Sample records for counter-rotating vortex pair

  1. Organized motions in a jet in crossflow

    NASA Astrophysics Data System (ADS)

    Rivero, A.; Ferré, J. A.; Giralt, Francesc

    2001-10-01

    An experimental study to identify the structures present in a jet in crossflow has been carried out at a jet-to-crossflow velocity ratio U/Ucf = 3.8 and Reynolds number Re = UcfD/v = 6600. The hot-wire velocity data measured with a rake of eight X-wires at x/D = 5 and 15 and flow visualizations using planar laser-induced fluorescence (PLIF) confirm that the well-established pair of counter-rotating vortices is a feature of the mean field and that the upright, tornado-like or Fric's vortices that are shed to the leeward side of the jet are connected to the jet flow at the core. The counter-rotating vortex pair is strongly modulated by a coherent velocity field that, in fact, is as important as the mean velocity field. Three different structures folded vortex rings, horseshoe vortices and handle-type structures contribute to this coherent field. The new handle-like structures identified in the current study link the boundary layer vorticity with the counter-rotating vortex pair through the upright tornado-like vortices. They are responsible for the modulation and meandering of the counter-rotating vortex pair observed both in video recordings of visualizations and in the instantaneous velocity field. These results corroborate that the genesis of the dominant counter-rotating vortex pair strongly depends on the high pressure gradients that develop in the region near the jet exit, both inside and outside the nozzle.

  2. A counter-rotating vortex pair in inviscid fluid

    NASA Astrophysics Data System (ADS)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.

  3. Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations

    NASA Astrophysics Data System (ADS)

    Hmidi, Taoufik; Mateu, Joan

    2017-03-01

    In this paper, we study the existence of corotating and counter-rotating pairs of simply connected patches for Euler equations and the {(SQG)_{α}} equations with {α in (0,1)}. From the numerical experiments implemented for Euler equations in Deem and Zabusky (Phys Rev Lett 40(13):859-862, 1978), Pierrehumbert (J Fluid Mech 99:129-144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339-2342, 1980) it is conjectured the existence of a curve of steady vortex pairs passing through the point vortex pairs. There are some analytical proofs based on variational principle (Keady in J Aust Math Soc Ser B 26:487-502, 1985; Turkington in Nonlinear Anal Theory Methods Appl 9(4):351-369, 1985); however, they do not give enough information about the pairs, such as the uniqueness or the topological structure of each single vortex. We intend in this paper to give direct proofs confirming the numerical experiments and extend these results for the {(SQG)_{α}} equation when {α in (0,1)}. The proofs rely on the contour dynamics equations combined with a desingularization of the point vortex pairs and the application of the implicit function theorem.

  4. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  5. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  6. Estimates of the initial vortex separation distance, bo, of commercial aircraft from pulsed lidar data

    DOT National Transportation Integrated Search

    2013-01-07

    An aircraft in flight generates multiple wake vortices, the largest of which are a result of : the lift on the wings. These vortices rapidly roll up into a counter-rotating vortex pair : behind the aircraft. The initial separation between the centroi...

  7. Vortex coupling in trailing vortex-wing interactions

    NASA Astrophysics Data System (ADS)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  8. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  9. Effects of the computational domain on the secondary flow in turbulent plane Couette flow

    NASA Astrophysics Data System (ADS)

    Gai, Jie; Xia, Zhen-Hua; Cai, Qing-Dong

    2015-10-01

    A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000 (based on the relative wall speed and half the channel height h) with different streamwise and spanwise lengths are conducted to investigate the effects of the computational box sizes on the secondary flow (SF). Our focuses are the number of counter-rotating vortex pairs and its relationship to the statistics of the mean flow and the SF in the small and moderate computational box sizes. Our results show that the number of vortex pairs is sensitive to the computational box size, and so are the slope parameter, the rate of the turbulent kinetic energy contributed by the SF, and the ratio of the kinetic energy of the SF to the total kinetic energy. However, the averaged spanwise width of each counter-rotating vortex pair in the plane Couette flow is found, for the first time, within 4(1 ± 0.25)h despite the domain sizes. Project supported by the National Natural Science Foundation of China (Grant Nos. 11221061, 11272013, and 11302006).

  10. Phase-resolved and time-averaged puff motions of an excited stack-issued transverse jet

    NASA Astrophysics Data System (ADS)

    Hsu, C. M.; Huang, R. F.

    2013-07-01

    The dynamics of puff motions in an excited stack-issued transverse jet were studied experimentally in a wind tunnel. The temporal and spatial evolution processes of the puffs induced by acoustic excitation were examined using the smoke flow visualization method and high-speed particle image velocimetry. The temporal and spatial evolutions of the puffs were examined using phase-resolved ensemble-averaged velocity fields and the velocity, length scales, and vorticity characteristics of the puffs were studied. The time-averaged velocity fields were calculated to analyze the velocity distributions and vorticity contours. The results show that a puff consists of a pair of counter-rotating vortex rings. An initial vortex ring was formed due to a concentration of vorticity at the lee side of the issuing jet at the instant of the mid-oscillation cycle. A vortex ring rotating in the opposite direction to that of the initial vortex ring was subsequently formed at the upwind side of the issuing jet. These two counter-rotating vortex rings formed a "mushroom" vortex pair, which was deflected by the crossflow and traveled downstream along a time-averaged trajectory of zero vorticity. The trajectory was situated far above the time-averaged streamline evolving from the leading edge of the tube. The velocity magnitudes of the vortex rings at the upwind and the lee side decreased with time evolution as the puffs traveled downstream due to momentum dissipation and entrainment effects. The puffs traveling along the trajectory of zero vorticity caused large velocities to appear above the leading-edge streamline.

  11. Formation and behavior of counter-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Sadri, V.; Krueger, P. S.

    2017-08-01

    Concentric, counter-rotating vortex ring formation by transient jet ejection between concentric cylinders was studied numerically to determine the effects of cylinder gap ratio, Δ R/R, and jet stroke length-to-gap ratio, L/Δ R, on the evolution of the vorticity and the trajectories of the resulting axisymmetric vortex pair. The flow was simulated at a jet Reynolds number of 1000 (based on Δ R and the jet velocity), L/Δ R in the range 1-20, and Δ R/R in the range 0.05-0.25. Five characteristic flow evolution patterns were observed and classified based on L/Δ R and Δ R/R. The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied, and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence on the initial vortex configuration and effected the long-time flow evolution at low L/Δ R and small Δ R/R. For long L/Δ R and small Δ R/R, shedding of vorticity was sometimes observed and this shedding was related to the Kelvin-Benjamin variational principle of maximal energy for steadily translating vortex rings.

  12. Direct measurement of initial wake separation (bo) and initial circulation (ro) using pulsed lidars

    DOT National Transportation Integrated Search

    2013-06-17

    The initial separation distance (bo) between a counter-rotating vortex pair generated by an aircraft is a fundamental parameter affecting wake turbulence decay. For the past decade Pulsed Doppler Lidars have emerged as the primary remote sensors for ...

  13. Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs

    DOEpatents

    Ortega, Jason M.; Sabari, Kambiz

    2005-12-27

    An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

  14. Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2005-08-09

    An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

  15. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves

    NASA Astrophysics Data System (ADS)

    Si, T.; Zhai, Z.; Luo, X.; Yang, J.

    2014-01-01

    The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.

  16. Transient interaction between a reaction control jet and a hypersonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan

    2018-04-01

    This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.

  17. Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow

    DOE PAGES

    Bernard, Tennille; Truman, C. Randall; Vorobieff, Peter; ...

    2014-09-10

    Richtmyer–Meshkov instability (RMI) has long been the subject of interest for analytical, numerical, and experimental studies. In comparing results of experiment with numerics, it is important to understand the limitations of experimental techniques inherent in the chosen method(s) of data acquisition. We discuss results of an experiment where a laminar, gravity-driven column of heavy gas is injected into surrounding light gas and accelerated by a planar shock. A popular and well-studied method of flow visualization (using glycol droplet tracers) does not produce a flow pattern that matches the numerical model of the same conditions, while revealing the primary feature ofmore » the flow developing after shock acceleration: the pair of counter-rotating vortex columns. However, visualization using fluorescent gaseous tracer confirms the presence of features suggested by the numerics; in particular, a central spike formed due to shock focusing in the heavy-gas column. Furthermore, the streamwise growth rate of the spike appears to exhibit the same scaling with Mach number as that of the counter-rotating vortex pair (CRVP).« less

  18. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  19. Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Evans, P. F.; Hackett, J. E.

    1976-01-01

    Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.

  20. Modeling Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  1. Dynamics and Instabilities of Vortex Pairs

    NASA Astrophysics Data System (ADS)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  2. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.

  3. Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator

    NASA Technical Reports Server (NTRS)

    Wendt, B. J.; Hingst, W. R.

    1994-01-01

    The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.

  4. Numerical simulation of turbulent flow affected by vortex generators in straight channel

    NASA Astrophysics Data System (ADS)

    Souckova, Natalie; Simurda, David; Uruba, Vaclav

    2012-04-01

    The presented work is the next step after several experimental examinations of the vortex generator (VG) influence on flow separation occurring on a model of the NACA 63A421 airfoil with a deflected simple flap. The other purpose of this simulation is to obtain beneficial information that can be utilized for the preparation of the experimental investigation of the same configuration using Particle image Velocimetry method (PIV) in the future. The numerical simulation was performed for one single pair and two pairs of low-profile VGs of the same size, whose heights were smaller than the boundary layer thickness. The rectangular vane type VGs in such configuration, which generates counter-rotating vortices, was examined. The behaviour of vortices produced by VG pair or pairs in several positions downstream the VGs is investigated and will be used as a background of the measurement.

  5. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NASA Astrophysics Data System (ADS)

    Baldacchino, D.; Ferreira, C.; Ragni, D.; van Bussel, G. J. W.

    2016-09-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the infinite vortex cascade, a numerical model of four base-vortices is chosen to represent two primary counter-rotating vortex pairs and their mirror plane images, introducing the vortex strength ratio as a free parameter. The resulting system of equations is also defined in terms of the vortex row separation and the qualitative features of the ensuing motion are mapped. A translating and orbiting regime are identified for different cascade separations. The latter occurs for all unequal strength vortex pairs. Thus, the motion is further classified by studying the cyclic behaviour of the orbiting regime and it is shown that for small mismatches in vortex strength, the orbiting length and time scales are sufficiently large as to appear, in the near wake, as translational (non-orbiting). However, for larger mismatches in vortex strength, the orbiting motion approaches the order of the starting height of the vortex. Comparisons between experimental data and the potential flow model show qualitative agreement whilst viscous effects account for the major discrepancies. Despite this, the model captures the orbital mode observed in the measurements and provides an impetus for considering the impact of these complex interactions on vortex generator designs.

  6. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    NASA Astrophysics Data System (ADS)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  7. Deflection and trapping of a counter-rotating vortex pair by a flat plate

    NASA Astrophysics Data System (ADS)

    Nitsche, Monika

    2017-12-01

    The interaction of a counter-rotating vortex pair (dipole) with a flat plate in its path is studied numerically. The vortices are initially separated by a distance D (dipole size) and placed far upstream of a plate of length L . The plate is centered on the dipole path and inclined relative to it at an incident angle βi. At first, the plate is held fixed in place. The vortices approach the plate, travel around it, and then leave as a dipole with unchanged velocity but generally a different travel direction, measured by a transmitted angle βt. For certain plate angles the transmitted angle is highly sensitive to changes in the incident angle. The sensitivity increases as the dipole size decreases relative to the plate length. In fact, for sufficiently small values of D /L , singularities appear: near critical values of βi, the dipole trajectory undergoes a topological discontinuity under changes of βi or D /L . The discontinuity is characterized by a jump in the winding number of one vortex around the plate, and in the time that the vortices take to leave the plate. The jumps occur repeatedly in a self-similar, fractal fashion, within a region near the critical values of βi, showing the existence of incident angles that trap the vortices, which never leave the plate. The number of these trapping regions increases as the parameter D /L decreases, and the dependence of the motion on βi becomes increasingly complex. The simulations thus show that even in this apparently simple scenario, the inviscid dynamics of a two-point-vortex system interacting with a stationary wall is surprisingly rich. The results are then applied to separate an incoming stream of dipoles by an oscillating plate.

  8. Direct Numerical Simulation of a Coolant Jet in a Periodic Crossflow

    NASA Technical Reports Server (NTRS)

    Sharma, Chirdeep; Acharya, Sumanta

    1998-01-01

    A Direct Numerical Simulation of a coolant jet injected normally into a periodic crossflow is presented. The physical situation simulated represents a periodic module in a coolant hole array with a heated crossflow. A collocated finite difference scheme is used which is fifth-order accurate spatially and second-order accurate temporally. The scheme is based on a fractional step approach and requires the solution of a pressure-Poisson equation. The simulations are obtained for a blowing ratio of 0.25 and a channel Reynolds number of 5600. The simulations reveal the dynamics of several large scale structures including the Counter-rotating Vortex Pair (CVP), the horse-shoe vortex, the shear layer vortex, the wall vortex and the wake vortex. The origins and the interactions of these vortical structures are identified and explored. Also presented are the turbulence statistics and how they relate to the flow structures.

  9. Flow measurement behind a pair of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  10. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    NASA Astrophysics Data System (ADS)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the model results with experiments conducted in a owing soap film with an airfoil, which was imparted with forced oscillations, are satisfactory and validate the reduced order modeling framework. The experiments have been performed by a collaborator group at the Department of Physics and Fluid Dynamics at the Technical University of Denmark (DTU), led by Dr. Anders Andersen. Similar experiments have also been run at Virginia Tech as part of this dissertation and the preliminary results are included in this treatise. The thesis also employs the same dynamical systems techniques, which have been applied to study the 2P regime dynamics, to develop a mathematical model for the P+S mode vortex wakes, with three vortices present in each shedding cycle. The model results have also been compared favorably with an experiment and the predictions regarding the vortex circulation data match well with the previous results from literature. Finally, the thesis introduces a novel concept of clean and renewable energy extraction from vortex-induced vibrations of bluff bodies. The slow-moving currents in the off-shore marine environments and riverine flows are beyond the operational capabilities of the more established hydrokinetic energy converters and the discussed technology promises to be a significant tool to generate useful power from these copiously available but previously untapped sources.

  11. Design and evaluation of a Dean vortex-based micromixer.

    PubMed

    Howell, Peter B; Mott, David R; Golden, Joel P; Ligler, Frances S

    2004-12-01

    A mixer, based on the Dean vortex, is fabricated and tested in an on-chip format. When fluid is directed around a curve under pressure driven flow, the high velocity streams in the center of the channel experience a greater centripetal force and so are deflected outward. This creates a pair of counter-rotating vortices moving fluid toward the inner wall at the top and bottom of the channel and toward the outer wall in the center. For the geometries studied, the vortices were first seen at Reynolds numbers between 1 and 10 and became stronger as the flow velocity is increased. Vortex formation was monitored in channels with depth/width ratios of 0.5, 1.0, and 2.0. The lowest aspect ratio strongly suppressed vortex formation. Increasing the aspect ratio above 1 appeared to provide improved mixing. This design has the advantages of easy fabrication and low surface area.

  12. Manipulation of upstream rotor leading edge vortex and its effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Squires, Becky

    1993-01-01

    The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.

  13. Unsteady wake of a rotating tire

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Moxey, Dave; Xu, Hui; Sherwin, Spencer; Sherwin Lab Team

    2015-11-01

    For open wheel race-cars, such as IndyCar and Formula One, the wheels are responsible for 40% of the total drag. For road cars drag associated to the wheels and under-carriage can represent 60% of total drag at highway cruise speeds. Experimental observations have reported two or three pairs of counter rotating vortices, the relative importance of which still remains an open question, that interact to form a complex wake. Traditional RANS based methods are typically not well equipped to deal with such highly unsteady flows which motivates research into more physical, unsteady models. Leveraging a high-fidelity spectral/hp element based method a Large Eddy Simulation is performed to give further insight into unsteady characteristics of the wake. In particular the unsteady nature of both the jetting and top vortex pair is reported as well as the time and length scales associated with the vortex core trajectories. Correlation with experimentally obtained particle image velocimetry is presented. The authors acknowledge support from the United Kingdom Turbulence Consortium (UKTC) as well as from the Engineering and Physical Sciences Research Council (EPSRC) for access to ARCHER UK National Supercomputing Service.

  14. Forward rotor vortex effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Laur, Michele; Squires, Becky; Nagel, Robert T.

    1992-01-01

    Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.

  15. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1991-01-01

    An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.

  16. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  17. Computational analysis of vertical axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  18. Experiments on tip vortices interacting with downstream wings

    NASA Astrophysics Data System (ADS)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-05-01

    The interaction of meandering tip vortices shed from a leading wing with a downstream wing was investigated experimentally in a water tunnel using flow visualization, particle image velocimetry measurements, and volumetric velocity measurements. Counter-rotating upstream vortices may exhibit sudden variations of the vortex core location when the wing-tip separation is within approximately twice the vortex core radius. This is caused by the formation of vortex dipoles near the wing tip. In contrast, co-rotating upstream vortices do not exhibit such sensitivity. Large spanwise displacement of the trajectory due to the image vortex is possible when the incident vortex is further inboard. For both co-rotating and counter-rotating vortices, as long as there is no direct impingement upon the wing, there is a little change in the structure of the time-averaged vortex past the wing, even though the tip vortex shed from the downstream wing may be substantially weakened or strengthened. In the absence of the downstream wing, as well as for weak interactions, the most energetic unsteady modes represent the first helical mode | m| = 1, which is estimated from the three-dimensional Proper Orthogonal Decomposition modes and has a very large wavelength, on the order of 102 times the vortex core radius, λ/ a = O(102). Instantaneous vorticity measurements as well as flow visualization suggest the existence of a smaller wavelength, λ/ a = 5-6, which is not among the most energetic modes. These two-orders of magnitude different wavelengths are in agreement with the previous measurements of tip vortices and also exhibit qualitative agreement with the transient energy growth analysis. The very long wavelength mode in the upstream vortex may persist during the interaction, and reveal coupling with the trailing vortex as well as increased meandering.

  19. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Technical Reports Server (NTRS)

    Culver, E. M.; Mccolgan, C. J.

    1993-01-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  20. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Astrophysics Data System (ADS)

    Culver, E. M.; McColgan, C. J.

    1993-04-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  1. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, JiaCheng; Peterson, Sean D., E-mail: peterson@mme.uwaterloo.ca; Porfiri, Maurizio

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensionsmore » with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.« less

  2. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim

    2016-05-01

    We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.

  3. Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe

    NASA Astrophysics Data System (ADS)

    Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff

    2017-06-01

    We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.

  4. Effect of chemical heat release in a temporally evolving mixing layer

    NASA Technical Reports Server (NTRS)

    Higuera, F. J.; Moser, R. D.

    1994-01-01

    Two-dimensional numerical simulations of a temporally evolving mixing layer with an exothermic infinitely fast diffusion flame between two unmixed reactants have been carried out in the limit of zero Mach number to study the effect of the heat release on the early stages of the evolution of the flow. Attention has been directed to relatively large values of the oxidizer-to-fuel mass stoichiometric ratio typical of hydrocarbon flames, and initial vorticity distributions thicker than the temperature and species distributions have been chosen to mimic the situation at the outlet of a jet. The results show that, during the stages of the evolution covered by the present simulations, enhancement of combustion occurs by local stretching of the flame without much augmentation of its area. The rate of product generation depends strongly on the initial conditions, which suggests the possibility of controlling the combustion by acting on the flow. Rollup and vortex amalgamation still occur in these reacting flows but are very much affected by the production of new vorticity by baroclinic torques. These torques lead to counter rotating vortex pairs around the flame and, more importantly, in thin layers of light fluid that leave the vicinity of the flame when the Kelvin-Helmholtz instability begins to develop. Propelled by the vortex pairs, these layers wind around, split on reaching high pressure regions, and originate new vortex pairs in a process that ends up building large-scale vortices with a vorticity distribution more complex than for a constant density fluid.

  5. Effect of Rotational Speed on the Stability of Two Rotating Side-by-side Circular Cylinders at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Dou, Huashu; Zhang, Shuo; Yang, Hui; Setoguchi, Toshiaki; Kinoue, Yoichi

    2018-04-01

    Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Reynolds number 40≤ Re ≤200 and various rotation rate θ i . The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re increases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θ i < θ crit . It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.

  6. Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaolei; Hong, Jiarong; Barone, Matthew

    Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less

  7. Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines

    DOE PAGES

    Yang, Xiaolei; Hong, Jiarong; Barone, Matthew; ...

    2016-09-08

    Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less

  8. Fluid Structure Interaction Analysis on Sidewall Aneurysm Models

    NASA Astrophysics Data System (ADS)

    Hao, Qing

    2016-11-01

    Wall shear stress is considered as an important factor for cerebral aneurysm growth and rupture. The objective of present study is to evaluate wall shear stress in aneurysm sac and neck by a fluid-structure-interaction (FSI) model, which was developed and validated against the particle image velocimetry (PIV) data. In this FSI model, the flow characteristics in a straight tube with different asymmetric aneurysm sizes over a range of Reynolds numbers from 200 to 1600 were investigated. The FSI results agreed well with PIV data. It was found that at steady flow conditions, when Reynolds number above 700, one large recirculating vortex would be formed, occupying the entire aneurysm sac. The center of the vortex is located at region near to the distal neck. A pair of counter rotating vortices would however be formed at Reynolds number below 700. Wall shear stresses reached highest level at the distal neck of the aneurysmal sac. The vortex strength, in general, is stronger at higher Reynolds number. Fluid Structure Interaction Analysis on Sidewall Aneurysm Models.

  9. An Evaluation of the Measurement Requirements for an In-Situ Wake Vortex Detection System

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.; Stewart, Eric C.

    1996-01-01

    Results of a numerical simulation are presented to determine the feasibility of estimating the location and strength of a wake vortex from imperfect in-situ measurements. These estimates could be used to provide information to a pilot on how to avoid a hazardous wake vortex encounter. An iterative algorithm based on the method of secants was used to solve the four simultaneous equations describing the two-dimensional flow field around a pair of parallel counter-rotating vortices of equal and constant strength. The flow field information used by the algorithm could be derived from measurements from flow angle sensors mounted on the wing-tip of the detecting aircraft and an inertial navigation system. The study determined the propagated errors in the estimated location and strength of the vortex which resulted from random errors added to theoretically perfect measurements. The results are summarized in a series of charts and a table which make it possible to estimate these propagated errors for many practical situations. The situations include several generator-detector airplane combinations, different distances between the vortex and the detector airplane, as well as different levels of total measurement error.

  10. Some design philosophy for reducing the community noise of advanced counter-rotation propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Advanced counter-rotation propellers have been indicated as possibly generating an unacceptable amount of noise for the people living near an airport. This report has explored ways to reduce this noise level, which is treated as being caused by the interaction of the upstream propeller wakes and vortices with the downstream propeller. The noise reduction techniques fall into two categories: (1) reducing the strength of the wakes and vortices, and (2) reducing the response of the downstream blades to them. The noise from the wake interaction was indicated as being reduced by increased propeller spacing and decreased blade drag coefficient. The vortex-interaction noise could be eliminated by having the vortex pass over the tips of the downstream blade, and it could be reduced by increased spacing or decreased initial circulation. The downstream blade response could be lessened by increasing the reduced frequency parameter omega or by phasing of the response from different sections to have a mutual cancellation effect. Uneven blade to blade spacing for the downstream blading was indicated as having a possible effect on the annoyance of counter-rotation propeller noise. Although there are undoubtedly additional methods of noise reduction not covered in this report, the inclusion of the design methods discussed would potentially result in a counter-rotation propeller that is acceptably quiet.

  11. An Investigation of Candidate Sensor-Observable Wake Vortex Strength Parameters for the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Tatnall, Chistopher R.

    1998-01-01

    The counter-rotating pair of wake vortices shed by flying aircraft can pose a threat to ensuing aircraft, particularly on landing approach. To allow adequate time for the vortices to disperse/decay, landing aircraft are required to maintain certain fixed separation distances. The Aircraft Vortex Spacing System (AVOSS), under development at NASA, is designed to prescribe safe aircraft landing approach separation distances appropriate to the ambient weather conditions. A key component of the AVOSS is a ground sensor, to ensure, safety by making wake observations to verify predicted behavior. This task requires knowledge of a flowfield strength metric which gauges the severity of disturbance an encountering aircraft could potentially experience. Several proposed strength metric concepts are defined and evaluated for various combinations of metric parameters and sensor line-of-sight elevation angles. Representative populations of generating and following aircraft types are selected, and their associated wake flowfields are modeled using various wake geometry definitions. Strength metric candidates are then rated and compared based on the correspondence of their computed values to associated aircraft response values, using basic statistical analyses.

  12. Investigation of compressible vortex flow characteristics

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1977-01-01

    The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.

  13. Wing Wake Vortices and Temporal Vortex Pair Instabilities

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.; Leweke, T.; Miller, G. D.

    In this presentation we include selected results which have originated from vortex dynamics studies conducted at Cornell, in collaboration with IRPHE, Marseille. These studies concern, in particular, the spatial development of delta wing trailing vortices, and the temporal development of counter-rotating vortex pairs. There are, as might be expected, similarities in the instabilities of both of these basic flows, as shown in our laboratory-scale studies. In the case of the spatial development of vortex pairs in the wake of a delta wing, either in free flight or towed from an XY carriage system in a towing tank, we have found three distinct instability length scales as the trailing vortex pair travels downstream. The first (smallest-scale) instability is found immediately behind the delta wing, and this scales on the thickness of the two shear layers separating from the wing trailing edge. The second (short-wave) instability, at an intermediate distance downstream, scales on the primary vortex core dimensions. The third (long-wave) instability far downstream represents the classical "Crow" instability (Crow, 1970), scaling on the distance between the two primary vortices. By imposing disturbances on the delta wing incident velocity, we find that the long-wave instability is receptive to a range of wavelengths. Our experimental measurements of instability growth rates are compared with theoretical predictions, which are based on the theory of Widnall et al. (1971), and which require, as input, DPIV measurements of axial and circumferential velocity profiles. This represents the first time that theoretical and experimental growth rates have been compared, without the imposition of ad-hoc assumptions regarding the vorticity distribution. The agreement with theory appears to be good. The ease with which a Delta wing may be flown in free flight was demonstrated at the Symposium, using a giant polystyrene triangular wing, launched from the back of the auditorium, and ably caught by Professor Sid Leibovich, in whose honour the Symposium was held. In the case of the temporal growth of vortex pairs, formed by the closing of a pair of long flaps underwater, we find two principal instabilities; namely, a longwavelength Crow instability, and a short-wavelength "elliptic" instability. Comparisons between experiment and theory for the growth rates of the long-wave instability, over a range of perturbed wavelengths, appears to be very good. The vortex pair "pinches off", or reconnects, to form vortex rings in the manner assumed to occur in contrails behind jet aircraft. We discover a symmetry-breaking phase relationship for the short wave disturbances growing in the two vortices, which we 380 C.H.K. Williamson et al. show to be consistent with a kinematic matching condition between the two disturbances. Further results demonstrate that this instability is a manifestation of an elliptic instability, which is here identified for the first time in a real open flow. We therefore refer to this flow as a "cooperative elliptic" instability. The long-term evolution of the flow involves the inception of secondary miniscule vortex pairs, which are perpendicular to the primary vortex pair.

  14. Identification of complex flows in Taylor-Couette counter-rotating cavities

    NASA Technical Reports Server (NTRS)

    Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.

    2001-01-01

    The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

  15. Interlayer-coupled spin vortex pairs and their response to external magnetic fields

    NASA Astrophysics Data System (ADS)

    Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen

    2012-06-01

    We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.

  16. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  17. Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets

    NASA Astrophysics Data System (ADS)

    Baydar, Ezgihan

    Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although traditional VGs energize the flow with stronger vortex structures compared to micro-VGs, the AIP is affected with overwhelming amounts of reduced and enhanced flow regions. In summary, vanes are exceptional in reducing radial distortion and improving the health of the boundary layer compared to the ramps. In the study of the STEX inlet, vane-type vortex generators were the preferred devices for boundary layer flow control. In the supersonic diffuser, co-rotating vane arrays and counter-rotating vane arrays did not show improvement. In the subsonic diffuser, co-rotating vane arrays with negative angles-of-incidence and counter-rotating vane arrays were exceptional in reducing radial distortion and improving total pressure recovery. Downstream co-rotating vanes demonstrated up to 41% improvement in radial distortion whereas downstream counter-rotating vanes demonstrated up to 73% improvement. For downstream counter-rotating vanes, a polynomial trend between VG height and radial distortion indicate that increasing VG height improves inlet distortion. In summary, downstream vanes are exceptional in improving total pressure recovery compared to upstream vanes.

  18. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less

  19. Vortex forcing model for turbulent flow over spanwise-heterogeneous topogrpahies: scaling arguments and similarity solution

    NASA Astrophysics Data System (ADS)

    Anderson, William; Yang, Jianzhi

    2017-11-01

    Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.

  20. Shedding of dual structures in the wake of a surface-mounted low aspect ratio cone

    NASA Astrophysics Data System (ADS)

    Chen, Zixiang; Martinuzzi, Robert J.

    2018-04-01

    The periodic shedding of vortex pairs in the turbulent wake of a surface-mounted right cone of aspect ratio 0.867 protruding a thin turbulent boundary layer is investigated experimentally. A phase-averaged volumetric velocity field is reconstructed from planar stereoscopic particle image velocimetry. During a typical (phase-averaged) shedding cycle, counter-rotating base vortices alternately form. These are tilted and stretched to merge with stream-wise tip vortices. The merged structure sheds and is convected downstream. A synthesis of earlier observations suggests that a similar shedding process exists for other low aspect ratio tapered geometries and is more complex than the shedding patterns observed for cantilevered cylinders, despite similarities of the mean flow field structure.

  1. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOEpatents

    Sohal, Manohar S.; O'Brien, James E.

    2005-12-20

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  2. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOEpatents

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  3. Counter-rotating type tidal stream power unit boarded on pillar (performances and flow conditions of tandem propellers)

    NASA Astrophysics Data System (ADS)

    Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju

    2013-12-01

    The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.

  4. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  5. On vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics

    NASA Astrophysics Data System (ADS)

    Roger, Michel; Schram, Christophe; Moreau, Stéphane

    2014-01-01

    A linear analytical model is developed for the chopping of a cylindrical vortex by a flat-plate airfoil, with or without a span-end effect. The major interest is the contribution of the tip-vortex produced by an upstream rotating blade in the rotor-rotor interaction noise mechanism of counter-rotating open rotors. Therefore the interaction is primarily addressed in an annular strip of limited spanwise extent bounding the impinged blade segment, and the unwrapped strip is described in Cartesian coordinates. The study also addresses the interaction of a propeller wake with a downstream wing or empennage. Cylindrical vortices are considered, for which the velocity field is expanded in two-dimensional gusts in the reference frame of the airfoil. For each gust the response of the airfoil is derived, first ignoring the effect of the span end, assimilating the airfoil to a rigid flat plate, with or without sweep. The corresponding unsteady lift acts as a distribution of acoustic dipoles, and the radiated sound is obtained from a radiation integral over the actual extent of the airfoil. In the case of tip-vortex interaction noise in CRORs the acoustic signature is determined for vortex trajectories passing beyond, exactly at and below the tip radius of the impinged blade segment, in a reference frame attached to the segment. In a second step the same problem is readdressed accounting for the effect of span end on the aerodynamic response of a blade tip. This is achieved through a composite two-directional Schwarzschild's technique. The modifications of the distributed unsteady lift and of the radiated sound are discussed. The chained source and radiation models provide physical insight into the mechanism of vortex chopping by a blade tip in free field. They allow assessing the acoustic benefit of clipping the rear rotor in a counter-rotating open-rotor architecture.

  6. Magnetic Shocks and Substructures Excited by Torsional Alfvén Wave Interactions in Merging Expanding Flux Tubes

    NASA Astrophysics Data System (ADS)

    Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.

    2018-04-01

    Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.

  7. Advection within side-by-side liquid micro-cylinders in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices, the saturation becomes delayed. In addition, for decreased vertical spacing of micro-cylinders (R = 40 μm) falling below the diameter-length "2R," the SO2 absorption (mso2 ') only gets slower. We provide extensive analysis of two-phase transport phenomena in terms of interactive shear-stress, pressure, and characteristic time-ratio "Tr" of advection-diffusion processes, for varied G/R, Re, and liquid phase Peclet number "Pel" (96 ≤ Pel ≤ 1333), to present a better insight into the governing physics.

  8. Vortex dynamics in the near-wake of tabs with various geometries using 2D and 3D PIV

    NASA Astrophysics Data System (ADS)

    Pagan-Vazquez, Axy; Khovalyg, Dolaana; Marsh, Charles; Hamed, Ali M.; Chamorro, Leonardo P.

    2016-11-01

    The vortex dynamics and turbulence statistics in the near-wake of rectangular, trapezoidal, triangular, and ellipsoidal tabs were studied in a refractive-index-matching channel at Re = 2000 and 13000, based on the tab height. The tabs share the same bulk dimensions including a 17 mm height, a 28 mm base width, and a 24.5o angle. 3D PIV was used to study the mean flow and dominant large-scale vortices, while high-spatial resolution planar PIV was used to quantify high-order statistics. The results show the coexistence of counter-rotating vortex pair (CVP) and hairpin structures. These vortices exhibit distinctive topology and strength across Re and tab geometry. The CVP is a steady structure that grows in strength over a significantly longer distance at the low Re due to the lower turbulence levels and the delayed shedding of the hairpin vortices. These features at the low Re are associated with the presence of K-H instability that develops over three tab heights. The interaction between the hairpins and CVP is measured in 3D for the first time and shows complex coexistence. Although the CVP suffers deformation and splitting at times, it maintains its presence and leads to significant spanwise and wall-normal flows.

  9. Secondary Vortex Structures in Vortex Generator Induced Flow

    NASA Astrophysics Data System (ADS)

    Velte, Clara; Okulov, Valery; Hansen, Martin

    2010-11-01

    Passive rectangular vane actuators can induce a longitudinal vortex that redistributes the momentum in the boundary layer to control the flow. Recent experiments [1] as well as previous studies [2] have shown that a secondary vortex of opposite sign is generated along with the primary one, supposedly from local separation of the boundary layer due to the primary vortex. 2D flow visualizations of a vortex in the vicinity of a boundary support this hypothesis [3]. These secondary vortices are studied for various configurations -- single generator, counter- and co-rotating cascades. The objective is to study their removal through cancelation in cascades using Stereoscopic Particle Image Velocimetry and flow visualization.[4pt] [1] Velte, Hansen and Okulov, J. Fluid Mech. 619, 2009.[0pt] [2] Zhang, Int. J. Heat Fluid Flow 21 2000.[0pt] [3] Harris, Miller and Williamson, APS abstract 2009.

  10. An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2005-01-01

    An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

  11. Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.

    PubMed

    Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore

    2018-05-01

    We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

  12. Numeric and fluid dynamic representation of tornadic double vortex thunderstorms

    NASA Technical Reports Server (NTRS)

    Connell, J. R.; Marquart, E. J.; Frost, W.; Boaz, W.

    1980-01-01

    Current understanding of a double vortex thunderstorm involves a pair of contra-rotating vortices that exists in the dynamic updraft. The pair is believed to be a result of a blocking effect which occurs when a cylindrical thermal updraft of a thunderstorm protrudes into the upper level air and there is a large amount of vertical wind shear between the low level and upper level air layers. A numerical tornado prediction scheme based on the double vortex thunderstorm was developed. The Energy-Shear Index (ESI) is part of the scheme and is calculated from radiosonde measurements. The ESI incorporates parameters representative of thermal instability and blocking effect, and indicates appropriate environments for which the development of double vortex thunderstorms is likely.

