Science.gov

Sample records for countercurrent flow limitation

  1. Counter-current flow limitation in thin rectangular channels

    NASA Astrophysics Data System (ADS)

    Cheng, Lap Y.

    The phenomenon of counter-current flow limitation (CCFL) in thin rectangular channels is important in determining the heat removal capability of research reactors which use plate-type fuel elements similar to the MTR design. An analytical expression for predicting CCFL in narrow rectangular channels was derived from the momentum equations for the liquid and gas phase. The model assumes that the liquid downflow is in the form of a film along the narrower side walls of the channel, while the gas flow occupies the wide span of the rectangular channel. The average thickness of liquid film is related to the rate of gas flow through a stability criterion for the liquid film. The CCFL correlation agrees with air/water data taken at relatively high gas velocities. Depending on the magnitude of the dimensionless channel width, the new CCFL correlation approaches zero liquid penetration either in the form of a Wallis correlation or in terms of a Kutateladze number. The new correlation indicates that for a thin rectangular channel, the constant C in the Wallis flooding correlation depends on the aspect ratio of the channel. The approach to the appropriate asymptotic solutions also justifies the use of twice the wide span as the correct length scale for thin rectangular channels.

  2. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    SciTech Connect

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  3. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  4. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  5. The effect of direct and counter-current flow-through delignification on enzymatic hydrolysis of wheat straw, and flow limits due to compressibility.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Mika Henrikki; Pastinen, Ossi; Nyyssölä, Antti; Laakso, Simo

    2016-12-01

    This article compares the processes for wheat straw lignocellulose fractionation by percolation, counter-current progressing batch percolation and batch reaction at low NaOH-loadings (3-6% of DM). The flow-through processes were found to improve delignification and subsequent enzymatic saccharification, reduce NaOH-consumption and allow reduction of thermal severity, whereas hemicellulose dissolution was unaffected. However, contrary to previous expectations, a counter-current process did not provide additional benefits to regular percolation. The compressibility and flow properties of a straw bed were determined and used for simulation of the packing density profile and dynamic pressure in an industrial scale column. After dissolution of 30% of the straw DM by delignification, a pressure drop above 100 kPa m(-1) led to clogging of the flow due to compaction of straw. Accordingly, the maximum applicable feed pressure and volumetric straw throughput was determined as a function of column height, indicating that a 10 m column can be operated at a maximum feed pressure of 530 kPa, corresponding to an operation time of 50 min and a throughput of 163 kg m(-3)  h(-1) . Biotechnol. Bioeng. 2016;113: 2605-2613. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Flooding in counter-current two-phase flow

    SciTech Connect

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  7. Stability of steam-water countercurrent stratified flow

    SciTech Connect

    Lee, S C

    1985-10-01

    Two flow instabilities which limit the normal condensation processes in countercurrent stratified steam-water flow have been identified experimentally: flooding and condensation-induced waterhammer. In order to initiate condensation-induced waterhammer in nearly horizontal or moderately-inclined steam/subcooled-water flow, two conditions, the appearance of a wavy interface and complete condensation of the incoming steam, are necessary. Analyses of these conditions are performed on a basis of flow stability and heat transfer considerations. Flooding data for several inclinations and channel heights are collected. Effects of condensation, inclination angle and channel height on the flooding characteristics are discussed. An envelope theory for the onset of flooding in inclined stratified flow is developed, which agrees well with the experimental data. Some empirical information on basic flow parameters, such as mean film thickness and interfacial friction factor required for this theory are measured. The previous viewpoints on flooding appear not to conflict with the present experimental data in nearly horizontal flow but the flooding phenomena in nearly vertical flow appear to be more complicated than those described by these viewpoints because of liquid droplet entrainment.

  8. Evaluation of dual flow counter-current chromatography and intermittent counter-current extraction.

    PubMed

    Ignatova, Svetlana; Hewitson, Peter; Mathews, Ben; Sutherland, Ian

    2011-09-09

    The aim of this research is to compare two continuous extraction technologies, intermittent counter-current extraction (ICcE) and dual flow counter-current chromatography (DFCCC), in terms of loading and throughput using the GUESSmix, and show the advantages and disadvantages of the two methods. A model sample containing caffeine, vanillin, naringenin and carvone, with a total load of 11.2 g, was employed with a hexane-ethyl acetate-methanol-water (2:3:2:3) phase system to evaluate an ICcE method on a preparative (912 ml coil volume) DE-Midi instrument. While DFCCC was carried out on a specially designed preparative (561 ml coil volume) bobbin installed in a similar Midi instrument case. While similar throughputs of 7.8 g/h and 6.9 g/h were achieved for the ICcE and DFCCC methods respectively, ICcE was demonstrated to have a number of advantages over DFCCC.

  9. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  10. Counter-current flow in a vertical to horizontal tube with obstructions

    SciTech Connect

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A.

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  11. Ultraefficient reduced model for countercurrent two-layer flows

    NASA Astrophysics Data System (ADS)

    Lavalle, Gianluca; Vila, Jean-Paul; Lucquiaud, Mathieu; Valluri, Prashant

    2017-01-01

    We investigate the dynamics of two superposed layers with density contrast flowing countercurrent inside a channel, when the lower layer is much thinner than the wavelength of interfacial waves. We apply a low-dimensional film model to the bottom (heavier) layer and introduce a fast and efficient method to predict the onset of flow reversal in this phase. We study three vertical scenarios with different applied pressure gradients and compare the temporal growth rates of linear and weakly nonlinear waves to the Orr-Sommerfeld problem and to the weakly nonlinear theory, respectively. At the loading point, i.e., when a large wave hump stands at the interface, our spatiotemporal analysis shows that the system is absolutely unstable. We then present profiles of nonlinear saturated waves, pressure field, and streamline distribution in agreement with direct numerical simulation. The reduced model presented here allows us to explore the effect of the upper-layer speed on the wave pattern, showing that the wave profile is very sensitive when the mean film thickness, rather than the liquid flow rate, is maintained constant in the simulation. In addition, we show the strong effect of surface tension on both the maximum wave hump and the crest steepness before the loading point. Finally, we reveal how the nonlinear wave speed affects the vortex distribution within the lower layer by analyzing the stream function under different scenarios.

  12. Local properties of countercurrent stratified steam-water flow

    SciTech Connect

    Kim, H J

    1985-10-01

    A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4/sup 0/-87/sup 0/) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed.

  13. Hydrogen isotope separation by bipolar electrolysis with countercurrent electrolyte flow

    SciTech Connect

    Ramey, D.W.; Petek, M.; Taylor, R.D.; Fisher, P.W.; Kobisk, E.H.; Ramey, J.; Sampson, C.A.

    1980-04-01

    Separation of hydrogen isotopes has been successfully demonstrated using bipolar electrolysis combined with electrolyte flow countercurrent to the transport of hydrogen isotope species. Use of multibipolar electrode cells in a squared-off cascade is shown theoretically to be capable of efficient tritium separation. Experimental operation of multibipolar cells and analysis of their operation by McCabe-Thiele techniques is described. Palladium-25% silver alloy was found to be suitable as a material for bipolar electrodes permitting high hydrogen throughput with chemical and mechanical stability. Bipolar separation factors, at high current density, using NaOH (NaOD) as the electrolyte, are large (..cap alpha../sub DT/ = 2.0, ..cap alpha../sub HT/ = 11 at 90/sup 0/C). Calculated mass transfer, as determined using a squared-off cascade model, together with observed electrical power consumption suggest that about 21 percent less power will be required for bipolar electrolytic separation as compared with normal electrolysis. This estimate only represents the present level of development. Separation of tritium from light and heavy water using the bipolar electrolysis process appears to offer significant advantages as compared with direct electrolysis. The simplicity and efficiency of the multibipolar cell offer great potential for designing a very compact separation facility which, in turn, will minimize containment cost when high tritium concentrations are encountered.

  14. Experimental Investigation of Micro Counter-Current Flow Using High-Speed Micro PIV

    NASA Astrophysics Data System (ADS)

    Shinohara, Kyosuke; Sugii, Yasuhiko; Aota, Arata; Hibara, Akihide; Kitamori, Takehiko; Okamoto, Koji

    2004-11-01

    Microfluidic devices have been developed for chemical analysis as micro total analysis systems (u-TAS). To utilize scale merits, continuous-flow chemical processing and micro unit operations had been proposed as microfluidic device including mixing, phase confluence, solvent extraction, and so on. Recently, as one of these integrated chemical processes, micro counter-current flow system had been developed for highly efficient solvent extraction. The system consisted of oil flow and water flow in inverse direction. Using the system, more efficient extraction of Co (II) complex than theoretical prediction was confirmed. In this paper, in order to investigate the fundamental characteristics of the micro counter-current flow, velocity fields of the micro counter-current flow were measured using high-speed micro PIV system. The system consisted of a high-speed CMOS camera with an image intensifier, an epi-fluorescent microscope with an objective lens and a color filter, and a CW laser. The velocity fields of water were visualized for a time resolution of 500 us and a spatial resolution of 2.2 x 2.2 um. Transient micro vortices at the water-butyl acetate interface were captured clearly.

  15. Cross-flow versus counter-current flow packed-bed scrubbers: a mathematical analysis

    SciTech Connect

    Fthenakis, V.M.

    1996-02-01

    Little is known about the mass transfer properties of packing media exposed to a crossflow of gas and liquid, whereas there is abundant information related to counter-current scrubbers. This paper presents a theoretical analysis of mass transfer and hydrodynamics in cross- flow packed bed scrubbers and compares those with information available for counter current towers, so that the first can be evaluated and/or designed based on data derived for the second. Mathematical models of mass transfer in cross-flow and counter- current packed bed scrubbers are presented. From those, one can predict the removal effectiveness of a crossflow scrubber from the number of transfer units (NTU) calculated for a similar counterflow operation; alternatively, when the removal effectiveness in counterflow is known, one can predict the corresponding NTU in crossflow.

