capability was 255,000 counts s(-1). Details of the instrumentation and observational results are presented.
Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA
2012-04-10
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feimster, E.L.
An aerial radiological survey was performed from 24 July through 1 August 1980 over a 244-square-kilometer (95-square-mile) area centered on the Salem Nuclear Generating Station near Salem, New Jersey. All gamma ray data were collected by flying lines oriented north-south and spaced 152 meters (500 feet) apart, at an altitude of 91 meters (300 feet) above the ground. Processed data showed that all gamma rays detected within the survey area were those expected from naturally occurring terrestrial background emitters except directly over the site, where spectral analysis revealed the presence of /sup 60/Co. Count rates obtained from the aerial platformmore » were converted to exposure rates at 1 meter above the ground and are presented in the form of an exposure rate contour map. The resulting exposure rates varied between 5 and 55 microroentgens per hour (..mu..R/h). The river-shore areas ranged from 5 to 7 ..mu..R/h, inland areas showed 7 to 12 ..mu..R/h, and the site had a maximum exposure rate of 55 ..mu..R/h. These values include an estimated cosmic ray contribution of 4 ..mu..R/h. The exposure rates obtained from soil samples taken within the survey area displayed good agreement with the aerial data.« less
A SIMPLE RADIO-CHROMATOGRAM SCANNER
DOE Office of Scientific and Technical Information (OSTI.GOV)
McWeeny, D.J.; Burton, H.S.
1962-07-01
A sturdy, simple, and reliable radiochromatogram scanner is described. It is constructed from a Panax Universal Castle, a Panax 5054 rate meter, and a recording milliamometer. The castle houses 2 thin endwindows, G--M tubes type GE- EHM-2 mounted one above the other, windows 1/4 in. apart. The 1-in. chromatogram passes continuously thru a selection of slits permitting a choice of views by the G-M tubes. The background count is 10.5 counts per minute and the detection limit for S/sup 35/ as a 3 mm spot on Whatman no. 1 paper is less than 0.2 nc. (T.R.H.)
Ash bed level control system for a fixed-bed coal gasifier
Fasching, George E.; Rotunda, John R.
1984-01-01
An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.
Design and construction of portable survey meter
NASA Astrophysics Data System (ADS)
Singseeta, W.; Thong-aram, D.; Pencharee, S.
2017-09-01
This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.
Vehicle counting system using real-time video processing
NASA Astrophysics Data System (ADS)
Crisóstomo-Romero, Pedro M.
2006-02-01
Transit studies are important for planning a road network with optimal vehicular flow. A vehicular count is essential. This article presents a vehicle counting system based on video processing. An advantage of such system is the greater detail than is possible to obtain, like shape, size and speed of vehicles. The system uses a video camera placed above the street to image transit in real-time. The video camera must be placed at least 6 meters above the street level to achieve proper acquisition quality. Fast image processing algorithms and small image dimensions are used to allow real-time processing. Digital filters, mathematical morphology, segmentation and other techniques allow identifying and counting all vehicles in the image sequences. The system was implemented under Linux in a 1.8 GHz Pentium 4 computer. A successful count was obtained with frame rates of 15 frames per second for images of size 240x180 pixels and 24 frames per second for images of size 180x120 pixels, thus being able to count vehicles whose speeds do not exceed 150 km/h.
The Met One 831 sensor measures particulate matter (PM) by counting and sizing individual particles using scattered laser light. The unit then converts the count data to mass measurements in micrograms per cubic meter (µg/m3). The Met One 831 counts particles in four different PM...
Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow
NASA Astrophysics Data System (ADS)
Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.
2017-12-01
Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.
NASA Technical Reports Server (NTRS)
Degnan, John J.; Smith, David E. (Technical Monitor)
2000-01-01
We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and transverse spatial resolution resulting from both (1) and (3). Furthermore, because of significantly lower laser pulse energies, the microaltimeter is inherently more eyesafe to observers on the ground and less prone to internal optical damage, which can terminate a space mission prematurely.
Techniques employed for detection of hot particles in the marine environment.
Pillsbury, G D
2007-09-01
During the decommissioning of the Maine Yankee nuclear plant, several methods were developed and employed to survey for hot particles in the marine environment surrounding the site. The methods used and the sensitivities achieved in the search for environmentally dispersed particles during the various decommissioning activities performed are described in detail. Surveys were performed on dry soil, exposed marine sediment and submerged marine sediment. Survey techniques ranged from the use of the basic NaI detector coupled to a count rate meter to an intrinsic germanium detector deployed in a submarine housing coupled to a multi-channel analyser. The initial surveys consisted of collecting samples of marine sediment, spreading them out over a 1 m2 surface in a thin layer, and scanning the deposited sediment by hand using a 5 cm by 5 cm NaI detector coupled to a standard count rate meter. This technique was later replaced by walkover scans with the 5 cm by 5 cm NaI detector moved in a serpentine pattern over the sediment surface. By coupling the detector to a 'smart meter', an alarm set point could be used to alert the surveyor to the presence of a particle within the instrument's field of view. A similar technique, with the detector mounted in a watertight housing secured to the end of a pole, was also employed to scan underwater locations. The most sensitive method developed for performing underwater surveys was the use of the intrinsic germanium detector placed in a submarine housing. Detailed descriptions of the methods employed and the results obtained are presented. This work demonstrates that there are several approaches to surveying for discrete particles in the marine environment and the relative merits of each are considered.
Radiation detection and wireless networked early warning
NASA Astrophysics Data System (ADS)
Burns, David A.; Litz, Marc S.; Carroll, James J.; Katsis, Dimosthenis
2012-06-01
We have designed a compact, wireless, GPS-enabled array of inexpensive radiation sensors based on scintillation counting. Each sensor has a scintillator, photomultiplier tube, and pulse-counting circuit that includes a comparator, digital potentiometer and microcontroller. This design provides a high level of sensitivity and reliability. A 0.2 m2 PV panel powers each sensor providing a maintenance-free 24/7 energy source. The sensor can be mounted within a roadway light-post and monitor radiological activity along transport routes. Each sensor wirelessly transmits real-time data (as counts per second) up to 2 miles with a XBee radio module, and the data is received by a XBee receive-module on a computer. Data collection software logs the information from all sensors and provides real-time identification of radiation events. Measurements performed to-date demonstrate the ability of a sensor to detect a 20 μCi source at 3.5 meters when packaged with a PVT (plastic) scintillator, and 7 meters for a sensor with a CsI crystal (more expensive but ~5 times more sensitive). It is calculated that the sensor-architecture can detect sources moving as fast as 130 km/h based on the current data rate and statistical bounds of 3-sigma threshold detection. The sensor array is suitable for identifying and tracking a radiation threat from a dirty bomb along roadways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyengar, Anagha; Beach, Matthew; Newby, Robert J.
Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m 2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reductionmore » in background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.« less
NASA Astrophysics Data System (ADS)
Bernstein, A.; Allen, M.; Bowden, N.; Brennan, J.; Carr, D. J.; Estrada, J.; Hagmann, C.; Lund, J. C.; Madden, N. W.; Winant, C. D.
2005-09-01
Our Lawrence Livermore National Laboratory/Sandia National Laboratories collaboration has deployed a cubic-meter-scale antineutrino detector to demonstrate non-intrusive and automatic monitoring of the power levels and plutonium content of a nuclear reactor. Reactor monitoring of this kind is required for all non-nuclear weapons states under the Nuclear Nonproliferation Treaty (NPT), and is implemented by the International Atomic Energy Agency (IAEA). Since the antineutrino count rate and energy spectrum depend on the relative yields of fissioning isotopes in the reactor core, changes in isotopic composition can be observed without ever directly accessing the core. Data from a cubic meter scale antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. Our group has deployed a detector at the San Onofre reactor site in California to demonstrate this concept. This paper describes the concept and shows preliminary results from 8 months of operation.
2017-01-01
The annual report presents data tables describing the electricity industry in each State. Data include: summary statistics; the 10 largest plants by generating capacity; the top five entities ranked by sector; electric power industry generating capacity by primary energy source; electric power industry generation by primary energy source; utility delivered fuel prices for coal, petroleum, and natural gas; electric power industry emissions estimates; retail sales, revenue, and average retail price by sector; retail electricity sales statistics; and supply and disposition of electricity; net metering counts and capacity by technology and customer type; and advanced metering counts by customer type.
Bolch, Wesley E.; Hurtado, Jorge L.; Lee, Choonsik; Manger, Ryan; Hertel, Nolan; Dickerson, William
2013-01-01
In June of 2006, the Radiation Studies Branch of the Centers for Disease Control and Prevention held a workshop to explore rapid methods of facilitating radiological triage of large numbers of potentially contaminated individuals following detonation of a radiological dispersal device. Two options were discussed. The first was the use of traditional gamma-cameras in nuclear medicine departments operated as make-shift whole-body counters. Guidance on this approach is currently available from the CDC. This approach is feasible if a manageable number of individuals were involved, transportation to the relevant hospitals was quickly provided, and the medical staff at each facility had been previously trained in this non-traditional use of their radiopharmaceutical imaging devices. If, however, substantially large numbers of individuals (100s to 1000s) needed radiological screening, other options must be given to first responders, first receivers, and health physicists providing medical management. In this study, the second option of the workshop was investigated – the use of commercially available portable survey meters (either NaI or GM based) for assessing potential ranges of effective dose (<50, 50–250, 250–500, and >500 mSv). Two hybrid computational phantoms were used to model an adult male and an adult female subject internally contaminated with either 241Am, 60Cs, 137Cs, 131I, and 192Ir following an acute inhalation or ingestion intake. As a function of time following the exposure, the net count rates corresponding to committed effective doses of 50, 250, and 500 mSv were estimated via Monte Carlo radiation transport simulation for each of four different detectors types, positions, and screening distances. Measured count rates can be compared to these values and an assignment of one of four possible effective dose ranges could be made. The method implicitly assumes that all external contamination has been removed prior to screening, and that the measurements be conducted in a low-background, and possibly mobile, facility positioned at the triage location. Net count rate data are provided in both tabular and graphical format within a series of eight handbooks available at the CDC website http://emergency.cdc.gov/radiation. PMID:22420020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolch, W.E.; Hurtado, J.L.; Lee, C.
2012-01-01
In June 2006, the Radiation Studies Branch of the Centers for Disease Control and Prevention held a workshop to explore rapid methods of facilitating radiological triage of large numbers of potentially contaminated individuals following detonation of a radiological dispersal device. Two options were discussed. The first was the use of traditional gamma cameras in nuclear medicine departments operated as makeshift wholebody counters. Guidance on this approach is currently available from the CDC. This approach would be feasible if a manageable number of individuals were involved, transportation to the relevant hospitals was quickly provided, and the medical staff at each facilitymore » had been previously trained in this non-traditional use of their radiopharmaceutical imaging devices. If, however, substantially larger numbers of individuals (100 s to 1,000 s) needed radiological screening, other options must be given to first responders, first receivers, and health physicists providing medical management. In this study, the second option of the workshop was investigated by the use of commercially available portable survey meters (either NaI or GM based) for assessing potential ranges of effective dose (G50, 50Y250, 250Y500, and 9500 mSv). Two hybrid computational phantoms were used to model an adult male and an adult female subject internally contaminated with 241Am, 60Cs, 137Cs, 131I, or 192Ir following an acute inhalation or ingestion intake. As a function of time following the exposure, the net count rates corresponding to committed effective doses of 50, 250, and 500 mSv were estimated via Monte Carlo radiation transport simulation for each of four different detector types, positions, and screening distances. Measured net count rates can be compared to these values, and an assignment of one of four possible effective dose ranges could be made. The method implicitly assumes that all external contamination has been removed prior to screening and that the measurements be conducted in a low background, and possibly mobile, facility positioned at the triage location. Net count rate data are provided in both tabular and graphical format within a series of eight handbooks available at the CDC website (http://www.bt.cdc.gov/radiation/clinicians/evaluation).« less
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100 meters, even in partly cloudy conditions. The capability to observe subsurface backscatterprofiles is achievable but requires much longer transects of several hundreds of meters.
CONTROL CONSOLE FOR MTR FISSION PRODUCT MONITOR, USED TO DETECT ...
CONTROL CONSOLE FOR MTR FISSION PRODUCT MONITOR, USED TO DETECT BREAKS IN CLADDING OF FUEL ELEMENTS. COUNT-RATE METER IN TOP PANEL INDICATES AMOUNT OF RADIOACTIVITY. LOWER PANELS SUPPLY POWER AND AMPLIFICATION OF SIGNALS GENERATED BY SCINTILLATION COUNTER/PHOTOMULTIPLIER TUBE COMBINATION IN RESPONSE TO RADIOACTIVITY IN A SAMPLE OF THE COOLING WATER. INL NEGATIVE NO. 56-771. Jack L. Anderson, Photographer, 3/15/1956. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
High resolution time interval meter
Martin, A.D.
1986-05-09
Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.
A comparison of selected models for estimating cable icing
NASA Astrophysics Data System (ADS)
McComber, Pierre; Druez, Jacques; Laflamme, Jean
In many cold climate countries, it is becoming increasingly important to monitor transmission line icing. Indeed, by knowing in advance of localized danger for icing overloads, electric utilities can take measures in time to prevent generalized failure of the power transmission network. Recently in Canada, a study was made to compare the estimation of a few icing models working from meteorological data in estimating ice loads for freezing rain events. The models tested were using only standard meteorological parameters, i.e. wind speed and direction, temperature and precipitation rate. This study has shown that standard meteorological parameters can only achieve very limited accuracy, especially for longer icing events. However, with the help of an additional instrument monitoring the icing rate intensity, a significant improvement in model prediction might be achieved. The icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe can be used to estimate the icing intensity. A cable icing estimation is then made by taking into consideration the accretion size, temperature, wind speed and direction, and precipitation rate. In this paper, a comparison is made between the predictions of two previously tested models (one obtained and the other reconstructed from their description in the public literature) and of a model based on the icing rate meter readings. The models are tested against nineteen events recorded on an icing test line at Mt. Valin, Canada, during the winter season 1991-1992. These events are mostly rime resulting from in-cloud icing. However, freezing rain and wet snow events were also recorded. Results indicate that a significant improvement in the estimation is attained by using the icing rate meter data together with the other standard meteorological parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Ali, Abdul Muhaimin Mat; Abdullah, Reduan
The study is carried out to assess the exposure rate that could contribute to public exposure in a radioiodine ward delay tank facility of Radiotherapy, Oncology and Nuclear Medicine, Department, Hospital Universiti Sains Malaysia (HUSM). The exposure rate at several locations including the delay tank room, doorway and at the public walking route was measured using Victoreen 415P-RYR survey meter. The radioactive level of the {sup 131}I waste was measured using Captus 3000 well counting system. The results showed that exposure rate and total count of the delay tank sample increased when the radioiodine ward was fully occupied with patientmore » and reduced when the ward was vacant. Occupancy of radioiodine ward for two consecutive weeks had dramatically increased the exposure rate around the delay tank and radioactive level of {sup 131}I waste. The highest exposure rate and radioactive level was recorded when the ward was occupied for two consecutive weeks with 177.00 µR/h and 58.36 kcpm respectively. The exposure rate decreased 15.76 % when the door of the delay tank room was closed. The exposure rate at public walking route decreased between 15.58 % and 36.92 % as the distance increased between 1 and 3 m.« less
Iyengar, Anagha; Beach, Matthew; Newby, Robert J.; ...
2015-11-12
Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m 2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reductionmore » in background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.« less
NASA Astrophysics Data System (ADS)
Iyengar, A.; Beach, M.; Newby, R. J.; Fabris, L.; Heilbronn, L. H.; Hayward, J. P.
2015-02-01
Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.
Daily step count predicts acute exacerbations in a US cohort with COPD.
Moy, Marilyn L; Teylan, Merilee; Weston, Nicole A; Gagnon, David R; Garshick, Eric
2013-01-01
COPD is characterized by variability in exercise capacity and physical activity (PA), and acute exacerbations (AEs). Little is known about the relationship between daily step count, a direct measure of PA, and the risk of AEs, including hospitalizations. In an observational cohort study of 169 persons with COPD, we directly assessed PA with the StepWatch Activity Monitor, an ankle-worn accelerometer that measures daily step count. We also assessed exercise capacity with the 6-minute walk test (6MWT) and patient-reported PA with the St. George's Respiratory Questionnaire Activity Score (SGRQ-AS). AEs and COPD-related hospitalizations were assessed and validated prospectively over a median of 16 months. Mean daily step count was 5804±3141 steps. Over 209 person-years of observation, there were 263 AEs (incidence rate 1.3±1.6 per person-year) and 116 COPD-related hospitalizations (incidence rate 0.56±1.09 per person-year). Adjusting for FEV1 % predicted and prednisone use for AE in previous year, for each 1000 fewer steps per day walked at baseline, there was an increased rate of AEs (rate ratio 1.07; 95%CI = 1.003-1.15) and COPD-related hospitalizations (rate ratio 1.24; 95%CI = 1.08-1.42). There was a significant linear trend of decreasing daily step count by quartiles and increasing rate ratios for AEs (P = 0.008) and COPD-related hospitalizations (P = 0.003). Each 30-meter decrease in 6MWT distance was associated with an increased rate ratio of 1.07 (95%CI = 1.01-1.14) for AEs and 1.18 (95%CI = 1.07-1.30) for COPD-related hospitalizations. Worsening of SGRQ-AS by 4 points was associated with an increased rate ratio of 1.05 (95%CI = 1.01-1.09) for AEs and 1.10 (95%CI = 1.02-1.17) for COPD-related hospitalizations. Lower daily step count, lower 6MWT distance, and worse SGRQ-AS predict future AEs and COPD-related hospitalizations, independent of pulmonary function and previous AE history. These results support the importance of assessing PA in patients with COPD, and provide the rationale to promote PA as part of exacerbation-prevention strategies.
Cumulative Timers for Microprocessors
NASA Technical Reports Server (NTRS)
Battle, John O.
2007-01-01
It has been proposed to equip future microprocessors with electronic cumulative timers, for essentially the same reasons for which land vehicles are equipped with odometers (total-distance-traveled meters) and aircraft are equipped with Hobbs meters (total-engine-operating time meters). Heretofore, there has been no way to determine the amount of use to which a microprocessor (or a product containing a microprocessor) has been subjected. The proposed timers would count all microprocessor clock cycles and could only be read by means of microprocessor instructions but, like odometers and Hobbs meters, could never be reset to zero without physically damaging the chip.
Study of Fourier transform spectrometer based on Michelson interferometer wave-meter
NASA Astrophysics Data System (ADS)
Peng, Yuexiang; Wang, Liqiang; Lin, Li
2008-03-01
A wave-meter based on Michelson interferometer consists of a reference and a measurement channel. The voice-coiled motor using PID means can realize to move in stable motion. The wavelength of a measurement laser can be obtained by counting interference fringes of reference and measurement laser. Reference laser with frequency stabilization creates a cosine interferogram signal whose frequency is proportional to velocity of the moving motor. The interferogram of the reference laser is converted to pulse signal, and it is subdivided into 16 times. In order to get optical spectrum, the analog signal of measurement channel should be collected. The Analog-to-Digital Converter (ADC) for measurement channel is triggered by the 16-times pulse signal of reference laser. So the sampling rate is constant only depending on frequency of reference laser and irrelative to the motor velocity. This means the sampling rate of measurement channel signals is on a uniform time-scale. The optical spectrum of measurement channel can be processed with Fast Fourier Transform (FFT) method by DSP and displayed on LCD.
A singlechip-computer-controlled conductivity meter based on conductance-frequency transformation
NASA Astrophysics Data System (ADS)
Chen, Wenxiang; Hong, Baocai
2005-02-01
A portable conductivity meter controlled by singlechip computer was designed. The instrument uses conductance-frequency transformation method to measure the conductivity of solution. The circuitry is simple and reliable. Another feature of the instrument is that the temperature compensation is realised by changing counting time of the timing counter. The theoretical based and the usage of temperature compensation are narrated.
Sample to answer visualization pipeline for low-cost point-of-care blood cell counting
NASA Astrophysics Data System (ADS)
Smith, Suzanne; Naidoo, Thegaran; Davies, Emlyn; Fourie, Louis; Nxumalo, Zandile; Swart, Hein; Marais, Philip; Land, Kevin; Roux, Pieter
2015-03-01
We present a visualization pipeline from sample to answer for point-of-care blood cell counting applications. Effective and low-cost point-of-care medical diagnostic tests provide developing countries and rural communities with accessible healthcare solutions [1], and can be particularly beneficial for blood cell count tests, which are often the starting point in the process of diagnosing a patient [2]. The initial focus of this work is on total white and red blood cell counts, using a microfluidic cartridge [3] for sample processing. Analysis of the processed samples has been implemented by means of two main optical visualization systems developed in-house: 1) a fluidic operation analysis system using high speed video data to determine volumes, mixing efficiency and flow rates, and 2) a microscopy analysis system to investigate homogeneity and concentration of blood cells. Fluidic parameters were derived from the optical flow [4] as well as color-based segmentation of the different fluids using a hue-saturation-value (HSV) color space. Cell count estimates were obtained using automated microscopy analysis and were compared to a widely accepted manual method for cell counting using a hemocytometer [5]. The results using the first iteration microfluidic device [3] showed that the most simple - and thus low-cost - approach for microfluidic component implementation was not adequate as compared to techniques based on manual cell counting principles. An improved microfluidic design has been developed to incorporate enhanced mixing and metering components, which together with this work provides the foundation on which to successfully implement automated, rapid and low-cost blood cell counting tests.
Price current-meter standard rating development by the U.S. geological survey
Hubbard, E.F.; Schwarz, G.E.; Thibodeaux, K.G.; Turcios, L.M.
2001-01-01
The U.S. Geological Survey has developed new standard rating tables for use with Price type AA and pygmy current meters, which are employed to measure streamflow velocity. Current-meter calibration data, consisting of the rates of rotation of meters at several different constant water velocities, have shown that the original rating tables are no longer representative of the average responsiveness of newly purchased meters or meters in the field. The new rating tables are based on linear regression equations that are weighted to reflect the population mix of current meters in the field and weighted inversely to the variability of the data at each calibration velocity. For calibration velocities of 0.3 m/s and faster, at which most streamflow measurements are made, the new AA-rating predicts the true velocities within 1.5% and the new pygmy-meter rating within 2.0% for more than 95% of the meters. At calibration velocities, the new AA-meter rating is up to 1.4% different from the original rating, and the new pygmy-meter rating is up to 1.6% different.
NASA Astrophysics Data System (ADS)
Jiang, Shyh-Biau; Yeh, Tse-Liang; Chen, Li-Wu; Liu, Jann-Yenq; Yu, Ming-Hsuan; Huang, Yu-Qin; Chiang, Chen-Kiang; Chou, Chung-Jen
2018-05-01
In this study, we construct a photomultiplier calibration system. This calibration system can help scientists measuring and establishing the characteristic curve of the photon count versus light intensity. The system uses an innovative 10-fold optical attenuator to enable an optical power meter to calibrate photomultiplier tubes which have the resolution being much greater than that of the optical power meter. A simulation is firstly conducted to validate the feasibility of the system, and then the system construction, including optical design, circuit design, and software algorithm, is realized. The simulation generally agrees with measurement data of the constructed system, which are further used to establish the characteristic curve of the photon count versus light intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, T.; Dominic, J.; Halverson, J.
1996-04-10
Drainage patterns observed in the Appalachian Valley and Ridge and Plateau provinces exhibit distinctly different patterns. The patterns appear to be controlled by varying influences of local structural and lithologic variability. Drainage patterns in the Valley and Ridge study area can be classified as a combination of dendritic and trellis arrangements. The patterns vary over short distances in both the strike and dip directions. In the Granny Creek area of the Appalachian Plateau drainage patterns are predominantly dendritic. The possibility that these drainage patterns have fractal characteristics was evaluated by box-counting. Results obtained from box counting do not yield amore » well defined fractal regime in either areas. In the Valley and Ridge a space-filling, or random regime (D=2) is observed for boxes with side-lengths of 300 meters and greater. Below 300 meters, large changes in D occur between consecutively smaller box sizes. From side lengths of 300 to 150m, 150 to 75m, and 75 to 38m, D is measured at 1.77, 1.39, and 1.08 respectively. For box sizes less than 38m the fractal dimension is 1 or less. While the l0g-log response of the box counting data is nonlinear and does not define a fractal regime, the curves offer the possibility of characterizing non-fractal patterns. The rate at which D drops outside the random regime correlates to drainage density. D in areas with a smaller density of drainage segments fell toward saturation (D=1) more abruptly. The break-away point from the random regime and the transition to the saturated regime may provide useful information about the relative lengths of stream segments.« less
INSTRUMENTATION AND CONTROLS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING JULY 1, 1957
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1958-10-31
The circuitry and performance characteristics are given for a pulse crossover pickoff gate for use with a medium-speed coincidence circuit. An experimental digital count-rate meter was built which has the analog output characteristics of a rate meter and the counting mechanism of a scaler. A study was made of the grid currents in comnmercially available receiving and amplifying tubes. The study was limited to grid currents exceeding 10 amp, plats voltages between 20 and 300 v, and cathode currents between 50 mu a and 100 ma Tests were conducted to determine the intrinsic staility of neon-filled voltage reference tubes. Internalmore » impedance and drift rate are given for a number of tube types. A neutron-chopper speed-control systemn for use with the time-of-flight spectrometer is being developed. A block diagram of the system is given. The main features of a 256-channel neutron time-of-flight spectrometer Instrumentation for the ORNL Graphite Reactor pile oscillator was redesigned for greater spend and accuracy. A block diagram is given along with preliminary the performance characteristics are given for an 18channel time-base analyzer developed to study the timedependent behavior of neutrons in a moderator. Progress in the developmnent of a position indicator for the single-crystal spectrometer being installed in the Bulk Shielding Facility is reviewed. Modifications made in an existing electron-spin resonance spectromneter to convert it to a superheterodyne electron-spin resonance tem superior in versatility, reliability, and speed, was installed at the ORAC LE. Developmental work on a small, high-efficiency scintillation Geiger counter is described. Three variations of the standard method for preparing zinc sulfide phosphors are discussed. The design and operation of a scanning device developed for scanning activated materials fromn flux distribution experiments is described. Additional work is reported on the development of instrumentation for radiochemical laboratories, powder mnetallurgy laboratories, the Thorex Process, a volatility separation process, uranyl sulfate fuel processing, and homnogeneous reactor control. Specific pieces of equipment developed and described include a resin- bed displacement meter, a viscometer, liquid-level indicators, pressure transmitters, a flow transmitter, a gamma ionization chamber, an oxygen injection system, valves and valve actuators, a magetic flowmeter, and thermocouples. or preceding period see ORNL-2234.) (U.E.B.)« less
Soler-López, Luis R.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús
2005-01-01
The Laguna de Las Salinas is a shallow, 35-hectare, hypersaline lagoon (depth less than 1 meter) in the municipio of Ponce, located on the southern coastal plain of Puerto Rico. Hydrologic, water-quality, and biological data in the lagoon were collected between January 2003 and September 2004 to establish baseline conditions. During the study period, rainfall was about 1,130 millimeters, with much of the rain recorded during three distinct intense events. The lagoon is connected to the sea by a shallow, narrow channel. Subtle tidal changes, combined with low rainfall and high evaporation rates, kept the lagoon at salinities above that of the sea throughout most of the study. Water-quality properties measured on-site (temperature, pH, dissolved oxygen, specific conductance, and Secchi disk transparency) exhibited temporal rather than spatial variations and distribution. Although all physical parameters were in compliance with current regulatory standards for Puerto Rico, hyperthermic and hypoxic conditions were recorded during isolated occasions. Nutrient concentrations were relatively low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 1.9 milligrams per liter and the average total phosphorus concentration was 0.4 milligram per liter. Total organic carbon concentrations ranged from 12.0 to 19.0 milligrams per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll a concentration was 13.4 micrograms per liter. Chlorophyll b was detected (detection limits 0.10 microgram per liter) only twice during the study. About 90 percent of the primary productivity in the Laguna de Las Salinas was generated by periphyton such as algal mats and macrophytes such as seagrasses. Of the average net productivity of 13.6 grams of oxygen per cubic meter per day derived from the diel study, the periphyton and macrophyes produced 12.3 grams per cubic meter per day; about 1.3 grams (about 10 percent) were produced by the phytoplankton (plant and algae component of plankton). The total respiration rate was 59.2 grams of oxygen per cubic meter per day. The respiration rate ascribed to the plankton (all organisms floating through the water column) averaged about 6.2 grams of oxygen per cubic meter per day (about 10 percent), whereas the respiration rate by all other organisms averaged 53.0 grams of oxygen per cubic meter per day (about 90 percent). Plankton gross productivity was 7.5 grams per cubic meter per day; the gross productivity of the entire community averaged 72.8 grams per cubic meter per day. Fecal coliform bacteria counts were generally less than 200 colonies per 100 milliliters; the highest concentration was 600 colonies per 100 milliliters.
... Chronic Word! Cleft Lip Word! Cleft Palate Word! Cochlea Word! Complete Blood Count (CBC) Word! Cone Word! ... Word! Palpitations Word! Pancreas Word! Papillae Word! Peak Flow Meter Word! Pediatric Endocrinologist Word! Pediatrician Word! Peritonitis ...
Low-cost optical interconnect module for parallel optical data links
NASA Astrophysics Data System (ADS)
Noddings, Chad; Hirsch, Tom J.; Olla, M.; Spooner, C.; Yu, Jason J.
1995-04-01
We have designed, fabricated, and tested a prototype parallel ten-channel unidirectional optical data link. When scaled to production, we project that this technology will satisfy the following market penetration requirements: (1) up to 70 meters transmission distance, (2) at least 1 gigabyte/second data rate, and (3) 0.35 to 0.50 MByte/second volume selling price. These goals can be achieved by means of the assembly innovations described in this paper: a novel alignment method that is integrated with low-cost, few chip module packaging techniques, yielding high coupling and reducing the component count. Furthermore, high coupling efficiency increases projected reliability reducing the driver's power requirements.
Snow Coverage Analysis Using ASTER over the Sierra Nevada Mountain Range
NASA Astrophysics Data System (ADS)
Ross, B.
2017-12-01
Snow has strong impacts on human behavior, state and local activities, and the economy. The Sierra Nevada snowpack is California's most important natural reservoir of water. Such snow is melting sooner and faster. A recent California drought study showed that there was a deficit of 1.5 million acre-feet of water in 2014 due to the fast melting rates. Scientists have been using the Moderate Resolution Imaging Spectrometer (MODIS) which is available at the spatial resolution of 500-meter, to analyze the changes in snow coverage. While such analysis provides us with the valuable information, it would be more beneficial to employ the imageries at a higher spatial resolution for snow studies. Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), which acquires the high-resolution imageries ranging from 15-meter to 90-meter, has recently become freely available to the public. Our study utilized two scenes obtained from ASTER to investigate the changes in snow extent over the Sierra Nevada's mountain area for an 8-year period. These two scenes were collected on April 11, 2007 and April 16, 2015 covering the same geographic region. Normalized Difference Snow Index (NDSI) was adopted to delineate the snow coverage in each scene. Our study shows a substantial decrease of snow coverage in the studied geographic region by pixel count.
A Retrieval System for Radioactive Target Materials at the NIF
NASA Astrophysics Data System (ADS)
Krieger, M.; Shibata, K.; Fallica, J.; Henchen, R.; Pogozelski, E.; Padalino, S.; Sangster, T. C.; Suny Collaboration; Laboratory Collaboration
2011-10-01
Currently, solid radioactive material collection from the NIF target chamber is performed via the DIM. The retrieval process takes several hours to complete. To decrease this time for short lived radioisotopes, the Target Materials Retrieval System (TMRS) is being designed to move a radioactive sample from the target chamber to the counting station in less than 50 seconds, using a closed-loop helium filled RaPToRS system. The TMRS consists of three components: the retrieval apparatus, RaPToRS and the counting station. Starting at 0.5 meters from TCC, the sample will move from the vacuum chamber, travel through 60 meters of 10 centimeter diameter RaPToRS tubes, reaching speeds of 10 m/s. The sample will then arrive at the counting station, where it be robotically placed in front of a gamma ray detector. The use of helium will decrease background gamma radiation produced by activated N2 normally found in a pressurized air system. This work was supported in part by the US Department of Energy through the LLE.
NASA Astrophysics Data System (ADS)
Maillard, Philippe; Gomes, Marília F.
2016-06-01
This article presents an original algorithm created to detect and count trees in orchards using very high resolution images. The algorithm is based on an adaptation of the "template matching" image processing approach, in which the template is based on a "geometricaloptical" model created from a series of parameters, such as illumination angles, maximum and ambient radiance, and tree size specifications. The algorithm is tested on four images from different regions of the world and different crop types. These images all have < 1 meter spatial resolution and were downloaded from the GoogleEarth application. Results show that the algorithm is very efficient at detecting and counting trees as long as their spectral and spatial characteristics are relatively constant. For walnut, mango and orange trees, the overall accuracy was clearly above 90%. However, the overall success rate for apple trees fell under 75%. It appears that the openness of the apple tree crown is most probably responsible for this poorer result. The algorithm is fully explained with a step-by-step description. At this stage, the algorithm still requires quite a bit of user interaction. The automatic determination of most of the required parameters is under development.
Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ
NASA Astrophysics Data System (ADS)
Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gao, W.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; D'Alessandro, F.; ARGO-YBJ Collaboration
2018-02-01
A correlation between the secondary cosmic ray flux and the near-earth electric field intensity, measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment, a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China). The counting rates of showers with different particle multiplicities (m =1 , 2, 3, and ≥4 ) have been found to be strongly dependent upon the intensity and polarity of the electric field measured during the course of 15 thunderstorms. In negative electric fields (i.e., accelerating negative charges downwards), the counting rates increase with increasing electric field strength. In positive fields, the rates decrease with field intensity until a certain value of the field EFmin (whose value depends on the event multiplicity), above which the rates begin increasing. By using Monte Carlo simulations, we found that this peculiar behavior can be well described by the presence of an electric field in a layer of thickness of a few hundred meters in the atmosphere above the detector, which accelerates/decelerates the secondary shower particles of opposite charge, modifying the number of particles with energy exceeding the detector threshold. These results, for the first time to our knowledge, give a consistent explanation for the origin of the variation of the electron/positron flux observed for decades by high altitude cosmic ray detectors during thunderstorms.
Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zickefoose, J.; Kulkarni, T.; Martinson, T.
The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - Xmore » and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube is extended and the linearity is greatly improved. Testing has been performed at Pacific Northwest National Laboratory (PNNL) in the USA and confirms compliance to IEC 60532 as well as linearity (± 10%) up to 100 Sv/hr. Furthermore, a network of EcoGamma probes may be linked through available supervisory software to provide a dose rate map of an area. This allows for real time monitoring of dose rates from one (or multiple) remote locations. (authors)« less
Development of a Scalable Process Control System for Chemical Soil Washing to Remove Uranyl Oxide
2015-05-01
ICET also has a fully equipped counting laboratory for the evaluation of radioactive samples . Photographs of the 1-meter and 3-meter motorized...the leachate will be monitored using a gamma detector. There are numerous naturally occurring radioactive materials in soil . ICET has developed a...48.6% from 238U and 49.2% from 234U. The 238U in NU also contains daughters that are radioactive . This increases the activity of samples over long
NASA Astrophysics Data System (ADS)
Buongiorno, J.; Lloyd, K. G.; Shumaker, A.; Schippers, A.; Webster, G.; Weightman, A.; Turner, S.
2015-12-01
Nearly 75% of the Earth's surface is covered by marine sediment that is home to an estimated 2.9 x 1029 microbial cells. A substantial impediment to understanding the abundance and distribution of cells within marine sediment is the lack of a consistent and reliable method for their taxon-specific quantification. Catalyzed reporter fluorescent in situ hybridization (CARD-FISH) provides taxon-specific enumeration, but this process requires passing a large enzyme through cell membranes, decreasing its precision relative to general cell counts using a small DNA stain. In 2015, Yamaguchi et al. developed FISH hybridization chain reaction (FISH-HCR) as an in situ whole cell detection method for environmental microorganisms. FISH-HCR amplifies the fluorescent signal, as does CARD-FISH, but it allows for milder cell permeation methods that might prevent yield loss. To compare FISH-HCR to CARD-FISH, we examined bacteria and archaea cell counts within two sediment cores, Lille Belt (~78 meters deep) and Landsort Deep (90 meters deep), which were retrieved from the Baltic Sea Basin during IODP Expedition 347. Preliminary analysis shows that CARD-FISH counts are below the quantification limit for most depths across both cores. By contrast, quantification of cells was possible with FISH-HCR in all examined depths. When quantification with CARD-FISH was above the limit of detection, counts with FISH-HCR were up to 11 fold higher for Bacteria and 3 fold higher for Archaea from the same sediment sample. Further, FISH-HCR counts follow the trends of on board counts nicely, indicating that FISH-HCR may better reflect the cellular abundance within marine sediment than other quantification methods, including qPCR. Using FISH-HCR, we found that archaeal cell counts were on average greater than bacterial cell counts, but within the same order of magnitude.
Grid-Connected Distributed Generation: Compensation Mechanism Basics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aznar, Alexandra Y; Zinaman, Owen R
2017-10-02
This short report defines compensation mechanisms for grid-connected, behind-the-meter distributed generation (DG) systems as instruments that comprise three core elements: (1) metering and billing arrangements, (2) sell rate design, and (3) retail rate design. This report describes metering and billing arrangements, with some limited discussion of sell rate design. We detail the three possible arrangements for metering and billing of DG: net energy metering (NEM); buy all, sell all; and net billing.
Preliminary design considerations for 10 to 40 meter-diameter precision truss reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
...). Weight: 220-315 grams per square meter. Thread Count (Density): 76-110 ends per inch (Warp) X 70-90 picks.... Finishing Processes: Airjet Dyed. Kim Glas, Chairman Committee for the Implementation of Textile Agreements...
ERIC Educational Resources Information Center
Eggensperger, Martin B.
2000-01-01
Introduces the Meteor Scatter Project (MSP) in which high school students build an automated meteor observatory and learn to monitor meteor activity. Involves students in activities such as radio frequency survey, antenna design, antenna construction, manual meteor counts, and computer board configuration and installation. (YDS)
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity measurements with 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...
2015-01-27
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
Power Scaling of the Mainland Shoreline of the Atlantic Coast of the United States
NASA Astrophysics Data System (ADS)
Vasko, E.; Barton, C. C.; Geise, G. R.; Rizki, M. M.
2017-12-01
The fractal dimension of the mainland shoreline of the Atlantic coast of the United Stated from Maine to Homestead, FL has been measured in 1000 km increments using the box-counting method. The shoreline analyzed is the NOAA Medium Resolution Shoreline (https://shoreline.noaa.gov/data/datasheets/medres.html). The shoreline was reconstituted into sequentially numbered X-Y coordinate points in UTM Zone 18N which are spaced 50 meters apart, as measured continuously along the shoreline. We created a MATLAB computer code to measure the fractal dimension by box counting while "walking" along the shoreline. The range of box sizes is 0.7 to 450 km. The fractal dimension ranges from 1.0 to1.5 along the mainland shoreline of the Atlantic coast. The fractal dimension is compared with beach particle sizes (bedrock outcrop, cobbles, pebbles, sand, clay), tidal range, rate of sea level rise, rate and direction of vertical crustal movement, and wave energy, looking for correlation with the measured fractal dimensions. The results show a correlation between high fractal dimensions (1.3 - 1.4) and tectonically emergent coasts, and low fractal dimensions (1.0 - 1.2) along submergent and stable coastal regions. Fractal dimension averages 1.3 along shorelines with shoreline protection structures such as seawalls, jetties, and groins.
NASA Mars Rover Curiosity at JPL, Side View
2011-04-06
The rover for NASA Mars Science Laboratory mission, named Curiosity, is about 3 meters 10 feet long, not counting the additional length that the rover arm can be extended forward. The front of the rover is on the left in this side view.
Effect of environmental molds on risk of death from asthma during the pollen season.
Targonski, P V; Persky, V W; Ramekrishnan, V
1995-05-01
Many studies have noted an association of ambient aeroallergen levels with exacerbation of asthma. This study was undertaken to examine the relationship of aeroallergen levels with asthma-related mortality in Chicago. The association of environmental aeroallergen levels with death caused by asthma among 5- to 34-year-olds in Chicago was examined for the period of 1985 through 1989. Logistic regression analysis was used to compare the probability of a death caused by asthma occurring on the basis of environmental tree, grass, or ragweed pollen and mold spore levels. Mean mold spore levels but not tree, grass, or ragweed pollen levels were significantly higher for days on which asthma-related death occurred than for days on which no deaths occurred (z = 2.80, p < 0.005). The odds of a death caused by asthma occurring on days with mold spore counts of 1000 spores per cubic meter or greater was 2.16 times higher (95% confidence interval = 1.31, 3.56, p = 0.003) than on days on which mold spore counts were less than 1000 spores per cubic meter. The association with mold spore levels remained significant on multivariate logistic regression with mold spore counts measured as a continuous variable and controlling for pollens, with the odds of an asthma-related death occurring being 1.2 times higher (95% confidence interval = 1.07-1.34) for every increase of 1000 spores per cubic meter in daily mold spore levels. Although death caused by asthma also involves personal, social, and medical access factors, these data suggest that exposure to environmental molds may play a role in asthma-related mortality and should be considered in prevention strategies.
A simulator for airborne laser swath mapping via photon counting
NASA Astrophysics Data System (ADS)
Slatton, K. C.; Carter, W. E.; Shrestha, R.
2005-06-01
Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.
Raman lidar for hydrogen gas concentration monitoring and future radioactive waste management.
Liméry, Anasthase; Cézard, Nicolas; Fleury, Didier; Goular, Didier; Planchat, Christophe; Bertrand, Johan; Hauchecorne, Alain
2017-11-27
A multi-channel Raman lidar has been developed, allowing for the first time simultaneous and high-resolution profiling of hydrogen gas and water vapor. The lidar measures vibrational Raman scattering in the UV (355 nm) domain. It works in a high-bandwidth photon counting regime using fast SiPM detectors and takes into account the spectral overlap between hydrogen and water vapor Raman spectra. Measurement of concentration profiles of H 2 and H 2 O are demonstrated along a 5-meter-long open gas cell with 1-meter resolution at 85 meters. The instrument precision is investigated by numerical simulation to anticipate the potential performance at longer range. This lidar could find applications in the French project Cigéo for monitoring radioactive waste disposal cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Andrew D.; Croft, Stephen; Shephard, Adam M.
2015-12-01
The Enrichment Meter Principle (EMP) is the basis for a commonly used standard test method for the non-destructive assay of 235U enrichment in bulk compounds [1]. The technique involves determining the net count rate in the direct 186 keV peak using medium or high energy gamma-ray spectrometry in a fixed geometry. With suitable correction for wall attenuation, compound type, rate loss (live time), and peaked background (if significant), the atom fraction of 235U may be obtained from the counting rate from a linear relationship through the origin. The widespread use of this method for field verification of enrichment [2,3] togethermore » with the fact that the response function rests on fundamental physics considerations (i.e., is not represented by a convenient but arbitrary form) makes it an interesting example of uncertainty quantification, one in which one can expect a valid measurement model can be applied. When applied using NaI(Tl) and region of interest analysis, the technique is susceptible to both interference error and bias [2-4]. When implemented using high-resolution gamma-ray spectroscopy, the spectrum interpretation is considerable simplified and more robust [5]. However, a practical challenge to studying the uncertainty budget of the EMP method (for example, to test linearity, extract wall corrections and so forth using modern methods) is the availability of quality experimental data that can be referenced and shared. To fill this gap, the research team undertook an experimental campaign [6]. A measurement campaign was conducted to produce high-resolution gamma spectroscopy enrichment meter data comparable to UF 6 cylinder measurements. The purpose of this report is to provide both an introduction to and quality assurance (QA) of the raw data produced. This report is intended for the analyst or researcher who uses the raw data. Unfortunately, the raw data (i.e., the spectra files) are too voluminous to include in this report but can be requested from Steven Croft of the Safeguards & Security Technology Group (scroft@ornl.gov 865-241-2834). The complete processed data are tabulated in Appendix A. The analysis techniques used to produce the QA data presented in this report [e.g., three regions-ofinterest (ROI) peak extraction and batch analysis processes] are not the most sophisticated techniques available; analysts are encouraged to reanalyze the raw data using more sensitive techniques and to improve upon the results presented here. With that being said, the analysis techniques used here are more than adequate to present and inspect the quality of the data.« less
Kamate, Wasim Ismail; Vibhute, Nupura Aniket; Baad, Rajendra Krishna
2017-04-01
Pregnancy, a period from conception till birth, causes changes in the functioning of the human body as a whole and specifically in the oral cavity that may favour the emergence of dental caries. Many studies have shown pregnant women at increased risk for dental caries, however, specific salivary caries risk factors and the particular period of pregnancy at heightened risk for dental caries are yet to be explored and give a scope of further research in this area. The aim of the present study was to assess the severity of dental caries in pregnant women compared to non-pregnant women by evaluating parameters like Decayed, Missing, Filled Teeth (DMFT) index, salivary Streptococcus mutans count, flow rate, pH and total calcium content. A total of 50 first time pregnant women in the first trimester were followed during their second trimester, third trimester and postpartum period for the evaluation of DMFT by World Health Organization (WHO) scoring criteria, salivary flow rate by drooling method, salivary pH by pH meter, salivary total calcium content by bioassay test kit and salivary Streptococcus mutans count by semiautomatic counting of colonies grown on Mitis Salivarius (MS) agar supplemented by 0.2U/ml of bacitracin and 10% sucrose. The observations of pregnant women were then compared with same parameters evaluated in the 50 non-pregnant women. Paired t-test and Wilcoxon sign rank test were performed to assess the association between the study parameters. Evaluation of different caries risk factors between pregnant and non-pregnant women clearly showed that pregnant women were at a higher risk for dental caries. Comparison of caries risk parameters during the three trimesters and postpartum period showed that the salivary Streptococcus mutans count had significantly increased in the second trimester , third trimester and postpartum period while the mean pH and mean salivary total calcium content decreased in the third trimester and postpartum period. These changes reflected on the DMFT score which increased in the third trimester and postpartum period. The results of this study suggest that there is a definite correlation between pregnancy and dental caries. We conclude that the third trimester and postpartum period of pregnancy are the periods during which the pregnant women are at a higher risk for development of dental caries.