  13. Computation of the turbulent boundary layer downstream of vortex generators

    NASA Astrophysics Data System (ADS)

    Chang, Paul K.

    1987-12-01

    The approximate analysis of three-dimensional incompressible turbulent boundary layer downstream of vortex generators is presented. Extensive numerical computations are carried out to assess the effectiveness of single-row, counter-rotating vane-type vortex generators to alleviate flow separation lines. Flow separation downstream of the vortex generators on a thick airfoil are determined in terms of size, location, and arrangement of the vortex generators. These lines are compared with the separation line without the vortex generators. High efficiency is obtained with the moderately slender rectangular blade of the generator. The results indicate that separations is alleviated more effectively in the region closer to the symmetry axis of the generator than in the outer region of the symmetry axis. No optimum conditions for the alleviation of flow separation are established in this investigation, and no comparisons are made with other analytical results and experimental data.

  14. Spanwise Spacing Effects on the Initial Structure and Decay of Axial Vortices

    NASA Technical Reports Server (NTRS)

    Wendt, B. J.; Reichert, B. A.

    1996-01-01

    The initial structure and axial decay of an array of streamwise vortices embedded in a turbulent pipe boundary layer is experimentally investigated. The vortices are shed in counter-rotating fashion from an array of equally-spaced symmetric airfoil vortex generators. Vortex structure is quantified in terms of crossplane circulation and peak streamwise vorticity. Flow conditions are subsonic and incompressible. The focus of this study is on the effect of the initial spacing between the parent vortex generators. Arrays with vortex generators spaced at 15 and 30 degrees apart are considered. When the spacing between vortex generators is decreased the circulation and peak vorticity of the shed vortices increases. Analysis indicates this strengthening results from regions of fluid acceleration in the vicinity of the vortex generator array. Decreased spacing between the constituent vortices also produces increased rates of circulation and peak vorticity decay.

  15. Enhancing the hydrodynamic performance of a tapered swept-back wing through leading-edge tubercles

    NASA Astrophysics Data System (ADS)

    Wei, Zhaoyu; Lian, Lian; Zhong, Yisen

    2018-06-01

    The hydrodynamic benefit of implementing leading-edge (LE) tubercles on wings at very low Reynolds numbers ( Res) has not been thoroughly elucidated to date, though their benefits at relatively higher Res are well-studied. Through wind tunnel testing at Re = 5.5 × 104, we found that the LE tubercles increase the lift at all pitch angles tested and slightly reduce the drag at a pitch angle of 4° < α < 10°, which finally results in a significant hydrodynamic performance enhancement at lower pitch angles. Flow visualization reveals that the hydrodynamic performance enhancement is due to the favourable attached flows downstream of the tubercle peaks. The attached flows are believed to be closely related to the downwash and momentum exchange within the boundary layers, which originate from surface and streamwise-aligned counter-rotating vortex pairs (CVPs).

  16. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions

    NASA Astrophysics Data System (ADS)

    Woodward, Richard P.

    1992-08-01

    This paper presents acoustic results for two model counter-rotation propellers which were tested in the NASA Lewis 9- x 15-ft Anechoic Wind Tunnel. The propellers had a common forward rotor, but the diameter of the aft rotor of the second propeller was reduced in an effort to reduce its interaction with the forward rotor tip vortex. The propellers were tested at Mach 0.20, which is representative of takeoff/approach operation. Acoustic results are presented for these propellers which show the effect of rotor spacing, reduced aft rotor diameter, operation at angle-of-attack, blade loading, and blade number. Limited aerodynamic results are also presented to establish the propeller operating conditions.

  17. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1992-01-01

    This paper presents acoustic results for two model counter-rotation propellers which were tested in the NASA Lewis 9- x 15-ft Anechoic Wind Tunnel. The propellers had a common forward rotor, but the diameter of the aft rotor of the second propeller was reduced in an effort to reduce its interaction with the forward rotor tip vortex. The propellers were tested at Mach 0.20, which is representative of takeoff/approach operation. Acoustic results are presented for these propellers which show the effect of rotor spacing, reduced aft rotor diameter, operation at angle-of-attack, blade loading, and blade number. Limited aerodynamic results are also presented to establish the propeller operating conditions.

  18. A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Rhodes, D. B.

    1980-01-01

    A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

  19. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  20. The rollup of a vortex layer near a wall

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Orlandi, Paolo

    1993-01-01

    The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.

  1. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    NASA Astrophysics Data System (ADS)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  2. Separation control in a hypersonic shock wave / turbulent boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier

    2016-11-01

    Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.

  3. Pruning apparatus and method

    DOEpatents

    Dellinger, R.D.

    1997-12-09

    The present invention is an automated pruning apparatus that requires little or no follow-up hand pruning and requires no sensors to avoid supportive trunks or posts. The present invention uses at least one pair of flat, close angled toothed, counter rotating blades. Woody branches are directed to the counter rotating blades first with a lifting arm and secondly by a quilled drum. 16 figs.

  4. Electro-hydrodynamic propulsion of counter-rotating Pickering drops

    NASA Astrophysics Data System (ADS)

    Dommersnes, P.; Mikkelsen, A.; Fossum, J. O.

    2016-07-01

    Insulating particles or drops suspended in carrier liquids may start to rotate with a constant frequency when subjected to a uniform DC electric field. This is known as the Quincke rotation electro-hydrodynamic instability. A single isolated rotating particle exhibit no translational motion at low Reynolds number, however interacting rotating particles may move relative to one another. Here we present a simple system consisting of two interacting and deformable Quincke rotating particle covered drops, i.e. deformable Pickering drops. The drops attract one another and spontaneously form a counter-rotating pair that exhibits electro-hydrodynamic driven propulsion at low Reynolds number flow.

  5. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C.J.

    1981-09-23

    The quadrature phase angle phi (t) of a pair of quadrature signals S/sub 1/(t) and S/sub 2/(t) is digitally encoded on a real time basis by a quadrature digitizer for fractional phi (t) rotational excursions and by a quadrature up/down counter for full phi (t) rotations. The pair of quadrature signals are of the form S/sub 1/(t) = k(t) sin phi (t) and S/sub 2/(t) = k(t) cos phi (t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle phi (t).

  6. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C. Jerald

    1984-01-01

    The quadrature phase angle .phi.(t) of a pair of quadrature signals S.sub.1 (t) and S.sub.2 (t) is digitally encoded on a real time basis by a quadrature digitizer for fractional .phi.(t) rotational excursions and by a quadrature up/down counter for full .phi.(t) rotations. The pair of quadrature signals are of the form S.sub.1 (t)=k(t) sin .phi.(t) and S.sub.2 (t)=k(t) cos .phi.(t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle .phi.(t).

  7. Role of vortices in cavitation formation in the flow across a mechanical heart valve.

    PubMed

    Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H

    2008-07-01

    Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous dissipation, with a less significant contribution from the occluder rebound effect. The maximum pressure drop was on the order of magnitude of 40 mmHg. Detailed PIV measurements and quantitative analysis of the BSM mechanical heart valve revealed large-scale vortex formation immediately after valve closure. Of note, the vortices were typical of a Rankine vortex and the maximum pressure change at the vortex center was only 40 mmHg. These data support the conclusion that vortex formation alone cannot generate the magnitude of pressure drop required for cavitation bubble formation.

  8. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems.

    PubMed

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-12-27

    A new design of universal high-speed counter-current chromatograph (HSCCC) was fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Decay of the supersonic turbulent wakes from micro-ramps

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.

    2014-02-01

    The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region.

  10. Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise. Volume 1; Development of Theory for Blade Loading, Wakes, and Noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1991-01-01

    A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

  11. Interactions of a co-rotating vortex pair at multiple offsets

    NASA Astrophysics Data System (ADS)

    Forster, Kyle J.; Barber, Tracie J.; Diasinos, Sammy; Doig, Graham

    2017-05-01

    Two NACA0012 vanes at various lateral offsets were investigated by wind tunnel testing to observe the interactions between the streamwise vortices. The vanes were separated by nine chord lengths in the streamwise direction to allow the upstream vortex to impact on the downstream geometry. These vanes were evaluated at an angle of incidence of 8° and a Reynolds number of 7 ×104 using particle image velocimetry. A helical motion of the vortices was observed, with rotational rate increasing as the offset was reduced to the point of vortex merging. Downstream meandering of the weaker vortex was found to increase in magnitude near the point of vortex merging. The merging process occurred more rapidly when the upstream vortex was passed on the pressure side of the vane, with the downstream vortex being produced with less circulation and consequently merging into the upstream vortex. The merging distance was found to be statistical rather than deterministic quantity, indicating that the meandering of the vortices affected their separations and energies. This resulted in a fluctuation of the merging location. A loss of circulation associated with the merging process was identified, with the process of achieving vortex circularity causing vorticity diffusion, however all merged cases maintained higher circulation than a single vortex condition. The presence of the upstream vortex was found to reduce the strength of the downstream vortex in all offsets evaluated.

  12. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  13. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  14. The stability of a trailing-line vortex in compressible flow

    NASA Technical Reports Server (NTRS)

    Stott, Jillian A. K.; Duck, Peter W.

    1992-01-01

    We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow. The problem is tackled numerically and also asymptotically, in the limit of large (aximuthal and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumbers. At very high wavenumbers and Mach numbers, the mode which is present in the incompressible case ceases to be unstable, while new 'center mode' forms, whose stability characteristics, are determined primarily by conditions close to the vortex axis. We find that generally the flow becomes less unstable as the Mach number increases, and that the regime of instability appears generally confined to disturbances in a direction counter to the direction of the rotation of the swirl of the vortex. Throughout the paper, comparison is made between our numerical results and results obtained from the various asymptotic theories.

  15. Three-dimensional transient rip currents: Bathymetric excitation of low-frequency intrinsic variability

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yusuke; McWilliams, James C.; Akan, Cigdem

    2017-07-01

    The ROMS-WEC model [Uchiyama et al., 2010] based on an Eulerian wave-averaged vortex-force asymptotic theory of McWilliams et al. (2004) is applied to analyze 3-D transient wave-driven rip currents and associated intrinsic very low-frequency (VLF) variability in the surf zone on a surveyed bathymetry under spatiotemporally uniform offshore incident waves. The 3-D rip currents are substantially depth-dependent due to the vertical recirculation, composed of pairs of counter-rotating longitudinal overturning roll cells that promote surface convergence. The vortex force plays an important role in vorticity budget, preconditioning overall vorticity reduction. These rip currents are intrinsically unstable and contribute about 70% to kinetic energy (KE) as eddy kinetic energy (EKE), consistent with observations. The dominant fluctuation period fits the VLF band, at about 18 min. The current effect on waves (CEW) alters not only the mean rip structure, but also the associated turbulence as the modified cross-shore EKE profile with considerable accentuation in the inner surf zone. Increased alongshore bathymetric variability proportionally intensifies KE and intrinsic EKE, whereas it reduces the VLF period. With a guide of a pseudo 2D model, we reveal that vortex tilting effect due to the horizontal vorticity inherent in the 3-D rip currents promotes collapse of the 3-D eddies through an enhanced forward kinetic energy cascade, leading to short-lived, laterally-stretched 3-D eddies resulting in elongated filaments that decay more quickly than coherent, long-lived, circular 2-D eddies.

  16. Performance analysis of vortex based mixers for confined flows

    NASA Astrophysics Data System (ADS)

    Buschhagen, Timo

    The hybrid rocket is still sparsely employed within major space or defense projects due to their relatively poor combustion efficiency and low fuel grain regression rate. Although hybrid rockets can claim advantages in safety, environmental and performance aspects against established solid and liquid propellant systems, the boundary layer combustion process and the diffusion based mixing within a hybrid rocket grain port leaves the core flow unmixed and limits the system performance. One principle used to enhance the mixing of gaseous flows is to induce streamwise vorticity. The counter-rotating vortex pair (CVP) mixer utilizes this principle and introduces two vortices into a confined flow, generating a stirring motion in order to transport near wall media towards the core and vice versa. Recent studies investigated the velocity field introduced by this type of swirler. The current work is evaluating the mixing performance of the CVP concept, by using an experimental setup to simulate an axial primary pipe flow with a radially entering secondary flow. Hereby the primary flow is altered by the CVP swirler unit. The resulting setup therefore emulates a hybrid rocket motor with a cylindrical single port grain. In order to evaluate the mixing performance the secondary flow concentration at the pipe assembly exit is measured, utilizing a pressure-sensitive paint based procedure.

  17. The generation of two-dimensional vortices by transverse oscillation of a soap film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afenchenko, V.O.; Ezersky, A.B.; Kiyashko, S.V.

    1998-02-01

    An experimental investigation of the dynamics of horizontal soap films stretched over circular or square boundaries undergoing periodic transverse oscillations at frequencies in the range 20{endash}200 Hz is reported. Concomitant with modes of transverse flexural oscillations, it was observed that two-dimensional vortices in the plane of the film are excited. The vortices may be either (i) large, scaling with the size of the cavity or (ii) small, localized at a wavelength or half-wavelength of the membrane modes. In the experiments a stable generation of one, two, {hor_ellipsis}, ten pairs of counter-rotating vortices were observed in finite regions of amplitude-frequency parametermore » space. The circulation strength of vortices in a given vortex pattern increases with increasing external forcing and with decreasing soap film thickness. A theoretical model based on the wave-boundary interaction of excited Marangoni waves reveals a vorticity generation mechanism active in vibrating soap films. This model shows that vorticity is generated throughout the entire liquid volume by viscous diffusion, and qualitatively reproduces many steady vortex patterns observed in the experiment. However, the model cannot explain the existence of the sometimes intense vortices observed far from the film boundary that do not appear to be generated by diffusive processes. {copyright} {ital 1998 American Institute of Physics.}« less

  18. Heat transfer with very high free-stream turbulence and streamwise vortices

    NASA Technical Reports Server (NTRS)

    Moffat, Robert J.; Maciejewski, Paul; Eaton, John K.; Pauley, Wayne

    1986-01-01

    Results are presented for two experimental programs related to augmentation of heat transfer by complex flow characteristics. In one program, high free stream turbulence (up to 63 percent) was shown to increase the Stanton number by more than a factor of 5, compared with the normally expected value based on x-Reynolds number. These experiments are being conducted in a free-jet facility, near the margins of the jet. To a limited extent, the mean velocity, turbulence intensity, and integral length scale can be separately varied. The results show that scale is a very important factor in determining the augmentation. Detailed studies of the turbulence structure are being carried out using an orthogonal triple hot-wire anemometer equipped with a fourth wire for measuring temperature. The v' component of turbulence appears to be distributed differently from u' or w'. In the second program, the velocity distributions and boundary layer thicknesses associated with a pair of counter-rotating, streamwise vortices were measured. There is a region of considerably thinned boundary layer between the two vortices when they are of approximately the same strength. If one vortex is much stronger than the other, the weaker vortex may be lifted off the surface and absorbed into the stronger.

  19. Coarsening dynamics of binary liquids with active rotation.

    PubMed

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  20. Modeling Vortex Generators in the Wind-US Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  1. Mixing Enhancement by Tabs in Round Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Grosch, C. E.

    1998-01-01

    The objective of this study was to analyze jet plume mass flow entrainment rates associated with the introduction of counter-rotating streamwise vorticity by prism shaped devices (tabs) located at the lip of the nozzle. We have examined the resulting mixing process through coordinated experimental tests and numerical simulations of the supersonic flow from a model axisymmetric nozzle. In the numerical simulations, the total induced vorticity was held constant while varying the distribution of counter-rotating vorticity around the nozzle lip training edge. In the experiment, the number of tabs applied was varied while holding the total projected area constant. Evaluations were also conducted on initial vortex strength. The results of this work show that the initial growth rate of the jet shear layer is increasingly enhanced as more tabs are added, but that the lowest tab count results in the largest entrained mass flow. The numerical simulations confirm these results.

  2. Turbulent Eddies in a Compressible Jet in Crossflow Measured using Pulse-Burst PIV

    NASA Astrophysics Data System (ADS)

    Beresh, Steven; Wagner, Justin; Henfling, John; Spillers, Russell; Pruett, Brian

    2015-11-01

    Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely-spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to convect through the field of view at repeatable spacings. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  3. Dynamics and mixing mechanism of transverse jet injection into a supersonic combustor with cavity flameholder

    NASA Astrophysics Data System (ADS)

    Liu, Chaoyang; Zhao, Yanhui; Wang, Zhenguo; Wang, Hongbo; Sun, Mingbo

    2017-07-01

    The interaction between sonic transverse jet and supersonic crossflow coupled with a cavity flameholder is investigated using large eddy simulation (LES), where the compressible flow dynamics and fuel mixing mechanism are analyzed emphatically. An adaptive central-upwind 6th-order weighted essentially non-oscillatory (WENO-CU6) scheme along with multi-threaded and multi-process MPI/OpenMP parallel is adopted to improve the accuracy and parallel efficiency of the solver. This simulation aims to reproduce the flow conditions in the experiment, and the results show fairly good agreement with the experimental data for distributions of streamwise and normal velocity components. Instantaneous structures such as the shock, large scale vortices and recirculation zone are identified, and their spatial deformation and temporal evolution are presented to reveal the effect on the subsequent mixing. Then some time-averaged and statistical results are obtained to explain the interesting phenomenon observed in the experiment, that there are two pairs of counter-rotating streamwise vortices existing in and above the cavity with the same rotation direction. The above pair is induced by the transverse momentum of jet in supersonic crossflow, which is so-called counter-rotating vortices (CRVs) in the flat-plate injection. On account of the entrainment, the reflux in the cavity transports to the core of jet wakes, and then another pair of counter-rotating streamwise vortices is formed below with the effect of cavity. A pair of trailing CRVs is generated at the trailing edge of cavity, and the turbulent kinetic energy (TKE) here is obviously higher than that in other regions. To some extent, the cavity can enhance the mixing, but will not bring excess total pressure loss.

  4. Exhaust gas emissions of a vortex breakdown stabilized combustor

    NASA Technical Reports Server (NTRS)

    Yetter, R. A.; Gouldin, F. C.

    1976-01-01

    Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.

  5. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.

    2016-02-01

    Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  6. Hub vortex helical instability as the origin of wake meandering in the lee of a model wind-turbine

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Iungo, Giacomo Valerio; Camarri, Simone; Porte-Agel, Fernando; Gallaire, Francois

    2012-11-01

    Wind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near wake region mainly oriented along the streamwise direction, which is denoted as hub vortex. The hub vortex is characterized by oscillations with frequencies lower than the one connected to the rotational velocity of the rotor, which are ascribed to wake meandering by previous works. This phenomenon consists in transversal oscillations of the wind turbine wake, which are excited by the shedding of vorticity structures from the rotor disc acting as a bluff body. In this work temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained through time-averaged wind tunnel velocity measurements. This study shows that the low frequency spectral component detected experimentally is the result of a convective instability of the hub vortex, which is characterized by a counter-winding single-helix structure. Simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to the one predicted from the linear instability analysis.

  7. Global Flow Instability and Control IV Held in Crete, Greece on September 28-October 2, 2009: A Synthesis of Presentations and Discussions

    DTIC Science & Technology

    2009-09-01

    non-uniform, stationary rotation / non- Distribution A: Approved for public release; distribution is unlimited. 8 stationary rotation , mass...Cayley spectral transformation as a means of rotating the basin of convergence of the Arnoldi algorithm. Instead of doing the inversion of the large...pair of counter rotating streamwise vortices embedded in uniform shear flow. Consistently with earlier work by the same group, the main present finding

  8. Effect of Oscillating Tabs on a Jet-in-Cross-Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2003-01-01

    A novel technique for active control of a jet-in-cross-flow is explored in this study. Two triangular tabs are placed at the 90 degree and 270 degree edges of the jet orifice, relative to the direction of the cross-flow. A slight asymmetry in the placement of the two tabs is reversed periodically. This causes a profound oscillation of the flow field that persists as far downstream as the measurements were permitted by the facility (100 orifice diameters). Parametric dependence of the unsteadiness and its impact on the flowfield has been investigated preliminarily. It is found that the effect becomes increasingly pronounced with increasing value of the momentum flux ratio (J). However, there is little or no effect at low values of J in the range, J less than 15. The effective frequencies of oscillation are low - more than an order of magnitude lower than that found with oscillatory blowing technique in previous studies. The flow mechanism apparently involves a direct perturbation of the counter-rotating streamwise vortex pair of the flow.

  9. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control

    NASA Astrophysics Data System (ADS)

    Bo, Wang; Weidong, Liu; Yuxin, Zhao; Xiaoqiang, Fan; Chao, Wang

    2012-05-01

    Using a nanoparticle-based planar laser-scattering technique and supersonic particle image velocimetry, we investigated the effects of micro-ramp control on incident shockwave and boundary-layer interaction (SWBLI) in a low-noise supersonic wind-tunnel with Mach number 2.7 and Reynolds number Rθ = 5845. High spatiotemporal resolution wake structures downstream of the micro-ramps were detected, while a complex evolution process containing a streamwise counter-rotating vortex pair and large-scale hairpin-like vortices with Strouhal number Stδ of about 0.5-0.65 was revealed. The large-scale structures could survive while passing through the SWBLI region. Reflected shockwaves are clearly seen to be distorted accompanied by high-frequency fluctuations. Micro-ramp applications have a distinct influence on flow patterns of the SWBLI field that vary depending on spanwise locations. Both the shock foot and separation line exhibit undulations corresponding with modifications of the velocity distribution of the incoming boundary layer. Moreover, by energizing parts of the boundary flow, the micro-ramp is able to dampen the separation.

  10. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less

  11. Flow-structure interaction effects on a jet emanating from a flexible nozzle

    PubMed Central

    Murugappan, S.; Gutmark, E. J.; Lakhamraju, R. R.; Khosla, S.

    2008-01-01

    In recent years, a wide variety of applications have been found for the use of pulsed jets in the area of flow control. The goal of the current study was to identify the flow field and mixing characteristics associated with an incompressible elongated jet emitted from a flexible nozzle. The shape of the nozzle was that of a high aspect ratio jet deforming from a fully opened to a completely closed configuration. The jet was characterized by a pulsatile flow that was self-excited by the motion of the flexible tube. The frequency of excitation was found to be between 150 and 175 Hz and the Strouhal number (nondimensional frequency) varied from 0.17 to 0.45. The jet flow was dominated by vortices that were shed from the nozzle with an axis parallel to the major axis. The vortices in the near field were quasi-two-dimensional so that measurements performed at the center plane represented the dynamics of the entire vortex. The nozzle excited two different modes depending on the tension applied to the flexible nozzle and the volumetric flow through it. The first was a flapping mode, which was associated with alternate shedding of vortices. This caused strong steering of the jet to one side or the other. The second mode was a symmetric mode that was associated with the formation of counter-rotating vortex pairs. Turbulence and jet spread in the measured planes were much larger in the first mode than the second one. PMID:19547723

  12. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE PAGES

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  13. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  14. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    NASA Technical Reports Server (NTRS)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  15. Counterrotating Propulsive System.

    DTIC Science & Technology

    1981-12-01

    Propellers ," David Taylor Model Basin Report 1342, February 1960. 7. Miller, M.L., " Experimental Determination of Unsteady Forces on Counter- rotating...21. Miller, M.L., " Experimental Determination of Unsteady Forces on Contra- rotating Propellers for Application to Torpedoes," David W. Taylor Naval...pair of counterrotating propellers in a uniform in- flow is given by Reference [14] with the same results. On the

  16. Cut-cell method based large-eddy simulation of tip-leakage flow

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang

    2015-07-01

    The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.

  17. Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight

    DTIC Science & Technology

    2014-08-06

    dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex

  18. Spontaneous generation of vortex and coherent vector beams from a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping: application to highly sensitive rotational and translational Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Chu, Shu-Chun

    2017-07-01

    Selective excitation of Laguerre-Gauss modes (optical vortices: helical LG0,2 and LG0,1), reflecting their weak transverse cross-saturation of population inversions against a preceding higher-order Ince-Gauss (IG0,2) or Hermite-Gauss (HG2,1) mode, was observed in a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping. Single-frequency coherent vector beams were generated through the transverse mode locking of a pair of orthogonally polarized IG2,0 and LG0,2 or HG2,1 and LG0,1 modes. Highly sensitive self-mixing rotational and translational Doppler velocimetry is demonstrated by using vortex and coherent vector beams.

  19. COLLECTIVE VORTEX BEHAVIORS: DIVERSITY, PROXIMATE, AND ULTIMATE CAUSES OF CIRCULAR ANIMAL GROUP MOVEMENTS.

    PubMed

    Delcourt, Johann; Bode, Nikolai W F; Denoël, Mathieu

    2016-03-01

    Ant mill, caterpillar circle, bat doughnut, amphibian vortex, duck swirl, and fish torus are different names for rotating circular animal formations, where individuals turn around a common center. These "collective vortex behaviors" occur at different group sizes from pairs to several million individuals and have been reported in a large number of organisms, from bacteria to vertebrates, including humans. However, to date, no comprehensive review and synthesis of the literature on vortex behaviors has been conducted. Here, we review the state of the art of the proximate and ultimate causes of vortex behaviors. The ubiquity of this behavioral phenomenon could suggest common causes or fundamental underlying principles across contexts. However, we find that a variety of proximate mechanisms give rise to vortex behaviors. We highlight the potential benefits of collective vortex behaviors to individuals involved in them. For example, in some species, vortices increase feeding efficiency and could give protection against predators. It has also been argued that vortices could improve collective decision-making and information transfer. We highlight gaps in our understanding of these ubiquitous behavioral phenomena and discuss future directions for research in vortex studies.

  20. Interactions and scattering of quantum vortices in a polariton fluid.

    PubMed

    Dominici, Lorenzo; Carretero-González, Ricardo; Gianfrate, Antonio; Cuevas-Maraver, Jesús; Rodrigues, Augusto S; Frantzeskakis, Dimitri J; Lerario, Giovanni; Ballarini, Dario; De Giorgi, Milena; Gigli, Giuseppe; Kevrekidis, Panayotis G; Sanvitto, Daniele

    2018-04-13

    Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

  1. Pressure measurements of wake vortices near the ground

    DOT National Transportation Integrated Search

    1972-04-30

    It has been known since the beginning of air flight that an : aircraft leaves in its wake a pair of highly concentrated, : counter-rotating trailing vortices. With the introduction of : jumbo jets, the vortices generated by these aircraft can become ...

  2. Vortex-induced suspension of sediment in the surf zone

    NASA Astrophysics Data System (ADS)

    Otsuka, Junichi; Saruwatari, Ayumi; Watanabe, Yasunori

    2017-12-01

    A major mechanism of sediment suspension by organized vortices produced under violent breaking waves in the surf zone was identified through physical and computational experiments. Counter-rotating flows within obliquely descending eddies produced between adjacent primary roller vortices induce transverse convergent near-bed flows, driving bed load transport to form regular patterns of transverse depositions. The deposited sediment is then rapidly ejected by upward carrier flows induced between the vortices. This mechanism of vortex-induced suspension is supported by experimental evidence that coherent sediment clouds are ejected where the obliquely descending eddies reach the sea bed after the breaking wave front has passed. In addition to the effects of settling and turbulent diffusion caused by breaking waves, the effect of the vortex-induced flows was incorporated into a suspension model on the basis of vorticity dynamics and parametric characteristics of transverse flows in breaking waves. The model proposed here reasonably predicts an exponential attenuation of the measured sediment concentration due to violent plunging waves and significantly improves the underprediction of the concentration produced by previous models.

  3. An enstrophy-based linear and nonlinear receptivity theory

    NASA Astrophysics Data System (ADS)

    Sengupta, Aditi; Suman, V. K.; Sengupta, Tapan K.; Bhaumik, Swagata

    2018-05-01

    In the present research, a new theory of instability based on enstrophy is presented for incompressible flows. Explaining instability through enstrophy is counter-intuitive, as it has been usually associated with dissipation for the Navier-Stokes equation (NSE). This developed theory is valid for both linear and nonlinear stages of disturbance growth. A previously developed nonlinear theory of incompressible flow instability based on total mechanical energy described in the work of Sengupta et al. ["Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003)] is used to compare with the present enstrophy based theory. The developed equations for disturbance enstrophy and disturbance mechanical energy are derived from NSE without any simplifying assumptions, as compared to other classical linear/nonlinear theories. The theory is tested for bypass transition caused by free stream convecting vortex over a zero pressure gradient boundary layer. We explain the creation of smaller scales in the flow by a cascade of enstrophy, which creates rotationality, in general inhomogeneous flows. Linear and nonlinear versions of the theory help explain the vortex-induced instability problem under consideration.

  4. Proof-of-principle experiment of measurement-device-independent quantum key distribution with vector vortex beams

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Zhao, Shang-Hong; Li, Wei; Yang, Jian

    2018-03-01

    In this paper, by combining measurement-device-independent quantum key distribution (MDI-QKD) scheme with entangled photon sources, we present a modified MDI-QKD scheme with pairs of vector vortex(VV) beams, which shows a structure of hybrid entangled entanglement corresponding to intrasystem entanglement and intersystem entanglement. The former entanglement, which is entangled between polarization and orbit angular momentum within each VV beam, is adopted to overcome the polarization misalignment associated with random rotations in quantum key distribution. The latter entanglement, which is entangled between the two VV beams, is used to perform entangled-based MDI-QKD protocol with pair of VV beams to inherit the merit of long distance. The numerical simulations show that our modified scheme can tolerate 97dB with practical detectors. Furthermore, our modified protocol only needs to insert q-plates in practical experiment.

  5. An Investigation of Cavity Vortex Generators in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Hazlewood, Richard

    1996-01-01

    The purpose of this report is to document the results of experiments performed at the University of Kansas and at the NASA Langley Research Center (LaRC) into the use of shaped cavities to generate vortices in supersonic flow, as well as the progress made in simulating the observed flow using the PAB3D flow solver. The investigation was performed on 18 different cavity configurations installed in a convergent-divergent nozzle at the Jet Exit Facility at the LaRC. Pressure sensitive paint, static-pressure ports, focusing Schliern, and water tunnel flow visualization techniques were used to study the nature of the flow created by these cavities. The results of these investigations revealed that a shaped cavity can generate a pair of counter-rotating streamwise vortices in supersonic flow by creating weak, compression Mach waves and weak shocks. The PAB3D computer program, developed at the LaRC, was used to attempt to reproduce the experimental results. Unfortunately, due to problems with matching the grid blocks, no converged results were obtained. However, intermediate results, as well as a complete definition of the grid matching problems and suggested courses of actions are presented.

  6. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  7. Laser singular Theta-pinch

    NASA Astrophysics Data System (ADS)

    Okulov, A. Yu.

    2010-10-01

    The interaction of the two counter-propagating ultrashort laser pulses with singular wavefronts in the thin slice of the underdense plasma is considered. It is shown that ion-acoustic wave is excited via Brillouin three-wave resonance by corkscrew interference pattern of paraxial singular laser beams. The orbital angular momentum carried by light is transferred to plasma ion-acoustic vortex. The rotation of the density perturbations of electron fluid is the cause of helical current which produces the kilogauss axial quasi-static magnetic field. The exact analytical configurations are presented for an ion-acoustic current field and magnetic induction. The range of experimentally accessible parameters is evaluated.

  8. Spiral vortices and Taylor vortices in the annulus between rotating cylinders and the effect of an axial flow.

    PubMed

    Hoffmann, Ch; Lücke, M; Pinter, A

    2004-05-01

    We present numerical simulations of vortices that appear via primary bifurcations out of the unstructured circular Couette flow in the Taylor-Couette system with counter rotating as well as with corotating cylinders. The full, time dependent Navier Stokes equations are solved with a combination of a finite difference and a Galerkin method for a fixed axial periodicity length of the vortex patterns and for a finite system of aspect ratio 12 with rigid nonrotating ends in a setup with radius ratio eta=0.5. Differences in structure, dynamics, symmetry properties, bifurcation, and stability behavior between spiral vortices with azimuthal wave numbers M=+/-1 and M=0 Taylor vortices are elucidated and compared in quantitative detail. Simulations in axially periodic systems and in finite systems with stationary rigid ends are compared with experimental spiral data. In a second part of the paper we determine how the above listed properties of the M=-1, 0, and 1 vortex structures are changed by an externally imposed axial through flow with Reynolds numbers in the range -40< or =Re< or =40. Among other things we investigate when left handed or right handed spirals or toroidally closed vortices are preferred.

  9. Experimental Study of Shock-Induced Compression and Vortex Generation in the Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2006-11-01

    Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4

  10. Actively suspended counter-rotating machine

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A counter-rotating machine, such as a positive displacement pump having a pair of meshed, non-contacting helical screws (10,12), subjects its rotating members to axial and radial thrust forces when used for such purposes as compression of liquid or gaseous phase fluids while transporting them through a pump cavity (11,13). Each helical screw (10,12) has a shaft (17,17') which is actively suspended at opposite ends (11a,11b) of the pump cavity by a servo-controlled magnetic bearing assembly (19) and a servo-controlled rotary drive motor (20). Both bearing assemblies and drive motors are mounted on the outside of the pump cavity (11,13). Opto-electric angular position sensors (250) provide synchronization between radial orientation of the drive motors. The bearing assemblies and drive motors conjugately provide axial stabilization and radial centering of the helical screws during volumetric compression of aspirated liquid or gaseous phase fluids.

  11. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  12. Symmetry breaking motion of a vortex pair in a driven cavity

    NASA Astrophysics Data System (ADS)

    McHugh, John; Osman, Kahar; Farias, Jason

    2002-11-01

    The two-dimensional driven cavity problem with an anti-symmetric sinusoidal forcing has been found to exhibit a subcritical symmetry breaking bifurcation (Farias and McHugh, Phys. Fluids, 2002). Equilibrium solutions are either a symmetric vortex pair or an asymmetric motion. The asymmetric motion is an asymmetric vortex pair at low Reynolds numbers, but merges into a three vortex motion at higher Reynolds numbers. The asymmetric solution is obtained by initiating the flow with a single vortex centered in the domain. Symmetric motion is obtained with no initial vortex, or weak initial vortex. The steady three-vortex motion occurs at a Reynolds number of approximately 3000, where the symmetric vortex pair has already gone through a Hopf bifurcation. Further two-dimensional results show that forcing with two full oscillations across the top of the cavity results in two steady vortex motions, depending on initial conditions. Three-dimensional results have even more steady solutions. The results are computational and theoretical.

  13. Fluid flows created by swimming bacteria drive self-organization in confined suspensions

    PubMed Central

    Lushi, Enkeleida; Wioland, Hugo; Goldstein, Raymond E.

    2014-01-01

    Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell–cell and cell–fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms. PMID:24958878

  14. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  15. Flow Field Characteristics of Finite-span Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration

    2011-11-01

    Past work has shown that humpback whale-like leading edge protuberances can significantly alter the load characteristics of both 2D and finite-span hydrofoils. To understand the mechanisms responsible for observed performance changes, the flow field characteristics of a baseline hydrofoil and models with leading edge protuberances were examined using the Stereo Particle Image Velocimetry (SPIV) technique. The near surface flow field on the hydrofoils was measured along with the tip vortex flow field on finite-span hydrofoils. Angles of attack ranging from 6 to 24 degrees were examined at freestream velocities of 1.8 m/s and 4.5 m/s, corresponding to Reynolds numbers of 180 and 450 thousand, respectively. While Reynolds number does not play a major role in establishing the flow field trends, both the protuberance geometry and spatial proximity to protuberances affect the velocity and vorticity characteristics near the foil surface, and in the wake and tip vortex. Near surface measurements reveal counter-rotating vortices on protuberance shoulders, while tip vortex measurements show that streamwise vorticity can be strongly affected by the presence of protuberances. The observed flow field characteristics will be presented. Sponsored by the ONR-ULI program.