  16. A PCM/forced convection conjugate transient analysis of energy storage systems with annular and countercurrent flows

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.; Juhasz, A.

    1991-01-01

    Latent heat energy storage systems with both annular and countercurrent flows are modeled numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. It is found that the energy storage system with the countercurrent flow is an efficient way to absorb heat energy in a short period for pulsed power load space applications.

  17. A PCM/forced convection conjugate transient analysis of energy storage systems with annular and countercurrent flows

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.; Juhasz, A.

    1991-01-01

    Latent heat energy storage systems with both annular and countercurrent flows are modeled numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. It is found that the energy storage system with the countercurrent flow is an efficient way to absorb heat energy in a short period for pulsed power load space applications.

  18. Semianalytical solutions for cocurrent and countercurrent imbibition and dispersion of solutes in immiscible two-phase flow

    NASA Astrophysics Data System (ADS)

    Schmid, K. S.; Geiger, S.; Sorbie, K. S.

    2011-02-01

    We derive a set of semianalytical solutions for the movement of solutes in immiscible two-phase flow. Our solutions are new in two ways: First, we fully account for the effects of capillary and viscous forces on the transport for arbitrary capillary-hydraulic properties. Second, we fully take hydrodynamic dispersion for the variable two-phase flow field into account. The understanding of immiscible two-phase flow and the simultaneous miscible displacement and mixing of components within a phase is important for many applications, including the location of nonaqueous phase liquids in the subsurface, the design of contaminant cleanup procedures, the sequestration of carbon dioxide, and enhanced oil-recovery techniques. For purely advective transport we combine a known exact solution for the description of immiscible two-phase flow with the method of characteristics for the advective transport equations to obtain solutions that describe cocurrent flow and countercurrent spontaneous imbibition and advective transport in one dimension. We show that for both cases the solute front can be located graphically by a modified Welge tangent. For the advective-dispersive solute transport, we derive approximate analytical solutions by the method of singular perturbation expansion. On the basis of this, we obtain analytical expressions for the growth of the dispersive zone for the case with and without the influence of capillary pressure. We show that for the case of spontaneous countercurrent imbibition the order of magnitude of the growth rate is far smaller than that for the viscous limit. We give some illustrative examples and compare the analytical expressions with numerical reference solutions.

  19. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The

  20. Countercurrent compartmental models describe hind limb skeletal muscle helium kinetics at resting and low blood flows in sheep.

    PubMed

    Doolette, D J; Upton, R N; Grant, C

    2005-10-01

    This study evaluated the relative importance of perfusion and diffusion mechanisms in compartmental models of blood : tissue helium exchange in a predominantly skeletal muscle tissue bed in the sheep hind limb. Helium has different physiochemical properties from previously studied gases and is a common diluent gas in underwater diving where decompression schedules are based on theoretical models of inert gas kinetics. Helium kinetics across skeletal muscle were determined during and after 20 min of helium inhalation, at separate resting and low steady-states of femoral vein blood flow in six sheep under isoflurane anaesthesia. Helium concentrations in arterial and femoral vein blood were determined using gas chromatographic analysis and femoral vein blood flow was monitored continuously. Parameters and model selection criteria of various perfusion-limited or perfusion-diffusion compartmental models of skeletal muscle were estimated by simultaneous fitting of the models to the femoral vein helium concentrations for both blood flow states. A model comprising two parallel perfusion-limited compartment models fitted the data well but required a 51-fold difference in relative compartment perfusion that did not seem physiologically plausible. Models that allowed a countercurrent diffusion exchange of helium between arterial and venous vessels outside of the tissue compartments provided better overall fit of the data and credible parameter estimates. These results suggest a role of arterial-venous diffusion in blood : tissue helium equilibration in skeletal muscle.

  1. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    SciTech Connect

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  2. Con-Current versus Counter-Current Dialysate Flow during CVVHD. A Comparative Study for Creatinine and Urea Removal.

    PubMed

    Baldwin, Ian; Baldwin, Marie; Fealy, Nigel; Neri, Mauro; Garzotto, Francesco; Kim, Jeong Chul; Giuliani, Anna; Basso, Flavio; Nalesso, Federico; Brendolan, Alessandra; Ronco, Claudio

    2016-01-01

    Dialysate fluid connection to the membrane in continuous dialysis may affect solute clearance. Although circuit connections are routinely made counter-current to blood flow in intermittent dialysis, no study has assessed the effect of this dialysate fluid flow direction on removal of small solutes creatinine and urea during treatment using continuous veno-venous haemodialysis (CVVHD). To assess if dialysate flow direction during CVVHD affects small solute removal. This ethics-approved study recruited a convenience sample of 26 adult ICU patients requiring continuous dialysis to assess urea and creatinine removal for con-current vs. counter-current dialysate flow direction. The circuit was adjusted from continuous veno-venous haemodiafiltration to CVVHD 20 min prior to sampling with no fluid removal. Blood (b) and spent dialysate fluid (f) were taken in both concurrent and counter-current fluid flow at 1 (T1) and 4 (T4) hours with a new treatment. Blood flow was 200 ml/min. Dialysate flow 33 ml/min. Removal of urea and creatinine was expressed as the diafiltrate/plasma concentration ratio: Uf/b and Cf/b respectively. Data lacking normal distribution are presented as median with 25th and 75th interquartile ranges (IQR), otherwise as mean with SD and assessed with the independent t test for paired data. p < 0.5 was considered significant. Fifteen male patients were included with a median (IQR) age of 67 years (52-75), and APACHE x0399;x0399; score 17 (14-19) with all patients meeting RIFLE criteria 'F'. At both times, the counter-current dialysate flow was associated with higher mean (SD) diafiltrate/plasma concentration ratios: T1 0.87 (0.16) vs. 0.77 (0.10), p = 0.006; T2 0.96 (0.16) vs. 0.76 (0.09), p < 0.001 for creatinine and T1 0.98 (0.09) vs. 0.81 (0.09), p < 0.001; T2 0.99 (0.07) vs. 0.82 (0.08), p < 0.001 for urea. Counter-current dialysate flow during CVVHD for ICU patients is associated with an approximately 20% increase in removal of small solutes

  3. Co- and counter-current spontaneous imbibition into groups of capillary tubes with lateral connections permitting cross-flow.

    PubMed

    Unsal, E; Mason, G; Ruth, D W; Morrow, N R

    2007-11-01

    A model for co- and counter-current imbibition through independent capillaries has already been developed and experiments conducted to verify the theory [E. Unsal, G. Mason, N.R. Morrow, D.W. Ruth, J. Colloid Interface Sci. 306 (2007) 105]. In this paper, the work is extended to capillaries which are connected laterally and in which cross-flow can take place. The fundamental pore geometry is a rod in an angled round-bottomed slot with a gap between the rod and a capping glass plate. The surfaces of the slot, rod and plate form capillaries and interconnecting passages which have non-axisymmetric cross-sections. Depending on the gap size either (i) a large single meniscus, (ii) two menisci one on each side of the rod, or (iii) three menisci, one between the rod and the glass additional to the ones on each side can be formed. A viscous refined oil was applied to one end of the capillaries and co-current and counter-current spontaneous imbibition experiments were performed. The opposite end was left open to the atmosphere for co-current experiments. When the gap between the rod and the plate was large, the imbibing oil advanced into the tubes with the meniscus in the largest capillary always lagging behind the two menisci in the other two smaller capillaries. For counter-current imbibition experiments the open end was sealed and connected to a sensitive pressure transducer. In some experiments, the oil imbibed into the smaller capillaries and expelled air as a series of bubbles from the end of the largest capillary. In other experiments, the oil was allowed to imbibe part way into the tubes before counter-current imbibition was started. The meniscus curvatures of the capillaries have been calculated using the Mayer and Stowe-Princen method for different cell slot angles and gap sizes using a value of zero for the contact angle. These values have been compared with actual values by measuring the capillary rise in the tubes; agreement was very close. A model for co

  4. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  5. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    SciTech Connect

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon

    2016-04-15

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  6. Significance of the Bohr effect for tissue oxygenation in a model with counter-current blood flow.

    PubMed

    Kobayashi, H; Pelster, B; Piiper, J; Scheid, P

    1989-06-01

    Counter-current arrangement of afferent and efferent blood flow in tissues is commonly considered to be detrimental to tissue oxygenation, since O2 diffusion would shunt O2 away from the tissue. We have investigated the combined effects of counter-current CO2 and O2 exchange in a simple model, paying particular attention to the Bohr effect. We have obtained the following main results. (1) Back-diffusion of CO2 leads to increasing CO2 partial pressure (PCO2) and CO2 content along the afferent vessel. This is enhanced when fixed acid is released by the tissue into the venous blood, e.g. during hypoxia, which leads to a further PCO2 increase therein. (2) The increasing PCO2, with concomitant decrease in pH, in the afferent blood leads to a decrease in blood O2 affinity (Bohr effect) and thus results in increased PO2. (3) The resulting O2 diffusion shunt diminishes the O2 content in afferent blood, but for most conditions its PO2 remains higher than without the Bohr effect. (4) During hypoxia, both the PO2 in blood reaching the tissue (Pta) as well as in that leaving it (Ptv) are significantly elevated above the level without the Bohr effect. Moreover, with fixed acid release both Pta and Ptv for O2 can be higher than the arterial PO2 value. (5) During hyperoxia, O2 diffusion shunt prevents the tissue PO2 levels from increasing to levels that might be regarded as toxic. It is concluded that a diffusion shunt in tissues stabilizes the O2 partial pressure at the tissue when it varies in arterial blood (hypoxia or hyperoxia).