Measurement of liner slips, milking time, and milk yield.
O'Callaghan, E J
1996-03-01
Liner slip or rapid air leakage past the mouthpiece of the milking machine liner is related to high rates of new cases of mastitis. A real time technique was developed to monitor the air flow into the milking machine cluster during liner slips as well as to monitor milking time and milk yield using a commercial type pipeline milking system. The air flow into the cluster was measured by recording the pressure differences across an orifice plate placed in the air bypass of an air-milk separator using a differential pressure transducer. Milk yield was recorded by counting the number of milk releases from an electronic milk meter. The release solenoids of the milk meter were linked to a computer. The start and end of milking were manually recorded by switching a two-pole switch connected to a digital input card on the computer, which was programmed to record air flow, milk yield, and milking time. Milk yield, milking time, and air flows during liner slips were recorded simultaneously at each milking unit in an 11-unit herringbone parlor. The system was tested with an experiment with a 4 x 4 Latin square design using four treatments (clusters) and four treatment groups (22 cows per group).
The effects of vertical motion on the performance of current meters
Thibodeaux, K.G.; Futrell, J. C.
1987-01-01
A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)
Murray, Louis C.
2009-01-01
Water-use data collected between 1992 and 2006 at eight municipal water-supply utilities in east-central and northeast Florida were analyzed to identify seasonal trends in use and to quantify monthly variations. Regression analyses were applied to identify significant correlations between water use and selected meteorological parameters and drought indices. Selected parameters and indices include precipitation (P), air temperature (T), potential evapotranspiration (PET), available water (P-PET), monthly changes in these parameters (Delta P, Delta T, Delta PET, Delta(P-PET), the Palmer Drought Severity Index (PDSI), and the Standardized Precipitation Index (SPI). Selected utilities include the City of Daytona Beach (Daytona), the City of Eustis (Eustis), Gainesville Regional Utilities (GRU), Jacksonville Electric Authority (JEA), Orange County Utilities (OCU), Orlando Utilities Commission (OUC), Seminole County Utilities (SCU), and the City of St. Augustine (St. Augustine). Water-use rates at these utilities in 2006 ranged from about 3.2 million gallons per day at Eustis to about 131 million gallons per day at JEA. Total water-use rates increased at all utilities throughout the 15-year period of record, ranging from about 4 percent at Daytona to greater than 200 percent at OCU and SCU. Metered rates, however, decreased at six of the eight utilities, ranging from about 2 percent at OCU and OUC to about 17 percent at Eustis. Decreases in metered rates occurred because the number of metered connections increased at a greater rate than did total water use, suggesting that factors other than just population growth may play important roles in water-use dynamics. Given the absence of a concurrent trend in precipitation, these decreases can likely be attributed to changes in non-climatic factors such as water-use type, usage of reclaimed water, water-use restrictions, demographics, and so forth. When averaged for the eight utilities, metered water-use rates depict a clear seasonal pattern in which rates were lowest in the winter and greatest in the late spring. Averaged water-use rates ranged from about 9 percent below the 15-year daily mean in January to about 11 percent above the daily mean in May. Water-use rates were found to be statistically correlated to meteorological parameters and drought indices, and to be influenced by system memory. Metered rates (in gallons per day per active metered connection) were consistently found to be influenced by P, T, PET, and P-PET and changes in these parameters that occurred in prior months. In the single-variant analyses, best correlations were obtained by fitting polynomial functions to plots of metered rates versus moving-averaged values of selected parameters (R2 values greater than 0.50 at three of eight sites). Overall, metered water-use rates were best correlated with the 3- to 4-month moving average of Delta T or Delta PET (R2 values up to 0.66), whereas the full suite of meteorological parameters was best correlated with metered rates at Daytona and least correlated with rates at St. Augustine. Similarly, metered rates were substantially better correlated with moving-averaged values of precipitation (significant at all eight sites) than with single (current) monthly values (significant at only three sites). Total and metered water-use rates were positively correlated with T, PET, Delta P, Delta T, and Delta PET, and negatively correlated with P, P-PET, Delta (P-PET), PDSI, and SPI. The drought indices were better correlated with total water-use rates than with metered rates, whereas metered rates were better correlated with meteorological parameters. Multivariant analyses produced fits of the data that explained a greater degree of the variance in metered rates than did the single-variant analyses. Adjusted R2 values for the 'best' models ranged from 0.79 at JEA to 0.29 at St. Augustine and exceeded 0.60 at five of eight sites. The amount of available water (P-PET) was the si
NASA Astrophysics Data System (ADS)
Darghouth, Naim Richard
Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing three types of retail rates (a flat rate, a time-of-use rate, and real-time pricing) from these wholesale price profiles, I examine bill savings from PV generation for the ten wholesale market scenarios under net metering and an alternative to net metering where hourly excess PV generation is compensated at the wholesale price. Most generally, I challenge the common assertion that PV compensation is likely to stay constant (or rise) due to constant (or rising) retail rates, and find that future electricity market scenarios can drive substantial changes in residential retail rates and that these changes, in concert with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.
Integrating seepage heterogeneity with the use of ganged seepage meters
Rosenberry, D.O.
2005-01-01
The usefulness of standard half-barrel seepage meters for measurement of fluxes between groundwater, and surface water is limited by the small bed area that each measurement represents and the relatively large associated labor costs. Standard half-barrel cylinders were ganged together to allow one measurement of the summed seepage through all of the meters, reducing labor cost and increasing the representative area of measurement. Comparisons of ganged versus individual-meter measurements at two lakes, under both inseepage and outseepage conditions, indicate little loss of efficiency resulting from routing seepage water through the ganging system. Differences between summed and ganged seepage rates were not significant for all but the fastest rates of seepage. At flow rates greater than about 250 mL min-1, ganged values were as low as 80% of summed values. Ganged-meter head losses also were calculated to determine their significance relative to hydraulic-head gradients measured at the field sites. The calculated reduction in hydraulic gradient beneath the seepage meters was significant only for the largest measured seepage rates. A calibration tank was used to determine single-meter and ganged-meter efficiencies compared to known seepage rates. Single-cylinder seepage meters required an average correction factor of 1.05 to convert measured to actual values, whereas the ganged measurements made in the tank required a larger correction factor of 1.14. Although manual measurements were used in these tests, the concept of ganging seepage cylinders also would be useful when used in conjunction with automated flowmeters. ?? 2005, by the American Society of Limnology and Oceanography, Inc.
Controlling Low-Rate Signal Path Microdischarge for an Ultra-Low-Background Proportional Counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco
2013-05-01
ABSTRACT Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) made of high purity copper. These detectors are part of an ultra-low-background counting system (ULBCS) in the newly constructed shallow underground laboratory at PNNL (at a depth of ~30 meters water-equivalent). To control backgrounds, the current preamplifier electronics are located outside the ULBCS shielding. Thus the signal from the detector travels through ~1 meter of cable and is potentially susceptible to high voltage microdischarge and other sources of electronic noise. Based on initial successful tests, commercial cables and connectors were used for this critical signal path. Subsequentmore » testing across different batches of commercial cables and connectors, however, showed unwanted (but still low) rates of microdischarge noise. To control this noise source, two approaches were pursued: first, to carefully validate cables, connectors, and other commercial components in this critical signal path, making modifications where necessary; second, to develop a custom low-noise, low-background preamplifier that can be integrated with the ULBPC and thus remove most commercial components from the critical signal path. This integrated preamplifier approach is based on the Amptek A250 low-noise charge-integrating preamplifier module. The initial microdischarge signals observed are presented and characterized according to the suspected source. Each of the approaches for mitigation is described, and the results from both are compared with each other and with the original performance seen with commercial cables and connectors.« less
Sedimentation History of Lago Dos Bocas, Puerto Rico, 1942-2005
Soler-López, Luis R.
2007-01-01
The Lago Dos Bocas Dam, located in the municipality of Utuado in north central Puerto Rico, was constructed in 1942 for hydroelectric power generation. The reservoir had an original storage capacity of 37.50 million cubic meters and a drainage area of 440 square kilometers. In 1948, the construction of the Lago Caonillas Dam on the Rio Caonillas branch of Lago Dos Bocas reduced the natural sediment-contributing drainage area to 310 square kilometers; therefore, the Lago Caonillas Dam is considered an effective sediment trap. Sedimentation in Lago Dos Bocas reservoir has reduced the storage capacity from 37.50 million cubic meters in 1942 to 17.26 million cubic meters in 2005, which represents a storage loss of about 54 percent. The long-term annual water-storage capacity loss rate remained nearly constant at about 320,000 cubic meters per year to about 1997. The inter-survey sedimentation rate between 1997 and 1999, however, is higher than the long-term rate at about 1.09 million cubic meters per year. Between 1999 and 2005 the rate is lower than the long-term rate at about 0.13 million cubic meters per year. The Lago Dos Bocas effective sediment-contributing drainage area had an average sediment yield of about 1,400 cubic meters per square kilometer per year between 1942 and 1997. This rate increased substantially by 1999 to about 4,600 cubic meters per square kilometer per year, probably resulting from the historical magnitude floods caused by Hurricane Georges in 1998. Recent data indicate that the Lago Dos Bocas drainage area sediment yield decreased substantially to about 570 cubic meters per square kilometer per year, which is much lower than the 1942-1997 area normalized sedimentation rate of 1,235 cubic meters per square kilometer per year. The impact of Hurricane Georges on the basin sediment yield could have been the cause of this change, since the magnitude of the floods could have nearly depleted the Lago Dos Bocas drainage area of easily erodible and transportable bed sediment. This report summarizes the historical change in water-storage capacity of Lago Dos Bocas between 1942 and 2005.
Martian cratering 11. Utilizing decameter scale crater populations to study Martian history
NASA Astrophysics Data System (ADS)
Hartmann, W. K.; Daubar, I. J.
2017-03-01
New information has been obtained in recent years regarding formation rates and the production size-frequency distribution (PSFD) of decameter-scale primary Martian craters formed during recent orbiter missions. Here we compare the PSFD of the currently forming small primaries (P) with new data on the PSFD of the total small crater population that includes primaries and field secondaries (P + fS), which represents an average over longer time periods. The two data sets, if used in a combined manner, have extraordinary potential for clarifying not only the evolutionary history and resurfacing episodes of small Martian geological formations (as small as one or few km2) but also possible episodes of recent climatic change. In response to recent discussions of statistical methodologies, we point out that crater counts do not produce idealized statistics, and that inherent uncertainties limit improvements that can be made by more sophisticated statistical analyses. We propose three mutually supportive procedures for interpreting crater counts of small craters in this context. Applications of these procedures support suggestions that topographic features in upper meters of mid-latitude ice-rich areas date only from the last few periods of extreme Martian obliquity, and associated predicted climate excursions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.
In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2013-07-01
In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.
Duncan, Dustin T.; Tamura, Kosuke; Regan, Seann D.; Athens, Jessica; Elbel, Brian; Meline, Julie; Al-Ajlouni, Yazan A.; Chaix, Basile
2016-01-01
Purpose To examine if there was spatial misclassification in exposure to neighborhood noise complaints among a sample of low-income housing residents in New York City, comparing home-based spatial buffers and Global Positioning Systems (GPS) daily path buffers. Methods Data came from the community-based NYC Low-Income Housing, Neighborhoods and Health Study, where GPS tracking of the sample was conducted for a week (analytic n=102). We created a GPS daily path buffer (a buffering zone drawn around GPS tracks) of 200-meters and 400-meters. We also used home-based buffers of 200-meters and 400-meters. Using these “neighborhoods” (or exposure areas) we calculated neighborhood exposure to noisy events from 311 complaints data (analytic n=143,967). Friedman tests (to compare overall differences in neighborhood definitions) were applied. Results There were differences in neighborhood noise complaints according to the selected neighborhood definitions (p<0.05). For example, the mean neighborhood noise complaint count was 1196 per square kilometer for the 400-meter home-based and 812 per square kilometer for the 400-meter activity space buffer, illustrating how neighborhood definition influences the estimates of exposure to neighborhood noise complaints. Conclusions These analyses suggest that, whenever appropriate, GPS neighborhood definitions can be used in spatial epidemiology research in spatially mobile populations to understand people's lived experience. PMID:28063754
Radiation dose-rate meter using an energy-sensitive counter
Kopp, Manfred K.
1988-01-01
A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.
Offshore multiphase meter nears acceptable accuracy level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaisford, S.; Amdal, J.; Berentsen, H.
1993-05-17
Companies worldwide are looking for new production methods for offshore oil fields. In many areas, undeveloped smaller fields cannot bear the cost of dedicated production facilities. Multiphase transportation to existing production facilities can extend the distance over which unseparated oil, water, and gas streams can be transported, from a limit of several kilometers today to perhaps 200 km in the future. An encouraging multiphase meter test was sponsored by Saga Petroleum AS and carried out by Den norske stats oljeselskap AS (Statoil) on the Gullfaks B platform, Norwegian sector of the North Sea. The complete multiphase meter has two separatemore » meters. One is the composition meter for measuring the instantaneous volume or mass fractions of oil, water, and gas in the sensor. The other is a velocity meter for determining the speed of the mixture through the sensor. An instantaneous volume or mass production rate for each component is calculated by combining the outputs from the two meters. The paper describes the multiphase meter; measurements; limitations; the test setup; calibration; test results for the composition meter, velocity meter, and production rates; and future plans.« less
NASA Technical Reports Server (NTRS)
Walthall, Harry G.; Reay, William G.
1993-01-01
Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.
Brook trout movement during and after recolonization of a naturally defaunated stream reach
Craig N. Roghair; C. Andrew Dolloff
2005-01-01
In june 1995 a debris flow associated with a massive streamwide flood completely eliminated brook trout Salvelinus fontinalis from the lower 1.9 km of the Staunton River in Shenandoah National Park, Virginia. Biannual diver counts revealed that brook trout moved several hundred meters into the debris-flow-affected area each year, resulting in...
Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2013-01-01
In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.
Vibhute, Nupura Aniket; Baad, Rajendra Krishna
2017-01-01
Introduction Pregnancy, a period from conception till birth, causes changes in the functioning of the human body as a whole and specifically in the oral cavity that may favour the emergence of dental caries. Many studies have shown pregnant women at increased risk for dental caries, however, specific salivary caries risk factors and the particular period of pregnancy at heightened risk for dental caries are yet to be explored and give a scope of further research in this area. Aim The aim of the present study was to assess the severity of dental caries in pregnant women compared to non-pregnant women by evaluating parameters like Decayed, Missing, Filled Teeth (DMFT) index, salivary Streptococcus mutans count, flow rate, pH and total calcium content. Materials and Methods A total of 50 first time pregnant women in the first trimester were followed during their second trimester, third trimester and postpartum period for the evaluation of DMFT by World Health Organization (WHO) scoring criteria, salivary flow rate by drooling method, salivary pH by pH meter, salivary total calcium content by bioassay test kit and salivary Streptococcus mutans count by semiautomatic counting of colonies grown on Mitis Salivarius (MS) agar supplemented by 0.2U/ml of bacitracin and 10% sucrose. The observations of pregnant women were then compared with same parameters evaluated in the 50 non-pregnant women. Paired t-test and Wilcoxon sign rank test were performed to assess the association between the study parameters. Results Evaluation of different caries risk factors between pregnant and non-pregnant women clearly showed that pregnant women were at a higher risk for dental caries. Comparison of caries risk parameters during the three trimesters and postpartum period showed that the salivary Streptococcus mutans count had significantly increased in the second trimester, third trimester and postpartum period while the mean pH and mean salivary total calcium content decreased in the third trimester and postpartum period. These changes reflected on the DMFT score which increased in the third trimester and postpartum period. Conclusion The results of this study suggest that there is a definite correlation between pregnancy and dental caries. We conclude that the third trimester and postpartum period of pregnancy are the periods during which the pregnant women are at a higher risk for development of dental caries. PMID:28571283
Preliminary design approach for large high precision segmented reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
A Tube Seepage Meter for In Situ Measurement of Seepage Rate and Groundwater Sampling.
Solder, John E; Gilmore, Troy E; Genereux, David P; Solomon, D Kip
2016-07-01
We designed and evaluated a "tube seepage meter" for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device. © 2015, National Ground Water Association.
A Large Asymmetry in the Distribution of Faint Stars in the Inner Galaxy
NASA Astrophysics Data System (ADS)
Parker, J. E.; Humphreys, R. M.; Larsen, J. A.
2002-12-01
We present a star count analysis of the faint stars on either side of the Sun-Center line, from l=±20 deg -- ±75 deg and b=+20 deg -- +50 deg with data from 40 POSS I fields. Larsen & Humphreys (1996) found a significant asymmetry in the number of faint blue stars on either side of the line to the Galactic center with significantly more stars observed in the first quadrant. Using a galactic model, we chose color ranges to distinguish between halo/thick disk and old disk stellar populations. Our results indicate that the stellar excess is comprised of mainly halo/thick disk stars and that it increases with fainter magnitudes. In addition, we analyzed the star counts for 40 fields above the plane compared to their 40 complementary fields below the plane (b=±20 deg -- ±50 deg). We find that the excess is also present in quadrant I below the plane. It is possible that the excess in star counts may be due to a bar--induced ``wake", an interaction of the disk by a merger, or a result of a triaxial thick disk/inner halo. Spectroscopic observations have been made using both the CTIO 4 meter and the KPNO WIYN 3.5 meter telescopes with HYDRA to measure the radial velocities and classify nearly 1000 stars. The objective is to determine the extent of the asymmetry and the nature and kinematics of the stars responsible.
[Adhesion loss of syrups in a metering glass which consists of a low surface free energy material].
Yamamoto, Yoshihisa; Suzuki, Toyofumi; Hashizaki, Kaname; Ogura, Masao; Umeda, Yukiko; Hidaka, Shinji; Fukami, Toshiro; Tomono, Kazuo
2010-08-01
We previously reported a strong positive correlation between syrup viscosity and the rate of syrup loss due to adhesion to a glass metering device. In this study, we examined differences in the surface free energies of metering devices made of different polymeric materials, since reducing adhesion loss to metering devices could improve the efficiency of drug preparation involving highly viscous syrups. Among metering devices made of glass only, glass with a silicone coating (SLC), polypropylene (PP), and polymethylpentene (PMP) the surface free energy of the glass-only metering device was the highest (49.2 mN/m). The adhesion loss obtained for highly viscous syrups in the PP and PMP metering devices was significantly lower than that of the glass metering device. Measurements of syrup contact angles suggested that in metering devices made of PP and PMP, which have low surface free energies, a decrease in the spreading wetting of syrups was a factor in reducing the rate of adhesion loss. Thus irrespective of the syrup viscosity being measured, metering devices produced from materials with low surface free energies can reduce the time required to prepare prescriptions without compromising the accuracy of drug preparation.
NASA Astrophysics Data System (ADS)
Kreutz, K. J.; Campbell, S. W.; Winski, D.; Osterberg, E. C.; Kochtitzky, W. H.; Copland, L.; Dixon, D.; Introne, D.; Medrzycka, D.; Main, B.; Bernsen, S.; Wake, C. P.
2017-12-01
A growing array of high-resolution paleoclimate records from the terrestrial region bordering the Gulf of Alaska (GoA) continues to reveal details about ocean-atmosphere variability in the region during the Common Era. Ice core records from high-elevation ranges in proximity to the GoA provide key information on extratropical hydroclimate, and potential teleconnections to low latitude regions. In particular, stable water isotope and snow accumulation reconstructions from ice cores collected in high precipitation locations are uniquely tied to regional water cycle changes. Here we present new data collected in 2016 and 2017 from the St. Elias Mountains (Eclipse Icefield, Yukon Territories, Canada), including a range of ice core and geophysical measurements. Low- and high-frequency ice penetrating radar data enable detailed mapping of icefield bedrock topography and internal reflector stratigraphy. The 1911 Katmai eruption layer can be clearly traced across the icefield, and tied definitively to the coeval ash layer found in the 345 meter ice core drilled at Eclipse Icefield in 2002. High-resolution radar data are used to map spatial variability in 2015/16 and 2016/17 snow accumulation. Ice velocity data from repeat GPS stake measurements and remote sensing feature tracking reveal a clear divide flow regime on the icefield. Shallow firn/ice cores (20 meters in 2017 and 65 meters in 2016) are used to update the 345 meter ice core drilled at Eclipse Icefield in 2002. We use new algorithm-based layer counting software to improve and provide error estimates on the new ice core chronology, which extends from 2017 to 1450AD. 3D finite element modeling, incorporating all available geophysical data, is used to refine the reconstructed accumulation rate record and account for vertical and horizontal ice flow. Together with high-resolution stable water isotope data, the updated Eclipse record provides detailed, sub-annual resolution data on several aspects of the regional water cycle (e.g., accumulation/precipitation, moisture source and trajectory, coupled ocean/atmosphere variability). We compare the updated Eclipse record with other data in the North Pacific region, including the new Denali 1200-year ice core datasets, to assess regional hydroclimate variability during the Common Era.
... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... leases in depths less than 400 meters with an initial period longer than 5 years, royalty rates, minimum... $25.00 per acre or fraction thereof for blocks in water depths of less than 400 meters. $100.00 per acre or fraction thereof for blocks in water depths of 400 meters or deeper. Rental Rates Annual rental...
Sedimentation survey of Lago Cerrillos, Ponce, Puerto Rico, April-May 2008
Soler-López, Luis R.
2011-01-01
Lago Cerrillos dam, located in the municipality of Ponce in southern Puerto Rico, was constructed in 1991 as part of the multipurpose Rio Portugues and Bucana Project. This project provides flood protection, water supply, and recreation facilities for the municipio of Ponce. The reservoir had an original storage capacity of 38.03 million cubic meters at maximum conservation pool elevation of 174.65 meters above mean sea level and a drainage area of 45.32 square kilometers. Sedimentation in Lago Cerrillos reservoir has reduced the storage capacity from 38.03 million cubic meters in 1991 to 37.26 million cubic meters in 2008, which represents a total storage loss of about 2 percent. During July 29 to August 23, 2002, 8,492 cubic meters of sediment were removed from the Rio Cerrillos mouth of the reservoir. Taking into account this removed material, the total water-storage loss as of 2008 is 778,492 cubic meters, and the long-term annual water-storage capacity loss rate is about 45,794 cubic meters per year or about 0.12 percent per year. The Lago Cerrillos net sediment-contributing drainage area has an average sediment yield of about 1,069 cubic meters per square kilometer per year. Sediment accumulation in Lago Cerrillos is not uniformly distributed and averages about 3 meters in thickness. This represents a sediment deposition rate of about 18 centimeters per year. On the basis of the 2008 reservoir storage capacity of 37.26 million cubic meters per year and a long-term sedimentation rate of 45,794 cubic meters per year, Lago Cerrillos is estimated to have a useful life of about 814 years or until the year 2822.
Weinstein, Y.; Shalem, Y.; Burnett, W.C.; Swarzenski, P.W.; Herut, B.
2007-01-01
Seep meter data from Dor Bay, Israel, showed a steady decrease in submarine groundwater discharge (SGD) rates between March and July 2006 (averages of 34, 10.4 and 1.5 cm d-1 in March, May and July, respectively), while estimates based on radon time series showed remarkably uniform averages (8 cm d-1). The May seep meter data show a rough positive correlation with sea level, unlike the negative correlation shown by the Rn-calculated rates. Smaller-size meters, deployed in July adjacent to the regular-size ones, showed significantly higher rates (10 cm d-1), which negatively correlated with salinity. It is suggested that the decreased rates documented by the seep meters are the result of an increased shallow seawater recharge in the bay (due to decreasing hydraulic gradients). This is not captured by the radon, since recharging water is radon-poor. The positive correlation of discharge with sea level is due to increased seawater recycling in times of high sea stand. Copyright ?? 2007 IAHS Press.
Compton suppression gamma-counting: The effect of count rate
Millard, H.T.
1984-01-01
Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.
Pulse pileup statistics for energy discriminating photon counting x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir
Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analyticallymore » for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The monoenergetic image with maximum contrast-to-noise ratio from dual energy imaging with ideal photon counting is only slightly better than with dual kVp energy integration, and with a bipolar pulse model, energy integration outperforms photon counting for this particular metric because of the count rate losses. However, the material resolving capability of photon counting can be superior to energy integration with dual kVp even in the presence of pileup because of the energy information available to photon counting. Conclusions: A computationally efficient multinomial approximation of the count statistics that is based on the mean output spectrum can accurately predict imaging performance. This enables photon counting system designers to directly relate the effect of pileup to its impact on imaging statistics and how to best take advantage of the benefits of energy discriminating photon counting detectors, such as material separation with spectral imaging.« less
Advanced Metering Infrastructure based on Smart Meters
NASA Astrophysics Data System (ADS)
Suzuki, Hiroshi
By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.
Visible and Ultraviolet Detectors for High Earth Orbit and Lunar Observatories
NASA Technical Reports Server (NTRS)
Woodgate, Bruce E.
1989-01-01
The current status of detectors for the visible and UV for future large observatories in earth orbit and the moon is briefly reviewed. For the visible, CCDs have the highest quantum efficiency, but are subject to contamination of the data by cosmic ray hits. For the moon, the level of hits can be brought down to that at the earth's surface by shielding below about 20 meters of rock. For high earth orbits above the geomagnetic shield, CCDs might be able to be used by combining many short exposures and vetoing the cosmic ray hits, otherwise photoemissive detectors will be necessary. For the UV, photoemissive detectors will be necessary to reject the visible; to use CCDs would require the development of UV-efficient filters which reject the visible by many orders of magnitude. Development of higher count rate capability would be desirable for photoemissive detectors.
Gamma radiation field intensity meter
Thacker, Louis H.
1994-01-01
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Gamma radiation field intensity meter
Thacker, Louis H.
1995-01-01
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Structural concepts for very large (400-meter-diameter) solar concentrators
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Hedgepeth, John M.
1989-01-01
A general discussion of various types of large space structures is presented. A brief overview of the history of space structures is presented to provide insight into the current state-of-the art. Finally, the results of a structural study to assess the viability of very large solar concentrators are presented. These results include weight, stiffness, part count, and in-space construction time.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
...% polyester/4-10% spandex (includes both face and backer fabric). Overall weight: 287-351 grams per square... spandex (filament) Thread count: 49-52 picks per cm x 43-45 picks per cm Weight: 121.5-148.5 grams per... grams per square meter Width: Selvedge: 150.4-154.4 cm; Minimum cuttable: 145.3-149.3 cm Coloration...
Intravenous fluid flow meter concept for zero gravity environment
NASA Technical Reports Server (NTRS)
Miller, C. G.
1972-01-01
Measuring chamber, included in infusion-set tubing, and peristaltic flow meter concept can be incorporated into flow meter that measures fluid flow rates between 100 and 600 cu cm per hour and at the same time maintains sterilization.
Quantifying exchange between groundwater and surface water in rarely measured organic sediments
NASA Astrophysics Data System (ADS)
Rosenberry, D. O.; Cavas, M.; Keith, D.; Gefell, M. J.; Jones, P. M.
2016-12-01
Transfer of water and chemicals between poorly competent organic sediments and surface water in low-energy riverine and lentic settings depends on several factors, including rate and direction of flow, redox state, number and type of benthic invertebrates, and chemical gradients at and near the sediment-water interface. In spite of their commonly large areal extent, direct measurements of flow in soft, organic sediments are rarely made and little is known about flux direction, rate, or heterogeneity. Commonly used monitoring wells are difficult to install and suffer from slow response to changing hydraulic head due to the low permeability of these sediments. Seepage meters can directly quantify seepage flux if several challenges can be overcome. Meters are difficult to install and operate where water is deep, visibility is poor, and the position of the sediment-water interface is not readily apparent. Soft, easily eroded sediment can be displaced during meter installation, creating bypass flow beneath the bottom of the seepage cylinder. Poorly competent sediments often cannot support the weight of the meters; they slowly sink into the bed and displace water inside the seepage cylinder, which leads to the interpretation of large upward flow. Decaying organic material within the sediment generates gas that can displace water and corrupt seepage-meter measurements. Several inexpensive modifications to a standard seepage meter, as well as precautions during installation and operation, can minimize these sources of error. Underwater video cameras can be mounted to the meter to remotely observe sediment disturbance during sensor installation and monitor the stability of the meter insertion depth during the period of deployment. Anchor rods can be driven a meter or more into the sediment until refusal, firmly anchoring the seepage meter at a constant sediment insertion depth. Data collected from modified seepage meters installed in Minnesota and New York demonstrate the importance of quantifying flows in these challenging settings where biogeochemistry is complex and seepage rates commonly have been assumed to be insignificantly small.
NASA Astrophysics Data System (ADS)
Hartmann, William K.; Werner, Stephanie C.
2010-06-01
Recent controversies about systems of crater-count dating have been largely resolved, and with continuing refinements, crater counts will offer a fundamental geological tool to interpret not only ages, but also the nature of geological processes altering the surface of Mars. As an example of the latter technique, we present data on two debris aprons east of Hellas. The aprons show much shorter survival times of small craters than do the nearby contiguous plains. The order-of-magnitude depths of layers involved in the loss process can be judged from the depths of the affected craters. We infer that ice-rich layers in the top tens of meters of both aprons have lost crater topography within the last few 10 8 yr, probably due to flow or sublimation of ice-rich materials. Mantling by ice-rich deposits, associated with climate change cycles of obliquity change, has probably also affected both the aprons and the plains. The crater-count tool thus adds chronological and vertical dimensional information to purely morphological studies.
Gamma radiation field intensity meter
Thacker, L.H.
1995-10-17
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
Gamma radiation field intensity meter
Thacker, L.H.
1994-08-16
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
In Situ Soil Venting - Full Scale Test, Hill AFB, Guidance Document. Volume 2
1991-08-01
oxidizer. Another system was connected to the existing air scrubber of a building (Reference 23). The self-contained unit reported by Rippberger...devices on the market for flow rate measurement. Some of the more common devices are orifice meters, venturi meters, rotameters, pitot tubes, hot-wire...Notes on how to size and construct orifice meters can be found in Reference 41. * Venturi Meter - A venturi meter works basically on the same
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100m, even in partly cloudy conditions. The capability to observe subsurface backscatter profiles is achievable but requires much longer transects of several hundreds of meters.
Sedimentation survey of Lago Caonillas, Utuado, Puerto Rico, September–November 2012
Soler-Lopez, Luis R.
2016-11-09
During September–November 2012, the U.S. Geological Survey, in cooperation with the Puerto Rico Aqueduct and Sewer Authority, conducted a sedimentation survey of Lago Caonillas to estimate current (2012) reservoir storage capacity and the recent (2000–2012) reservoir sedimentation rate by comparing the 2012 bathymetric survey data with the February 2000 data. The Lago Caonillas storage capacity, which was 42.27 million cubic meters in February 2000, decreased to 39.55 million cubic meters by September–November 2012. The intersurvey (2000–2012) storage capacity loss was about 6 percent, corresponding to a decrease of about 0.5 percent per year; this loss represents a reservoir sedimentation rate of about 226,670 cubic meters per year between 2000 and 2012. On a long-term basis, however, the sedimentation rate has remained nearly constant, decreasing from about 257,500 to 251,720 cubic meters per year during 1948–2000 and 1948–2012, respectively. Most of the sediment accumulation and associated storage capacity loss of Lago Caonillas has occurred within the eastern and Río Caonillas branches of the reservoir. In the vicinity of the Caonillas Dam, minor sediment deposition and scour have occurred. The Lago Caonillas drainage area sediment yield has decreased by about 2 percent since the previous survey, from 1,266 cubic meters per square kilometer per year in 2000 to 1,237 cubic meters per square kilometer per year in 2012. If the long-term sedimentation rate of 251,720 cubic meters per year remains constant, the useful life of Lago Caonillas may end in about 2169.
Fuel supply device for supplying fuel to an engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, M.H.; Kerr, W.B.
1990-05-29
This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen
2011-06-01
Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers inmore » the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.« less
20-meter underwater wireless optical communication link with 1.5 Gbps data rate.
Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S
2016-10-31
The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.
NASA Astrophysics Data System (ADS)
Hsieh, Scott S.; Pelc, Norbert J.
2014-06-01
Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.
NASA Astrophysics Data System (ADS)
Eriksson, L.; Wienhard, K.; Eriksson, M.; Casey, M. E.; Knoess, C.; Bruckbauer, T.; Hamill, J.; Mulnix, T.; Vollmar, S.; Bendriem, B.; Heiss, W. D.; Nutt, R.
2002-06-01
The first and second generation of the Exact and Exact HR family of scanners has been evaluated in terms of noise equivalent count rate (NEC) and count-rate capabilities. The new National Electrical Manufacturers Association standard was used for the evaluation. In spite of improved electronics and improved count-rate capabilities, the peak NEC was found to be fairly constant between the generations. The results are discussed in terms of the different electronic solutions for the two generations and its implications on system dead time and NEC count-rate capability.
Measuring Pulse Rate Variability using Long-Range, Non-Contact Imaging Photoplethysmography
2016-08-20
subject distances. In this study, video was recorded from 19 participants, while at rest, at a distance of 25 meters from the imaging sensor. A...subject distances of no more than 3 meters . This study demonstrates that pulse rates of less than one beat-per-minute error can be obtained when the...be achieved at long imager-to-subject distances. In this study, video was recorded from 19 participants, while at rest, at a distance of 25 meters
Icing Characteristics of Low Altitude, Supercooled Layer Clouds. Revision
1980-05-01
Droplet Size Distribution 5. Icing Rate Meters C. Accuracy and Sources of Error in the Measurements from the Period 1944-1950 11 1. Rotating...whether currently available LWC meters and icing rate detectors will give re- liable results when flown on helicopters. Concerning the forecasting...Max Dia. Size Distrib. Meter Samples 4 1944 MSP DP -- Al .... 4 6 1946 OR 2,4RC 2,4RHC Al 4RMC -- 3 7 1946-47 NEMO, 4RMC 4RMC AI 4RMC - 31 TN,OH, IN
A tube seepage meter for in situ measurement of seepage rate and groundwater sampling
Solder, John; Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip
2016-01-01
We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device.
The PL/OPA Multichannel Transmissometer Control and Data Acquisition System
1990-12-12
System Calibration and Data Reduction Voltages vi output from the transmissometer measuring beam attenuation over an 7 atmospheric path must be...supporting measurements of extinction and particle counts from visibility meters (0.89 pm) and Particle Measurement Systems aerosol distrometers respectively...The Multichannel Transmissometer is shown schematically in Figures 2.0-1 and 2.0-2. Measurements are made over the two-way path from transmitter
LOSS OF BLOOD AT OPERATION—A Method for Continuous Measurement
Borden, Fred W.
1957-01-01
A method for continuous measurement of surgical blood loss has been devised and has been used clinically in some 400 cases. The method combines volumetric measure of the suction loss and gravimetric measure of the sponge loss. The volumetric device automatically deducts the volume of rinse water used and thus measures the amount of blood collected in a metering cylinder. The suction loss scale shows continuously the amount of blood in the metering cylinder. The gravimetric device requires counting sponges into the weighing pan, and turning a dial scale to deduct the initial weight of the sponges. The volume of blood in the sponges is then read directly on the dial scale. Use of the instrument, which is under the supervision of the anesthesiologist, adds about two minutes per hour to the time normally required for counting the sponges; and about three minutes per hour is required for tending the volumetric instrument. In clinical use, knowing constantly the amount of blood loss permits the starting of transfusion before serious deficit develops, and then maintaining the patient's blood volume at a predetermined optimum level. In some 400 cases the continuous measurement of the blood loss served as a reliable guide for carrying out the loss-replacement plan within close limits of accuracy. ImagesFigure 2.p97-a PMID:13446754
Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources.
Klumpp, John; Brandl, Alexander
2015-03-01
A particle counting and detection system is proposed that searches for elevated count rates in multiple energy regions simultaneously. The system analyzes time-interval data (e.g., time between counts), as this was shown to be a more sensitive technique for detecting low count rate sources compared to analyzing counts per unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The first is intended for situations in which the sample is fixed and can be measured for an unlimited amount of time. The second version is intended to detect sources that are physically moving relative to the detector, such as a truck moving past a fixed roadside detector or a waste storage facility under an airplane. In both cases, the detection system is expected to be active indefinitely; i.e., it is an online detection system. Both versions of the multi-energy detection systems are compared to their respective gross count rate detection systems in terms of Type I and Type II error rates and sensitivity.
Relationship between salivary flow rates and Candida albicans counts.
Navazesh, M; Wood, G J; Brightman, V J
1995-09-01
Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p < 0.001) related to the Candida counts. Unstimulated whole saliva significantly (p < 0.05) differed in persons with Candida counts of 0 versus <500 versus < or = 500. Chewing-stimulated saliva was significantly (p < 0.05) different in persons with 0 counts compared with those with a > or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2012 CFR
2012-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2010 CFR
2010-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2011 CFR
2011-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2013 CFR
2013-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
46 CFR 108.463 - Foam rate: Protein.
Code of Federal Regulations, 2014 CFR
2014-10-01
... least 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area... rate at each outlet must be at least 4.07 liters per minute for each square meter (.1 gallon per minute for each square foot) of liquid surface in the tank. ...
Impact of ground speed and varying seeding rates on meter performance
USDA-ARS?s Scientific Manuscript database
Achieving optimum planter performance is an important requirement for obtaining higher crop yields. Planter performance depends on several factors but meter speed is an important one which is a function of ground speed, seeding rate and row spacing. A study was conducted to evaluate the influence of...
Soler-López, Luis R.; Santos, Carlos R.
2010-01-01
Laguna Grande is a 50-hectare lagoon in the municipio of Fajardo, located in the northeasternmost part of Puerto Rico. Hydrologic, water-quality, and biological data were collected in the lagoon between March 2007 and February 2009 to establish baseline conditions and determine the health of Laguna Grande on the basis of preestablished standards. In addition, a core of bottom material was obtained at one site within the lagoon to establish sediment depositional rates. Water-quality properties measured onsite (temperature, pH, dissolved oxygen, specific conductance, and water transparency) varied temporally rather than areally. All physical properties were in compliance with current regulatory standards established for Puerto Rico. Nutrient concentrations were very low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 0.28 milligram per liter, and the average total phosphorus concentration was 0.02 milligram per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll-a concentration was 6.2 micrograms per liter. Bottom sediment accumulation rates were determined in sediment cores by modeling the downcore activities of lead-210 and cesium-137. Results indicated a sediment depositional rate of about 0.44 centimeter per year. At this rate of sediment accretion, the lagoon may become a marshland in about 700 to 900 years. About 86 percent of the community primary productivity in Laguna Grande was generated by periphyton, primarily algal mats and seagrasses, and the remaining 14 percent was generated by phytoplankton in the water column. Based on the diel studies the total average net community productivity equaled 5.7 grams of oxygen per cubic meter per day (2.1 grams of carbon per cubic meter per day). Most of this productivity was ascribed to periphyton and macrophytes, which produced 4.9 grams of oxygen per cubic meter per day (1.8 grams of carbon per cubic meter per day). Phytoplankton, the plant and algal component of plankton, produced about 0.8 gram of oxygen per cubic meter per day (0.3 gram of carbon per cubic meter per day). The total diel community respiration rate was 23.4 grams of oxygen per cubic meter per day. The respiration rate ascribed to plankton, which consists of all free floating and swimming organisms in the water column, composed 10 percent of this rate (2.9 grams of oxygen per cubic meter per day); respiration by all other organisms composed the remaining 90 percent (20.5 grams of oxygen per cubic meter per day). Plankton gross productivity was 3.7 grams of oxygen per cubic meter per day, equivalent to about 13 percent of the average gross productivity for the entire community (29.1 grams of oxygen per cubic meter per day). The average phytoplankton biomass values in Laguna Grande ranged from 6.0 to 13.6 milligrams per liter. During the study, Laguna Grande contained a phytoplankton standing crop of approximately 5.8 metric tons. Phytoplankton community had a turnover (renewal) rate of about 153 times per year, or roughly about once every 2.5 days. Fecal indicator bacteria concentrations ranged from 160 to 60,000 colonies per 100 milliliters. Concentrations generally were greatest in areas near residential and commercial establishments, and frequently exceeded current regulatory standards established for Puerto Rico.
Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng
2016-01-01
Purpose The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. Materials and Methods We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. Results For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. Conclusion The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea. PMID:26996572
Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng; Oh, Jae-Won; Hong, Chein-Soo
2016-05-01
The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea.
Westfall, J M; McGloin, J
2001-05-01
Ischemic heart disease is the leading cause of death in the United States. Recent studies report inconsistent findings on the changes in the incidence of hospitalizations for ischemic heart disease. These reports have relied primarily on hospital discharge data. Preliminary data suggest that a significant percentage of patients suffering acute myocardial infarction (MI) in rural communities are transferred to urban centers for care. Patients transferred to a second hospital may be counted twice for one episode of ischemic heart disease. To describe the impact of double counting and transfer bias on the estimation of incidence rates and outcomes of ischemic heart disease, specifically acute MI, in the United States. Analysis of state hospital discharge data from Kansas, Colorado (State Inpatient Database [SID]), Nebraska, Arizona, New Jersey, Michigan, Pennsylvania, and Illinois (SID) for the years 1995 to 1997. A matching algorithm was developed for hospital discharges to determine patients counted twice for one episode of ischemic heart disease. Validation of our matching algorithm. Patients reported to have suffered ischemic heart disease (ICD9 codes 410-414, 786.5). Number of patients counted twice for one episode of acute MI. It is estimated that double count rates range from 10% to 15% for all states and increased over the 3 years. Moderate sized rural counties had the highest estimated double count rates at 15% to 20% with a few counties having estimated double count rates a high as 35% to 50%. Older patients and females were less likely to be double counted (P <0.05). Double counting patients has resulted in a significant overestimation in the incidence rate for hospitalization for acute MI. Correction of this double counting reveals a significantly lower incidence rate and a higher in-hospital mortality rate for acute MI. Transferred patients differ significantly from nontransferred patients, introducing significant bias into MI outcome studies. Double counting and transfer bias should be considered when conducting and interpreting research on ischemic heart disease, particularly in rural regions.
Hill, Andrew; Kelly, Eliza; Horswill, Mark S; Watson, Marcus O
2018-02-01
To investigate whether awareness of manual respiratory rate monitoring affects respiratory rate in adults, and whether count duration influences respiratory rate estimates. Nursing textbooks typically suggest that the patient should ideally be unaware of respiratory rate observations; however, there is little published evidence of the effect of awareness on respiratory rate, and none specific to manual measurement. In addition, recommendations about the length of the respiratory rate count vary from text to text, and the relevant empirical evidence is scant, inconsistent and subject to substantial methodological limitations. Experimental study with awareness of respiration monitoring (aware, unaware; randomised between-subjects) and count duration (60 s, 30 s, 15 s; within-subjects) as the independent variables. Respiratory rate (breaths/minute) was the dependent variable. Eighty-two adult volunteers were randomly assigned to aware and unaware conditions. In the baseline block, no live monitoring occurred. In the subsequent experimental block, the researcher informed aware participants that their respiratory rate would be counted, and did so. Respirations were captured throughout via video recording, and counted by blind raters viewing 60-, 30- and 15-s extracts. The data were collected in 2015. There was no baseline difference between the groups. During the experimental block, the respiratory rates of participants in the aware condition were an average of 2.13 breaths/minute lower compared to unaware participants. Reducing the count duration from 1 min to 15 s caused respiratory rate to be underestimated by an average of 2.19 breaths/minute (and 0.95 breaths/minute for 30-s counts). The awareness effect did not depend on count duration. Awareness of monitoring appears to reduce respiratory rate, and shorter monitoring durations yield systematically lower respiratory rate estimates. When interpreting and acting upon respiratory rate data, clinicians should consider the potential influence of these factors, including cumulative effects. © 2017 The Authors. Journal of Clinical Nursing Published by John Wiley & Sons Ltd.