  16. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoqun; Gao, Yisheng; Tian, Shuling; Dong, Xiangrui

    2018-03-01

    A vortex is intuitively recognized as the rotational/swirling motion of the fluids. However, an unambiguous and universally accepted definition for vortex is yet to be achieved in the field of fluid mechanics, which is probably one of the major obstacles causing considerable confusions and misunderstandings in turbulence research. In our previous work, a new vector quantity that is called vortex vector was proposed to accurately describe the local fluid rotation and clearly display vortical structures. In this paper, the definition of the vortex vector, named Rortex here, is revisited from the mathematical perspective. The existence of the possible rotational axis is proved through real Schur decomposition. Based on real Schur decomposition, a fast algorithm for calculating Rortex is also presented. In addition, new vorticity tensor and vector decompositions are introduced: the vorticity tensor is decomposed to a rigidly rotational part and a non-rotationally anti-symmetric part, and the vorticity vector is decomposed to a rigidly rotational vector which is called the Rortex vector and a non-rotational vector which is called the shear vector. Several cases, including the 2D Couette flow, 2D rigid rotational flow, and 3D boundary layer transition on a flat plate, are studied to demonstrate the justification of the definition of Rortex. It can be observed that Rortex identifies both the precise swirling strength and the rotational axis, and thus it can reasonably represent the local fluid rotation and provide a new powerful tool for vortex dynamics and turbulence research.

  17. Photographer : JPL Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter makes the mosaic photo, showing the Great Red Spot as a swirling vortex type motion. This motion is also seen in several nearby white clouds. These bright white clouds and the Red Spot are rotating in a counter clockwise direction, except the peculiar filimentary cloud to the right of the Red Spot is going clockwise. The top of the picture shows the turbulence from the equatorial jet and more northerly atmospheric currents. The smallest clouds shown are only 70 miles (120 km) across.

  18. Investigation of Stable Atmospheric Stratification Effect on the Dynamics of Descending Vortex Pairs

    DOT National Transportation Integrated Search

    1979-02-01

    The physics of vortex flows in stratified fluids is studied with the objective of determining the influence of stable stratification on the descent of aircraft vortex pairs. Vortex rings descending into linear and discontinuous density stratification...

  19. Non-invasive determination of external forces in vortex-pair-cylinder interactions

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Schröder, W.; Shashikanth, B. N.

    2012-06-01

    Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized symmetric settings are complemented by an asymmetric interaction of a vortex pair and a cylinder. This case is discussed for a fixed and a neutrally buoyant cylinder to show the validity of the derived relations for multi-dimensional body dynamics.

  20. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Fontana, Richard Remo

    1988-01-01

    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  1. Numerical simulation of a low-swirl impinging jet with a rotating convergent nozzle

    NASA Astrophysics Data System (ADS)

    Borynyak, K.; Hrebtov, M.; Bobrov, M.; Kozyulin, N.

    2018-03-01

    The paper presents the results of Large Eddy Simulation of a swirling impinging jet with moderate Reynolds number (104), where the swirl is organized via the rotation of a convergent nozzle. The results show that the effect of the swirl in this configuration leads to an increase of axial velocity, compared to the non-swirling case. It is shown that turbulent stress plays an important role in this effect. The vortex structure of the jet consists of multiple pairs of nearly parallel helical vortices with opposite signs of rotation. The interaction of vortices in the near region of the jet leads to radial contraction of the jet’s core which in turn, causes an the increase in the axial velocity.

  2. Possible nodal vortex state in CeRu2

    NASA Astrophysics Data System (ADS)

    Kadono, R.; Higemoto, W.; Koda, A.; Ohishi, K.; Yokoo, T.; Akimitsu, J.; Hedo, M.; Inada, Y.; O¯nuki, Y.; Yamamoto, E.; Haga, Y.

    2001-06-01

    The microscopic property of magnetic vortices in the mixed state of a high-quality CeRu2 crystal has been studied by muon spin rotation. We have found that the spatial distribution of magnetic induction B(r) probed by muons is perfectly described by the London model for the triangular vortex lattice with appropriate modifications to incorporate the high-field cutoff around the vortex core and the effect of long-range defects in the vortex lattice structure at lower fields. The vortex core radius is proportional to H(β-1)/2 with β~=0.53 (H being the magnetic field), which is in good agreement with the recently observed nonlinear field dependence of the electronic specific heat coefficient γ~Hβ. In particular, the anomalous increase of magnetic penetration depth in accordance with the peak effect in dc magnetization (>=H*~=3 T at 2.0 K) has been confirmed; this cannot be explained by the conventional pair-breaking effect due to magnetic field. In addition, the spontaneous enhancement of flux pinning, which is also associated with the peak effect, has been demonstrated microscopically. These results strongly suggest the onset of collective pinning induced by a new vortex state having an anomalously enhanced quasiparticle density of states for H>=H*.

  3. Drive system for the retraction/extension of variable diameter rotor systems

    NASA Technical Reports Server (NTRS)

    Gmirya, Yuriy (Inventor)

    2003-01-01

    A drive system for a variable diameter rotor (VDR) system includes a plurality of rotor blade assemblies with inner and outer rotor blade segments. The outer blade segment being telescopically mounted to the inner blade segment. The VDR retraction/extension system includes a drive housing mounted at the root of each blade. The housing supports a spool assembly, a harmonic gear set and an electric motor. The spool assembly includes a pair of counter rotating spools each of which drive a respective cable which extends through the interior of the inboard rotor blade section and around a pulley mounted to the outboard rotor blade section. In operation, the electric motor drives the harmonic gear set which rotates the counter rotating spools. Rotation of the spools causes the cables to be wound onto or off their respective spool consequently effecting retraction/extension of the pulley and the attached outboard rotor blade section relative the inboard rotor blade section. As each blade drive system is independently driven by a separate electrical motor, each independent VDR blade assembly is independently positionable.

  4. Rewritable ferroelectric vortex pairs in BiFeO3

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook

    2017-08-01

    Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.

  5. Stability of barotropic vortex strip on a rotating sphere

    PubMed Central

    Sohn, Sung-Ik; Kim, Sun-Chul

    2018-01-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined. PMID:29507524

  6. Stability of barotropic vortex strip on a rotating sphere.

    PubMed

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  7. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A.

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used tomore » classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).« less

  8. The role of atmospheric shear, turbulence and a ground plane on the dissipation of aircraft vortex wakes

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.; Hirsh, J. E.

    1978-01-01

    Enhanced dispersion of two-dimensional trailed vortex pairs within simplified neutral atmospheric backgrounds is studied numerically for three conditions: when the pair is imbedded in a constant turbulent bath (constant dissipation); when the pair is subjected to a mean cross-wind shear; and when the pair is near the ground. Turbulent transport is modeled using second-order closure turbulent transport theory. The turbulent background fields are constructed using a superequilibrium approximation. The computed results allow several general conclusions to be drawn with regard to the reduction in circulation of the vortex pair and the rolling moment induced on a following aircraft: (1) the rate of decay of a vortex pair increases with increasing background dissipation rate; (2) cross-wind shear disperses the vortex whose vorticity is opposite to the background; and (3) the proximity of a ground plane reduces the hazard of the pair by scrubbing. The phenomenon of vortex bounce is explained in terms of secondary vorticity produced at the ground plane. Qualitative comparisons are made with available experimental data, and inferences of these results upon the persistence of aircraft trailing vortices are discussed.

  9. Wingtip vortex turbine

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr. (Inventor)

    1990-01-01

    A means for extracting rotational energy from the vortex created at aircraft wing tips which consists of a turbine with blades located in the crossflow of the vortex and attached downstream of the wingtip. The turbine has blades attached to a core. When the aircraft is in motion, rotation of a core transmits energy to a centrally attached shaft. The rotational energy thus generated may be put to use within the airfoil or aircraft fuselage.

  10. Receptivity Mechanisms in a Rotating Torus: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Clarke, Richard; Calabretto, Sophie; Walbran, Scott; Denier, Jim; Cater, John; Mattner, Trent

    2013-11-01

    We consider the flow within a rotating fluid-filled torus subject to a sudden change in angular velocity. Previous DNS computations showed the occurence of boundary-layer separation (Hewitt et al., JFM 688), which was conjectured to be linked with structures observed in the top-down visualisations of Madden & Mullin (JFM 265). These showed a ``flow front'' in the equatorial plane propagating from the outer wall, the position of which was seen to match well with the separated flow structures seen in the DNS. However, in the experiments a second streak was observed at later times on the opposite wall, not seen in the DNS. To better understand this structure, we present the first measurements of the cross-sectional flow, using PIV on an experiment designed to overcome the optical issues in cross-sectional measurements. These demonstrate both the post-separated flow structures seen in earlier DNS, as well as the appearance of a vortex-pair on the opposite equator. These we believe to be likely candidates for the second fronts noted in the Madden experiments. We hypothesise that this vortex pair is generated by small geometric imperfections, an idea seemingly borne out by striking agreement with new DNS conducted in a modified geometry that better represents experimental reality. This work is funded by the Royal Society of New Zealand Marsden Fund, and the University of Auckland Doctoral Scholarship Programme.

  11. The dynamics of turbulent premixed flames: Mechanisms and models for turbulence-flame interaction

    NASA Astrophysics Data System (ADS)

    Steinberg, Adam M.

    The use of turbulent premixed combustion in engines has been garnering renewed interest due to its potential to reduce NOx emissions. However there are many aspects of turbulence-flame interaction that must be better understood before such flames can be accurately modeled. The focus of this dissertation is to develop an improved understanding for the manner in which turbulence interacts with a premixed flame in the 'thin flamelet regime'. To do so, two new diagnostics were developed and employed in a turbulent slot Bunsen flame. These diagnostics, Cinema-Stereoscopic Particle Image Velocimetry and Orthogonal-Plane Cinema-Stereoscopic Particle Image Velocimetry, provided temporally resolved velocity and flame surface measurements in two- and three-dimensions with rates of up to 3 kHz and spatial resolutions as low as 280 mum. Using these measurements, the mechanisms with which turbulence generates flame surface area were studied. It was found that the previous concept that flame stretch is characterized by counter-rotating vortex pairs does not accurately describe real turbulence-flame interactions. Analysis of the experimental data showed that the straining of the flame surface is determined by coherent structures of fluid dynamic strain rate, while the wrinkling is caused by vortical structures. Furthermore, it was shown that the canonical vortex pair configuration is not an accurate reflection of the real interaction geometry. Hence, models developed based on this geometry are unlikely to be accurate. Previous models for the strain rate, curvature stretch rate, and turbulent burning velocity were evaluated. It was found that the previous models did not accurately predict the measured data for a variety of reasons: the assumed interaction geometries did not encompass enough possibilities to describe the possible effects of real turbulence, the turbulence was not properly characterized, and the transport of flame surface area was not always considered. New models therefore were developed that accurately reflect real turbulence-flame interactions and agree with the measured data. These can be implemented in Large Eddy Simulations to provide improved modeling of turbulence-flame interaction.

  12. Vortex pairs on surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koiller, Jair; Boatto, Stefanella

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  13. Instability of counter-rotating stellar disks

    NASA Astrophysics Data System (ADS)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  14. Propulsion efficiency and imposed flow fields of a copepod jump.

    PubMed

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  15. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  16. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    PubMed

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  17. Multipass rotary shear comminution process to produce corn stover particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James H; Lanning, David N

    A process of comminution of corn stover having a grain direction to produce a mixture of corn stover, by feeding the corn stover in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of corn stover travel.

  18. Low Reynolds Number Wing Transients in Rotation and Translation

    NASA Astrophysics Data System (ADS)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  19. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  20. FLUID CONTACTOR APPARATUS

    DOEpatents

    Spence, R.; Streeton, R.J.W.

    1956-04-17

    The fluid contactor apparatus comprises a cylindrical column mounted co- axially and adapted to rotate within a cylindrical vessel, for the purpose of extracting a solute from am aqueous solution by means of an organic solvent. The column is particularly designed to control the vortex pattern so as to reduce the height of the vortices while, at the same time, the width of the annular radius in the radial direction between the vessel and column is less than half the radius of the column. A plurality of thin annular fins are spaced apart along the rotor approximately twice the radial dimension of the column such that two contrarotating substantially circular vortices are contained within each pair of fins as the column is rotated.

  1. On the upper part load vortex rope in Francis turbine: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.

    2010-08-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

  2. Majorana Kramers pair in a nematic vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Martin, Ivar

    A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi 2Semore » 3, as suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Lastly, we discuss possible experiments to probe the zero modes.« less

  3. Majorana Kramers pair in a nematic vortex

    DOE PAGES

    Wu, Fengcheng; Martin, Ivar

    2017-06-05

    A time-reversal (TR) invariant topological superconductor is characterized by a Kramers pair of Majorana zero-energy modes on boundaries and in a core of a TR invariant vortex. A vortex defect that preserves TR symmetry has remained primarily of theoretical interest, since typically a magnetic field, which explicitly breaks TR, needs to be applied to create vortices in superconductors. In this paper, we show that an odd-parity topological superconductor with a nematic pairing order parameter can host a nematic vortex that preserves TR symmetry and binds a Majorana Kramers pair. Such a nematic superconductor could be realized in metal-doped Bi 2Semore » 3, as suggested by recent experiments. We provide an analytic solution for the zero modes in a continuous nematic vortex. In lattice, crystalline anisotropy can pin the two-component order parameter along high-symmetry directions. We show that a discrete nematic vortex, which forms when three nematic domains meet, also supports a TR pair of Majorana modes. Lastly, we discuss possible experiments to probe the zero modes.« less

  4. A Model for the Vortex Pair Associated with a Jet in a Cross Flow

    NASA Technical Reports Server (NTRS)

    Sellers, William L.

    1975-01-01

    A model is presented for the contrarotating vortex pair that is formed by a round, turbulent, subsonic jet directed normally into a uniform, subsonic cross flow. The model consists of a set of algebraic equations that describe the properties of the vortex pair as a function of their location in the jet plume. The parameters of the model are physical characteristics of the vortices such as the vortex strength, spacing, and core size. These parameters are determined by velocity measurements at selective points in the jet plume.

  5. Vortex/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1989-01-01

    Detailed and high quality measurements with hot-wires and pressure probes are presented for two different interactions between a vortex pair with common flow down and a turbulent boundary layer. The interactions studied have larger values of the vortex circulation parameter than those studied previously. The results indicate that the boundary layer under the vortex pair is thinned by lateral divergence and that boundary layer fluid is entrained into the vortex. The effect of the interaction on the vortex core (other than the inviscid effect of the image vortices behind the surface) is small.

  6. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  7. Collision dynamics of two-dimensional non-Abelian vortices

    NASA Astrophysics Data System (ADS)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  8. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  9. Visualization of a vortex flow in a rotating tank

    NASA Astrophysics Data System (ADS)

    Kawano, Yosuke

    Flow structures of a vortex in a rotating tank were studied employing tracer method. The velocity measurements were made by photographing the motions of small polystyrene particles and analyzing strobo flash light pictures. The vortex flow is confined to a cylindrical region which is composed of a spiral upward flow in the center surrounded by an annular downward flow.

  10. Simple point vortex model for the relaxation of 2D superfluid turbulence in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyun; Kwon, Woo Jin; Shin, Yong-Il

    2016-05-01

    In a recent experiment, it was found that the dissipative evolution of a corotating vortex pair in a trapped Bose-Einstein condensate is well described by a point vortex model with longitudinal friction on the vortex motion and the thermal friction coefficient was determined as a function of sample temperature. In this poster, we present a numerical study on the relaxation of 2D superfluid turbulence based on the dissipative point vortex model. We consider a homogeneous system in a cylindrical trap having randomly distributed vortices and implement the vortex-antivortex pair annihilation by removing a pair when its separation becomes smaller than a certain threshold value. We characterize the relaxation of the turbulent vortex states with the decay time required for the vortex number to be reduced to a quarter of initial number. We find the vortex decay time is inversely proportional to the thermal friction coefficient. In particular, we observe the decay times obtained from this work show good quantitative agreement with the experimental results in, indicating that in spite of its simplicity, the point vortex model reasonably captures the physics in the relaxation dynamics of the real system.

  11. Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance

    NASA Astrophysics Data System (ADS)

    Kueh, T. C.; Beh, S. L.; Ooi, Y. S.; Rilling, D. G.

    2017-04-01

    Water vortex turbine utilizes the natural behaviour of water to form free surface vortex for energy extraction. This allows simple construction and ease of management on the whole water vortex power plant system. To our findings, the literature study specifically on water vortex turbine is inadequate and low efficiency was reported. Influences of operating speed and blade shape on turbine performance are the two parameters investigated in this study. Euler Turbomachinery Equation and velocity triangle are used in the improvement analysis. Two turbines with flat blades and curved blades are tested and compared. Both turbines show similar rotational speed at no load condition. This suggested that the circulation force of the water vortex has more dominant effect on the turbine rotational speed, compared to the turbine’s geometry. Flat-blades turbine showed maximum efficiency of 21.63% at 3.27 rad/s whereas curved-blades turbine showed 22.24% at 3.56 rad/s. When operating load is applied, the backward-leaning curve helps the turbine blades to reduce the disturbance on the water vortex, and hence provide a better performance.

  12. Inter-Comparison of WRF Model Simulated Winds and MISR Stereoscopic Winds Embedded within Mesoscale von Kármán Wake Vortices

    NASA Astrophysics Data System (ADS)

    Horvath, A.; Nunalee, C. G.; Mueller, K. J.

    2014-12-01

    Several distinct wake regimes are possible when considering atmospheric flow past a steep mountainous island. Of these regimes, coherent vortex shedding in low-Froude number flow is particularly interesting because it can produce laterally focused paths of counter rotating eddies capable of extending downstream for hundreds of kilometers (i.e., a von Kármán vortex street). Given the spatial scales of atmospheric von Kármán vortices, which typically lies on the interface of the meso-scale and the micro-scale, they are uniquely challenging to model using conventional numerical weather prediction platforms. In this presentation, we present high resolution (1-km horizontally) numerical modeling results using the Weather Research and Forecasting (WRF) model, of multiple real-world von Kármán vortex shedding events associated with steep islands (e.g., Madeira island, Gran Canaria island, etc.). In parallel, we also present corresponding cloud-motion wind and cloud-top height measurements from the satellite-based Multiangle Imaging SpectroRadiometer (MISR) instrument. The MISR stereo algorithm enables experimental retrieval of the horizontal wind vector (both along-track and cross-track components) at 4.4-km resolution, in addition to the operational 1.1-km resolution cross-track wind and cloud-top height products. These products offer the fidelity appropriate for inter-comparison with the numerically simulated vortex streets. In general, we find an agreement between the instantaneous simulated cloud level winds and the MISR stereoscopic winds; however, discrepancies in the vortex street length and localized horizontal wind shear were documented. In addition, the simulated fields demonstrate sensitivity to turbulence closure and input terrain height data.

  13. Initiation of Long-Wave Instability of Vortex Pairs at Cruise Altitudes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2011-01-01

    Previous studies have usually attributed the initiation of the long-wave instability of a vortex pair to turbulence in the atmosphere or in the wake of the aircraft. The purpose here is to show by use of observations and photographs of condensation trails shed by aircraft at cruise altitudes that another initiating mechanism is not only possible but is usually the mechanism that initiates the long-wave instability at cruise altitudes. The alternate initiating mechanism comes about when engine thrust is robust enough to form an array of circumferential vortices around each jet-engine-exhaust stream. In those cases, initiation begins when the vortex sheet shed by the wing has rolled up into a vortex pair and descended to the vicinity of the inside bottom of the combined shear-layer vortex arrays. It is the in-and-out (up and down) velocity field between sequential circumferential vortices near the bottom of the array that then impresses disturbance waves on the lift-generated vortex pair that initiate the long-wave instability. A time adjustment to the Crow and Bate estimate for vortex linking is then derived for cases when thrust-based linking occurs.

  14. Response to “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’” [Phys. Fluids 26, 119101 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorder, Robert A., E-mail: rav@knights.ucf.edu

    2014-11-15

    In R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’ [Phys. Fluids 26, 065105 (2014)],” Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it wasmore » clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.« less

  15. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Zhu, Hanjie

    2015-03-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.

  16. Analytical solution for the anisotropic Rabi model: effects of counter-rotating terms.

    PubMed

    Zhang, Guofeng; Zhu, Hanjie

    2015-03-04

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.

  17. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    PubMed Central

    Zhang, Guofeng; Zhu, Hanjie

    2015-01-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model. PMID:25736827

  18. Spatial characteristics of secondary flow in a turbulent boundary layer over longitudinal surface roughness

    NASA Astrophysics Data System (ADS)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulations of turbulent boundary layers (TBLs) over spanwise heterogeneous surface roughness are performed to investigate the characteristics of secondary flow. The longitudinal surface roughness, which features lateral change in bed elevation, is described by immersed boundary method. The Reynolds number based on the momentum thickness is varied in the range of Reθ = 300-900. As the TBLs over the roughness elements spatially develop in the streamwise direction, a secondary flow emerges in a form of counter-rotating vortex pair. As the spanwise spacing between the roughness elements and roughness width vary, it is shown that the size of the secondary flow is determined by the valley width between the roughness elements. In addition, the strength of the secondary flow is mostly affected by the spanwise distance between the cores of the secondary flow. Analysis of the Reynolds-averaged turbulent kinetic energy transport equation reveals that the energy redistribution terms in the TBLs over-the ridge type roughness play an important role to derive low-momentum pathways with upward motion over the roughness crest, contrary to the previous observation with the strip-type roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  19. Spatial and Time Dynamics of Non-Linear Vortices in Plasma Lens for High-Current Ion Beam Focusing

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexei A.; Maslov, Vasyl I.; Onishchenko, Ivan N.; Tretyakov, Vitalij N.

    2002-11-01

    It is known from numerical simulation (see, for example, [1]) and from experiments (see, for example, [2]), that an electron density bunches as discrete vortices are long - living structures in vacuum. However, in laboratory experiments [2] it has been shown that the vortices are changed faster, when they are submersed in electrons, distributed around them. The charged plasma lens intended for a focussing of high-current ion beams, has the same crossed configuration of a radial electrical and longitudinal magnetic field [3], as only electron plasma. In this lens the vortical turbulence is excited [3]. The vortex - bunch and vortex - hole are rotated in the inverse directions in system of their rest. The instability development in initially homogeneous plasma causes that the vortices are excited by pairs. Namely, if the vortex - bunch of electrons is generated, near the vortex - hole of electrons is also generated. It is shown, that in nonuniform plasma the vortices behave is various in time. Namely, the vortex - bunch goes to area of larger electron density, and the vortex - hole goes to area of smaller electron density. The speed of the vortex - hole is less than speed of the vortex - bunch. It is shown, that the electron vortices, generated in the plasma lens, can result in to formation of spiral distribution of electron density. The physical mechanism of coalescence of electron vortices - bunches is proposed. 1.Driscoll C.F. et al. Plasma Phys. Contr. Fus. Res. 3 (1989) 507. 2.Kiwamoto Y. et al. Non-neutral plasma physics. Princeton. 1999. P. 99-105. 3.Goncharov A. et al. Plasma Phys. Rep. 20 (1994) 499.

  20. Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins

    NASA Astrophysics Data System (ADS)

    Devoria, Adam C.; Ringuette, Matthew J.

    2012-02-01

    We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.

  1. Effect of wing flexibility in dragonfly hovering flight

    NASA Astrophysics Data System (ADS)

    Naidu, Vishal; Young, John; Lai, Joseph

    2011-11-01

    Dragonflies have two pairs of tandem wings, which can be operated independently. Most studies on tandem wings are based on rigid wings, which is in strong contradiction to the natural, flexible dragonfly wings. The effect of wing flexibility in tandem wings is little known. We carry out a comparative, computational study between rigid and flexible, dragonfly shaped wings for hovering flight. In rigid wings during downstroke, a leading edge vortex (LEV) is formed on the upper surface, which forms a low pressure zone. This conical LEV joins the tip vortex and shortly after the mid downstroke when the wing starts to rotate, these vortices are gradually shed resulting in a drop in lift. The vortex system creates a net downwards momentum in the form of a jet. The flexible wings while in motion deform due to aerodynamic and inertial forces. Since there is a strong interaction between wing deformation and air flow around the deformed wings, flexible wing simulations are carried out using a two way fluid structure interaction. The effect of wing flexibility on the flow structure and the subsequent effect on the aerodynamic forces will be studied and presented.

  2. Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.

    2017-04-01

    Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.

  3. Three-dimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform flow

    NASA Astrophysics Data System (ADS)

    Munir, Adnan; Zhao, Ming; Wu, Helen; Lu, Lin; Ning, Dezhi

    2018-05-01

    The vortex-induced vibration (VIV) of an elastically mounted rotating circular cylinder vibrating in a uniform flow is studied numerically. The cylinder is allowed to vibrate only in the cross-flow direction. In the numerical simulations, the Reynolds number, the mass ratio, and the damping ratio are kept constants to 500, 11.5, and 0, respectively. Simulations are performed for rotation rates of α = 0, 0.5, and 1 and a range of reduced velocities from 1 to 13, which covers the entire lock-in regime. It is found that the lock-in regime of a rotating cylinder is wider than that of a non-rotating cylinder for α = 0, 0.5, and 1. The vortex shedding pattern of a rotating cylinder is found to be similar to that of a non-rotating cylinder. Next, simulations are performed for three typical reduced velocities inside the lock-in regime and a range of higher rotation rates from α = 1.5 to 3.5 to investigate the effect of the rotation rate on the suppression of VIV. It is found that the VIV is suppressed when the rotation rate exceeds a critical value, which is dependent on the reduced velocity. For a constant reduced velocity, the amplitude of the vibration is found to increase with increasing rotation rate until the latter reaches its critical value for VIV suppression, beyond which the vibration amplitude becomes extremely small. If the rotation rate is greater than its critical value, vortex shedding ceases and hairpin vortices are observed due to the rotation of the cylinder.

  4. Optomechanical design of near-null subaperture test system based on counter-rotating CGH plates

    NASA Astrophysics Data System (ADS)

    Li, Yepeng; Chen, Shanyong; Song, Bing; Li, Shengyi

    2014-09-01

    In off-axis subapertures of most convex aspheres, astigmatism and coma dominate the aberrations with approximately quadratic and linear increase as the off-axis distance increases. A pair of counter-rotating computer generated hologram (CGH) plates is proposed to generate variable amount of Zernike terms Z4 and Z6, correcting most of the astigmatism and coma for subapertures located at different positions on surfaces of various aspheric shapes. The residual subaperture aberrations are then reduced within the vertical range of measurement of the interferometer, which enables near-null test of aspheres flexibly. The alignment tolerances for the near-null optics are given with optomechanical analysis. Accordingly a novel design for mounting and aligning the CGH plates is proposed which employs three concentric rigid rings. The CGH plate is mounted in the inner ring which is supported by two couples of ball-end screws in connection with the middle ring. The CGH plate along with the inner ring is hence able to be translated in X-axis and tipped by adjusting the screws. Similarly the middle ring is able to be translated in Y-axis and tilted by another two couples of screws orthogonally arranged and connected to the outer ring. This design is featured by the large center-through hole, compact size and capability of four degrees-of-freedom alignment (lateral shift and tip-tilt). It reduces the height measured in the direction of optical axis as much as possible, which is particularly advantageous for near-null test of convex aspheres. The CGH mounts are then mounted on a pair of center-through tables realizing counter-rotation. Alignment of the interferometer, the CGHs, the tables and the test surface is also discussed with a reasonable layout of the whole test system. The interferometer and the near-null optics are translated by a three-axis stage while the test mirror is rotated and tilted by two rotary tables. Experimental results are finally given to show the near-null subaperture test capability of the system for a convex even asphere.

  5. Effect of angular inflow on the vibratory response of a counter-rotating propeller

    NASA Technical Reports Server (NTRS)

    Turnberg, J. E.; Brown, P. C.

    1985-01-01

    This report presents the results of a propeller vibratory stress survey on the Fairey Gannet aircraft aimed at giving an assessment of the difference in vibratory response between single and counter-rotating propeller operation in angular inflow. The survey showed that counter-rotating operation of the propeller had the effect of increasing the IP response of the rear propeller by approximately 25 percent over comparable single-rotation operation while counter-rotating operation did not significantly influence the IP response of the front propeller.

  6. Trapping and rotating of a metallic particle trimer with optical vortex

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Su, L.; Yuan, X.-C.; Shen, Y.-C.

    2016-12-01

    We have experimentally observed the steady rotation of a mesoscopic size metallic particle trimer that is optically trapped by tightly focused circularly polarized optical vortex. Our theoretical analysis suggests that a large proportion of the radial scattering force pushes the metallic particles together, whilst the remaining portion provides the centripetal force necessary for the rotation. Furthermore, we have achieved the optical trapping and rotation of four dielectric particles with optical vortex. We found that, different from the metallic particles, instead of being pushed together by the radial scattering force, the dielectric particles are trapped just outside the maximum intensity ring of the focused field. The radial gradient force attracting the dielectric particles towards the maximum intensity ring provides the centripetal force for the rotation. The achieved steady rotation of the metallic particle trimer reported here may open up applications such as the micro-rotor.

  7. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    2017-05-26

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  8. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  9. From Rising Bubble to RNA/DNA and Bacteria

    NASA Astrophysics Data System (ADS)

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  10. The difference in age of the two counter-rotating stellar disks of the spiral galaxy NGC 4138

    NASA Astrophysics Data System (ADS)

    Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontà, E.; Coccato, L.; Sanjana, G.

    2014-10-01

    Context. Galaxies accrete material from the environment through acquisitions and mergers. These processes contribute to the galaxy assembly and leave their fingerprints on the galactic morphology, internal kinematics of gas and stars, and stellar populations. Aims: The Sa spiral NGC 4138 is known to host two counter-rotating stellar disks, with the ionized gas co-rotating with one of them. We measured the kinematics and properties of the two counter-rotating stellar populations to constrain their formation scenario. Methods: A spectroscopic decomposition of the observed major-axis spectrum was performed to disentangle the relative contribution of the two counter-rotating stellar and one ionized-gas components. The line-strength indices of the two counter-rotating stellar components were measured and modeled with single stellar population models that account for the α/Fe overabundance. Results: The counter-rotating stellar population is younger, marginally more metal poor, and more α-enhanced than the main stellar component. The younger stellar component is also associated with a star-forming ring. Conclusions: The different properties of the counter-rotating stellar components of NGC 4138 rule out the idea that they formed because of bar dissolution. Our findings support the results of numerical simulations in which the counter-rotating component assembled from gas accreted on retrograde orbits from the environment or from the retrograde merging with a gas-rich dwarf galaxy. Based on observation carried out at the Galileo 1.22 m telescope at Padua University.

  11. Numerical simulation of the effect of upstream swirling flow on swirl meter performance

    NASA Astrophysics Data System (ADS)

    Chen, Desheng; Cui, Baoling; Zhu, Zuchao

    2018-04-01

    Flow measurement is important in the fluid process and transmission system. For the need of accuracy measurement of fluid, stable flow is acquired. However, the elbows and devices as valves and rotary machines may produce swirling flow in the natural gas pipeline networks system and many other industry fields. In order to reveal the influence of upstream swirling flow on internal flow fields and the metrological characteristics, numerical simulations are carried out on the swirl meter. Using RNG k-ɛ turbulent model and SIMPLE algorithm, the flow field is numerically simulated under swirling flows generated from co-swirl and counter-swirl flow. Simulation results show fluctuation is enhanced or weakened depending on the rotating direction of swirling flow. A counter- swirl flow increases the entropy production rate at the inlet and outlet of the swirler, the junction region between throat and divergent section, and then the pressure loss is increased. The vortex precession dominates the static pressure distributions on the solid walls and in the channel, especially at the end region of the throat.

  12. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions.

    PubMed

    Cheng, Szu-Cheng; Jheng, Shih-Da

    2016-08-22

    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.

  13. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  14. Large-eddy substitution via vortex cancellation for wall turbulence control

    NASA Technical Reports Server (NTRS)

    Mcginley, C. B.; Beeler, G. B.

    1985-01-01

    A system of co-rotating longitudinal vortices was used to introduce streamline (as opposed to wall) curvature into a turbulent wall flow. Two methods of vortex cancellation, unwinding and self-annihilation, were tested as a means of removing the vortices once they had processed most of the incoming turbulent boundary layer. Vortex unwinding, which uses vorticity of the opposite sign, was shown to be a viable method for cancelling the co-rotating vortices. Vortex self-annihilation, caused by interference effects resulting from a close initial spanwise vortex spacing, eliminated the vortices within 60 delta downstream. In each case, reductions in boundary layer entrainment were found once the vortices were cancelled.

  15. Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices

    NASA Astrophysics Data System (ADS)

    Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration

    2016-11-01

    Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.

  16. Experiments with a New, Unique Large-Scale Rig Investigating the Effects of Background System Rotation on Vortex Rings in Water

    NASA Astrophysics Data System (ADS)

    Brend, Mark A.; Verzicco, Roberto

    2005-11-01

    We introduce our unique, new large-scale experimental facility [1] designed for our long-term research program investigating the effects of background system rotation on the stability and the dynamics of vortex rings. The new rig constitutes a large water-filled tank positioned on a rotating turntable and its overall height and diameter are 5.7m and 1.4 m, respectively. First experimental and computational results of our program are summarized. We will show various videos of flow visualizations that illustrate some major, qualitative differences between rings propagating in rotating and non-rotating flows. Some of the investigated characteristics of the vortex rings include their translation velocity, the velocity field inside and surrounding the rings, and, in particular, their stability. We will briefly outline experiments employing the relatively new Ultrasonic-Velocity-Profiler technique (UVP). This technique appears to be particularly suited for some of our measurements and it was, as far as we are aware, not previously used in the context of vortex-ring studies. [1] http://www.eng.warwick.ac.uk/staff/pjt/turntabpics/voriskt.html

  17. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine.

  18. Analogies between oscillation and rotation of bodies induced or influenced by vortex shedding

    NASA Astrophysics Data System (ADS)

    Lugt, H. J.

    Vortex-induced or vortex-influenced rotation and oscillation of bodies in a parallel flow are discussed. A steady flow occurs if the body axis is parallel to the flow or if the axis of rotation is perpendicular to the flow. Flows around an oscillating body are quasi-steady only if the Strougal number is much smaller than unity. The connection between rotation and oscillation is demonstrated in terms of the autorotation of a Lanchester propeller, and conditions for stable autorotation are defined. The Riabouchinsky curve is shown to be typical of forces and torques on bodies with vortical wakes, including situations with fixed body axes perpendicular to the flow. A differential equation is formulated for rotational and oscillating bodies that shed vortices by extending the pendulum equation to include vortical effects expressed as a fifth-order polynomial.