  7. Preliminary applications of cross-axis synchronous flow-through coil planet centrifuge for large-scale preparative counter-current chromatography.

    PubMed

    Zhang, T Y; Lee, Y W; Fang, Q C; Xiao, R; Ito, Y

    1988-11-11

    The cross-axis synchronous flow-through coil planet centrifuge with a 20-cm revolutional radius and a total capacity of 1600 ml was successfully applied to preparative counter-current chromatography of various biological samples, which include sea buckthorn extract, steroid reaction mixture, indole plant hormones, and dinitrophenylamino acids. The present system offers advantages of stable balance of the centrifuge, a large column capacity, and high resolution.

  8. Gravity-capillary waves in countercurrent air/water turbulent flow

    NASA Astrophysics Data System (ADS)

    Zonta, Francesco; Onorato, Miguel; Soldati, Alfredo

    2016-11-01

    Using the Direct Numerical Simulation (DNS) of the Navier-Stokes equations, we analyze the dynamics of the interface between air and water when both phases are driven by opposite pressure gradients (countercurrent configuration). The Reynolds number (Re), the Weber number (We) and the Froude number (Fr) fully describe the physical problem. We examine the problem of the transient growth of interface waves for different combinations of physical parameters. Keeping Re constant and varying We and Fr , we show that, in the initial stages of the wave generation process, the amplitude of the interface elevation grows in time as t2 / 5 . Wavenumber spectra, E (kx) , of the surface elevation in the capillary range are in good agreement with the prediction of the Wave Turbulence Theory. Finally, the wave-induced modification of the average wind and current velocity profiles is addressed. CINECA supercomputing centre (Bologna, Italy) and ISCRA Computing Initiative are gratefully acknowledged for generous allowance of computer resources. Support from PRIN (under Grant 2006098584 004) is gratefully acknowledged. Support from Regione Autonoma.

  9. Interfacial instability in vertical counter-current gas-liquid film flow: theory, direct numerical simulation and experiment

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ausner, Ilja; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-11-01

    The dynamics of vertical counter-current gas-liquid flows are largely determined by interfacial instability, which gives rise to a multitude of complex wave patterns and internal flows. To study the genesis and evolution of the instability in detail, we employ theoretical stability analysis, experiment and a newly developed level set method based in-house solver to carry out direct numerical simulations. Crucial results of these simulations, such as growth rate and phase velocity of interfacial waves, are rigorously compared against linear and weakly nonlinear theory; thereby showing remarkable agreement. The analysis also reveals the spatio-temporal character of the waves, depicting regimes of absolute and convective instability. Complementing the benchmark set by (non-)linear theory, we perform film thickness measurements of a real gas-liquid system (air-silicone oil) by means of a non-intrusive light-induced fluorescence technique to further validate the solver regarding its capability of capturing interfacial dynamics accurately. These measurements are in good agreement with the results of the nonlinear direct numerical simulations with respect to wavelength and wave shape of the most unstable mode.

  10. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  11. Production of carbonaceous adsorbents from agricultural by-products and novolac resin under a continuous countercurrent flow type pyrolysis operation.

    PubMed

    Ioannou, Z; Simitzis, J

    2013-02-01

    Carbonaceous adsorbents based on novolac resin (N) and olive stone biomass (B) in a proportion of 20/80 and 40/60 w./w. N/O were produced. The specimens were cured (c) and pyrolyzed/carbonized (C) up to 1000 °C under a continuous countercurrent flow type pyrolysis operation (N20B-cC, N40B-cC). Commercial activated carbon (AC) was used for comparison reasons. Methylene blue adsorption from its aqueous solutions onto the adsorbents and kinetic analysis were investigated. The specific surface area of adsorbents and the gross calorific values (GCV) of cured materials were determined. The results show that N40B-cC presents lower weight loss and shrinkage but higher methylene blue adsorption than N20B-cC. Pseudo-second order mechanism describes better methylene blue adsorption onto all adsorbents. The specific surface area of carbonaceous and the gross calorific values of cured materials follow the order: AC>N20B-cC>N40B-cC and N100-c>N40B-c>N20B-c>B respectively. Olive stone biomass may constitute a suitable precursor for the production of carbonaceous materials.

  12. The Calculated Ratio of the Gas Flow in a Countercurrent Cyclone Dust Concentrator

    NASA Astrophysics Data System (ADS)

    Vasilevsky, Michail; Razva, Aleksandr; Pleschko, Alissa; Kadurkin, Ivan

    2016-02-01

    There are numerous studies of the structure of swirling flow in a variety of devices in which the peculiarities of the parameters associated with the twist flow. The values of the local parameters of the twist of the axial direction are experimentally and connect them with a constructive twist parameter, which is built from the idealized repose of the gas flow in vortex distribution and speed at the exit of the swirl. For counter flow chamber is the equation for the input pulse in the radial direction and the twist parameter is provided in the radial direction. It allows us to estimate the maximum radius of the circumferential velocity not only near the outlet, but also near the end surface of the chamber. On a cylindrical surface with a radius of outlet cyclone tangential turbulent friction in the radial direction depends on the product of a circle and radial speeds. Compiled equation changes the flow of angular momentum in the axial zone, depending on the force of friction tangential flow on the surface with the radius of the outlet pipe of the cyclone. This equation allowed assessing the circulation of gas in the axial zone.

  13. Velocity and void distribution in a counter-current two-phase flow

    SciTech Connect

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities from flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)

  14. Local Heat and Mass Transfer in a Counter-current Slug Flow Absorber for Ammonia-water Absorption Heat Pump System

    NASA Astrophysics Data System (ADS)

    Koyama, Shigeru; B. Saha, Bidyut; Kim, Hyun-Young

    This study deals with experimental results and data reduction model for a counter-current slug flow absorber working with ammonia-water mixture for significantly low solution flow rate-condition that is required for operating as the GAX cycle. From visualization results of flow pattern, frost flow just after the gas inlet followed by slug flow with well-shaped Taylor bubble are observed, while dry patch on the tube wall are not observed. The local heat flow rate is measured by varying main parameters, namely, pressure, ammonia gas flow rate, solution flow rate, ammonia concentration of inlet solution and coolant inlet conditions. A data reduction model to obtain local heat and mass transfer coefficient on the liquid side is proposed by using the drift flux model to analyze the flow characteristics. Control volume method and heat and mass transfer analogy are employed to solve the combined heat and mass transfer problem. As a result, it is found that the local heat and mass transfer coefficient on the liquid side is greatly influenced by the flow pattern. The heat and mass transfer coefficient at the frost flow region is higher than that at the slug flow region due to flow disturbance and random fluctuation.

  15. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  16. Experimental study of steam condensation on water in countercurrent flow in presence of inert gases

    NASA Astrophysics Data System (ADS)

    Bharathan, D.; Althof, J.

    1984-08-01

    Experimental results of investigating steam condensation on water in the presence of (noncondensable) inert gases at low temperatures and pressures relevant to open-cycle ocean thermal energy conversion (OTEC) systems are reported. Seven different condenser configurations were tested. The experimental data are correlated using a liquid flow fraction and a vent fraction to yield simple relationships of condenser performance over a wide range of test conditions. Performance maps and envelopes are provided for evaluating the relative merits of tested configurations. The height of transfer unit (HTU) for condensation ranges from 0.2 to 0.3 m among the various condenser geometries. Also reported are the pressure-loss coefficients for all the tested geometries.

  17. Countercurrent flow afterburner

    DOEpatents

    Leggett, Ronald L.; Presse, Donald E.; Smith, Carl J.; Teter, Alton R.

    1976-01-01

    Afterburner apparatus for receiving from an incinerator products of combustion and distributing them through a domed distributor in counterflow manner throughout a housing, in opposition to a stream of combustible gas.

  18. Counter-current motion in counter-current chromatography.

    PubMed

    Ito, Yoichiro

    2014-12-12

    After the CCC2012 meeting, I have received an e-mail regarding the terminology of "Countercurrent Chromatography". It stated that the term "Countercurrent" is a misnomer, because its stationary phase is motionless in the column and that the method should be renamed as liquid-liquid separations or centrifugal separations. However, it was found that these names are already used for various other techniques as found via Google search. The term "Countercurrent Chromatography" was originally made after two preparative methods of Countercurrent distribution and liquid Chromatography, both having no countercurrent motion in the column. However, it is surprising to find that this F1 hybrid method "Countercurrent Chromatography" can clearly exhibit countercurrent motion within the separation column in both hydrodynamic and hydrostatic equilibrium systems. This justifies that "Countercurrent Chromatography" is a proper term for this chromatographic method. Published by Elsevier B.V.

  19. Study of Co-Current and Counter-Current Gas-Liquid Two-Phase Flow Through Packed Bed in Microgravity

    NASA Astrophysics Data System (ADS)

    Revankar, Shripad T.

    2002-11-01

    The main goal of the project is to obtain new experimental data and development of models on the co-current and counter-current gas-liquid two-phase flow through a packed bed in microgravity and characterize the flow regime transition, pressure drop, void and interfacial area distribution, and liquid hold up. Experimental data will be obtained for earth gravity and microgravity conditions. Models will be developed for the prediction of flow regime transition, void fraction distribution and interfacial area concentration, which are key parameters to characterize the packed bed performance. Thus the specific objectives of the proposed research are to: (1) Develop experiments for the study of the gas liquid two-phase flow through the packed bed with three different flow combinations: co-current down flow, co-current upflow and counter current flow. (2) Develop pore scale and bed scale two-phase instrumentation for measurement of flow regime transition, void distribution and gas-liquid interfacial area concentration in the packed bed. (3) Obtain database on flow regime transition, pressure drop, void distribution, interfacial area concentration and liquid hold up as a function of bed characteristics such as bed particle size, porosity, and liquid properties such as viscosity and surface tension. (4) Develop mathematical model for flow regime transition, void fraction distribution and interfacial area concentration for co-current gas-liquid flow through the porous bed in gravity and micro gravity conditions.(4) Develop mathematical model for the flooding phenomena in counter-current gas-liquid flow through the porous bed in gravity and micro gravity conditions. The present proposal addresses the most important topic of HEDS-specific microgravity fluid physics research identified by NASA 's one of the strategic enterprises, OBPR Enterprise. The proposed project is well defined and makes efficient use of the ground-based parabolic flight research aircraft facility. The

  20. Effect of wall compliance and permeability on blood-flow rate in counter-current microvessels formed from anastomosis during tumor-induced angiogenesis.