An Investigation of Slurry Fuel Combustion.
1981-01-01
tit Lil’ sitas wtae f).4 mm ap.art. w w =Q L-1~ rAn Li w > 0 0- - q The propane gas flow rate was metered withi a Matlieson Model 604 rotameter and...controlled by a Harris Model 2515 pressure regulator with an output capacity of 0-0.69 MPa. The flow rate of the iydrog’en gas was metered with a...propane 3nd hydrogen flows were calibrated with a Precision Scientific Companv wet-test meter (2.83 ml/rev). The fuel drops were mounted with a
Microbiological Evaluation of Containment Isolators for the Care of Patients with Exotic Diseases.
1980-02-01
The microbiological integrity of containment isolators obtained from Vickers Limited Medical Engineering was evaluated using aerosols of Tl coliphage ...diluted in sterile distilled water (SDW). Aliquots for plate counts were mixed with log phase host cells and the mixture spread evenly on pre-dried...of water was diffi- cult to maintain and measure accurately even with sensitive meters, and finally visual observation of the curvature of the side
Gölcük, Adem; Güler, İnan
2017-01-01
This article proposes the employment of a proportional valve that can calculate the amount of oxygen in the air to be given to patient in accordance with the amount of FiO 2 which is set from the control menu of the ventilation device. To actualize this, a stepper motor-controlled proportional valve was used. Two counts of valves were employed in order to control the gases with 2 bar pressure that came from both the oxygen and medical air tanks. Oxygen and medical air manometers alongside the pressure regulators were utilized to perform this task. It is a fuzzy-logic-based controller which calculates at what rate the proportional valves will be opened and closed for FiO 2 calculation. Fluidity and pressure of air given by the ventilation device were tested with a FlowMeter while the oxygen level was tested using the electronic lung model. The obtained results from the study revealed that stepper motor controlled proportional valve could be safely used in ventilation devices. In this article, it was indicated that fluidity and pressure control could be carried out with just two counts of proportional valve, which could be done with many solenoid valves, so this reduces the cost of ventilator, electrical power consumed by the ventilator, and the dimension of ventilator.
Automatic remote-integration metering center. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippidis, P.A.; Weinreb, M.; de Gil, B.F.
1988-11-01
The report documents a multi-phase program for the development and demonstration of a unique automatic and remote metering system. The system consists of a solid-state meter module to provide electrical consumption data, tamper detection, and load control functions; a central master station to interrogate the meter modules for their data and also to transmit load control signals; and a data display module to be accessible to tenants wishing to obtain their meter readings. The system has the capability to measure and allocate demand and to process time of use rates. It also has a meter accuracy self-test feature. The systemmore » is suitable for both direct metering of multi-family buildings and the sub-metering of master-metered apartment buildings. In addition to describing the system, the report documents the results of a 371-point field trial at Scott Tower, a cooperative apartment building in the Bronx, New York.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, A K; Koniczek, M; Antonuk, L E
Purpose: Photon counting arrays (PCAs) offer several advantages over conventional, fluence-integrating x-ray imagers, such as improved contrast by means of energy windowing. For that reason, we are exploring the feasibility and performance of PCA pixel circuitry based on polycrystalline silicon. This material, unlike the crystalline silicon commonly used in photon counting detectors, lends itself toward the economic manufacture of radiation tolerant, monolithic large area (e.g., ∼43×43 cm2) devices. In this presentation, exploration of maximum count rate, a critical performance parameter for such devices, is reported. Methods: Count rate performance for a variety of pixel circuit designs was explored through detailedmore » circuit simulations over a wide range of parameters (including pixel pitch and operating conditions) with the additional goal of preserving good energy resolution. The count rate simulations assume input events corresponding to a 72 kVp x-ray spectrum with 20 mm Al filtration interacting with a CZT detector at various input flux rates. Output count rates are determined at various photon energy threshold levels, and the percentage of counts lost (e.g., due to deadtime or pile-up) is calculated from the ratio of output to input counts. The energy resolution simulations involve thermal and flicker noise originating from each circuit element in a design. Results: Circuit designs compatible with pixel pitches ranging from 250 to 1000 µm that allow count rates over a megacount per second per pixel appear feasible. Such rates are expected to be suitable for radiographic and fluoroscopic imaging. Results for the analog front-end circuitry of the pixels show that acceptable energy resolution can also be achieved. Conclusion: PCAs created using polycrystalline silicon have the potential to offer monolithic large-area detectors with count rate performance comparable to those of crystalline silicon detectors. Further improvement through detailed circuit simulations and prototyping is expected. Partially supported by NIH grant R01-EB000558. This work was partially supported by NIH grant no. R01-EB000558.« less
Fransen, Erik; Perkisas, Stany; Verhoeven, Veronique; Beauchet, Olivier; Remmen, Roy
2017-01-01
Background Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear. Methods Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients. Results The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length), swing time variability, normalised gait speed (corrected for leg length) and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints. Conclusion Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice could facilitate screening for cognitive impairment. PMID:28570662
The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.
Umar, Dilshad; Dilshad, Bahija; Farhan, Mohammed; Ali, Arshiya; Baroudi, Kusai
2016-01-01
Herbal mouthwashes have been considered to be a more advantageous option to their chemical counterparts, for a long-time. The use of pomegranate fruit dates from ancient times and reports of its therapeutic abilities have echoed throughout the ages. To evaluate the effect on the salivary pH and the Streptococcus mutans count in healthy subjects before and after pomegranate mouthrinse. Fifty healthy patients were randomly divided into two groups of 25 subjects each. Group A was treated with 0.2% chlorhexidine mouthrinse; while Group B was treated with pomegranate peel extract (PPE) mouthrinse and the saliva samples were collected at three different intervals: Prerinse, after 10 min, and 60 min. The salivary pH was measured using a digital pH meter and the S. mutans count was determined by the commercial system Dentocult SM. The statistical analyses used in this study are Mann-Whitney U-test and t-test. PPE mouthrinse had an inhibitory effect on S. mutans count in adults. There was also an increase in the salivary pH after 10 min of the mouthrinse. PPE mouthrinse may be considered as a potential anticariogenic mouthrinse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naim; Barbose, Galen; Wiser, Ryan
2010-03-30
Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods aremore » under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.« less
Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
2004-01-01
We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.
Robust, non-invasive methods for metering groundwater well extraction in remote environments
NASA Astrophysics Data System (ADS)
Bulovic, Nevenka; Keir, Greg; McIntyre, Neil
2017-04-01
Quantifying the rate of extraction from groundwater wells can be essential for regional scale groundwater management and impact assessment. This is especially the case in regions heavily dependent on groundwater such as the semi-arid Surat and Bowen Basins in Queensland, Australia. Of the 30 000+ groundwater wells in this area, the majority of which are used for stock watering and domestic purposes, almost none have flow metering devices installed. As part of a research project to estimate regional groundwater extraction, we have undertaken a small scale flow metering program on a selected set of wells. Conventional in-line flow meters were unsuitable for our project, as both non-invasiveness and adaptability / suitability to a variety of discharge pipe characteristics was critical. We describe the use of two metering technologies not widely used in groundwater applications, non-invasive, clamp-on ultrasonic transit time flow meters and tipping bucket flow meters, as semi-permanent installations on discharge pipes of various artesian and sub-artesian groundwater wells. We present examples of detailed extraction rate time-series, which are of particular value in developing predictive models of water well extraction in data limited areas where water use dynamics and drivers are poorly understood. We conclude by discussing future project trajectories, which include expansion of the monitoring network through development of novel metering techniques and telemetry across large areas of poor connectivity.
Godish, Diana; Godish, Thad
2008-02-01
This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were observed in similar studies with Air-O-Cell samplers. These count differences were relatively small compared with the large differences observed among three count magnifications.
500-514 N. Peshtigo Ct, May 2018, Lindsay Light Radiological Survey
maximum gamma count rate for each lift was recorded on the attached RadiationSurvey Forms. Count rates in the excavation ranged from 1,800 cpm - 5,000 cpm.No count rates were found at any time that exceeded the instrument specific thresholdlimits.
550 E. Illinois, May 2018, Lindsay Light Radiological Survey
Maximum gamma count rate for each lift was recorded on the attached RadiationSurvey Forms. Count rates in the excavation ranged from 1,250 cpm to 4,880 cpm.No count rates were found at any time that exceeded the instrument specific thresholdlimits.
Water leakage management by district metered areas at water distribution networks.
Özdemir, Özgür
2018-03-01
The aim of this study is to design a district metered area (DMA) at water distribution network (WDN) for determination and reduction of water losses in the city of Malatya, Turkey. In the application area, a pilot DMA zone was built by analyzing the existing WDN, topographic map, length of pipes, number of customers, service connections, and valves. In the DMA, International Water Association standard water balance was calculated considering inflow rates and billing records. The ratio of water losses in DMAs was determined as 82%. Moreover, 3124 water meters of 2805 customers were examined while 50% of water meters were detected as faulty. This study revealed that DMA application is useful for the determination of water loss rate in WDNs and identify a cost-effective leakage reduction program.
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
46 CFR 108.489 - Helicopter fueling facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...
NASA Astrophysics Data System (ADS)
Franzetti, M.; Garlan, T.; Le Roy, P.; Delacourt, C.; Cancouët, R.; Graindorge, D.; Deschamps, A.
2011-12-01
Marine sand dunes and sandbanks are mainly observed in continental tidal shelves (North Sea, South China Sea, North Atlantic America) and may be highly dynamic (for example up to 75 m/y in the Marsdiep inlet). So they may pose a potential risk to offshore installations and shipping. Multitemporal mapping of sandwaves, necessary to mitigate this hazard, is complicated by their dynamic character, which is still poorly understood especially in the offshore domain. In consequence, these structures are often defined as moribund at depths greater than 30 meters. The aim of this investigation is to study evolution of deeper (110 meters) complex set of sand bedforms : "Banc du Four" located in the Iroise Sea. The study area is exposed to strong tidal currents and storm waves at the junction of the Northeast Atlantic Ocean and the Western English Channel, conditions favorable to sediment dynamics. The bathymetric data, which form the basis of this study, are two Digital Terrain Modeling's (DTM's) derived from MultiBeam Echosounder (MBES) surveys : "Pourquoi-Pas?" oceanographic research vessel (R/V) in February 2009 (5 meters resolution DTM) and R/V "Albert Lucas" in August 2010 (2 meters resolution DTM). Sandwave parameters (water depth, shape, wavelength, height, symmetry index, ...) have been derived from the 2009 bathymetric data. The Banc du Four is characterized by a large sandbank (45 meters height and 2 km width) flanked by dune fields. The morphological characteristics of the dunes vary greatly (range 30 to 110 meters depth, 40 meters maximal height, 600 meters maximal width, symmetrical to asymmetrical, ...). However, this complexity can be explained by the involved sandwave dynamic (range 0 to 30 meters per year migration velocity). Spatial correlation method, applied on the two DTM's, are used to measure the migration rate. The high migration rates for deeper giant dunes bring to light the dynamic sandwave existence at depths exceeding 30-40 meters, contrary to previously accepted models. Dune asymmetry is proportional to migration rates and the lee side is always oriented towards the direction of movement. These relationships confirm the observations reported in the literature for shallower structures.
Prevalence of Vibrio vulnificus and Vibrio parahaemolyticus in the Maryland Coastal Bays
NASA Astrophysics Data System (ADS)
De Pascuale, V. O.
2016-02-01
The bacterial family of Vibrionaceae is indigenous in the marine estuarine environments such as the Maryland Coastal Bays. Vibrio vulnificus and Vibrio parahaemolyticus are both pathogenic bacteria. Understanding the distribution of Vibrio species is crucial because of the health concerns associated with the bacteria. The aim of this study was to evaluate the overall abundance of bacteria with a focus on Vibrio species in the Maryland Coastal Bays. Seawater samples were collected from 10 different sites that differ with regard to water quality. The total bacteria count (TBC) was determined by two methods: Total plate count and Epifluorescence microscopy. The most-probable-number (MPN) methodology was used to estimate the population of Vibrio parahaemolyticus and Vibrio vulnificus. In addition to the bacteriological analysis, the environmental parameters of temperature and salinity were measured using YSI 6600 multiparameter meter. The average total bacteria count was 2.21 log CFU ml-1. Vibrio vulnificus comprised 5% of the total bacteria count while Vibrio parahaemolyticus comprised only 2% of the total bacteria count. Vibrio vulnificus ranged from 0.30 to 2.48 log MPN ml-1 at the sites tested. Lower Vibrio parahaemolyticus count was observed at the sites with a range of 0.30 to 1.97 log MPN ml-1. There was no significant correlation between the environmental parameters and the Vibrio spp. Since both Vibrio vulnificus and Vibrio parahaemolyticus peak in the summer, there is a potential for a risk of wound infections and gastrointestinal illness based on this data.
-of-Use rates are available in two variations: EV-TOU-2 bills home and vehicle electricity use on a single meter; and EV-TOU bills vehicle electricity use separately, requiring the installation of a second meter. Lower rates are also available to customers who own a natural gas vehicle and use a qualified
A large area detector for neutrons between 2 and 100 MeV
NASA Technical Reports Server (NTRS)
Grannan, R. T.; Koga, R.; Millard, W. A.; Preszler, A. M.; Simnett, G. M.; White, R. S.
1972-01-01
A neutron detector sensitive from 2 to 100 MeV is described. The detector is designed for high altitude balloon flight to measure the flux, energy and direction of albedo neutrons from the earth and to search for solar neutrons. A neutron scatter from a proton is required in each of two liquid scintillator tanks spaced 1 meter apart. The energy of the recoil proton in the first tank is obtained from pulse height analysis of the scintillator output. The energy of the recoil neutron is obtained from its time of flight between the tanks. The detector has been calibrated with 15.3 MeV neutrons and mu mesons. The minimum detectable flux is 10(-4) neutron/sq cm/sec at a counting rate of one per minute; the energy resolution is 12% at 15 MeV and 30% at 100 MeV. The angle between the incoming neutron and the recoil neutron is measured to + or - 10 deg.
High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors
NASA Technical Reports Server (NTRS)
Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.
1993-01-01
Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.
Sidereal variations deep underground in Tasmania
NASA Technical Reports Server (NTRS)
Humble, J. E.; Fenton, A. G.; Fenton, K. B.
1985-01-01
Data from the deep underground vertically directed muon telescopes at Poatina, Tasmania, have been used since 1972 for a number of investigations, including the daily intensity variations, atmospheric influences, and checking for possible effects due to the interplanetary magnetic field. These telescopes have a total sensitive area of only 3 square meters, with the result that the counting rate is low (about 1680 events per hour) and the statistical errors on the results are rather large. Consequently, it was decided several years ago to construct larger detectors for this station. The first of these telescopes has been in operation for two complete years, and the results from it are presented. Results from the new, more stable equipment at Poatina appear to confirm the existence of a first harmonic in the daily variations in sidereal time reported earlier, and are consistent with small or non-existent first harmonics in solar and anti-sidereal time. All the second harmonics appear to be small, if not zero at these energies.
Research on data collection key technology of smart electric energy meters
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Mouhailiu; Renheng, Xu
2018-02-01
In recent years, smart electric energy meters are demand at 70 million to 90 million with the strong smart grid construction every year in China. However, there are some issues in smart electric energy meters data collection such as the interference of environment, low collection efficiency and inability to work when the power is off. In order to solve these issues above, it uses the RFID communication technology to collect the numbers and electric energy information of smart electric energy meters on the basis of the existing smart electric energy meters, and the related data collection communication experiments were made. The experimental result shows that the electric information and other data batch collection of RFID smart electric energy meters are realized in power and power off. It improves the efficiency and the overall success rate is 99.2% within 2 meters. It provides a new method for smart electric energy meters data collection.
Low flow vortex shedding flowmeter
NASA Technical Reports Server (NTRS)
Waugaman, Charles J.
1989-01-01
The purpose was to continue a development project on a no moving parts vortex shedding flowmeter used for flow measurement of hypergols. The project involved the design and construction of a test loop to evaluate the meter for flow of Freon which simulates the hypergol fluids. Results were obtained on the output frequency characteristics of the flow meter as a function of flow rate. A family of flow meters for larger size lines and ranges of flow was sized based on the results of the tested meter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpert, B. K.; Horansky, R. D.; Bennett, D. A.
Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operationmore » at 50% higher count rates than conventional filters while largely preserving sensor energy resolution.« less
Cryogenic, high-resolution x-ray detector with high count rate capability
Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.
2003-03-04
A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.
Development of a rapid optic bacteria detecting system based on ATP bioluminescence
NASA Astrophysics Data System (ADS)
Liu, Jun Tao; Luo, JinPing; Liu, XiaoHong; Cai, XinXia
2014-12-01
A rapid optic bacteria detecting system based on the principle of Adenosine triphosphate(ATP) bioluminescence was presented in this paper. This system consisted of bioluminescence-based biosensor and the high-sensitivity optic meter. A photon counting photomultiplier tube (PMT) module was used to improve the detection sensitivity, and a NIOS II/f processor based on a Field Programmable Gate Array(FPGA) was used to control the system. In this work, Micrococcus luteus were chosen as the test sample. Several Micrococcus luteus suspension with different concentration was tested by both T2011 and plate counting method. By comparing the two group results, an calibration curve was obtained from the bioluminescence intensity for Micrococcus luteus in the range of 2.3×102 ~ 2.3×106 CFU/mL with a good correlation coefficient of 0.960. An impacting Air microorganism sampler was used to capture Airborne Bacteria, and 8 samples were collected in different place. The TBC results of 8 samples by T2011 were between 10 ~ 2×103 cfu/mL, consistent with that of plate counting method, which indicated that 8 samples were between 10 ~ 3×103 cfu/mL. For total airborne bacteria count was small, correlation coefficient was poor. Also no significant difference was found between T2011 and plate counting method by statistical analyses.
The bacterial contamination rate of glucose meter test strips in the hospital setting
Al-Rubeaan, Khalid A.; Saeb, Amr T. M.; AlNaqeb, Dhekra M.; AlQumaidi, Hamed M.; AlMogbel, Turki A.
2016-01-01
Objectives: To assess the rate of bacterial contamination of the multi-use vial and single-use packed glucose meter strips, and to identify the type and frequency of various bacterial contamination in different hospital wards. Methods: This prospective observational study was conducted by a team from the Strategic Center for Diabetes Research in 7 general hospitals in the Central region of Saudi Arabia during the period from August to September 2014 to assess the bacterial contamination rate of the unused strips. A total of 10,447 strips were cultured using proper agar media and incubated both aerobically and anaerobically. Results: The total bacterial contamination rate for the multi-use vials glucose strips was 31.7%, while single-use packed strips were not contaminated at all. Ministry of Health hospitals had the highest contamination rates compared with other hospitals. Critical, obstetric, and surgical wards had the highest bacterial isolates number, where most were in the risk group 3 according to the National Institute of Health guidelines. Staphylococcus species were the most common bacteria found. Conclusion: Glucose meter strips should be recognized as a source of bacterial contamination that could be behind serious hospital acquired infections. The hospital infection control team should adopt proper measures to implement protocols for glucose meter cleaning and glucose strips handling. PMID:27570855
Balanced Flow Metering and Conditioning: Technology for Fluid Systems
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.
2006-01-01
Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.
Constraining the Age of Martian Polar Strata by Crater Counts
NASA Astrophysics Data System (ADS)
Grier, J. A.; Hartmann, W. K.; Berman, D. C.; Goldman, E. B.; Esquerdo, G. A.
2000-10-01
Mars Global Surveyor images are capable of giving good counts on craters down to about D 11 m. We studied 70 north polar images covering 2513 km2, mostly at latitudes 79-86 degrees, detecting a few probable impact craters and placing upper limits from non-detections in other frames. From these data we conclude that impact craters in the diameter range 11 m < D < 88 m indicate a survival lifetime of craters and crater-like topography in the north polar regions of < a few hundred Ka. The crater counts suggest a much flatter slope in the diameter distribution of the young polar laminae than found in the production function on young, low-latitude lava surfaces, confirming the rapid obliteration of smaller craters even in recent geologic time (Plaut et al. 1988). To obliterate small craters, if vertical relief on the order of 30 m is completely blanketed and removed in < 500,000 yrs, then an inferred upper limit on the sediment deposition rate is 6 x 10-5 meters/year or 60 μ /y. These results are consistent with models which call for enhanced dust deposition at the poles due to a process whereby dust particles act as condensation nuclei for winter ice and are preferentially dropped out of the polar atmosphere. Pollack et al. (1979) calculated polar deposition at 300 μ /y. Our age results are also consistent with Herkenhoff and Plaut (2000) who sought craters of D > 300 m on Viking images of the north cap and derived the same age, < 100,000 years. They used the same logic to infer a higher deposition limit of 1200 μ /y. The measured north polar deposition rates are one to three orders of magnitude above the 1 to 4 μ /y suggested at lower latitudes (Hartmann 1966, 1971; Matijevic et al. 1997). References: Hartmann 1966, Icarus 5:406; Hartmann 1971, Icarus 15: 410; Herkenhoff and Plaut 2000, Icarus 144: 243; Matijevic et al. 1997, Science 278:1765; Pollack et al. 1977, J. Geophys. Res. 84: 2929; Plaut et al. 1988 Icarus 75 :357.
2015-07-17
This figure shows how the Alice instrument count rate changed over time during the sunset and sunrise observations. The count rate is largest when the line of sight to the sun is outside of the atmosphere at the start and end times. Molecular nitrogen (N2) starts absorbing sunlight in the upper reaches of Pluto's atmosphere, decreasing as the spacecraft approaches the planet's shadow. As the occultation progresses, atmospheric methane and hydrocarbons can also absorb the sunlight and further decrease the count rate. When the spacecraft is totally in Pluto's shadow the count rate goes to zero. As the spacecraft emerges from Pluto's shadow into sunrise, the process is reversed. By plotting the observed count rate in the reverse time direction, it is seen that the atmospheres on opposite sides of Pluto are nearly identical. http://photojournal.jpl.nasa.gov/catalog/PIA19716
NASA Technical Reports Server (NTRS)
Janoudi, A.; Poff, K. L.
1990-01-01
The relationship between the amount of light and the amount of response for any photobiological process can be based on the number of incident quanta per unit time (fluence rate-response) or on the number of incident quanta during a given period of irradiation (fluence-response). Fluence-response and fluence rate-response relationships have been measured for second positive phototropism by seedlings of Arabidopsis thaliana. The fluence-response relationships exhibit a single limiting threshold at about 0.01 micromole per square meter when measured at fluence rates from 2.4 x 10(-5) to 6.5 x 10(-3) micromoles per square meter per second. The threshold values in the fluence rate-response curves decrease with increasing time of irradiation, but show a common fluence threshold at about 0.01 micromole per square meter. These thresholds are the same as the threshold of about 0.01 micromole per square meter measured for first positive phototropism. Based on these data, it is suggested that second positive curvature has a threshold in time of about 10 minutes. Moreover, if the times of irradiation exceed the time threshold, there is a single limiting fluence threshold at about 0.01 micromole per square meter. Thus, the limiting fluence threshold for second positive phototropism is the same as the fluence threshold for first positive phototropism. Based on these data, we suggest that this common fluence threshold for first positive and second positive phototropism is set by a single photoreceptor pigment system.
The pricing of water in a university town: An economic analysis of draining a cash cow
NASA Astrophysics Data System (ADS)
Joyce, B. Patrick; Merz, Thomas E.
1994-10-01
This paper analyzes some economic issues involved with the common practice of using metered water rate revenue to fund debt retirement associated with the provision of municipal water and wastewater services. We conclude that rather than simply raising the metered rate, city officials should seriously consider increasing the tax rate levied under the local property tax. There is an important trade-off in the choice of a price policy. An increased property tax rate can result in tax savings to some home owners, which lowers their net expenditure for water. However, a corresponding decrease in the metered rate may increase water consumption, which in turn raises operating cost. In order to do what is best for home owners, it might make sense to give other customers (e.g., a university) an easy ride, even if the latter, because of its low (inelastic) price elasticity of demand for water, is viewed by the municipality as a cash cow.
NASA Astrophysics Data System (ADS)
1984-01-01
Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.
Kids Count in Indiana: 1996 Data Book.
ERIC Educational Resources Information Center
Erickson, Judith B.
This Kids Count report is the third in a series examining statewide trends in the well-being of Indiana's children. The report combines statistics of special concern in Indiana with 10 national Kids Count well-being indicators: (1) percent low birthweight; (2) infant mortality rate; (3) child death rate; (4) birth rate to unmarried teens ages 15…
Remote Sensing of Vineyard FPAR, with Implications for Irrigation Scheduling
NASA Technical Reports Server (NTRS)
Johnson, Lee F.; Scholasch, Thibaut
2004-01-01
Normalized difference vegetation index (NDVI) data, acquired at two-meter resolution by an airborne ADAR System 5500, were compared with fraction of photosynthetically active radiation (FPAR) absorbed by commercial vineyards in Napa Valley, California. An empirical line correction was used to transform image digital counts to surface reflectance. "Apparent" NDVI (generated from digital counts) and "corrected" NDVI (from reflectance) were both strongly related to FPAR of range 0.14-0.50 (both r(sup 2) = 0.97, P < 0.01). By suppressing noise, corrected NDVI should form a more spatially and temporally stable relationship with FPAR, reducing the need for repeated field support. Study results suggest the possibility of using optical remote sensing to monitor the transpiration crop coefficient, thus providing an enhanced spatial resolution component to crop water budget calculations and irrigation management.
A system for calibrating seepage meters used to measure flow between ground water and surface water
Rosenberry, Donald O.; Menheer, Michael A.
2006-01-01
The in-line flowmeter used with this system is incapable of measuring seepage rates below about 7 centimeters per day. Smaller seepage rates can be measured manually. The seepage- control system also can be modified for measuring slower seepage rates with the use of two flowmeters and a slightly different water-routing system, or a fluid-metering pump can be used to control flow through the flux tank instead of an adjustable-height reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen
The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and furthermore » rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer adoption of PV (from -14% to -61%, depending on the design). Moving towards time-varying rates, on the other hand, may accelerate near- and medium-term deployment (through 2030), but is found to slow adoption in the longer term (-22% in 2050).« less
NASA Astrophysics Data System (ADS)
Degnan, J. J.
2002-05-01
We have recently demonstrated a scanning, photon-counting, laser altimeter, which is capable of daylight operations from aircraft cruise altitudes. The instrument measures the times-of-flight of individual photons to deduce the distances between the instrument reference and points on the underlying terrain from which the arriving photons were reflected. By imaging the terrain onto a highly pixellated detector followed by a multi-channel timing receiver, one can make multiple spatially-resolved measurements to the surface within a single laser pulse. The horizontal spatial resolution is limited by the optical projection of a single pixel onto the surface. In short, a 3D image of the terrain within the laser ground spot is obtained on each laser fire, assuming at least one signal photon is recorded by each pixel.. In test flights, a prototype airborne system has successfully recorded few kHz rate, single photon returns from clouds, soils, man-made objects, vegetation, and water surfaces at mid-day under conditions of maximum solar illumination. The system has also demonstrated a capability to resolve volumetrically distributed targets, such as tree canopies, and has performed wave height measurements and shallow water bathymetry over the Chesapeake Bay and Atlantic Ocean. The signal photons were reliably extracted from the solar noise background using an optimized Post-Detection Poisson Filter. The passively Q-switched microchip Nd:YAG laser transmitter measures only 2.25 mm in length and is pumped by a single 1.2 Watt laser diode. The output is frequency-doubled to take advantage of higher detector counting efficiencies and narrower spectral filters available at 532 nm. The transmitter produces a few microjoules of green energy in a subnanosecond pulse at several kilohertz rates. The illuminated ground area is imaged by a 14 cm diameter, diffraction-limited, off-axis telescope onto a segmented anode photomultiplier with up to 16 pixels (4 x4). Each anode segment is input to one channel of "fine" range receiver (5 cm detector-limited resolution), which records the times-of-flight of the individual photons. A parallel "coarse" receiver provides a lower resolution (>75 cm) histogram of atmospheric scatterers between the aircraft and ground and centers the "fine" receiver gate on the last set of returns, permitting the fine receiver to lock onto ground features with no a priori range knowledge. Many scientists have expressed a desire for globally contiguous maps of planetary bodies with few meter horizontal spatial resolutions and decimeter vertical resolutions. By sequentially overcoming various technical hurdles to globally contiguous mapping from space, we are led to a conceptual point design for a spaceborne, 3D imaging lidar, which utilizes low energy, high repetition rate lasers, photon-counting detector arrays, multi-channel timing receivers, and a unique optical scanner.
Cortez-Lugo, Marlene; Escamilla-Núñez, Consuelo; Barraza-Villarreal, Albino; Texcalac-Sangrador, José Luis; Chow, Judith; Watson, John; Hernández-Cadena, Leticia; Romieu, Isabelle
2013-04-01
To study the relationship between light absorption measurements of PM2.5 at various distances from heavy traffic roads and diesel vehicle counts in Mexico City. PM2.5 samples were obtained from June 2003-June 2005 in three MCMA regions. Light absorption (b abs) in a subset of PM2.5 samples was determined. We evaluated the effect of distance and diesel vehicle counts to heavy traffic roads on PM2.5 b abs using generalized estimating equation models. Median PM2.5 b abs measurements significantly decrease as distance from heavy traffic roads increases (p<0.002); levels decreased by 7% (CI95% 0.9-14) for each 100 additional meters from heavy traffic roads. Our model predicts that PM2.5 b abs measurements would increase by 20% (CI95% 3-38) as the hourly heavy diesel vehicle count increases by 150 per hour. PM2.5 b abs measurements are significantly associated with distance from motorways and traffic density and therefore can be used to assess human exposure to traffic-related emissions.
Martian crater counts on Elysium Mons
NASA Technical Reports Server (NTRS)
Mcbride, Kathleen; Barlow, Nadine G.
1990-01-01
Without returned samples from the Martian surface, relative age chronologies and stratigraphic relationships provide the best information for determining the ages of geomorphic features and surface regions. Crater-size frequency distributions of six recently mapped geological units of Elysium Mons were measured to establish their relative ages. Most of the craters on Elysium Mons and the adjacent plains units are between 500 and 1000 meters in diameter. However, only craters 1 km in diameter or larger were used because of inadequate spatial resolution of some of the Viking images and to reduce probability of counting secondary craters. The six geologic units include all of the Elysium Mons construct and a portion of the plains units west of the volcano. The surface area of the units studied is approximately 128,000 sq km. Four of the geologic units were used to create crater distribution curves. There are no craters larger than 1 km within the Elysium Mons caldera. Craters that lacked raised rims, were irregularly shaped, or were arranged in a linear pattern were assumed to be endogenic in origin and not counted. A crater frequency distribution analysis is presented.
Asteroid Airbursts: Risk Assessment and Reduction
NASA Astrophysics Data System (ADS)
Boslough, M.
2015-12-01
Airbursts are events in which small (meters to tens-of-meters in diameter) asteroids deposit most of their energy in the atmosphere with a total energy greater than small nuclear explosions (>0.1 kilotons of TNT). The airburst risk is higher than previous assessments for two reasons. First, they are more frequent than previously thought. The Tunguska-class (~40 meters) population estimate has doubled, and Chelyabinsk-class (~20 meters) has increased by a factor of 2.6. Second, asteroid airbursts are significantly more damaging than previously assumed. In most cases, they more efficiently couple energy to the surface than nuclear explosions of the same yield. Past Near-Earth Object (NEO) risk assessments concluded that the largest asteroids (> 1 km) dominated the hazard. Large NEOs represent only a tiny fraction of the population but the potential for global catastrophe means that the contribution from low-probability, high-consequence events is large. Nearly 90% of these objects, none of which is on a collision course, have been catalogued. This has reduced their assessed near-term statistical risk by more than an order of magnitude because completion is highest for the largest and most dangerous. The relative risk from small objects would therefore be increasing even if their absolute assessed risk were not. Uncertainty in the number of small NEOs remains large and can only be reduced by expanded surveys. One strategy would be to count small NEOs making close passes in statistically significant numbers. For example, there are about 25 times as many objects of a given size that pass within the distance of geosynchronous orbit than collide with the earth, and 2000 times as many pass within a lunar distance (accounting for gravitational focusing). An asteroid the size of the Chelyabinsk impactor (~20 m) could potentially be observed within geosynchronous orbit every two years and within lunar orbit nearly once a week. A Tunguska-sized asteroid (~40 m) passes within a lunar distance several times a year. A survey optimized to discover and count these objects would rapidly reduce the uncertainty in their populations. An additional benefit would be early warning of an imminent impact to give authorities time to issue evacuation or take-cover instructions in circumstances for which there would be no time the prevent an impact.
Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping.
Hong, Xu; Zhou, Jianbin; Ni, Shijun; Ma, Yingjie; Yao, Jianfeng; Zhou, Wei; Liu, Yi; Wang, Min
2018-03-01
High-precision measurement of X-ray spectra is affected by the statistical fluctuation of the X-ray beam under low-counting-rate conditions. It is also limited by counting loss resulting from the dead-time of the system and pile-up pulse effects, especially in a high-counting-rate environment. In this paper a detection system based on a FAST-SDD detector and a new kind of unit impulse pulse-shaping method is presented, for counting-loss correction in X-ray spectroscopy. The unit impulse pulse-shaping method is evolved by inverse deviation of the pulse from a reset-type preamplifier and a C-R shaper. It is applied to obtain the true incoming rate of the system based on a general fast-slow channel processing model. The pulses in the fast channel are shaped to unit impulse pulse shape which possesses small width and no undershoot. The counting rate in the fast channel is corrected by evaluating the dead-time of the fast channel before it is used to correct the counting loss in the slow channel.
Digital computing cardiotachometer
NASA Technical Reports Server (NTRS)
Smith, H. E.; Rasquin, J. R.; Taylor, R. A. (Inventor)
1973-01-01
A tachometer is described which instantaneously measures heart rate. During the two intervals between three succeeding heart beats, the electronic system: (1) measures the interval by counting cycles from a fixed frequency source occurring between the two beats; and (2) computes heat rate during the interval between the next two beats by counting the number of times that the interval count must be counted to zero in order to equal a total count of sixty times (to convert to beats per minute) the frequency of the fixed frequency source.
Li, Gang; Xu, Jiayun; Zhang, Jie
2015-01-01
Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am-Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am-Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials.
Obermeier, Christian; Kotz, Sonja A; Jessen, Sarah; Raettig, Tim; von Koppenfels, Martin; Menninghaus, Winfried
2016-04-01
Rhetorical theory suggests that rhythmic and metrical features of language substantially contribute to persuading, moving, and pleasing an audience. A potential explanation of these effects is offered by "cognitive fluency theory," which stipulates that recurring patterns (e.g., meter) enhance perceptual fluency and can lead to greater aesthetic appreciation. In this article, we explore these two assertions by investigating the effects of meter and rhyme in the reception of poetry by means of event-related brain potentials (ERPs). Participants listened to four versions of lyrical stanzas that varied in terms of meter and rhyme, and rated the stanzas for rhythmicity and aesthetic liking. The behavioral and ERP results were in accord with enhanced liking and rhythmicity ratings for metered and rhyming stanzas. The metered and rhyming stanzas elicited smaller N400/P600 ERP responses than their nonmetered, nonrhyming, or nonmetered and nonrhyming counterparts. In addition, the N400 and P600 effects for the lyrical stanzas correlated with aesthetic liking effects (metered-nonmetered), implying that modulation of the N400 and P600 has a direct bearing on the aesthetic appreciation of lyrical stanzas. We suggest that these effects are indicative of perceptual-fluency-enhanced aesthetic liking, as postulated by cognitive fluency theory.
Trajectory control sensor engineering model detailed test objective
NASA Technical Reports Server (NTRS)
Dekome, Kent; Barr, Joseph Martin
1991-01-01
The concept employed in an existing Trajectory Control Sensor (TCS) breadboard is being developed into an engineering model to be considered for flight on the Shuttle as a Detailed Test Objective (DTO). The sensor design addresses the needs of Shuttle/SSF docking/berthing by providing relative range and range rate to 1500 meters as well as the perceived needs of AR&C by relative attitude measurement over the last 100 meters. Range measurement is determined using a four-tone ranging technique. The Doppler shift on the highest frequency tone will be used to provide direct measurement of range rate. Bearing rate and attitude rates will be determined through back differencing of bearing and attitude, respectively. The target consists of an isosceles triangle configuration of three optical retroreflectors, roughly one meter and one-half meter in size. After target acquisition, the sensor continually updates the positions of the three retros at a rate of about one hertz. The engineering model is expected to weigh about 25 pounds, consume 25-30 watts, and have an envelope of about 1.25 cubic feet. The following concerns were addressed during the presentation: are there any concerns with differentiating attitude and bearing to get attitude and bearing rates? Since the docking scenario has low data bandwidth, back differencing is a sufficient approximation of a perfect differentiator for this application. Could range data be obtained if there were no retroreflectors on the target vehicle? Possibly, but only at close range. It would be dependent on target characteristics.
Pneumotachometer counts respiration rate of human subject
NASA Technical Reports Server (NTRS)
Graham, O.
1964-01-01
To monitor breaths per minute, two rate-to-analog converters are alternately used to read and count the respiratory rate from an impedance pneumograph sequentially displayed numerically on electroluminescent matrices.
Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer
NASA Technical Reports Server (NTRS)
Patel, Sandeep K. (Inventor); Karon, David M. (Inventor); Cushing, Vincent (Inventor)
2014-01-01
An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.
Hydrogen consentration meter utilizing a diffusion tube composed of 2 1/4 C r
Roy, Prodyot; Sandusky, David W.; Hartle, Robert T.
1979-01-01
A diffusion tube hydrogen meter for improving the sensitivity and response time for the measurement of hydrogen in liquid sodium. The improved hydrogen meter has a composite membrane composed of pure nickel sleeve fitted, for example, over a 2 1/4 Cr-1 Mo steel or niobium diffusion tube. Since the hydrogen permeation rate through 2 1/4 Cr-1 Mo steels is a factor of four higher than pure nickel, and the permeation rate of hydrogen through niobium is two orders of magnitude greater than the 2 1/4 Cr-1 Mo steel, this results in a decrease in response time and an increase in the sensitivity.
Radiometric surveys in underground environment
NASA Astrophysics Data System (ADS)
Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo
2010-05-01
Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected a set of rock samples along the mine shaft to compare in situ results with high resolution gamma-ray analysis in the laboratory. The comparison points to a systematic overestimation (on the average, by a factor of two) of the uranium, thorium and potassium concentrations obtained with the portable apparatus. The bias between laboratory and field is slightly smaller for potassium and could be due only to deviation from standard geometric conditions. The largest differences occur in uranium concentrations, probably due also to the influence of the activity deriving from radon stagnation. The calculated radon flux depends on the radium specific activity, which, under the assumption of secular radioactive equilibrium, can be easily inferred from the uranium concentration, and the specific exhalation coefficient. Measurements of specific exhalation coefficient are difficult and only few studies have examined unaltered rocks in details. We estimated the values of this parameter by considering the degree of fracturing, width of fissures and evidence of percolating groundwater. In general, the coefficient increases from the entrance, where rocks are more massive, towards the shaft bottom, where closely spaced open fissures, often filled with percolating groundwater, might boost exhalation. As a whole, both potential radon flux and radiation dose values are relevant to radio protection rules.
LED mini-lidar as minimum setup
NASA Astrophysics Data System (ADS)
Shiina, Tatsuo
2014-10-01
The LED mini-lidar has been designed and demonstrated as the near range atmosphere monitoring, dust and gas detections. The LED lamp is used as a lidar light source. It is not a special one, and just used as a small status indicator or a spot luminaire. For the atmospheric monitoring in the near range of a few hundreds meters, the energy of 1nJ (=100mW/10ns) is enough for lidar observation in the nighttime. The LED lamp is excited at the high repetition frequency of < 1MHz. The signal-to-noise ratio can be increased by this high frequency even if the receiving photons are a little at each pulse. It is adequate because the spatiotemporal scale of the low-altitude atmosphere is small of a ten seconds and a few tens meters. To pursue such quick motion of the atmosphere and dust, the high-speed photon counter has been developed. It can act with BIN width of 4ns (Spatial resolution 0.6m) at the repetition frequency of <500kHz. The LED mini-lidar has been demonstrated to monitor the actual atmosphere of the observation range of <500m in the nighttime and <100m in the daytime with the receiving lens of 200mmφ. The interest approach is tired to distinguish the dust characteristics by using the counting rate of dust echoes. It is effective in the case that the dust material is given. And for trial, the LED mini-Raman-lidar is developed to monitor certain gas detection in near distance, too.
Single photon counting linear mode avalanche photodiode technologies
NASA Astrophysics Data System (ADS)
Williams, George M.; Huntington, Andrew S.
2011-10-01
The false count rate of a single-photon-sensitive photoreceiver consisting of a high-gain, low-excess-noise linear-mode InGaAs avalanche photodiode (APD) and a high-bandwidth transimpedance amplifier (TIA) is fit to a statistical model. The peak height distribution of the APD's multiplied dark current is approximated by the weighted sum of McIntyre distributions, each characterizing dark current generated at a different location within the APD's junction. The peak height distribution approximated in this way is convolved with a Gaussian distribution representing the input-referred noise of the TIA to generate the statistical distribution of the uncorrelated sum. The cumulative distribution function (CDF) representing count probability as a function of detection threshold is computed, and the CDF model fit to empirical false count data. It is found that only k=0 McIntyre distributions fit the empirically measured CDF at high detection threshold, and that false count rate drops faster than photon count rate as detection threshold is raised. Once fit to empirical false count data, the model predicts the improvement of the false count rate to be expected from reductions in TIA noise and APD dark current. Improvement by at least three orders of magnitude is thought feasible with further manufacturing development and a capacitive-feedback TIA (CTIA).
Black, James; Gerdtz, Marie; Nicholson, Pat; Crellin, Dianne; Browning, Laura; Simpson, Julie; Bell, Lauren; Santamaria, Nick
2015-05-01
Respiratory rate is an important sign that is commonly either not recorded or recorded incorrectly. Mobile phone ownership is increasing even in resource-poor settings. Phone applications may improve the accuracy and ease of counting of respiratory rates. The study assessed the reliability and initial users' impressions of four mobile phone respiratory timer approaches, compared to a 60-second count by the same participants. Three mobile applications (applying four different counting approaches plus a standard 60-second count) were created using the Java Mobile Edition and tested on Nokia C1-01 phones. Apart from the 60-second timer application, the others included a counter based on the time for ten breaths, and three based on the time interval between breaths ('Once-per-Breath', in which the user presses for each breath and the application calculates the rate after 10 or 20 breaths, or after 60s). Nursing and physiotherapy students used the applications to count respiratory rates in a set of brief video recordings of children with different respiratory illnesses. Limits of agreement (compared to the same participant's standard 60-second count), intra-class correlation coefficients and standard errors of measurement were calculated to compare the reliability of the four approaches, and a usability questionnaire was completed by the participants. There was considerable variation in the counts, with large components of the variation related to the participants and the videos, as well as the methods. None of the methods was entirely reliable, with no limits of agreement better than -10 to +9 breaths/min. Some of the methods were superior to the others, with ICCs from 0.24 to 0.92. By ICC the Once-per-Breath 60-second count and the Once-per-Breath 20-breath count were the most consistent, better even than the 60-second count by the participants. The 10-breath approaches performed least well. Users' initial impressions were positive, with little difference between the applications found. This study provides evidence that applications running on simple phones can be used to count respiratory rates in children. The Once-per-Breath methods are the most reliable, outperforming the 60-second count. For children with raised respiratory rates the 20-breath version of the Once-per-Breath method is faster, so it is a more suitable option where health workers are under time pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Low Flow Vortex Shedding Flow Meter for Hypergolics/all Media
NASA Technical Reports Server (NTRS)
Thinh, Ngo Dinh
1991-01-01
A family of vortex shedding flow meters, for measurement of hypergol flows, was designed and fabricated. The test loops to evaluate the flow meters for water flow, as well as Freon -113 flow which simulates the hypergolic fluids, were modified and constructed to utilize a pump system which has an output capacity of 200 gpm. Test runs were conducted on the small 1/2 inch model with Freon 113 and on the larger models with water. Results showed that the linearity between the frequency of the vortices and the flow rate of the fluids was very close to that of the turbine flow meter. It is suggested that the vortex shedding flow meter is a possible replacement for the existing turbine type.