  19. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  20. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    PubMed

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  1. Navier-Stokes solutions of unsteady separation induced by a vortex: Comparison with theory and influence of a moving wall

    NASA Astrophysics Data System (ADS)

    Obabko, Aleksandr Vladimirovich

    Numerical solutions of the unsteady Navier-Stokes equations are considered for the flow induced by a thick-core vortex convecting along an infinite surface in a two-dimensional incompressible flow. The formulation is considered as a model problem of the dynamic-stall vortex and is relevant to other unsteady separation phenomena including vorticity ejections in juncture flows and the vorticity production mechanism in turbulent boundary-layers. Induced by an adverse streamwise pressure gradient due to the presence of the vortex above the wall, a primary recirculation region forms and evolves toward a singular solution of the unsteady non-interacting boundary-layer equations. The resulting eruptive spike provokes a small-scale viscous-inviscid interaction in the high-Reynolds-number regime. In the moderate-Reynolds-numbers regime, the growing recirculation region initiates a large-scale interaction in the form of local changes in the streamwise pressure gradient accelerating the spike formation and resulting small-scale interaction through development of a region of streamwise compression. It also was found to induce regions of streamwise expansion and "child" recirculation regions that contribute to ejections of near-wall vorticity and splitting of the "parent" region into multiple co-rotating eddies. These eddies later merge into a single amalgamated eddy that is observed to pair with the detaching vortex similar to the low-Reynolds-number regime where the large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. It is also found that increasing the wall speed or vortex convection velocity toward a critical value results in solutions that are indicative of flows at lower Reynolds numbers eventually leading to suppression of unsteady separation and vortex detachment processes.

  2. High-resolution simulations of unstable cylindrical gravity currents undergoing wandering and splitting motions in a rotating system

    NASA Astrophysics Data System (ADS)

    Dai, Albert; Wu, Ching-Sen

    2018-02-01

    High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting motions occur in a rotating system are reported. In this study, our attention is focused on the situation of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously by the authors. The simulations reproduce the major features of the unstable rotating cylindrical gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the contraction-relaxation motion, and good agreement is found when compared with the experimental results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the simulations provide energy budget information which could not be attained in the laboratory. After the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for approximately 2-3 revolutions of the system. During the contraction-relaxation motion of the heavy fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state, vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces. The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic energy increases at the expense of decreasing potential energy in the system. The completion of vortex-splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent upwelling and downwelling motions, which are observed for both the vortex-wandering and vortex-splitting motions and were not previously documented for such flows. Depending on the Reynolds number, the bulges around the circumference of the unstable rotating cylindrical gravity currents may or may not develop into cutoff distinct circulations. The number of bulges is seen to be dependent on the ratio of Coriolis to inertia forces but independent of the Reynolds number for the range of Reynolds number considered in this study.

  3. Instability of vortex pair leapfrogging

    NASA Astrophysics Data System (ADS)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 < α < 1 of vortex pair sizes at the time when one pair passes through the other. Leapfrogging occurs for α > σ2, where σ = sqrt{2}-1 is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys. 21, 269-273 (2000)], 10.1088/0143-0807/21/3/310 determined by numerical experiments that leapfrogging is linearly unstable for σ2 < α < 0.382, but apparently stable for larger α. Here we derive a linear system of equations governing small perturbations of the leapfrogging motion. We show that symmetry-breaking perturbations are essentially governed by a 2D linear system with time-periodic coefficients and perform a Floquet analysis. We find transition from linearly unstable to stable leapfrogging at α = ϕ2 ≈ 0.381966, where φ = 1/2(sqrt{5}-1) is the golden ratio. Acheson also suggested that there was a sharp transition between a "disintegration" instability mode, where two pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L. Tophøj and H. Aref, "Chaotic scattering of two identical point vortex pairs revisited," Phys. Fluids 20, 093605 (2008)], 10.1063/1.2974830. Both leapfrogging and "walkabout" motions can appear as intermediate states in chaotic scattering at the same values of linear impulse and energy.

  4. Vortex dynamics and scalar transport in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2012-09-01

    The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.

  5. On sharp vorticity gradients in elongating baroclinic eddies and their stabilization with a solid-body rotation

    NASA Astrophysics Data System (ADS)

    Sutyrin, Georgi G.

    2016-06-01

    Wide compensated vortices are not able to remain circular in idealized two-layer models unless the ocean depth is assumed to be unrealistically large. Small perturbations on both cyclonic and anticyclonic eddies grow slower if a middle layer with uniform potential vorticity (PV) is added, owing to a weakening of the vertical coupling between the upper and lower layers and a reduction of the PV gradient in the deep layer. Numerical simulations show that the nonlinear development of the most unstable elliptical mode causes self-elongation of the upper vortex core and splitting of the deep PV anomaly into two corotating parts. The emerging tripolar flow pattern in the lower layer results in self-intensification of the fluid rotation in the water column around the vortex center. Further vortex evolution depends on the model parameters and initial conditions, which limits predictability owing to multiple equilibrium attractors existing in the dynamical system. The vortex core strips thin filaments, which roll up into submesoscale vortices to result in substantial mixing at the vortex periphery. Stirring and damping of vorticity by bottom friction are found to be essential for subsequent vortex stabilization. The development of sharp PV gradients leads to nearly solid-body rotation inside the vortex core and formation of transport barriers at the vortex periphery. These processes have important implications for understanding the longevity of real-ocean eddies.

  6. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    PubMed

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  7. Single-ended counter-rotating radial turbine for space application

    DOEpatents

    Coomes, E.P.; Wilson, D.G.; Webb, B.J.; McCabe, S.J.

    1987-05-13

    A single-ended turbine with counter-rotating blades operating with sodium as the working fluid. The single-ended, counter-rotating feature of the turbine results in zero torque application to a space platform. Thus, maneuvering of the platform is not adversely affected by the turbine. 4 figs.

  8. Modeling and simulation of a counter-rotating turbine system for underwater vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Xinping; Dang, Jianjun

    2016-12-01

    The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk after the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The experimental simulation of the lubricating oil loop, fuel loop, and seawater loop are completed right before the technology scheme of the counter-rotating turbine system is proposed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.

  9. Synchronization in counter-rotating oscillators.

    PubMed

    Bhowmick, Sourav K; Ghosh, Dibakar; Dana, Syamal K

    2011-09-01

    An oscillatory system can have opposite senses of rotation, clockwise or anticlockwise. We present a general mathematical description of how to obtain counter-rotating oscillators from the definition of a dynamical system. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. We present numerical examples of limit cycle van der Pol oscillator and chaotic Rössler and Lorenz systems. Stability conditions of mixed synchronization are analytically obtained for both Rössler and Lorenz systems. Experimental evidences of counter-rotating limit cycle and chaotic oscillators and mixed synchronization are given in electronic circuits.

  10. Flows about a rotating circular cylinder by the discrete-vortex method

    NASA Astrophysics Data System (ADS)

    Kimura, Takeyoshi; Tsutahara, Michihisa

    1987-01-01

    A numerical study has been conducted for flows past a rotating circular cylinder at high Reynolds numbers, using the discrete-vortex method. It is noted that the reverse Magnus effect is caused by the retreat of the separation point on the acceleration side. At high rotating speed, the nascent vortices of opposite directions are mixed faster, the wake becomes narrower, and predominating frequencies in the lift force disappear.

  11. General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorder, Robert A., E-mail: rav@knights.ucf.edu

    2014-06-15

    In his study of superfluid turbulence in the low-temperature limit, Svistunov [“Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutionsmore » holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, “Motion of a vortex filament and its relation to elastica,” J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.« less

  12. Magnetosphere and ionosphere response to a positive-negative pulse pair of solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Tian, A.; Degeling, A. W.

    2017-12-01

    Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.

  13. Preventing Jupiter's Great Red Spot from Turning Itself Inside-Out

    NASA Astrophysics Data System (ADS)

    Shetty, Sushil; Asay-Davis, Xylar; Marcus, Philip

    2002-11-01

    Previous simulations of Jupiter's Great Red Spot (GRS) have failed to reproduce its most prominent feature: its hollowness. Unlike most laboratory 2D vortices, where vorticity is peaked at the center, the GRS has nearly no fluid motion in its interior. The coherent fluid motion is confined to a narrow ring at the outer edge of the GRS that moves counter-clockwise around the vortex. Simulations show that isolated 2D vortices that are as hollow as the GRS are violently unstable, turning themselves inside-out within a few rotations of the vortex. How than can one explain the long-lived, stable GRS? The answer is that the GRS is not isolated but instead embedded in a system of east-west jet streams. The eastward jet streams correspond to strong (potential) vorticity gradients which act as guides for Rossby waves. We show that the interaction between the GRS and the Rossby waves stabilize the GRS. Furthermore, we show that the hollowness of the GRS is near its critical limit, so that if it were any more hollow it would become unstable. We suggest a plausible mechanism through which this critical hollowness is maintained.

  14. Three-dimensionality development inside standard parallelepipedic lid-driven cavities at /Re=1000

    NASA Astrophysics Data System (ADS)

    Migeon, C.; Pineau, G.; Texier, A.

    2003-04-01

    This paper considers the problem of the time-dependent laminar incompressible flow motion within parallelepipedic cavities in which one wall moves with uniform velocity after an impulsive start using a particle-streak and a dye-emission techniques. Of particular concern is the examination of the spanwise structures of the flow in view to point out how three-dimensionality arises and develops with time for a Reynolds number of 1000. For this purpose, attention is focused on the spanwise currents, the end-wall corner vortices and the structures resulting from the centrifugal instability. Among others, the study clearly shows the scenario of propagation of the spanwise currents by giving quantitative information on their velocity and on the time from which a given cross-plane becomes affected by such a 3-D perturbation. Furthermore, the numerous visualizations reveal the existence of only one corner-vortex on each end-wall; this vortex is quasi-toroidal shaped. Finally, concerning flow instability, the present results show that no well-formed counter-rotating vortices emerge for /Re=1000 during the start-up phase contrary to what was asserted so far. However, two successive initial phases of this instability development are revealed for the first time.

  15. Cyclone–anticyclone vortex asymmetry mechanism and linear Ekman friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefranov, S. G., E-mail: schefranov@mail.ru

    2016-04-15

    Allowance for the linear Ekman friction has been found to ensure a threshold (in rotation frequency) realization of the linear dissipative–centrifugal instability and the related chiral symmetry breaking in the dynamics of Lagrangian particles, which leads to the cyclone–anticyclone vortex asymmetry. An excess of the fluid rotation rate ω{sub 0} over some threshold value determined by the fluid eigenfrequency ω (i.e., ω{sub 0} > ω) is shown to be a condition for the realization of such an instability. A new generalization of the solution of the Karman problem to determine the steady-state velocity field in a viscous incompressible fluid abovemore » a rotating solid disk of large radius, in which the linear Ekman friction was additionally taken into account, has been obtained. A correspondence of this solution and the conditions for the realization of the dissipative–centrifugal instability of a chiral-symmetric vortex state and the corresponding cyclone–anticyclone vortex asymmetry has been shown. A generalization of the well-known spiral velocity distribution in an “Ekman layer” near a solid surface has been established for the case where the fluid rotation frequency far from the disk ω differs from the disk rotation frequency ω{sub 0}.« less

  16. Electrochemical cell

    DOEpatents

    Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

    1992-08-25

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

  17. Electrochemical cell

    DOEpatents

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  18. Elliptic jets, part 2. Dynamics of coherent structures: Pairing

    NASA Technical Reports Server (NTRS)

    Husain, Hyder S.; Hussain, Fazle

    1992-01-01

    The dynamics of the jet column mode of vortex pairing in the near field of an elliptic jet was investigated. Hot-wire measurements and flow visualization were used to examine the details of the pairing mechanism of nonplanar vortical elliptic structures and its effect on such turbulence measures as coherent velocities, incoherent turbulence intensities, incoherent and coherent Reynolds, stresses, turbulence production, and mass entrainment. It was found that pairing of elliptic vortices in the jet column does not occur uniformly around the entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane. In the initial minor-axis plane, the trailing vortex rushes through the leading vortex without pairing and then breaks down violently, producing considerably greater entrainment and mixing than in circular or plane jets.

  19. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE PAGES

    Oliver, J. B.

    2017-06-12

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  20. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.

    PubMed

    Oliver, J B

    2017-06-20

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  1. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J. B.

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  2. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  3. The Rapid Intensification of Hurricane Karl (2010): New Remote Sensing Observations of Convective Bursts from the Global Hawk Platform

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Heymsfield, Gerald M.; Reasor, Paul; Didlake, Anthony C., Jr.

    2016-01-01

    The evolution of rapidly intensifying Hurricane Karl (2010) is examined from a suite of remote sensing observations during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment. The novelties of this study are in the analysis of data from the airborne Doppler radar HIWRAP and the new Global Hawk airborne platform that allows long endurance sampling of hurricanes. Supporting data from the HAMSR microwave sounder coincident with HIWRAP and coordinated flights with the NOAA WP-3D aircraft help to provide a comprehensive understanding of the storm. The focus of the analysis is on documenting and understanding the structure, evolution and role of small scale, deep convective forcing in the storm intensification process. Deep convective bursts are sporadically initiated in the downshear quadrants of the storm and rotate into the upshear quadrants for a period of 12 h during the rapid intensification. The aircraft data analysis indicates that the bursts are being formed and maintained through a combination of two main processes: (1) convergence generated from counter-rotating mesovortex circulations and the larger vortex-scale flow and (2) the turbulent (scales of 25 km) transport of anomalously warm, buoyant air from the eye to the eyewall at low levels. The turbulent mixing across the eyewall interface and forced convective descent adjacent to the bursts assists in carving out the eye of Karl, which leads to an asymmetric enhancement of the warm core. The mesovortices play a key role in the evolution of the features described above.The Global Hawk aircraft allowed an examination of the vortex response and axisymmetrization period in addition to the burst pulsing phase. A pronounced axisymmetric development of the vortex is observed following the pulsing phase that includes a sloped eyewall structure and formation of a clear, wide eye.

  4. Effect of fluctuations on the NMR relaxation beyond the Abrikosov vortex state

    DOE PAGES

    Glatz, A.; Galda, A.; Varlamov, A. A.

    2015-08-25

    Here, the effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate W = T –1 1 is studied in a complete phase diagram of a two-dimensional superconductor above the upper critical field line H c2(T). In the region of relatively high temperatures and low magnetic fields, the relaxation rate W is determined by two competing effects. The first one is its decrease in the result of suppression of the quasiparticle density of states (DOS) due to formation of fluctuation Cooper pairs (FCPs). The second one is a specific, purely quantum relaxation process of the Maki-Thompson (MT) type, whichmore » for low field leads to an increase of the relaxation rate. The latter describes particular fluctuation processes involving self-pairing of a single electron on self-intersecting trajectories of a size up to phase-breaking length ℓ Φ which becomes possible due to an electron spin-flip scattering event at a nucleus. As a result, different scenarios with either growth or decrease of the NMR relaxation rate are possible upon approaching the normal-metal–type-II superconductor transition. The character of fluctuations changes along the line H c2(T) from the thermal long-wavelength type in weak magnetic fields to the clusters of rotating FCPs in fields comparable to Hc2(0). We find that below the well-defined temperature T* 0 ≈ 0.6T c0, the MT process becomes ineffective even in the absence of intrinsic pair breaking. The small scale of the FCP rotations ξ xy in such high fields impedes formation of long (≲ℓ Φ) self-intersecting trajectories, causing the corresponding relaxation mechanism to lose its efficiency. This reduces the effect of superconducting fluctuations in the domain of high fields and low temperatures to just the suppression of quasiparticle DOS, analogous to the Abrikosov vortex phase below the H c2(T) line.« less

  5. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  6. On the plasma flow inside magnetic tornadoes on the Sun

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Steiner, Oskar

    2014-12-01

    High-resolution observations with the Swedish 1-m Solar Telescope (SST) and the Solar Dynamics Observatory (SDO) reveal rotating magnetic field structures that extend from the solar surface into the chromosphere and the corona. These so-called magnetic tornadoes are primarily detected as rings or spirals of rotating plasma in the Ca II 854.2 nm line core (also known as chromospheric swirls). Detailed numerical simulations show that the observed chromospheric plasma motion is caused by the rotation of magnetic field structures, which again are driven by photospheric vortex flows at their footpoints. Under the right conditions, two vortex flow systems are stacked on top of each other. We refer to the lower vortex, which extends from the low photosphere into the convection zone, as intergranular vortex flow (IVF). Once a magnetic field structure is co-located with an IVF, the rotation is mediated into the upper atmospheric layers and an atmospheric vortex flow (AVF, or magnetic tornado) is generated. In contrast to the recent work by Shelyag et al. (2013, ApJ, 776, L4), we demonstrate that particle trajectories in a simulated magnetic tornado indeed follow spirals and argue that the properties of the trajectories decisively depend on the location in the atmosphere and the strength of the magnetic field.

  7. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  8. A Study of Dean Vortex Development and Structure in a Curved Rectangular Channel with Aspect Ratio of 40 at Dean Numbers up to 430

    NASA Technical Reports Server (NTRS)

    Ligrani, Phillip M.

    1994-01-01

    Flow in a curved channel with mild curvature, an aspect ratio of 40 to 1, and an inner to outer radius ratio of 0.979 is studied at Dean numbers De ranging from 35 to 430. For positions from the start of curvature ranging from 85 to 145 degrees, the sequence of transition events begins with curved channel Poiseuille flow at De less than 40-64. As the Dean number increases, observations show initial development of Dean vortex pairs, followed by symmetric vortex pairs which, when viewed in spanwise/radial planes, cover the entire channel height (De=90-100). At De from 40 to 125-130, the vortex pairs often develop intermittent waviness in the form of vortex undulations. Splitting and merging of vortex pairs is also observed over the same experimental conditions as well as at higher De. When Dean numbers range from 130 to 185-200, the undulating wavy mode is replaced by a twisting mode with higher amplitudes of oscillation and shorter wavelengths. The twisting wavy mode results in the development of regions where turbulence intensity is locally augmented at Dean numbers from 150 to 185-200, principally in the upwash regions between the two individual vortices which make up each vortex pair. These turbulent regions eventually increase in intensity and spatial extent as the Dean number increases further, until individual regions merge together so that the entire cross section of the channel contains chaotic turbulent motions. When Dean numbers then reach 400-435, spectra of velocity fluctuations then evidence fully turbulent flow.

  9. Numerical study of vortex rope during load rejection of a prototype pump-turbine

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Liu, S. H.; Sun, Y. K.; Wu, Y. L.; Wang, L. Q.

    2012-11-01

    A transient process of load rejection of a prototype pump-turbine was studied by three dimensional, unsteady simulations, as well as steady calculations.Dynamic mesh (DM) method and remeshing method were used to simulate the rotation of guide vanes and runner. The rotational speed of the runner was predicted by fluid couplingmethod. Both the transient calculation and steady calculation were performed based on turbulence model. Results show that steady calculation results have large error in the prediction of the external characteristics of the transient process. The runaway speed can reach 1.15 times the initial rotational speed during the transient process. The vortex rope occurs before the pump-turbine runs at zero moment point. Vortex rope has the same rotating direction with the runner. The vortex rope is separated into two parts as the flow rate decreases to 0. Pressure level decreases during the whole transient process.The transient simulation result were also compared and verified by experimental results. This computational method could be used in the fault diagnosis of transient operation, as well as the optimization of a transient process.

  10. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    PubMed

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  11. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam.

    PubMed

    Fang, Zhao-Xiang; Chen, Yue; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De; Zhang, An-Qi; Zhao, Hong-Ze; Wang, Pei

    2018-03-19

    Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.

  12. Prediction of aerodynamic tonal noise from open rotors

    NASA Astrophysics Data System (ADS)

    Sharma, Anupam; Chen, Hsuan-nien

    2013-08-01

    A numerical approach for predicting tonal aerodynamic noise from "open rotors" is presented. "Open rotor" refers to an engine architecture with a pair of counter-rotating propellers. Typical noise spectra from an open rotor consist of dominant tones, which arise due to both the steady loading/thickness and the aerodynamic interaction between the two bladerows. The proposed prediction approach utilizes Reynolds Averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations to obtain near-field description of the noise sources. The near-to-far-field propagation is then carried out by solving the Ffowcs Williams-Hawkings equation. Since the interest of this paper is limited to tone noise, a linearized, frequency domain approach is adopted to solve the wake/vortex-blade interaction problem.This paper focuses primarily on the speed scaling of the aerodynamic tonal noise from open rotors. Even though there is no theoretical mode cut-off due to the absence of nacelle in open rotors, the far-field noise is a strong function of the azimuthal mode order. While the steady loading/thickness noise has circumferential modes of high order, due to the relatively large number of blades (≈10-12), the interaction noise typically has modes of small orders. The high mode orders have very low radiation efficiency and exhibit very strong scaling with Mach number, while the low mode orders show a relatively weaker scaling. The prediction approach is able to capture the speed scaling (observed in experiment) of the overall aerodynamic noise very well.

  13. Performance improvement in a tubular heat exchanger by punched delta-winglet vortex generators

    NASA Astrophysics Data System (ADS)

    Khanoknaiyakarn, C.; Promvonge, P.; Thianpong, C.; Skullong, S.

    2018-01-01

    A novel tubular heat exchanger incorporated with punched delta-winglet vortex generators (called perforated delta-winglet vortex generator, P-DWVG) is proposed for improving its thermal performance and energy saving. The P-DWVG elements are punched out from a straight tape having its width nearly equal to the tube diameter before insertion. The main aim at employing the P-DWVG insert is to produce counter-rotating vortices along the tube to promote turbulence intensity inside as well as to transport the cold fluid at the central core to the near-wall regions. The experiment was performed to study thermal behaviors in a uniform heat-fluxed tube inserted with P-DWVGs. The P-DWVGs with the attack angle of 45° were mounted periodically with three different blockage ratios (BR = 0.1, 0.2 and 0.3) and two pitch ratios (PR = 2 and 3). Air as the test fluid was varied to obtain turbulent airflow for Reynolds number (Re) in a range of 4,150-25,500. The experimental results show that the P-DWVG provides a considerable increase in the rate of heat transfer around 3.1-4.01 times whereas friction factor increases around 11.44- 34.23 times higher than the plain tube. To assess the real benefits of P-DWVGs, thermal performance factor (TEF) is examined and in the range of 1.39-1.48 where its maximum is at BR = 0.1 and PR = 2.

  14. Flow characteristics of bounded self-organized dust vortex in a complex plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, D.; Chattopdhyay, P. K.; Kaw, P. K.

    2018-01-01

    Dust clouds are often formed in many dusty plasma experiments, when micron size dust particles introduced in the plasma are confined by spatial non-uniformities of the potential. These formations show self-organized patterns like vortex or circulation flows. Steady-state equilibrium dynamics of such dust clouds is analyzed by 2D hydrodynamics for varying Reynolds number, Re, when the cloud is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in a dynamic equilibrium with an unbounded sheared plasma flow. The nonconservative forcing due to ion flow shear generates finite vorticity in the confined dust clouds. In the linear limit (Re ≪ 1), the collective flow is characterized by a single symmetric and elongated vortex with scales correlating with the driving field and those generated by friction with the boundaries. However in the high Re limit, (Re ≥ 1), the nonlinear inertial transport (u . ∇u) is effective and the vortex structure is characterized by an asymmetric equilibrium and emergence of a circular core region with uniform vorticity, over which the viscous stress is negligible. The core domain is surrounded by a virtual boundary of highly convective flow followed by thin shear layers filled with low-velocity co- and counter-rotating vortices, enabling the smooth matching with external boundary conditions. In linear regime, the effective boundary layer thickness is recovered to scale with the dust kinematic viscosity as Δr ≈ μ1/3 and is modified as Δr ≈ (μL∥/u)1/2 in the nonlinear regime through a critical kinematic viscosity μ∗ that signifies a structural bifurcation of the flow field solutions. The flow characteristics recovered are relevant to many microscopic biological processes at lower Re, as well as gigantic vortex flows such as Jovian great red spot and white ovals at higher Re.

  15. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  16. Low-speed wind-tunnel tests of single- and counter-rotation propellers

    NASA Technical Reports Server (NTRS)

    Dunham, D. M.; Gentry, G. L., Jr.; Coe, P. L., Jr.

    1986-01-01

    A low-speed (Mach 0 to 0.3) wind-tunnel investigation was conducted to determine the basic performance, force and moment characteristics, and flow-field velocities of single- and counter-rotation propellers. Compared with the eight-blade single-rotation propeller, a four- by four- (4 x 4) blade counter-rotation propeller with the same blade design produced substantially higher thrust coefficients for the same blade angles and advance ratios. The results further indicated that ingestion of the wake from a supporting pylon for a pusher configuration produced no significant change in the propeller thrust performance for either the single- or counter-rotation propellers. A two-component laser velocimeter (LV) system was used to make detailed measurements of the propeller flow fields. Results show increasing slipstream velocities with increasing blade angle and decreasing advance ratio. Flow-field measurements for the counter-rotation propeller show that the rear propeller turned the flow in the opposite direction from the front propeller and, therefore, could eliminate the swirl component of velocity, as would be expected.

  17. The research on the drag reduction of a transport aircraft with upswept afterbody using long fins

    DTIC Science & Technology

    2016-03-30

    drag. A pair of fins installed under the fuselage extruding the core of the vortices effectively damp the vortex. Parametric study shows that the length...space near the body and move downstream. The vortex system shifts from lower vortexes, none vortex to upper vortexes when the AOA change from negative to

  18. Vortex systems on slender rotating bodies and their effect on the aerodynamic coefficients

    NASA Technical Reports Server (NTRS)

    Fiechter, M.

    1986-01-01

    The turbulent flow of rotational bodies up to a length of 20 diameters with various head shapes and cylindrical tails was examined in the subsonic wind tunnel with the Mach number of M = 0.1. At angles of incidence lower than 30 degrees, a pair of symmetrical eddies rests stationary from head to tail on the trailing side, very close to the body. At angles between 30 and 60 degrees, the stationary eddies are asymmetrically pushed off. Between 60 and 90 degrees, the eddies detach themselves in an instationary manner. This includes, for example, the turbulent flow at the start-up of flying bodies in the presence of lateral winds. The results of measurments obtained by Mello at M = 2, an impulse method, and the cross flow theory according to Allen are used for comparison.

  19. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team

  20. Tropical Storms Bud and Dera

    NASA Image and Video Library

    2001-04-04

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. http://photojournal.jpl.nasa.gov/catalog/PIA03400

  1. Wingtip mounted, counter-rotating proprotor for tiltwing aircraft

    NASA Technical Reports Server (NTRS)

    Wechsler, James K. (Inventor); Rutherford, John W. (Inventor)

    1995-01-01

    A tiltwing aircraft, capable of in-flight conversion between a hover and forward cruise mode, employs a counter-rotating proprotor arrangement which permits a significantly increased cruise efficiency without sacrificing either the size of the conversion envelope or the wing efficiency. A benefit in hover is also provided because of the lower effective disk loading for the counter-rotating proprotor, as opposed to a single rotation proprotor of the same diameter. At least one proprotor is provided on each wing section, preferably mounted on the wingtip, with each proprotor having two counter-rotating blade rows. Each blade row has a plurality of blades which are relatively stiff-in-plane and are mounted such that cyclic pitch adjustments may be made for hover control during flight.

  2. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Patel, D. K.

    1974-01-01

    Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.

  3. Behaviour of Rotating Bose Einstein Condensates Under Shrinking

    NASA Astrophysics Data System (ADS)

    Zhai, Hui; Zhou, Qi

    2005-01-01

    When the repulsive interaction strength between atoms decreases, the size of a rotating Bose-Einstein condensate will consequently shrink. We find that the rotational frequency will increase during the shrinking of condensate, which is a quantum mechanical analogy to ballet dancing. Compared to a non-rotating condensate, the size of a rotating BEC will eventually be saturated at a finite value when the interaction strength is gradually reduced. We also calculate the vortex dynamics induced by the atomic current, and discuss the difference of vortex dynamics in this case and that observed in a recent experiment carried out by the JILA group [Phys. Rev. Lett. 90 (2003) 170405].

  4. International Space Station Attitude Motion Associated With Flywheel Energy Storage

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1999-01-01

    Flywheels can exert torque that alters the Station's attitude motion, either intentionally or unintentionally. A design is presented for a once planned experiment to contribute torque for Station attitude control, while storing or discharging energy. Two contingencies are studied: the abrupt stop of one rotor while another rotor continues to spin at high speed, and energy storage performed with one rotor instead of a counter rotating pair. Finally, the possible advantages to attitude control offered by a system of ninety-six flywheels are discussed.

  5. Laser Doppler measurements of laminar and turbulent flow in a pipe bend

    NASA Technical Reports Server (NTRS)

    Enayet, M. M.; Gibson, M. M.; Taylor, A. M. K. P.; Yianneskis, M.

    1982-01-01

    The streamwise components of velocity in the flow through a ninety degree bend of circular cross section for which the ratio of radius of curvature to diameter is 2.8 were measured. The development of strong pressure driven secondary flow in the form of a pair of counter rotating vortices in the steamwise direction is shown. Refractive index matching at the fluid wall interface was not employed; the displacement of the measurement volume due to refraction is allowed for in simple geometrical calculations.

  6. A laboratory comparison of clockwise and counter-clockwise rapidly rotating shift schedules, part I, sleep : final report.

    DOT National Transportation Integrated Search

    2002-05-01

    INTRODUCTION. Many air traffic control specialists work relatively unique counter-clockwise, rapidly rotating shift schedules. Researchers recommend, however, that if rotating schedules are to be used, they should rotate in a clockwise, rather than a...

  7. Qualitative numerical study of simultaneous high-G-intensified gas–solids contact, separation and segregation in a bi-disperse rotating fluidized bed in a vortex chamber

    DOE PAGES

    De Wilde, Juray; Richards, George; Benyahia, Sofiane

    2016-05-13

    Coupled discrete particle method – computational fluid dynamics simulations are carried out to demonstrate the potential of combined high-G-intensified gas-solids contact, gas-solids separation and segregation in a rotating fluidized bed in a static vortex chamber. A case study with two distinct types of particles is focused on. When feeding solids using a standard solids inlet design, a dense and uniform rotating fluidized bed is formed, guaranteeing intense gas-solids contact. The presence of both types of particles near the chimney region reduces, however, the strength of the central vortex and is detrimental for separation and segregation. Optimization of the solids inletmore » design is required, as illustrated by stopping the solids feeding. High-G separation and segregation of the batch of particles is demonstrated, as the strength of the central vortex is restored. The flexibility with respect to the gas flow rate of the bed density and uniformity and of the gas-solids separation and segregation is demonstrated, a unique feature of vortex chamber generated rotating fluidized beds. With the particles considered in this case study, turbulent dispersion by large eddies in the gas phase is shown to have only a minor impact on the height of the inner bed of small/light particles.« less

  8. Nonlinear vortex dynamics in open nonequilibrium systems with bulk mass loss and a generation mechanism for tornadoes and typhoons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.u

    2010-06-15

    Based on a general model of nonlinear vortex dynamics in open thermodynamically nonequilibrium systems with bulk or surface mass losses, an analysis is presented of the mechanism of generation of violent atmospheric vortices (tornadoes, typhoons, cyclones) associated with the formation of deep cloud systems by intense condensation of water vapor from moist air cooled below the dew point. Simple particular solutions to the Navier-Stokes equations are found that describe both axisymmetric and nonaxisymmetric incompressible vortex motions involving radial and vertical flows with viscous dissipation vanishing identically everywhere except for a thin shear layer at the boundary of the condensation region.more » It is shown that the nonlinear convective and local Coriolis forces generated by radial inflow in the presence of a background vorticity due to a global Coriolis force (the Earth's rotation) accelerate the solid-body rotation in the vortex core either exponentially or in a nonlinear regime of finite-time blow-up. Due to updrafts, such a vortex is characterized by a strong helicity. This mechanism explains a number of observed properties and characteristics of the structure and evolution of tornadoes and typhoons. Upper estimates are found for the kinetic energies of violent atmospheric vortices. It is shown that increase in rotational kinetic energy of atmospheric vortices with constant vortex-core radii is consistent with energy and momentum conservation, because radial inflow continually supplies the required amount of rotational kinetic energy drawn from the ambient atmosphere to an open system.« less

  9. Evolution of finite-amplitude localized vortices in planar homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob

    2017-02-01

    An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.

  10. Magnetic vortex nucleation modes in static magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanatka, Marek; Urbanek, Michal; Jira, Roman

    The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less

  11. Magnetic vortex nucleation modes in static magnetic fields

    DOE PAGES

    Vanatka, Marek; Urbanek, Michal; Jira, Roman; ...

    2017-10-03

    The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less

  12. Tunable artificial vortex ice in nanostructured superconductors with a frustrated kagome lattice of paired antidots

    NASA Astrophysics Data System (ADS)

    Xue, C.; Ge, J.-Y.; He, A.; Zharinov, V. S.; Moshchalkov, V. V.; Zhou, Y. H.; Silhanek, A. V.; Van de Vondel, J.

    2018-04-01

    Theoretical proposals for spin-ice analogs based on nanostructured superconductors have suggested larger flexibility for probing the effects of fluctuations and disorder than in the magnetic systems. In this paper, we unveil the particularities of a vortex ice system by direct observation of the vortex distribution in a kagome lattice of paired antidots using scanning Hall probe microscopy. The theoretically suggested vortex ice distribution, lacking long-range order, is observed at half matching field (H1/2 ). Moreover, the vortex ice state formed by the pinned vortices is still preserved at 2 H1/3 . This unexpected result is attributed to the introduction of interstitial vortices at these magnetic-field values. Although the interstitial vortices increase the number of possible vortex configurations, it is clearly shown that the vortex ice state observed at 2 H1/3 is less prone to defects than at H1/2 . In addition, the nonmonotonic variations of the vortex ice quality on the lattice spacing indicates that a highly ordered vortex ice state cannot be attained by simply reducing the lattice spacing. The optimal design to observe defect-free vortex ice is discussed based on the experimental statistics. The direct observations of a tunable vortex ice state provides new opportunities to explore the order-disorder transition in artificial ice systems.

  13. Average-passage simulation of counter-rotating propfan propulsion systems as applied to cruise missiles

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Schneider, Jon C.; Adamczyk, John J.

    1989-01-01

    Counter-rotating propfan (CRP) propulsion technologies are currently being evaluated as cruise missile propulsion systems. The aerodynamic integration concerns associated with this application are being addressed through the computational modeling of the missile body-propfan flowfield interactions. The work described in this paper consists of a detailed analysis of the aerodynamic interactions between the control surfaces and the propfan blades through the solution of the average-passage equation system. Two baseline configurations were studied, the control fins mounted forward of the counter-rotating propeller and the control fins mounted aft of the counter-rotating propeller. In both cases, control fin-propfan separation distance and control fin deflection angle were varied.

  14. Structure of vortices in superfluid 3He A-like phase in uniaxially stretched aerogel

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2009-02-01

    Possible vortex-core transitions in A-like phase of superfluid 3He in uniaxially stretched aerogel are investigated. Since the global anisotropy in this system induces the polar pairing state in a narrow range close to the superfluid transition in addition to the A-like and B-like phases, the polar state may occur in the core of a vortex in the A-like phase identified with the ABM pairing state, like in the case of the bulk B phase where a core including the ABM state is realized at higher pressures. We examine the core structure of a single vortex under the boundary condition compatible with the Mermin-Ho vortex in the presence of the dipole interaction. Following Salomaa and Volovik's approach, we numerically solve the Ginzburg-Landau equation for an axially symmetric vortex and, by examining its stability against nonaxisymmetric perturbations, discuss possible vortex core states. It is found that a first order transition on core states may occur on warming from an axisymmetric vortex with a nonunitary core to a singular vortex with the polar core.