    PubMed

    Guo, Peng; Fu, Bingmei M

    2012-04-01

    Tumor blood-flow is inhomogeneous because of heterogeneity in tumor vasculature, vessel-wall leakiness, and compliance. Experimental studies have shown that normalization of tumor vasculature by antiangiogenic therapy can improve tumor microcirculation and enhance the delivery of therapeutic agents to tumors. To elucidate the quantitative relationship between the vessel-wall compliance and permeability and the blood-flow rate in the microvessels of the tumor tissue, the tumor tissue with the normalized vasculature, and the normal tissue, we developed a transport model to simultaneously predict the interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and the blood-flow rate in a counter-current microvessel loop, which occurs from anastomosis in tumor-induced angiogenesis during tumor growth. Our model predicts that although the vessel-wall leakiness greatly affects the IFP and IFV, it has a negligible effect on the intravascular driving force (pressure gradient) for both rigid and compliant vessels, and thus a negligible effect on the blood-flow rate if the vessel wall is rigid. In contrast, the wall compliance contributes moderately to the IFP and IFV, but significantly to the vessel radius and to the blood-flow rate. However, the combined effects of vessel leakiness and compliance can increase IFP, which leads to a partial collapse in the blood vessels and an increase in the flow resistance. Furthermore, our model predictions speculate a new approach for enhancing drug delivery to tumor by modulating the vessel-wall compliance in addition to reducing the vessel-wall leakiness and normalizing the vessel density.

  1. Passive restriction of blood flow and counter-current heat exchange via lingual retia in the tongue of a neonatal gray whale Eschrichtius robustus (Cetacea, Mysticeti).

    PubMed

    Ekdale, Eric G; Kienle, Sarah S

    2015-04-01

    Retia mirabilia play broad roles in cetacean physiology, including thermoregulation during feeding and pressure regulations during diving. Vascular bundles of lingual retia are described within the base of the tongue of a neonatal female gray whale (Eschrichtius robustus). Each rete consists of a central artery surrounded by four to six smaller veins. The retia and constituent vessels decrease in diameter as they extend anteriorly within the hyoglossus muscle from a position anterior to the basihyal cartilage toward the apex of the tongue. The position of the retia embedded in the hyoglossus and the anterior constriction of the vessels differs from reports of similar vascular bundles that were previously identified in gray whales. The retia likely serve as a counter-current heat exchange system to control body temperature during feeding. Cold blood flowing toward the body center within the periarterial veins would accept heat from warm blood in the central artery flowing toward the anterior end of the tongue. Although thermoregulatory systems have been identified within the mouths of a few mysticete species, the distribution of such vascular structures likely is more widespread among baleen whales than has previously been described.

  2. Exercise Ventilatory Limitation: The Role Of Expiratory Flow Limitation

    PubMed Central

    Babb, Tony G.

    2012-01-01

    Ventilatory limitation to exercise remains an important unresolved clinical issue; as a result, many individuals misinterpret the effects of expiratory flow limitation as an all-or-nothing phenomenon. Expiratory flow limitation is not all-or-none; approaching maximal expiratory flow can have important effects not only on ventilatory capacity but also on breathing mechanics, ventilatory control, and possibly exertional dyspnea and exercise intolerance. PMID:23038244

  3. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    ERIC Educational Resources Information Center

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  4. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    ERIC Educational Resources Information Center

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  5. Spiral Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  6. Use of Inert Gases and Carbon Monoxide to Study the Possible Influence of Countercurrent Exchange on Passive Absorption from the Small Bowel

    PubMed Central

    Bond, John H.; Levitt, David G.; Levitt, Michael D.

    1974-01-01

    The purpose of the present study was to quantitate the influence of countercurrent exchange on passive absorption of highly diffusible substances from the small intestine of the rabbit. The absorption of carbon monoxide, which is tightly bound to hemoglobin and therefore cannot exchange, was compared to the absorption of four unbound gases (H2, He, CH4, and 133Xe), which should exchange freely. The degree to which the observed absorption of the unbound gases falls below that predicted from CO absorption should provide a quantitative measure of countercurrent exchange. CO uptake at high luminal Pco is flow-limited and, assuming that villus and central hemoglobin concentrations are equal, the flow that equilibrates with CO (Fco) was calculated to equal 7.24 ml/min/100 g. The observed absorption rate of the unbound gases was from two to four times greater than would have been predicted had their entire uptake been accounted for by equilibration with Fco. This is the opposite of what would occur if countercurrent exchange retarded absorption of the unbound gases. The unbound gases have both flow- and diffusion-limited components, and Fco should account for only the fraction of absorption that is flow limited. A simple model of perfusion and diffusion made it possible to calculate the fraction of the total uptake of unbound gases that was flow limited. This fraction of the total observed absorption rate was still about 1.8 times greater than predicted by CO absorption. A possible explanation for this discrepancy is that plasma skimming reduces the hemoglobin of villus blood to about 60% of that of central blood. Thus, Fco is actually about 1.7 times greater than initially calculated, and with this correction, there is close agreement between the predicted and observed rates of absorption of each of the unbound gases. We conclude that countercurrent exchange does not influence passive absorption under the conditions of this study. PMID:4436431

  7. Holocinematographic velocimetry - Resolution limitation for flow measurement

    NASA Astrophysics Data System (ADS)

    Liburdy, James A.

    1987-10-01

    The goal of developing a holocinematographic velocimeter (HCV) is to provide a technique to study the evolution of instantaneous three-dimensional velocity profiles in turbulent flow fields. The method tracks individual seed particles that have been introduced into the flow. An imaging system using far-field holography is used to provide a full field of view tracking. Velocity information is determined from measured particle displacements of sequential hologram reconstruction. This study examines the resolution limits of far-field holography as applied to the HCV. The results aid in the determination of required seeding concentrations, establish the ability to resolve particle centers, and illustrate the use of a dual TV camera system to aid resolution. A straightforward enhancement technique provides a means to eliminate noise and reduce out of image plane ambiguity.

  8. A laboratory exercise using a physical model for demonstrating countercurrent heat exchange.

    PubMed

    Loudon, Catherine; Davis-Berg, Elizabeth C; Botz, Jason T

    2012-03-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of heat or chemicals between the fluids occurs when the flows are in opposite directions (countercurrent) than in the same direction (concurrent). When a vessel loops back on itself, countercurrent exchange can occur between the two arms of the loop, minimizing loss or uptake at the bend of the loop. Comprehension of the physical principles underlying countercurrent exchange helps students to understand how kidneys work and how modifications of a circulatory system can influence the movement of heat or chemicals to promote or minimize exchange and reinforces the concept that heat and chemicals move down their temperature or concentration gradients, respectively. One example of a well-documented countercurrent exchanger is the close arrangement of veins and arteries inside bird legs; therefore, the setup was arranged to mimic blood vessels inside a bird leg, using water flowing inside tubing as a physical proxy for blood flow within blood vessels.

  9. Modeling of multicomponent countercurrent gas permeators

    SciTech Connect

    Kovvali, A.S.; Admassu, W. . Dept. of Chemical Engineering); Vemury, S. . Dept. of Chemical Engineering)

    1994-04-01

    Modeling of gas permeation in hollow-fiber or spiral wound modules necessitates considering the effect of permeate pressure variation along the module length which could have a significant effect on the prediction of the exit compositions and membrane area requirements depending on the membrane characteristics and module geometry. The transport equations governing the permeator performance are a set of coupled nonlinear differential equations. The complexity of the solution procedure for these equations increases with the number of components in the mixture and consideration of pressure variation. Thus, there is a need for simplified solution methodologies which could reduce the computational efforts. This paper presents a solution methodology to solve the multicomponent gas permeator transport equations in a countercurrent flow pattern, taking the permeate pressure variation into consideration. The present method yields analytical expressions for flow rates, permeate pressure, membrane area, and compositions along the length of the permeator.

  10. Study of hydrodynamic characteristics of two-phase flow in closed thermosiphons

    NASA Astrophysics Data System (ADS)

    Bezrodnyi, M. K.; Volkov, S. S.

    Typical regions of development of the process of heat carrier phases interaction are studied experimentally and their boundaries in the closed two-phase counter-current flow system are determined. The influence of the two-phase medium compressible effects on the stability of the wave flow of the liquid film in the counter-current flow with the vapor flow is established. It is shown that the heat transfer limits in two-phase thermosiphons are determined by the conditions of counteraction of the heat carrier phases along the axis of the apparatus.

  11. Flow rate limitation in open capillary channel flows.

    PubMed

    Haake, Dennis; Rosendahl, Uwe; Ohlhoff, Antje; Dreyer, Michael E

    2006-09-01

    This paper reports the experimental and theoretical investigations of forced liquid flows through open capillary channels under reduced gravity conditions. An open capillary channel is a structure that establishes a liquid flow path at low Bond numbers, when the capillary pressure caused by the surface tension force dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. In case of steady flow through the channel, the capillary pressure of the free surface balances the pressure difference between the liquid and the surrounding constant-pressure gas phase. Because of convective and viscous momentum transport, the pressure along the flow path decreases and causes the free surface to bend inward. The maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the geometry of the channel and the properties of the liquid. In this paper we present a comparison of the theoretical and experimental critical flow rates and surface profiles for convective dominated flows. For the prediction of the critical flow rate a one-dimensional theoretical model taking into account the entrance pressure loss and the frictional pressure loss in the channel is developed.