NASA Astrophysics Data System (ADS)
Mitani, Yusuke; Miyaji, Kousuke; Kaneko, Satoshi; Uekura, Takaharu; Momose, Hideya; Johguchi, Koh
2018-04-01
This paper presents a compact wearable perspiration meter system using a 180-nm CMOS technology. With custom chip and board design, the proposed perspiration meter, which can measure a qualitative sweating rate, is integrated into 15 × 20 mm2. From the experimental results, the capacitances of the humidity sensors with analog-to-digital converter and band-gap reference circuits can operate accurately without hysteresis. In addition, a demonstration with simulated human skin is carried out to investigate the sensor’s performance under real environments. The proposed perspiration meter can output values equivalent to a conventional meter. As a result, it is verified that the proposed system can be used as a human sweat sensor for wearable application.
NASA Technical Reports Server (NTRS)
Rowlette, J. J. (Inventor)
1985-01-01
A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.
Cerebellar pathology in childhood-onset vs. adult-onset essential tremor.
Louis, Elan D; Kuo, Sheng-Han; Tate, William J; Kelly, Geoffrey C; Faust, Phyllis L
2017-10-17
Although the incidence of ET increases with advancing age, the disease may begin at any age, including childhood. The question arises as to whether childhood-onset ET cases manifest the same sets of pathological changes in the cerebellum as those whose onset is during adult life. We quantified a broad range of postmortem features (Purkinje cell [PC] counts, PC axonal torpedoes, a host of associated axonal changes [PC axonal recurrent collateral count, PC thickened axonal profile count, PC axonal branching count], heterotopic PCs, and basket cell rating) in 60 ET cases (11 childhood-onset and 49 adult-onset) and 30 controls. Compared to controls, childhood-onset ET cases had lower PC counts, higher torpedo counts, higher heterotopic PC counts, higher basket cell plexus rating, and marginally higher PC axonal recurrent collateral counts. The median PC thickened axonal profile count and median PC axonal branching count were two to five times higher in childhood-onset ET than controls, but the differences did not reach statistical significance. Childhood-onset and adult-onset ET had similar PC counts, torpedo counts, heterotopic PC counts, basket cell plexus rating, PC axonal recurrent collateral counts, PC thickened axonal profile count and PC axonal branching count. In conclusion, we found that childhood-onset and adult-onset ET shared similar pathological changes in the cerebellum. The data suggest that pathological changes we have observed in the cerebellum in ET are a part of the pathophysiological cascade of events in both forms of the disease and that both groups seem to reach the same pathological endpoints at a similar age of death. Copyright © 2017 Elsevier B.V. All rights reserved.
Point count length and detection of forest neotropical migrant birds
Dawson, D.K.; Smith, D.R.; Robbins, C.S.; Ralph, C. John; Sauer, John R.; Droege, Sam
1995-01-01
Comparisons of bird abundances among years or among habitats assume that the rates at which birds are detected and counted are constant within species. We use point count data collected in forests of the Mid-Atlantic states to estimate detection probabilities for Neotropical migrant bird species as a function of count length. For some species, significant differences existed among years or observers in both the probability of detecting the species and in the rate at which individuals are counted. We demonstrate the consequence that variability in species' detection probabilities can have on estimates of population change, and discuss ways for reducing this source of bias in point count studies.
Patterns and Controls of Erosion along the Elson Lagoon Coastline, Barrow, Alaska (2003-2016)
NASA Astrophysics Data System (ADS)
Tweedie, C. E.; Escarzaga, S. M.; Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Aiken, Q.; Lopez, A. F.; Aguirre, A.; George, C.; Nelson, L.; Brown, J.
2016-12-01
With arctic warming and the combined effect of decreased summer sea ice extent, longer fetch for wave propagation, warmer sea surface and ground temperature, and longer periods of open water; the propensity for increased arctic coastal erosion rates and land-ocean sediment inputs to increase has been recognized for some time. In this study, we report on coastal erosion trends along a 11km stretch of coastline adjacent to the Barrow Environmental Observatory (BEO) where the position of the 2-4 meter high coastal bluff has been monitored annually with survey grade differential GPS (dGPS). Modern and historic erosion trends can be viewed through interactive web mapping applications at http://barrowmapped.org/. Rates of aerial and volumetric erosion losses averaged 0.7-2.8 meters and 0.8-3.5 cubic meters per meter of coast per year from 2003-2015 for each of the four coastal sections monitored. These losses equate to losses to the atmosphere and/or inputs to lagoon waters 53-220kgC per meter of coast per year. Such aerial losses are lower than from other areas of the Beaufort Sea coast that lack protective barrier islands, but 25-30% higher than historic decadal-scale change rates estimated for this section of coastline. However, regression analyses indicate no significant change to the rate of erosion during the past 13 years. Historic hotspots of erosion remained modern hotspots of erosion, and increases in modern erosion rates were greatest for sections of coast where historically high rates of erosion have been recorded. Regionally, the Elson Lagoon study area shows some of the highest rates of erosion for the Barrow Peninsula, which are generally 2-3 times mean annual erosion rates recorded for the Chukchi Sea Coastline near Barrow. Regression tree analysis used to isolate the relative importance of different biophysical controls of erosion differ between analyses run for aerial and volumetric losses along the Elson Lagoon Coast. These analyses also highlight key differences in controls between sampling periods with high/low wind-wave activity. In particular, analyses show the important influence of wave energy, land cover type, and landscape geomorphic history on modern coastal erosion dynamics.
Probing Jupiter's Radiation Environment with Juno-UVS
NASA Astrophysics Data System (ADS)
Kammer, J.; Gladstone, R.; Greathouse, T. K.; Hue, V.; Versteeg, M. H.; Davis, M. W.; Santos-Costa, D.; Becker, H. N.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.
2017-12-01
While primarily designed to observe photon emission from the Jovian aurora, Juno's Ultraviolet Spectrograph (Juno-UVS) has also measured background count rates associated with penetrating high-energy radiation. These background counts are distinguishable from photon events, as they are generally spread evenly across the entire array of the Juno-UVS detector, and as the spacecraft spins, they set a baseline count rate higher than the sky background rate. During eight perijove passes, this background radiation signature has varied significantly on both short (spin-modulated) timescales, as well as longer timescales ( minutes to hours). We present comparisons of the Juno-UVS data across each of the eight perijove passes, with a focus on the count rate that can be clearly attributed to radiation effects rather than photon events. Once calibrated to determine the relationship between count rate and penetrating high-energy radiation (e.g., using existing GEANT models), these in situ measurements by Juno-UVS will provide additional constraints to radiation belt models close to the planet.
Rutten, C J; Steeneveld, W; Inchaisri, C; Hogeveen, H
2014-11-01
The technical performance of activity meters for automated detection of estrus in dairy farming has been studied, and such meters are already used in practice. However, information on the economic consequences of using activity meters is lacking. The current study analyzes the economic benefits of a sensor system for detection of estrus and appraises the feasibility of an investment in such a system. A stochastic dynamic simulation model was used to simulate reproductive performance of a dairy herd. The number of cow places in this herd was fixed at 130. The model started with 130 randomly drawn cows (in a Monte Carlo process) and simulated calvings and replacement of these cows in subsequent years. Default herd characteristics were a conception rate of 50%, an 8-wk dry-off period, and an average milk production level of 8,310 kg per cow per 305 d. Model inputs were derived from real farm data and expertise. For the analysis, visual detection by the farmer ("without" situation) was compared with automated detection with activity meters ("with" situation). For visual estrus detection, an estrus detection rate of 50% and a specificity of 100% were assumed. For automated estrus detection, an estrus detection rate of 80% and a specificity of 95% were assumed. The results of the cow simulation model were used to estimate the difference between the annual net cash flows in the "with" and "without" situations (marginal financial effect) and the internal rate of return (IRR) as profitability indicators. The use of activity meters led to improved estrus detection and, therefore, to a decrease in the average calving interval and subsequent increase in annual milk production. For visual estrus detection, the average calving interval was 419 d and average annual milk production was 1,032,278 kg. For activity meters, the average calving interval was 403 d and the average annual milk production was 1,043,398 kg. It was estimated that the initial investment in activity meters would cost €17,728 for a herd of 130 cows, with an additional cost of €90 per year for the replacement of malfunctioning activity meters. Changes in annual net cash flows arising from using an activity meter included extra revenues from increased milk production and number of calves sold, increased costs from more inseminations, calvings, and feed consumption, and reduced costs from fewer culled cows and less labor for estrus detection. These changes in cash flows were caused mainly by changes in the technical results of the simulated dairy herds, which arose from differences in the estrus detection rate and specificity between the "with" and "without" situations. The average marginal financial effect in the "with" and "without" situations was €2,827 for the baseline scenario, with an average IRR of 11%. The IRR is a measure of the return on invested capital. Investment in activity meters was generally profitable. The most influential assumptions on the profitability of this investment were the assumed culling rules and the increase in sensitivity of estrus detection between the "without" and the "with" situation. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cammin, Jochen, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Xu, Jennifer
Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra andmore » count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The agreement between the x-ray spectra calculated by the cascaded SRE+PPE model and the measured spectra was evaluated for various levels of deadtime loss ratios (DLR) and incident spectral shapes, realized using different attenuators, in terms of the weighted coefficient of variation (COV{sub W}), i.e., the root mean square difference weighted by the statistical errors of the data and divided by the mean. Results: At low count rates, when DLR < 10%, the distorted spectra measured by the DXMCT-1 were in agreement with those calculated by SRE only, with COV{sub W}'s less than 4%. At higher count rates, the measured spectra were also in agreement with the ones calculated by the cascaded SRE+PPE model; with PMMA as attenuator, COV{sub W} was 5.6% at a DLR of 22% and as small as 6.7% for a DLR as high as 55%. Conclusions: The x-ray spectra calculated by the proposed model agreed with the measured spectra over a wide range of count rates and spectral shapes. The SRE model predicted the distorted, recorded spectra with low count rates over various types and thicknesses of attenuators. The study also validated the hypothesis that the complex spectral distortions in a PCD can be adequately modeled by cascading the count-rate independent SRE and the count-rate dependent PPE.« less
Cammin, Jochen; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.; Taguchi, Katsuyuki
2014-01-01
Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi , “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The agreement between the x-ray spectra calculated by the cascaded SRE+PPE model and the measured spectra was evaluated for various levels of deadtime loss ratios (DLR) and incident spectral shapes, realized using different attenuators, in terms of the weighted coefficient of variation (COVW), i.e., the root mean square difference weighted by the statistical errors of the data and divided by the mean. Results: At low count rates, when DLR < 10%, the distorted spectra measured by the DXMCT-1 were in agreement with those calculated by SRE only, with COVW's less than 4%. At higher count rates, the measured spectra were also in agreement with the ones calculated by the cascaded SRE+PPE model; with PMMA as attenuator, COVW was 5.6% at a DLR of 22% and as small as 6.7% for a DLR as high as 55%. Conclusions: The x-ray spectra calculated by the proposed model agreed with the measured spectra over a wide range of count rates and spectral shapes. The SRE model predicted the distorted, recorded spectra with low count rates over various types and thicknesses of attenuators. The study also validated the hypothesis that the complex spectral distortions in a PCD can be adequately modeled by cascading the count-rate independent SRE and the count-rate dependent PPE. PMID:24694136
Discharge Measurements in Shallow Urban Streams Using a Hydroacoustic Current Meter
Fisher, G.T.; Morlock, S.E.; ,
2002-01-01
Hydroacoustic current-meter measurements were evaluated in small urban streams under a range of stages, velocities, and channel-bottom materials. Because flow in urban streams is often shallow, conventional mechanical current-meter measurements are difficult or impossible to make. The rotating-cup Price pygmy meter that is widely used by the U.S. Geological Survey and other agencies should not be used in depths below 0.20 ft and velocities less than 0.30 ft/s. The hydroacoustic device provides measurements at depths as shallow as 0.10 ft and velocities as low as 0.10 ft/s or less. Measurements using the hydroacoustic current meter were compared to conventional discharge measurements. Comparisons with Price-meter measurements were favorable within the range of flows for which the meters are rated. Based on laboratory and field tests, velocity measurements with the hydroacoustic cannot be validated below about 0.07 ft/s. However, the hydroacoustic meter provides valuable information on direction and magnitude of flow even at lower velocities, which otherwise could not be measured with conventional measurements.
NASA Technical Reports Server (NTRS)
Metzger, A. E.; Parker, R. H.; Arnold, J. R.; Reedy, R. C.; Trombka, J. I.
1975-01-01
A knowledge of the composition of planets, satellites, and asteroids is of primary importance in understanding the formation and evolution of the solar system. Gamma-ray spectroscopy is capable of measuring the composition of meter-depth surface material from orbit around any body possessing little or no atmosphere. Measurement sensitivity is determined by detector efficiency and resolution, counting time, and the background flux while the effective spatial resolution depends upon the field-of-view and counting time together with the regional contrast in composition. The advantages of using germanium as a detector of gamma rays in space are illustrated experimentally and a compact instrument cooled by passive thermal radiation is described. Calculations of the expected sensitivity of this instrument at the Moon and Mars show that at least a dozen elements will be detected, twice the number which have been isolated in the Apollo gamma-ray data.
Photogrammetric Data Set, 1957-2000, and Bathymetric Measurements for Columbia Glacier, Alaska
Krimmel, Robert M.
2001-01-01
Major changes in the length, speed, surface altitude, and calving rate of Columbia Glacier, Alaska have been recorded with stereo vertical photography acquired on 119 dates from 1957 to 2000. Photogrammetric analysis of this photographic record has resulted in precise measurement of these changes. From 1982 to 2000 Columbia Glacier retreated 12 kilometers, reduced its thickness by as much as 400 meters, increased its speed from about 5 to 30 meters per day, and increased its calving rate from 3 to 18 million cubic meters per day. All photogrammetric data for Columbia Glacier from 1957 to 2000 are included in this report, as well as supplemental data of ice-dammed lake surface levels, stagnant ice ablation rate, forebay bathymetry, ground control, and camera calibrations. These data are contained in 481 files, all preserved on a CD-ROM included with this report.
Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth
NASA Astrophysics Data System (ADS)
Myrow, P. M.; Lamb, M. P.; Ewing, R. C.
2018-05-01
Earth’s most severe climate changes occurred during global-scale “snowball Earth” glaciations, which profoundly altered the planet’s atmosphere, oceans, and biosphere. Extreme rates of glacioeustatic sea level rise are predicted by the snowball Earth hypothesis, but supporting geologic evidence has been lacking. We use paleohydraulic analysis of wave ripples and tidal laminae in the Elatina Formation, Australia—deposited after the Marinoan glaciation ~635 million years ago—to show that water depths of 9 to 16 meters remained nearly constant for ~100 years throughout 27 meters of sediment accumulation. This accumulation rate was too great to have been accommodated by subsidence and instead indicates an extraordinarily rapid rate of sea level rise (0.2 to 0.27 meters per year). Our results substantiate a fundamental prediction of snowball Earth models of rapid deglaciation during the early transition to a supergreenhouse climate.
Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.
Frank R. Thompson; Monica J. Schwalbach
1995-01-01
We report results of a point count survey of breeding birds on Hoosier National Forest in Indiana. We determined sample size requirements to detect differences in means and the effects of count duration and plot size on individual detection rates. Sample size requirements ranged from 100 to >1000 points with Type I and II error rates of <0.1 and 0.2. Sample...
A New Statistics-Based Online Baseline Restorer for a High Count-Rate Fully Digital System.
Li, Hongdi; Wang, Chao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Liu, Shitao; An, Shaohui; Wong, Wai-Hoi
2010-04-01
The goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy. Event pileups normally exist in a high-count rate system and the baseline drift will create errors in the event pileup-correction. Hence, a baseline restorer (BLR) is required in a high count-rate system to remove the DC drift ahead of the pileup correction. Many methods have been reported for BLR from classic analog methods to digital filter solutions. However a single channel BLR with analog method can only work under 500 kcps count-rate, and normally an analog front-end application-specific integrated circuits (ASIC) is required for the application involved hundreds BLR such as a PET camera. We have developed a simple statistics-based online baseline restorer (SOBLR) for a high count-rate fully digital system. In this method, we acquire additional samples, excluding the real gamma pulses, from the existing free-running ADC in the digital system, and perform online statistical processing to generate a baseline value. This baseline value will be subtracted from the digitized waveform to retrieve its original pulse with zero-baseline drift. This method can self-track the baseline without a micro-controller involved. The circuit consists of two digital counter/timers, one comparator, one register and one subtraction unit. Simulation shows a single channel works at 30 Mcps count-rate with pileup condition. 336 baseline restorer circuits have been implemented into 12 field-programmable-gate-arrays (FPGA) for our new fully digital PET system.
Riggs, Alan C.; Striegl, Robert G.; Maestas, Florentino B.; Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
Automated opaque flux-chamber measurements of soil carbon dioxide (CO2) flux (soil respiration) into the atmosphere at the Amargosa Desert Research Site show seasonal and diel cycles of soil respiration that are closely linked with soil temperature and soil moisture. During 1998, soil respiration increased with soil warming through spring, reaching a maximum rate (not counting anomalously high values scattered through the record) of about 0.055 moles CO2 m-2 day-1 around Julian Day 120. Respiration rates then declined along with volumetric soil moisture content, tending to stay at or below about 0.02 moles CO2 per square meter per day (m-2 day -1) for the rest of the year, except after summer rainfalls when respiration sharply increased for short periods. The diel respiration pattern during dry spells is marked by a sharp rise in CO2 flux coincident with steeply rising soil temperatures in the morning, then dropping back to low levels about the time of maximum soil temperature. The reason for this pattern in unclear.
Ullal-Gupta, Sangeeta; Hannon, Erin E.; Snyder, Joel S.
2014-01-01
Musical meters vary considerably across cultures, yet relatively little is known about how culture-specific experience influences metrical processing. In Experiment 1, we compared American and Indian listeners' synchronous tapping to slow sequences. Inter-tone intervals contained silence or to-be-ignored rhythms that were designed to induce a simple meter (familiar to Americans and Indians) or a complex meter (familiar only to Indians). A subset of trials contained an abrupt switch from one rhythm to another to assess the disruptive effects of contradicting the initially implied meter. In the unfilled condition, both groups tapped earlier than the target and showed large tap-tone asynchronies (measured in relative phase). When inter-tone intervals were filled with simple-meter rhythms, American listeners tapped later than targets, but their asynchronies were smaller and declined more rapidly. Likewise, asynchronies rose sharply following a switch away from simple-meter but not from complex-meter rhythm. By contrast, Indian listeners performed similarly across all rhythm types, with asynchronies rapidly declining over the course of complex- and simple-meter trials. For these listeners, a switch from either simple or complex meter increased asynchronies. Experiment 2 tested American listeners but doubled the duration of the synchronization phase prior to (and after) the switch. Here, compared with simple meters, complex-meter rhythms elicited larger asynchronies that declined at a slower rate, however, asynchronies increased after the switch for all conditions. Our results provide evidence that ease of meter processing depends to a great extent on the amount of experience with specific meters. PMID:25075514
Ambiguity effects of rhyme and meter.
Wallot, Sebastian; Menninghaus, Winfried
2018-04-23
Previous research has shown that rhyme and meter-although enhancing prosodic processing ease and memorability-also tend to make semantic processing more demanding. Using a set of rhymed and metered proverbs, as well as nonrhymed and nonmetered versions of these proverbs, the present study reveals this hitherto unspecified difficulty of comprehension to be specifically driven by perceived ambiguity. Roman Jakobson was the 1st to propose this hypothesis, in 1960. He suggested that "ambiguity is an intrinsic, inalienable feature" of "parallelistic" diction of which the combination of rhyme and meter is a pronounced example. Our results show that ambiguity indeed explains a substantial portion of the rhyme- and meter-driven difficulty of comprehension. Longer word-reading times differentially reflected ratings for ambiguity and comprehension difficulty. However, the ambiguity effect is not "inalienable." Rather, many rhymed and metered sentences turned out to be low in ambiguity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Kurnia, Domas; Nugroho, Denny
2018-02-01
Trimulyo is one of coastal village in Genuk Subdistrict, Semarang City which now facing serious coastal abrasion. Such a thing has been causing loss of ponds and settlements. One of solution which currently carried is hybrid structure which combining permeable structure to break up the waves and trap sediment. The hybrid structure is designed as agitation dredging, which increase suspended sediment in sea water. The goals of this research were to studying the effectiveness of hybrid structure in handling coastal abration and to counting the volume of sedimentation during 20 months as well as rate of sedimentation. To reach the goals, high resolution satellite imagery year 2015 and 2016, scaled stick and sediment trap were applied to the study. Image processing was conducted by using Arc GIS 10.3 software. The effectiveness of hybrid structured was determined by series of field survey of existing condition. Rate of sedimentation measured during before and after hybrid structure built (20 months). The results showed that hybrid structure was effective to reduce coastal abrasion, it proven by a large amount of sediment was trapped behind the structure and coastline was upward along 170 meter since it was built. The volume of sediment during 20 months is 81.500 m3. If it assumed that the rate of sedimentation constantly, monthly rate of sedimentation is 4.075 m3/month or daily rate is 135,8 m3/day. The sediment that has formed highly recommended to use as mangrove conservation area in Semarang City.
Calibrating/testing meters in hot water test bench VM7
NASA Astrophysics Data System (ADS)
Kling, E.; Stolt, K.; Lau, P.; Mattiasson, K.
A Hot Water Test Bench, VM7, has been developed and constructed for the calibration and testing of volume and flowmeters, in a project at the National Volume Measurement Laboratory at the Swedish National Testing and Research Institute. The intended area of use includes use as a reference at audit measurements, e.g. for accredited laboratories, calibration of meters for the industry and for the testing of hot water meters. The objective of the project, which was initiated in 1989, was to design equipment with stable flow and with a minimal temperature drop even at very low flow rates. The principle of the design is a closed system with two pressure tanks at different pressures. The water is led from the high pressure tank through the test object and the volume standard, in the form of master meters or a piston prover alternatively, to the low pressure tank. Calibrations/tests are made comparing the indication of the test object to that of master meters covering the current flow rate. These are, in the same test cycle, calibrated to the piston prover. Alternatively, the test object can be calibrated directly to the piston prover.
A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit
NASA Astrophysics Data System (ADS)
DeLuisi, John J.; Harris, Joyce M.
Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.
2011-01-01
Background It is unclear whether antiretroviral (ART) naive HIV-positive individuals with high CD4 counts have a raised mortality risk compared with the general population, but this is relevant for considering earlier initiation of antiretroviral therapy. Methods Pooling data from 23 European and North American cohorts, we calculated country-, age-, sex-, and year-standardised mortality ratios (SMRs), stratifying by risk group. Included patients had at least one pre-ART CD4 count above 350 cells/mm3. The association between CD4 count and death rate was evaluated using Poisson regression methods. Findings Of 40,830 patients contributing 80,682 person-years of follow up with CD4 count above 350 cells/mm3, 419 (1.0%) died. The SMRs (95% confidence interval) were 1.30 (1.06-1.58) in homosexual men, and 2.94 (2.28-3.73) and 9.37 (8.13-10.75) in the heterosexual and IDU risk groups respectively. CD4 count above 500 cells/mm3 was associated with a lower death rate than 350-499 cells/mm3: adjusted rate ratios (95% confidence intervals) for 500-699 cells/mm3 and above 700 cells/mm3 were 0.77 (0.61-0.95) and 0.66 (0.52-0.85) respectively. Interpretation In HIV-infected ART-naive patients with high CD4 counts, death rates were raised compared with the general population. In homosexual men this was modest, suggesting that a proportion of the increased risk in other groups is due to confounding by other factors. Even in this high CD4 count range, lower CD4 count was associated with raised mortality. PMID:20638118
A Prescription for List-Mode Data Processing Conventions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddingfield, David H.; Swinhoe, Martyn Thomas; Huszti, Jozsef
There are a variety of algorithmic approaches available to process list-mode pulse streams to produce multiplicity histograms for subsequent analysis. In the development of the INCC v6.0 code to include the processing of this data format, we have noted inconsistencies in the “processed time” between the various approaches. The processed time, tp, is the time interval over which the recorded pulses are analyzed to construct multiplicity histograms. This is the time interval that is used to convert measured counts into count rates. The observed inconsistencies in tp impact the reported count rate information and the determination of the error-values associatedmore » with the derived singles, doubles, and triples counting rates. This issue is particularly important in low count-rate environments. In this report we will present a prescription for the processing of list-mode counting data that produces values that are both correct and consistent with traditional shift-register technologies. It is our objective to define conventions for list mode data processing to ensure that the results are physically valid and numerically aligned with the results from shift-register electronics.« less
NaK Plugging Meter Design for the Feasibility Test Loops
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.
2008-01-01
The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.
Sedimentation Survey of Lago Icacos, Puerto Rico, March 2004
Soler-López, Luis R.
2007-01-01
The Lago Icacos, a small reservoir built in 1930 and owned by the Puerto Rico Electric Power Authority, is part of the Rio Blanco Hydroelectric Power System. The reservoir is located in Naguabo, within the Caribbean National Forest in eastern Puerto Rico. The original storage capacity of the reservoir was 19,119 cubic meters in 1930. The bathymetric survey conducted by the U.S. Geological Survey in March 2004 indicates a storage capacity of 7,435 cubic meters or 39 percent of the original storage capacity, and a maximum depth of 5.3 meters. The reservoir has been dredged several times to restore lost storage capacity caused by high sediment loads and the frequent landslides that occur upstream from the dam, which have partially or completely filled the Lago Icacos. Because sediment removal activities have not been documented, sedimentation rates could not be determined using storage volume comparisons. A reservoir sedimentation rate was calculated using the daily sediment load data gathered at the U.S. Geological Survey Rio Icacos streamflow station upstream of the reservoir, the estimated Lago Icacos sediment trapping efficiency, and the estimated sediment yield of the Lago Icacos basin extrapolated from the Rio Icacos sediment load data. Using these properties, the Lago Icacos sedimentation rate was estimated as 71 cubic meters per year, equivalent to about 1 percent of the original storage capacity per year. The Lago Icacos 7.47-square-kilometer drainage area sediment yield was estimated as 7,126 tonnes per year or about 954 tonnes per square kilometer per year. Based on the current estimated sedimentation rate of 71 cubic meters per year, Lago Icacos has a useful life of about 105 years or to year 2109.
The X-ray Integral Field Unit (X-IFU) for Athena
NASA Technical Reports Server (NTRS)
Ravera, Laurent; Barret, Didier; Willem den Herder, Jan; Piro, Luigi; Cledassou, Rodolphe; Pointecouteau, Etienne; Peille, Philippe; Pajot, Francois; Arnaud, Monique; Pigot, Claude;
2014-01-01
Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain.
NASA Astrophysics Data System (ADS)
Divakar Shetty, A. S.; Kumar, R. Ravi; Kumarappa, S.; Antony, A. J.
2016-09-01
The rate of economic evolution is untenable unless we save or stops misusing the fossil fuels like coal, crude oil or fossil fuels. So we are in need of start count on the alternate or renewable energy sources. In this experimental analysis an attempt has been made to investigate the conversion of municipal plastic wastes like milk covers and water bottles are selected as feed stocks to get oil using pyrolysis method, the performance analysis on CRDI diesel engine and to assess emission characteristics like HC, CO, NOX and smoke by using blends of Diesel-Plastic liquid fuels. The plastic fuel is done with the pH test using pH meter after the purification process and brought to the normal by adding KOH and NaOH. Blends of 0 to 100% plastic liquid fuel-diesel mixture have been tested for performance and emission aspect as well. The experimental results shows the efficiently convert weight of municipal waste plastics into 65% of useful liquid hydrocarbon fuels without emitting much pollutants.
Development of a low background liquid scintillation counter for a shallow underground laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.
2015-08-20
Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunitymore » for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.« less
Jones, K P; Mullee, M A
1990-01-01
OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611
Using RADFET for the real-time measurement of gamma radiation dose rate
NASA Astrophysics Data System (ADS)
Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.
2015-02-01
RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20 and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65 to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.
40 CFR Table 2 to Subpart D of... - TRE Parameters for NSPS Referencing Subpartsa
Code of Federal Regulations, 2011 CFR
2011-07-01
...? Net heating value(MJ/scm)b Vent stream flow rate (scm/min)c Values of terms for TRE equation: TRE=A... § 65.64(h). b MJ/scm = mega Joules per standard cubic meter. c scm/min = standard cubic meters per...
40 CFR Table 2 to Subpart D of... - TRE Parameters for NSPS Referencing Subpartsa
Code of Federal Regulations, 2010 CFR
2010-07-01
...? Net heating value(MJ/scm)b Vent stream flow rate (scm/min)c Values of terms for TRE equation: TRE=A... § 65.64(h). b MJ/scm = mega Joules per standard cubic meter. c scm/min = standard cubic meters per...
THE USE OF QUENCHING IN A LIQUID SCINTILLATION COUNTER FOR QUANTITATIVE ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, G.V.
1963-01-01
Quenching was used to quantitatively determine the amonnt of quenching agent present. A sealed promethium147 source was prepared to be used for the count rate determinations. Two methods to determine the amount of quenching agent present in a sample were developed. One method related the count rate of a sample containing a quenching agent to the amount of quenching agent present. Calibration curves were plotted using both color and chemical quenchers. The quenching agents used were: F.D.C. Orange No. 2, F.D.C. Yellow No. 3, F.D.C. Yellow No. 4, Scarlet Red, acetone, benzaldehyde, and carbon tetrachloride. the color quenchers gave amore » linear-relationship, while the chemical quenchers gave a non-linear relationship. Quantities of the color quenchers between about 0.008 mg and 0.100 mg can be determined with an error less than 5%. The calibration curves were found to be usable over a long period of time. The other method related the change in the ratio of the count rates in two voltage windows to the amount of quenching agent present. The quenchers mentioned above were used. Calibration curves were plotted for both the color and chemical quenchers. The relationships of ratio versus amount of quencher were non-linear in each case. It was shown that the reproducibility of the count rate and the ratio was independent of the amount of quencher present but was dependent on the count rate. At count rates above 10,000 counts per minute the reproducibility was better than 1%. (TCO)« less
Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions
NASA Astrophysics Data System (ADS)
Kolthammer, Jeffrey A.; Su, Kuan-Hao; Grover, Anu; Narayanan, Manoj; Jordan, David W.; Muzic, Raymond F.
2014-07-01
This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2-2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8-5.1 mm FWHM), sensitivity (7.3 cps kBq-1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241-609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies.
1983-09-28
approximately isokinetic sampling conditions. The blower motor for the hi-vol was separated from the filter holder unit by a one- meter length of flexible...bridge bulkhead about 15 m above sea level and within 3 meters of the ARCAS inlet. The flow rate through the 20 cm x 25 cm glass fiber filters was...materials, atmospheric pressure, soil moisture and vegetative cover (Larson and Bressan, 1980). Radon concentrations measured a few meters above
Schmitz, Christoph; Eastwood, Brian S.; Tappan, Susan J.; Glaser, Jack R.; Peterson, Daniel A.; Hof, Patrick R.
2014-01-01
Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) “cell counting” approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections. PMID:24847213
Background Conditions for the October 29, 2003 Solar Flare by the AVS-F Apparatus Data
NASA Astrophysics Data System (ADS)
Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Lyapin, A. R.; Troitskaya, E. V.
The background model for AVS-F apparatus onboard CORONAS-F satellite for the October 29, 2003 X10-class solar flare is discussed in the presented work. This background model developed for AVS-F counts rate in the low- and high-energy spectral ranges in both individual channels and summarized. Count rate were approximated by polynomials of high order taking into account the mean count rate in the geomagnetic equatorial region at the different orbits parts and Kp-index averaged on 5 bins in time interval from -24 to -12 hours before the time of geomagnetic equator passing. The observed averaged counts rate on equator in the region of geomagnetic latitude ±5o and estimated minimum count rate values are in coincidence within statistical errors for all selected orbits parts used for background modeling. This model will used to refine the estimated energy of registered during the solar flare spectral features and detailed analysis of their temporal profiles behavior both in corresponding energy bands and in summarized energy range.
Extreme Ultraviolet Explorer observations of the magnetic cataclysmic variable RE 1938-461
NASA Technical Reports Server (NTRS)
Warren, John K.; Vallerga, John V.; Mauche, Christopher W.; Mukai, Koji; Siegmund, Oswald H. W.
1993-01-01
The magnetic cataclysmic variable RE 1938-461 was observed by the Extreme Ultraviolet Explorer (EUVE) Deep Survey instrument on 1992 July 8-9 during in-orbit calibration. It was detected in the Lexan/ boron (65-190 A) band, with a quiescent count rate of 0.0062 +/- 0.0017/s, and was not detected in the aluminum/carbon (160-360 A) band. The Lexan/boron count rate is lower than the corresponding ROSAT wide-field camera Lexan/boron count rate. This is consistent with the fact that the source was in a low state during an optical observation performed just after the EUVE observation, whereas it was in an optical high state during the ROSAT observation. The quiescent count rates are consistent with a virtual cessation of accretion. Two transient events lasting about 1 hr occurred during the Lexan/boron pointing, the second at a count rate of 0.050 +/- 0.006/s. This appears to be the first detection of an EUV transient during the low state of a magnetic cataclysmic variable. We propose two possible explanations for the transient events.
Crater Age and Hydrogen Content in Lunar Regolith from LEND Neutron Data
NASA Astrophysics Data System (ADS)
Sanin, Anton; Starr, Richard; Litvak, Maxim; Petro, Noah; Mitrofanov, Igor
2017-04-01
We are presenting an analysis of Lunar Exploration Neutron Detector (LEND) epithermal neutron count rates for a large set of mid-latitude craters. Epithermal neutron count rates for crater interiors measured by the LEND Sensor for Epithermal Neutrons (SETN) were compared to crater exteriors for 322 craters. An increase in relative count rate at about 9-sigma confidence level was found, consistent with a lower hydrogen content. A smaller subset of 31 craters, all located near three Copernican era craters, Jackson, Tycho, and Necho, also shows a significant increase in Optical Maturity parameter implying an immature regolith. The increase in SETN count rate for these craters is greater than the increase for the full set of craters by more than a factor of two.
Crater Age and Hydrogen Content in Lunar Regolith from LEND Neutron Data
NASA Technical Reports Server (NTRS)
Starr, Richard D.; Litvak, Maxim L.; Petro, Noah E.; Mitrofanov, Igor G.; Boynton, William V.; Chin, Gordon; Livengood, Timothy A.; McClanahan, Timothy P.; Sanin, Anton B.; Sagdeev, Roald Z.;
2017-01-01
Analysis of Lunar Exploration Neutron Detector (LEND) neutron count rates for a large set of mid-latitude craters provides evidence for lower hydrogen content in the crater interiors compared to typical highland values. Epithermal neutron count rates for crater interiors measured by the LEND Sensor for Epithermal Neutrons (SETN) were compared to crater exteriors for 301 craters and displayed an increase in mean count rate at the approx. 9-sigma confidence level, consistent with a lower hydrogen content. A smaller subset of 31 craters also shows a significant increase in Optical Maturity parameter implying an immature regolith. The increase in SETN count rate for these craters is greater than the increase for the full set of craters by more than a factor of two.
Relationship of milking rate to somatic cell count.
Brown, C A; Rischette, S J; Schultz, L H
1986-03-01
Information on milking rate, monthly bucket somatic cell counts, mastitis treatment, and milk production was obtained from 284 lactations of Holstein cows separated into three lactation groups. Significant correlations between somatic cell count (linear score) and other parameters included production in lactation 1 (-.185), production in lactation 2 (-.267), and percent 2-min milk in lactation 2 (.251). Somatic cell count tended to increase with maximum milking rate in all lactations, but correlations were not statistically significant. Twenty-nine percent of cows with milking rate measurements were treated for clinical mastitis. Treated cows in each lactation group produced less milk than untreated cows. In the second and third lactation groups, treated cows had a shorter total milking time and a higher percent 2-min milk than untreated cows, but differences were not statistically significant. Overall, the data support the concept that faster milking cows tend to have higher cell counts and more mastitis treatments, particularly beyond first lactation. However, the magnitude of the relationship was small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, W. F.
NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.
North Carolina | Midmarket Solar Policies in the United States | Solar
impose standby charges consistent with approved standby rates applicable to other customer-owned utilities without customer compensation. RECs: Utilities owns renewable energy certificates (RECs), unless customer chooses to net meter under a time of use tariff with demand charges. Meter aggregation: Not
Environmental Assessment for Selected Regions in the Mediterranean Sea
1992-01-01
derived from gravity and turbidity flows and include ash layers interbedded with hemipelagic mud. Sedimen- tation rates in these regions are on the order of...CURRENT METERS, ALBORAN I (PISTEK 1984)0& CURRENT METERS, ALBORAN III (PISTEK 1987) A DRIFTING CURRENT METERIS , ALBORAN 11 (PISTEK 1987) 0: CURRENT
Simulation of ground-water discharge to Biscayne Bay, southeastern Florida
Langevin, Christian David
2001-01-01
As part of the Place-Based Studies Program, the U.S. Geological Survey initiated a project in 1996, in cooperation with the U.S. Army Corps of Engineers, to quantify the rates and patterns of submarine ground-water discharge to Biscayne Bay. Project objectives were achieved through field investigations at three sites (Coconut Grove, Deering Estate, and Mowry Canal) along the coastline of Biscayne Bay and through the development and calibration of variable-density, ground-water flow models. Two-dimensional, vertical cross-sectional models were developed for steady-state conditions for the Coconut Grove and Deering Estate transects to quantify local-scale ground-water discharge patterns to Biscayne Bay. A larger regional-scale model was developed in three dimensions to simulate submarine ground-water discharge to the entire bay. The SEAWAT code, which is a combined version of MODFLOW and MT3D, was used to simulate the complex variable-density flow patterns. Field data suggest that ground-water discharge to Biscayne Bay relative to the shoreline is restricted to within 300 meters at Coconut Grove, 600 to 1,000 meters at Deering Estate, and 100 meters at Mowry Canal. The vertical cross-sectional models, which were calibrated to the field data using the assumption of steady state, tend to focus ground-water discharge to within 50 to 200 meters of the shoreline. With homogeneous distributions for aquifer parameters and a constant-concentration boundary for Biscayne Bay, the numerical models could not reproduce the lower ground-water salinities observed beneath the bay, which suggests that further research may be necessary to improve the accuracy of the numerical simulations. Results from the cross-sectional models, which were able to simulate the approximate position of the saltwater interface, suggest that longitudinal dispersivity ranges between 1 and 10 meters, and transverse dispersivity ranges from 0.1 to 1 meter for the Biscayne aquifer. The three-dimensional, regional-scale model was calibrated to ground-water heads, canal baseflow, and the general position of the saltwater interface for nearly a 10-year period from 1989 to 1998. The mean absolute error between observed and simulated head values is 0.15 meter. The mean absolute error between observed and simulated baseflow is 3 x 105 cubic meters per day. The position of the simulated saltwater interface generally matches the position observed in the field, except for areas north of the Miami Canal where the simulated saltwater interface is located about 5 kilometers inland of the observed saltwater interface. Results from the regional-scale model suggest that the average rate of fresh ground-water discharge to Biscayne Bay for the 10-year period (1989-98) is about 2 x 105 cubic meters per day for 100 kilometers of coastline. This simulated discharge rate is about 6 percent of the measured surface-water discharge to Biscayne Bay for the same period. The model also suggests that nearly 100 percent of the fresh ground-water discharge is to the northern half of Biscayne Bay, north of the Cutler Drain Canal. South of the Cutler Drain Canal, coastal lowlands prevent the water table from rising high enough to drive measurable quantities of ground water to Biscayne Bay. Annual variations in sea-level elevation, which can be as large as 0.3 meter, have a substantial effect on rates of ground-water discharge. During 1989-98, simulated rates of ground-water discharge to Biscayne Bay generally are highest when sea level is relatively low.
NASA Astrophysics Data System (ADS)
Xie, Dengling; Xie, Yanjun; Liu, Peng; Tong, Lieshu; Chu, Kaiqin; Smith, Zachary J.
2017-02-01
Current flow-based blood counting devices require expensive and centralized medical infrastructure and are not appropriate for field use. In this paper we report a method to count red blood cells, white blood cells as well as platelets through a low-cost and fully-automated blood counting system. The approach consists of using a compact, custom-built microscope with large field-of-view to record bright-field and fluorescence images of samples that are diluted with a single, stable reagent mixture and counted using automatic algorithms. Sample collection is performed manually using a spring loaded lancet, and volume-metering capillary tubes. The capillaries are then dropped into a tube of pre-measured reagents and gently shaken for 10-30 seconds. The sample is loaded into a measurement chamber and placed on a custom 3D printed platform. Sample translation and focusing is fully automated, and a user has only to press a button for the measurement and analysis to commence. Cost of the system is minimized through the use of custom-designed motorized components. We performed a series of comparative experiments by trained and untrained users on blood from adults and children. We compare the performance of our system, as operated by trained and untrained users, to the clinical gold standard using a Bland-Altman analysis, demonstrating good agreement of our system to the clinical standard. The system's low cost, complete automation, and good field performance indicate that it can be successfully translated for use in low-resource settings where central hematology laboratories are not accessible.
Shore erosion as a sediment source to the tidal Potomac River, Maryland and Virginia
Miller, Andrew J.
1987-01-01
The shoreline of the tidal Potomac River attained its present form as a result of the Holocene episode of sea-level rise; the drowned margins of the system are modified by wave activity in the shore zone and by slope processes on banks steepened by basal-wave erosion. Shore erosion leaves residual sand and gravel in shallow water and transports silt and clay offshore to form a measurable component of the suspended-sediment load of the tidal Potomac River. Erosion rates were measured by comparing digitized historical shoreline maps and modern maps, and by comparing stereopairs of aerial photographs taken at different points in time, with the aid of an interactive computer-graphics system and a digitizing stereoplotter. Cartographic comparisons encompassed 90 percent of the study reach and spanned periods of 38 to 109 years, with most measurements spanning at least 84 years. Photogrammetric comparisons encompassed 49 percent of the study reach and spanned 16 to 40 years. Field monitoring of erosion rates and processes at two sites, Swan Point Neck, Maryland, and Mason Neck, Virginia, spanned periods of 10 to 18 months. Estimated average recession rates of shoreline in the estuary, based on cartographic and photogrammetric measurements, were 0.42 to 0.52 meter per annum (Virginia shore) and 0.31 to 0.41 meter per annum (Maryland shore). Average recession rates of shoreline in the tidal river and transition zone were close to 0.15 meter per annum. Estimated average volume-erosion rates along the estuary were 1.20 to 1.87 cubic meters per meter of shoreline per annum (Virginia shore) and 0.56 to 0.73 cubic meter per meter of shoreline per annum (Maryland shore); estimated average volume-erosion rates along the shores of the tidal river and transition zone were 0.55 to 0.74 cubic meter per meter of shoreline per annum. Estimated total sediment contributed to the tidal Potomac River by shore erosion was 0.375 x 10 6 to 0.565 x 10 6 metric tons per annum; of this, the estimated amount of silt and clay ranged from 0.153x10 6 to 0.226x10 6 metric tons per annum. Between 49 and 60 percent of the sediment was derived from the Virginia shore of the estuary; 14 to 18 percent was derived from the Maryland shore of the estuary; and 23 to 36 percent was derived from the shores of the tidal river and transition zone. The adjusted modern estimate of sediment eroded from the shoreline of the estuary is about 55 percent of the historical estimate. Sediment eroded from the shoreline accounted for about 6 to 9 percent of the estimated total suspended load for the tidal Potomac River during water years 1979 through 1981 and for about 11 to 18 percent of the suspended load delivered to the estuary during the same period. Annual suspended-sediment loads derived from upland source areas fluctuated by about an order of magnitude during the 3 years of record (1979-81); shore erosion may have been a more important component of the sediment budget during periods of low flow than during periods of higher discharges. Prior to massive land clearance during the historical period of intensive agriculture in the 18th and 19th centuries, annual sediment loads from upland sources probably were smaller than they are at present; under these circumstances shore erosion would have been an important component of the sediment budget. At current rates of sediment supply, relative sea-level rise, and shoreline recession, the landward parts of the tidal Potomac River are rapidly being filled by sediment. If these rates were to remain constant over time, and no sediment were to escape into Chesapeake Bay, the tidal river and transition zone would be filled within 600 years, and the total system would be filled in less than 4,000 years. Given a slower rate of sediment supply, comparable to the measured rate during the low-flow 1981 water year, the volume of the tidal Potomac River might remain relatively stable or even increase over time. Changes in rates
AMS Ground Truth Measurements: Calibrations and Test Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasiolek, Piotr T.