  15. Intensity of vortices: from soap bubbles to hurricanes

    PubMed Central

    Meuel, T.; Xiong, Y. L.; Fischer, P.; Bruneau, C. H.; Bessafi, M.; Kellay, H.

    2013-01-01

    By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones. PMID:24336410

  16. Intermittency of acceleration in isotropic turbulence.

    PubMed

    Lee, Sang; Lee, Changhoon

    2005-05-01

    The intermittency of acceleration is investigated for isotropic turbulence using direct numerical simulation. Intermittently found acceleration of large magnitude always points towards the rotational axis of a vortex filament, indicating that the intermittency of acceleration is associated with the rotational motion of the vortices that causes centripetal acceleration, which is consistent with the reported result for the near-wall turbulence. Furthermore, investigation on movements of such vortex filaments provides some insights into the dynamics of local dissipation, enstrophy and acceleration. Strong dissipation partially covering the edge of a vortex filament shows weak correlation with enstrophy, while it is strongly correlated with acceleration.

  17. Synchronized vortex shedding and sound radiation from two side-by-side rectangular cylinders of different cross-sectional aspect ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Octavianty, Ressa, E-mail: ressa-octavianty@ed.tmu.ac.jp; Asai, Masahito, E-mail: masai@tmu.ac.jp

    Synchronized vortex shedding from two side-by-side cylinders and the associated sound radiation were examined experimentally at Reynolds numbers of the order of 10{sup 4} in low-Mach-number flows. In addition to a pair of square cylinders, a pair of rectangular cylinders, one with a square cross section (d × d) and the other with a rectangular cross section (d × c) having a cross-sectional aspect ratio (c/d) of 1.2–1.5, was considered. The center-to-center distance between the two cylinders L/d was 3.6, 4.5, and 6.0; these settings were within the non-biased flow regime for side-by-side square cylinders. In case of a squaremore » cylinder pair, anti-phase synchronized vortex shedding occurring for L/d = 3.6 and 4.5 generated a quadrupole-like sound source which radiated in-phase, planar-symmetric sound in the far field. Synchronized vortex shedding from the two rectangular cylinders with different c/d also occurred with almost the same frequency as the characteristic frequency of the square-cylinder wake in the case of the small center-to-center distance, L/d = 3.6, for all the cylinder pairs examined. The synchronized sound field was anti-phase and asymmetric in amplitude, unlike the case of a square cylinder pair. For larger spacing L/d = 4.5, synchronized vortex shedding and anti-phase sound still occurred, but only for close cross-sectional aspect ratios (c/d = 1.0 and 1.2), and highly modulated sound was radiated with two different frequencies due to non-synchronized vortex shedding from the two cylinders for larger differences in c/d. It was also found that when synchronized vortex shedding occurred, near-wake velocity fluctuations exhibited high spanwise-coherency, with a very sharp spectral peak compared with the single-cylinder case.« less

  18. Topological phase transition of decoupling quasi-two-dimensional vortex pairs in La1- y Sm y MnO3 + δ ( y = 0.85, 1.0)

    NASA Astrophysics Data System (ADS)

    Bukhanko, F. N.; Bukhanko, A. F.

    2016-10-01

    Characteristic signs of the universal Nelson-Kosterlitz jump of the superconducting liquid density in the temperature dependences of the magnetization of La1- y Sm y MnO3 + δ samples with samarium concentrations y = 0.85 and 1.0, which are measured in magnetic fields 100 Oe ≤ H ≤ 3.5 kOe, are detected. As the temperature increases, the sample with y = 0.85 exhibits a crescent-shaped singularity in the dc magnetization curve near the critical temperature of decoupling vortex-antivortex pairs ( T KT ≡ T c ≈ 43 K), which is independent of measuring magnetic field H and is characteristic of the dissociation of 2D vortex pairs. A similar singularity is also detected in the sample with a samarium concentration y = 1.0 at a significantly lower temperature ( T KT ≈ 12 K). The obtained experimental results are explained in terms of the topological Kosterlitz-Thouless phase transition of dissociation of 2D vortex pairs in a quasi-two-dimensional weak Josephson coupling network.

  19. Translation of waves along quantum vortex filaments in the low-temperature two-dimensional local induction approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorder, Robert A., E-mail: Robert.VanGorder@maths.ox.ac.uk

    2015-09-15

    In a recent paper, we give a study of the purely rotational motion of general stationary states in the two-dimensional local induction approximation (2D-LIA) governing superfluid turbulence in the low-temperature limit [B. Svistunov, “Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)]. Such results demonstrated that variety of stationary configurations are possible from vortex filaments exhibiting purely rotational motion in addition to commonly discussed configurations such as helical or planar states. However, the filaments (or, more properly, waves along these filaments) can also exhibit translational motion along the axis of orientation. In contrast to the study onmore » vortex configurations for purely rotational stationary states, the present paper considers non-stationary states which exhibit a combination of rotation and translational motions. These solutions can essentially be described as waves or disturbances which ride along straight vortex filament lines. As expected from our previous work, there are a number of types of structures that can be obtained under the 2D-LIA. We focus on non-stationary states, as stationary states exhibiting translation will essentially take the form of solutions studied in [R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)], with the difference being translation along the reference axis, so that qualitative appearance of the solution geometry will be the same (even if there are quantitative differences). We discuss a wide variety of general properties of these non-stationary solutions and derive cases in which they reduce to known stationary states. We obtain various routes to Kelvin waves along vortex filaments and demonstrate that if the phase and amplitude of a disturbance both propagate with the same wave speed, then Kelvin waves will result. We also consider the self-similar solutions to the model and demonstrate that these types of solutions can model vortex kinks that gradually smooth and radiate Kelvin waves as time increases. Such solutions qualitatively agree with what one might expect from post-reconnection events.« less

  20. Vortex Flux Pinning in Type-Ii Superconductors

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad-Khair A. M.

    1995-01-01

    Rotational magnetization vector measurements on polycrystalline samples of rm YBa_2Cu _3O_7 (YBCO) and (Ba, K)BiO _3 at various fixed fields (H) and temperatures (T) reveal that the vortex flux density (B) in a rotational state consists of a component B_{rm R}, which rotates rigidly with sample rotation, and a B_{rm F} component, which stays at a fixed frictional angle (theta _{rm F}) relative to H. Also, B_{rm R} decreases and ultimately vanishes with increasing H, while B _{rm F} grows monotonically, implying that the vortex pinning strength have a broad distribution. This has been confirmed by the measurements on YBCO of the remanent flux density B^ {rm rm} which can be decomposed analogously into B_{R} ^{} and B_ {F}^{} at angle theta_{F}^{} relative to H. The quantity Hsin theta_{rm F},, which at equilibrium equals tau_{rm p}/mu (the average pinning torque per vortex of moment mu) decreases with increasing high H. This result and the distribution in the strength of the pinning are shown to be consistent with the collective pinning process of vortex bundling. At fixed H, tau_{rm p} decreases rapidly with increasing T, varying approximately as T^{-0.8} for both samples. For polycrystalline YBCO at 4.2 K, B_ {rm R} and B_{ rm F} are found to relax differently with time. The negative creep sign of B_ {rm R} indicates that the number of rotational vortices decreases with time, whereas B _{rm F} shows a positive creep with a negative change in theta_ {rm F}, which indicates that more frictional vortices enter the sample with a tendency of alignment in the direction of H. For grain-oriented YBCO at 4.2 K, the vortex creep measurements of B along the c-axis at different fields showed that: whenever the hysteretic changes of H are reversed in sign, the vortex flux creep (dB/dlogt) decreases very rapidly to zero, where it lingers before changing sign. At the same turning values of H, (dB/dH) also goes to zero. These properties are attributable to the reversals of the vortex motion which occur at the turning values of H and cause a reversal of frictional pinning forces.

  1. Technology and benefits of aircraft counter rotation propellers

    NASA Technical Reports Server (NTRS)

    Strack, W. C.; Knip, G.; Weisbrich, A. L.; Godston, J.; Bradley, E.

    1981-01-01

    Results are reported of a NASA sponsored analytical investigation into the merits of advanced counter rotation propellers for Mach 0.80 commercial transport application. Propeller and gearbox performance, acoustics, vibration characteristics, weight, cost and maintenance requirements for a variety of design parameters and special features were considered. Fuel savings in the neighborhood of 8 percent relative to single rotation configurations are feasible through swirl recovery and lighter gearboxes. This is the net gain which includes a 5 percent acoustic treatment weight penalty to offset the broader frequency spectrum noise produced by counter rotation blading.

  2. Computational and Experimental Study of the Transient Transport Phenomena in a Full-Scale Twin-Roll Continuous Casting Machine

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong

    2017-02-01

    To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.

  3. Steady Aerodynamic Characteristics of Two-Dimensional NACA0012 Airfoil for One Revolution Angle of Attack

    NASA Astrophysics Data System (ADS)

    Park, Byung Ho; Han, Yong Oun

    2018-04-01

    Steady variations in aerodynamic forces and flow behaviors of two-dimensional NACA0012 airfoil were investigated using a numerical method for One Revolution Angle of Attack (AOA) at Reynolds number of 105 . The profiles of lift coefficients, drag coefficients, and pressure coefficients were compared with those of the experimental data. The AERODAS model was used to analyze the profiles of lift and drag coefficients. Wake characteristics were given along with the deficit profiles of incoming velocity components. Both the characteristics of normal and reverse airfoil models were compared with the basic aerodynamic data for the same range of AOA. The results show that two peaks of the lift coefficients appeared at 11.5{°} and 42{°} and are in good agreement with the pre-stall and post-stall models, respectively. Counter-rotating vortex flows originated from the leading and trailing edges at a high AOA, which formed an impermeable zone over the suction surface and made reattachments in the wake. Moreover, the acceleration of inflow along the boundary of the vortex wrap appeared in the profile of the wake velocity. The drag profile was found to be independent of the airfoil mode, but the lift profile was quite sensitive to the airfoil mode.

  4. Rotating Wheel Wake

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer

    2016-11-01

    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  5. Einstein–Bose condensation of Onsager vortices

    NASA Astrophysics Data System (ADS)

    Valani, Rahil N.; Groszek, Andrew J.; Simula, Tapio P.

    2018-05-01

    We have studied statistical mechanics of a gas of vortices in two dimensions. We introduce a new observable—a condensate fraction of Onsager vortices—to quantify the emergence of the vortex condensate. The condensation of Onsager vortices is most transparently observed in a single vortex species system and occurs due to a competition between solid body rotation (see vortex lattice) and potential flow (see multiple quantum vortex state). We propose an experiment to observe the condensation transition of the vortices in such a single vortex species system.

  6. BKT phase transition in a 2D system with long-range dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Fedichev, P. O.; Men'shikov, L. I.

    2012-01-01

    We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.

  7. An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.

    2007-01-01

    The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.

  8. Turbulent structure of three-dimensional flow behind a model car: 1. Exposed to uniform approach flow

    NASA Astrophysics Data System (ADS)

    Kozaka, Orçun E.; Özkan, Gökhan; Özdemir, Bedii I.

    2004-01-01

    Turbulent structure of flow behind a model car is investigated with local velocity measurements with emphasis on large structures and their relevance to aerodynamic forces. Results show that two counter-rotating helical vortices, which are formed within the inner wake region, play a key role in determining the flux of kinetic energy. The turbulence is generated within the outermost shear layers due to the instabilities, which also seem to be the basic drive for these relatively organized structures. The measured terms of the turbulent kinetic energy production, which are only part of the full expression, indicate that vortex centres act similar to the manifolds draining the energy in the streamwise direction. As the approach velocity increases, the streamwise convection becomes the dominant means of turbulent transport and, thus, the acquisition of turbulence by relatively non-turbulent flow around the wake region is suppressed.

  9. Euler analysis comparison with LDV data for an advanced counter-rotation propfan at cruise

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Podboy, Gary G.

    1990-01-01

    A fine mesh Euler solution of the F4/A4 unducted fan (UDF) model flowfield is compared with laser Doppler velocimeter (LDV) data taken in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The comparison is made primarily at one axial plane downstream of the front rotor where the LDV particle lag errors are reduced. The agreement between measured and predicted velocities in this axial plane is good. The results show that a dense mesh is needed in the centerbody stagnation region to minimize entropy generation that weakens the aft row passage shock. The predicted radial location of the tip vortex downstream of the front rotor agrees well with the experimental results but the strength is overpredicted. With 40 points per chord line, the integrated performance quantities are nearly converged, but more points are needed to resolve passage shocks and flow field details.

  10. Vortex dynamics and surface pressure fluctuations on a normal flat plate

    NASA Astrophysics Data System (ADS)

    Hemmati, Arman; Wood, David H.; Martinuzzi, Robert J.; Ferrari, Simon W.; Hu, Yaoping

    2016-11-01

    The effect of vortex formation and interactions on surface pressure fluctuations is examined in the wake of a normal flat plate by analyzing Direct Numerical Simulations at Re =1200. A novel local maximum score-based 3D method is used to track vortex development in the region close to the plate where the major contributions to the surface pressure are generated. Three distinct vortex shedding regimes are identified by changes in the lift and drag fluctuations. The instances of maximum drag coincide with impingement of newly formed vortices on the plate. This results in large and concentrated areas of rotational and strain contributions to generation of pressure fluctuations. Streamwise vortex straining and chordwise stretching are correlated with the large ratios of streamwise to chordwise normal stresses and regions of significant rotational contribution to the pressure. In contrast at the minimum drag, the vorticity field close to the plate is disorganized, and vortex roll-up occurs farther downstream. This leads to a uniform distribution of pressure. This study was supported by Alberta Innovates Technology Futures (AITF) and Natural Sciences and Engineering Research Council of Canada (NSERC).

  11. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  12. Kelvin-Helmholtz instability of counter-rotating discs

    NASA Astrophysics Data System (ADS)

    Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.

    2015-01-01

    Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.

  13. Computer code for gas-liquid two-phase vortex motions: GLVM

    NASA Technical Reports Server (NTRS)

    Yeh, T. T.

    1986-01-01

    A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    Vortex shedding from an obstacle potential moving in a Bose-Einstein condensate is investigated. Long-lived alternately aligned vortex pairs are found to form in the wake, which is similar to the Benard-von Karman vortex street in classical viscous fluids. Various patterns of vortex shedding are systematically studied and the drag force on the obstacle is calculated. It is shown that the phenomenon can be observed in a trapped system.

  15. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    NASA Astrophysics Data System (ADS)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  16. Observation of the spiral flow and vortex induced by a suction pump in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Yano, H.; Ohyama, K.; Obara, K.; Ishikawa, O.

    2018-03-01

    A suction flow generates a whirlpool, namely a bathtub vortex, in a classical fluid; in contrast, rotating containers, which are usually used for studies of superfluid helium, can produce only simple solid rotation. In the present work, the superfluid flow and concentrated quantized vortices induced by a cryogenic motor immersed in superfluid 4He were investigated. Using a motor with six blades in a cylinder caused the free surface of the superfluid 4He to take on a parabolic shape, indicating that the motor produces a rotating superfluid flow. To drive a suction flow in superfluid helium, the motor was mounted in a cylindrical container with a small hole at the center of the top and a slit at the side, acting as a superfluid pump. This pump was successfully used to generate a spiral flow and a vortex with a funnel-shaped core in superfluid 4He, suggesting that the resulting suction flow transports and centralizes quantized vortices to the suction hole, increasing the vortex circulation and sucking the free surface of the superfluid down.

  17. Effects of counter-rotating-wave terms of the driving field on the spectrum of resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Yan, Yiying; Lü, Zhiguo; Zheng, Hang

    2013-11-01

    We investigate the fluorescence spectrum of a two-level system driven by a monochromatic classical field by the Born-Markovian master equation based on a unitary transformation. The main purpose is to understand the effects of counter-rotating-wave terms of the driving on spectral features of the fluorescence. We have derived an analytical expression for the fluorescence spectrum, which is different from Mollow's theory, while Mollow's result on resonance is the limiting case of ours in moderately weak driving regimes. Our results demonstrate precisely that the counter-rotating-wave terms of the driving play an important role in the fluorescence spectrum for intense driving: (i) the counter-rotating coupling suppresses the red sideband in the Mollow triplet and it enhances the blue one in explicitly contrast to the well-known equal intensity of the sideband in Mollow's theory, (ii) the higher-order Mollow triplets appear as a characteristic spectral feature arising from counter-rotating-wave terms of the driving, and (iii) a significant frequency shift of the sidebands is observed, which depends on both the detuning and driving strength.

  18. Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Brownstein, Ian; Dabiri, John

    2017-11-01

    Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.

  19. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Patel, D. K.

    1974-01-01

    A description of the flow field within a vortex sink rate sensor was obtained, and the influence of viscous effects on its performance was observed. The sensor basically consisted of a vortex chamber and a sink tube. The vortex chamber consisted of two circular coaxial disks held apart, at their periphery, by a porous coupling. One circular disk had an opening to permit the mounting of the sink tube, in such a manner that the vortex chamber as well as the sink tube had a common axis of rotation. Air was supplied radially to the sensor through its porous coupling as the sensor was rotated at various speeds. Particular emphasis was directed toward an understanding of the flow field in the sink tube region. Thus velocity measurements at various stations along the length of the sink tube as well as along a given radius at any designated station were taken.

  20. Vortex-induced vibration for an isolated circular cylinder under the wake interference of an oscillating airfoil: Part II. Single degree of freedom

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; Ji, L. C.; Hu, X.

    2017-04-01

    The vortex-induced vibration behind an isolated cylinder under the wake interference of an oscillating airfoil at different oscillating frequencies and amplitudes have been studied numerically. Our previous research [11] mainly focused on the two degree of freedom vibration problem, several types of the phase portraits of the displacement have been newly found, including the "half -8″ and "cone-net" types as reduced velocity increases. At present, we have continued the research to the single degree of freedom vibration, the corresponding results had been found that under the wake of the free steady flow, as the reduced velocity increases, the phase portraits displacements of the single degree of freedom vibrating cylinder will begin to rotate counterclockwise from the first and third quadrants to the second and fourth quadrants in a Cartesian coordinate system. Under the wake of the oscillating airfoil, the single bending curve and the single closed orbit (double "8-shape" like) of the displacements are newly found in the drag and thrust producing cases respectively. Except this, the two triplets of vortices have also been newly found in the pair and single plus pair wakes at each cycle. The vorticity dynamics behind the vibrating cylinder together with the corresponding force variations have also been obtained computationally and analyzed in details.

  1. Distribution of Circles on a Circle and Correlation Between Vortex Rings of Superfluids

    NASA Astrophysics Data System (ADS)

    Onur Fen, Mehmet; Erkoç, Šakír

    2007-05-01

    Superfluids are characterized by absence of viscosity. When superfluids are rotated, differently from normal fluids, they form more than one vortex in the containers where they are placed. The number of vortices change as the rotation velocity changes, but this change is not linear. M.W. Zwierlein et al. observed the vortices in experiments, observing up to a number of 80. Experiments also showed that the vortex distributions cannot include large spaces. By using experimental data, we noticed that when we think of vortices as vortex rings, their centers are at the same geometric location and these geometric locations are concentric circles. We generalized the distribution of these geometric places and formulized it. Our formula includes the magic circle numbers. When the number of vortices reach these magic numbers, the number of geometric locations increase by 1.

  2. Direct observation of the flux-line vortex glass phase in a type II superconductor.

    PubMed

    Divakar, U; Drew, A J; Lee, S L; Gilardi, R; Mesot, J; Ogrin, F Y; Charalambous, D; Forgan, E M; Menon, G I; Momono, N; Oda, M; Dewhurst, C D; Baines, C

    2004-06-11

    The order of the vortex state in La1.9Sr0.1CuO4 is probed using muon-spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines. In the vicinity of the transition the microscopic behavior reflects a delicate interplay of thermally induced and pinning-induced disorder.

  3. An experimental investigation on the effects of freestream turbulence intensity on film cooling effectiveness and heat transfer coefficient for an anti-vortex hole

    NASA Astrophysics Data System (ADS)

    Hayes, Stephen Andrew

    Film cooling is used to thermally protect combustor and turbine components by creating a layer of relatively cooler air than the freestream air to insulate the components from the hot freestream gases. This relatively cooler air is taken from upstream in the high-pressure compressor section at a loss to the engine efficiency, and therefore must be used as effectively as possible. The efficiency gained from increasing the turbine inlet temperature outweighs the loss due to extracting air from the compressor section if the cooling air is used effectively. A novel anti-vortex hole (AVH) geometry has been investigated experimentally through a transient infrared thermography technique to study the film cooling effectiveness and surface convective heat transfer coefficients for varying blowing ratio and freestream turbulence intensity. A major concern with the AVH will be how the secondary jets counteract the main counter rotating vortex (CRV) pair at increased freestream turbulence levels. This is the first experimental facility to study the effects of higher freestream turbulence levels on an AVH geometry. Furthermore, this is the first experimental investigation to report centerline film cooling effectiveness and the convective heat transfer coefficient that had not been reported in prior studies. The AVH geometry is designed with two secondary holes stemming from a main cooling hole; these holes attempt to diffuse the coolant jet and mitigate the vorticity produced by conventional straight holes. This geometry shows improved results at low turbulence intensities compared to conventional straight holes. Three freestream turbulence intensities of 1, 7.5, and 11.7% were investigated at blowing ratios of 0.5, 1.0, 1.5, and 2.0 to form a test matrix of twelve different test conditions. Results showed that the higher freestream turbulence conditions were beneficial in the performance of the AVH. Increasing the blowing ratio at all turbulence levels also improved film cooling effectiveness both span-averaged and on the centerline. The highest performing case was at a turbulence intensity of 7.5% and a blowing ratio of 2.0. The 11.7% cases outperformed the 1% cases, but it appears that at 11.7% cases that the higher freestream turbulence reduces the performance of the secondary holes compared to the 7.5% cases. Increasing the blowing ratio and turbulence intensity will result in a higher heat transfer coefficient, and thus must be taken into account for future designs.

  4. Rotational response of superconductors: Magnetorotational isomorphism and rotation-induced vortex lattice

    NASA Astrophysics Data System (ADS)

    Babaev, Egor; Svistunov, Boris

    2014-03-01

    The analysis of nonclassical rotational response of superfluids and superconductors was performed by Onsager [Onsager, Nuovo Cimento, Suppl. 6, 279 (1949), 10.1007/BF02780991] and London [Superfluids (Wiley, New York, 1950)] and crucially advanced by Feynman [Prog. Low Temp. Phys. 1, 17 (1955), 10.1016/S0079-6417(08)60077-3]. It was established that, in the thermodynamic limit, neutral superfluids rotate by forming—without any threshold—a vortex lattice. In contrast, the rotation of superconductors at angular frequency Ω—supported by uniform magnetic field BL∝Ω due to surface currents—is of the rigid-body type (London law). Here we show that, neglecting the centrifugal effects, the behavior of a rotating superconductor is identical to that of a superconductor placed in a uniform fictitious external magnetic field H ˜=-BL. In particular, the isomorphism immediately implies the existence of two critical rotational frequencies in type-2 superconductors.

  5. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  6. Probing Active Nematic Films with Magnetically Manipulated Colloids

    NASA Astrophysics Data System (ADS)

    Rivas, David; Chen, Kui; Henry, Robert; Reich, Daniel; Leheny, Robert

    We study microtubule-based extensile active nematic films using rod-like and disk-shaped magnetic colloids to probe the mechanical and hydrodynamic properties of this quasi-two dimensional out-of-equilibrium system. The active nematics are driven by molecular motors that hydrolyze ATP and cause sliding motion between microtubular bundles. This motion produces a dynamic nematic director field, which continuously creates pairs of +1/2 and -1/2 defects. In the absence of externally applied forces or torques, we observe that the magnetic rods in contact with the films align with the local director, indicating the existence of mechanical coupling between the film and probe. By applying known magnetic torques to the rods and observing their rotation with respect to the director, we gain insight into this coupling. We also find that by rotating magnetic microdisks using magnetic fields, hydrodynamic flows are produced that compete with the films' intrinsic flow, leading to significant effects on the director field and the defect landscape. At certain rotation rates, the disks produce a vortex-like structure in the director field and cause the creation and shedding of defects from the disk boundary.

  7. Vortex rope instabilities in a model of conical draft tube

    NASA Astrophysics Data System (ADS)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  8. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    PubMed Central

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-01-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303

  9. The vortex as a clock

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert

    2003-11-01

    Using heuristic arguments, the fundamental effect of acceleration on dissipation in self-similar turbulence is explored. If the ratio of the next vortex rotation period to the last one is always constant, a flow is temporally self-similar. This implies that the vortex rotation period is a linear function of time. For ordinary, unforced turbulence, the period increases linearly in time. However, by imposing an external e-folding time scale on the flow that decreases linearly in time, the dissipation rate is changed from that of the corresponding unforced flow. The dissipation rate depends on the time rate of change of the rotation period as well as the dimensions of the dynamic quantity controlling the flow. For almost all canonical laboratory flows, acceleration reduces the dissipation and entrainment rates. An example is the exponential jet, where the flame length increases by about 20conventional jet. An exception is Rayleigh-Taylor flow, where acceleration increases the dissipation rate.

  10. Ultrashort vortex from a Gaussian pulse - An achromatic-interferometric approach.

    PubMed

    Naik, Dinesh N; Saad, Nabil A; Rao, D Narayana; Viswanathan, Nirmal K

    2017-05-24

    The more than a century old Sagnac interferometer is put to first of its kind use to generate an achromatic single-charge vortex equivalent to a Laguerre-Gaussian beam possessing orbital angular momentum (OAM). The interference of counter-propagating polychromatic Gaussian beams of beam waist ω λ with correlated linear phase (ϕ 0  ≥ 0.025 λ) and lateral shear (y 0  ≥ 0.05 ω λ ) in orthogonal directions is shown to create a vortex phase distribution around the null interference. Using a wavelength-tunable continuous-wave laser the entire range of visible wavelengths is shown to satisfy the condition for vortex generation to achieve a highly stable white-light vortex with excellent propagation integrity. The application capablitiy of the proposed scheme is demonstrated by generating ultrashort optical vortex pulses, its nonlinear frequency conversion and transforming them to vector pulses. We believe that our scheme for generating robust achromatic vortex (implemented with only mirrors and a beam-splitter) pulses in the femtosecond regime, with no conceivable spectral-temporal range and peak-power limitations, can have significant advantages for a variety of applications.

  11. Calculation of vortex lift effect for cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented.

  12. Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces.

    PubMed

    Zeng, Jinwei; Li, Ling; Yang, Xiaodong; Gao, Jie

    2016-05-11

    Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.

  13. Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models

    NASA Technical Reports Server (NTRS)

    Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.

    2011-01-01

    Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.

  14. Comminution process to produce wood particles of uniform size and shape with disrupted grain structure from veneer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James H.; Lanning, David N.

    Comminution process of wood veneer to produce wood particles, by feeding wood veneer in a direction of travel substantially normal to grain through a counter rotating pair of intermeshing arrays of cutting discs arrayed axially perpendicular to the direction of wood veneer travel, wherein the cutting discs have a uniform thickness (Td), to produce wood particles characterized by a length dimension (L) substantially equal to the Td and aligned substantially parallel to grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) aligned normal to W and L, wherein the W.times.H dimensions definemore » a pair of substantially parallel end surfaces with end checking between crosscut fibers.« less

  15. 3D vortex formation of drag-based propulsors

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2008-11-01

    Three dimensional vortex formation mechanism of impulsively rotating plates is studied experimentally using defocusing digital particle image velocimetry. The plate face is normal to the moving direction to simulate drag-based propulsion and only one power stroke is considered. In order to compare the effect of shape on vortex generation, three different shapes of plate (rectangular, triangular and duck's webbed-foot shapes) are used. These three cases show striking differences in vortex formation process during power stroke. Axial flow is shown to play an important role in the tip vortex formation. Correlation between hydrodynamic forces acting on the plate and vortex formation processes is described.

  16. Dark state with counter-rotating dissipative channels.

    PubMed

    Zhou, Zheng-Yang; Chen, Mi; Wu, Lian-Ao; Yu, Ting; You, J Q

    2017-07-24

    Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.

  17. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  18. Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability

    NASA Astrophysics Data System (ADS)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2018-05-01

    We investigate families of finite core vortex quartets in mutual equilibrium in a two-layer quasi-geostrophic flow. The finite core solutions stem from known solutions for discrete (singular) vortex quartets. Two vortices lie in the top layer and two vortices lie in the bottom layer. Two vortices have a positive potential vorticity anomaly, while the two others have negative potential vorticity anomaly. The vortex configurations are therefore related to the baroclinic dipoles known in the literature as hetons. Two main branches of solutions exist depending on the arrangement of the vortices: the translating zigzag-shaped hetonic quartets and the rotating zigzag-shaped hetonic quartets. By addressing their linear stability, we show that while the rotating quartets can be unstable over a large range of the parameter space, most translating quartets are stable. This has implications on the longevity of such vortex equilibria in the oceans.

  19. Dynamics of levitated objects in acoustic vortex fields.

    PubMed

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  20. VORCOR: A computer program for calculating characteristics of wings with edge vortex separation by using a vortex-filament and-core model

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Mehrotra, S. C.; Lan, C. E.

    1982-01-01

    A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.

  1. Motion in Jupiter's Atmospheric Vortices (Near-infrared filters)

    NASA Image and Video Library

    1998-03-26

    Two frame "movie" of a pair of vortices in Jupiter's southern hemisphere. The two frames are separated by ten hours. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The frames span about fifteen degrees in latitude and longitude and are centered at 141 degrees west longitude and 36 degrees south planetocentric latitude. Both vortices are about 3500 kilometers in diameter in the north-south direction. The images were taken in near infrared light at 756 nanometers and show clouds that are at a pressure level of about 1 bar in Jupiter's atmosphere. North is at the top. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA01230

  2. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.

    PubMed

    Liang, Yansheng; Lei, Ming; Yan, Shaohui; Li, Manman; Cai, Yanan; Wang, Zhaojun; Yu, Xianghua; Yao, Baoli

    2018-01-01

    Low-refractive-index microparticles, such as hollow microspheres, have shown great significance in some applications, such as biomedical sensing and targeted drug delivery. However, optical trapping and manipulation of low-refractive-index microparticles are challenging, owing to the repelling force exerted by typical optical traps. In this paper, we demonstrated optical trapping and rotating of large-sized low-refractive-index microparticles by using quasi-perfect optical vortex (quasi-POV) beams, which were generated by Fourier transform of high-order quasi-Bessel beams. Numerical simulation was carried out to characterize the focusing property of the quasi-POV beams. The dynamics of low-refractive-index microparticles in the quasi-POV with various topological charges was investigated in detail. To improve the trapping and rotating performances of the vortex, a point trap was introduced at the center of the ring. Experimental results showed that the quasi-POV was preferable for manipulation of large-sized low-refractive-index microparticles, with its control of the particles' rotating velocity dependent only on the topological charge due to the unchanged orbital radius.

  3. Gaseous Vortices in Barred Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    England, Martin N.; Hunter, James H., Jr.

    1995-01-01

    During the course of examining many two-dimensional, as well as a smaller sample of three-dimensional, models of gas flows in barred spiral galaxies, we have been impressed by the ubiquitous presence fo vortex pairs, oriented roughly perpendicular to their bars, with one vortex on each side. The vortices are obvious only when viewed in the bar frame, and the centers of their velocity fields usually are near Lagrangian points L(sub 4,5). In all models that we have studied, the vortices form on essentially the same time scale as that for the development of gaseous spiral arms, typically two bar rotations. Usually the corotation radius, r(sub c), lies slightly beyond the end of the bar. Depending upon the mass distributions of the various components, gas spirals either into, or out of, the vortices: In the former case, the vortices become regions of high density, whereas the opposite is true if the gas spirals out of a vortex. The models described in this paper have low-density vortices, as do most of the models we have studied. Moreover, usually the vortex centers lie approximately within +/- 15 deg of L(sub 4,5). In the stellar dynamic limit, when pressure and viscous forces are absent, short-period orbits exist, centered on L(sub 4,5). These orbits need not cross and therefore their morphology is that of gas streamlines, that is, vortices. We believe that the gas vortices in our models are hydrodynamic analogues of closed, short-period, libration orbits centered on L(sub 4,5).

  4. A New Concept for Counter-Checking of Assumed CPM Pairs

    NASA Astrophysics Data System (ADS)

    Knapp, Wilfried; Nanson, John

    2017-01-01

    The inflation of “newly discovered” CPM pairs makes it necessary to develop an approach for a solid concept for counter-checking assumed CPM pairs with the target to identify false positives. Such a concept is presented in this report.

  5. Influence of vortex core on wake vortex sound emission

    DOT National Transportation Integrated Search

    2006-05-08

    A consistent and presistent mechanism of sound emission from aircraft wake vortices has been identified. Both measurement data and theoretical results show that a dominant frequency of sound pressure matches the rotation frquency of a Kirchhoff vorte...

  6. Morse Theory and Relative Equilibria in the Planar n-Vortex Problem

    NASA Astrophysics Data System (ADS)

    Roberts, Gareth E.

    2018-04-01

    Morse theoretical ideas are applied to the study of relative equilibria in the planar n-vortex problem. For the case of positive circulations, we prove that the Morse index of a critical point of the Hamiltonian restricted to a level surface of the angular impulse is equal to the number of pairs of real eigenvalues of the corresponding relative equilibrium periodic solution. The Morse inequalities are then used to prove the instability of some families of relative equilibria in the four-vortex problem with two pairs of equal vorticities. We also show that, for positive circulations, relative equilibria cannot accumulate on the collision set.

  7. The Vortex of Burgers in Protoplanetary Disc

    NASA Astrophysics Data System (ADS)

    Abrahamyan, M. G.

    2017-07-01

    The effect of a Burgers vortex on formation of planetesimals in a protoplanetary disc in local approach is considered. It is shown that there is not any circular orbit for rigid particles in centrifugal balance; only stable position in Burgers vortex under the influence of centrifugal, Coriolis, pressure gradient and Stokes drag forces is the center of vortex. The two-dimensional anticyclonic Burgers vortex with homogeneously rotating kernel and a converging radial stream of substance can effectively accumulate in its nuclear area the meter- sized rigid particles of total mass ˜1028g for characteristic time ˜106yr.

  8. Polarity-Dependent Vortex Pinning and Spontaneous Vortex-Antivortex Structures in Superconductor/Ferromagnet Hybrids

    NASA Astrophysics Data System (ADS)

    Bending, Simon J.; Milošević, Milorad V.; Moshchalkov, Victor V.

    Hybrid structures composed of superconducting films that are magnetically coupled to arrays of nanoscale ferromagnetic dots have attracted enormous interest in recent years. Broadly speaking, such systems fall into one of two distinct regimes. Ferromagnetic dots with weak moments pin free vortices, leading to enhanced superconducting critical currents, particularly when the conditions for commensurability are satisfied. Dots with strong moments spontaneously generate one or more vortex-antivortex (V-AV) pairs which lead to a rich variety of pinning, anti-pinning and annihilation phenomena. We describe high resolution Hall probe microscopy of flux structures in various hybrid samples composed of superconducting Pb films deposited on arrays of ferromagnetic Co or Co/Pt dots with both weak and strong moments. We show directly that dots with very weak perpendicular magnetic moments do not induce vortex-antivortex pairs, but still act as strong polarity-dependent vortex pinning centres for free vortices. In contrast, we have directly observed spontaneous V-AV pairs induced by large moment dots with both in-plane and perpendicular magnetic anisotropy, and studied the rich physical phenomena that arise when they interact with added "free" (anti)fluxons in an applied magnetic field. The interpretation of our imaging results is supported by bulk magnetometry measurements and state-of-the-art Ginzburg-Landau and London theory calculations.