  12. Counter-current thermocapilllary migration of bubbles in microchannels using self-rewetting liquids

    NASA Astrophysics Data System (ADS)

    Nazareth, Robson; Saenz, Pedro; Valluri, Prashant; Sefiane, Khellil

    2015-11-01

    The study of bubble transport in microchannels is of great interest in evaporative cooling of microdevices technologies. This is because bubble transport under heat-transfer or phase-change causes several flow instabilities that are less understood and hinder informed design of microcooling devices. Bubble motion in microchannels under temperature gradients is highly influenced by thermocapillary forces due surface tension gradients. Most studies until now so far are mainly based on pure liquids which present a linear temperature (inverse) dependence of surface tension. In this work, we consider motion of a bubble (formed of inert gas) in the so-called self-rewetting fluid that presents a parabolic (quadratic) dependence of surface tension on temperature, in a temperature range that includes a surface tension minimum. We particularly investigate the counter-current thermocapillary migration of bubbles in these liquids, as experimentally depicted by Shanahan and Sefiane (2014), by means of direct numerical simulations. We present a model that solves the 3D governing equations of mass, momentum, interface and energy for the two-phase system composed by incompressible, Newtonian and immiscible fluids. We resolve the deformable interface by means of a Volume-of-Fluid method. Our results indicate that there exists a pressure drop limit beyond which there would be no counter-current migration of bubbles.

  13. Multifraction separation in countercurrent chromatography (MCSGP).

    PubMed

    Krättli, Martin; Müller-Späth, Thomas; Morbidelli, Massimo

    2013-09-01

    The multicolumn countercurrent solvent gradient purification (MCSGP) process is a continuous countercurrent multicolumn chromatography process capable of performing three fraction separations while applying a linear gradient of some modifier. This process can then be used either for the purification of a single species from a multicomponent mixture or to separate a three component mixture in one single operation. In this work, this process is extended to the separation of multifractions, in principle with no limitation. To achieve this goal the MCSGP standard process is extended by introducing one extra separation section per extra fraction to be isolated. Such an extra separation section is realized in this work through a single additional column, so that a n fraction MCSGP process can be realized using a minimum of n columns. Two separation processes were considered to experimentally demonstrate the possibility of realizing a four-fraction MCSGP unit able to purify two intermediate products in a given multicomponent mixture. The first one was a model mixture containing four different proteins. The two proteins eluting in the center of the chromatogram were purified with yields equal to 95% for the early eluting and 92% for the later eluting one. The corresponding purities were 94% and 97%, respectively. Such performance was well superior to that of the batch operation with the same modifier gradient which for the same purity values could not achieve yields larger than 67% and 81%, respectively. Similar performance improvements were found for the second separation where two out of seven charge variants which constitute the mAb Cetuximab currently available on the market have been purified in one single operation using a four-fraction MCSGP unit. In this case, yields of 81% and 65% were obtained with purities of 90% and 89%, respectively. These data compare well with the corresponding data from batch chromatography where with the same gradient and for the same

  14. Flux limiters. [for shock tube flow computation

    NASA Technical Reports Server (NTRS)

    Sweby, P. K.

    1985-01-01

    It is well known that first order accurate difference schemes for the numerical solution of conservation laws produce results which suffer from excessive numerical diffusion, classical second order schemes, although giving better resolution, suffer from spurious oscillations. Recently much effect has been put into achieving high resolution without these oscillations, using a variety of techniques. Here one class of such methods, that of flux limiting, is outlined together with the TVD constraint used to ensure oscillation free solutions. Brief numerical comparisons of different limiting functions are also presented.

  15. Estimating Postsecondary Student Flow with Limited Data.

    ERIC Educational Resources Information Center

    Rumpf, David L.; And Others

    1987-01-01

    A model is presented that combines a polynomial lag econometric model with a goal programming model to satisfy the known conditions while making efficient use of limited data. The model is applied to data for a large public university. (Author/MLW)

  16. Evaluation of a watershed model for estimating daily flow using limited flow measurements

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash-Sutcliffe model Efficiency (NSE) and...

  17. An Activity Model to Demonstrate Countercurrent Exchange.

    ERIC Educational Resources Information Center

    Benner, D. B.

    1998-01-01

    Discusses the scant coverage in high school textbooks of countercurrent exchange for the efficient movement of molecules across biological membranes. Argues that this is one of the most intriguing of the physiological adaptive mechanisms. (DDR)

  18. An Activity Model to Demonstrate Countercurrent Exchange.

    ERIC Educational Resources Information Center

    Benner, D. B.

    1998-01-01

    Discusses the scant coverage in high school textbooks of countercurrent exchange for the efficient movement of molecules across biological membranes. Argues that this is one of the most intriguing of the physiological adaptive mechanisms. (DDR)

  19. Two-phase-flow models and their limitations

    SciTech Connect

    Ishii, M.; Kocamustafaogullari, G.

    1982-01-01

    An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper.

  20. Interannual variability of the South Indian Countercurrent

    NASA Astrophysics Data System (ADS)

    Menezes, Viviane V.; Phillips, Helen E.; Vianna, Marcio L.; Bindoff, Nathaniel L.

    2016-05-01

    In the present work, we investigate the interannual variability of the South Indian Countercurrent (SICC), a major and still understudied current of the Indian Ocean circulation. To characterize the interannual variability of the SICC, four different data sets (altimetry, GLORYS, OFAM3, and SODA) are analyzed using multiple tools, which include Singular Spectrum Analysis and wavelet methods. The quasi-biennial band dominates the SICC low-frequency variance, with the main peak in the 1.5-1.8 year interval. A secondary peak (2.1-2.5 year) is only found in the western basin. Interannual and decadal-type modulations of the quasi-biennial signal are also identified. In addition, limitations of SODA before the 1960s in the SICC region are revealed. Within the quasi-biennial band, the SICC system presents two main patterns with a multiple jet structure. One pattern is characterized by a robust northern jet, while in the other the central jet is well developed and northern jet is weaker. In both patterns, the southern jet has always a strong signature. When the northern SICC jet is stronger, the northern cell of the subtropical gyre has a triangular shape, with its southern limb having a strong equatorward slant. The quasi-biennial variability of the SICC is probably related to the Indian Ocean tropical climate modes that are known to have a strong biennial characteristic.

  1. Estimating respiratory mechanics in the presence of flow limitation.

    PubMed

    Bijaoui, E; Tuck, S A; Remmers, J E; Bates, J H

    1999-01-01

    Dynamic collapse of the pulmonary airways, leading to flow limitation, is a significant event in a number of respiratory pathologies, including obstructive sleep apnea syndrome and chronic obstructive pulmonary disease. Quantitative evaluation of the mechanical status of the respiratory system in these conditions provides useful insights into airway caliber and tissue stiffness, which are hallmarks of such abnormalities. However, assessing respiratory mechanics in the presence of flow limitation is problematic because the single-compartment linear model on which most assessment methods are based is not valid over the entire breath. Indeed, even deciding which parts of a breath are flow limited from measurement of mouth flow and pleural pressure often proves to be difficult. In this study, we investigated the use of two approaches to assessing the overall mechanical properties of the respiratory system in the presence of inspiratory flow limitation. The first method is an adaptation of the classic Mead-Whittenberger method, and the second method is based on information-weighted histograms obtained from recursively estimated signals of respiratory resistance and elastance. We tested the methods on data simulated by using a computer model of the respiratory system and on data collected from obese sleeping pigs. We found that the information-weighted histograms provided the more robust overall estimates of respiratory mechanics.

  2. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    PubMed

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    PubMed Central

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  4. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    SciTech Connect

    Owen, James E.; Alvarez, Marcelo A.

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization front becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.

  5. Phase distribution visualisation in continuous counter-current extraction.

    PubMed

    van den Heuvel, Remco; Sutherland, Ian

    2009-05-08

    Flow visualisation is essential when trying to understand hydrodynamic equilibrium in continuous counter-current extraction (CCCE) (also known as dual-flow counter-current chromatography). The technique allows two immiscible liquid phases to be pumped through the spinning coil simultaneously in opposite directions. When this process was described previously it was assumed that the phases were evenly distributed throughout the coil. Visualisation studies by van den Heuvel and Sutherland in 2007 showed that this was not the case. A special centrifuge, where the coil is cantilevered so that the coil and the fluids inside the coil can be visualised, was used to study the distribution of the phases. Factorial experimental design was used to systematically study the effect of the starting conditions inside the coil on the phase distribution at equilibrium. For each experiment the eluted volumes and the volume of upper phase in the coil at the end of the experiment (at equilibrium) were recorded. In addition, two photographs were taken when the phases in the coil had reached equilibrium. One of these photographs was taken during the experiment when the phases were still being pumped through and one when the flow was stopped. The systematic experiments showed that the initial phase inside the coil has no effect on the phase distribution achieved at equilibrium. Statistical analysis also showed that the lower phase flow rate has double the effect on the phase distribution compared to the upper phase flow rate. From these visualisation studies, it can be concluded that the balance of the phases flowing through the coil at equilibrium is complex. The volumes of upper and lower phase and how they are distributed does influence the separation. It is important therefore to understand the relationship between respective flow rates and the phase distribution if peak elution is to be accurately predicted.

  6. Scale invariance of subsurface flow patterns and its limitation

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Winkler, G.; Birk, S.