2015-12-01
Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima NPP accident in March-May 2011. To map ground contamination, a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count data, expressed in counts per second (cps), need to be converted to a terrestrial component ofmore » the exposure rate at 1 meter (m) above ground, or surface activity of the isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large-scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, because production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish a common calibration line very early into the event. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and that are potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.« less
Earth Observations taken by Expedition 30 crewmember
2012-03-26
ISS030-E-188071 (27 March 2012) --- A nighttime view of Shanghai is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The city of Shanghai sits along the delta banks of the Yangtze River along the eastern coast of China. The city proper is the world’s most populous city (the 2010 census counts 23 million people, including “unregistered” residents). With that many humans, the city is a tremendous sight at night. Shanghai is a key financial capital for China and the Asian Pacific region. The bright lights of the city center and the distinctive new skyscrapers that form the skyline along the Pudong district (the eastern shore of the Huangpu River, a tributary of the Yangtze that cuts through the center of Shanghai) make for spectacular night viewing both on the ground and from space. The official census count in 2000 was 16.4 million; the city population has increased more than 35 per cent since that time. Much of the growth has occurred in new satellite developments like areas to the west of the city (for example, Suzhou). The city’s rapid growth and development during the 20th and 21st centuries have come at a cost. Water availability is a key concern, and groundwater withdrawal has resulted in substantial subsidence in and around the city. Because it is built only a few meters above sea level – on the banks of the deltaic estuary of the Yangtze River – curbing subsidence rates is a critical concern.
NASA Astrophysics Data System (ADS)
Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.
Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.
NASA Astrophysics Data System (ADS)
Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua
2016-03-01
Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.
133Xe contamination found in internal bacteria filter of xenon ventilation system.
Hackett, Michael T; Collins, Judith A; Wierzbinski, Rebecca S
2003-09-01
We report on (133)Xe contamination found in the reusable internal bacteria filter of our xenon ventilation system. Internal bacteria filters (n = 6) were evaluated after approximately 1 mo of normal use. The ventilation system was evacuated twice to eliminate (133)Xe in the system before removal of the filter. Upon removal, the filter was monitored using a survey meter with an energy-compensated probe and was imaged on a scintillation camera. The filter was monitored and imaged over several days and was stored in a fume hood. Estimated (133)Xe activity in each filter immediately after removal ranged from 132 to 2,035 kBq (3.6-55.0 micro Ci), based on imaging. Initial surface radiation levels ranged from 0.4 to 4.5 micro Sv/h (0.04-0.45 mrem/h). The (133)Xe activity did not readily leave the filter over time (i.e., time to reach half the counts of the initial decay-corrected image ranged from <6 to >72 h). The majority of the image counts (approximately 70%) were seen in 2 distinctive areas in the filter. They corresponded to sites where the manufacturer used polyurethane adhesive to attach the fiberglass filter medium to the filter housing. (133)Xe contamination within the reusable internal bacteria filter of our ventilation system was easily detected by a survey meter and imaging. Although initial activities and surface radiation levels were low, radiation safety practices would dictate that a (133)Xe-contaminated bacteria filter be stored preferably in a fume hood until it cannot be distinguished from background before autoclaving or disposal.
Sedimentation Survey of Lago Toa Vaca, Puerto Rico, June-July 2002
Soler-López, Luis R.
2004-01-01
The Lago Toa Vaca dam is located in the municipality of Villalba in southern Puerto Rico, and is owned and operated by the Puerto Rico Aqueduct and Sewer Authority. Construction was completed in 1972 as the first phase of a multi-purpose project that contemplated four possible diversions from other basins to mitigate the rapid storage capacity loss of Lago Guayabal, located immediately downstream of the Toa Vaca dam. The latter phases of the intra-basin diversions were cancelled, and currently, the reservoir receives runoff from only 56.8 square kilometers of its drainage area. Lago Toa Vaca reservoir when constructed was to be used for irrigation of croplands in the southern coastal plain. The reservoir had an original storage capacity of 68.94 million cubic meters. Sedimentation has reduced the storage capacity by only 7 percent between 1972 and 2002 to 64.08 million cubic meters. This represents a long-term sedimentation rate of about 162,000 cubic meters per year. Based on the 2002 sedimentation survey, Lago Toa Vaca has a sediment trapping efficiency of about 98 percent and a drainage area-normalized sedimentation rate of about 3,086 cubic meters per square kilometer per year between 1972 and 2002. At the current long-term sedimentation rate the reservoir would lose its storage capacity by the year 2400.
NASA Astrophysics Data System (ADS)
Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen
2016-01-01
Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.
Savu, Anamaria; Schopflocher, Donald; Scholnick, Barry; Kaul, Padma
2016-01-13
We examined the association between personal bankruptcy filing and acute myocardial infarction (AMI) rates in Canada. Between 2002 and 2009, aggregate and yearly bankruptcy and AMI rates were estimated for 1,155 forward sortation areas of Canada. Scatter plot and correlations were used to assess the association of the aggregate rates. Cross-lagged structural equation models were used to explore the longitudinal relationship between bankruptcy and AMI after adjustment for socio-economic factors. A cross-lagged structural equation model estimated that on average, an increase of 100 in bankruptcy filing count is associated with an increase of 1.5 (p = 0.02) in AMI count in the following year, and an increase of 100 in AMI count is associated with an increase of 7 (p < 0.01) in bankruptcy filing count. We found that regions with higher rates of AMI corresponded to those with higher levels of economic and financial stress, as indicated by personal bankruptcy rate, and vice-versa.
Primary flow meter for calibrating a sniffer test leak artefact by a pressure rise method
NASA Astrophysics Data System (ADS)
Arai, Kenta; Yoshida, Hajime
2014-10-01
Sniffer tests are used to locate leaks in equipment during operation. The sensitivity of a sniffer leak detector must be calibrated against a known gas flow to atmospheric pressure generated by a sniffer test leak artefact. We have developed a primary flow meter for calibrating gas flows to atmospheric pressure through the leak artefact. The flow meter is based on a pressure rise method and two chambers are used to measure the pressure rise with small uncertainty even at atmospheric pressure. The calibration range of the flow rate is 5 × 10-7 Pa m3 s-1 to 7 × 10-4 Pa m3 s-1 to atmospheric pressure at 23.0 °C with a minimum uncertainty of 1.4% (k = 2), as well as 4 × 10-8 Pa m3 s-1 to 5 × 10-4 Pa m3 s-1 to a vacuum at 23.0 °C. The long term stability of the flow meter was determined as 0.41% by repeated measurements of the conductance of the leak artefact. In case of the flow rate into a vacuum, the flow meter was successfully linked to the international reference value of CCM.P-K12 by a lab-internal comparison.
Field Evaluation of Seepage Meters in the Coastal Marine Environment
NASA Astrophysics Data System (ADS)
Cable, J. E.; Burnett, W. C.; Chanton, J. P.; Corbett, D. R.; Cable, P. H.
1997-09-01
The response of seepage meters was evaluated in a nearshore marine environment where water motion effects are more pronounced than in lake settings, where these meters have been used traditionally. Temporal and spatial variations of seepage, as well as potential artifacts, were evaluated using empty and 1000-ml pre-filled bag measurements. Time-series measurements confirmed earlier observations that anomalously high fluxes occur during the early stages (≤10 min) of collection. As deployment times increased (30-60 min), measured flow rates stabilized at a level thought to represent the actual seepage flux. Pre-filling the plastic measurement bags effectively alleviated this anomalous, short-term influx. Reliable seepage measurements required deployment times sufficient to allow a net volume of at least 150 ml into the collection bag. Control experiments, designed by placing seepage meters inside sand-filled plastic swimming pools, served as indicators of external effects on these measurements, i.e. they served as seepage meter blanks. When winds were under 15 knots, little evidence was found that water motion caused artifacts in the seepage measurements. Tidal cycle influences on seepage rates were negligible in the present study area, but long-term temporal variations (weeks to months) proved substantial. Observed long-term changes in groundwater flux into the Gulf of Mexico correlated with water table elevation at a nearby monitoring well.
Sedimentation survey of Lago Loco, Puerto Rico, March 2000
Soler-López, Luis R.
2002-01-01
Lago Loco, a small reservoir property of the Puerto Rico Electric Power Authority and part of the Southwestern Puerto Rico Project, has lost 64 percent of its original storage capacity. In 1951, the original storage capacity was about 2.40 million cubic meters, decreasing to 1.43 million cubic meters in 1986 and to 0.87 million cubic meters in March 2000. The storage loss or longterm sedimentation rate increased from 27,714 cubic meters per year from the period of 1951 to 1986 to 31,224 cubic meters per year for the period of 1951 to 2000. This represents a capacity loss of about 1.1 percent per year for the period of 1951 to 1986 and 1.3 percent per year for 1951 to 2000. The trapping efficiency of the reservoir was about 92 percent in 1951, decreasing to about 87 percent in 1986, and to about 80 percent in March 2000. The sediment yield of the net sediment- contributing drainage area increased from 1,504 megagrams per square kilometer per year between 1951 and 1986 to 1,774 megagrams per square kilometer per year between 1951 and 2000, or about 18 percent. At the current sedimentation rate of the reservoir, the life expectancy of Lago Loco is about 28 more years or until the year 2028.
Effect of heavy back squats on repeated sprint performance in trained men.
Duncan, M J; Thurgood, G; Oxford, S W
2014-04-01
This study examined the impact of post activation potentiation on repeated sprint performance in trained Rugby Union players. Ten, male, professional Rugby Union players (mean age=25.2±5.02 years) performed 7, 30-meter sprints, separated by 25 seconds, 4 minutes following back squats (90% 1 repetition maximum) or a control condition performed in a counterbalanced order. Significant condition X sprint interactions for 10-meter (P=0.02) and 30-meter (P=0.05) indicated that times were significantly faster in the PAP condition for sprints 5, 6 and 7 across both distances. Fatigue rate was also significantly lower in the PAP condition for 10-meter (P=0.023) and 30-meter (P=0.006) sprint running speed. This study evidences that a heavy resistance exercise stimulus administered four minutes prior to repeated sprints can offset the decline in sprint performance seen during subsequent maximal sprinting over 10 and 30-meters in Rugby Union players.
Remote semi-continuous flow rate logging seepage meter
NASA Technical Reports Server (NTRS)
Reay, William G.; Walthall, Harry G.
1991-01-01
The movement of groundwater and its associated solutes from upland regions was implicated in the degradation of receiving surface water bodies. Current efforts to directly measure this influx of water incorporate manually operated seepage meters which are hindered by severe limitations. A prototype seepage meter was developed by NASA Langley Research Center and Virginia Polytechnic Institute and State University that will allow for the semi-continuous collection and data logging of seepage flux across the sediment water interface. The meter is designed to operate at depths to 40 meters, and alleviate or minimize all disadvantages associated with traditional methods while remaining cost effective. The unit was designed to operate independently for time periods on the order of weeks with adjustable sample sequences depending upon hydrologic conditions. When used in conjunction with commercially available pressure transducers, this seepage meter allows for correlations to be made between groundwater discharge and tidal/sea state conditions in coastal areas. Field data from the Chesapeake Bay and Florida Bay systems are presented.
Assessment of neutron dosemeters around standard sources and nuclear fissile objects.
Raimondi, N; Tournier, B; Groetz, J E; Piot, J; Riebler, E; Crovisier, P; Chambaudet, A; Cabanné, N
2002-01-01
In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations.
Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.
2013-12-01
In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.
Kumar, J Vijay; Baghirath, P Venkat; Naishadham, P Parameswar; Suneetha, Sujai; Suneetha, Lavanya; Sreedevi, P
2015-01-01
To determine if long-term highly active antiretroviral therapy (HAART) therapy alters salivary flow rate and also to compare its relation of CD4 count with unstimulated and stimulated whole saliva. A cross-sectional study was performed on 150 individuals divided into three groups. Group I (50 human immunodeficiency virus (HIV) seropositive patients, but not on HAART therapy), Group II (50 HIV-infected subjects and on HAART for less than 3 years called short-term HAART), Group III (50 HIV-infected subjects and on HAART for more than or equal to 3 years called long-term HAART). Spitting method proposed by Navazesh and Kumar was used for the measurement of unstimulated and stimulated salivary flow rate. Chi-square test and analysis of variance (ANOVA) were used for statistical analysis. The mean CD4 count was 424.78 ± 187.03, 497.82 ± 206.11 and 537.6 ± 264.00 in the respective groups. Majority of the patients in all the groups had a CD4 count between 401 and 600. Both unstimulated and stimulated whole salivary (UWS and SWS) flow rates in Group I was found to be significantly higher than in Group II (P < 0.05). Unstimulated salivary flow rate between Group II and III subjects were also found to be statistically significant (P < 0.05). ANOVA performed between CD4 count and unstimulated and stimulated whole saliva in each group demonstrated a statistically significant relationship in Group II (P < 0.05). There were no significant results found between CD4 count and stimulated whole saliva in each groups. The reduction in CD4 cell counts were significantly associated with salivary flow rates of HIV-infected individuals who are on long-term HAART.
Janoudi, Abdul; Poff, Kenneth L.
1990-01-01
The relationship between the amount of light and the amount of response for any photobiological process can be based on the number of incident quanta per unit time (fluence rate-response) or on the number of incident quanta during a given period of irradiation (fluence-response). Fluence-response and fluence rate-response relationships have been measured for second positive phototropism by seedlings of Arabidopsis thaliana. The fluence-response relationships exhibit a single limiting threshold at about 0.01 micromole per square meter when measured at fluence rates from 2.4 × 10−5 to 6.5 × 10−3 micromoles per square meter per second. The threshold values in the fluence rateresponse curves decrease with increasing time of irradiation, but show a common fluence threshold at about 0.01 micromole per square meter. These thresholds are the same as the threshold of about 0.01 micromole per square meter measured for first positive phototropism. Based on these data, it is suggested that second positive curvature has a threshold in time of about 10 minutes. Moreover, if the times of irradiation exceed the time threshold, there is a single limiting fluence threshold at about 0.01 micromole per square meter. Thus, the limiting fluence threshold for second positive phototropism is the same as the fluence threshold for first positive phototropism. Based on these data, we suggest that this common fluence threshold for first positive and second positive phototropism is set by a single photoreceptor pigment system. PMID:11537470
Estimating pumping time and ground-water withdrawals using energy- consumption data
Hurr, R.T.; Litke, D.W.
1989-01-01
Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A.
In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons.more » The results suggested that the concept of a multi-stage detection system will work in practice.« less
Goktekin, Mehmet C; Yilmaz, Mustafa
2018-06-01
In this research, the aim was to compare hematological data for the differentiation of subarachnoid hemorrhage, migraine attack, and other headache syndromes during consultation in emergency service. In this research, which was designed as retrospective case control study, hematological parameters (WBC, HgB, HCT, PLT, lymphocyte and neutrophile counts and neutrophile/lymphocyte rates) of the patients consulting to emergency service with SAH and migraine and other consulting patients complaining mainly from headache and having normal cranial CT were analysed. Sixty migraine attack patients (F/M:47/13), 57 SAH patients (F/M:30/27), and 53 patients except migraine having normal brain CT (F/M:36/17) who were consulted to emergency service with headache complaint were included in our research. WBC, Hct, HgB, MCV, PLT, MPV, LY, Neu counts, and NY/LY rates were found to differentiate between SAH and migraine. WBC, PLT, MPV, LY, and Neu rates were found to differentiate between SAH and HS patients. Only Hct, HgB, MCV, and NY/LY rates were found to differ meaningfully between SAH and migraine patients but these rates were not found to have meaningful difference between SAH and HS patients. In addition, an increase in WBC counts and NY/LY rates and decrease in MPV counts in ROC analysis were found to be more specific for SAH. WBC, HgB, HCT, PLT, lymphocyte and Neu counts, and NY/LY rates can indicate distinguishing SAH and migraine. WBC, HgB, HCT, PLT, lymphocyte and Neu counts can indicate to the clinician a differentiation of SAH and other headache syndromes.
Multianode cylindrical proportional counter for high count rates
Hanson, J.A.; Kopp, M.K.
1980-05-23
A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.
Multianode cylindrical proportional counter for high count rates
Hanson, James A.; Kopp, Manfred K.
1981-01-01
A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.
Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-10-01
A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.
NASA Technical Reports Server (NTRS)
Marcin, Martin; Abramovici, Alexander
2008-01-01
The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.
Montana Kids Count Data Book and County Profiles, 1994.
ERIC Educational Resources Information Center
Healthy Mothers, Healthy Babies--The Montana Coalition, Helena.
This Kids Count publication is the first to examine statewide trends in the well-being of Montana's children. The statistical portrait is based on 13 indicators of well-being: (1) low birthweight rate; (2) infant mortality rate; (3) child death rate; (4) teen violent death rate; (5) percent of public school enrollment in Chapter 1 programs; (6)…
A real-time phoneme counting algorithm and application for speech rate monitoring.
Aharonson, Vered; Aharonson, Eran; Raichlin-Levi, Katia; Sotzianu, Aviv; Amir, Ofer; Ovadia-Blechman, Zehava
2017-03-01
Adults who stutter can learn to control and improve their speech fluency by modifying their speaking rate. Existing speech therapy technologies can assist this practice by monitoring speaking rate and providing feedback to the patient, but cannot provide an accurate, quantitative measurement of speaking rate. Moreover, most technologies are too complex and costly to be used for home practice. We developed an algorithm and a smartphone application that monitor a patient's speaking rate in real time and provide user-friendly feedback to both patient and therapist. Our speaking rate computation is performed by a phoneme counting algorithm which implements spectral transition measure extraction to estimate phoneme boundaries. The algorithm is implemented in real time in a mobile application that presents its results in a user-friendly interface. The application incorporates two modes: one provides the patient with visual feedback of his/her speech rate for self-practice and another provides the speech therapist with recordings, speech rate analysis and tools to manage the patient's practice. The algorithm's phoneme counting accuracy was validated on ten healthy subjects who read a paragraph at slow, normal and fast paces, and was compared to manual counting of speech experts. Test-retest and intra-counter reliability were assessed. Preliminary results indicate differences of -4% to 11% between automatic and human phoneme counting. Differences were largest for slow speech. The application can thus provide reliable, user-friendly, real-time feedback for speaking rate control practice. Copyright © 2017 Elsevier Inc. All rights reserved.
HgCdTe APD-based linear-mode photon counting components and ladar receivers
NASA Astrophysics Data System (ADS)
Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.
2011-05-01
Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.
McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.
1994-01-01
Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.
Battaile, Brian C; Trites, Andrew W
2013-01-01
We propose a method to model the physiological link between somatic survival and reproductive output that reduces the number of parameters that need to be estimated by models designed to determine combinations of birth and death rates that produce historic counts of animal populations. We applied our Reproduction and Somatic Survival Linked (RSSL) method to the population counts of three species of North Pacific pinnipeds (harbor seals, Phoca vitulina richardii (Gray, 1864); northern fur seals, Callorhinus ursinus (L., 1758); and Steller sea lions, Eumetopias jubatus (Schreber, 1776))--and found our model outperformed traditional models when fitting vital rates to common types of limited datasets, such as those from counts of pups and adults. However, our model did not perform as well when these basic counts of animals were augmented with additional observations of ratios of juveniles to total non-pups. In this case, the failure of the ratios to improve model performance may indicate that the relationship between survival and reproduction is redefined or disassociated as populations change over time or that the ratio of juveniles to total non-pups is not a meaningful index of vital rates. Overall, our RSSL models show advantages to linking survival and reproduction within models to estimate the vital rates of pinnipeds and other species that have limited time-series of counts.
Schein, Stan; Ahmad, Kareem M
2006-11-01
A rod transmits absorption of a single photon by what appears to be a small reduction in the small number of quanta of neurotransmitter (Q(count)) that it releases within the integration period ( approximately 0.1 s) of a rod bipolar dendrite. Due to the quantal and stochastic nature of release, discrete distributions of Q(count) for darkness versus one isomerization of rhodopsin (R*) overlap. We suggested that release must be regular to narrow these distributions, reduce overlap, reduce the rate of false positives, and increase transmission efficiency (the fraction of R* events that are identified as light). Unsurprisingly, higher quantal release rates (Q(rates)) yield higher efficiencies. Focusing here on the effect of small changes in Q(rate), we find that a slightly higher Q(rate) yields greatly reduced efficiency, due to a necessarily fixed quantal-count threshold. To stabilize efficiency in the face of drift in Q(rate), the dendrite needs to regulate the biochemical realization of its quantal-count threshold with respect to its Q(count). These considerations reveal the mathematical role of calcium-based negative feedback and suggest a helpful role for spontaneous R*. In addition, to stabilize efficiency in the face of drift in degree of regularity, efficiency should be approximately 50%, similar to measurements.
NASA Astrophysics Data System (ADS)
Babkina, Elena; Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Kizyakov, Alexander; Babkin, Evgeny
2017-04-01
Gas-emission craters (GECs) found in the North of West Siberia in 2014 occur in an area of wide tabular ground ice (TGI) distribution. TGI observed in the GEC walls also provokes thermal denudation: a complex of processes responsible for formation of thermocirques (TCs). TCs are semi-circle shaped depressions resulting from TGI thaw and removal of detached material downslope. Shores of many lakes are terraced and have ancient to recent traces of thermal denudation activity. TCs are numerous in the GEC area giving reason to assume that GEC, TGI, TC, and lakes are interrelated. First found Yamal crater (GEC-1) expanded from initial 18 m wide deep hole in 2013 to an irregularly-shaped lake up to 85 meters wide in 2016. Expansion of the GEC was controlled by TGI thaw. This can be considered in terms of thermal denudation and analyzed on the basis of TC study in the adjacent area. In summer 2014 and 2015 (the lifetime of the GEC-1) its wall retreat covered the area of 1730 square meters, which gives 865 square meters per year. In 2016, which was the warmest for the period of observation at weather station Marre-Sale, retreat area increased to 2200 square meters per year. TC, which exposed TGI similar to that in the walls of GEC-1, is observed on the nearest lakeshore. TC activation probably started in 2012 as elsewhere on Yamal. In 2015 its area according to GPS survey reached 4400 square meters (a four-year average 1100 square meters). Since September 2015 and till October 2016 its area expanded by 2600 square meters, thus increased by 59%, and more than twice compared to previous annual average. Lake adjacent to GEC-1 in 2016 was separated from crater edge by only a 13 meter wide isthmus, most likely both GEC-1 lake and adjacent lake merge in few years. Therefore, single basis of erosion for thermal denudation appear. After lakes merge, it would become hard to determine what the initial process for the lake formation was if not for the occasional discovery of the GEC-1. Thus, the rate of thermal denudation measured as area expansion: (a) inside the GEC was between 865 square meters per year in 2014-2015, and 2200 square meters in 2016, (b) on the adjacent lakeshore thermal denudation expanded by 1100 square meters per year in 2012-2015 and was as high as 2600 square meters in 2016. In both landforms higher rates were observed in the warmest 2016 and were rather similar. Lower rate for the GEC-1 at its initial stage is due to it steep slopes and narrow hole with little sunshine reaching lower parts of the hole. Adjacent lake providing basis of erosion for both features expands towards the GEC-1 lake and outside into tundra by thermal denudation activity and determines formation of a new feature: merged lake with components having different origin. This research is supported by Russian Science Foundation Grant 16-17-10203.
AGE Bio Diesel Emissions Evaluation
2003-12-01
329 44 788 Vratd) Standard Meter Volume, m° 1.336 1.214 1.255 1,268 am Average Sampling Rate, dscfm 0786 0 714 0 739 0 746 P, Stack Pressure, inches...sat) Moisture (at saturation), % by volume 70864 248 8 36676 V.d Standard Water Vapor Volume, ft’ 2.198 1 624 1 911 1-B• Dry Mole Fraction 0 941 0946...Clock Meter Dry Gas Sample Time, Volume, Rotameter Meter Temp., Vacuum, Probe Time (min) (24-hr) (liter) Setting (OF) (in.Hg) jTpr, OF /o5 f / 52 / 6 14V_
Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment
NASA Technical Reports Server (NTRS)
Brooker, John E.; Ruff, Gary A.
2004-01-01
The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.
Solid state recording current meter conversion
Cheng, Ralph T.; Wang, Lichen
1985-01-01
The authors describe the conversion of an Endeco-174 current meter to a solid-state recording current meter. A removable solid-state module was designed to fit in the space originally occupied by an 8-track tape cartridge. The module contains a CPU and 128 kilobytes of nonvolatile CMOS memory. The solid-state module communicates with any terminal or computer using an RS-232C interface at 4800 baud rate. A primary consideration for conversion was to keep modifications of the current meter to a minimum. The communication protocol was designed to emulate the Endeco tape translation unit, thus the need for a translation unit was eliminated and the original data reduction programs can be used without any modification. After conversion, the data recording section of the current meter contains no moving parts; the storage capacity of the module is equivalent to that of the original tape cartridge.
NASA Astrophysics Data System (ADS)
Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.
2013-04-01
High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.
Growth Curve Models for Zero-Inflated Count Data: An Application to Smoking Behavior
ERIC Educational Resources Information Center
Liu, Hui; Powers, Daniel A.
2007-01-01
This article applies growth curve models to longitudinal count data characterized by an excess of zero counts. We discuss a zero-inflated Poisson regression model for longitudinal data in which the impact of covariates on the initial counts and the rate of change in counts over time is the focus of inference. Basic growth curve models using a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril
High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less
Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; ...
2017-10-09
High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less
NASA Astrophysics Data System (ADS)
Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; Hunt, Alan W.; Ludewigt, Bernhard
2018-01-01
High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ∼6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2" (length) × 2" (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ∼3 Mcps. An experimental methodology was developed that uses the average current from the PMT's anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ∼3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.
Bilateral aniridia lenticular coloboma and snowflake retinal degeneration.
Doganay, Selim; Emre, Sinan; Firat, Penpegül
2009-01-01
A 6-year-old boy presented with bilateral aniridia associated with lens coloboma and snowflake retinal degeneration. Ophthalmologic examination revealed bilateral corneal peripheral epithelial thickening and aniridia. Additionally, the patient had lenticular coloboma and snowflake retinal degeneration in both eyes. Intraocular pressure was 22 mm Hg bilaterally. The patient also had pendular nystagmus. Uncorrected visual acuity was counting fingers at 2 meters for both eyes, but improved to 0.2 and 0.05, respectively, with correction. Congenital aniridia has been reported with various ophthalmic pathologies, but this is the first case to display bilateral lenticular coloboma and snowflake retinal degeneration associated with aniridia.
Kids Count Data Book, 2003: State Profiles of Child Well-Being.
ERIC Educational Resources Information Center
O'Hare, William P.
This Kids Count data book examines national and statewide trends in the well being of the nation's children. Statistical portraits are based on 10 indicators of well being: (1) percent of low birth weight babies; (2) infant mortality rate; (3) child death rate; (4) rate of teen deaths by accident, homicide, and suicide; (5) teen birth rate; (6)…
KIDS COUNT Data Book, 2002: State Profiles of Child Well-Being.
ERIC Educational Resources Information Center
O'Hare, William P.
This KIDS COUNT data book examines national and statewide trends in the well being of the nations children. Statistical portraits are based on 10 indicators of well being: (1) percent of low birth weight babies; (2) infant mortality rate; (3) child death rate; (4) rate of teen deaths by accident, homicide, and suicide; (5) teen birth rate; (6)…
KIDS COUNT Data Book, 2001: State Profiles of Child Well-Being.
ERIC Educational Resources Information Center
Annie E. Casey Foundation, Baltimore, MD.
This Kids Count report examines national and statewide trends in the well-being of the nation's children. The statistical portrait is based on 10 indicators of well being: (1) percent of low birth weight babies; (2) infant mortality rate; (3) child death rate; (4) rate of teen deaths by accident, homicide and suicide; (5) teen birth rate; (6)…
Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate
Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.
2013-01-01
Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696
NASA Astrophysics Data System (ADS)
Cooper, R. J.; Amman, M.; Vetter, K.
2018-04-01
High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.
Material screening with HPGe counting station for PandaX experiment
NASA Astrophysics Data System (ADS)
Wang, X.; Chen, X.; Fu, C.; Ji, X.; Liu, X.; Mao, Y.; Wang, H.; Wang, S.; Xie, P.; Zhang, T.
2016-12-01
A gamma counting station based on high-purity germanium (HPGe) detector was set up for the material screening of the PandaX dark matter experiments in the China Jinping Underground Laboratory. Low background gamma rate of 2.6 counts/min within the energy range of 20 to 2700 keV is achieved due to the well-designed passive shield. The sentivities of the HPGe detetector reach mBq/kg level for isotopes like K, U, Th, and even better for Co and Cs, resulted from the low-background rate and the high relative detection efficiency of 175%. The structure and performance of the counting station are described in this article. Detailed counting results for the radioactivity in materials used by the PandaX dark-matter experiment are presented. The upgrading plan of the counting station is also discussed.
Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.
Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S
2001-04-01
Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per second was 1.6 times that at 60,000 counts per second. This feasibility study showed that the HYPER electronic concept works; it can significantly increase the count-rate capability and dose efficiency of gamma cameras. In a larger clinical camera, multiple HYPER-Anger circuits may be implemented to further improve the imaging counting rates that we have shown by multiple times. This technology would facilitate the use of gamma cameras for radionuclide therapy dosimetry imaging, cardiac first-pass imaging, and positron coincidence imaging and the simultaneous acquisition of transmission and emission data using different isotopes with less cross-contamination between transmission and emission data.
NASA Astrophysics Data System (ADS)
Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad
2018-05-01
In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.
Illinois Quality Counts: QRS Profile. The Child Care Quality Rating System (QRS) Assessment
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of Illinois' Quality Counts prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for Family…
46 CFR 34.20-5 - Quantity of foam required-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to give primary protection to the spaces over the cargo tanks. (b) Rate of application. The water... liters/min per square meter of cargo tanks deck area, where cargo tanks deck area means the maximum.../min per square meter of the horizontal sectional area of the single tank having the largest such area...
NASA Astrophysics Data System (ADS)
Marin, N.; Farmer, J. D.; Zacny, K.; Sellar, R. G.; Nunez, J.
2011-12-01
This study seeks to understand variations in composition and texture of basaltic pyroclastic materials used in the 2010 International Lunar Surface Operation-In-Situ Resource Utilization Analogue Test (ILSO-ISRU) held on the slopes of Mauna Kea Volcano, Hawaii (1). The quantity and quality of resources delivered by ISRU depends upon the nature of the materials processed (2). We obtained a one-meter deep auger cuttings sample of a basaltic regolith at the primary site for feed stock materials being mined for the ISRU field test. The auger sample was subdivided into six, ~16 cm depth increments and each interval was sampled and characterized in the field using the Multispectral Microscopic Imager (MMI; 3) and a portable X-ray Diffractometer (Terra, InXitu Instruments, Inc.). Splits from each sampled interval were returned to the lab and analyzed using more definitive methods, including high resolution Powder X-ray Diffraction and Thermal Infrared (TIR) spectroscopy. The mineralogy and microtexture (grain size, sorting, roundness and sphericity) of the auger samples were determined using petrographic point count measurements obtained from grain-mount thin sections. NIH Image J (http://rsb.info.nih.gov/ij/) was applied to digital images of thin sections to document changes in particle size with depth. Results from TIR showed a general predominance of volcanic glass, along with plagioclase, olivine, and clinopyroxene. In addition, thin section and XRPD analyses showed a down core increase in the abundance of hydrated iron oxides (as in situ weathering products). Quantitative point count analyses confirmed the abundance of volcanic glass in samples, but also revealed olivine and pyroxene to be minor components, that decreased in abundance with depth. Furthermore, point count and XRD analyses showed a decrease in magnetite and ilmenite with depth, accompanied by an increase in Fe3+phases, including hematite and ferrihydrite. Image J particle analysis showed that the average grain size decreased down the depth profile. This decrease in average grain size and increase in hydrated iron oxides down hole suggests that the most favorable ISRU feedstock materials were sampled in the lower half-meter of the mine section sampled.
Pitch Counts in Youth Baseball and Softball: A Historical Review.
Feeley, Brian T; Schisel, Jessica; Agel, Julie
2018-07-01
Pitching injuries are getting increased attention in the mass media. Many references are made to pitch counts and the role they play in injury prevention. The original purpose of regulating the pitch count in youth baseball was to reduce injury and fatigue to pitchers. This article reviews the history and development of the pitch count limit in baseball, the effect it has had on injury, and the evidence regarding injury rates on softball windmill pitching. Literature search through PubMed, mass media, and organizational Web sites through June 2015. Pitch count limits and rest recommendations were introduced in 1996 after a survey of 28 orthopedic surgeons and baseball coaches showed injuries to baseball pitchers' arms were believed to be from the number of pitches thrown. Follow-up research led to revised recommendations with more detailed guidelines in 2006. Since that time, data show a relationship between innings pitched and upper extremity injury, but pitch type has not clearly been shown to affect injury rates. Current surveys of coaches and players show that coaches, parents, and athletes often do not adhere to these guidelines. There are no pitch count guidelines currently available in softball. The increase in participation in youth baseball and softball with an emphasis on early sport specialization in youth sports activities suggests that there will continue to be a rise in injury rates to young throwers. The published pitch counts are likely to positively affect injury rates but must be adhered to by athletes, coaches, and parents.
NASA Astrophysics Data System (ADS)
Adziz, M. I. Abdul; Khoo, K. S.
2018-01-01
The process of natural decay of radionuclides that emit gamma rays can infect humans and other living things. In this study, soil samples were taken at various locations which have been identified around the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak. In addition, the respective dose rates in the sampling sites were measured at 5cm and 1m above the ground using a survey meter with Geiger Muller (GM) detector. Soil samples were taken using a hand Auger and then brought back to the laboratory for sample prepreparation process. The measuring of radioactivity concentration in soil samples were carried out using gamma spectrometer counting system equipped with HPGe detector. The obtained results show, the radioactivity concentration ranged from 11.98 - 29.93 Bq/kg for Radium-226 (226Ra), 20.97 - 41.45 Bq/kg for Thorium-232 (232Th) and 5.73 - 59.41 Bq/kg for Potassium-40 (40K), with mean values of 20.83 ± 5.88 Bq/kg, 32.87 ± 5.88 Bq/kg and 21.50 ± 2.79 Bq/kg, respectively. To assess the radiological hazards of natural radioactivity, radium equivalent activity (Raeq), the rate of absorption dose (D), the annual effective dose and external hazard index (Hex) was calculated and compared to the world average values.
NASA Astrophysics Data System (ADS)
Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo
2015-04-01
Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.
Radiation Discrimination in LiBaF3 Scintillator Using Digital Signal Processing Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, Craig E.; Bowyer, Sonya M.; Reeder, Paul L.
2002-11-01
The new scintillator material LiBaF3:Ce offers the possibility of measuring neutron or alpha count rates and energy spectra simultaneously while measuring gamma count rates and spectra using a single detector.
259 E Ohio, April 2014, Lindsay Light Radiological Survey
The count rates for the sidewalk ranged from 5,600 cpm to 16,800 cpm.There were two locations along Ontario St. with elevated count rates approaching thethreshold limit correlating to 7.1 pCi/g total thorium.
Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon
2018-04-01
Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mayer, D. P.; Kite, E. S.
2016-12-01
Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.
Dynamic time-correlated single-photon counting laser ranging
NASA Astrophysics Data System (ADS)
Peng, Huan; Wang, Yu-rong; Meng, Wen-dong; Yan, Pei-qin; Li, Zhao-hui; Li, Chen; Pan, Hai-feng; Wu, Guang
2018-03-01
We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Enqvist, Andreas
2017-09-01
Cs2LiYCl6:Ce3+ (CLYC) detectors have demonstrated the capability to simultaneously detect γ-rays and thermal and fast neutrons with medium energy resolution, reasonable detection efficiency, and substantially high pulse shape discrimination performance. A disadvantage of CLYC detectors is the long scintillation decay times, which causes pulse pile-up at moderate input count rate. Pulse processing algorithms were developed based on triangular and trapezoidal filters to discriminate between neutrons and γ-rays at high count rate. The algorithms were first tested using low-rate data. They exhibit a pulse-shape discrimination performance comparable to that of the charge comparison method, at low rate. Then, they were evaluated at high count rate. Neutrons and γ-rays were adequately identified with high throughput at rates of up to 375 kcps. The algorithm developed using the triangular filter exhibits discrimination capability marginally higher than that of the trapezoidal filter based algorithm irrespective of low or high rate. The algorithms exhibit low computational complexity and are executable on an FPGA in real-time. They are also suitable for application to other radiation detectors whose pulses are piled-up at high rate owing to long scintillation decay times.
Gas flow meter and method for measuring gas flow rate
Robertson, Eric P.
2006-08-01
A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.
The use of earthquake rate changes as a stress meter at Kilauea volcano.
Dieterich, J; Cayol, V; Okubo, P
2000-11-23
Stress changes in the Earth's crust are generally estimated from model calculations that use near-surface deformation as an observational constraint. But the widespread correlation of changes of earthquake activity with stress has led to suggestions that stress changes might be calculated from earthquake occurrence rates obtained from seismicity catalogues. Although this possibility has considerable appeal, because seismicity data are routinely collected and have good spatial and temporal resolution, the method has not yet proven successful, owing to the non-linearity of earthquake rate changes with respect to both stress and time. Here, however, we present two methods for inverting earthquake rate data to infer stress changes, using a formulation for the stress- and time-dependence of earthquake rates. Application of these methods at Kilauea volcano, in Hawaii, yields good agreement with independent estimates, indicating that earthquake rates can provide a practical remote-sensing stress meter.
NASA Astrophysics Data System (ADS)
Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.
2015-04-01
The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.
Rapid Pneumatic Transport of Radioactive Samples - RaPToRS
NASA Astrophysics Data System (ADS)
Padalino, S.; Barrios, M.; Sangster, C.
2005-10-01
Some ICF neutron activation diagnostics require quick retrieval of the activated sample. Minimizing retrieval times is particularly important when the half-life of the activated material is on the order of the transport time or the degree of radioactivity is close to the background counting level. These restrictions exist in current experiments performed at the Laboratory for Laser Energetics, thus motivating the development of the RaPToRS system. The system has been designed to minimize transportation time while requiring no human intervention during transport or counting. These factors will be important if the system is to be used at the NIF where radiological hazards will be present during post activation. The sample carrier is pneumatically transported via a 4 inch ID PVC pipe to a remote location in excess of 100 meters from the activation site at a speed of approximately 7 m/s. It arrives at an end station where it is dismounted robotically from the carrier and removed from its hermetic package. The sample is then placed by the robot in a counting station. This system is currently being developed to measure back-to-back gamma rays produced by positron annihilation which were emitted by activated graphite. Funded in part by the U.S. DOE under sub contract with LLE at the University of Rochester.
Report on the Brookhaven Solar Neutrino Experiment
DOE R&D Accomplishments Database
Davis, R. Jr.; Evans, J. C. Jr.
1976-09-22
This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.
Recent and relict topography of Boo Bee patch reef, Belize
Halley, R.B.; Shinn, E.A.; Hudson, J.H.; Lidz, B.; Taylor, D.L.
1977-01-01
Five core borings were taken on and around Boo Bee Patch Reef to better understand the origin of such shelf lagoon reefs. The cores reveal 4 stages of development: (1) subaerial exposure of a Pleistocene "high" having about 8 meters of relief, possibly a Pleistocene patch reef; (2) deposition of peat and impermeable terrigenous clay 3 meters thick around the high; (3) initiation of carbonate sediment production by corals and algae on the remaining 5 meters of hard Pleistocene topography and carbonate mud on the surrounding terrigenous clay; and (4) accelerated organic accumulation on the patch reef. Estimates of patch reef sedimentation rates (1.6 m/1000 years) are 3 to 4 times greater than off-reef sedimentation rates (0.4-0.5 m/1000 years). During periods of Pleistocene sedimentation on the Belize shelf, lagoon patch reefs may have grown above one another, stacking up to form reef accumulation of considerable thickness.
House, L.B.
1995-01-01
The mass of PCB's transported from the lake in streamflow during 1987-88 was calculated to be 110 kilograms annually. The PCB's transport rate decreased 50 percent from 1987 to 1988, for the period April through September. Transport of PCB's was greatest during April and May of each year. The average flux rate of PCB's into the water column from the bottom sediment in the lake was estimated to be 1.2 milligrams per square meter per day. The PCB's load seems to increase at river discharges greater than 212 cubic meters per second. This increase in PCB's load might be caused by resuspension of PCB's-contaminated bottom-sediment deposits. There was little variation in PCB's load at flows less than 170 cubic meters per second. The bottom sediments are a continuing source of PCB's to Little Lake Butte des Morts and the lower Fox River.
355 E Riverwalk, February 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 2,600 cpm to 4,300 cpm. No count rates were found at any time that exceeded the threshold limit of 7,029 cpm.
230 E. Ontario, May 2018, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,800 cpm to 2,600 cpm.No count rates were found at any time that exceeded the threshold limit of 7,366 cpm.
Ianakiev, Kiril D [Los Alamos, NM; Hsue, Sin Tao [Santa Fe, NM; Browne, Michael C [Los Alamos, NM; Audia, Jeffrey M [Abiquiu, NM
2006-07-25
The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.
500-MHz x-ray counting with a Si-APD and a fast-pulse processing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, Shunji; Taniguchi, Takashi; Tanaka, Manobu
2010-06-23
We introduce a counting system of up to 500 MHz for synchrotron x-ray high-rate measurements. A silicon avalanche photodiode detector was used in the counting system. The fast-pulse circuit of the amplifier was designed with hybrid ICs to prepare an ASIC system for a large-scale pixel array detector in near future. The fast amplifier consists of two cascading emitter-followers using 10-GHz band transistors. A count-rate of 3.25x10{sup 8} s{sup -1} was then achieved using the system for 8-keV x-rays. However, a baseline shift by adopting AC-coupling in the amplifier disturbed us to observe the maximum count of 4.49x10{sup 8} s{supmore » -1}, determined by electron-bunch filling into a ring accelerator. We also report that an amplifier with a baseline restorer was tested in order to keep the baseline level to be 0 V even at high input rates.« less
NASA Astrophysics Data System (ADS)
Bates, Alan
2015-12-01
Instruments or digital meters with data values visible on a seven-segment display can easily be found in the physics lab. Examples include multimeters, sound level meters, Geiger-Müller counters and electromagnetic field meters, where the display is used to show numerical data. Such instruments, without the ability to connect to computers or data loggers, can measure and display data at a particular instant in time. The user should be present to read the display and to record the data. Unlike these digital meters, the sensor-data logger system has the advantage of automatically measuring and recording data at selectable sample rates over a desired sample time. The process of adding data logging features to a digital meter with a seven-segment display can be achieved with Seven Segment Optical Character Recognition (SSOCR) software. One might ask, why not just purchase a field meter with data logging features? They are relatively inexpensive, reliable, available online, and can be delivered within a few days. But then there is the challenge of making your own instrument, the excitement of implementing a design, the pleasure of experiencing an entire process from concept to product, and the satisfaction of avoiding costs by taking advantage of available technology. This experiment makes use of an electromagnetic field meter with a seven-segment liquid crystal display to measure background electromagnetic field intensity. Images of the meter display are automatically captured with a camera and analyzed using SSOCR to produce a text file containing meter display values.
Relationship between salivary flow rates and Candida counts in subjects with xerostomia.
Torres, Sandra R; Peixoto, Camila Bernardo; Caldas, Daniele Manhães; Silva, Eline Barboza; Akiti, Tiyomi; Nucci, Márcio; de Uzeda, Milton
2002-02-01
This study evaluated the relationship between salivary flow and Candida colony counts in the saliva of patients with xerostomia. Sialometry and Candida colony-forming unit (CFU) counts were taken from 112 subjects who reported xerostomia in a questionnaire. Chewing-stimulated whole saliva was collected and streaked in Candida plates and counted in 72 hours. Species identification was accomplished under standard methods. There was a significant inverse relationship between salivary flow and Candida CFU counts (P =.007) when subjects with high colony counts were analyzed (cutoff point of 400 or greater CFU/mL). In addition, the median sialometry of men was significantly greater than that of women (P =.003), even after controlling for confounding variables like underlying disease and medications. Sjögren's syndrome was associated with low salivary flow rate (P =.007). There was no relationship between the median Candida CFU counts and gender or age. There was a high frequency (28%) of mixed colonization. Candida albicans was the most frequent species, followed by C parapsilosis, C tropicalis, and C krusei. In subjects with high Candida CFU counts there was an inverse relationship between salivary flow and Candida CFU counts.