  9. Hysteresis and precession of a swirling jet normal to a wall.

    PubMed

    Shtern, V; Mi, J

    2004-01-01

    Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier-Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane-a model of a tornado and of a swirling jet issuing from a nozzle in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession-the effects observed in technological flows and in tornadoes.

  10. Collective dynamics of large aspect ratio dusty plasma in an inhomogeneous plasma background: Formation of the co-rotating vortex series

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2018-02-01

    In this paper, the collective dynamics of large aspect ratio dusty plasma is studied over a wide range of discharge parameters. An inductively coupled diffused plasma, which creates an electrostatic trap to confine the negatively charged grains, is used to form a large volume (or large aspect ratio) dusty plasma at low pressure. For introducing the dust grains into the potential well, a unique technique using secondary DC glow discharge plasma is employed. The dust dynamics is recorded in a two-dimension (2D) plane at a given axial location. The dust fluid exhibits wave-like behavior at low pressure (p < 0.06 mbar) and high rf power (P > 3 W). The mixed motion, waves and vortices, is observed at an intermediate gas pressure (p ˜ 0.08 mbar) and low power (P < 3 W). Above the threshold value of gas pressure (p > 0.1 mbar), the clockwise and anti-clockwise co-rotating vortex series are observed on edges of the dust cloud, whereas the particles in the central region show random motion. These vortices are only observed above the threshold width of the dust cloud. The occurrence of the co-rotating vortices is understood on the basis of the charge gradient of dust particles, which is orthogonal to the gravity. The charge gradient is a consequence of the plasma inhomogeneity from the central region to the outer edge of the dust fluid. Since a vortex has the characteristic size in the dissipative medium; therefore, a series of the co-rotating vortex on both sides of dusty plasma is observed. The experimental results on the vortex formation and its multiplicity are compared to an available theoretical model and are found to be in close agreement.

  11. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  12. Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure

    NASA Astrophysics Data System (ADS)

    Cheng, Tinghai; Wang, Yingting; Qin, Feng; Song, Zhaoyang; Lu, Xiaohui; Bao, Gang; Zhao, Xilu

    2016-08-01

    The performance of a piezoelectric energy harvester with a coupling chamber was investigated under vortex-induced pressure. The harvester consisted of a power chamber, a buffer, and a storage chamber. Different types of vortex (i.e., clockwise or counter-clockwise) could be induced by changing the volume ratio between the power chamber and the storage chamber. The peak voltage of the harvester could be tuned by changing the volume ratio. For example, under a pressure of 0.30 MPa, input cycle of 2.0 s, and flow rate of 200 l/min, the peak voltage decreased from 79.20 to 70.80 V with increasing volume ratio. The optimal volume ratio was 2.03, which resulted in the formation of a clockwise vortex. The corresponding effective power through a 600 kΩ resistor was 1.97 mW.

  13. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  14. Rotary motion of a micro-solid particle under a stationary difference of electric potential.

    PubMed

    Kurimura, Tomo; Mori, Seori; Miki, Masako; Yoshikawa, Kenichi

    2016-07-21

    The periodic rotary motion of spherical sub-millimeter-sized plastic objects is generated under a direct-current electric field in an oil phase containing a small amount of anionic or cationic surfactant. Twin-rotary motion is observed between a pair of counter-electrodes; i.e., two vortices are generated simultaneously, where the line between the centers of rotation lies perpendicular to the line between the tips of the electrodes. Interestingly, this twin rotational motion switches to the reverse direction when an anionic surfactant is replaced by a cationic surfactant. We discuss the mechanism of this self-rotary motion in terms of convective motion in the oil phase where nanometer-sized inverted micelles exist. The reversal of the direction of rotation between anionic and cationic surfactants is attributable to the difference in the charge sign of inverted micelles with surfactants. We show that the essential features in the experimental trends can be reproduced through a simple theoretical model, which supports the validity of the above mechanism.

  15. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology

    PubMed Central

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    2016-01-01

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date. PMID:26989782

  16. Quantum oscillations in a biaxial pair density wave state.

    PubMed

    Norman, M R; Davis, J C Séamus

    2018-05-22

    There has been growing speculation that a pair density wave state is a key component of the phenomenology of the pseudogap phase in the cuprates. Recently, direct evidence for such a state has emerged from an analysis of scanning tunneling microscopy data in halos around the vortex cores. By extrapolation, these vortex halos would then overlap at a magnetic-field scale where quantum oscillations have been observed. Here, we show that a biaxial pair density wave state gives a unique description of the quantum oscillation data, bolstering the case that the pseudogap phase in the cuprates may be a pair density wave state. Copyright © 2018 the Author(s). Published by PNAS.

  17. Pair interactions of heavy vortices in quantum fluids

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, Ivan A.

    2018-02-01

    The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.

  18. EFFECT OF CHERENKOV LIGHT POLARIZATION ON TOTAL REFLECTION COUNTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, J.D.; Duteil, P.; Leontic, B.

    1963-01-01

    A rugged total internal reflection counter with a 3- to 5cm thick compact radiator was used at the CERN proton synchrotron for beam analysis. The threshold behavior of this counter was compared when filled with glycerol and with turpentine. Turpentine is optically active and rotates the plane of polarization about 7 un. Concent 85% /cm. Figures illustrate the effect of this polarization rotation. (A.G.W.)

  19. Structure measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer flow. A stretching mechanism is important in matching spanwise vorticity close to the wall to variations in turbulent shearing stress. Regions where the stretching term is large coincide with regions of large wall shearing stress and large turbulence production.

  20. A laboratory comparison of clockwise and counter-clockwise rapidly rotating shift schedules, part II : performance : final report.

    DOT National Transportation Integrated Search

    2002-07-01

    INTRODUCTION. Many Air Traffic Control Specialists (ATCSs) work a relatively unique counter-clockwise, rapidly rotating shift schedule. Although arguments against these kinds of schedules are prevalent in the literature, few studies have examined rot...

  1. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  2. Effect of inlet ingestion of a wing tip vortex on compressor face flow and turbojet stall margin

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.

    1975-01-01

    A two-dimensional inlet was alternately mated to a coldpipe plug assembly and a J85-GE-13 turbojet engine, and placed in a Mach 0.4 stream so as to ingest the tip vortex of a forward mounted wing. Vortex properties were measured just forward of the inlet and at the compressor face. Results show that ingestion of a wing tip vortex by a turbojet engine can cause a large reduction in engine stall margin. The loss in stall compressor pressure ratio was primarily dependent on vortex location and rotational direction and not on total-pressure distortion.

  3. Comminution process to produce engineered wood particles of uniform size and shape with disrupted grain structure from veneer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James H; Lanning, David N

    Comminution process of wood veneer to produce wood particles, by feeding wood veneer in a direction of travel substantially normal to grain through a counter rotating pair of intermeshing arrays of cutting discs arrayed axially perpendicular to the direction of veneer travel, wherein the cutting discs have a uniform thickness (Td), to produce wood particles characterized by a length dimension (L) substantially equal to the Td and aligned substantially parallel to grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) substantially equal to the veneer thickness (Tv) and aligned normal to Wmore » and L, wherein the W.times.H dimensions define a pair of substantially parallel end surfaces with end checking between crosscut fibers.« less

  4. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  5. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    NASA Astrophysics Data System (ADS)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  6. Peculiar glitch of PSR J1119-6127 and extension of the vortex creep model

    NASA Astrophysics Data System (ADS)

    Akbal, O.; Gügercinoğlu, E.; Şaşmaz Muş, S.; Alpar, M. A.

    2015-05-01

    Glitches are sudden changes in rotation frequency and spin-down rate, observed from pulsars of all ages. Standard glitches are characterized by a positive step in angular velocity (ΔΩ > 0) and a negative step in the spin-down rate (Δ dot{Ω } < 0) of the pulsar. There are no glitch-associated changes in the electromagnetic signature of rotation-powered pulsars in all cases so far. For the first time, in the last glitch of PSR J1119-6127, there is clear evidence for changing emission properties coincident with the glitch. This glitch is also unusual in its signature. Further, the absolute value of the spin-down rate actually decreases in the long term. This is in contrast to usual glitch behaviour. In this paper we extend the vortex creep model in order to take into account these peculiarities. We propose that a starquake with crustal plate movement towards the rotational poles of the star induces inward vortex motion which causes the unusual glitch signature. The component of the magnetic field perpendicular to the rotation axis will decrease, giving rise to a permanent change in the pulsar external torque.

  7. Research of the rotation effect upon the hydrodynamics and heat and mass transport in a chemical reactor

    NASA Astrophysics Data System (ADS)

    Gicheva, Natalia I.

    2017-11-01

    The subject of this research is a chemical reactor for producing tungsten. A physical and mathematical model of fluid motion and heat and mass transfer in a vortex chamber of the chemical reactor under forced and free convection has been described and simulated using two methods. The numerical simulation was carried out in «vortex - stream functions and «velocity - pressure» variables. The velocity field, the mass and the temperature distributions in the reactor were obtained. The influence of a rotation effect upon the hydrodynamics and heat and mass transport was showed. The rotation is important for more uniform distribution of temperature and matter in the vortex chamber. Parametric studies on effects of the Reynolds, Prandtl and Rossbi criteria on the flow characteristics were also performed. Reliability of the calculations was verified by comparing the results obtained by the methods mentioned above. Also, the created model was applied for numerically solving of the classical test problem of the velocity distribution in an annular channel and that of a rotating infinite disk in a stationary liquid. The study findings showed a good agreement with the exact solutions.

  8. Vortex Noise from Rotating Cylindrical Rods

    NASA Technical Reports Server (NTRS)

    Stowell, E Z; Deming, A F

    1935-01-01

    A series of round rods of the some diameter were rotated individually about the mid-point of each rod. Vortices are shed from the rods when in motion, giving rise to the emission of sound. With the rotating system placed in the open air, the distribution of sound in space, the acoustical power output, and the spectral distribution have been studied. The frequency of emission of vortices from any point on the rod is given by the formula von Karman. From the spectrum estimates are made of the distribution of acoustical power along the rod, the amount of air concerned in sound production, the "equivalent size" of the vortices, and the acoustical energy content for each vortex.

  9. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  10. Application of the Bernoulli enthalpy concept to the study of vortex noise and jet impingement noise

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1978-01-01

    A complete theory of aeroacoustics of homentropic fluid media is developed and compared with previous theories. The theory is applied to study the interaction of sound with vortex flows, for the DC-9 in a standard take-off configuration. The maximum engine-wake interference noise is estimated to be 3 or 4 db in the ground plane. It is shown that the noise produced by a corotating vortex pair departs significantly from the compact M scaling law for eddy Mach numbers (M) greater than 0.1. An estimate of jet impingement noise is given that is in qualitative agreement with experimental results. The increased noise results primarily from the nonuniform acceleration of turbulent eddies through the stagnation point flow. It is shown that the corotating vortex pair can be excited or de-excited by an externally applied sound field. The model is used to qualitatively explain experimental results on excited jets.

  11. Density engineering of an oscillating soliton/vortex ring in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Levy, Shahar; Shomroni, Itay; Lahoud, Elias; Steinhauer, Jeff

    2008-05-01

    We study solitons in a Bose-Einstein condensate by engineering a density minimum on the healing length scale, using a far off-resonant laser beam. This results in a pair of counterpropagating solitons, which is the low collisional energy version of the celebrated matter wave interference pattern [M. R. Andrews et al., Science 275, 637 (1997)]. The solitons subsequently evolve into a pair of periodic soliton/vortex rings. We image the vortex rings and solitons in-situ on the healing length scale. This stable periodic evolution is in sharp contrast to the behavior of previous experiments in which the solitons decay irreversibly into vortex rings via the snake instability. The periodic oscillation between two qualitatively different forms seems to be a rare phenomenon in nature. We explain this phenomenon in terms of conservation of mass and energy in a narrow condensate.

  12. World Encircling Tectonic Vortex Street - Geostreams Revisited: The Southern Ring Current EM Plasma-Tectonic Coupling in the Western Pacific Rim

    NASA Astrophysics Data System (ADS)

    Leybourne, Bruce; Smoot, Christian; Longhinos, Biju

    2014-05-01

    Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located approximately at the boundary of the plasmasphere and the outer magnetosphere. Induction power of geo-magnetic storms, are linked to ring current strength, and depend on the speed of solar eruptions, along with the dynamic pressure, strength and orientation of the IMF.

  13. Dynamic Runner Forces and Pressure Fluctuations on the Draft Tube Wall of a Model Pump-Turbine

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2016-11-01

    When Francis-turbines and pump-turbines operate at off-design conditions, typically a vortex rope develops. The vortex rope causes pressure oscillations leading to fluctuations of the forces affecting the runner. The presence of dynamic runner forces over a long period of time might damage the bearings and possibly the runner. In this experimental investigation, the fluctuating part of the runner forces and the pressure oscillations on the draft tube wall were measured on a model pump-turbine with a simplified straight cone draft tube in different operating conditions. The investigation focuses on the correlation of the pressure fluctuations frequency measured at the draft tube wall with the frequency of the fluctuating forces on the runner. The comparison between pressure fluctuations and dynamic forces shows a significant correlation in all operating points. For the comparison of different components in the spatial directions of the forces, the pressure fluctuations were separated in a synchronous part and a rotating part for operating points with higher amplitudes. The rotating pressure fluctuations correlate with the radial forces especially in the operating points with a rotating vortex rope. At frequencies with higher amplitudes in the pressure fluctuations caused by the vortex rope movement, there are also higher amplitudes in the radial forces at the same frequencies.

  14. Vortex flows in the solar chromosphere. I. Automatic detection method

    NASA Astrophysics Data System (ADS)

    Kato, Y.; Wedemeyer, S.

    2017-05-01

    Solar "magnetic tornadoes" are produced by rotating magnetic field structures that extend from the upper convection zone and the photosphere to the corona of the Sun. Recent studies show that these kinds of rotating features are an integral part of atmospheric dynamics and occur on a large range of spatial scales. A systematic statistical study of magnetic tornadoes is a necessary next step towards understanding their formation and their role in mass and energy transport in the solar atmosphere. For this purpose, we develop a new automatic detection method for chromospheric swirls, meaning the observable signature of solar tornadoes or, more generally, chromospheric vortex flows and rotating motions. Unlike existing studies that rely on visual inspections, our new method combines a line integral convolution (LIC) imaging technique and a scalar quantity that represents a vortex flow on a two-dimensional plane. We have tested two detection algorithms, based on the enhanced vorticity and vorticity strength quantities, by applying them to three-dimensional numerical simulations of the solar atmosphere with CO5BOLD. We conclude that the vorticity strength method is superior compared to the enhanced vorticity method in all aspects. Applying the method to a numerical simulation of the solar atmosphere reveals very abundant small-scale, short-lived chromospheric vortex flows that have not been found previously by visual inspection.

  15. A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Kim, J.

    2014-12-01

    In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.

  16. Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall

    NASA Astrophysics Data System (ADS)

    Jabbar, Hussam; Naguib, Ahmed

    2017-11-01

    Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).

  17. Universality of the Berezinskii-Kosterlitz-Thouless type of phase transition in the dipolar XY-model

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. Yu; Tarkhov, A. E.; Menshikov, L. I.; Fedichev, P. O.; Fischer, Uwe R.

    2014-05-01

    We investigate the nature of the phase transition occurring in a planar XY-model spin system with dipole-dipole interactions. It is demonstrated that a Berezinskii-Kosterlitz-Thouless (BKT) type of phase transition always takes place at a finite temperature separating the ordered (ferro) and the disordered (para) phases. The low-temperature phase corresponds to an ordered state with thermal fluctuations, composed of a ‘gas’ of bound vortex-antivortex pairs, which would, when considered isolated, be characterized by a constant vortex-antivortex attraction force which is due to the dipolar interaction term in the Hamiltonian. Using a topological charge model, we show that small bound pairs are easily polarized, and screen the vortex-antivortex interaction in sufficiently large pairs. Screening changes the linear attraction potential of vortices to a logarithmic one, and leads to the familiar pair dissociation mechanism of the BKT type phase transition. The topological charge model is confirmed by numerical simulations, in which we demonstrate that the transition temperature slightly increases when compared with the BKT result for short-range interactions.

  18. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  19. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  20. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  1. Source Term Model for Vortex Generator Vanes in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2004-01-01

    A source term model for an array of vortex generators was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the side force created by a vortex generator vane. The model is obtained by introducing a side force to the momentum and energy equations that can adjust its strength automatically based on the local flow. The model was tested and calibrated by comparing data from numerical simulations and experiments of a single low profile vortex generator vane on a flat plate. In addition, the model was compared to experimental data of an S-duct with 22 co-rotating, low profile vortex generators. The source term model allowed a grid reduction of about seventy percent when compared with the numerical simulations performed on a fully gridded vortex generator on a flat plate without adversely affecting the development and capture of the vortex created. The source term model was able to predict the shape and size of the stream-wise vorticity and velocity contours very well when compared with both numerical simulations and experimental data. The peak vorticity and its location were also predicted very well when compared to numerical simulations and experimental data. The circulation predicted by the source term model matches the prediction of the numerical simulation. The source term model predicted the engine fan face distortion and total pressure recovery of the S-duct with 22 co-rotating vortex generators very well. The source term model allows a researcher to quickly investigate different locations of individual or a row of vortex generators. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  2. Microfog lubricant application system for advanced turbine engine components, phase 2. Tasks 3, 4 and 5: Wettability and heat transfer of microfog jets impinging on a heated rotating disc, and evaluation of reclassifying nozzles and a vortex mist generator

    NASA Technical Reports Server (NTRS)

    Shim, J.; Leonardi, S. J.

    1972-01-01

    The wettabilities and heat transfer rates of microfog jets (oil-mist nozzle flows) impinging on a heated rotating disc were determined under an inert atmosphere of nitrogen at temperatures ranging from 600 to 800 F. The results are discussed in relation to the various factors involved in the microfog lubricant application systems. Two novel reclassifying nozzles and a vortex mist generator were also studied.

  3. Disappearance of the force-free current configuration at the first order vortex lattice phase transition in YBa 2Cu 3O 7-δ single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Benoit, W.; Erb, A.; Flükiger, R.

    1997-08-01

    The anisotropy in the transverse AC susceptibility of YBa2Cu3O7-δ single crystals, induced by the periodic appearance of a force-free current configuration upon rotation of a superimposed DC field in the crystal plane, disappears at the vortex phase transition, indicating the loss of the vortex lines' stability against mutual cutting.

  4. Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog; Lee, Ki-Suk; Yu, Young-Sang; Choi, Youn-Seok

    2008-01-01

    The authors investigated the technological utility of counterclockwise (CCW) and clockwise (CW) circular-rotating fields (HCCW and HCW) and spin-polarized currents with an angular frequency ωH close to the vortex eigenfrequency ωD, for the reliable, low-power, and selective switching of the bistate magnetization (M) orientations of a vortex core (VC) in an array of soft magnetic nanoelements. CCW and CW circular gyrotropic motions in response to HCCW and HCW, respectively, show remarkably contrasting resonant behaviors, (i.e., extremely large-amplitude resonance versus small-amplitude nonresonance), depending on the M orientation of a given VC. Owing to this asymmetric resonance characteristics, the HCCW(HCW) with ωH˜ωD can be used to effectively switch only the up (down) core to its downward (upward) M orientation, selectively, by sufficiently low field (˜10Oe) and current density (˜107A/cm2). This work provides a reliable, low power, effective means of information storage, information recording, and information readout in vortex-based random access memory, simply called VRAM.

  5. Vortex matter stabilized by many-body interactions

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino

    2017-10-01

    This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.

  6. Ion-pair partition of quarternary ammonium drugs: the influence of counter ions of different lipophilicity, size, and flexibility.

    PubMed

    Takács-Novák, K; Szász, G

    1999-10-01

    The ion-pair partition of quaternary ammonium (QA) pharmacons with organic counter ions of different lipophilicity, size, shape and flexibility was studied to elucidate relationships between ion-pair formation and chemical structure. The apparent partition coefficient (P') of 4 QAs was measured in octanol/pH 7.4 phosphate buffer system by the shake-flask method as a function of molar excess of ten counter ions (Y), namely: mesylate (MES), acetate (AC), pyruvate (PYRU), nicotinate (NIC), hydrogenfumarate (HFUM), hydrogenmaleate (HMAL), p-toluenesulfonate (PTS), caproate (CPR), deoxycholate (DOC) and prostaglandin E1 anion (PGE1). Based on 118 of highly precise logP' values (SD< 0.05), the intrinsic lipophilicity (without external counter ions) and the ion-pair partition of QAs (with different counter ions) were characterized. Linear correlation was found between the logP' of ion-pairs and the size of the counter ions described by the solvent accessible surface area (SASA). The lipophilicity increasing effect of the counter ions were quantified and the following order was established: DOC approximate to PGE1 > CPR approximate to PTS > NIC approximate to HMAL > PYRU approximate to AC approximate to MES approximate to HFUM. Analyzing the lipophilicity/molar ratio (QA:Y) profile, the differences in the ion-pair formation were shown and attributed to the differences in the flexibility/rigidity and size both of QA and Y. Since the largest (in average, 300 X) lipophilicity enhancement was found by the influence of DOC and PGE1 and considerable (on average 40 X) increase was observed by CPR and PTS, it was concluded that bile acids and prostaglandin anions may play a significant role in the ion-pair transport of quaternary ammonium drugs and caproic acid and p-toluenesulfonic acid may be useful salt forming agents to improve the pharmacokinetics of hydrophilic drugs.

  7. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  8. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  9. A numerical study of the contrarotating vortex pair associated with a jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Roth, Karlin R.; Fearn, Richard L.; Thakur, Siddharth S.

    1989-01-01

    An implicit two-factor partially flux split solver for the thin-layer Navier-Stokes equations is used to solve the aerodynamic/propulsive interaction between a subsonic jet exhausting perpendicularly through a flat plat plate into a crossflow. The algorithm is applied to flows with a range of jet to crossflow velocity ratios between 4 and 8. The computed velocity field is analyzed and comparisons are made with experimentally determined properties of the contrarotating vortex pair.

  10. STS-61A earth observations

    NASA Image and Video Library

    1985-10-31

    61A-50-020 (30 Oct-6 Nov 1985) --- Large photo plankton vortex along the coast of New Zealand's South Island, about 100 kilometers to the north by northeast of Christchurch. Southern hemisphere vortices are clearly clockwise as opposed to counter-clockwise in the northern hemisphere.

  11. Propagation effects in the generation process of high-order vortex harmonics.

    PubMed

    Zhang, Chaojin; Wu, Erheng; Gu, Mingliang; Liu, Chengpu

    2017-09-04

    We numerically study the propagation of a Laguerre-Gaussian beam through polar molecular media via the exact solution of full-wave Maxwell-Bloch equations where the rotating-wave and slowly-varying-envelope approximations are not included. It is found that beyond the coexistence of odd-order and even-order vortex harmonics due to inversion asymmetry of the system, the light propagation effect results in the intensity enhancement of a high-order vortex harmonics. Moreover, the orbital momentum successfully transfers from the fundamental laser driver to the vortex harmonics which topological charger number is directly proportional to its order.

  12. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  13. The formation of new quasi-stationary vortex patterns from the interaction of two identical vortices in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, Mikhail A.; Verron, Jacques; Carton, Xavier J.

    2018-06-01

    Within the framework of the quasi-geostrophic approximation, the interactions of two identical initially circular vortex patches are studied using the contour dynamics/surgery method. The cases of barotropic vortices and of vortices in the upper layer of a two-layer fluid are considered. Diagrams showing the end states of vortex interactions and, in particular, the new regime of vortex triplet formation are constructed for a wide range of external parameters. This paper shows that, in the nonlinear evolution of two such (like-signed) vortices, the filaments and vorticity fragments surrounding the merged vortex often collapse into satellite vortices. Therefore, the conditions for the formation and the quasi-steady motions of a new type of triplet-shaped vortex structure are obtained.

  14. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  15. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ exhibits a prominent spatiotemporal behaviour. The residence time of the CVP is estimated as the jet duration time, while the maximum extent of the affected flow in the three coordinate directions (x, y, and z) is approximately 32D, 8.5D, and 10D, respectively. An extremely high level of turbulent kinetic energy production is shown in the jet shear-layer, front vortex ring, and CVP, of which the contribution of the streamwise Reynolds normal stress is dominant. Finally, a conceptual model of the interaction between the PSJ and the TBL is proposed.

  16. Zombie Turbulence and More in Stratified Couette Flow

    NASA Astrophysics Data System (ADS)

    Marcus, Philip; Barranco, Joe; Pei, Suyang; Jiang, Chung-Hsiang

    2016-11-01

    Zombie turbulence occurs in rotating, shearing vertically-stratified flows such as stratified Couette flows. The turbulence is triggered by a neutrally-stable eigenmode with a critical layer receptive to finite-amplitude perturbations. Once excited, the critical layer becomes a vortex layer pair that rolls up into discrete vortices. Those vortices excite new critical layers, and the process repeats ad infinitum. When the vortex amplitudes become sufficiently large, the flow becomes turbulent. Although possessing a mid-range energy spectrum with E (k) k - 5 / 3 , the turbulence is non-Kolmogorov, highly anisotropic, and with large turbulent, but coherent, structures that retain the length scales of the spacing between the critical layers. The motivation for this study is protoplanetary disks (PPDs) where new stars form. In the PPD the Brunt-Vaisala frequency N increases as a function of distance from the midplane where it is zero. We cannot trigger the initial finite amplitude instability where N is small (close to the midplane). However, computations in PPDs and Couette flows show that zombie turbulence forms where N is large, and then a new type of turbulence, that is neither zombie nor Kolmogorov turbulence, fills in the remainder of the domain even where N = 0 .

  17. Anomalous hydrodynamics and normal fluids in rapidly rotating Bose-Einstein condensates.

    PubMed

    Bourne, A; Wilkin, N K; Gunn, J M F

    2006-06-23

    In rapidly rotating condensed Bose systems we show that there is a regime of anomalous hydrodynamics which coincides with the mean field quantum Hall regime. A consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show that there are constraints which connect spatial variations of density and phase and that the vortex positions are not the simplest description of the dynamics. We demonstrate, inter alia, a simple relation between vortices and surface waves. We show that the surface waves can emulate a "normal fluid," allowing dissipation by energy and angular momentum absorbtion from vortex motion in the trap. The time scale is sensitive to the initial configuration, which can lead to long-lived vortex patches--perhaps related to those observed at JILA.

  18. Interrelation of changes in the total content of ozone in the northern hemisphere with the velocity of the stratosphere circumpolar vortex

    NASA Astrophysics Data System (ADS)

    Kolyada, Maria N.; Kashkin, Valentin B.

    2004-12-01

    Considering the high significance of the ozone for preservation and maintenance of the biosphere and the temperature balance of the atmosphere the investigation of the ozone layer is a very important part of the investigation of the planet"s atmosphere. In this work results of investigations of TOC variability in the Northern Hemisphere and the influence of variability of the circumpolar vortex rotation velocity on the ozone layer are presented. Mean values of total ozone concentration in the Northern Hemisphere (by satellite data) and rotation velocities of the circumpolar vortex are calculated for each month from February to April during 1998-2004. Also in this work the mechanism of the influence of the natural factors on TOC variability solar activity during the spring is suggested.

  19. Saturn's North Polar Vortex Revealed by Cassini/VIMS: Zonal Wind Structure and Constraints on Cloud Distributions

    NASA Astrophysics Data System (ADS)

    Baines, Kevin H.; Momary, T. W.; Fletcher, L. N.; Buratti, B. J.; Roos-Serote, M.; Showman, A. P.; Brown, R. H.; Clark, R. N.; Nicholson, P. D.

    2008-09-01

    We present the first high-spatial resolution, near-nadir imagery and movies of Saturn's north polar region that reveal the wind structure of a north polar vortex. Obtained by Cassini/VIMS on June 15, 2008 from high over Saturn's polar region (sub-spacecraft latitude of 65 degrees N. lat) at an altitude of 0.42 million km during the long polar night, these 210-per-pixel images of the polar region north of 73 degrees N. latitude show several concentric cloud rings and hundreds of individual cloud features in silhouette against the 5-micron background thermal glow of Saturn's deep atmosphere. In contrast to the clear eye of the south polar vortex, the north polar vortex sports a central cloud feature about 650-km in diameter. Zonal winds reach a maximum of 150 m/s near 88 degrees N. latitude (planetocentric) - comparable to the south polar vortex maximum of 190 m/s near 88 degrees S. latitude - and fall off nearly monotonically to 10 m/s near 80 degrees N. latitude. At slightly greater distance from the pole, inside the north polar hexagon in the 75-77 degree N. latitude region, zonal winds increase dramatically to 130 m/s, as silhouetted clouds are seen speeding aroud the "race track” of the hexagonal feature. VIMS 5-micron thermal observations over a 1.6-year period from October 29, 2006 to June 15, 2008 are consistent with the polar hexagon structure itself remaining fixed in the Voyager-era radio rotation rate (Desch and Kaiser, Geophys. Res. Lett, 8, 253-256, 1981) to within an accuracy of 3 seconds per rotational period. This agrees with the stationary nature of the wave in this rotation system found by Godfrey (Icarus 76, 335-356, 1988), but is inconsistent with rotation rates found during the current Cassini era.

  20. Laminar boundary layer near the rotating end wall of a confined vortex

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. J.; Levy, E. K.

    1982-06-01

    The results of an experimental and theoretical investigation of the fluid mechanics in a confined vortex are discussed with particular emphasis on behavior away from the axis of symmetry and near the end walls. The vortex is generated in a rotating cylindrical chamber with an exit opening in one end. Both end walls rotate. For the range of flow rates and swirl ratios (S between 1 and 5) of interest here, the flow field far from the end walls behaves as inviscid and irrotational; and the end wall boundary layers are thin and laminar. Measurements and calculations of tangential and radial velocity in the end wall region show the development of a secondary flow resulting in a strong velocity 'overshoot' in the radial component. Results illustrating the nature of the velocity variations on the end walls are presented; and it is shown that the mass flow rate through the end wall boundary layers, while only a small fraction of the total flow, increases with increasing swirl and with decreasing total flow rate through the chamber.

  1. Vortex line in the unitary Fermi gas

    DOE PAGES

    Madeira, Lucas; Vitiello, Silvio A.; Gandolfi, Stefano; ...

    2016-04-06

    Here, we report diffusion Monte Carlo results for the ground state of unpolarized spin-1/2 fermions in a cylindrical container and properties of the system with a vortex-line excitation. The density profile of the system with a vortex line presents a nonzero density at the core. We also calculate the ground-state energy per particle, the superfluid pairing gap, and the excitation energy per particle. Finally, these simulations can be extended to calculate the properties of vortex excitations in other strongly interacting systems such as superfluid neutron matter using realistic nuclear Hamiltonians.

  2. Reversal in Spreading of a Tabbed Circular Jet Under Controlled Excitation

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Raman, G.

    1997-01-01

    Detailed flow field measurements have been carried out for a turbulent circular jet perturbed by tabs and artificial excitation. Two "delta tabs" were placed at the nozzle exit at diametricall opposite y locations. The excitation condition involved subharmonic resonance that manifested in a periodic vortex pairing in the near flow field. While the excitation and the tabs independently increased jet spreading, a combination of the two diminished the effect. The jet spreading was most pronounced with the tabs but was reduced when excitation was applied to the tabbed jet. The tabs generated streamwise vortex pairs that caused a lateral spreading of the jet in a direction perpendicular to the plane containing the tabs. ne excitation, on the other hand, organized the azimuthal vorticity into coherent ring structures whose evolution and pairing also increased entrainment by the jet. In the tabbed case, the excitation produced coherent azimuthal structures that were distorted and asymmetric in shape. The self-induction of these structures produced an effect that opposed the tendency for the lateral spreading of the streamwise vortex pairs. The passage of the distorted vortices, and their pairing, also had a cancellation effect on the time-averaged streamwise vorticity field. These led to the reduction in jet spreading.

  3. Effects of large-scale wind driven turbulence on sound propagation

    NASA Technical Reports Server (NTRS)

    Noble, John M.; Bass, Henry E.; Raspet, Richard

    1990-01-01

    Acoustic measurements made in the atmosphere have shown significant fluctuations in amplitude and phase resulting from the interaction with time varying meteorological conditions. The observed variations appear to have short term and long term (1 to 5 minutes) variations at least in the phase of the acoustic signal. One possible way to account for this long term variation is the use of a large scale wind driven turbulence model. From a Fourier analysis of the phase variations, the outer scales for the large scale turbulence is 200 meters and greater, which corresponds to turbulence in the energy-containing subrange. The large scale turbulence is assumed to be elongated longitudinal vortex pairs roughly aligned with the mean wind. Due to the size of the vortex pair compared to the scale of the present experiment, the effect of the vortex pair on the acoustic field can be modeled as the sound speed of the atmosphere varying with time. The model provides results with the same trends and variations in phase observed experimentally.

  4. Cavitating vortices in the guide vanes region related to the pump-turbine pumping mode rotating stall

    NASA Astrophysics Data System (ADS)

    Ješe, U.; Skotak, A.; Mikulašek, J.

    2017-04-01

    Reversible pump-turbines used in Pumped Storage Power Plants are among the most cost-efficient solutions for storing and recovering large amount of energy in short time. Presented paper is focused on the pump-turbine pumping mode part-load instabilities, among them the rotating stall and the cavitating vortex in the distributor region. Rotating stall can be described as a periodic occurrence and decay of the recirculation zones in the distributor with its own rotational characteristics frequency. Unstable behaviour can result in high radial forces, high pressure fluctuations and local velocity fluctuations that can in some cases lead into the occurrence of the cavitating vortex in the distributor region, even though the distributor is located in the high pressure region. Computationally demanding calculations have been performed using commercial CFD code. Analysed results have been compared to the experimental data obtained in the ČKD Blansko Engineering hydraulic laboratory.

  5. Tempest in a glass tube: A helical vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Saitou, Yoshifumi; Ishihara, Osamu; Ishihara

    2014-12-01

    A collective behavior of dust particles in a complex plasma with a magnetic field (up to 4 kG) is investigated. Dust particles form a dust disk which is rotating in a horizontal plane pushed by ions rotating with the E × B drift as a trigger force. The thickness of the disk is determined by controlling the experimental conditions. The disk rotates in a horizontal plane and forms a two-dimensional thin structure when the pressure pAr is relatively high. The dust particles are ejected from near the disk center and form a rotation in the vertical plane and, hence, forms a helical vortex when the disk is thick for relatively low pAr . The reason the dust disk has the different thickness is due to the neutral pressure. Under a higher (lower) neutral gas pressure, the disk becomes two (three) dimensional due to the influence of the neutral drag force.

  6. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  7. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  8. Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Chen, Hui; Liu, Yingwen

    2017-06-01

    In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."