    2016-05-01

    Preferential flow patterns in the subsurface are of great importance for the availability and the quality of water resources. However, knowledge of their spatial structure is still behind their importance, so that understanding the nature of preferential flow patterns is a major issue in subsurface hydrology. Comparing the statistics of river catchment sizes and spring discharges, we found that the morphology of preferential subsurface flow patterns is probably scale invariant and similar to that of dendritic river networks. This result is not limited to karstic aquifers where the occurrence of dendritic structures has been known at least qualitatively for a long time. The scale invariance even seems to be independent of the lithology of the aquifer. However, scale invariance of river patterns seems to be only limited by the continental scale, while scale invariance of subsurface flow patterns breaks down at much smaller scales. The upper limit of scale invariance in subsurface flow patterns is highly variable. We found a range from thousands of square kilometers for limestone aquifers down to less than 1 km2 in the weathered zone and debris accumulations of crystalline rocks.

  7. Correlation of Normal Gravity Mixed Convection Blowoff Limits with Microgravity Forced Flow Blowoff Limits

    NASA Technical Reports Server (NTRS)

    Marcum, Jeremy W.; Olson, Sandra L.; Ferkul, Paul V.

    2016-01-01

    The axisymmetric rod geometry in upward axial stagnation flow provides a simple way to measure normal gravity blowoff limits to compare with microgravity Burning and Suppression of Solids - II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (PMMA) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18% by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity 'upward flame spread test' method which extrapolates the linear blowoff boundary to the zero stretch limit in order to resolve microgravity flammability limits-something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  8. A mathematical model to detect inspiratory flow limitation during sleep.

    PubMed

    Mansour, Khaled F; Rowley, James A; Meshenish, A A; Shkoukani, Mahdi A; Badr, M Safwan

    2002-09-01

    The physiological significance of inspiratory flow limitation (IFL) has recently been recognized, but methods of detecting IFL can be subjective. We sought to develop a mathematical model of the upper airway pressure-flow relationship that would objectively detect flow limitation. We present a theoretical discussion that predicts that a polynomial function [F(P) = AP(3) + BP(2) + CP + D, where F(P) is flow and P is supraglottic pressure] best characterizes the pressure-flow relationship and allows for the objective detection of IFL. In protocol 1, step 1, we performed curve-fitting of the pressure-flow relationship of 20 breaths to 5 mathematical functions and found that highest correlation coefficients (R(2)) for quadratic (0.88 +/- 0.10) and polynomial (0.91 +/- 0.05; P < 0.05 for both compared with the other functions) functions. In step 2, we performed error-fit calculations on 50 breaths by comparing the quadratic and polynomial functions and found that the error fit was lowest for the polynomial function (3.3 +/- 0.06 vs. 21.1 +/- 19.0%; P < 0.001). In protocol 2, we performed sensitivity/specificity analysis on two sets of breaths (50 and 544 breaths) by comparing the mathematical determination of IFL to manual determination. Mathematical determination of IFL had high sensitivity and specificity and a positive predictive value (>99% for each). We conclude that a polynomial function can be used to predict the relationship between pressure and flow in the upper airway and objectively determine the presence of IFL.

  9. Solvent System Selection Strategies in Countercurrent Separation

    PubMed Central

    Liu, Yang; Friesen, J. Brent; McAlpine, James B.; Pauli, Guido F.

    2015-01-01

    The majority of applications in countercurrent and centrifugal partition chromatography, collectively known as countercurrent separation, are dedicated to medicinal plant and natural product research. In countercurrent separation, the selection of the appropriate solvent system is of utmost importance as it is the equivalent to the simultaneous choice of column and eluent in liquid chromatography. However, solvent system selection is often laborious, involving extensive partition and/or analytical trials. Therefore, simplified solvent system selection strategies that predict the partition coefficients and, thus, analyte behavior are in high demand and may advance both the science of countercurrent separation and its applications. The last decade of solvent system selection theory and applications are critically reviewed, and strategies are classified according to their data input requirements. This offers the practitioner an up-to-date overview of rationales and methods for choosing an efficient solvent system, provides a perspective regarding their accuracy, reliability, and practicality, and discusses the possibility of combining multiple methods for enhanced prediction power. PMID:26393937

  10. On the Asymptotic Limit of Flows Past a Ribbed Boundary

    NASA Astrophysics Data System (ADS)

    Bucur, Dorin; Feireisl, Eduard; Nečasová, Šárka

    2008-11-01

    We consider a stationary Navier-Stokes flow in a bounded domain supplemented with the complete slip boundary conditions. Assuming the boundary of the domain is formed by a family of unidirectional asperities, whose amplitude as well as frequency is proportional to a small parameter ɛ, we shall show that in the asymptotic limit the motion of the fluid is governed by the same system of the Navier-Stokes equations, however, the limit boundary conditions are different. Specifically, the resulting boundary conditions prevent the fluid from slipping in the direction of asperities, while the motion in the orthogonal direction is allowed without any constraint.

  11. Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels

    PubMed Central

    Lu, Y.; Michel, C. C.

    2012-01-01

    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance. PMID:22604885

  12. Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels.

    PubMed

    Lu, Y; Michel, C C; Wang, W

    2012-08-01

    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance.

  13. Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation.

    PubMed

    Huang, Sheng-Cheng; Jan, Hao-Yu; Fu, Tieh-Cheng; Lin, Wen-Chen; Lin, Geng-Hong; Lin, Wen-Chi; Tsai, Cheng-Lun; Lin, Kang-Ping

    2017-01-01

    Inspiratory flow limitation (IFL) is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases) and severe level (58 cases) of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order) polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.

  14. Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation

    PubMed Central

    Huang, Sheng-Cheng; Jan, Hao-Yu; Fu, Tieh-Cheng; Lin, Geng-Hong; Lin, Wen-Chi; Lin, Kang-Ping

    2017-01-01

    Inspiratory flow limitation (IFL) is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases) and severe level (58 cases) of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order) polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep. PMID:28634497

  15. Physiological techniques for detecting expiratory flow limitation during tidal breathing.

    PubMed

    Koulouris, N G; Hardavella, G

    2011-09-01

    Patients with severe chronic obstructive pulmonary disease (COPD) often exhale along the same flow-volume curve during quiet breathing as they do during the forced expiratory vital capacity manoeuvre, and this has been taken as an indicator of expiratory flow limitation at rest (EFL(T)). Therefore, EFL(T), namely attainment of maximal expiratory flow during tidal expiration, occurs when an increase in transpulmonary pressure causes no increase in expiratory flow. EFL(T) leads to small airway injury and promotes dynamic pulmonary hyperinflation, with concurrent dyspnoea and exercise limitation. In fact, EFL(T) occurs commonly in COPD patients (mainly in Global Initiative for Chronic Obstructive Lung Disease III and IV stage), in whom the latter symptoms are common, but is not exclusive to COPD, since it can also be detected in other pulmonary and nonpulmonary diseases like asthma, acute respiratory distress syndrome, heart failure and obesity, etc. The existing up to date physiological techniques of assessing EFL(T) are reviewed in the present work. Among the currently available techniques, the negative expiratory pressure has been validated in a wide variety of settings and disorders. Consequently, it should be regarded as a simple, noninvasive, practical and accurate new technique.

  16. Novel Design for Centrifugal Countercurrent Chromatography: I. Zigzag Toroidal Column

    PubMed Central

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The toroidal coil using an equilateral triangular core has improved both retention of the stationary phase and peak resolution of the conventional toroidal coil in centrifugal countercurrent chromatography. To further improve the retention of stationary phase and peak resolution, a novel zigzag toroidal coil was designed and the performance of the system was evaluated at various flow rates. The results indicated that both retention of stationary phase and peak resolution were improved as the flow rate was decreased. Modification of the tubing by pressing at given intervals with a pair of pliers improved the peak resolution without increasing the column pressure. All these separations were performed under low column pressure indicating the separation can be further improved by increasing the column length and/or revolution speed without damaging the separation column. PMID:20046954

  17. Limiting photocurrent analysis of a wide channel photoelectrochemical flow reactor

    NASA Astrophysics Data System (ADS)

    Davis, Jonathan T.; Esposito, Daniel V.

    2017-03-01

    The development of efficient and scalable photoelectrochemical (PEC) reactors is of great importance for the eventual commercialization of solar fuels technology. In this study, we systematically explore the influence of convective mass transport and light intensity on the performance of a 3D-printed PEC flow cell reactor based on a wide channel, parallel plate geometry. Using this design, the limiting current density generated from the hydrogen evolution reaction at a p-Si metal-insulator-semiconductor (MIS) photocathode was investigated under varied reactant concentration, fluid velocity, and light intensity. Additionally, a simple model is introduced to predict the range of operating conditions (reactant concentration, light intensity, fluid velocity) for which the photocurrent generated in a parallel plate PEC flow cell is limited by light absorption or mass transport. This model can serve as a useful guide for the design and operation of wide-channel PEC flow reactors. The results of this study have important implications for PEC reactors operating in electrolytes with dilute reactant concentrations and/or under high light intensities where high fluid velocities are required in order to avoid operation in the mass transport-limited regime.