ERIC Educational Resources Information Center
Annie E. Casey Foundation, Baltimore, MD.
Data from the 50 United States are listed for 1997 from Kids Count in an effort to track state-by-state the status of children in the United States and to secure better futures for all children. Data include percent low birth weight babies; infant mortality rate; child death rate; rate of teen deaths by accident, homicide, and suicide; teen birth…
Palm Beach Quality Counts: QRS Profile. The Child Care Quality Rating System (QRS) Assessment
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of Palm Beach's Quality Counts prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for…
Miami-Dade Quality Counts: QRS Profile. The Child Care Quality Rating System (QRS) Assessment
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of Miami-Dade's Quality Counts prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for…
Richard L. Hutto; Sallie J. Hejl; Jeffrey F. Kelly; Sandra M. Pletschet
1995-01-01
We conducted a series of 275 paired (on- and off-road) point counts within 4 distinct vegetation cover types in northwestern Montana. Roadside counts generated a bird list that was essentially the same as the list generated from off-road counts within the same vegetation cover type. Species that were restricted to either on- or off-road counts were rare, suggesting...
Low-SWAP Lidar Instrument for Arctic Ice Sheet Mass Balance Monitoring Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, George; Barsic, David
To meet the need to obtain statistically significant data in the North Slope of Alaska (NSA) in support of climate models, Voxtel is developing an nmanned-aircraft-system (UAS)-optimized lidar focal plane array (FPA) and lidar instrument design that integrates the most recent developments in optics, electronics, and computing. Bound by the size, weight, and power (SWAP) budget of low altitude/long endurance (LALE) small UAS (SUAS) platforms—a design tradeoff study was conducted. The class of SUAS considered typically: operates at altitudes between 150 meters and 2,000 meters; accommodates payloads weighing less than 5 kg; encompasses no more than 4,000 cm3 of space;more » and consumes no more than 50 watts of power. To address the SWAP constraints, a lowpower standalone strap-down (gimbal-less) lidar was developed based on single-photon-counting silicon avalanche photodiodes. To reduce SWAP, a lidar FPA design capable of simultaneous imaging and lidar was developed. The 532-nm-optimized FPA modular design was developed for easy integration, as a lidar payload, in any of a variety of SUAS platforms.« less
Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.
Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao
2017-08-01
Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advection within shallow pore waters of a coastal lagoon, Florida
Cable, J.E.; Martin, Jonathan B.; Swarzenski, Peter W.; Lindenberg, Mary K.; Steward, Joel
2004-01-01
Ground water sources can be a significant portion of a local water budget in estuarine environments, particularly in areas with high recharge rates, transmissive aquifers, and permeable marine sediments. However, field measurements of ground water discharge are often incongruent with ground water flow modeling results, leaving many scientists unsure which estimates are accurate. In this study, we find that both measurements and model results are reasonable. The difference between estimates apparently results from the sources of water being measured and not the techniques themselves. In two locations in the Indian River Lagoon estuarine system, we found seepage meter rates similar to rates calculated from the geochemical tracers 222Rn and 226Ra. Ground water discharge rates ranged from 4 to 9 cm/d using seepage meters and 3 to 20 cm/d using 222Rn and 226Ra. In contrast, in comparisons to other studies where finite element ground water flow modeling was used, much lower ground water discharge rates of ∼0.05 to 0.15 cm/d were estimated. These low rates probably represent discharge of meteoric ground water from land-recharged aquifers, while the much higher rates measured with seepage meters, 222Rn, and 226Ra likely include an additional source of surface waters that regularly flush shallow (< 1 m depth) sediments. This resultant total flow of mixed land-recharged water and recirculated surface waters contributes to the total biogeochemical loading in this shallow estuarine environment.
371 E. Lower Wacker Drive, March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,600 cpm to 2,600 cpm.No count rates were found at any time that exceeded the threshold limit of 7,029 cpm.
220 E. Illinois St., March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,500 cpm to 5,600 cpm.No count rates were found at any time that exceeded the threshold limit of 7,029 cpm.
8-37 W. Hubbard, March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,800 cpm to 5,200 cpm. No count rates were found at any time that exceeded the threshold limit of 7,389 cpm.
429 E. Grand Ave, March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,700 cpm to 3,700 cpm.No count rates were found at any time that exceeded the threshold limit of 7,029 cpm.
201-211 E. Grand Ave, January 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,700 cpm to 3,900 cpm. No count rates were found at any time that exceeded the threshold limit of 7,029 cpm.
230 N. Michigan Ave, April 2018, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,400 cpm to 3,800 cpm. No count rates were found at any time that exceeded the threshold limit of 6,542 cpm.
36 W. Illinois St, March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,800 cpm to 2,400 cpm.No count rates were found at any time that exceeded the threshold limit of 7,029 cpm.
1-37 W. Hubbard, March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,800 cpm to 5,000 cpm. No count rates were found at any time that exceeded the threshold limit of 7,389 cpm.
211 E. Ohio St., March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,700 cpm to 2,300 cpm.No count rates were found at any time that exceeded the threshold limit of 6,338 cpm.
140-200 E. Grand Ave, February 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,700 cpm to 2,400 cpm. No count rates were found at any time that exceeded the threshold limit of 6,738 cpm.
430 N. Michigan Ave, January 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,600 cpm to 2,100 cpm. No count rates were found at any time that exceeded the threshold limit of 6,338 cpm.
401-599 N. Dearborn St., March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation, The count rates in the excavation ranged from 1,700 cpm to 5,800 cpm.No count rates were found at any time that exceeded the threshold limit of 6,738 cpm.
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... used exclusively for space heating with a rated heat input capacity of less than 400,000 British... average of 0.23 grams per dry standard cubic meter (0.1 grains per dry standard cubic foot), corrected to... boiler stack must not exceed an average of 0.46 grams per dry standard cubic meter (0.2 grains per dry...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... metered load settled using WACM hourly pricing with no using WACM hourly pricing with no penalty. penalty... metered load settled using pricing in no-penalty band. Customer WACM hourly pricing with a 25% penalty... or equal to 0.5 percent of its hourly average load, no Regulation Service charges will be assessed by...
Neutronic analysis of the 1D and 1E banks reflux detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.
1999-12-21
Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely,more » the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.« less
Point Count Length and Detection of Forest Neotropical Migrant Birds
Deanna K. Dawson; David R. Smith; Chandler S. Robbins
1995-01-01
Comparisons of bird abundances among years or among habitats assume that the rates at which birds are detected and counted are constant within species. We use point count data collected in forests of the Mid-Atlantic states to estimate detection probabilities for Neotropical migrant bird species as a function of count length. For some species, significant differences...
Epithermal Neutron Evidence for a Diurnal Surface Hydration Process in the Moon's High Latitudes
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Parsons, A.; Starr, R. D.; Evans, L. G.; Sanin, A.; Litvak, M.; Livengood, T.
2015-01-01
We report evidence from epithermal neutron flux observations that show that the Moon's high latitude surfaces are being actively hydrated, dehydrated and rehydrated in a diurnal cycle. The near-surface hydration is indicated by an enhanced suppression of the lunar epithermal neutron leakage flux on the dayside of the dawn terminator on poleward-facing slopes (PFS). At 0600 to 0800 local-time, hydrogen concentrations within the upper 1 meter of PFS are observed to be maximized relative to equivalent equator-facing slopes (EFS). During the lunar day surface hydrogen concentrations diminish towards dusk and then rebuild overnight. Surface hydration is determined by differential comparison of the averaged EFS to PFS epithermal neutron count rates above +/- 75 deg latitude. At dawn the contrast bias towards PFS is consistent with at least 15 to 25 parts-per-million (ppm) hydrogen that dissipates by dusk. We review several lines of evidence derived from temperature and epithermal neutron data by a correlated analysis of observations from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) that were mapped as a function of lunar local-time, Lunar Observing Laser Altimeter (LOLA) topography and Diviner (DLRE) surface temperature.
Disdrometer and Tipping Bucket Rain Gauge Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartholomew. MJ
2009-12-01
The Distromet disdrometer model RD-80 and NovaLynx tipping bucket rain gauge model 260-2500E-12 are two devices deployed a few meters apart to measure the character and amount of liquid precipitation. The main purpose of the disdrometer is to measure drop size distribution, which it does over 20 size classes from 0.3 mm to 5.4 mm. The data from both instruments can be used to determine rain rate. The disdrometer results can also be used to infer several properties including drop number density, radar reflectivity, liquid water content, and energy flux. Two coefficients, N0 and Λ, from an exponential fit betweenmore » drop diameter and drop number density, are routinely calculated. Data are collected once a minute. The instruments make completely different kinds of measurements. Rain that falls on the disdrometer sensor moves a plunger on a vertical axis. The disdrometer transforms the plunger motion into electrical impulses whose strength is proportional to drop diameter. The rain gauge is the conventional tipping bucket type. Each tip collects an amount equivalent to 0.01 in. of water, and each tip is counted by a data acquisition system anchored by a Campbell CR1000 data logger.« less
A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy.
Hansen, K; Reckleben, C; Diehl, I; Klär, H
2008-05-01
A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm 2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-K α ) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%.
Acoustic Emission Parameters of Three Gorges Sandstone during Shear Failure
NASA Astrophysics Data System (ADS)
Xu, Jiang; Liu, Yixin; Peng, Shoujian
2016-12-01
In this paper, an experimental investigation of sandstone samples from the Three Gorges during shear failure was conducted using acoustic emission (AE) and direct shear tests. The AE count rate, cumulative AE count, AE energy, and amplitude of the sandstone samples were determined. Then, the relationships among the AE signals and shearing behaviors of the samples were analyzed in order to detect micro-crack initiation and propagation and reflect shear failure. The results indicated that both the shear strength and displacement exhibited a logarithmic relationship with the displacement rate at peak levels of stress. In addition, the various characteristics of the AE signals were apparent in various situations. The AE signals corresponded with the shear stress under different displacement rates. As the displacement rate increased, the amount of accumulative damage to each specimen decreased, while the AE energy peaked earlier and more significantly. The cumulative AE count primarily increased during the post-peak period. Furthermore, the AE count rate and amplitude exhibited two peaks during the peak shear stress period due to crack coalescence and rock bridge breakage. These isolated cracks later formed larger fractures and eventually caused ruptures.
Tuning time-frequency methods for the detection of metered HF speech
NASA Astrophysics Data System (ADS)
Nelson, Douglas J.; Smith, Lawrence H.
2002-12-01
Speech is metered if the stresses occur at a nearly regular rate. Metered speech is common in poetry, and it can occur naturally in speech, if the speaker is spelling a word or reciting words or numbers from a list. In radio communications, the CQ request, call sign and other codes are frequently metered. In tactical communications and air traffic control, location, heading and identification codes may be metered. Moreover metering may be expected to survive even in HF communications, which are corrupted by noise, interference and mistuning. For this environment, speech recognition and conventional machine-based methods are not effective. We describe Time-Frequency methods which have been adapted successfully to the problem of mitigation of HF signal conditions and detection of metered speech. These methods are based on modeled time and frequency correlation properties of nearly harmonic functions. We derive these properties and demonstrate a performance gain over conventional correlation and spectral methods. Finally, in addressing the problem of HF single sideband (SSB) communications, the problems of carrier mistuning, interfering signals, such as manual Morse, and fast automatic gain control (AGC) must be addressed. We demonstrate simple methods which may be used to blindly mitigate mistuning and narrowband interference, and effectively invert the fast automatic gain function.
Laser power meters as an X-ray power diagnostic for LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Use of an Electromagnetic Seepage Meter to Investigate Temporal Variability in Lake Seepage
Rosenberry, D.O.; Morin, R.H.
2004-01-01
A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rain-falls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-06-01
Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
Bilgen, H; Ince, Z; Ozek, E; Bekiroglu, N; Ors, R
1998-12-01
The effectiveness of two different non-invasive transcutaneous bilirubin measurement devices was compared with serum bilirubin levels in 96 healthy newborns. Transcutaneous measurements were obtained with the Minolta Air Shields jaundice meter and the Ingram icterometer and serum bilirubin levels were determined by a direct spectrophotometric method (Bilitron 444). A linear correlation existed between serum bilirubin values and the readings on both the Minolta jaundice meter (r = 0.83) and the Ingram icterometer (r = 0.78). The Kappa coefficient was 0.66. the sensitivity, specificity and positive and negative predictive values were 100%, 56%, 33% and 100% for the Minolta jaundice meter and 100%, 48%, 29% and 100% for the Ingram icterometer, respectively. The high sensitivity and negative predictive value of both devices render them suitable for screening neonatal hyperbilirubinaemia. However, because of its low cost, the Ingram icterometer is preferable to the more complex and expensive Minolta jaundice meter, especially in countries with a high birth rate, such as Turkey.
Sedimentation Survey of Lago El Guineo, Puerto Rico, October 2001
Soler-López, Luis R.
2003-01-01
Lago El Guineo has lost about 17.5 percent of its original storage capacity in 70 years because of sediment accumulation. The water volume has been reduced from 2.29 million cubic meters in 1931, to 2.03 million cubic meters in 1986, and to 1.89 million cubic meters in 2001. The average annual storage-capacity loss (equal to the sedimentation rate) of Lago El Guineo was 4,727 cubic meters for the period of 1931 to July 1986 (or 0.21 percent per year), increasing to 5,714 cubic meters for the period of 1931 to October 2001 (or 0.25 percent per year). Discrepancies that could lead to substantial errors in volume calculations in a small reservoir like Lago El Guineo, were found when transferring the field-collected data into the geographic information system data base 1:20,000 U.S. Geological Survey Jayuya, Puerto Rico quadrangle. After verification and validation of field data, the Lago El Guineo shoreline was rectified using digital aerial photographs and differential global positioning data.
Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage.
Rosenberry, Donald O; Morin, Roger H
2004-01-01
A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rainfalls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.
Laser power meters as an X-ray power diagnostic for LCLS-II.
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.
Laser power meters as an X-ray power diagnostic for LCLS-II
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Novis, David A; Walsh, Molly; Wilkinson, David; St Louis, Mary; Ben-Ezra, Jonathon
2006-05-01
Automated laboratory hematology analyzers are capable of performing differential counts on peripheral blood smears with greater precision and more accurate detection of distributional and morphologic abnormalities than those performed by manual examinations of blood smears. Manual determinations of blood morphology and leukocyte differential counts are time-consuming, expensive, and may not always be necessary. The frequency with which hematology laboratory workers perform manual screens despite the availability of labor-saving features of automated analyzers is unknown. To determine the normative rates with which manual peripheral blood smears were performed in clinical laboratories, to examine laboratory practices associated with higher or lower manual review rates, and to measure the effects of manual smear review on the efficiency of generating complete blood count (CBC) determinations. From each of 3 traditional shifts per day, participants were asked to select serially, 10 automated CBC specimens, and to indicate whether manual scans and/or reviews with complete differential counts were performed on blood smears prepared from those specimens. Sampling continued until a total of 60 peripheral smears were reviewed manually. For each specimen on which a manual review was performed, participants indicated the patient's age, hemoglobin value, white blood cell count, platelet count, and the primary reason why the manual review was performed. Participants also submitted data concerning their institutions' demographic profiles and their laboratories' staffing, work volume, and practices regarding CBC determinations. The rates of manual reviews and estimations of efficiency in performing CBC determinations were obtained from the data. A total of 263 hospitals and independent laboratories, predominantly located in the United States, participating in the College of American Pathologists Q-Probes Program. There were 95,141 CBC determinations examined in this study; participants reviewed 15,423 (16.2%) peripheral blood smears manually. In the median institution (50th percentile), manual reviews of peripheral smears were performed on 26.7% of specimens. Manual differential count review rates were inversely associated with the magnitude of platelet counts that were required by laboratory policy to trigger smear reviews and with the efficiency of generating CBC reports. Lower manual differential count review rates were associated with laboratory policies that allowed manual reviews solely on the basis of abnormal automated red cell parameters and that precluded performing repeat manual reviews within designated time intervals. The manual scan rate elevated with increased number of hospital beds. In more than one third (35.7%) of the peripheral smears reviewed manually, participants claimed to have learned additional information beyond what was available on automated hematology analyzer printouts alone. By adopting certain laboratory practices, it may be possible to reduce the rates of manual reviews of peripheral blood smears and increase the efficiency of generating CBC results.
The use of noise equivalent count rate and the NEMA phantom for PET image quality evaluation.
Yang, Xin; Peng, Hao
2015-03-01
PET image quality is directly associated with two important parameters among others: count-rate performance and image signal-to-noise ratio (SNR). The framework of noise equivalent count rate (NECR) was developed back in the 1990s and has been widely used since then to evaluate count-rate performance for PET systems. The concept of NECR is not entirely straightforward, however, and among the issues requiring clarification are its original definition, its relationship to image quality, and its consistency among different derivation methods. In particular, we try to answer whether a higher NECR measurement using a standard NEMA phantom actually corresponds to better imaging performance. The paper includes the following topics: 1) revisiting the original analytical model for NECR derivation; 2) validating three methods for NECR calculation based on the NEMA phantom/standard; and 3) studying the spatial dependence of NECR and quantitative relationship between NECR and image SNR. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics
NASA Astrophysics Data System (ADS)
van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.
2013-04-01
In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.
Modeling and simulation of count data.
Plan, E L
2014-08-13
Count data, or number of events per time interval, are discrete data arising from repeated time to event observations. Their mean count, or piecewise constant event rate, can be evaluated by discrete probability distributions from the Poisson model family. Clinical trial data characterization often involves population count analysis. This tutorial presents the basics and diagnostics of count modeling and simulation in the context of pharmacometrics. Consideration is given to overdispersion, underdispersion, autocorrelation, and inhomogeneity.
Reducing the Teen Death Rate. KIDS COUNT Indicator Brief
ERIC Educational Resources Information Center
Shore, Rima; Shore, Barbara
2009-01-01
Life continues to hold considerable risk for adolescents in the United States. In 2006, the teen death rate stood at 64 deaths per 100,000 teens (13,739 teens) (KIDS COUNT Data Center, 2009). Although it has declined by 4 percent since 2000, the rate of teen death in this country remains substantially higher than in many peer nations, based…
CASA-Mot technology: how results are affected by the frame rate and counting chamber.
Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles
2018-04-04
For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.
NASA Technical Reports Server (NTRS)
Watkins, R. N.; Jolliff, B. L.; Lawrence, S. J.; Hayne, P. O.; Ghent, R. R.
2017-01-01
Understanding how the distribution of boulders on the lunar surface changes over time is key to understanding small-scale erosion processes and the rate at which rocks become regolith. Boulders degrade over time, primarily as a result of micrometeorite bombardment so their residence time at the surface can inform the rate at which rocks become regolith or become buried within regolith. Because of the gradual degradation of exposed boulders, we expect that the boulder population around an impact crater will decrease as crater age increases. Boulder distributions around craters of varying ages are needed to understand regolith production rates, and Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images provide one of the best tools for conducting these studies. Using NAC images to assess how the distribution of boulders varies as a function of crater age provides key constraints for boulder erosion processes. Boulders also represent a potential hazard that must be addressed in the planning of future lunar landings. A boulder under a landing leg can contribute to deck tilt, and boulders can damage spacecraft during landing. Using orbital data to characterize boulder populations at locations where landers have safely touched down (Apollo, Luna, Surveyor, Chang'e-3) provides validation for landed mission hazard avoidance planning. Additionally, counting boulders at legacy landing sites is useful because: 1) LROC has extensive coverage of these sites at high resolutions (approximately 0.5 meters per pixel). 2) Returned samples from craters at these sites have been radiometrically dated, allowing assessment of how boulder distributions vary as a function of crater age. 3) Surface photos at these sites can be used to correlate with remote sensing measurements.
Energetic Constraints of Subseafloor Life
NASA Astrophysics Data System (ADS)
D'Hondt, S.; Spivack, A. J.; Wang, G.
2014-12-01
Mean per-cell rates of catabolic activity, energy flux, and biomass turnover are orders of magnitude slower in subseafloor sediment than in the surface world. Despite extreme scarcity of electron donors, competing metabolic pathways co-occur for hundreds of meters deep in subseafloor sediment deposited over millions of years. Our study of an example site (ODP Site 1226) indicates that the energy yields of these competing reactions are pinned to a thermodynamic minimum (Wang et al., 2010). The simplest explanation of this long-term co-existence is thermodynamic cooperation, where microorganisms utilize different but co-existing pathways that remove each other's reaction products. Our Site 1226 results indicate that the energy flux to subseafloor sedimentary microbes is extremely low. Comparison to biomass turnover rates at other sites suggests that most of this flux may be used for building biomolecules from existing components (e.g., amino acids in the surrounding sediment), rather than for de novo biosynthesis from inorganic chemicals. Given these discoveries, ocean drilling provides a tremendous opportunity to address several mysteries of microbial survival and natural selection under extreme energy limitation. Some of these mysteries are centered on microbial communities. To what extent do counted cells in subseafloor sediment constitute a deep microbial necrosphere? How do different kinds of microbes interact to sustain their mean activity at low average rates for millions of years? Other mysteries relate to individual cells. How slowly can a cell metabolize? How long can a cell survive at such low rates of activity? What properties allow microbes to be sustained by low fluxes of energy? In what ways do subseafloor organisms balance the benefit(s) of maximizing energy recovery with the need to minimize biochemical cost(s) of energy recovery? References Wang, G., et al., 2010. Geochimica et Cosmochimica Acta 74, 3938-3947.
Acconcia, G; Labanca, I; Rech, I; Gulinatti, A; Ghioni, M
2017-02-01
The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo
2015-07-01
A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involvedmore » are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)« less
NASA Astrophysics Data System (ADS)
Enderlein, Joerg; Ruhlandt, Daja; Chithik, Anna; Ebrecht, René; Wouters, Fred S.; Gregor, Ingo
2016-02-01
Fluorescence lifetime microscopy has become an important method of bioimaging, allowing not only to record intensity and spectral, but also lifetime information across an image. One of the most widely used methods of FLIM is based on Time-Correlated Single Photon Counting (TCSPC). In TCSPC, one determines this curve by exciting molecules with a periodic train of short laser pulses, and then measuring the time delay between the first recorded fluorescence photon after each exciting laser pulse. An important technical detail of TCSPC measurements is the fact that the delay times between excitation laser pulses and resulting fluorescence photons are always measured between a laser pulse and the first fluorescence photon which is detected after that pulse. At high count rates, this leads to so-called pile-up: ``early'' photons eclipse long-delay photons, resulting in heavily skewed TCSPC histograms. To avoid pile-up, a rule of thumb is to perform TCSPC measurements at photon count rates which are at least hundred times smaller than the laser-pulse excitation rate. The downside of this approach is that the fluorescence-photon count-rate is restricted to a value below one hundredth of the laser-pulse excitation-rate, reducing the overall speed with which a fluorescence signal can be measured. We present a new data evaluation method which provides pile-up corrected fluorescence decay estimates from TCSPC measurements at high count rates, and we demonstrate our method on FLIM of fluorescently labeled cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Ardani, Kristen; Cutler, Dylan
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
Solar Plus: A Holistic Approach to Distributed Solar PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
OShaughnessy, Eric J.; Ardani, Kristen B.; Cutler, Dylan S.
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
200-300 N. Stetson, January 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates throughout the grading ranged from 4,500 cpm to 8,000 cpm. No count rates were found at any time that exceeded the threshold limits of 17,246 cpm and 18,098 cpm.
0 - 36 W. Illinois St., January 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,600 cpm to 3,700 cpm.No count rates were found at any time that exceeded the threshold limits of 6,738 cpm and 7,029 cpm.
400-449 N. State St, March 2017, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation. The count rates in the excavation ranged from 1,600 cpm to 4,300 cpm. No count rates were found at any time that exceeded the threshold limits of 6,338 cpm and 7,038 cpm.
Database crime to crime match rate calculation.
Buckleton, John; Bright, Jo-Anne; Walsh, Simon J
2009-06-01
Guidance exists on how to count matches between samples in a crime sample database but we are unable to locate a definition of how to estimate a match rate. We propose a method that does not proceed from the match counting definition but which has a strong logic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.B.; Borling, D.C.; Powers, B.S.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 2 2011-10-01 2011-10-01 false Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 2 2013-10-01 2012-10-01 true Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 2 2010-10-01 2010-10-01 false Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 2 2012-10-01 2012-10-01 false Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 2 2014-10-01 2012-10-01 true Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...
Bunch mode specific rate corrections for PILATUS3 detectors
Trueb, P.; Dejoie, C.; Kobas, M.; ...
2015-04-09
PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less
Silva, H G; Lopes, I
Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.
46 CFR 175.600 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Vessels Under 61 Meters (200 feet) in Length, 1983 (“ABS Steel Vessel Rules (Meters)”) 177.300. Rules..., Standard Practice for Operating Salt Spray (Fog) Apparatus (“ASTM B 117”) 175.400. ASTM B 122/B 122M-95... (“ASTM D 93”) 175.400. ASTM D 635-97, Standard test Method for Rate of Burning and or Extent and Time of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... settled (minimum 4 MW) of metered load settled using WACM hourly pricing with no using WACM hourly pricing... than 7.5% (minimum pricing in no-penalty band. Customer 10 MW) of metered load settled using imbalance... or equal to 0.5 percent of its hourly average load, no Regulation Service charges will be assessed by...
An Extremely Low Power Quantum Optical Communication Link for Autonomous Robotic Explorers
NASA Technical Reports Server (NTRS)
Lekki, John; Nguyen, Quang-Viet; Bizon, Tom; Nguyen, Binh; Kojima, Jun
2007-01-01
One concept for planetary exploration involves using many small robotic landers that can cover more ground than a single conventional lander. In addressing this vision, NASA has been challenged in the National Nanotechnology Initiative to research the development of miniature robots built from nano-sized components. These robots have very significant challenges, such as mobility and communication, given the small size and limited power generation capability. The research presented here has been focused on developing a communications system that has the potential for providing ultra-low power communications for robots such as these. In this paper an optical communications technique that is based on transmitting recognizable sets of photons is presented. Previously pairs of photons that have an entangled quantum state have been shown to be recognizable in ambient light. The main drawback to utilizing entangled photons is that they can only be generated through a very energy inefficient nonlinear process. In this paper a new technique that generates sets of photons from pulsed sources is described and an experimental system demonstrating this technique is presented. This technique of generating photon sets from pulsed sources has the distinct advantage in that it is much more flexible and energy efficient, and is well suited to take advantage of the very high energy efficiencies that are possible when using nano scale sources. For these reasons the communication system presented in this paper is well suited for use in very small, low power landers and rovers. In this paper a very low power optical communications system for miniature robots, as small as 1 cu cm is addressed. The communication system is a variant of photon counting communications. Instead of counting individual photons the system only counts the arrival of time coincident sets of photons. Using sets of photons significantly decreases the bit error rate because they are highly identifiable in the presence of ambient light. An experiment demonstrating reliable communication over a distance of 70 meters using less than a billionth of a watt of radiated power is presented. The components used in this system were chosen so that they could in the future be integrated into a cubic centimeter device.
Testing the Wildlink activity-detection system on wolves and white-tailed deer
Kunkel, K.E.; Chapman, R.C.; Mech, L.D.; Gese, E.M.
1991-01-01
We tested the reliability and predictive capabilities of the activity meter in the new Wildlink Data Acquisition and Recapture System by comparing activity counts with concurrent observations of captive wolf (Canis lupus) and free-ranging white-tailed deer (Odocoileus virginianus) activity. The Wildlink system stores activity data in a computer within a radio collar with which a biologist can communicate. Three levels of activity could be detected. The Wildlink system provided greater activity discrimination and was more reliable, adaptable, and efficient and was easier to use than conventional telemetry activity systems. The Wildlink system could be highly useful for determining wildlife energy budgets.
Ahmed, Anwar E; Ali, Yosra Z; Al-Suliman, Ahmad M; Albagshi, Jafar M; Al Salamah, Majid; Elsayid, Mohieldin; Alanazi, Wala R; Ahmed, Rayan A; McClish, Donna K; Al-Jahdali, Hamdan
2017-01-01
High white blood cell (WBC) count is an indicator of sickle cell disease (SCD) severity, however, there are limited studies on WBC counts in Saudi Arabian patients with SCD. The aim of this study was to estimate the prevalence of abnormal leukocyte count (either low or high) and identify factors associated with high WBC counts in a sample of Saudi patients with SCD. A cross-sectional and retrospective chart review study was carried out on 290 SCD patients who were routinely treated at King Fahad Hospital in Hofuf, Saudi Arabia. An interview was conducted to assess clinical presentations, and we reviewed patient charts to collect data on blood test parameters for the previous 6 months. Almost half (131 [45.2%]) of the sample had abnormal leukocyte counts: low WBC counts 15 (5.2%) and high 116 (40%). High WBC counts were associated with shortness of breath ( P =0.022), tiredness ( P =0.039), swelling in hands/feet ( P =0.020), and back pain ( P =0.007). The mean hemoglobin was higher in patients with normal WBC counts ( P =0.024), while the mean hemoglobin S was high in patients with high WBC counts ( P =0.003). After adjustment for potential confounders, predictors of high WBC counts were male gender (adjusted odds ratio [aOR]=3.63) and patients with cough (aOR=2.18), low hemoglobin (aOR=0.76), and low heart rate (aOR=0.97). Abnormal leukocyte count was common: approximately five in ten Saudi SCD patients assessed in this sample. Male gender, cough, low hemoglobin, and low heart rate were associated with high WBC count. Strategies targeting high WBC count could prevent disease complication and thus could be beneficial for SCD patients.
Sedimentation History of Lago Guayabal, Puerto Rico, 1913-2001
Soler-López, Luis R.
2003-01-01
The Lago Guayabal dam, located in the municipality of Villalba in southern Puerto Rico, was constructed in 1913 for irrigation of croplands in the southern coastal plains and is owned and operated by the Puerto Rico Electric Power Authority. The reservoir had an original storage capacity of 11.82 million cubic meters and a drainage area upstream of the dam of 112 square kilometers. Sedimentation has reduced the storage capacity to 6.12 million cubic meters in 2001, which represents a storage loss of about 48 percent. However, the actual sediment accumulation in the reservoir during the 88 years is greater, because some sediment removal was conducted between 1940 and 1948 by dredging and sluicing. This report summarizes the historical data from a 1913 land survey and eight bathymetric surveys conducted between 1914 and 2001, and the relation of high sedimentation to agricultural land practices within the Lago Guayabal basin and six major hurricanes which made landfall on the island. The reservoir had an area-normalized sedimentation rate of about 1,863 cubic meters per square kilometer per year between 1913 and 1936 from a 112 square kilometer basin. In 1972, a new dam upstream along the Rio Toa Vaca impounded runoff from 57.5 square kilometers, and sediment transport to Lago Guayabal was reduced. A comparison of bathymetric survey results between 1972 and 2001 indicates an area-normalized sedimentation rate of 1,120 cubic meters per square kilometer per year or about 60 percent of the rate between 1913 and 1936. The significant reduction (almost half) of the sedimentation rate after the Toa Vaca dam was built may indicate that erosion susceptibility of the Rio Toa Vaca watershed is about twice that of the Rio Jacaguas watershed impounded by Lago Guayabal.
Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline
Zabawa, C.F.; Kerhin, R.T.; Bayley, S.
1981-01-01
A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.
HOT WATER DRILL FOR TEMPERATE ICE.
Taylor, Philip L.
1984-01-01
The development of a high-pressure hot-water drill is described, which has been used reliably in temperate ice to depths of 400 meters with an average drill rate of about 1. 5 meters per minute. One arrangement of the equipment weighs about 500 kilograms, and can be contained on two sleds, each about 3 meters long. Simplified performance equations are given, and experiments with nozzle design suggest a characteristic number describing the efficiency of each design, and a minimum bore-hole diameter very close to 6 centimeters for a hot water drill. Also discussed is field experience with cold weather, water supply, and contact with englacial cavities and the glacier bed.
Optical clocks and relativity.
Chou, C W; Hume, D B; Rosenband, T; Wineland, D J
2010-09-24
Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.
Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive
NASA Technical Reports Server (NTRS)
Evans, Kurt B.
1989-01-01
Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.
Vining, Kevin C.; Vecchia, Aldo V.
2008-01-01
Sedimentation has reduced water storage in Kajakai Reservoir. If current sedimentation rates continue, hypothetical future reservoir water volumes at the spillway elevation of 1,033.5 meters could be reduced about 22 percent from 2006 to 2057. Even if the spillway elevation is raised to 1,045 meters, a severe drought could result in large multiyear irrigation-supply deficits in which reservoir water levels remain below 1,022 meters for more than 4 years. Hypothetical climate change and sedimentation could result in greater water-supply deficits. The chance of having sufficient water supplies in Kajakai Reservoir during the worst month is about 47 percent.
Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.
Hougaard, P; Lee, M L; Whitmore, G A
1997-12-01
Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.
Hantavirus pulmonary syndrome, United States, 1993-2009.
MacNeil, Adam; Ksiazek, Thomas G; Rollin, Pierre E
2011-07-01
Hantavirus pulmonary syndrome (HPS) is a severe respiratory illness identified in 1993. Since its identification, the Centers for Disease Control and Prevention has obtained standardized information about and maintained a registry of all laboratory-confirmed HPS cases in the United States. During 1993-2009, a total of 510 HPS cases were identified. Case counts have varied from 11 to 48 per year (case-fatality rate 35%). However, there were no trends suggesting increasing or decreasing case counts or fatality rates. Although cases were reported in 30 states, most cases occurred in the western half of the country; annual case counts varied most in the southwestern United States. Increased hematocrits, leukocyte counts, and creatinine levels were more common in HPS case-patients who died. HPS is a severe disease with a high case-fatality rate, and cases continue to occur. The greatest potential for high annual HPS incidence exists in the southwestern United States.
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1978-01-01
The paper describes a new type of continuous channel multiplier (CEM) fabricated from a low-resistance glass to produce a high-conductivity channel section and thereby obtain a high count-rate capability. The flat-cone cathode configuration of the CEM is specifically designed for the detection of astigmatic exit images from grazing-incidence spectrometers at the optimum angle of illumination for high detection efficiencies at XUV wavelengths. Typical operating voltages are in the range of 2500-2900 V with stable counting plateau slopes in the range 3-6% per 100-V increment. The modal gain at 2800 V was typically in the range (50-80) million. The modal gain falls off at count rates in excess of about 20,000 per sec. The detection efficiency remains essentially constant to count rates in excess of 2 million per sec. Higher detection efficiencies (better than 20%) are obtained by coating the CEM with MgF2. In life tests of coated CEMs, no measurable change in detection efficiency was measured to a total accumulated signal of 2 times 10 to the 11th power counts.
ERIC Educational Resources Information Center
University of South Florida, Tampa. Florida Center for Children and Youth.
This Kids Count report investigates statewide trends in the well-being of Florida's children. The statistical report is based on 19 indicators of child well being: (1) low birth weight infants; (2) infant mortality rate; (3) child death rate; (4) births to single teens; (5) juvenile violent crime arrest rate; (6) percent graduating from high…
1-99 W. Hubbard St, May 2018, Lindsay Light Radiological Survey
Radiological Survey of Right-of-Way Utility Excavation.The count rates in the excavation ranged from 2,100 cpm to 4,200 cpm.No count rates were found at any time that exceeded the instrument specific threshold limits of 7,366 and 6,415 cpm.
Is Parenting Child's Play? Kids Count in Missouri Report on Adolescent Pregnancy.
ERIC Educational Resources Information Center
Citizens for Missouri's Children, St. Louis.
This Kids Count report presents current information on adolescent pregnancy rates in Missouri. Part 1, "Overview of Adolescent Pregnancy in Missouri," discusses the changing pregnancy, abortion, and birth rates for 15- to 19-year-old adolescents, racial differences in pregnancy risk, regional differences suggesting a link between…
Blocking Losses With a Photon Counter
NASA Technical Reports Server (NTRS)
Moision, Burce E.; Piazzolla, Sabino
2012-01-01
It was not known how to assess accurately losses in a communications link due to photodetector blocking, a phenomenon wherein a detector is rendered inactive for a short time after the detection of a photon. When used to detect a communications signal, blocking leads to losses relative to an ideal detector, which may be measured as a reduction in the communications rate for a given received signal power, or an increase in the signal power required to support the same communications rate. This work involved characterizing blocking losses for single detectors and arrays of detectors. Blocking may be mitigated by spreading the signal intensity over an array of detectors, reducing the count rate on any one detector. A simple approximation was made to the blocking loss as a function of the probability that a detector is unblocked at a given time, essentially treating the blocking probability as a scaling of the detection efficiency. An exact statistical characterization was derived for a single detector, and an approximation for multiple detectors. This allowed derivation of several accurate approximations to the loss. Methods were also derived to account for a rise time in recovery, and non-uniform illumination due to diffraction and atmospheric distortion of the phase front. It was assumed that the communications signal is intensity modulated and received by an array of photon-counting photodetectors. For the purpose of this analysis, it was assumed that the detectors are ideal, in that they produce a signal that allows one to reproduce the arrival times of electrons, produced either as photoelectrons or from dark noise, exactly. For single detectors, the performance of the maximum-likelihood (ML) receiver in blocking is illustrated, as well as a maximum-count (MC) receiver, that, when receiving a pulse-position-modulated (PPM) signal, selects the symbol corresponding to the slot with the largest electron count. Whereas the MC receiver saturates at high count rates, the ML receiver may not. The loss in capacity, symbol-error-rate (SER), and count-rate were numerically computed. It was shown that the capacity and symbol-error-rate losses track, whereas the count-rate loss does not generally reflect the SER or capacity loss, as the slot-statistics at the detector output are no longer Poisson. It is also shown that the MC receiver loss may be accurately predicted for dead times on the order of a slot.
Twentieth century arroyo changes in Chaco Culture National Historical Park
Gellis, Allen C.
2002-01-01
Chaco Wash arroyo channel changes in the 20th century have become a major concern of the National Park Service. Several archeologic and cultural sites are located in the Chaco Wash corridor; thus, increased erosional activity of Chaco Wash, such as channel incision and increased meandering, may affect these sites. Through field surveys, photogrammetric analyses, and reviews of existing reports and maps, arroyo changes at Chaco Culture National Historic Park were documented. Arroyo changes were documented for the inner active channel and the entire arroyo cross section. The inner channel of Chaco Wash evolved from a wide, braided channel in the 1930's to a narrower channel with a well-developed flood plain by the 1970's. From 1934 to 1973 the active channel narrowed an average of 26 meters, and from the 1970's to 2000 the channel narrowed an average of 9 meters. Overall from 1934 to 2000, the inner channel narrowed an average of 30 meters. From 1934 to 2000, the top of Chaco Wash widened at four cross sections, narrowed at one, and remained the same at another. The top of Chaco Wash widened at a rate of 0.4 meter per year from the 1970's to 2000 compared with 0.2 meter per year from 1934 to 1973. At 50-percent depth or halfway down the arroyo channel, four cross sections widened and two cross sections narrowed from 1934 to 2000. Rates of widening at 50-percent depth decreased from 0.2 meter per year from 1934 to 1973 to 0.1 meter per year from the 1970's to 2000. From 1934 to 2000, arroyo depth decreased at five of six cross sections and increased at one cross section. Arroyo depth between 1934 and 1973 decreased an average 1.4 meters from aggradation and between the 1970's and 2000 increased an average 0.4 meter from channel scour. From 1934 to 2000, arroyo cross-sectional area decreased at all six cross sections. Cross-sectional areas in Chaco Wash decreased from 1934 to 1973 as a result of sediment deposition and both decreased and increased from the 1970's to 2000. The cross-sectional area decreased by the 1970's due to channel narrowing and flood-plain formation. Increases in cross-sectional area are from channel scour and channel widening. Photogrammetric analyses of volumetric changes for a 1.7-kilometer reach of Chaco Wash showed sediment deposition from 1934 to 1973 of 64 square meters per unit length of channel over 1.7 kilometers to erosion from 1973 to 2000 of 7 square meters per unit length of channel. Chaco Wash evolved from a braided channel in the 1930's to a narrow, sinuous inner channel by the 1970's. Chaco Wash was widening in the 1930's, leading to sediment deposition and formation of an inner flood plain. Channel narrowing resulted from increased sediment deposition on the flood plain. Sediment deposition may be related to a decrease in peak flows, an increase in flood-plain vegetation, or an increase in the transport of fine-grained sediment. Increases in bankfull depth of Chaco Wash between the 1970's and 2000 were due to aggradation of the flood plain and channel scour. Thus, rates of aggradation and cross-sectional filling were greater from 1934 to the 1970's than from the 1970's to 2000.
Beta-Band Oscillations Represent Auditory Beat and Its Metrical Hierarchy in Perception and Imagery.
Fujioka, Takako; Ross, Bernhard; Trainor, Laurel J
2015-11-11
Dancing to music involves synchronized movements, which can be at the basic beat level or higher hierarchical metrical levels, as in a march (groups of two basic beats, one-two-one-two …) or waltz (groups of three basic beats, one-two-three-one-two-three …). Our previous human magnetoencephalography studies revealed that the subjective sense of meter influences auditory evoked responses phase locked to the stimulus. Moreover, the timing of metronome clicks was represented in periodic modulation of induced (non-phase locked) β-band (13-30 Hz) oscillation in bilateral auditory and sensorimotor cortices. Here, we further examine whether acoustically accented and subjectively imagined metric processing in march and waltz contexts during listening to isochronous beats were reflected in neuromagnetic β-band activity recorded from young adult musicians. First, we replicated previous findings of beat-related β-power decrease at 200 ms after the beat followed by a predictive increase toward the onset of the next beat. Second, we showed that the β decrease was significantly influenced by the metrical structure, as reflected by differences across beat type for both perception and imagery conditions. Specifically, the β-power decrease associated with imagined downbeats (the count "one") was larger than that for both the upbeat (preceding the count "one") in the march, and for the middle beat in the waltz. Moreover, beamformer source analysis for the whole brain volume revealed that the metric contrasts involved auditory and sensorimotor cortices; frontal, parietal, and inferior temporal lobes; and cerebellum. We suggest that the observed β-band activities reflect a translation of timing information to auditory-motor coordination. With magnetoencephalography, we examined β-band oscillatory activities around 20 Hz while participants listened to metronome beats and imagined musical meters such as a march and waltz. We demonstrated that β-band event-related desynchronization in the auditory cortex differentiates between beat positions, specifically between downbeats and the following beat. This is the first demonstration of β-band oscillations related to hierarchical and internalized timing information. Moreover, the meter representation in the β oscillations was widespread across the brain, including sensorimotor and premotor cortices, parietal lobe, and cerebellum. The results extend current understanding of the role of β oscillations in neural processing of predictive timing. Copyright © 2015 the authors 0270-6474/15/3515187-12$15.00/0.
Kim, Joo-Hwa; Lee, Ha-Baik; Kim, Seong-Won; Kang, Im-Joo; Kook, Myung-Hee; Kim, Bong-Seong; Park, Kang-Seo; Baek, Hey-Sung; Kim, Kyu-Rang; Choi, Young-Jean
2012-01-01
The prevalence of allergic diseases in children has increased for several decades. We evaluated the correlation between pollen count of weeds and their sensitization rate in Seoul, 1997-2009. Airborne particles carrying allergens were collected daily from 3 stations around Seoul. Skin prick tests to pollen were performed on children with allergic diseases. Ragweed pollen gradually increased between 1999 and 2005, decreased after 2005 and plateaued until 2009 (peak counts, 67 in 2003, 145 in 2005 and 83 grains/m3/day in 2007). Japanese hop pollen increased between 2002 and 2009 (peak counts, 212 in 2006 and 492 grains/m3/day in 2009). Sensitization rates to weed pollen, especially ragweed and Japanese hop in children with allergic diseases, increased annually (ragweed, 2.2% in 2000 and 2.8% in 2002; Japanese hop, 1.4% in 2000 and 1.9% in 2002). The age for sensitization to pollen gradually became younger since 2000 (4 to 6 yr of age, 3.5% in 1997 and 6.2% in 2009; 7 to 9 yr of age, 4.2% in 1997 and 6.4% in 2009). In conclusion, sensitization rates for weed pollens increase in Korean children given increasing pollen counts of ragweed and Japanese hop. PMID:22468096
Kim, Joo-Hwa; Oh, Jae-Won; Lee, Ha-Baik; Kim, Seong-Won; Kang, Im-Joo; Kook, Myung-Hee; Kim, Bong-Seong; Park, Kang-Seo; Baek, Hey-Sung; Kim, Kyu-Rang; Choi, Young-Jean
2012-04-01
The prevalence of allergic diseases in children has increased for several decades. We evaluated the correlation between pollen count of weeds and their sensitization rate in Seoul, 1997-2009. Airborne particles carrying allergens were collected daily from 3 stations around Seoul. Skin prick tests to pollen were performed on children with allergic diseases. Ragweed pollen gradually increased between 1999 and 2005, decreased after 2005 and plateaued until 2009 (peak counts, 67 in 2003, 145 in 2005 and 83 grains/m(3)/day in 2007). Japanese hop pollen increased between 2002 and 2009 (peak counts, 212 in 2006 and 492 grains/m(3)/day in 2009). Sensitization rates to weed pollen, especially ragweed and Japanese hop in children with allergic diseases, increased annually (ragweed, 2.2% in 2000 and 2.8% in 2002; Japanese hop, 1.4% in 2000 and 1.9% in 2002). The age for sensitization to pollen gradually became younger since 2000 (4 to 6 yr of age, 3.5% in 1997 and 6.2% in 2009; 7 to 9 yr of age, 4.2% in 1997 and 6.4% in 2009). In conclusion, sensitization rates for weed pollens increase in Korean children given increasing pollen counts of ragweed and Japanese hop.