  9. Asymmetric and Stochastic Behavior in Magnetic Vortices Studied by Soft X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Im, Mi-Young

    Asymmetry and stochasticity in spin processes are not only long-standing fundamental issues but also highly relevant to technological applications of nanomagnetic structures to memory and storage nanodevices. Those nontrivial phenomena have been studied by direct imaging of spin structures in magnetic vortices utilizing magnetic transmission soft x-ray microscopy (BL6.1.2 at ALS). Magnetic vortices have attracted enormous scientific interests due to their fascinating spin structures consisting of circularity rotating clockwise (c = + 1) or counter-clockwise (c = -1) and polarity pointing either up (p = + 1) or down (p = -1). We observed a symmetry breaking in the formation process of vortex structures in circular permalloy (Ni80Fe20) disks. The generation rates of two different vortex groups with the signature of cp = + 1 and cp =-1 are completely asymmetric. The asymmetric nature was interpreted to be triggered by ``intrinsic'' Dzyaloshinskii-Moriya interaction (DMI) arising from the spin-orbit coupling due to the lack of inversion symmetry near the disk surface and ``extrinsic'' factors such as roughness and defects. We also investigated the stochastic behavior of vortex creation in the arrays of asymmetric disks. The stochasticity was found to be very sensitive to the geometry of disk arrays, particularly interdisk distance. The experimentally observed phenomenon couldn't be explained by thermal fluctuation effect, which has been considered as a main reason for the stochastic behavior in spin processes. We demonstrated for the first time that the ultrafast dynamics at the early stage of vortex creation, which has a character of classical chaos significantly affects the stochastic nature observed at the steady state in asymmetric disks. This work provided the new perspective of dynamics as a critical factor contributing to the stochasticity in spin processes and also the possibility for the control of the intrinsic stochastic nature by optimizing the design of asymmetric disk arrays. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by Leading Foreign Research Institute Recruitment Program through the NRF.

  10. Vortex servovalve for fluidic or electrical input

    NASA Technical Reports Server (NTRS)

    Honda, T. S.

    1972-01-01

    Proportional-pressure control servovalve consisting of fluid amplifier bellows-driven jet-pipe and two vortex valves operating in push-pull, with a pair of bellows for pressure feedback is tolerant to comtaminant particles and meets minimum standby flow requirements for applications such as rocket thruster nozzles.

  11. Effect of ground wind shear on aircraft trailing vortices

    DOT National Transportation Integrated Search

    1972-08-01

    The motion of the pair of trailing vortices generated by an aircraft is not well described by simple line vortex theory in the presence of a cross wind near the ground. Experimental observations indicate that the up-wind vortex usually drops to a low...

  12. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by secondary flow structures. Unlike the baseline, these secondary flow structures produced downwash along the centerline. The formation of such structures was caused by the core flow stagnating on the lower surface near the aerodynamic interface plane. Using the two-dimensional steady jet resulted in an increase in the spanwise flow within the inlet and a reduction in the energy content of the 350 Hz shedding frequency. Unsteady forcing did not show much improvement over steady forcing for this configuration. A spanwise varying control jet and a hybrid Coanda jet / vortex generator jets were tested to reduce the three-dimensionality of the flow field. It was found that anytime the flow control method suppressed separation along the centerline, counter-rotating vortices existed in the lower corners of the aerodynamic interface plane.

  13. Equilibrium vortex lattices of a binary rotating atomic Bose–Einstein condensate with unequal atomic masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping

    We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with ourmore » numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.« less

  14. Robust and adjustable C-shaped electron vortex beams

    NASA Astrophysics Data System (ADS)

    Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.

    2017-06-01

    Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

  15. Pair density waves in superconducting vortex halos

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Edkins, Stephen D.; Hamidian, Mohammad H.; Davis, J. C. Séamus; Fradkin, Eduardo; Kivelson, Steven A.

    2018-05-01

    We analyze the interplay between a d -wave uniform superconducting and a pair-density-wave (PDW) order parameter in the neighborhood of a vortex. We develop a phenomenological nonlinear sigma model, solve the saddle-point equation for the order-parameter configuration, and compute the resulting local density of states in the vortex halo. The intertwining of the two superconducting orders leads to a charge density modulation with the same periodicity as the PDW, which is twice the period of the charge density wave that arises as a second harmonic of the PDW itself. We discuss key features of the charge density modulation that can be directly compared with recent results from scanning tunneling microscopy and speculate on the role PDW order may play in the global phase diagram of the hole-doped cuprates.

  16. Vortex formation and instability in the left ventricle

    NASA Astrophysics Data System (ADS)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  17. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    NASA Astrophysics Data System (ADS)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the cylinder over one quasi-period of the slowly decaying response and find that vortex elongation is associated with a sign change of that measure, indicating that a reversal of the direction of energy transfer, with the cylinder ;leaking energy back; to the flow, is responsible for partial stabilization and elongation of the wake. We interpret these findings in terms of the spatial structure and energy distribution of the POD modes, and relate them to the mechanism of transient resonance capture into a slow invariant manifold of the fluid-structure interaction dynamics.

  18. Unsteady behavior of leading-edge vortex and diffuser stall in a centrifugal compressor with vaned diffuser

    NASA Astrophysics Data System (ADS)

    Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka

    2016-02-01

    The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.

  19. Reduced-order aeroelastic model for limit-cycle oscillations in vortex-dominated unsteady airfoil flows

    NASA Astrophysics Data System (ADS)

    Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok

    2017-11-01

    In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.

  20. Development of a High-Performance Fin-and-Tube Heat Exchanger with Vortex Generators for a Vending Machine

    NASA Astrophysics Data System (ADS)

    Iwasaki, Masamichi; Saito, Hiroshi; Mochizuki, Sadanari; Murata, Akira

    The effect of delta-wing-vortex generators (combination of a delta wing and a delta winglet pair) on the heat transfer performance of fin-and-tube heat exchangers for vending machines has been investegated. Flow visualizations, numerical simulations and heat transfer experiments were conducted to find an optimum geometrical shape and arrangement of the vortex generators. Maximum heat transfer enhancement was achieved by the combination of (a) the delta wing with the apex angle of 86 degrees and (b) the delta winglet pair with the inline angle of 45 degrees. In relatively low Reynolds number range, about 40 % increase in heat transfer coefficient was attained with the above mentioned combination of the vortex generators compared to the ordinary heat exchangers with plain fins. It was revealed that the heat transfer enhancement was attributed to (1) the longitudinal vortexes generated by the delta wing and (2) the reduction of wake area behind the tube. It was also found that an increase in the apex angle of the delta wing brought about heat transfer enhancement, and the scale as well as the streggth of the induced longitudinal vortices played an important role in the heat transfer performance.

  1. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.

    The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.

    The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.

    Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.

    Each image covers a swath approximately 380 kilometers wide.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  2. Longitudinal disordering of vortex lattices in anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Harshman, D. R.; Brandt, E. H.; Fiory, A. T.; Inui, M.; Mitzi, D. B.; Schneemeyer, L. F.; Waszczak, J. V.

    1993-02-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi2Sr2CaCu2O8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa2Cu3O7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction.

  3. Convection vortex at dayside of high latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Alexeev, I. I.; Feldstein, Y. I.; Greenwald, R. A.

    Investigation of mesoscale convection in the dayside sector by SuperDARN radars has revealed the existence in afternoon sector a convection vortex whose location, intensity and convection direction coincide with the polar cap geomagnetic disturbances (DPC), which is reviewed thoroughly. Possible mechanism of the DPC generation are also described. Importance of the Earth's co-rotation potential is discussed. The existence of DPC vortex is interpreted in the framework of three dimensional current system with the field-aligned currents of coaxial cable type. In the vortex focus, the current outflowing from the ionosphere is concentrated whereas the inflowing current is distributed along the current system periphery.

  4. Vortex multiplication in applied flow: A precursor to superfluid turbulence.

    PubMed

    Finne, A P; Eltsov, V B; Eska, G; Hänninen, R; Kopu, J; Krusius, M; Thuneberg, E V; Tsubota, M

    2006-03-03

    A surface-mediated process is identified in 3He-B which generates vortices at a roughly constant rate. It precedes a faster form of turbulence where intervortex interactions dominate. This precursor becomes observable when vortex loops are introduced in low-velocity rotating flow at sufficiently low mutual friction dissipation at temperatures below 0.5Tc. Our measurements indicate that the formation of new loops is associated with a single vortex interacting in the applied flow with the sample boundary. Numerical calculations show that the single-vortex instability arises when a helical Kelvin wave expands from a reconnection kink at the wall and then intersects again with the wall.

  5. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    PubMed

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  6. Active flow control for a blunt trailing edge profiled body

    NASA Astrophysics Data System (ADS)

    Naghib Lahouti, Arash

    Flow in the wake of nominally two-dimensional bluff bodies is dominated by vortex shedding, beyond a very small threshold Reynolds number. Vortex shedding poses challenges in the design of structures, due to its adverse effects such as cyclic aerodynamic loads and fatigue. The wake vortices are often accompanied by large- and small-scale secondary instabilities, which manifest as dislocations in the primary wake vortices, and/or pairs of counter-rotating streamwise vortices, depending on the dominant instability mode(s), which in turn depends on the profile geometry and Reynolds number. The secondary instabilities interact with the wake vortices through several mechanisms. Therefore, manipulation of the secondary instabilities can be used as a means to alter the wake vortices, in order to reduce their adverse effects. In the present study, flow in the wake of a blunt trailing edge profiled body, composed of an elliptical leading edge and a rectangular trailing edge, has been studied at Reynolds numbers ranging from Re(d) = 500 to 2150 where d is thickness of the body, to identify the secondary instabilities. Various tools, including numerical simulations, Laser Induced Fluorescence (LIF), and Particle Image Velocimetry (PIV) have been used for this study. Proper Orthogonal Decomposition (POD) has been applied to analyze the velocity field data. The results indicate the existence of small-scale instabilities with a spanwise wavelength of 2.0d to 2.5d in the near wake. The mechanism of the instability is similar to the Mode-A instability of a circular cylinder; however, it displays features that are specific to the blunt trailing edge profiled body. An active three-dimensional flow control mechanism based on the small-scale instabilities has been designed and evaluated. The mechanism comprises a series of trailing edge injection ports, with a spanwise spacing equal to the wavelength of the small-scale instabilities. Following preliminary evaluation of the control mechanism through numerical simulations, and experimental study of the effect of injection flow rate, extensive PIV experiments have been conducted to investigate the effectiveness of the flow control mechanism, and its effects on the wake flow structure, at Reynolds numbers ranging from Re(d ) = 700 to 1980. Measurements have been carried out at multiple spanwise locations, to establish a comprehensive image of the effect of the flow control mechanism on parameters such as drag force, wake width, and formation length. POD analysis and frequency spectrums are used to describe the process by which the mechanism affects the wake parameters and drag force. The results indicate that the flow control mechanism is able to reduce drag force by 10%. It is also shown that the best effectiveness in terms of suppression of the drag component resulting from velocity fluctuations is achieved when the flow control actuation wavelength closely matches the wavelength of the small-scale instabilities. KEYWORDS: Blunt Trailing Edge Profiled Body, Vortex Shedding, Wake Instability, Streamwise Vortex, Flow Control, Drag Reduction, Particle Image Velocimetry (PIV), Laser Induced Fluorescence (LIF), Flow Visualization, Numerical Simulation

  7. Counter-rotating microplates at the Galapagos triple junction.

    PubMed

    Klein, Emily M; Smith, Deborah K; Williams, Clare M; Schouten, Hans

    2005-02-24

    An 'incipient' spreading centre east of (and orthogonal to) the East Pacific Rise at 2 degrees 40' N has been identified as forming a portion of the northern boundary of the Galapagos microplate. This spreading centre was described as a slowly diverging, westward propagating rift, tapering towards the East Pacific Rise. Here we present evidence that the 'incipient rift' has also rifted towards the east and opens anticlockwise about a pivot at its eastern end. The 'incipient rift' then bounds a second microplate, north of the clockwise-rotating Galapagos microplate. The Galapagos triple junction region, in the eastern equatorial Pacific Ocean, thus consists of two counter-rotating microplates partly separated by the Hess Deep rift. Our kinematic solution for microplate motion relative to the major plates indicates that the two counter-rotating microplates may be treated as rigid blocks driven by drag on the microplates' edges3.

  8. ELM-free and inter-ELM divertor heat flux broadening induced by edge harmonics oscillation in NSTX

    DOE PAGES

    Gan, K. F.; Ahn, J. -W.; Gray, T. K.; ...

    2017-10-26

    A new n =1 dominated edge harmonic oscillation (EHO) has been found in NSTX. The new EHO, rotating toroidally in the counter-current direction and the opposite direction of the neutral beam, was observed during certain inter-ELM and ELM-free periods of H-mode operation. This EHO is associated with a significant broadening of the integral heat flux width (more » $${{\\lambda}_{\\operatorname{int}}}$$ ) by up to 150%, and a decrease in the divertor peak heat flux by >60%. An EHO induced filament was also observed by the gas puff imaging diagnostic. The toroidal rotating filaments could change the edge magnetic topology resulting in toroidal rotating strike point splitting and heat flux broadening. Finally, experimental result of the counter current rotation of strike points splitting is consistent with the counter-current EHO.« less

  9. Anomalous Hydrodynamics and Normal Fluids in Rapidly Rotating Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bourne, A.; Wilkin, N. K.; Gunn, J. M. F.

    2006-06-01

    In rapidly rotating condensed Bose systems we show that there is a regime of anomalous hydrodynamics which coincides with the mean field quantum Hall regime. A consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show that there are constraints which connect spatial variations of density and phase and that the vortex positions are not the simplest description of the dynamics. We demonstrate, inter alia, a simple relation between vortices and surface waves. We show that the surface waves can emulate a “normal fluid,” allowing dissipation by energy and angular momentum absorbtion from vortex motion in the trap. The time scale is sensitive to the initial configuration, which can lead to long-lived vortex patches—perhaps related to those observed at JILA.

  10. Development of a model counter-rotating type horizontal-axis tidal turbine

    NASA Astrophysics Data System (ADS)

    Huang, B.; Yoshida, K.; Kanemoto, T.

    2016-05-01

    In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.

  11. Laser Gyro Theory Extension.

    DTIC Science & Technology

    1980-12-01

    A 60 Kiz. A scanning Fabry - Perot etalon was used to measure the frequency spectrum. I -.8 -.4 0 .4 .8 n(O/sec) a 4-mode (expt) / 2-mode(expt) / -- 4...light from one mode into the counter- rotating one is Doppler shifted. In summary, a two-mode ring laser gyro has two counter- Fig. 4. The demodulated ...input rate so that the locking Fig. 4 shows the demodulated beat note versus rotation rate region is avoided. The rotation rate measurement then depends

  12. Asymmetric vortex pair in the wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Iosilevskii, G.; Seginer, A.

    1994-10-01

    Stationary configurations of two asymmetric point vortices in the wake of an infinite circular cylinder, spinning or not about its axis, are analytically investigated using an ideal fluid approximation. Four different vortex configurations (patterns) in the wake of a spinning cylinder are found in the case when vortex asymmetry is weak; each configuration is associated with a certain direction of the Magnus force. The qualitative relation between a pattern and a direction of the Magnus force is in agreement with experimental data. Also obtained are asymmetrical vortex configurations in the wake of a nonspinning cylinder.

  13. Studies on polar high-speed counter-current chromatographic systems in separation of amaranthine-type betacyanins from Celosia species.

    PubMed

    Spórna-Kucab, Aneta; Milo, Angelika; Kumorkiewicz, Agnieszka; Wybraniec, Sławomir

    2018-01-15

    Betacyanins, natural plant pigments exhibiting antioxidant and chemopreventive properties, were extracted from Celosia spicata (Thouars) Spreng. inflorescences and separated by high-speed counter-current chromatography (HSCCC) in two polar solvent systems composed of: TBME - 1-BuOH - ACN - H 2 O (0.7% HFBA, 2:2:1:5, v/v/v/v) (system I) and EtOH - ACN - 1-PrOH - (NH 4 ) 2 SO 4satd.soln - H 2 O (0.5:0.5:0.5:1.2:1, v/v/v/v/v) (system II). The systems were used in the head-to-tail (system I) and tail-to-head (system II) mode. The flow rate of the mobile phase was 2.0 ml/min and the column rotation speed was 860 rpm. The retention of the stationary phase was 73.5% (system I) and 80.0% (system II). For the identification of separated betacyanins in the crude extract as well as in the HSCCC fractions, LC-DAD-ESI-MS/MS analyses were performed. Depending on the target compounds, each of the systems exhibit meaningfully different selectivity and applicability. For the pairs of amaranthines (1/1') and betanins (2/2'), the best choice is the system II, but the acylated amaranthine pairs (3/3' and 4/4') can be resolved only in the ion-pair system I. For the indication of the most suitable solvent system for Celosia plumosa hort., Celosia cristata L. and Celosia spicata (Thouars) Spreng. species, the profiles of betacyanins in different plant parts were studied. Copyright © 2017. Published by Elsevier B.V.

  14. A rolling-gliding wear simulator for the investigation of tribological material pairings for application in total knee arthroplasty.

    PubMed

    Richter, Berna I; Ostermeier, Sven; Turger, Anke; Denkena, Berend; Hurschler, Christof

    2010-06-15

    Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.

  15. A rolling-gliding wear simulator for the investigation of tribological material pairings for application in total knee arthroplasty

    PubMed Central

    2010-01-01

    Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. PMID:20550669

  16. On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats

    DTIC Science & Technology

    2007-05-16

    15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave

  17. 2D barrier in a superconducting niobium square

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joya, Miryam R., E-mail: mrinconj@unal.edu.co; Barba-ortega, J., E-mail: jjbarbao@unal.edu.co; Sardella, Edson, E-mail: edsonsdl@gmail.com

    The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.

  18. Numerical Study of Wake Vortex Interaction with the Ground Using the Terminal Area Simulation System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Han, Jongil

    1999-01-01

    A sensitivity study for the in-ground effect on aircraft wake vortices has been conducted using a validated large eddy simulation model. The numerical results are compared with observed data and show good agreement for vortex decay and lateral vortex transport. The vortex decay rate is strongly influenced by the ground, but appears somewhat insensitive to ambient turbulence. In addition, the results show that the ground can affect the trajectory and descent-rate of a wake vortex pair at elevations up to about 3 b(sub o) (where b(sub o) is the initial vortex separation). However, the ground does not influence the average circulation of the vortices until the cores descend to within about 0.6 b(sub o), after which time the ground greatly enhances their rate of demise. Vortex rebound occurs in the simulations, but is more subtle than shown in previous numerical studies.

  19. Negative vortices: The formation of vortex rings with reversed rotation in viscoelastic liquids

    NASA Astrophysics Data System (ADS)

    Palacios-Morales, Carlos; Barbosa, Christophe; Solorio, Francisco; Zenit, Roberto

    2015-05-01

    The formation process of vortex rings in a viscoelastic liquid is studied experimentally considering a piston-cylinder arrangement. Initially, a vortex ring begins to form as fluid is injected from the cylinder into the tank in a manner similar to that observed for Newtonian liquids. For later times, when the piston ceases its motion, the flow changes dramatically. A secondary vortex with reversed spinning direction appears and grows to be as large in size as the original one. The formation process is studied by contrasting the evolution with that obtained for Newtonian liquids with equivalent Reynolds numbers and stroke ratios. We argue that the reversing flow, or negative vortex, results from the combined action of shear and extension rates produced during the vortex formation, in a process similar to that observed behind ascending bubbles and falling spheres in viscoelastic media.

  20. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    PubMed Central

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  1. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    DOE PAGES

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-06-14

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancymore » spins, resulting in enhanced coherent rotation of the spin state. Lastly, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~ 100 ns timescales.« less

  2. Measurements of condensation nuclei in the Airborne Arctic Stratospheric Expedition - Observations of particle production in the polar vortex

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Stolzenburg, M. R.; Clark, W. E.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1990-01-01

    The ER-2 Condensation Nucleus Counter (ER-2 CNC) was operated in the Airborne Arctic Stratospheric Expedition (AASE) in January and February 1989. The ER-2 CNC measures the mixing ratio of particles, CN, with diameters from approximately 0.02 to approximately 1 micron. The spatial distribution of CN in the Arctic polar vortex was found to resemble that measured in the Antarctic in the Spring of 1987. The vertical profile of CN in the vortex was lowered by subsidence. At altitudes above the minimum in the CN mixing ratio profile, CN mixing ratios correlated negatively with that of N2O, demonstrating new particle production. CN serve as nuclei in the formation of Polar Stratospheric Clouds (PSCs) and the concentration of CN can affect PSC properties.

  3. Evidence for an oscillating soliton/vortex ring by density engineering of a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Shomroni, I.; Lahoud, E.; Levy, S.; Steinhauer, J.

    2009-03-01

    When two Bose-Einstein condensates collide with high collisional energy, the celebrated matter-wave interference pattern appears. For lower collisional energies, the repulsive interaction energy becomes significant, and the interference pattern evolves into an array of grey solitons. But the lowest collisional energies, producing a single pair of solitons, have not been probed so far. Here, we report on experiments using density engineering on the healing length scale to produce such a pair of solitons. We see evidence that the solitons evolve periodically between vortex rings and solitons. The stable, periodic evolution is in sharp contrast to the behaviour seen in previous experiments in which the solitons decay irreversibly into vortex rings through the so-called snake instability. The evolution can be understood in terms of conservation of mass and energy in a narrow condensate.

  4. Stripes and honeycomb lattice of quantized vortices in rotating two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi; Sakashita, Kouhei

    2018-05-01

    We study numerically the structure of a vortex lattice in rotating two-component Bose-Einstein condensates with equal atomic masses and equal intra- and intercomponent coupling strengths. The numerical simulations of the Gross-Pitaevskii equation show that the quantized vortices in this situation form lattice configuration accompanying vortex stripes, honeycomb lattices, and their complexes. This is a result of the degeneracy of the system for the SU(2) symmetric operation, which causes a continuous transformation between the above structures. In terms of the pseudospin representation, the complex lattice structures are identified as a hexagonal lattice of doubly winding half skyrmions.

  5. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  6. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow

    PubMed Central

    Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi

    2017-01-01

    Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076

  7. Reynolds number dependency of an insect-based flapping wing.

    PubMed

    Han, Jong-Seob; Chang, Jo-Won; Kim, Sun-Tae

    2014-01-01

    Aerodynamic characteristics depending on Reynolds number (Re) ranges were studied to investigate the suitable design parameters of an insect-based micro air vehicle (MAV). The tests centered on the wing rotation timing and Re ranges, and were conducted to understand the lift augmentations and unsteady effects. A dynamically scaled-up flapping wing controlled by a pair of servos was installed underwater with a micro force/torque sensor. A high-speed camera and a laser sheet were also put in front of the water tank for the time-resolved digital particle image velocimetry (DPIV). The lift augmentations clearly appeared at low Re and were well reflected on the insect's flight range. In the case of the high Re, however, the peak standing for the wing–wake interaction was delayed, and the pitching-up rotation was not able to lead to another lift enhancement, i.e., rotational lift. In such Re, the mean CL and the L/D of the advanced rotation were substantially decreased from those of the other rotations. The DPIV results at high Re well described turbulent characteristics such as the irregular, unstable, and high-intensity vortex structures with a short temporal delay. In the advanced rotation, the LEV in the rotational phase could not maintain the attachment. Thus, the rotational lift was not able to work. On the contrary, the temporal response delay benefitted the wing in the delayed rotation. Therefore, the wing in the delayed rotation had both a similar level of the mean CL and a higher marked L/D than those of the advanced rotation. Such results indicate that the high Re could interrupt lift augmentation mechanisms, and these augmentations would not be suitable for a heavier MAV. In conclusion, using adequate wing kinematics to acquire estimations of the weight and range of the Re is highly recommended at the aerodynamic design step.

  8. On the combination of kinematics with flow visualization to compute total circulation - Application to vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.; Chang, I.-D.

    1980-01-01

    To date the computation of the total circulation, or strength of a vortex has required detailed measurements of the velocity field within the vortex. In this paper a method is described in which the kinematics of the vortical flow field is exploited to calculate the strength of a vortex from relatively simple flow visualization measurements. There are several advantages in the technique, the most important being the newly acquired ability to calculate the transient changes in strength of a single vortex as it evolves. The method is applied to the study of vortex rings, although the development can be carried over directly to study vortex pairs, and it is expected that it can be generalized to other flows which contain regions of concentrated vorticity. The accuracy of the method as applied to vortex rings, assessed in part by comparing with the laser Doppler velocimeter (LDV) measurements of Sullivan et al., is shown to be excellent.

  9. Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case

    NASA Technical Reports Server (NTRS)

    Switzer, George F.

    2008-01-01

    This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA?s Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data.

  10. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

    NASA Astrophysics Data System (ADS)

    Sudjai, W.; Juntasaro, V.; Juttijudata, V.

    2018-01-01

    The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

  11. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  12. Self-focusing of ultraintense femtosecond optical vortices in air.

    PubMed

    Polynkin, P; Ament, C; Moloney, J V

    2013-07-12

    Our experiments show that the critical power for self-focusing collapse of femtosecond vortex beams in air is significantly higher than that of a flattop beam and grows approximately linearly with the vortex order. With less than 10% of initial transverse intensity modulation of the beam profiles, the dominant mode of self-focusing collapse is the azimuthal breakup of the vortex rings into individual filaments, the number of which grows with the input beam power. The generated bottlelike distributions of plasma filaments rotate on propagation in the direction determined by the sense of vorticity.

  13. On Multiple-Layered Vortices

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2011-01-01

    As part of an ongoing effort to find ways to make vortex flow fields decompose more quickly, photographs and observations are presented of vortex flow fields that indicate the presence of multiple layers of fluid rotating about a common axis. A survey of the literature indicates that multiple-layered vortices form in waterspouts, tornadoes and lift-generated vortices of aircraft. An explanation for the appearance of multiple-layered structures in vortices is suggested. The observations and data presented are intended to improve the understanding of the formation and persistence of vortex flow fields.

  14. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing

    NASA Astrophysics Data System (ADS)

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ (t ) and pressure p (t ) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Recturb=RecTDR≃(4.8 ±0.2 ) ×105 independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Recturb and RecTDR depending on polymer concentration ϕ . Both regimes differ by the values of Cf and Cp, by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998), 10.1063/1.869532; Phys. Rev. E 47, R28(R) (1993), 10.1103/PhysRevE.47.R28; and J. Phys.: Condens. Matter 17, S1195 (2005), 10.1088/0953-8984/17/14/008] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.

  15. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.

    PubMed

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.

  16. Rotational superradiant scattering in a vortex flow

    NASA Astrophysics Data System (ADS)

    Torres, Theo; Patrick, Sam; Coutant, Antonin; Richartz, Maurício; Tedford, Edmund W.; Weinfurtner, Silke

    2017-09-01

    When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% +/- 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole, as well as to hydrodynamics, due to the close relation to over-reflection instabilities.

  17. Poincare oscillations and geostrophic adjustment in a rotating paraboloid

    NASA Astrophysics Data System (ADS)

    Kalashnik, M.; Kakhiani, V.; Patarashvili, K.; Tsakadze, S.

    2009-10-01

    Free liquid oscillations (Poincare oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained. Address: alex_gaina@yahoo.com Database: phy

  18. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  19. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  20. Multimodal flow visualization and optimization of pneumatic blood pump for sorbent hemodialysis system.

    PubMed

    Shu, Fangjun; Parks, Robert; Maholtz, John; Ash, Steven; Antaki, James F

    2009-04-01

    Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.

  1. Effect of toroidal field ripple on plasma rotation in JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vries, P.; Salmi, A.; Parail, V.

    Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude ( ) from an average value of M = 0.40 0.55 for operations at the standard JET ripple of = 0.08% to M = 0.25 0.40 for = 0.5% and M = 0.1 0.3 for = 1%. TF ripple effectsmore » should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes ( ~ 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.« less

  2. Signatures of two-step impurity mediated vortex lattice melting in Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dey, Bishwajyoti

    2017-04-01

    We study impurity mediated vortex lattice melting in a rotating two-dimensional Bose-Einstein condensate (BEC). Impurities are introduced either through a protocol in which vortex lattice is produced in an impurity potential or first creating the vortex lattice in the absence of random pinning and then cranking up the impurity potential. These two protocols have obvious relation with the two commonly known protocols of creating vortex lattice in a type-II superconductor: zero field cooling protocol and the field cooling protocol respectively. Time-splitting Crank-Nicolson method has been used to numerically simulate the vortex lattice dynamics. It is shown that the vortex lattice follows a two-step melting via loss of positional and orientational order. This vortex lattice melting process in BEC closely mimics the recently observed two-step melting of vortex matter in weakly pinned type-II superconductor Co-intercalated NbSe2. Also, using numerical perturbation analysis, we compare between the states obtained in two protocols and show that the vortex lattice states are metastable and more disordered when impurities are introduced after the formation of an ordered vortex lattice. The author would like to thank SERB, Govt. of India and BCUD-SPPU for financial support through research Grants.

  3. Cyclic fatigue resistance of newly manufactured rotary nickel titanium instruments used in different rotational directions.

    PubMed

    Gambarini, Gianlucca; Gergi, Richard; Grande, Nicola Maria; Osta, Nada; Plotino, Gianluca; Testarelli, Luca

    2013-12-01

    The aim of this study was to investigate whether cyclic fatigue resistance is increased for nickel titanium instruments manufactured with improved heating processes in clockwise or counterclockwise continuous rotation. The instruments compared were produced either using the R-phase heat treatment (K3XF; SybronEndo, Orange, CA, USA) or the M-wire alloy (ProFile Vortex; DENTSPLY Tulsa Dental Specialties, Tulsa, OK, USA). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments in curved artificial canals. Results indicated no significant difference in resistance to cyclic fatigue when rotary nickel titanium instruments are used in clockwise or counterclockwise continuous rotation. In both directions of rotation, size 04-25 K3XF showed a significant increase (P < 0.05) in the mean number of cycles to failure when compared with size 04-25 ProFile Vortex. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  4. Strained spiral vortex model for turbulent fine structure

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  5. Topology and stability of a water-soybean-oil swirling flow

    NASA Astrophysics Data System (ADS)

    Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.

    2017-02-01

    This paper reveals and explains the flow topology and instability hidden in an experimental study by Tsai et al. [Tsai et al., Phys. Rev. E 92, 031002(R) (2015)], 10.1103/PhysRevE.92.031002. Water and soybean oil fill a sealed vertical cylindrical container. The rotating top disk induces the meridional circulation and swirl of both fluids. The experiment shows a flattop interface shape and vortex breakdown in the oil flow developing as the rotation strength R eo increases. Our numerical study shows that vortex breakdown occurs in the water flow at R eo=300 and in the oil flow at R eo=941 . As R eo increases, the vortex breakdown cell occupies most of the water domain and approaches the interface at R eo around 600. The rest of the (countercirculating) water separates from the axis as the vortex breakdown cells in the oil and water meet at the interface-axis intersection. This topological transformation of water flow significantly contributes to the development of the flattop shape. It is also shown that the steady axisymmetric flow suffers from shear-layer instability, which emerges in the water domain at R eo=810 .

  6. Vortex reconnection in the K-type transitional channel flow

    NASA Astrophysics Data System (ADS)

    Zhao, Yaomin; Yang, Yue; Chen, Shiyi

    2016-11-01

    Vortex reconnection, as the topological change of vortex lines or surfaces, is a critical process in transitional flows, but is challenging to accurately characterize in shear flows. We apply the vortex-surface field (VSF), whose isosurface is the vortex surface consisting of vortex lines, to study vortex reconnection in the K-type temporal transition in channel flow. Based on the VSF, both qualitative visualization and quantitative analysis are used to investigate the reconnection between the hairpin-like vortical structures evolving from the opposite channel halves. The incipient vortex reconnection is characterized by the vanishing minimum distance between a pair of vortex surfaces and the reduction of vorticity flux through the region enclosed by the VSF isolines on the spanwise symmetric plane. In addition, we find that the surge of the wall friction coefficient begins at the identified reconnection time, which is discussed with the induced velocity during reconnection and the Biot-Sarvart law. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.

  7. Quantum oscillations in vortex-liquids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Zhang, Shizhong; Randeria, Mohit

    2012-02-01

    Motivated by observations of quantum oscillations in underdoped cuprates [1], we examine the electronic density of states (DOS) in a vortex-liquid state, where long-range phase coherence is destroyed by an external magnetic field H but the local pairing amplitude survives. We note that this regime is distinct from that studied in most of the recent theories, which have focused on either a Fermi liquid with a competing order parameter or on a d-wave vortex lattice. The cuprate experiments are very likely in a resistive vortex-liquid state. We generalize the s-wave analysis of Maki and Stephen [2] to d-wave pairing and examine various regimes of the chemical potential, gap and field. We find that the (1/H) oscillations of the DOS at the chemical potential in a d-wave vortex-liquid are much more robust, i.e., have a reduced damping, compared to the s-wave case. We critically investigate the conventional wisdom relating the observed frequency to the area of an underlying Fermi surface. We also show that the oscillations in the DOS cross over to a √H behavior in the low field limit, in agreement with the recent specific heat measurements. [1] L. Taillefer, J. Phys. Cond. Mat. 21, 164212 (2009). [2] M. J. Stephen, Phys. Rev. B 45, 5481 (1992).

  8. Kosterlitz-Thouless transition and vortex-antivortex lattice melting in two-dimensional Fermi gases with p - or d -wave pairing

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-12-01

    We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.

  9. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE PAGES

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χ b, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χ m, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χ m not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  10. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenyu

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χ b, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χ m, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χ m not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  11. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Cantwell, B.; Coles, D.

    1983-01-01

    Attention is given to an experimental investigation of transport processes in the near wake of a circular cylinder, for a Reynolds number of 140,000, in which an X-array of hot wire probes mounted on a pair of whirling arms was used for flow measurement. Rotation of the arms in a uniform flow applies a wide range of relative flow angles to these X-arrays, making them inherently self-calibrating in pitch. A phase signal synchronized with the vortex-shedding process allowed a sorting of the velocity data into 16 populations, each having essentially constant phase. An ensemble average for each population yielded a sequence of pictures of the instantaneous mean flow field in which the vortices are frozen, as they would be on a photograph. The measurements also yield nonsteady mean data for velocity, intermittency, vorticity, stress, and turbulent energy production, as a function of phase. Emphasis is given in a discussion of study results to the nonsteady mean flow, which emerges as a pattern of centers and saddles in a frame of reference that moves with the eddies. The kinematics of the vortex formation process are described in terms of the formation and evolution of saddle points between vortices in the first few diameters of the near wake.

  12. On the formation of string cavitation inside fuel injectors

    NASA Astrophysics Data System (ADS)

    Reid, B. A.; Gavaises, M.; Mitroglou, N.; Hargrave, G. K.; Garner, C. P.; Long, E. J.; McDavid, R. M.

    2014-01-01

    The formation of vortex or `string' cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single `bridging' string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.

  13. Fluctuation driven EMFs in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kaplan, Elliot; Brown, Ben; Clark, Mike; Nornberg, Mark; Rahbarnia, Kian; Rasmus, Alex; Taylor, Zane; Forest, Cary

    2013-04-01

    The Madison Dynamo Experiment is a 1 m diameter sphere filled with liquid Sodium designed to study MHD in a simply connected geometry. Two impellers drive a two-vortex flow, based on the calculations of Dudley and James, intended to excite system-scale dynamo instability. We present a collection of results from experiments measuring hydrodynamic fluctuations and their MHD effects. An equatorial baffle was added to the experiment in order to diminish the large-eddy hydrodynamic fluctuations by stabilizing the shear layer between the two counter-rotating flow cells. The change in the fluctuation levels was inferred from the change in the spatial spectrum of the induced magnetic field. This reduction correlated with a 2.4 times increase in the induced toroidal magnetic field (a proxy measure of the effective resistivity). Furthermore, the local velocity fluctuations were directly measured by the addition of a 3-d emf probe (a strong permanent magnet inserted into the flow with electrical leads to measure the induced voltage, and magnetic probes to determine the magnetic fluctuations). The measured emfs are consistent with the enhanced magnetic diffusivity interpretation of mean-field MHD.