  18. Simple a posteriori slope limiter (Post Limiter) for high resolution and efficient flow computations

    NASA Astrophysics Data System (ADS)

    Kitamura, Keiichi; Hashimoto, Atsushi

    2017-07-01

    A simple and efficient a posteriori slope limiter (;Post Limiter;) is proposed for compressible Navier-Stokes and Euler equations, and examined in 1D and 2D. The Post Limiter tries to employ un-limited solutions where and when possible (even at shocks), and blend the un-limited and (1st-order) limited solutions smoothly, leading to equivalently four times resolution in 1D. This idea was inspired by a posteriori limiting approaches originally developed by Clain et al. (2011) [18] for higher-order flow computations, but proposed here is an alternative suitable and simplified for 2nd-order spatial accuracy with improved both solution and convergence. In fact, any iteration processes are no longer required to determine optimal orders of accuracy, since the limited and un-limited values are available at one time at 2nd-order. In 2D, several numerical examples have been dealt with, and both the κ = 1 / 3 MUSCL (in a structured solver) and Green-Gauss (in an unstructured solver) reconstructions demonstrated resolution improvement (nearly 4 × 4 times), convergence acceleration, and removal of numerical noises. Even on triangular meshes (on which least-squares reconstruction is used), the unstructured solver showed the improved solutions if cell geometries (cell-orientation angles) are properly taken into account. Therefore, the Post Limiter is readily incorporated into existing codes.

  19. Efficient methods for isolating five phytochemicals from Gentiana macrophylla using high-performance countercurrent chromatography.

    PubMed

    Rho, Taewoong; Jung, Mila; Lee, Min Won; Chin, Young-Won; Yoon, Kee Dong

    2016-12-01

    Efficient high-performance countercurrent chromatography methods were developed to isolate five typical compounds from the extracts of Gentiana macrophylla. n-Butanol-soluble extract of G. macrophylla contained three hydrophilic iridoids, loganic acid (1), swertiamarin (2) and gentiopicroside (3), and a chromene derivative, macrophylloside D (4) which were successfully isolated by flow rate gradient (1.5 mL/min in 0-60 min, 5.0 mL/min in 60-120 min), and consecutive flow rate gradient HPCCC using n-butanol/0.1% aqueous trifluoroacetic acid (1:1, v/v, normal phase mode) system. The yields of 1-4 were 22, 16, 122, and 6 mg, respectively, with purities over 97% in a flow rate gradient high-performance countercurrent chromatography, and consecutive flow rate gradient high-performance countercurrent chromatography gave 1, 2, 3 (54, 41, 348 mg, respectively, purities over 97%) and 4 (13 mg, purity at 95%) from 750 mg of sample. The main compound in methylene chloride soluble extract, 2-methoxyanofinic acid, was successfully separated by n-hexane/ethyl acetate/methanol/water (4:6:4:6, v/v/v/v, flow-rate: 4 mL/min, reversed phase mode) condition. The structures of five isolates were elucidated by (1) H, (13) C NMR and ESI-Q-TOF-MS spectroscopic data which were compared with previously reported values.

  20. Noninvasive determination of upper airway resistance and flow limitation.

    PubMed

    Mansour, Khaled F; Rowley, James A; Badr, M Safwan

    2004-11-01

    We have shown that a polynomial equation, FP = AP3 + BP2 + CP + D, where F is flow and P is pressure, can accurately determine the presence of inspiratory flow limitation (IFL). This equation requires the invasive measurement of supraglottic pressure. We hypothesized that a modification of the equation that substitutes time for pressure would be accurate for the detection of IFL and allow for the noninvasive measurement of upper airway resistance. The modified equation is Ft = At3 + Bt2 + Ct + D, where F is flow and t is time from the onset of inspiration. To test our hypotheses, data analysis was performed as follows on 440 randomly chosen breaths from 18 subjects. First, we performed linear regression and determined that there is a linear relationship between pressure and time in the upper airway (R2 0.96 +/- 0.05, slope 0.96 +/- 0.06), indicating that time can be a surrogate for pressure. Second, we performed curve fitting and found that polynomial equation accurately predicts the relationship between flow and time in the upper airway (R2 0.93 +/- 0.12, error fit 0.02 +/- 0.08). Third, we performed a sensitivity-specificity analysis comparing the mathematical determination of IFL to manual determination using a pressure-flow loop. Mathematical determination had both high sensitivity (96%) and specificity (99%). Fourth, we calculated the upper airway resistance using the polynomial equation and compared the measurement to the manually determined upper airway resistance (also from a pressure-flow loop) using Bland-Altman analysis. Mean difference between calculated and measured upper airway resistance was 0.0 cmH2O x l(-1) x s(-1) (95% confidence interval -0.2, 0.2) with upper and lower limits of agreement of 2.8 cmH2O x l(-1) x s(-1) and -2.8 cmH2O x l(-1) x s(-1). We conclude that a polynomial equation can be used to model the flow-time relationship, allowing for the objective and accurate determination of upper airway resistance and the presence of IFL.

  1. Sarcoplasmic reticulum K(+) (TRIC) channel does not carry essential countercurrent during Ca(2+) release.

    PubMed

    Guo, Tao; Nani, Alma; Shonts, Stephen; Perryman, Matthew; Chen, Haiyan; Shannon, Thomas; Gillespie, Dirk; Fill, Michael

    2013-09-03

    The charge translocation associated with sarcoplasmic reticulum (SR) Ca(2+) efflux is compensated for by a simultaneous SR K(+) influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca(2+) equilibrium potential and SR Ca(2+) release would cease. The SR K(+) trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K(+) countercurrent during release. To better define the physiological role of the SR K(+) channel, we compared SR Ca(2+) transport in saponin-permeabilized cardiomyocytes before and after limiting SR K(+) channel function. Specifically, we reduced SR K(+) channel conduction 35 and 88% by replacing cytosolic K(+) for Na(+) or Cs(+) (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca(2+) reloading, and caffeine-evoked Ca(2+) release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K(+) (TRIC) channels is not required to support SR Ca(2+) release (or uptake). Because K(+) enters the SR through RyRs during release, the SR K(+) (TRIC) channel most likely is needed to restore trans-SR K(+) balance after RyRs close, assuring SR Vm stays near 0 mV. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Sarcoplasmic Reticulum K+ (TRIC) Channel Does Not Carry Essential Countercurrent during Ca2+ Release

    PubMed Central

    Guo, Tao; Nani, Alma; Shonts, Stephen; Perryman, Matthew; Chen, Haiyan; Shannon, Thomas; Gillespie, Dirk; Fill, Michael

    2013-01-01

    The charge translocation associated with sarcoplasmic reticulum (SR) Ca2+ efflux is compensated for by a simultaneous SR K+ influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca2+ equilibrium potential and SR Ca2+ release would cease. The SR K+ trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K+ countercurrent during release. To better define the physiological role of the SR K+ channel, we compared SR Ca2+ transport in saponin-permeabilized cardiomyocytes before and after limiting SR K+ channel function. Specifically, we reduced SR K+ channel conduction 35 and 88% by replacing cytosolic K+ for Na+ or Cs+ (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca2+ reloading, and caffeine-evoked Ca2+ release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K+ (TRIC) channels is not required to support SR Ca2+ release (or uptake). Because K+ enters the SR through RyRs during release, the SR K+ (TRIC) channel most likely is needed to restore trans-SR K+ balance after RyRs close, assuring SR Vm stays near 0 mV. PMID:24010658

  3. Flow Analysis on a Limited Volume Chilled Water System

    SciTech Connect

    Zheng, Lin

    2012-07-31

    LANL Currently has a limited volume chilled water system for use in a glove box, but the system needs to be updated. Before we start building our new system, a flow analysis is needed to ensure that there are no high flow rates, extreme pressures, or any other hazards involved in the system. In this project the piping system is extremely important to us because it directly affects the overall design of the entire system. The primary components necessary for the chilled water piping system are shown in the design. They include the pipes themselves (perhaps of more than one diameter), the various fitting used to connect the individual pipes to form the desired system, the flow rate control devices (valves), and the pumps that add energy to the fluid. Even the most simple pipe systems are actually quite complex when they are viewed in terms of rigorous analytical considerations. I used an 'exact' analysis and dimensional analysis considerations combined with experimental results for this project. When 'real-world' effects are important (such as viscous effects in pipe flows), it is often difficult or impossible to use only theoretical methods to obtain the desired results. A judicious combination of experimental data with theoretical considerations and dimensional analysis are needed in order to reduce risks to an acceptable level.

  4. Expiratory flow limitation definition, mechanisms, methods, and significance.

    PubMed

    Tantucci, Claudio

    2013-01-01

    When expiratory flow is maximal during tidal breathing and cannot be increased unless operative lung volumes move towards total lung capacity, tidal expiratory flow limitation (EFL) is said to occur. EFL represents a severe mechanical constraint caused by different mechanisms and observed in different conditions, but it is more relevant in terms of prevalence and negative consequences in obstructive lung diseases and particularly in chronic obstructive pulmonary disease (COPD). Although in COPD patients EFL more commonly develops during exercise, in more advanced disorder it can be present at rest, before in supine position, and then in seated-sitting position. In any circumstances EFL predisposes to pulmonary dynamic hyperinflation and its unfavorable effects such as increased elastic work of breathing, inspiratory muscles dysfunction, and progressive neuroventilatory dissociation, leading to reduced exercise tolerance, marked breathlessness during effort, and severe chronic dyspnea.

  5. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  6. Countercurrent direct contact heat exchange process and system

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1979-01-01

    Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

  7. Countercurrent Separation of Natural Products: An Update.

    PubMed

    Friesen, J Brent; McAlpine, James B; Chen, Shao-Nong; Pauli, Guido F

    2015-07-24

    This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod. 2008, 71, 1489-1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources.