2016-01-01
The recovery of Bald Eagles (Haliaeetus leucophalus), after DDT and other organochlorine insecticides were banned in the United States, can be regarded as one of the most iconic success stories resulting from the Endangered Species Act. Interest remains high in the recovery and growth of the Bald Eagle population. Common to evaluating growth and recovery rates are counts at nesting sites and analyses of individuals fledged per season. But this is merely one snapshot that ignores survival rates as eagles grow to maturity. By analyzing indices from migration counts, we get a different snapshot better reflecting the survival of young birds. Different populations of Bald Eagles breed at different sites at different times of the year. Typical migration count analyses do not separate the populations. A separation of two distinct populations can be achieved at spring count sites by taking advantage of the tendency for northern summer breeding birds to migrate north in spring earlier than southern winter breeding birds who disperse north later in spring. In this paper I analyze migratory indices at a spring site along Lake Ontario. The analysis shows that eagles considered to be primarily of the northern summer breeding population showed an estimated growth rate of 5.3 ± 0.85% (SE) per year with 49% of eagles tallied in adult plumage, whereas the migrants considered to be primarily of the southern breeding population had an estimated growth rate of 14.0 ± 1.79% with only 22% in adult plumage. Together these results argue that the populations of southern breeding Bald Eagles are growing at a substantially higher rate than northern breeding eagles. These findings suggest that aggregate population indices for a species at migration counting sites can sometimes obscure important differences among separate populations at any given site and that separating counts by time period can be a useful way to check for differences among sub-populations. PMID:27231647
Pflug, Anja; Gompf, Florian; Kell, Christian Alexander
2017-08-01
In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection of smoldering combustion of coal with an odor meter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J.C.
1995-05-01
A commercially available odor meter was evaluated as a detector of smoldering coal combustion, and compared with incipient carbon monoxide (CO) and hydrogen sulfide (H{sub 2}S) detection and a commercially available ionization-type smoke detector. Ten smoldering coal combustion experiments were conducted. For eight of the experiments, Pittsburgh seam coal with an average particle diameter of approximately 5 cm was heated by embedded electrical strip heaters. For two of the experiments mine size Pittsburgh seam coal was heated. Heating rates of 0.5, 0.8, and 1.1. kw were selected to provide experimental conditions characteristic of very slow and moderately fast heating formore » coal sample mass between 3 and 10 kg. It was found that the odor meter and smoke detector alarm had a good correlation, with the odor meter alarm occurring prior to the smoke alarm in four of the ten experiments. The odor meter gave an increase in its output signal above ambient equivalent to detecting 1 ppm of H{sub 2}S (ten times the odor threshold of H{sub 2}S) as an alarm value. This observed odor meter response occurred prior to the electrochemical detection of H{sub 2}S for five of the six experiments for which it was evaluated. In all six experiments for which the smoke optical density was evaluated, it was less than 0.023 m{sup -1} prior to the odor meter reaching alarm. In each of the eight experiments with 5 cm diameter coal particles the CO exceeded 5 ppm at odor meter alarm, while for the two experiments with mine size coal the CO was less than 3 ppm at odor meter alarm. The odor meter, as tested, is not a significant improvement over smoke and CO detectors. Because the odor meter responds to a variety of chemical compounds, with suitable modification and increased sensitivity it may be useful for detection of mine fires and thereby enhance mine safety.« less
Cryptographic robustness of a quantum cryptography system using phase-time coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-01-15
A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less
NASA Astrophysics Data System (ADS)
Chen, Shi; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou; Zhuang, Jiancang
2017-04-01
The relative gravimeter, which generally uses zero-length springs as the gravity senor, is still as the first choice in the field of terrestrial gravity measurement because of its efficiency and low-cost. Because the drift rate of instrument can be changed with the time and meter, it is necessary for estimating the drift rate to back to the base or known gravity value stations for repeated measurement at regular hour's interval during the practical survey. However, the campaigned gravity survey for the large-scale region, which the distance of stations is far away from serval or tens kilometers, the frequent back to close measurement will highly reduce the gravity survey efficiency and extremely time-consuming. In this paper, we proposed a new gravity data adjustment method for estimating the meter drift by means of Bayesian statistical interference. In our approach, we assumed the change of drift rate is a smooth function depend on the time-lapse. The trade-off parameters were be used to control the fitting residuals. We employed the Akaike's Bayesian Information Criterion (ABIC) for the estimated these trade-off parameters. The comparison and analysis of simulated data between the classical and Bayesian adjustment show that our method is robust and has self-adaptive ability for facing to the unregularly non-linear meter drift. At last, we used this novel approach to process the realistic campaigned gravity data at the North China. Our adjustment method is suitable to recover the time-varied drift rate function of each meter, and also to detect the meter abnormal drift during the gravity survey. We also defined an alternative error estimation for the inversed gravity value at the each station on the basis of the marginal distribution theory. Acknowledgment: This research is supported by Science Foundation Institute of Geophysics, CEA from the Ministry of Science and Technology of China (Nos. DQJB16A05; DQJB16B07), China National Special Fund for Earthquake Scientific Research in Public Interest (Nos. 201508006; 201508009).
The KFM, A Homemade Yet Accurate and Dependable Fallout Meter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearny, C.H.
The KFM is a homemade fallout meter that can be made using only materials, tools, and skills found in millions of American homes. It is an accurate and dependable electroscope-capacitor. The KFM, in conjunction with its attached table and a watch, is designed for use as a rate meter. Its attached table relates observed differences in the separations of its two leaves (before and after exposures at the listed time intervals) to the dose rates during exposures of these time intervals. In this manner dose rates from 30 mR/hr up to 43 R/hr can be determined with an accuracy ofmore » {+-}25%. A KFM can be charged with any one of the three expedient electrostatic charging devices described. Due to the use of anhydrite (made by heating gypsum from wallboard) inside a KFM and the expedient ''dry-bucket'' in which it can be charged when the air is very humid, this instrument always can be charged and used to obtain accurate measurements of gamma radiation no matter how high the relative humidity. The heart of this report is the step-by-step illustrated instructions for making and using a KFM. These instructions have been improved after each successive field test. The majority of the untrained test families, adequately motivated by cash bonuses offered for success and guided only by these written instructions, have succeeded in making and using a KFM. NOTE: ''The KFM, A Homemade Yet Accurate and Dependable Fallout Meter'', was published by Oak Ridge National Laboratory report in1979. Some of the materials originally suggested for suspending the leaves of the Kearny Fallout Meter (KFM) are no longer available. Because of changes in the manufacturing process, other materials (e.g., sewing thread, unwaxed dental floss) may not have the insulating capability to work properly. Oak Ridge National Laboratory has not tested any of the suggestions provided in the preface of the report, but they have been used by other groups. When using these instructions, the builder can verify the insulating ability of his materials by checking the leakage rate and comparing it to the author's leakage tests.« less
Spectral and Polarimetric Imagery Collection Experiment
2011-12-01
Also melted snow liquid rate Optical rain gauge Rain rate Possibly snow rate Visibility meter Visibility Smoke, fog, haze Pyranometer Sun and sky...performance of the IR imagery due to thermal effect or possible inversion layer effects. Pyranometers measure total sun and sky radiation. If the direction
Portable wastewater flow meter
Hunter, Robert M.
1999-02-02
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Portable wastewater flow meter
Hunter, Robert M.
1990-01-01
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Zito, G.V.
1959-04-21
This patent relates to high voltage supply circuits adapted for providing operating voltages for GeigerMueller counter tubes, and is especially directed to an arrangement for maintaining uniform voltage under changing conditions of operation. In the usual power supply arrangement for counter tubes the counter voltage is taken from across the power supply output capacitor. If the count rate exceeds the current delivering capaciiy of the capacitor, the capacitor voltage will drop, decreasing the counter voltage. The present invention provides a multivibrator which has its output voltage controlled by a signal proportional to the counting rate. As the counting rate increases beyond the current delivering capacity of the capacitor, the rectified voltage output from the multivibrator is increased to maintain uniform counter voltage.
Economic Analysis and Optimal Sizing for behind-the-meter Battery Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Kintner-Meyer, Michael CW; Yang, Tao
This paper proposes methods to estimate the potential benefits and determine the optimal energy and power capacity for behind-the-meter BSS. In the proposed method, a linear programming is first formulated only using typical load profiles, energy/demand charge rates, and a set of battery parameters to determine the maximum saving in electric energy cost. The optimization formulation is then adapted to include battery cost as a function of its power and energy capacity in order to capture the trade-off between benefits and cost, and therefore to determine the most economic battery size. Using the proposed methods, economic analysis and optimal sizingmore » have been performed for a few commercial buildings and utility rate structures that are representative of those found in the various regions of the Continental United States. The key factors that affect the economic benefits and optimal size have been identified. The proposed methods and case study results cannot only help commercial and industrial customers or battery vendors to evaluate and size the storage system for behind-the-meter application, but can also assist utilities and policy makers to design electricity rate or subsidies to promote the development of energy storage.« less
NASA Astrophysics Data System (ADS)
Prakash, R.; Srinivasamoorthy, K.; Gopinath, S.; Saravanan, K.
2018-03-01
Submarine groundwater discharge (SGD) is described as submarine inflow of fresh and brackish groundwater from land into the sea. The release of sewages from point and non-point source pollutants from industries, agricultural and domestic activities gets discharged through groundwater to ocean creating natural disparity like decreasing flora fauna and phytoplankton blooms. Hence, to quantify fluxes of SGD in coastal regions is important. Quantification of SGD was attempted in Coleroon estuary, India, using three dissimilar methods like water budget, Darcy law and manual seepage meter. Three seepage meters were installed at two prominent litho units (alluvium and fluvio marine) at a distance of (0-14.7 km) away from Bay of Bengal. The water budget and Darcy law-quantified submarine seepage at a rate of 6.9 × 106 and 3.2 × 103 to 308.3 × 103 m3 year-1, respectively, and the seepage meter quantified seepage rate of 0.7024 m h-1 at an average. Larger seepage variations were isolated from three different techniques and the seepage rates were found to be influenced by hydrogeological characteristics of the litho units and distance from the coast.
A High-Pressure Bi-Directional Cycloid Rotor Flowmeter
Liu, Shuo; Ding, Fan; Ding, Chuan; Man, Zaipeng
2014-01-01
The measurement of the flow rate of various liquids and gases is critical in industrial automation. Rotary positive displacement meters (rotary PD meters) are highly accurate flowmeters that are widely employed in engineering applications, especially in custody transfer operations and hydraulic control systems. This paper presents a high pressure rotary PD meter containing a pair of internal cycloid rotors. It has the advantages of concise structure, low pressure loss, high accuracy and low noise. The curve of the internal rotor is designed as an equidistant curtate epicycloid curve with the external rotor curve as its conjugate. The calculation method used to determine the displacement of the cycloid rotor flowmeter is discussed. A prototype was fabricated, and experiments were performed to confirm measurements over a flow range of 1–100 L/min with relative errors of less than ±0.5%. The pressure loss through the flowmeter was about 3 bar at a flow rate of 100 L/min. PMID:25196162
Sedimentation survey of Lago Lucchetti, Yauco, Puerto Rico, September 2013–May 2014
Gómez-Fragoso, Julieta
2016-08-23
The U.S. Geological Survey conducted a sedimentation survey of Lago Lucchetti, Yauco, Puerto Rico, in 2013–14 in cooperation with the Puerto Rico Aqueduct and Sewer Authority. The survey updated a previous survey, conducted in 2000, and provided accurate information regarding reservoir storage capacity and sedimentation rate using bathymetric techniques and a global positioning system coupled with a depth sounder device. The results of the 2013–14 survey indicated a total storage capacity for Lago Lucchetti of 10.21 million cubic meters and a long-term sedimentation rate loss of 0.16 million cubic meters per year based on the original capacity in 1952. Sediment accumulation was about 10.14 million cubic meters over the life of the reservoir, which represents a storage decrease of about 50 percent of the original capacity in 1952. On the basis of a comparison between the 2013–14 and 2000 surveys, the useful life for Lago Lucchetti is projected to end in 2076.
Matsumura, Kenta; Yamakoshi, Takehiro
2013-12-01
Heart rate (HR) and normalized pulse volume (NPV) are physiological indices that have been used in a diversity of psychological studies. However, measuring these indices often requires laborious processes. We therefore developed a new smartphone program, named iPhysioMeter, that makes it possible to measure beat-by-beat HR and ln NPV using only a smartphone. We examined its accuracy against conventional laboratory measures. Mental stress tasks were used to alter HR and ln NPV in 12 participants. Bland-Altman analyses revealed negligible proportional bias for HR and ln NPV or for their change values, expressed as ΔHR and Δln NPV. However, a relatively large fixed bias did emerge for ln NPV, as well as a small one for Δln NPV, although both were within the limits of agreement. These findings suggest that iPhysioMeter can yield valid measures of the absolute level of HR and of relative changes in ln NPV.
Formulation and Development of Metered Dose Inhalations of Salbutamol in Solution Form
Khale, Anubha; Bajaj, Amrita
2011-01-01
In the present study attempts were made to prepare metered dose inhalation of salbutamol in solution form and compared it with the marketed metered dose inhalation in suspension form. Solution form of the drug was found better than marketed suspension formulation with respect to homogeneity and content uniformity. Propellant blend P-11 and P-12 in the proportion 30:70 was selected as it gave optimum vapour pressure. Surfactant oleic acid in concentration 10 mg per can was selected as it gave best results with clarity, spray pattern, vapour pressure, content per spray and rate of evaporation. Ethyl alcohol 2 ml per can was used as a cosolvent to give a clear solution, optimum vapour pressure, maximum content per spray and fair rate of evaporation. The selected formulation was subjected to the physico-chemical evaluation tests as per the standard pharmacopoeial procedures and the characteristics of the formulations were further compared with a conventional marketed formulation. In vitro study reveled the net respirable fraction was better than marketed preparation. PMID:22923867
Liquid fuel injection elements for rocket engines
NASA Technical Reports Server (NTRS)
Cox, George B., Jr. (Inventor)
1993-01-01
Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.
Use of flumes in metering discharge at gaging stations
Kilpatrick, F.A.; Schneider, V.R.
1982-01-01
Flumes for metering discharge are usually of two general types--critical-flow flumes and supercritical-flow flumes. In this report the principles underlying the design of each are discussed, the most commonly used flumes of each of the two types are described, and discharge ratings for each are presented. Considerations in choosing and fitting the appropriate flume for a given situation are discussed along with construction techniques and operational experiences.
Airborne Laser Swath Mapping: Improved Penetration of Dense Vegetation Opens New Applications
NASA Astrophysics Data System (ADS)
Carter, W. E.; Shrestha, R. L.; Slatton, K. C.
2009-12-01
Historically, mapping structures and terrain obscured by dense forests has been problematical, because shadows limit or prevent the use of airborne photogrammetric techniques, and ground surveying techniques are slow, labor intensive, and too costly for many applications. Airborne laser swath mapping (ALSM) units with pulse rates of a few thousand to a few tens of thousands of pulses per second typically resulted in 1 or 2 points per square meter of terrain, which worked reasonably well in sparse to moderately forested areas. For example, data collected with a 30 kHz laser, provided sufficient returns from the ground in areas covered with redwood, mixed hardwoods, and conifer forests, to create 1 to 2 meter resolution bare earth digital elevation models (DEM). These DEMs were useful in studies of forest covered landslides, terraces, and fault lines. However, in dense semi-tropical areas of Florida, with primary and secondary canopies that include dense brush such as palmetto, the DEMs were significantly degraded, and in many areas it was not possible to derive bare earth DEMs that were reliable in height to better than 0.5 to 1.0 meter. In 2007 the UF purchased a second generation Optech ALSM unit that has decimeter accuracy ranging with pulse rates of 100 to 125 kHz. Flying at 600 meters AGL, 60 meters per second, and using a scan angle of ± 20 degrees and scan rate of 40 Hz, results in about 5 laser pulses per square meter within a single swath. In April 2009 a UF team collected ALSM observations covering approximately 2000 acres at Caracol, Belize, to support archaeological studies of the ancient (650 to 900AD) Mayan city, which is largely covered with dense jungle. By overlapping adjacent swaths by 50%, and flying the project area twice with orthogonal flight lines, an accumulated data set containing approximately 20 pulses per square meter, with a distribution of incident angles was realized. The Caracol area has been under study for 25 years and traditional mapping techniques involved cutting pathways through the jungle, typically at 50 meter intervals, and using transits, electronic distance measuring instruments and total stations to map visible features. Without completely clearing the vegetation, it was difficult for ground surveyors to identify and map all of the pertinent features, and preliminary analysis suggest that the ALSM data display areas of previously unmapped mounded settlement, as well as subtle features in the terrain, including shallow agricultural terraces. The ability to map structures and terrain in areas covered with semi-tropical and tropical forests and jungles opens new opportunities for archaeological studies, and promises to impact geological and geophysical studies in these difficult to map regions as well.
The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model
Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.
2014-01-01
Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435
Geometric Representation of Association between Categories
ERIC Educational Resources Information Center
Heiser, Willem J.
2004-01-01
Categories can be counted, rated, or ranked, but they cannot be measured. Likewise, persons or individuals can be counted, rated, or ranked, but they cannot be measured either. Nevertheless, psychology has realized early on that it can take an indirect road to measurement: What can be measured is the strength of association between categories in…
Partial-Interval Estimation of Count: Uncorrected and Poisson-Corrected Error Levels
ERIC Educational Resources Information Center
Yoder, Paul J.; Ledford, Jennifer R.; Harbison, Amy L.; Tapp, Jon T.
2018-01-01
A simulation study that used 3,000 computer-generated event streams with known behavior rates, interval durations, and session durations was conducted to test whether the main and interaction effects of true rate and interval duration affect the error level of uncorrected and Poisson-transformed (i.e., "corrected") count as estimated by…
The Objectivity, Reliability, and Validity of the OSU Step Test for College Males
ERIC Educational Resources Information Center
Santa Maria, D. L.; And Others
1976-01-01
The O.S.U. Step Test was administered to 68 male university students to determine the objectivity of three methods of monitering heart rate--subjects count, investigator's count, and ECG records--with results indicating that the investigator was significantly more accurate in heart rate determination than were the subjects. (MB)
NASA Astrophysics Data System (ADS)
Torii, T.; Sanada, Y.; Watanabe, A.
2017-12-01
In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.
Environmental effects of large impacts on Mars.
Segura, Teresa L; Toon, Owen B; Colaprete, Anthony; Zahnle, Kevin
2002-12-06
The martian valley networks formed near the end of the period of heavy bombardment of the inner solar system, about 3.5 billion years ago. The largest impacts produced global blankets of very hot ejecta, ranging in thickness from meters to hundreds of meters. Our simulations indicated that the ejecta warmed the surface, keeping it above the freezing point of water for periods ranging from decades to millennia, depending on impactor size, and caused shallow subsurface or polar ice to evaporate or melt. Large impacts also injected steam into the atmosphere from the craters or from water innate to the impactors. From all sources, a typical 100-, 200-, or 250-kilometers asteroid injected about 2, 9, or 16 meters, respectively, of precipitable water into the atmosphere, which eventually rained out at a rate of about 2 meters per year. The rains from a large impact formed rivers and contributed to recharging aquifers.
NASA Technical Reports Server (NTRS)
Siry, J. W.
1972-01-01
A satellite-to-satellite tracking experiment is planned between ATS-F and GEOS-C with a range accuracy of 2-meters and a range rate accuracy of 0.035 centimeters per second for a 10-second integration time. This experiment is planned for 1974. It is anticipated that it will improve the spatial resolution of the satellite geoid by half an order of magnitude to about 6 degrees. Longer integration times should also permit a modest increase in the acceleration resolution. Satellite altimeter data will also be obtained by means of GEOS-C. An overall accuracy of 5-meters in altitude is the goal. The altimeter, per se, is expected to have an instrumental precision of about 2 meters, and an additional capability to observe with a precision of about 0.2 meters for limited periods.
29 CFR 778.318 - Productive and nonproductive hours of work.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Special Problems Effect of Failure to Count Or Pay for Certain Working Hours § 778.318 Productive and... Act; such nonproductive working hours must be counted and paid for. (b) Compensation payable for... which such nonproductive hours are properly counted as working time but no special hourly rate is...
Multi-Parameter Linear Least-Squares Fitting to Poisson Data One Count at a Time
NASA Technical Reports Server (NTRS)
Wheaton, W.; Dunklee, A.; Jacobson, A.; Ling, J.; Mahoney, W.; Radocinski, R.
1993-01-01
A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multi-component linear model, with underlying physical count rates or fluxes which are to be estimated from the data.
40 CFR 1065.545 - Validation of proportional flow control for batch sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the estimate, SEE, of the sample flow rate versus the total flow rate. For each test interval, demonstrate that SEE was less than or equal to 3.5% of the mean sample flow rate. (b) For any pair of flow meters, use recorded sample and total flow rates, where total flow rate means the raw exhaust flow rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... percentage of metered generation, since there is no load. 2. Intermittent resources are exempt from the outer...--Western Area Lower Colorado Balancing Authority--Rate Order No. WAPA-151 AGENCY: Western Area Power... Services Formula Rates. SUMMARY: The Deputy Secretary of Energy has confirmed and approved Rate Order No...
Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Xcel Energy Xcel Energy offers two rate options to qualified residential customers for charging PEVs. The Electric Vehicle (EV) Rate and the Time -of-Day Plan are optional and require a separate meter. For rate information, including how to qualify
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
Mountain goat abundance and population trends in the Olympic Mountains, Washington, 2011
Jenkins, Kurt; Happe, Patricia; Griffin, Paul C.; Beirne, Katherine; Hoffman, Roger; Baccus, William
2011-01-01
We conducted an aerial helicopter survey between July 18 and July 25, 2011, to estimate abundance and trends of introduced mountain goats (Oreamnos americanus) in the Olympic Mountains. The survey was the first since we developed a sightability correction model in 2008, which provided the means to estimate the number of mountain goats present in the surveyed areas and not seen during the aerial surveys, and to adjust for undercounting biases. Additionally, the count was the first since recent telemetry studies revealed that the previously defined survey zone, which was delineated at lower elevations by the 1,520-meter elevation contour, did not encompass all lands used by mountain goats during summer. We redefined the lower elevation boundary of survey units before conducting the 2011 surveys in an effort to more accurately estimate the entire mountain goat population. We surveyed 39 survey units, comprising 39 percent of the 59,615-hectare survey area. We estimated a mountain goat population of 344±44 (standard error, SE) in the expanded survey area. Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 258 to 430 mountain goats at the time of the survey. To permit comparisons of mountain goat populations between the 2004 and 2011 surveys, we recomputed population estimates derived from the 2004 survey using the newly developed bias correction methods, and we computed the 2004 and 2011 surveys based on comparable survey zone definitions (for example, using the boundaries of the 2004 survey). The recomputed estimates of mountain goat populations were 217±19 (SE) in 2004 and 303±41(SE) in 2011. The difference between the current 2011 population estimate (344±44[SE]) and the recomputed 2011 estimate (303±41[SE]) reflects the number of mountain goats counted in the expanded lower elevation portions of the survey zone added in 2011. We conclude that the population of mountain goats has increased in the Olympic Mountains at an average rate of 4.9±2.2(SE) percent annually since 2004. We caution that the estimated rate of population growth may be conservative if severe spring weather deterred some mountain goats from reaching the high-elevation survey areas during the 2011 surveys. If the estimated average rate of population growth were to remain constant in the future, then the population would double in approximately 14-15 years.
Tsai, L-T; Portegijs, E; Rantakokko, M; Viljanen, A; Saajanaho, M; Eronen, J; Rantanen, T
2015-08-01
The purpose of this cross-sectional study was to investigate the association between objectively measured physical activity and life-space mobility in community-dwelling older people. Life-space refers to the spatial area a person purposefully moves through in daily life (bedroom, home, yard, neighborhood, town, and beyond) and life-space mobility to the frequency of travel and the help needed when moving through different life-space areas. The study population comprised community-living 75- to 90-year-old people {n = 174; median age 79.7 [interquartile range (IQR) 7.1]}, participating in the accelerometer substudy of Life-Space Mobility in Old Age (LISPE) project. Step counts and activity time were measured by an accelerometer (Hookie "AM20 Activity Meter") for 7 days. Life-space mobility was assessed with Life-Space Assessment (LSA) questionnaire. Altogether, 16% had a life-space area restricted to the neighborhood when moving independently. Participants with a restricted life space were less physically active and about 70% of them had exceptionally low values in daily step counts (≤ 615 steps) and moderate activity time (≤ 6.8 min). Higher step counts and activity time correlated positively with life-space mobility. Prospective studies are needed to clarify the temporal order of low physical activity level and restriction in life-space mobility. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Honda, Kohei; Saito, Hidekazu; Fukui, Naoko; Ito, Eiko; Ishikawa, Kazuo
2013-09-01
The prevalence of Japanese cedar (JC) pollinosis in Japanese children is increasing. However, few studies have reported the relationship between pollen count levels and the prevalence of pollinosis. To evaluate the relationship between JC pollen count levels and the prevalence of pollinosis in children, we investigated the sensitization and development of symptoms for JC pollen in two areas of Akita in northeast Japan with contrasting levels of exposure to JC pollen. The study population consisted of 339 elementary school students (10-11 years of age) from the coastal and mountainous areas of Akita in 2005-2006. A questionnaire about symptoms of allergic rhinitis was filled out by the students' parents. A blood sample was taken to determine specific IgE antibodies against five common aeroallergens. The mean pollen count in the mountainous areas was two times higher than that in the coastal areas in 1996-2006. The prevalence rates of nasal allergy symptoms and sensitization for mites were almost the same in both areas. On the other hand, the rates of nasal allergy symptoms and sensitization for JC pollen were significantly higher in the mountainous areas than in the coastal areas. The rate of the development of symptoms among children sensitized for JC pollen was almost the same in both areas. These results suggest that pollen count levels may correlate with the rate of sensitization for JC pollinosis, but may not affect the rate of onset among sensitized children in northeast Japan.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-01-01
Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298
Final Technical Report- Radiation Hard Tight Pitch GaInP SPAD Arrays for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, Eric S.
The specialized photodetectors used in high energy physics experiments often need to remain extremely sensitive for years despite radiation induced damage caused by the constant bombardment of high energy particles. To solve this problem, LightSpin Technologies, Inc. in collaboration with Prof. Bradley Cox and the University of Virginia is developing radiation-hard GaInP photodetectors which are projected to be extraordinarily radiation hard, theoretically capable of withstanding a 100,000-fold higher radiation dose than silicon. In this Phase I SBIR project, LightSpin investigated the performance and radiation hardness of fifth generation GaInP SPAD arrays. These fifth generation devices used a new planar processingmore » approach that enables very tight pitch arrays to be produced. High performance devices with SPAD pitches of 11, 15, and 25 μm were successfully demonstrated, which greatly increased the dynamic range and maximum count rate of the devices. High maximum count rates are critical when considering radiation hardness, since radiation damage causes a proportional increase in the dark count rate, causing SPAD arrays with low maximum count rates (large SPAD pitches) to fail. These GaInP SPAD array Photomultiplier Chips™ were irradiated with protons, electrons, and neutrons. Initial irradiation results were disappointing, with the post-irradiation devices exhibiting excessively high dark currents. The degradation was traced to surface leakage currents that were largely eliminated through the use of trenches etched around the exterior of the Photomultiplier Chip™ (not between SPAD elements). A second round of irradiations on Photomultiplier Chips™ with trenches proved substantially more successful, with post-irradiation dark currents remaining relatively low, though dark count rates were observed to increase at the highest doses. Preliminary analysis of the post-irradiation devices is promising … many of the irradiated Photomultiplier Chips™ still exhibit good gain characteristics after 1E12/cm 2 – 1E13/cm 2 doses and have apparent dark count rates that are lower than the apparent dark count rates published for irradiation of silicon SPAD arrays (silicon photomultipliers or SiPMs). Some post-irradiation results are still pending because the samples will still too radioactive to be shipped back from the irradiation facility for post-irradiation testing.« less
Sedimentation Survey of Lago de Cidra, Puerto Rico, August 2007
Soler-López, Luis R.
2010-01-01
Lago de Cidra is a reservoir located on the confluence of Rio de Bayamon, Rio Sabana, and Quebrada Prieta, in the municipality of Cidra in east-central Puerto Rico, about 3.0 kilometers northeast of the town of Cidra. The dam is owned and operated by the Puerto Rico Aqueduct and Sewer Authority (PRASA), and was constructed in 1946 as a 6.54-million-cubic-meter supplemental water supply for the San Juan metropolitan area. The reservoir impounds the waters of Rio de Bayamon, Rio Sabana and Quebrada Prieta. The reservoir has a drainage area of 21.4 square kilometers. The dam is a concrete gravity and earthfill structure with a length of approximately 165 meters and a structural height of 24 meters. The spillway portion of the dam is an ungated ogee crest about 40 meters long with a crest elevation of 403.00 meters above mean sea level. Additional information and operational procedures are listed in Soler-Lopez (1999). During August 14-15, 2007, the U.S. Geological Survey (USGS), Caribbean Water Science Center (CWSC), in cooperation with the PRASA, conducted a bathymetric survey of Lago de Cidra to update the reservoir storage capacity and actualize the reservoir sedimentation rate by comparing the 2007 data with the previous 1997 bathymetric survey data. The purpose of this report is to describe and document the USGS sedimentation survey conducted at Lago de Cidra during August 2007, including the methods used to update the reservoir storage capacity, sedimentation rates, and areas of substantial sediment accumulation since 1997.
NASA Technical Reports Server (NTRS)
Bugbee, B. G.; Salisbury, F. B.
1988-01-01
The long-term vegetative and reproductive growth rates of a wheat crop (Triticum aestivum L.) were determined in three separate studies (24, 45, and 79 days) in response to a wide range of photosynthetic photon fluxes (PPF, 400-2080 micromoles per square meter per second; 22-150 moles per square meter per day; 16-20 hour photoperiod) in a near-optimum, controlled-environment. The CO2 concentration was elevated to 1200 micromoles per mole, and water and nutrients were supplied by liquid hydroponic culture. An unusually high plant density (2000 plants per square meter) was used to obtain high yields. Crop growth rate and grain yield reached 138 and 60 grams per square meter per day, respectively; both continued to increase up to the highest integrated daily PPF level, which was three times greater than a typical daily flux in the field. The conversion efficiency of photosynthesis (energy in biomass/energy in photosynthetic photons) was over 10% at low PPF but decreased to 7% as PPF increased. Harvest index increased from 41 to 44% as PPF increased. Yield components for primary, secondary, and tertiary culms were analyzed separately. Tillering produced up to 7000 heads per square meter at the highest PPF level. Primary and secondary culms were 10% more efficient (higher harvest index) than tertiary culms; hence cultural, environmental, or genetic changes that increase the percentage of primary and secondary culms might increase harvest index and thus grain yield. Wheat is physiologically and genetically capable of much higher productivity and photosynthetic efficiency than has been recorded in a field environment.
Anti-Adhesion Elastomer Seal Coatings for Ultraviolet and Atomic Oxygen Protection
NASA Technical Reports Server (NTRS)
De Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.
2015-01-01
Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 milligrams per square centimeter. Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nanometers and 254 nanometers, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 megajoules per square meter per day. Exposures between 0 and 147 megajoules per square meter (UV-C) and 245 megajoules per square meter (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 milligrams per square centimeter. The leakage of seals coated with Braycote plus 20 percent Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4 percent Z-cote ZnO sunscreen were not significantly affected by combined doses of 2 x 10 (sup 21) atoms per square AO with 73 megajoules per square meter UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 megajoules per square meter and DC-7-16.4 percent Z-cote coated seals were undamaged at all exposures up to the limits tested thus far which were 147 megajoules per square meter UV-C and 245 megajoules per square meter NUV. The coatings decreased adhesion sufficiently for docking seals at temperatures equal to or greater than -8 degrees Centigrade thus offer a simple and inexpensive way to mitigate adhesion.
NASA Astrophysics Data System (ADS)
Lockhart, M.; Henzlova, D.; Croft, S.; Cutler, T.; Favalli, A.; McGahee, Ch.; Parker, R.
2018-01-01
Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli(DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory and implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. The current paper discusses and presents the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. In order to assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. The DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, William J.; Sullivan, Douglas
This pilot scale study evaluated the counting accuracy of two people counting systems that could be used in demand controlled ventilation systems to provide control signals for modulating outdoor air ventilation rates. The evaluations included controlled challenges of the people counting systems using pre-planned movements of occupants through doorways and evaluations of counting accuracies when naive occupants (i.e., occupants unaware of the counting systems) passed through the entrance doors of the building or room. The two people counting systems had high counting accuracy accuracies, with errors typically less than 10percent, for typical non-demanding counting events. However, counting errors were highmore » in some highly challenging situations, such as multiple people passing simultaneously through a door. Counting errors, for at least one system, can be very high if people stand in the field of view of the sensor. Both counting system have limitations and would need to be used only at appropriate sites and where the demanding situations that led to counting errors were rare.« less
Nagasawa, Yuya; Kiku, Yoshio; Sugawara, Kazue; Tanabe, Fuyuko; Hayashi, Tomohito
2018-01-01
The exfoliation rate of mammary epithelial cells (MECs) in milk is affected by physiological, breeding and environmental factors. Little is known about the relationship between the MEC exfoliation into milk and mammary-infected Staphylococcus aureus (S. aureus) load on bovine mastitis caused by S. aureus. The aim of this study was to investigate the relationship between S. aureus load and the proportion of MEC exfoliation in milk using five substantial bovine mastitis models. In 64 randomly extracted milk samples from udders at 3-21 days after S. aureus infusion, there were various samples with different numbers of S. aureus counts and somatic cell counts. No significant correlations were found between the S. aureus counts and somatic cell count (r = 0.338). In contrast, a significant correlation was noted between S. aureus counts and the proportion of cytokeratin-positive cells in the milk from the infused udders (r = 0.734, P < 0.01). In conclusion, the increasing MEC exfoliation rate in milk from mastitis udders caused by S. aureus may contribute to reduced milk yield. © 2017 Japanese Society of Animal Science.
Addressing immunization registry population inflation in adolescent immunization rates.
Robison, Steve G
2015-01-01
While U.S. adolescent immunization rates are available annually at national and state levels, finding pockets of need may require county or sub-county information. Immunization information systems (IISs) are one tool for assessing local immunization rates. However, the presence of IIS records dating back to early childhood and challenges in capturing mobility out of IIS areas typically leads to denominator inflation. We examined the feasibility of weighting adolescent immunization records by length of time since last report to produce more accurate county adolescent counts and immunization rates. We compared weighted and unweighted adolescent denominators from the Oregon ALERT IIS, along with county-level Census Bureau estimates, with school enrollment counts from Oregon's annual review of seventh-grade school immunization compliance for public and private schools. Adolescent immunization rates calculated using weighted data, for the state as a whole, were also checked against comparable National Immunization Survey (NIS) rates. Weighting individual records by the length of time since last activity substantially improved the fit of IIS data to county populations for adolescents. A nonlinear logarithmic (ogive) weight produced the best fit to the school count data of all examined estimates. Overall, the ogive weighted results matched NIS adolescent rates for Oregon. The problem of mobility-inflated counts of teenagers can be addressed by weighting individual records based on time since last immunization. Well-populated IISs can rely on their own data to produce adolescent immunization rates and find pockets of need.
Boursier, Jérôme; Bertrais, Sandrine; Oberti, Frédéric; Gallois, Yves; Fouchard-Hubert, Isabelle; Rousselet, Marie-Christine; Zarski, Jean-Pierre; Calès, Paul
2011-11-30
Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test.
2011-01-01
Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Methods Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. Results In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). Conclusions The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test. PMID:22129438
Charging Rate Incentive - Georgia Power Georgia Power offers a Plug-in Electric Vehicle (PEV) time -of-use electricity rate for residential customers who own an electric or plug-in hybrid electric vehicle. The PEV rate is optional and does not require a separate meter. For more information, see the
Borges, E; Setti, A S; Braga, D P A F; Figueira, R C S; Iaconelli, A
2016-09-01
The objective of this study was to compare (i) the intracytoplasmic sperm injection outcomes among groups with different total motile sperm count ranges, (ii) the intracytoplasmic sperm injection outcomes between groups with normal and abnormal total motile sperm count, and (iii) the predictive values of WHO 2010 cut-off values and pre-wash total motile sperm count for the intracytoplasmic sperm injection outcomes, in couples with male infertility. This study included data from 518 patients undergoing their first intracytoplasmic sperm injection cycle as a result of male infertility. Couples were divided into five groups according to their total motile sperm count: Group I, total motile sperm count <1 × 10(6) ; group II, total motile sperm count 1-5 × 10(6) ; group III, total motile sperm count 5-10 × 10(6) ; group IV, total motile sperm count 10-20 × 10(6) ; and group V, total motile sperm count >20 × 10(6) (which was considered a normal total motile sperm count value). Then, couples were grouped into an abnormal and normal total motile sperm count group. The groups were compared regarding intracytoplasmic sperm injection outcomes. The predictive values of WHO 2010 cut-off values and total motile sperm count for the intracytoplasmic sperm injection outcomes were also investigated. The fertilization rate was lower in total motile sperm count group I compared to total motile sperm count group V (72.5 ± 17.6 vs. 84.9 ± 14.4, p = 0.011). The normal total motile sperm count group had a higher fertilization rate (84.9 ± 14.4 vs. 81.1 ± 15.8, p = 0.016) and lower miscarriage rate (17.9% vs. 29.5%, p = 0.041) compared to the abnormal total motile sperm count group. The total motile sperm count was the only parameter that demonstrated a predictive value for the formation of high-quality embryos on D2 (OR: 1.18, p = 0.013), formation of high-quality embryos on D3 (OR: 1.12, p = 0.037), formation of blastocysts on D5 (OR: 1.16, p = 0.011), blastocyst expansion grade on D5 (OR: 1.27, p = 0.042), and the odds of miscarriage (OR: 0.52, p < 0.045). The total motile sperm count has a greater predictive value than the WHO 2010 cut-off values for laboratory results and pregnancy outcomes in couples undergoing intracytoplasmic sperm injection as a result of male infertility. © 2016 American Society of Andrology and European Academy of Andrology.
NASA Astrophysics Data System (ADS)
Kupc, Agnieszka; Williamson, Christina; Wagner, Nicholas L.; Richardson, Mathews; Brock, Charles A.
2018-01-01
Atmospheric aerosol is a key component of the chemistry and climate of the Earth's atmosphere. Accurate measurement of the concentration of atmospheric particles as a function of their size is fundamental to investigations of particle microphysics, optical characteristics, and chemical processes. We describe the modification, calibration, and performance of two commercially available, Ultra-High Sensitivity Aerosol Spectrometers (UHSASs) as used on the NASA DC-8 aircraft during the Atmospheric Tomography Mission (ATom). To avoid sample flow issues related to pressure variations during aircraft altitude changes, we installed a laminar flow meter on each instrument to measure sample flow directly at the inlet as well as flow controllers to maintain constant volumetric sheath flows. In addition, we added a compact thermodenuder operating at 300 °C to the inlet line of one of the instruments. With these modifications, the instruments are capable of making accurate (ranging from 7 % for Dp < 0.07 µm to 1 % for Dp > 0.13 µm), precise (< ±1.2 %), and continuous (1 Hz) measurements of size-resolved particle number concentration over the diameter range of 0.063-1.0 µm at ambient pressures of > 1000 to 225 hPa, while simultaneously providing information on particle volatility.We assessed the effect of uncertainty in the refractive index (n) of ambient particles that are sized by the UHSAS assuming the refractive index of ammonium sulfate (n = 1.52). For calibration particles with n between 1.44 and 1.58, the UHSAS diameter varies by +4/-10 % relative to ammonium sulfate. This diameter uncertainty associated with the range of refractive indices (i.e., particle composition) translates to aerosol surface area and volume uncertainties of +8.4/-17.8 and +12.4/-27.5 %, respectively. In addition to sizing uncertainty, low counting statistics can lead to uncertainties of < 20 % for aerosol surface area and < 30 % for volume with 10 s time resolution. The UHSAS reduction in counting efficiency was corrected for concentrations > 1000 cm-3.Examples of thermodenuded and non-thermodenuded aerosol number and volume size distributions as well as propagated uncertainties are shown for several cases encountered during the ATom project. Uncertainties in particle number concentration were limited by counting statistics, especially in the tropical upper troposphere where accumulation-mode concentrations were sometimes < 20 cm-3 (counting rates ˜ 5 Hz) at standard temperature and pressure.
Making Hawai'i's Kids Count. Issue Paper Number 3.
ERIC Educational Resources Information Center
Hawaii Univ., Manoa. Center on the Family.
This issue paper from Hawai'i Kids Count addresses the issue of teen pregnancy and birth rates. The paper notes that teen pregnancy and birth rates are declining both nationally and in Hawaii and describes key risk factors associated with having a baby before age 20: (1) early school failure; (2) early behavioral problems; (3) family dysfunction;…
Arkansas Kids Count Data Book 1995: A Portrait of Arkansas' Children.
ERIC Educational Resources Information Center
Arkansas Advocates for Children and Families, Little Rock.
This Kids Count report is the third to examine the well-being of Arkansas' children and the first to provide trend information. The statistical report is based on 10 core indicators of well-being: (1) unemployment rate and per capita personal income; (2) federal and state assistance program participation rates; (3) percent of high school students…
Dose of Prophylactic Platelet Transfusions and Prevention of Hemorrhage
Slichter, Sherrill J.; Kaufman, Richard M.; Assmann, Susan F.; McCullough, Jeffrey; Triulzi, Darrell J.; Strauss, Ronald G.; Gernsheimer, Terry B.; Ness, Paul M.; Brecher, Mark E.; Josephson, Cassandra D.; Konkle, Barbara A.; Woodson, Robert D.; Ortel, Thomas L.; Hillyer, Christopher D.; Skerrett, Donna L.; McCrae, Keith R.; Sloan, Steven R.; Uhl, Lynne; George, James N.; Aquino, Victor M.; Manno, Catherine S.; McFarland, Janice G.; Hess, John R.; Leissinger, Cindy; Granger, Suzanne
2010-01-01
BACKGROUND We conducted a trial of prophylactic platelet transfusions to evaluate the effect of platelet dose on bleeding in patients with hypoproliferative thrombocytopenia. METHODS We randomly assigned hospitalized patients undergoing hematopoietic stem-cell transplantation or chemotherapy for hematologic cancers or solid tumors to receive prophylactic platelet transfusions at a low dose, a medium dose, or a high dose (1.1×1011, 2.2×1011, or 4.4×1011 platelets per square meter of body-surface area, respectively), when morning platelet counts were 10,000 per cubic millimeter or lower. Clinical signs of bleeding were assessed daily. The primary end point was bleeding of grade 2 or higher (as defined on the basis of World Health Organization criteria). RESULTS In the 1272 patients who received at least one platelet transfusion, the primary end point was observed in 71%, 69%, and 70% of the patients in the low-dose group, the medium-dose group, and the high-dose group, respectively (differences were not significant). The incidences of higher grades of bleeding, and other adverse events, were similar among the three groups. The median number of platelets transfused was significantly lower in the low-dose group (9.25×1011) than in the medium-dose group (11.25×1011) or the high-dose group (19.63×1011) (P = 0.002 for low vs. medium, P<0.001 for high vs. low and high vs. medium), but the median number of platelet transfusions given was significantly higher in the low-dose group (five, vs. three in the medium-dose and three in the high-dose group; P<0.001 for low vs. medium and low vs. high). Bleeding occurred on 25% of the study days on which morning platelet counts were 5000 per cubic millimeter or lower, as compared with 17% of study days on which platelet counts were 6000 to 80,000 per cubic millimeter (P<0.001). CONCLUSIONS Low doses of platelets administered as a prophylactic transfusion led to a decreased number of platelets transfused per patient but an increased number of transfusions given. At doses between 1.1×1011 and 4.4×1011 platelets per square meter, the number of platelets in the prophylactic transfusion had no effect on the incidence of bleeding. (ClinicalTrials.gov number, NCT00128713.) PMID:20164484
Pneumocystis jirovecii colonisation in HIV-positive and HIV-negative subjects in Cameroon.