  14. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  15. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE PAGES

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher; ...

    2015-12-07

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  16. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  17. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  18. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  19. Effects of underestimating the kinematics of trunk rotation on simultaneous reaching movements: predictions of a biomechanical model

    PubMed Central

    2013-01-01

    Background Rotation of the torso while reaching produces torques (e.g., Coriolis torque) that deviate the arm from its planned trajectory. To ensure an accurate reaching movement, the brain may take these perturbing torques into account during movement planning or, alternatively, it may correct hand trajectory during movement execution. Irrespective of the process selected, it is expected that an underestimation of trunk rotation would likely induce inaccurate shoulder and elbow torques, resulting in hand deviation. Nonetheless, it is still undetermined to what extent a small error in the perception of trunk rotations, translating into an inappropriate selection of motor commands, would affect reaching accuracy. Methods To investigate, we adapted a biomechanical model (J Neurophysiol 89: 276-289, 2003) to predict the consequences of underestimating trunk rotations on right hand reaching movements performed during either clockwise or counter clockwise torso rotations. Results The results revealed that regardless of the degree to which the torso rotation was underestimated, the amplitude of hand deviation was much larger for counter clockwise rotations than for clockwise rotations. This was attributed to the fact that the Coriolis and centripetal joint torques were acting in the same direction during counter clockwise rotation yet in opposite directions during clockwise rotations, effectively cancelling each other out. Conclusions These findings suggest that in order to anticipate and compensate for the interaction torques generated during torso rotation while reaching, the brain must have an accurate prediction of torso rotation kinematics. The present study proposes that when designing upper limb prostheses controllers, adding a sensor to monitor trunk kinematics may improve prostheses control and performance. PMID:23758968

  20. Long-wave instabilities of two interlaced helical vortices

    NASA Astrophysics Data System (ADS)

    Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.

    2016-09-01

    We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.

  1. The influence of abutment screw tightening on screw joint configuration.

    PubMed

    Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B

    2002-01-01

    Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.

  2. Critical Literacy in Elementary Social Studies: Juxtaposing Historical Master and Counter Narratives in Picture Books

    ERIC Educational Resources Information Center

    Demoiny, Sara B.; Ferraras-Stone, Jessica

    2018-01-01

    In this article the authors demonstrate how pairing master and counter narrative picture books, along with critical literacy practices, can be used to enhance the social studies curriculum outlined by state standards taught in today's elementary schools. These intentional book pairings allow students to grapple with what history truly means and to…

  3. Weakly Nonlinear Analysis of Vortex Formation in a Dissipative Variant of the Gross--Pitaevskii Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzou, J. C.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-05-10

    For a dissipative variant of the two-dimensional Gross--Pitaevskii equation with a parabolic trap under rotation, we study a symmetry breaking process that leads to the formation of vortices. The first symmetry breaking leads to the formation of many small vortices distributed uniformly near the Thomas$-$Fermi radius. The instability occurs as a result of a linear instability of a vortex-free steady state as the rotation is increased above a critical threshold. We focus on the second subsequent symmetry breaking, which occurs in the weakly nonlinear regime. At slightly above threshold, we derive a one-dimensional amplitude equation that describes the slow evolutionmore » of the envelope of the initial instability. Here, we show that the mechanism responsible for initiating vortex formation is a modulational instability of the amplitude equation. We also illustrate the role of dissipation in the symmetry breaking process. All analyses are confirmed by detailed numerical computations« less

  4. Coherent Perfect Rotation: The conservative analogue of CPA

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan; Andrews, James

    2012-06-01

    The two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. In analogy with coherent perfect absorption (CPA) resonances, where counter-propagating light fields are completely converted into other degrees of freedom, we show that in a linear conservative medium only time-odd (Faraday) rotation is capable of coherent perfect rotation, by which we mean the complete transfer of any arbitrarily oriented polarization of light into the other orthogonal polarization via the application of phased counter-propagating light fields. This contributes to the understanding of the importance of time reversal symmetry in perfect mode conversion that may be of use in optical device design.

  5. Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque.

    PubMed

    Siracusano, G; Tomasello, R; Giordano, A; Puliafito, V; Azzerboni, B; Ozatay, O; Carpentieri, M; Finocchio, G

    2016-08-19

    Solitons are very promising for the design of the next generation of ultralow power devices for storage and computation. The key ingredient to achieving this goal is the fundamental understanding of their stabilization and manipulation. Here, we show how the interfacial Dzyaloshinskii-Moriya Interaction (IDMI) is able to lift the energy degeneracy of a magnetic vortex state by stabilizing a topological soliton with radial chirality, hereafter called radial vortex. It has a noninteger Skyrmion number S (0.5<|S|<1) due to both the vortex core polarity and the magnetization tilting induced by the IDMI boundary conditions. Micromagnetic simulations predict that a magnetoresistive memory based on the radial vortex state in both free and polarizer layers can be efficiently switched by a threshold current density smaller than 10^{6}  A/cm^{2}. The switching processes occur via the nucleation of topologically connected vortices and vortex-antivortex pairs, followed by spin-wave emissions due to vortex-antivortex annihilations.

  6. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  7. From rotating atomic rings to quantum Hall states.

    PubMed

    Roncaglia, M; Rizzi, M; Dalibard, J

    2011-01-01

    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.

  8. Non-Abelian vortex lattices

    NASA Astrophysics Data System (ADS)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  9. Periodic solutions with prescribed minimal period of vortex type problems in domains

    NASA Astrophysics Data System (ADS)

    Bartsch, Thomas; Sacchet, Matteo

    2018-05-01

    We consider Hamiltonian systems with two degrees of freedom of point vortex type for in a domain . In the classical point vortex context the Hamiltonian is of the form where is the regular part of a hydrodynamic Green function in Ω, is the Robin function: , and , are the vortex strengths. We prove the existence of infinitely many periodic solutions with prescribed minimal period that are superpositions of a slow motion of the center of vorticity close to a star-shaped level line of h and of a fast rotation of the two vortices around their center of vorticity. The proofs are based on a recent higher dimensional version of the Poincaré–Birkhoff theorem due to Fonda and Ureña.

  10. F/A-18 and F-16 forebody vortex control, static and rotary-balance results

    NASA Technical Reports Server (NTRS)

    Kramer, Brian; Smith, Brooke

    1994-01-01

    The results from research on forebody vortex control on both the F/A-18 and the F-16 aircraft will be shown. Several methods of forebody vortex control, including mechanical and pneumatic schemes, will be discussed. The wind tunnel data includes both static and rotary balance data for forebody vortex control. Time lags between activation or deactivation of the pneumatic control and when the aircraft experiences the resultant forces are also discussed. The static (non-rotating) forces and pressures are then compared to similar configurations tested in the NASA Langley and DTRC Wind Tunnel, the NASA Ames 80'x120' Wind Tunnel, and in flight on the High Angle of Attack Research Vehicle (HARV).

  11. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  12. Flow past a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  13. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  14. Quantum calculus of classical vortex images, integrable models and quantum states

    NASA Astrophysics Data System (ADS)

    Pashaev, Oktay K.

    2016-10-01

    From two circle theorem described in terms of q-periodic functions, in the limit q→1 we have derived the strip theorem and the stream function for N vortex problem. For regular N-vortex polygon we find compact expression for the velocity of uniform rotation and show that it represents a nonlinear oscillator. We describe q-dispersive extensions of the linear and nonlinear Schrodinger equations, as well as the q-semiclassical expansions in terms of Bernoulli and Euler polynomials. Different kind of q-analytic functions are introduced, including the pq-analytic and the golden analytic functions.

  15. Turbulent flow in a partially filled pipe

    NASA Astrophysics Data System (ADS)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  16. Numerical Investigation of Compressor Non-Synchronous Vibration with Full Annulus Rotor-Stator Interaction

    NASA Astrophysics Data System (ADS)

    Espinal, Daniel

    The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect, particularly at radial locations above 70% span. Therefore, to achieve similar or better total pressure ratio a design with a smaller loading of the upper blade span and a higher loading of the mid blade spans should be considered. A fully-conservative sliding interface boundary condition (BC) is implemented with phase-lag capabilities using the Direct Store method for single-passage simulations. Also Direct Store phase-lag was applied to the circumferential BCs to enforce longer disturbance wavelengths. The unsteady simulation using single-blade-passage with periodic BC for an inlet guide vane (IGV)-rotor configuration captures a 2291 Hz NSV excitation frequency and an IGV-rotor-stator configuration predicts a 2365 Hz NSV excitation frequency with a significantly higher amplitude above 90% span. This correlates closely to the predicted NSV excitation frequency of 2439 Hz for the full-annulus configuration. The two-blade-row configuration exhibits the same vortex structures captured in the full-annulus study. The three-blade-row configuration only captures a tip vortex shedding at the leading edge, which can be attributed to the reflective nature of the BCs causing IGV-rotor-stator interactions to be augmented, becoming dominant and shifting NSV excitation response to engine order regime. Phase-lag simulations with a Nodal Diameter (ND) of 5 is enforced for the circumferential BCs for the three-blade-row configuration, and the results exactly matched the frequency response and flow structures of the periodic simulation, illustrating the small effect that phase-lag has on strongly periodic flow disturbances. A ND of 7 is enforced at the sliding interface, however the NSV excitation completely disappears and only the wake propagation from IGV-Rotor-Stator interactions are captured. Rotor blade passage exhibits a circumferentially travelling vortex similar to those observed in the full-annulus and two-blade-row simulations. This can occur when the rotating instability responsible for the NSV no longer maintains a pressure variation with a characteristic frequency signature as it rotates relative to the rotor rotation, and now has become the beginning of a spike-type stall cell. In this scenario the travelling vortex has become evidence of part-stall of the upper spans of the rotor blade, but stalling is contained maintaining stable operation. In conclusion, an efficient method of capturing NSV excitation has been proposed in a high-fidelity manner, where only 2% of the computational resources used in a full-annulus simulation are required for an accurate single-blade-passage multi-stage simulation.

  17. An analysis of blade vortex interaction aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Lee, D. J.

    1985-01-01

    The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

  18. Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons

    NASA Astrophysics Data System (ADS)

    Veretenov, N. A.; Fedorov, S. V.; Rosanov, N. N.

    2017-12-01

    We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., Nc knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M0 (Nc , M , and M0 are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines Nc=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M =1 , 2, and 3.

  19. Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons.

    PubMed

    Veretenov, N A; Fedorov, S V; Rosanov, N N

    2017-12-29

    We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.

  20. Propeller installation effects on turboprop aircraft acoustics

    NASA Astrophysics Data System (ADS)

    Chirico, Giulia; Barakos, George N.; Bown, Nicholas

    2018-06-01

    Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout.

  1. Structural tailoring of counter rotation propfans

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth W.; Hopkins, D. A.

    1989-01-01

    The STAT program was designed for the optimization of single rotation, tractor propfan designs. New propfan designs, however, generally consist of two counter rotating propfan rotors. STAT is constructed to contain two levels of analysis. An interior loop, consisting of accurate, efficient approximate analyses, is used to perform the primary propfan optimization. Once an optimum design has been obtained, a series of refined analyses are conducted. These analyses, while too computer time expensive for the optimization loop, are of sufficient accuracy to validate the optimized design. Should the design prove to be unacceptable, provisions are made for recalibration of the approximate analyses, for subsequent reoptimization.

  2. Synchronized Schlieren method for vortex shedding in cascade during acoustic resonance

    NASA Astrophysics Data System (ADS)

    Nagashima, T.; Tanida, Y.

    1986-10-01

    An evaluation is made of synchronized schlieren optical system methods for the simultaneous visualization of both the acoustic wave and vortex shedding phenomena encountered during acoustic resonance excited by vortex shedding from the trailing edges of cascade blades. Attention is given to the case of parallel flat plate blades in throughflow velocities of up to 100 m/s. The acoustic wavefront is found to appear in the trailing edge region and travel upstream when a pair of vortices of opposite sign are fully developed at the trailing edge.

  3. Flow Structure on a Flapping Wing: Quasi-Steady Limit

    NASA Astrophysics Data System (ADS)

    Ozen, Cem; Rockwell, Donald

    2011-11-01

    The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.

  4. Elution-extrusion counter-current chromatography for the separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix.

    PubMed

    Chu, Chu; Zhang, Shidi; Tong, Shengqiang; Li, Xingnuo; Li, Qingyong; Yan, Jizhong

    2015-09-01

    In this work, a simple and efficient protocol for the rapid separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix was developed by combining macroporous resin and elution-extrusion counter-current chromatography. The crude extract was firstly subjected to a D101 macroporous resin column eluted with water and a series of different concentrations of ethanol. Then, effluents of 30 and 95% ethanol were collected as sample 1 and sample 2 for further counter-current chromatography purification. Finally, a pair of isomers, 96 mg of compound 1 and 48 mg of compound 2 with purities of 91.1 and 96.2%, respectively, was isolated from 200 mg of sample 1. The other pair of isomers, 14 mg of compound 3 and 8 mg of compound 4 with purities of 93.6 and 88.9%, respectively, was isolated from 48 mg of sample 2. Their purities were analyzed by high-performance liquid chromatography, and their chemical structures were identified by mass spectrometry and (1) H NMR spectroscopy. Compared to a normal counter-current chromatography separation, the separation time and solvent consumption of elution-extrusion counter-current chromatography were reduced while the resolutions were still good. The established protocol is promising for the separation of natural products with great disparity of content in herbal medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of homogeneous magnetic fields on the flow of a ferrofluid in the Taylor-Couette system.

    PubMed

    Altmeyer, S; Hoffmann, Ch; Leschhorn, A; Lücke, M

    2010-07-01

    We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combination of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifurcation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex flow (wTVF) and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.

  6. On random pressure pulses in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  7. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  8. Four pi-recoil proportional counter used as neutron spectrometer

    NASA Technical Reports Server (NTRS)

    Bennett, E. F.

    1968-01-01

    Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.

  9. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    NASA Astrophysics Data System (ADS)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  10. On the interaction of stationary crossflow vortices and Tollmien-Schlichting waves in the boundary layer on a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Hall, Philip

    1989-01-01

    There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete among themselves. The interaction is considered of two types of instability mode (at an asymptotically large Reynolds number) which can occur in the flow above a rotating disc. In particular, the interaction is examined between lower branch Tollmien-Schlichting (TS) waves and the upper branch, stationary, inviscid crossflow vortex whose asymptotic structure has been described by Hall (1986). This problem is studied in the context of investigating the effect of the vortex on the stability characteristics of a small TS wave. Essentially, it is found that the primary effect is felt through the modification to the mean flow induced by the presence of the vortex. Initially, the TS wave is taken to be linear in character and it is shown (for the cases of both a linear and a nonlinear stationary vortex) that the vortex can exhibit both stabilizing and destabilizing effects on the TS wave and the nature of this influence is wholly dependent upon the orientation of this latter instability. Further, the problem is examined with a larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in its own right. An amplitude equation for the evolution of the TS wave is derived which admits solutions corresponding to finite amplitude, stable, traveling waves.

  11. AGBT Advanced Counter-Rotating Gearbox Detailed Design Report

    NASA Technical Reports Server (NTRS)

    Howe, D. C.; Sundt, C. V.; Mckibbon, A. H.

    1988-01-01

    An Advanced Counter-Rotating (CR) Gearbox was designed and fabricated to evaluate gearbox efficiency, durability and weight characteristics for emerging propfan-powered airplanes. Component scavenge tests showed that a constant volume collector had high scavenge effectiveness, which was uneffected by added airflow. Lubrication tests showed that gearbox losses could be reduced by controlling the air/oil mixture and by directing the oil jets radially, with a slight axial component, into the sun/planet gears.

  12. Torsion effect on fully developed flow in a helical pipe

    NASA Technical Reports Server (NTRS)

    Kao, Hsiao C.

    1987-01-01

    Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.

  13. Study on the generation of a vortex laser beam by using phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Hu, Haojun; Xie, Wenke; Xu, Xiaojun

    2013-09-01

    The generation of vortex laser beam by using phase-only liquid crystal spatial light modulator (LC-SLM) combined with the spiral phase screen is experimentally and theoretically studied. Results show that Gaussian and dark hollow vortex laser beams can be generated by using this method successfully. Differing with the Gaussian and dark hollow beams, far field intensities of the generated vortex laser beams still exhibit dark hollow distributions. The comparisons between the ideal generation and experimental generation of vortex laser beams with different optical topological charges by using phase only LC-SLM is investigated in detail. Compared with the ideal generated vortex laser beam, phase distribution of the experimental generated vortex laser beam contains many phase singularities, the number of which is the same as that of the optical topological charges. The corresponding near field and far field dark hollow intensity distributions of the generated vortex laser beams exhibit discontinuous in rotational direction. Detailed theoretical analysis show that the main reason for the physical phenomenon mentioned above is the response error of phase only LC-SLM. These studies can provide effective guide for the generation of vortex laser beam by using phase only LC-SLM for optical tweezers and free space optical communication.

  14. Onset of nanoscale dissipation in superfluid 4He at zero temperature: Role of vortex shedding and cavitation

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Eloranta, Jussi; Pi, Martí

    2017-08-01

    Two-dimensional flow past an infinitely long cylinder of nanoscopic radius in superfluid 4He at zero temperature is studied using time-dependent density-functional theory. The calculations reveal two distinct critical phenomena for the onset of dissipation: (i) vortex-antivortex pair shedding from the periphery of the moving cylinder, and (ii) the appearance of cavitation in the wake, which possesses similar geometry to that observed experimentally for fast-moving micrometer-scale particles in superfluid 4He. The formation of cavitation bubbles behind the cylinder is accompanied by a sudden jump in the drag exerted on the moving cylinder by the fluid. Vortex pairs with the same circulation are occasionally emitted in the form of dimers, which constitute the building blocks for the Benard-von Karman vortex street structure observed in classical turbulent fluids and Bose-Einstein condensates. The cavitation-induced dissipation mechanism should be common to all superfluids that are self-bound and have a finite surface tension, which include the recently discovered self-bound droplets in ultracold Bose gases. These systems would provide an ideal testing ground for further exploration of this mechanism experimentally.

  15. Vortex Dynamics

    DTIC Science & Technology

    1989-08-07

    One class (I. discussed in §4) of bifurcating flows is again coiumnar. so there are no axial varations: a second class Il1. §6) consists of solitary...34Amplitude Expansion for Viscous Rotating Pipe Flow Near a Degenerate Bifurcation Point ( A . Mahalov & S. Leibovich) American Physical Society Division of...Fluid Mechanics, Buffalo, NY, November 22, 1988. "Fully Nonlinear Waves on Vortices" ( A . Kribus & S. Leibovich) Seminars "Static bifurcations of vortex

  16. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    DTIC Science & Technology

    2016-01-22

    levels of harmonic rotor noise are one of the key technical barriers preventing the widespread public acceptance of helicopters for commercial...transportation. Blade-Vortex Interaction (BVI) is one such mechanism of rotor noise. BVI noise is a problem for civilian helicopter terminal area...non-rotating frame) on the vehicle trim which in turn affects noise generation. For example, conventional single main rotor helicopters commonly

  17. The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal

    NASA Astrophysics Data System (ADS)

    Burge, Matthew; Ringuette, Matthew

    2017-11-01

    We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.

  18. POLAR-UVI and other Coordinated Observations of a Traveling Convection Vortex Event Observed on 24 July 1996

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Baker, J. B.; Ridley, A. J.; Sitar, R. J.; Papitashvili, V. O.; Cumnock, J.; Spann, J. F., Jr.; Brittnacher, M. J.; Parks, G. K.

    1997-01-01

    Coordinated analysis of data from the POLAR UVI instrument, ground magnetometers, incoherent scatter radar, solar wind monitors IMP-8 and WIND, and DMSP satellite is focused on a traveling convection vortex (TCV) event on 24 July 1966. Starting at 10:48 UT, ground magnetometers in Greenland and eastern Canada measure pulsations consistent with the passing overhead of a series of alternating TCV field-aligned current pairs. Sondrestrom incoherent scatter radar measures strong modulation of the strength and direction of ionospheric plasma flow, The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 11:39 UT, at which time the UVI instrument measures a localized intensification of auroral emissions over central and western Greenland. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 11:58 UT at which time the emissions fade. These observations are consistent with the westward passage of two pairs of moderately intense TCVs over central Greenland followed by a third very intense TCV pair. The intensification of auroral emissions at 11:39 UT is associated with the trailing vortex of the third TCV pair, thought to be the result of an upward field-aligned current. Measurements of the solar wind suggest that a pressure change may be responsible for triggering the first two pairs of TCVS, and that a subsequent sudden change in orientation of the IMF may have produced the intensification of the third TCV pair and the associated aurora] brightening. DMSP particle data indicate that the TCVs occur on field lines which map to the boundary plasma sheet or outer edge of the low latitude boundary layer.

  19. Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan

    2017-04-01

    The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radzihovsky, Leo

    Motivated by a realization of imbalanced Feshbach-resonant atomic Fermi gases, we formulate a low-energy theory of the Fulde-Ferrell and the Larkin-Ovchinnikov (LO) states and use it to analyze fluctuations, stability, and phase transitions in these enigmatic finite momentum-paired superfluids. Focusing on the unidirectional LO pair-density-wave state, which spontaneously breaks the continuous rotational and translational symmetries, we show that it is characterized by two Goldstone modes, corresponding to a superfluid phase and a smectic phonon. Because of the liquid-crystalline ''softness'' of the latter, at finite temperature the three-dimensional state is characterized by a vanishing LO order parameter, quasi-Bragg peaks in themore » structure and momentum distribution functions, and a ''charge''-4, paired-Cooper-pairs, off-diagonal long-range order, with a superfluid-stiffness anisotropy that diverges near a transition into a nonsuperfluid state. In addition to conventional integer vortices and dislocations, the LO superfluid smectic exhibits composite half-integer vortex-dislocation defects. A proliferation of defects leads to a rich variety of descendant states, such as the charge-4 superfluid and Fermi-liquid nematics and topologically ordered nonsuperfluid states, that generically intervene between the LO state and the conventional superfluid and the polarized Fermi liquid at low and high imbalance, respectively. The fermionic sector of the LO gapless superconductor is also quite unique, exhibiting a Fermi surface of Bogoliubov quasiparticles associated with the Andreev band of states, localized on the array of the LO domain walls.« less

  1. Wakes of lifting and non-lifting bodies: 1. Instabilities & turbulence in the wake of a delta wing. 2. Control of three-dimensional phase dynamics in the wake of a cylinder

    NASA Astrophysics Data System (ADS)

    Miller, Gregory Dennis

    1997-06-01

    In the first part of this work, we study the instabilities and turbulent structures in the wake of a delta wing, using extensive flow visualization, hot wire anemometry, and DPIV. We employ a novel free-flight technique in water, coupled with an image processing technique, to study the evolution of the long-wavelength instability of the primary vortex pair. Although secondary vortical structures have received little attention to date, we find that the 'braid wake' vorticity between the vortex pair imposes small lengthscale turbulence around the principal vortices, as well as influence the development of a 'curtain' of vorticity left far above the descending vortex pair. We study the long-wavelength instability of the trailing vortex pair by measuring growth rate and wavelength of the instability directly, and we also measure all of the critical parameters of the vortices (i.e. vortex core radius, vorticity distribution, axial velocity distribution, spacing and circulation), which provide what appears to be the first complete comparison to the theory describing the instability. We find excellent agreement between measured and theoretical growth rates and wavelengths. In the second part of the work, we have devised a method to control the spanwise end conditions and patterns in the wake of a cylinder using 'end suction', which is both continuously-variable and admits transient control. Classical steady-state patterns, such as parallel or oblique shedding, or the 'chevron' patterns, are simply induced. The wake, at a given Reynolds number (Re), is receptive to a continuous range of oblique shedding angles (θ), rather than to discrete angles, and there is excellent agreement with the 'cos θ' formula for oblique-shedding frequencies. We show that the laminar shedding regime exists up to Re of 194, and that the immense disparity among reported critical Re for wake transition (Re = 140-190) can be explained in terms of spanwise end contamination. Our transient experiments have resulted in the discovery of new phenomena such as 'phase shocks' and 'phase expansions', which have excellent agreement with predictions from a Ginzburg- Landau wake model (collaboration with Peter Monkewitz, Lausanne).

  2. Experimental investigation of thermal processes in the multi-ring Couette system with counter rotation of cylinders

    NASA Astrophysics Data System (ADS)

    Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2016-01-01

    The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.

  3. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1976-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.

  4. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.

  5. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.

  6. In-flight leading-edge extension vortex flow-field survey measurements on a F-18 aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Fisher, David F.

    1992-01-01

    Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.

  7. Periodicity of the density wake past a vortex ring in a stratified liquid

    NASA Astrophysics Data System (ADS)

    Prokhorov, V.

    2009-04-01

    Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed

  8. Design, experimental analysis, and unsteady Reynolds-averaged Navier-Stokes simulation of laboratory-scale counter-rotating vertical-axis turbines in marine environment

    NASA Astrophysics Data System (ADS)

    Doan, Minh; Padricelli, Claudrio; Obi, Shinnosuke; Totsuka, Yoshitaka

    2017-11-01

    We present the torque and power measurement of laboratory-scale counter-rotating vertical-axis hydrokinetic turbines, built around a magnetic hysteresis brake as the speed controller and a Hall-effect sensor as the rotational speed transducer. A couple of straight-three-bladed turbines were linked through a transmission of spur gears and timing pulleys and coupled to the electronic instrumentation via flexible shaft couplers. A total of 8 experiments in 2 configurations were conducted in the water channel facility (4-m long, 0.3-m wide, and 0.15-m deep). Power generation of the turbines (0.06-m rotor diameter) was measured and compared with that of single turbines of the same size. The wakes generated by these experiments were also measured by particle image velocimetry (PIV) and numerically simulated by unsteady Reynolds-averaged Navier-Stokes (URANS) simulation using OpenFOAM. Preliminary results from wake measurement indicated the mechanism of enhanced power production behind the counter-rotating configuration of vertical-axis turbines. Current address: Politecnico di Milano.

  9. Measurements in discrete hole film cooling behavior with periodic freestream unsteadiness

    NASA Astrophysics Data System (ADS)

    Fan, Danyang; Borup, Daniel D.; Elkins, Christopher J.; Eaton, John K.

    2018-03-01

    Magnetic resonance imaging (MRI) techniques were used to investigate a discrete, 30°-inclined round jet in crossflow subjected to periodic freestream unsteadiness. The freestream perturbations were generated by an oscillating airfoil upstream of the jet. The experiment operated at a Strouhal number of 0.014, channel Reynolds number of 25,000, hole Reynolds number of 2900, and jet blowing ratio of unity. 3D phase locked velocity measurements were obtained over the entire channel using magnetic resonance velocimetry (MRV). 3D time-averaged temperature measurements were acquired using magnetic resonance thermometry (MRT), along with phase-locked temperature measurements in the 2D centerplane of the channel and jet. The freestream flow just upstream of the jet was characterized by streamwise velocities ranging from 0.88 U_ {bulk} to 1.23 U_ {bulk} and wall-normal velocities from -0.11 U_ {bulk} to 0.02 U_ {bulk}. Flow inside the hole was observed to be insensitive to the freestream fluctuations, as velocities and temperatures in the hole remained largely unchanged throughout the cycle. Outside the hole, changes to the streamwise velocity produced an oscillating jet blowing ratio that led to the lengthening and shortening of the counter-rotating vortex pair (CVP) as well as a varying degree of coolant separation from the film cooled wall. During one portion of the cycle, downwashing freestream flow (i.e., flow with negative wall-normal velocities) promoted strong re-attachment and lateral spreading of the jet. Mean, spanwise-averaged film cooling effectiveness values were compared to those of an earlier experiment with a steady freestream and identical geometry, Reynolds number, and blowing ratio. Film cooling performance in the near-hole region was higher with steady freestream flow. However, at downstream locations, the downward transport of coolant by the periodic downwashing flow led to a higher mean surface effectiveness than in the steady case.

  10. Separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashbrook, C.L.

    1970-09-22

    A separator consists of a housing having an upper fluid inlet and a lower fluid outlet in the sides of the housing. An inverted conical tube is disposed internally of the housing and is in fluid communication with the fluid inlet. The upper fluid inlet tangentially intersects the inverted conical tube so as to create a rotating vortex upon introduction of the mixture. Axially disposed within the vortex tube at the upper end is a withdrawal tube for removing lighter mixture components that are drawn toward the center of the tube. At the lower end of the vortex tube ismore » an adjustable impact plate for transmitting a concussion wave through the vortexed body, so as to cause cavitation. Heavier mixture components gravitate toward the lower fluid outlet and are withdrawn through it. (7 claims)« less

  11. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design.

    PubMed

    Gao, Hui; Li, Yang; Chen, Lianwei; Jin, Jinjin; Pu, Mingbo; Li, Xiong; Gao, Ping; Wang, Changtao; Luo, Xiangang; Hong, Minghui

    2018-01-03

    The quasi-Talbot effect of orbital angular momentum (OAM) beams, in which the centers are placed in a rotationally symmetric position, is demonstrated both numerically and experimentally for the first time. Since its multiplication factor is much higher than the conventional fractional Talbot effect, the quasi-Talbot effect can be used in the generation of vortex beam arrays. A metasurface based on this theory was designed and fabricated to test the validity of this assumption. The agreement between the numerical and measured results suggests the practicability of this method to realize vortex beam arrays with high integrated levels, which can open a new door to achieve various potential uses related to optical vortex arrays in integrated optical systems for wide-ranging applications.

  12. Characterization of cross-section correction to charge exchange recombination spectroscopy rotation measurements using co- and counter-neutral-beam views.

    PubMed

    Solomon, W M; Burrell, K H; Feder, R; Nagy, A; Gohil, P; Groebner, R J

    2008-10-01

    Measurements of rotation using charge exchange recombination spectroscopy can be affected by the energy dependence of the charge exchange cross section. On DIII-D, the associated correction to the rotation can exceed 100 kms at high temperatures. In reactor-relevant low rotation conditions, the correction can be several times larger than the actual plasma rotation and therefore must be carefully validated. New chords have been added to the DIII-D CER diagnostic to view the counter-neutral-beam line. The addition of these views allows determination of the toroidal rotation without depending on detailed atomic physics calculations, while also allowing experimental characterization of the atomic physics. A database of rotation comparisons from the two views shows that the calculated cross-section correction can adequately describe the measurements, although there is a tendency for "overcorrection." In cases where accuracy better than about 15% is desired, relying on calculation of the cross-section correction may be insufficient.

  13. Dissipative soliton vortices and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Chefranov, S. G.; Chefranov, A. G.

    2017-10-01

    We have obtained a new exact steady-state solution to the hydrodynamic equation for a viscous incompressible liquid, which is a generalization of the well-known Sullivan solution (1959), taking into account additionally the external (Eckman) friction and rotation of the system as a single whole. In contrast to the radial structure of a Sullivan vortex, different circulation directions of velocity field tangential component are possible in the new solution in the inner and outer cells. We have considered the correspondence of this solution to the radial vortex structure observed in tropical cyclones, where the precisely anticyclonic circulation always exists in the inner core (typhoon, hurricane eye), which is associated with descending vertical currents for the cyclonic direction of rotation (as well as ascending currents) outside this core.

  14. Photonic Crystal Fiber Based Entangled Photon Sources

    DTIC Science & Technology

    2014-03-01

    5 Figure 2: The diagram of the counter- propagating scheme. FP: fiber port ( free - space to fiber). PBS: polarization beam splitter. LP: Linear... entangled photon -pairs using the highly nonlinear fiber in a counter- propagating scheme (CPS). With the HNLF at room temperature, we obtain a... propagating scheme for generating polarization entangled photon pairs at telecom wavelengths. We use 10 m of highly nonlinear fiber. We measure a

  15. Counter-rotating cavity solitons in a silicon nitride microresonator

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Klenner, Alexander; Okawachi, Yoshitomo; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2018-02-01

    We demonstrate the generation of counter-rotating cavity solitons in a silicon nitride microresonator using a fixed, single-frequency laser. We demonstrate a dual 3-soliton state with a difference in the repetition rates of the soliton trains that can be tuned by varying the ratio of pump powers in the two directions. Such a system enables a highly compact, tunable dual comb source that can be used for applications such as spectroscopy and distance ranging.

  16. Counter rotating fans — An aircraft propulsion for the future?

    NASA Astrophysics Data System (ADS)

    Schimming, Peter

    2003-05-01

    In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio. This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time. A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig.1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90-engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities. In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.

  17. Numerical Simulation of the Aircraft Wake Vortex Flowfield

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad

    2013-01-01

    The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.

  18. An Experimental Investigation of Forced Mixing of a Turbulent Boundary Layer in an Annular Diffuser. Ph.D. Thesis - Ohio State Univ.; [for boundary layer control

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.

    1979-01-01

    The forced mixing process of a turbulent boundary layer in an axisymmetric annular diffuser using conventional wing-like vortex generators was studied. Flow field measurements were made at four axial locations downstream of the vortex generators. At each axial location, a total of 25 equally spaced profiles were measured behind three consecutive vortex generators which formed two pairs of vortex generators. Hot film anemometry probes measured the boundary layer turbulence structure at the same locations where pressure measurements were made. Both single and cross film probes were used. The diffuser turbulence data was teken only for a nominal inlet Mach number of 0.3. Three vortex generator configurations were tested. The differences between configurations involved changes in size and relative vortex generator positions. All three vortex generator configurations tested provided increases in diffuser performance. Distinct differences in the boundary layer integral properties and skin friction levels were noted between configurations. The axial turbulence intensity and Reynolds stress profiles measured displayed similarities in trends but differences in levels for the three configurations.

  19. Turbulent swirling jets with excitation

    NASA Technical Reports Server (NTRS)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  20. Large-scale dynamos in rapidly rotating plane layer convection

    NASA Astrophysics Data System (ADS)

    Bushby, P. J.; Käpylä, P. J.; Masada, Y.; Brandenburg, A.; Favier, B.; Guervilly, C.; Käpylä, M. J.

    2018-05-01

    Context. Convectively driven flows play a crucial role in the dynamo processes that are responsible for producing magnetic activity in stars and planets. It is still not fully understood why many astrophysical magnetic fields have a significant large-scale component. Aims: Our aim is to investigate the dynamo properties of compressible convection in a rapidly rotating Cartesian domain, focusing upon a parameter regime in which the underlying hydrodynamic flow is known to be unstable to a large-scale vortex instability. Methods: The governing equations of three-dimensional non-linear magnetohydrodynamics (MHD) are solved numerically. Different numerical schemes are compared and we propose a possible benchmark case for other similar codes. Results: In keeping with previous related studies, we find that convection in this parameter regime can drive a large-scale dynamo. The components of the mean horizontal magnetic field oscillate, leading to a continuous overall rotation of the mean field. Whilst the large-scale vortex instability dominates the early evolution of the system, the large-scale vortex is suppressed by the magnetic field and makes a negligible contribution to the mean electromotive force that is responsible for driving the large-scale dynamo. The cycle period of the dynamo is comparable to the ohmic decay time, with longer cycles for dynamos in convective systems that are closer to onset. In these particular simulations, large-scale dynamo action is found only when vertical magnetic field boundary conditions are adopted at the upper and lower boundaries. Strongly modulated large-scale dynamos are found at higher Rayleigh numbers, with periods of reduced activity (grand minima-like events) occurring during transient phases in which the large-scale vortex temporarily re-establishes itself, before being suppressed again by the magnetic field.

Top