Riebold, D; Enoh, D O; Kinge, T N; Akam, W; Bumah, M K; Russow, K; Klammt, S; Loebermann, M; Fritzsche, C; Eyong, J E; Eppel, G; Kundt, G; Hemmer, C J; Reisinger, E C
2014-06-01
To determine the prevalence of Pneumocystis pneumonia (PCP), a major opportunistic infection in AIDS patients in Europe and the USA, in Cameroon. Induced sputum samples from 237 patients without pulmonary symptoms (126 HIV-positive and 111 HIV-negative outpatients) treated at a regional hospital in Cameroon were examined for the prevalence of Pneumocystis jirovecii by specific nested polymerase chain reaction (nPCR) and staining methods. CD 4 counts and the history of antiretroviral therapy of the subjects were obtained through the ESOPE database system. Seventy-five of 237 study participants (31.6%) were colonised with Pneumocystis, but none showed active PCP. The Pneumocystis colonisation rate in HIV-positive subjects was more than double that of HIV-negative subjects (42.9% vs. 18.9%, P < 0.001). In the HIV-positive group, the colonisation rate corresponds to the reduction in the CD 4 lymphocyte counts. Subjects with CD 4 counts >500 cells/μl were colonised at a rate of 20.0%, subjects with CD 4 counts between 200 and 500 cells/μl of 42.5%, and subjects with CD 4 counts <200 cells/μl of 57.1%. Colonisation with Pneumocystis in Cameroon seems to be comparable to rates found in Western Europe. Prophylactic and therapeutic measures against Pneumocystis should be taken into account in HIV care in western Africa. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir
2014-09-22
Four helium-3 ( 3He) detector/preamplifier packages (¾”/KM200, DDSI/PDT-A111, DDA/PDT-A111, and DDA/PDT10A) were experimentally tested to determine the deadtime effects at different DT neutron generator output settings. At very high count rates, the ¾”/KM200 package performed best. At high count rates, the ¾”/KM200 and the DDSI/PDT-A111 packages performed very well, with the DDSI/PDT-A111 operating with slightly higher efficiency. All of the packages performed similarly at mid to low count rates. Proposed improvements include using a fast recovery LANL-made dual channel preamplifier, testing smaller diameter 3He tubes, and further investigating quench gases.
Clustering method for counting passengers getting in a bus with single camera
NASA Astrophysics Data System (ADS)
Yang, Tao; Zhang, Yanning; Shao, Dapei; Li, Ying
2010-03-01
Automatic counting of passengers is very important for both business and security applications. We present a single-camera-based vision system that is able to count passengers in a highly crowded situation at the entrance of a traffic bus. The unique characteristics of the proposed system include, First, a novel feature-point-tracking- and online clustering-based passenger counting framework, which performs much better than those of background-modeling-and foreground-blob-tracking-based methods. Second, a simple and highly accurate clustering algorithm is developed that projects the high-dimensional feature point trajectories into a 2-D feature space by their appearance and disappearance times and counts the number of people through online clustering. Finally, all test video sequences in the experiment are captured from a real traffic bus in Shanghai, China. The results show that the system can process two 320×240 video sequences at a frame rate of 25 fps simultaneously, and can count passengers reliably in various difficult scenarios with complex interaction and occlusion among people. The method achieves high accuracy rates up to 96.5%.
NO sub X Deposited in the Stratosphere by the Space Shuttle Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Pergament, H. S.; Thorpe, R. D.; Hwang, B.
1975-01-01
The possible effects of the interaction of the plumes from the two solid rocket motors (SRM) from the space shuttles and mixing of the rocket exhaust products and ambient air in the base recirculation region on the total nitrous oxide deposition rate in the stratosphere were investigated. It was shown that these phenomena will not influence the total NOx deposition rate. It was also shown that uncertainties in the particle size of Al2O3, size distributions and particle/gas drag and heat transfer coefficients will not have a significant effect on the predicted NOx deposition rate. The final results show that the total mass flow of NOx leaving the plume at 30 km altitude is 4000 g./sec with a possible error factor of 3. For a vehicle velocity of 1140 meter/sec this yields an NOx deposition rate of about 3.5 g./meter. The corresponding HCl deposition rate at this altitude is about a factor of 500 greater than this value.
Ka-Band Parabolic Deployable Antenna (KaPDA) Enabling High Speed Data Communication for CubeSats
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Chahat, Nacer; Hodges, Richard; Thomson, Mark W.; Rahmat-Samii, Yahya
2015-01-01
CubeSats are at a very exciting point as their mission capabilities and launch opportunities are increasing. But as instruments become more advanced and operational distances between CubeSats and earth increase communication data rate becomes a mission-limiting factor. Improving data rate has become critical enough for NASA to sponsor the Cube Quest Centennial Challenge when: one of the key metrics is transmitting as much data as possible from the moon and beyond Currently, many CubeSats communicate on UHF bands and those that have high data rate abilities use S-band or X-band patch antennas. The CubeSat Aneas, which was launched in September 2012, pushed the envelope with a half-meter S-band dish which could achieve 100x the data rate of patch antennas. A half-meter parabolic antenna operating at Ka-band would increase data rates by over 100x that of the AMOS antenM and 10,000 that of X-band patch antennas.
Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.
Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S
2017-07-10
We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.
Long-range non-contact imaging photoplethysmography: cardiac pulse wave sensing at a distance
NASA Astrophysics Data System (ADS)
Blackford, Ethan B.; Estepp, Justin R.; Piasecki, Alyssa M.; Bowers, Margaret A.; Klosterman, Samantha L.
2016-03-01
Non-contact, imaging photoplethysmography uses photo-optical sensors to measure variations in light absorption, caused by blood volume pulsations, to assess cardiopulmonary parameters including pulse rate, pulse rate variability, and respiration rate. Recently, researchers have studied the applications and methodology of imaging photoplethysmography. Basic research has examined some of the variables affecting data quality and accuracy of imaging photoplethysmography including signal processing, imager parameters (e.g. frame rate and resolution), lighting conditions, subject motion, and subject skin tone. This technology may be beneficial for long term or continuous monitoring where contact measurements may be harmful (e.g. skin sensitivities) or where imperceptible or unobtrusive measurements are desirable. Using previously validated signal processing methods, we examined the effects of imager-to-subject distance on one-minute, windowed estimates of pulse rate. High-resolution video of 22, stationary participants was collected using an enthusiast-grade, mirrorless, digital camera equipped with a fully-manual, super-telephoto lens at distances of 25, 50, and 100 meters with simultaneous contact measurements of electrocardiography, and fingertip photoplethysmography. By comparison, previous studies have usually been conducted with imager-to-subject distances of up to only a few meters. Mean absolute error for one-minute, windowed, pulse rate estimates (compared to those derived from gold-standard electrocardiography) were 2.0, 4.1, and 10.9 beats per minute at distances of 25, 50, and 100 meters, respectively. Long-range imaging presents several unique challenges among which include decreased, observed light reflectance and smaller regions of interest. Nevertheless, these results demonstrate that accurate pulse rate measurements can be obtained from over long imager-to-participant distances given these constraints.
Plotting Rates of Photosynthesis as a Function of Light Quantity.
ERIC Educational Resources Information Center
Dean, Rob L.
1996-01-01
Discusses methods for plotting rates of photosynthesis as a function of light quantity. Presents evidence that suggests that empirically derived conversion factors, which are used to convert foot candles to photon fluence rates, should be used with extreme caution. Suggests how rate data are best plotted when any kind of light meter is not…
Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.
2010-01-01
Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 13 meters per year during balance year 2006 and at a rate of about 8 meters per year during balance year 2007. Glacier area near the end of balance years 2006 and 2007 was 1.74 and 1.73 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2006 and 2007. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier. Air-temperature over the glacier at a height of 2 meters generally was less than at the same altitude in the air mass away from the glacier. Cooling of the air by the glacier increased systematically with increasing ambient air temperature. Empirically based equations were developed to estimate 2-meter-height air temperature over the glacier at five sites from site altitude and temperature at a non-glacier reference site.
Low cost digital electronics for isotope analysis with microcalorimeters - final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Hennig
2006-09-11
The overall goal of the Phase I research was to demonstrate that the digital readout electronics and filter algorithms developed by XIA for use with HPGe detectors can be adapted to high precision, cryogenic gamma detectors (microcalorimeters) and not only match the current state of the art in terms of energy resolution, but do so at a significantly reduced cost. This would make it economically feasible to instrument large arrays of microcalorimeters and would also allow automation of the setup, calibration and operation of large numbers of channels through software. We expected, and have demonstrated, that this approach would furthermore » allow much higher count rates than the optimum filter algorithms currently used. In particular, in measurements with a microcalorimeter at LLNL, the adapted Pixie-16 spectrometer achieved an energy resolution of 0.062%, significantly better than the targeted resolution of 0.1% in the Phase I proposal and easily matching resolutions obtained with LLNL readout electronics and optimum filtering (0.066%). The theoretical maximum output count rate for the filter settings used to achieve this resolution is about 120cps. If the filter is adjusted for maximum throughput with an energy resolution of 0.1% or better, rates of 260cps are possible. This is 20-50 times higher than the maximum count rates of about 5cps with optimum filters for this detector. While microcalorimeter measurements were limited to count rates of ~1.3cps due to the strength of available sources, pulser measurements demonstrated that measured energy resolutions were independent of counting rate to output counting rates well in excess of 200cps or more.. We also developed a preliminary hardware design of a spectrometer module, consisting of a digital processing core and several input options that can be implemented on daughter boards. Depending upon the daughter board, the total parts cost per channel ranged between $12 and $27, resulting in projected product prices of $80 to $160 per channel. This demonstrates that a price of $100 per channel is economically very feasible for large microcalorimeter arrays.« less
NASA Technical Reports Server (NTRS)
Robinson, John E.
2014-01-01
The Federal Aviation Administration's Next Generation Air Transportation System will combine advanced air traffic management technologies, performance-based procedures, and state-of-the-art avionics to maintain efficient operations throughout the entire arrival phase of flight. Flight deck Interval Management (FIM) operations are expected to use sophisticated airborne spacing capabilities to meet precise in-trail spacing from top-of-descent to touchdown. Recent human-in-the-loop simulations by the National Aeronautics and Space Administration have found that selection of the assigned spacing goal using the runway schedule can lead to premature interruptions of the FIM operation during periods of high traffic demand. This study compares three methods for calculating the assigned spacing goal for a FIM operation that is also subject to time-based metering constraints. The particular paradigms investigated include: one based upon the desired runway spacing interval, one based upon the desired meter fix spacing interval, and a composite method that combines both intervals. These three paradigms are evaluated for the primary arrival procedures to Phoenix Sky Harbor International Airport using the entire set of Rapid Update Cycle wind forecasts from 2011. For typical meter fix and runway spacing intervals, the runway- and meter fix-based paradigms exhibit moderate FIM interruption rates due to their inability to consider multiple metering constraints. The addition of larger separation buffers decreases the FIM interruption rate but also significantly reduces the achievable runway throughput. The composite paradigm causes no FIM interruptions, and maintains higher runway throughput more often than the other paradigms. A key implication of the results with respect to time-based metering is that FIM operations using a single assigned spacing goal will not allow reduction of the arrival schedule's excess spacing buffer. Alternative solutions for conducting the FIM operation in a manner more compatible with the arrival schedule are discussed in detail.
Upton, Richard G.
1978-01-01
A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.
Bilateral retinitis following Chikun- gunya fever
Murthy, Krishna R; Venkataraman, Nandita; Satish, Vidya
2008-01-01
A 35-year-old male with a history of chikungunya fever, presented with diminution of vision in the right eye of one-week duration. His best corrected visual acuity (BCVA) was counting fingers 2 meters and 20/20 (Snellens) in the right and left eyes respectively. A diagnosis of neuroretinitis was made in the right eye while left eye showed features of retinitis. ELISA (serum) and polymerase chain reaction (aqueous) were positive for herpes simplex virus. The lesions did not show any response to antiviral or steroid treatment and appeared to be self-limiting. At five months follow-up, lesions had resolved well with BCVA of 20/120 and 20/20 in the right and left eyes respectively. PMID:18579997
On-chip photonic particle sensor
NASA Astrophysics Data System (ADS)
Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian
2018-02-01
We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.
Resolution of macular edema in Coats' disease with intravitreal bevacizumab
Entezari, Morteza; Ramezani, Alireza; Safavizadeh, Ladan; Bassirnia, Nader
2010-01-01
A 13-year-old boy was referred because of visual deterioration in his right eye. The visual acuity was two meters of counting fingers. Indirect ophthalmoscopy and biomicroscopy revealed exudative macular edema as well as tumor-like telangiectatic vessels and exudation in temporal periphery. With diagnosis of Coats' disease (stage II) confirmed by fluorescein angiography, three intravitreal injections of bevacizumab were performed at 6-week intervals. One year after the last injection, there was a significant resolution of macular edema as well as visual acuity improvement to 20/20. This is the first case report in which a distinct improvement in macular edema was observed with intravitreal bevacizumab in Coats' disease. PMID:20029156
Association of Mycoplasma pneumoniae infection with increased risk of asthma in children.
Yin, Sha-Sha; Ma, Feng-Lian; Gao, Xing
2017-05-01
The present study was conducted to investigate the relationship between Mycoplasma pneumoniae (MP) infection and the risk of asthma among children by detecting the rate of MP immunoglobulin M (MP-IgM) and the eosinophil (EOS) count. A total of 139 asthmatic children were enrolled as the case group and assigned into three groups: Group A (aged <3 years, n=42), group B (aged 3-8 years, n=45) and group C (aged >8 years, n=52). Additionally, 115 healthy children were enrolled in the control group. Enzyme-linked immunosorbent assay was used to measure the MP-IgM-positive rate. EOS count was detected in the experimental and control groups by using a hemocytometer analyzer. A meta-analysis was performed by using the Comprehensive Meta-Analysis version 2.0 software. The positive rates of the MP-IgM and EOS count in the experimental group were significantly higher than those in control group (both P<0.001). Furthermore, the asthmatic children in group C had a higher MP-IgM-positive rate and EOS count as compared to those in groups A and B, respectively (all P<0.05). Results from groups A and B were not statistically significant (all P>0.05). The meta-analysis further confirmed that asthmatic children had a higher MP-IgM-positive rate as compared to the healthy controls (P<0.001). Age-stratified analysis revealed that the MP-IgM-positive rate in asthmatic children aged ≥8 and <8 years was significantly higher than that in the healthy controls (P=0.003 and P<0.001). Asthmatic children had a higher MP-IgM-positive rate and EOS count as compared with controls, suggesting that the MP infection may be closely associated with the risk of asthma. Additionally, the positive rate of MP-IgM may indicate an important biological marker in predicting the development of asthma.
Lusa, Amanda L; Amigues, Isabelle; Kramer, Henry R; Dam, Thuy-Tien; Giles, Jon T
2015-01-01
To explore the contributions from and interactions between articular swelling and damage, psychosocial factors, and body composition characteristics on walking speed in rheumatoid arthritis (RA). RA patients underwent the timed 400-meter long-corridor walk. Demographics, self-reported levels of depressive symptoms and fatigue, RA characteristics, and body composition (using whole-body dual X-ray absorptiometry, and abdominal and thigh computed tomography) were assessed and their associations with walking speed explored. A total of 132 RA patients had data for the 400-meter walk, among whom 107 (81%) completed the full 400 meters. Significant multivariable indicators of slower walking speed were older age, higher depression scores, higher reported pain and fatigue, higher swollen and replaced joint counts, higher cumulative prednisone exposure, nontreatment with disease-modifying antirheumatic drugs, and worse body composition. These features accounted for 60% of the modeled variability in walking speed. Among specific articular features, slower walking speed was primarily correlated with large/medium lower-extremity joint involvement. However, these articular features accounted for only 21% of the explainable variability in walking speed. Having any relevant articular characteristic was associated with a 20% lower walking speed among those with worse body composition (P < 0.001), compared with only a 6% lower speed among those with better body composition (P = 0.010 for interaction). Psychosocial factors and body composition are potentially reversible contributors to walking speed in RA. Relative to articular disease activity and damage, nonarticular indicators were collectively more potent indicators of an individual's mobility limitations. Copyright © 2015 by the American College of Rheumatology.
Dark Skies Ahead? Activities to Raise Awareness during the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Isbell, D.; Pompea, S.
2007-12-01
"Dark Skies as a Universal Resource” is one of 7 themes targeted for the International Year of Astronomy in 2009. The theme's goal is to raise public awareness of the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To reach this goal, activities are being developed which highlight dark skies preservation issues 1) through new technology (e.g., programs at planetaria, blogging, podcasting); 2) at events such as star parties and observatory open houses; 3) in arts, entertainment and storytelling (e.g., art competitions, documentaries, lectures, native American traditions); 4) through unaided-eye and digital-meter star count programs involving citizen-scientists; and 5) by relating them to public health, economic issues, ecological consequences, energy conservation, safety and security. A centerpiece of the Dark Skies theme is the unaided-eye and digital-meter versions of the GLOBE at Night program. The unaided-eye version directs citizen-scientists on how to observe and record the brightness of the night sky by matching its appearance toward the constellation of Orion with one of 7 stellar maps of different limiting magnitudes. For the "digital” version, low-cost meters are used by citizen-scientists to measure the integrated sky brightness. Data sets and maps of both versions are supplied on-line for further capstone activities. In the presentation, we will outline the activities being developed as well as plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".
Geohydrology of the Englishtown Formation in the northern Coastal Plain of New Jersey
Nichols, W.D.
1977-01-01
The Englishtown Formation of the Matawan Group of Late Cretaceous age is exposed in the western part of the New Jeresy Coastal Plain along a northeast-southwest trending zone extending from Raritan Bay to Delaware Bay. In outcrop, in the northern part of the Coastal Plain, the Englishtown typically consists of a series of thin, cross-stratified, fine- to medium-grained lignitic quartz sand beds intercalated with thin beds of sandy silty clay and clayey silt, ranging in total thickness from about 140 feet (43 meters) near Raritan Bay to about 50 feet (15 meters) near Trenton. In the subsurface of the northern part of the Coastal Plain, the formation retains most of the lithologic characteristics displayed in outcrop. In northern and eastern Ocean County the Englishtown can be subdivided into three distinct lithologic units; upper and lower units of quartz sand with thin interbeds of dark sandy silt, separated by a thick sequence of sandy and clayey lignitic silt. The confined part of the aquifer in the Englishtown Formation is utilized as a source of water over an area of about 1,100 square miles (2,849 square kilometers) of the New Jersey Coastal Plain and is an important source of supply in Monmouth and northern Ocean Counties. The annual average rate of withdrawal from the aquifer in the two-county area increased from 5.5 million gallons per day (0.24 cubic meters per second) in 1959 to 9.5 million gallons per day (0.4 cubic meters per second) in 1970. Water levels in parts of this area were declining 8 to 12 feet (2.4 to 3.6 meters) per year as of 1970 and they declined as much as 140 feet (43 meters) between 1959 and 1970 near pumping centers. The aquifer transmissivity ranges from 2,400 square feet per day to 650 square feet per day (223 square meters per day to 60 square meters per day); the estimated hydraulic conductivity ranges from about 11 feet per day to 20 feet per day (3.3 meters per day to 6.1 meters per day); and the storage coefficient ranges from 8 x 10-5 to 3 x 10-4. The underlying and overlying confining beds, which have an average thickness of 200 feet (61 meters) and 40 feet (12 meters), respectively, have vertical hydraulic conductivities on the order of 1 x 10-5 feet per day (3 x 10-6 meters per day) and specific storage on the order of 8 x 10-5 ft-1 (2.4 x 10-5 m-1). The Englishtown aquifer is an integral part of the complex multi- aquifer system of the New Jersey Coastal Plain. The withdrawal of water from the Englishtown aquifer has had a marked effect on the water level in the overlying Moutn Laurel aquifer, and these effects will continue so long as the water level in the Englishtown continues to decline. Any increase in the development of the Mount Laurel aquifer that reduces the volume of leakage to the Englishtown will cause an increase in the rate of water-level decline in the Englishtown even with no increase in direct withdrawals. The interrelationship and interdependency between pumping stresses in individual aquifers within the complex Coastal Plain aquifer sytem must be recognized and appreciated, and the hydrodynamics of all parts of the system must be considered if reliable predictions of aquifer response to these stresses are to be made. Such predictions generally require a simulation model analysis of the system.
Srivastava, Shivangi; Saha, Sabyasachi; Kumari, Minti; Mohd, Shafaat
2016-02-01
Dairy products like curd seem to be the most natural way to ingest probiotics which can reduce Streptococcus mutans level and also increase salivary pH thereby reducing the dental caries risk. To estimate the role of probiotic curd on salivary pH and Streptococcus mutans count, over a period of 7 days. This double blind parallel randomized clinical trial was conducted at the institution with 60 caries free volunteers belonging to the age group of 20-25 years who were randomly allocated into two groups. Test Group consisted of 30 subjects who consumed 100ml of probiotic curd daily for seven days while an equal numbered Control Group were given 100ml of regular curd for seven days. Saliva samples were assessed at baseline, after ½ hour 1 hour and 7 days of intervention period using pH meter and Mitis Salivarius Bacitracin agar to estimate salivary pH and S. mutans count. Data was statistically analysed using Paired and Unpaired t-test. The study revealed a reduction in salivary pH after ½ hour and 1 hour in both the groups. However after 7 days, normal curd showed a statistically significant (p< 0.05) reduction in salivary pH while probiotic curd showed a statistically significant (p< 0.05) increase in salivary pH. Similarly with regard to S. mutans colony counts probiotic curd showed statistically significant reduction (p< 0.05) as compared to normal curd. Short-term consumption of probiotic curds showed marked salivary pH elevation and reduction of salivary S. mutans counts and thus can be exploited for the prevention of enamel demineralization as a long-term remedy keeping in mind its cost effectiveness.
Srasuebkul, Preeyaporn; Lim, Poh Lian; Lee, Man Po; Kumarasamy, Nagalingeswaran; Zhou, Jialun; Sirisanthana, Thira; Li, Patrick C. K.; Kamarulzaman, Adeeba; Oka, Shinichi; Phanuphak, Praphan; Vonthanak, Saphonn; Merati, Tuti P.; Chen, Yi-Ming A.; Sungkanuparph, Somnuek; Tau, Goa; Zhang, Fujie; Lee, Christopher K. C.; Ditangco, Rossana; Pujari, Sanjay; Choi, Jun Y.; Smith, Jeffery; Law, Matthew G.
2009-01-01
Objective The aim of our study was to develop, on the basis of simple clinical data, predictive short-term risk equations for AIDS or death in Asian patients infected with human immunodeficiency virus (HIV) who were included in the TREAT Asia HIV Observational Database. Methods Inclusion criteria were highly active antiretroviral therapy initiation and completion of required laboratory tests. Predictors of short-term AIDS or death were assessed using Poisson regression. Three different models were developed: a clinical model, a CD4 cell count model, and a CD4 cell count and HIV RNA level model. We separated patients into low-risk, high-risk, and very high-risk groups according to the key risk factors Identified. Results In the clinical model, patients with severe anemia or a body mass index (BMI; calculated as the weight in kilograms divided by the square of the height in meters) ≤18 were at very high risk, and patients who were aged <40 years or were male and had mild anemia were at high risk. In the CD4 cell count model, patients with a CD4 cell count <50 cells/µL, severe anemia, or a BMI ≤18 were at very high risk, and patients who had a CD4 cell count of 51–200 cells/µL, were aged <40 years, or were male and had mild anemia were at high risk. In the CD4 cell count and HIV RNA level model, patients with a CD4 cell count <50 cells/µL, a detectable viral load, severe anemia, or a BMI ≤18 were at very high risk, and patients with a CD4 cell count of 51–200 cells/µL and mild anemia were at high risk. The incidence of new AIDS or death in the clinical model was 1.3, 4.9, and 15.6 events per 100 person-years in the low-risk, high-risk, and very high-risk groups, respectively. In the CD4 cell count model the respective incidences were 0.9, 2.7, and 16.02 events per 100 person-years; in the CD4 cell count and HIV RNA level model, the respective incidences were 0.8, 1.8, and 6.2 events per 100 person-years. Conclusions These models are simple enough for widespread use in busy clinics and should allow clinicians to identify patients who are at high risk of AIDS or death in Asia and the Pacific region and in resource-poor settings. PMID:19226231
James F. Lynch
1995-01-01
Effects of count duration, time-of-day, and aural stimuli were studied in a series of unlimited-radius point counts conducted during winter in Quintana Roo, Mexico. The rate at which new species were detected was approximately three times higher during the first 5 minutes of each 15- minute count than in the final 5 minutes. The number of individuals and species...
Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates
NASA Astrophysics Data System (ADS)
Patting, Matthias; Reisch, Paja; Sackrow, Marcus; Dowler, Rhys; Koenig, Marcelle; Wahl, Michael
2018-03-01
Using time-correlated single photon counting for the purpose of fluorescence lifetime measurements is usually limited in speed due to pile-up. With modern instrumentation, this limitation can be lifted significantly, but some artifacts due to frequent merging of closely spaced detector pulses (detector pulse pile-up) remain an issue to be addressed. We propose a data analysis method correcting for this type of artifact and the resulting systematic errors. It physically models the photon losses due to detector pulse pile-up and incorporates the loss in the decay fit model employed to obtain fluorescence lifetimes and relative amplitudes of the decay components. Comparison of results with and without this correction shows a significant reduction of systematic errors at count rates approaching the excitation rate. This allows quantitatively accurate fluorescence lifetime imaging at very high frame rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, J; Slaughter, D; Norman, E
Error rates in a cargo screening system such as the Nuclear Car Wash [1-7] depend on the standard deviation of the background radiation count rate. Because the Nuclear Car Wash is an active interrogation technique, the radiation signal for fissile material must be detected above a background count rate consisting of cosmic, ambient, and neutron-activated radiations. It was suggested previously [1,6] that the Corresponding negative repercussions for the sensitivity of the system were shown. Therefore, to assure the most accurate estimation of the variation, experiments have been performed to quantify components of the actual variance in the background count rate,more » including variations in generator power, irradiation time, and container contents. The background variance is determined by these experiments to be a factor of 2 smaller than values assumed in previous analyses, resulting in substantially improved projections of system performance for the Nuclear Car Wash.« less
An Approach to the Quantitative Study of Sea Floor Topography.
1980-01-01
Basement in the Pacific Ocean MAGNETIC TOTAL RMS ANOMALY SPREADING RELIEF MEAN RMS RIDGE WINDOW RATE (cm/yr) (meters) RELIEF (meters) Nazca-Cocos 0-2’ 6 104...investigation. V. CONCLUSIONS The sea floor and the lithologic boundaries below it can generally be thought of as interfaces of acoustic impedance mismatch... Magnetic Anomalies , and Plate Tectonic History of the Mouth of the Gulf of California. Geol. Soc. Am. Bull., v. 83, p. 3345-3360. Luyendyk, B. P
40 CFR 1066.1005 - Symbols, abbreviations, acronyms, and units of measure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... joule per kelvin J/K J · K−1 C v heat capacity at constant volume joule per kelvin J/K J · K−1 d... m3 Q flow rate cubic feet per minute or cubic meter per second ft3/min or m3/s m3/s r mass density... · s−1 V volume cubic meter m3 m3 VP volume percent x concentration of emission over a test interval...
NASA Astrophysics Data System (ADS)
Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar
2018-07-01
In high count rate radiation spectroscopy and imaging, detector output pulses tend to pile up due to high interaction rate of the particles with the detector. Pile-up effects can lead to a severe distortion of the energy and timing information. Pile-up events are conventionally prevented or rejected by both analog and digital electronics. However, for decreasing the exposure times in medical imaging applications, it is important to maintain the pulses and extract their true information by pile-up correction methods. The single-event reconstruction method is a relatively new model-based approach for recovering the pulses one-by-one using a fitting procedure, for which a fast fitting algorithm is a prerequisite. This article proposes a fast non-iterative algorithm based on successive integration which fits the bi-exponential model to experimental data. After optimizing the method, the energy spectra, energy resolution and peak-to-peak count ratios are calculated for different counting rates using the proposed algorithm as well as the rejection method for comparison. The obtained results prove the effectiveness of the proposed method as a pile-up processing scheme designed for spectroscopic and medical radiation detection applications.
Fast radio burst event rate counts - I. Interpreting the observations
NASA Astrophysics Data System (ADS)
Macquart, J.-P.; Ekers, R. D.
2018-02-01
The fluence distribution of the fast radio burst (FRB) population (the `source count' distribution, N (>F) ∝Fα), is a crucial diagnostic of its distance distribution, and hence the progenitor evolutionary history. We critically reanalyse current estimates of the FRB source count distribution. We demonstrate that the Lorimer burst (FRB 010724) is subject to discovery bias, and should be excluded from all statistical studies of the population. We re-examine the evidence for flat, α > -1, source count estimates based on the ratio of single-beam to multiple-beam detections with the Parkes multibeam receiver, and show that current data imply only a very weak constraint of α ≲ -1.3. A maximum-likelihood analysis applied to the portion of the Parkes FRB population detected above the observational completeness fluence of 2 Jy ms yields α = -2.6_{-1.3}^{+0.7 }. Uncertainties in the location of each FRB within the Parkes beam render estimates of the Parkes event rate uncertain in both normalizing survey area and the estimated post-beam-corrected completeness fluence; this uncertainty needs to be accounted for when comparing the event rate against event rates measured at other telescopes.
NASA Technical Reports Server (NTRS)
Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.
1983-01-01
To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.
The Money/Counting Kit. The Prospectus Series, Paper No. 6.
ERIC Educational Resources Information Center
Musumeci, Judith
The Money/Counting Kit for Handicapped Children and Youth, frees the teacher from lessons in money and counting concepts and enables a student to learn at his own rate with immediate feedback from activity cards, name cards, thermoformed coin cards (optional), and self-instructional booklets. The activity cards, which may be used individually or…
The Cardiovascular Function Profile and Physical Fitness in Overweight Subjects
NASA Astrophysics Data System (ADS)
Megawati, E. R.; Lubis, L. D.; Harahap, F. Y.
2017-03-01
Obesity in children and young adult is associated with cardiovascular risk in short term and long term. The aim of this study was to describe the profile of the cardiovascular functions parameters and physical fitness in overweight. This is an analytical observational study with cross sectional approach. The samples of this study were 85 randomly selected subjects aged 18 to 24 years with normoweight and body mass index <40. The parameters measures were body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), cardiovascular function parameters (resting pulse, blood pressure, and peak flow meter) and physical fitness parameters (VO2max dengan McArdle step test). The mean BMI was 24,53±4,929. The WC and WHR mean were 86,7±14,10 cms and 0,89±0,073 cm respectively. The mean of resting pulses were higher in normoweight subject (p=0,0209). The mean systole were lower in normoweight subject (p=0,0026). No differences VO2 max between groups (p=0,3888). The peak flow meter was higher in normoweight (p=0,0274). The result of this study indicate that heart rate, systole and peak flow meter are signifantly different between groups. The heart rate and the peak flow meter in the overweight subjects were lower meanwhile the systole blood pressure was higher compared to normoweight subjects.
Anatomy Of The ‘LuSi’ Mud Eruption, East Java
NASA Astrophysics Data System (ADS)
Tingay, M. R.
2009-12-01
Early in the morning of the 29th of May 2006, hot mud started erupting from the ground in the densely populated Porong District of Sidoarjo, East Java. With initial flow rates of ~5000 cubic meters per day, the mud quickly inundated neighbouring villages. Over two years later and the ‘Lusi’ eruption has increased in strength, expelling over 90 million cubic meters of mud at an average rate of approximately 100000 cubic meters per day. The mud flow has now covered over 700 hectares of land to depths of over 25 meters, engulfing a dozen villages and displacing approximately 40000 people. In addition to the inundated areas, other areas are also at risk from subsidence and distant eruptions of gas. However, efforts to stem the mud flow or monitor its evolution are hampered by our overall lack of knowledge and consensus on the subsurface anatomy of the Lusi mud volcanic system. In particular, the largest and most significant uncertainties are the source of the erupted water (shales versus deep carbonates), the fluid flow pathways (purely fractures versus mixed fracture and wellbore) and disputes over the subsurface geology (nature of deep carbonates, lithology of rocks between shale and carbonates). This study will present and overview of the anatomy of the Lusi mud volcanic system with particular emphasis on these critical uncertainties and their influence on the likely evolution of disaster.
Evaluating the risk of decompression sickness for a yo-yo dive using a rat model.
Ofir, Dror; Yanir, Yoav; Abramovich, Amir; Bar, Ronen; Arieli, Yehuda
2016-01-01
The frequent ascents made during yo-yo diving may contribute to gas bubble clearance but paradoxically may also increase the risk of central nervous system decompression illness (DCI). We evaluated the risk of DCI due to yo-yo dives with very short surface intervals, using a controlled animal model. Dives were conducted on air to a depth of 90 meters (10 atmospheres absolute) for 32 minutes of bottom time, at a descent/ascent rate of 10 meters/ minute. Sprague-Dawley rats weighing ~ 300 grams were divided randomly into three groups. Group A performed a square dive protocol without any surface intervals, Group B conducted a protocol that included two surface intervals during the dive, and Group C performed a protocol with three surface intervals. Ascent/descent rate for surface intervals, each lasting one minute, was also 10 meters/minute. Manifestations of DCI were observed in 13 of 16 animals in Group A (81.3%), six of 12 in Group B (58.3%), and two of 12 in Group C (16.7%). Mortality rates were similar in all groups. Surface intervals during dives breathing air significantly reduced DCI risk in the rat. Further studies are required using a larger animal model to reinforce the results of the present investigation.
Lockhart, M.; Henzlova, D.; Croft, S.; ...
2017-09-20
Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli (DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory andmore » implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. Here, we discuss and present the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. To assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. In conclusion, the DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, M.; Henzlova, D.; Croft, S.
Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli (DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory andmore » implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. Here, we discuss and present the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. To assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. In conclusion, the DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.« less
Thrombocytopenia in Small for Gestational Age Infants
Christensen, Robert D.; Baer, Vickie L.; Henry, Erick; Snow, Gregory L.; Butler, Allison; Sola-Visner, Martha C.
2016-01-01
BACKGROUND Thrombocytopenia is common among small for gestational age neonates (SGA; birth weight <10th % reference range) but several aspects of this thrombocytopenia are unclear, including the incidence, typical nadir, duration, association with preeclampsia, mechanism, and risk of death. METHODS Using nine years of multihospital records we studied SGA neonates with ≥2 platelet counts <150,000/μL in their first week. RESULTS We found first-week thrombocytopenia in 31% (905 of 2891) of SGA neonates vs. 10% of non-SGA matched-controls (p<0.0001). One hundred-two of the 905 had a recognized cause of thrombocytopenia (DIC, early-onset sepsis, ECMO). This group had a 65% mortality rate. The remaining 803 did not have an obvious cause for their thrombocytopenia. We termed these the “thrombocytopenia of SGA”. They had a mortality rate of 2% (p<0.0001) and a mean nadir count on day 4 of 93,000/μL (standard deviation, 51,580/μL, 10th % 50,000/μL, 90th % 175,000/μL). By day 14, platelet counts were ≥150,000/μL in >half of the patients. Severely SGA neonates (<1st %) had lower counts and longer thrombocytopenia duration (p<0.001). High nucleated red cell counts at birth correlated with low platelets (p<0.0001). Platelet transfusions were given to 23% and counts typically >tripled. Thrombocytopenia was associated with SGA status more so than with the diagnosis of maternal preeclampsia. CONCLUSIONS SGA neonates with clearly recognized varieties of thrombocytopenia have a high mortality rate. In contrast the “thrombocytopenia of SGA” is a hyporegenerative condition of moderate severity and two weeks duration, associated with evidence of intrauterine hypoxia, and associated with a low mortality rate. PMID:26216323
Sperm count as a surrogate endpoint for male fertility control.
Benda, Norbert; Gerlinger, Christoph
2007-11-30
When assessing the effectiveness of a hormonal method of fertility control in men, the classical approach used for the assessment of hormonal contraceptives in women, by estimating the pregnancy rate or using a life-table analysis for the time to pregnancy, is difficult to apply in a clinical development program. The main reasons are the dissociation of the treated unit, i.e. the man, and the observed unit, i.e. his female partner, the high variability in the frequency of male intercourse, the logistical cost and ethical concerns related to the monitoring of the trial. A reasonable surrogate endpoint of the definite endpoint time to pregnancy is sperm count. In addition to the avoidance of the mentioned problems, trials that compare different treatments are possible with reasonable sample sizes, and study duration can be shorter. However, current products do not suppress sperm production to 100 per cent in all men and the sperm count is only observed with measurement error. Complete azoospermia might not be necessary in order to achieve an acceptable failure rate compared with other forms of male fertility control. Therefore, the use of sperm count as a surrogate endpoint must rely on the results of a previous trial in which both the definitive- and surrogate-endpoint results were assessed. The paper discusses different estimation functions of the mean pregnancy rate (corresponding to the cumulative hazard) that are based on the results of sperm count trial and a previous trial in which both sperm count and time to pregnancy were assessed, as well as the underlying assumptions. Sample size estimations are given for pregnancy rate estimation with a given precision.
van Sighem, Ard; Sabin, Caroline A.; Phillips, Andrew N.
2015-01-01
Background It is important to have methods available to estimate the number of people who have undiagnosed HIV and are in need of antiretroviral therapy (ART). Methods The method uses the concept that a predictable level of occurrence of AIDS or other HIV-related clinical symptoms which lead to presentation for care, and hence diagnosis of HIV, arises in undiagnosed people with a given CD4 count. The method requires surveillance data on numbers of new HIV diagnoses with HIV-related symptoms, and the CD4 count at diagnosis. The CD4 count-specific rate at which HIV-related symptoms develop are estimated from cohort data. 95% confidence intervals can be constructed using a simple simulation method. Results For example, if there were 13 HIV diagnoses with HIV-related symptoms made in one year with CD4 count at diagnosis between 150–199 cells/mm3, then since the CD4 count-specific rate of HIV-related symptoms is estimated as 0.216 per person-year, the estimated number of person years lived in people with undiagnosed HIV with CD4 count 150–199 cells/mm3 is 13/0.216 = 60 (95% confidence interval: 29–100), which is considered an estimate of the number of people living with undiagnosed HIV in this CD4 count stratum. Conclusions The method is straightforward to implement within a short period once a surveillance system of all new HIV diagnoses, collecting data on HIV-related symptoms at diagnosis, is in place and is most suitable for estimating the number of undiagnosed people with CD4 count <200 cells/mm3 due to the low rate of developing HIV-related symptoms at higher CD4 counts. A potential source of bias is under-diagnosis and under-reporting of diagnoses with HIV-related symptoms. Although this method has limitations as with all approaches, it is important for prompting increased efforts to identify undiagnosed people, particularly those with low CD4 count, and for informing levels of unmet need for ART. PMID:25768925
Lodwick, Rebecca K; Nakagawa, Fumiyo; van Sighem, Ard; Sabin, Caroline A; Phillips, Andrew N
2015-01-01
It is important to have methods available to estimate the number of people who have undiagnosed HIV and are in need of antiretroviral therapy (ART). The method uses the concept that a predictable level of occurrence of AIDS or other HIV-related clinical symptoms which lead to presentation for care, and hence diagnosis of HIV, arises in undiagnosed people with a given CD4 count. The method requires surveillance data on numbers of new HIV diagnoses with HIV-related symptoms, and the CD4 count at diagnosis. The CD4 count-specific rate at which HIV-related symptoms develop are estimated from cohort data. 95% confidence intervals can be constructed using a simple simulation method. For example, if there were 13 HIV diagnoses with HIV-related symptoms made in one year with CD4 count at diagnosis between 150-199 cells/mm3, then since the CD4 count-specific rate of HIV-related symptoms is estimated as 0.216 per person-year, the estimated number of person years lived in people with undiagnosed HIV with CD4 count 150-199 cells/mm3 is 13/0.216 = 60 (95% confidence interval: 29-100), which is considered an estimate of the number of people living with undiagnosed HIV in this CD4 count stratum. The method is straightforward to implement within a short period once a surveillance system of all new HIV diagnoses, collecting data on HIV-related symptoms at diagnosis, is in place and is most suitable for estimating the number of undiagnosed people with CD4 count <200 cells/mm3 due to the low rate of developing HIV-related symptoms at higher CD4 counts. A potential source of bias is under-diagnosis and under-reporting of diagnoses with HIV-related symptoms. Although this method has limitations as with all approaches, it is important for prompting increased efforts to identify undiagnosed people, particularly those with low CD4 count, and for informing levels of unmet need for ART.
Cryogenic flow rate measurement with a laser Doppler velocimetry standard
NASA Astrophysics Data System (ADS)
Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.
2018-03-01
A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).
BLAST for Behind-the-Meter Applications Lite Tool | Transportation Research
provided by NREL's PV Watts calculator. A generic utility rate structure framework makes it possible to the BLAST documentation for proper CSV formatting. Rate structure values Define demand charges and energy costs to best represent your utility rate structure of interest. Demand charges and energy costs
Cho, Oyeon; Chun, Mison; Oh, Young-Taek; Noh, O Kyu; Chang, Suk-Joon; Ryu, Hee-Sug; Lee, Eun Ju
2017-10-01
Radioresistance often leads to poor survival in concurrent chemoradiotherapy-treated cervical squamous cell carcinoma, and reliable biomarkers can improve prognosis. We compared the prognostic potential of hemoglobin, absolute neutrophil count, and absolute lymphocyte count with that of squamous cell carcinoma antigen in concurrent chemoradiotherapy-treated squamous cell carcinoma. We analyzed 152 patients with concurrent chemoradiotherapy and high-dose-rate intracavitary brachytherapy-treated cervical squamous cell carcinoma. Hemoglobin, absolute neutrophil count, absolute lymphocyte count, and squamous cell carcinoma antigen were quantitated and correlated with survival, using Cox regression, receiver operating characteristic curve analysis, and Kaplan-Meier plots. Both hemoglobin and absolute lymphocyte count in the second week of concurrent chemoradiotherapy (Hb2 and ALC2) and squamous cell carcinoma antigen in the third week of concurrent chemoradiotherapy (mid-squamous cell carcinoma antigen) correlated significantly with disease-specific survival and progression-free survival. The ratio of high-dose-rate intracavitary brachytherapy dose to total dose (high-dose-rate intracavitary brachytherapy ratio) correlated significantly with progression-free survival. Patients with both low Hb2 (≤11 g/dL) and ALC2 (≤639 cells/µL) showed a lower 5-year disease-specific survival rate than those with high Hb2 and/or ALC2, regardless of mid-squamous cell carcinoma antigen (mid-squamous cell carcinoma antigen: ≤4.7 ng/mL; 5-year disease-specific survival rate: 85.5% vs 94.6%, p = 0.0096, and mid-squamous cell carcinoma antigen: >4.7 ng/mL; 5-year disease-specific survival rate: 43.8% vs 66.7%, p = 0.192). When both Hb2 and ALC2 were low, the low high-dose-rate intracavitary brachytherapy ratio (≤0.43) subgroup displayed significantly lower 5-year disease-specific survival rate compared to the subgroup high high-dose-rate intracavitary brachytherapy ratio (>0.43) (62.5% vs 88.2%, p = 0.0067). Patients with both anemia and lymphopenia during concurrent chemoradiotherapy showed poor survival, independent of mid-squamous cell carcinoma antigen, and escalating high-dose-rate intracavitary brachytherapy ratio might improve survival.
NASA Astrophysics Data System (ADS)
Zhang, Guoqing; Lina, Liu
2018-02-01
An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.
NASA Technical Reports Server (NTRS)
Ryu, J. Y.; Wada, M.
1985-01-01
In order to examine the stability of neutron monitor observation, each of the monthly average counting rates of a neutron monitors is correlated to those of Kiel neutron monitor. The regression coefficients thus obtained are compared with the coupling coefficients of isotropic intensity radiation. The results of the comparisons for five year periods during 1963 to 1982, and for whole period are given. The variation spectrum with a single power law with an exponent of -0.75 up to 50 GV is not so unsatisfactory one. More than one half of the stations show correlations with the coefficient greater than 0.9. Some stations have shifted the level of mean counting rates by changing the instrumental characteristics which can be adjusted.