  8. Countercurrent Separation of Natural Products: An Update

    PubMed Central

    2015-01-01

    This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod.2008, 71, 1489–1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources. PMID:26177360

  9. Inspiratory duty cycle responses to flow limitation predict nocturnal hypoventilation.

    PubMed

    Schneider, H; Krishnan, V; Pichard, L E; Patil, S P; Smith, P L; Schwartz, A R

    2009-05-01

    Upper airway obstruction (UAO) can elicit neuromuscular responses that mitigate and/or compensate for the obstruction. It was hypothesised that flow-limited breathing elicits specific timing responses that can preserve ventilation due to increases in inspiratory duty cycle rather than respiratory rate. By altering nasal pressure during non-rapid eye movement (non-REM) sleep, similar degrees of UAO were induced in healthy males and females (n = 10 each). Inspiratory duty cycle, respiratory rate and minute ventilation were determined for each degree of UAO during non-REM sleep and compared with the baseline nonflow-limited condition. A dose-dependent increase in the inspiratory duty cycle and respiratory rate was observed in response to increasing severity of UAO. Increases in the inspiratory duty cycle, but not respiratory rate, helped to acutely maintain ventilation. Heterogeneity in these responses was associated with variable degrees of ventilatory compensation, allowing for the segregation of individuals at risk for hypoventilation during periods of inspiratory airflow limitation. Upper airway obstruction constitutes a unique load on the respiratory system. The inspiratory duty cycle, but not the respiratory rate, determine the individual's ability to compensate for inspiratory airflow limitation during sleep, and may represent a quantitative phenotype for obstructive sleep apnoea susceptibility.

  10. Limiting fragmentation in a thermal model with flow

    NASA Astrophysics Data System (ADS)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2016-12-01

    The property of limiting fragmentation of various observables such as rapidity distributions (d N/d y), elliptic flow (v2), average transverse momentum (< pTrangle) etc. of charged particles is observed when they are plotted as a function of rapidity ( y) shifted by the beam rapidity (y_{beam}) for a wide range of energies from AGS to RHIC. Limiting fragmentation (LF) is a well-studied phenomenon as observed in various collision energies and colliding systems experimentally. It is very interesting to verify this phenomenon theoretically. We study such a phenomenon for pion rapidity spectra using our hydrodynamic-like model where the collective flow is incorporated in a thermal model in the longitudinal direction. Our findings advocate the observation of extended longitudinal scaling in the rapidity spectra of pions from AGS to lower RHIC energies, while it is observed to be violated at top RHIC and LHC energies. Prediction of LF hypothesis for Pb+Pb collisions at √{s_{NN}}=5.02 TeV is given.

  11. Expiratory flow limitation and obstruction in the elderly.

    PubMed

    de Bisschop, C; Marty, M L; Tessier, J F; Barberger-Gateau, P; Dartigues, J F; Guénard, H

    2005-10-01

    Elderly people commonly suffer from dyspnoea, which may stem from expiratory flow limitation (EFL). The relationship between EFL, as assessed by the negative expiratory pressure method and spirometric indices, was investigated in an elderly French population. Subjects, aged 66-88 yrs, filled in socio-demographic and standardised questionnaires, which dealt with: medical history, smoking status and respiratory symptoms. EFL measurements and forced expiratory manoeuvres were performed. Validated measurements were obtained in 750 out of 1,318 subjects: 47% were EFL+ (EFL >0), with a higher prevalence in females than in males. EFL and forced expiratory volume in one second (FEV1) were correlated with age. A total of 116, from the 750 subjects, with no medical history and no symptoms, served as a healthy group. The prevalence of EFL+ subjects increased with the grade of dyspnoea and was highest in respiratory and cardiac patients when compared with the healthy subjects. EFL did not correlate with FEV1/forced vital capacity (FVC), the usual index of obstruction. Some elderly subjects (15%) with dyspnoea but with no medical history, mainly females with small FVC and normal FEV1/FVC, had a greater EFL than the healthy subjects. In elderly people, expiratory flow limitation measurements, along with the usual forced expiratory volume in one second/ forced vital capacity ratio, may be of value for the interpretation of dyspnoea.

  12. Dysanapsis ratio as a predictor for expiratory flow limitation.

    PubMed

    Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2014-07-01

    To determine the efficacy of the dysanapsis ratio (DR) in predicting expiratory flow limitation during exercise, 146 subjects (73 men, 73 women) performed standard pulmonary function and maximal incremental exercise tests. Tidal flow-volume loops were recorded at maximal exercise with maximal flow-volume loops measured pre- and post-exercise. Men had larger (p<0.05) lung volumes, flow rates, and V˙O2max compared to women, but DR was similar (0.21±0.05 vs. 0.20±0.06, respectively, p>0.05). V˙O2max was not different (p>0.05) between the EFL subjects compared to the non-EFL subjects for both men and women. Men with EFL compared to non-EFL men had smaller FVC (5.16±0.89L vs. 5.67±0.86L, p<0.05) and DR (0.19±0.05 vs. 0.23±0.04, p<0.05). Similarly, women with EFL compared to non-EFL had significantly smaller DR (0.18±0.05 vs. 0.24±0.05), but similar FVC (3.88±0.52 vs. 4.12±0.64, p>0.05). A DR threshold was not determined; however, a DR continuum exists with increasing DR leading to decreased prevalence of EFL. In conclusion, DR is effective in determining the likelihood of EFL at maximal exercise.

  13. Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound.

    PubMed

    Yin, Xiulian; You, Qinghong; Ma, Haile; Dai, Chunhua; Zhang, Henan; Li, Kexin; Li, Yunliang

    2015-03-01

    Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound was studied. Effect of static probe ultrasonic enhanced transesterification (SPUE) and counter-current probe ultrasonic enhanced transesterification (CCPUE) on the biodiesel conversion were compared. The results indicated that CCPUE was a better method for enhancing transesterification. The working conditions of CCPUE were studied by single-factor experiment design and the results showed that the optimal conditions were: initial temperature 25 °C, methanol to triglyceride molar ratio 10:1, flow rate 200 mL/min, catalyst content 1.8%, ultrasound working on-time 4 s, off-time 2 s, total working time 50 min. Under these conditions, the average biodiesel conversion of three experiments was 96.1%. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Space-charge-limited flow in quantum regime

    NASA Astrophysics Data System (ADS)

    Ang, Lay Kee

    2005-10-01

    Space-charge-limited (SCL) flow has been an area of active research in the development of non-neutral plasma physics, high current diodes, high power microwave sources, vacuum microelectronics and sheath physics. According to the classical Child-Langmuir (CL) law for the planar diodes, the current density scales as 3/2's power of gap voltage and to the inverse squared power of gap spacing. In the past decade, there have been renewed interests in extending the classical CL law to multi-dimensional models both numerically and analytically. The study of SCL flow in quantum regime has also attracted considerable interests in the past 3 years [1-3]. With the recent advances in nanotechnology, electron beam with very high current density may be transported in a nano-scale gap with a relatively low gap voltage. In this new operating regime, where the electron wavelength is comparable or larger than the gap spacing, the quantum effects become important. In this talk, the quantum theory of CL law will be introduced to reveal that the classical CL law is enhanced by a large factor due to electron tunneling and exchange-correlation effects, and there is a new quantum scaling for the current density, which is proportional to the 1/2's power of gap voltage, and to the inverse fourth-power of gap spacing [1-2]. Quasi-2D and 3D models with finite emission area will be shown [3]. We will also show that the classical properties of the SCL flow such as bipolar flow, beam-loaded capacitance, transit time and noise will require a complete revision in the quantum regime. The implications of the emission law of Fowler-Nordheim in the presence of intense space charge over the nanometer scale will be discussed.[1] L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, ``New Scaling of Child-Langmuir Law in the Quantum Regime,'' Phys. Rev. Lett. 91, 208303 (2003). [2] L. K. Ang, Y. Y. Lau, and T. J. T. Kwan, ``Simple Derivation of Quantum Scaling in Child-Langmuir law,'' IEEE Trans Plasma Sci. 32, 410

  15. The limiting form of symmetric instability in geophysical flows

    NASA Astrophysics Data System (ADS)

    Griffiths, Stephen

    2017-04-01

    The stability of parallel flow with vertical shear, density stratification and background rotation is of fundamental importance in geophysical fluid dynamics. For a flow with vertical shear Uz and buoyancy frequency N, the dominant instability is typically a symmetric instability (sometimes known as slantwise convection) when 1/4 < Ri ≲ 1, where Ri = N2/Uz2. Symmetric instability, which in its simplest form has no along-stream variations, is known to be active in both the troposphere and upper ocean. The corresponding (symmetric) inviscid linear stability problem has been well studied for the case of constant Uz and N, and has some interesting mathematical properties (e.g., non-separable governing PDE, an absence of normal mode solutions in rectangular domains). Here, for the first time, a general theory of symmetric instability is given when Ri varies smoothly with height, thinking of the more realistic case where an unstable layer with Ri < 1 lies between two stable layers with Ri > 1. The mathematical theory is developed for horizontally periodic disturbances to a basic state with arbitrary smooth N(z), but constant Uz. An asymptotic analysis is used to derive expressions for the most unstable mode, which occurs in the limit of large cross-isentropic wavenumber and takes the form of solutions trapped within the unstable layer; the same result is derived using an interesting generalised parcel dynamics argument, which explicitly shows how the trapping is linked to vertical variations of the potential vorticity. A separate asymptotic analysis is given for the small wavenumber limit, where only one such trapped mode may exist, as expected from the spectral theory of the Schrödinger equation. These two limiting results are shown to be consistent with an exact solution of the linear stability problem that can be obtained for a special choice of N(z). The asymptotic analysis can be extended to allow for weak diffusion at arbitrary Prandtl number, yielding an

  16. Two-zone countercurrent smelter system and process

    DOEpatents

    Cox, James H.; Fruehan, Richard J.; Elliott, deceased, John F.

    1995-01-01

    A process for continuously smelting iron ore by use of coal to yield molten iron or semi-steel is disclosed. The process comprises the steps of establishing a melt covered by slag; inducing the slag and the molten iron to flow countercurrently to one another, toward opposite ends of the smelter; maintaining iron oxide-reducing conditions in that zone of the smelter towards which the slag flows; maintaining carbon-oxidizing conditions in that zone of the smelter towards which the molten iron flows; continuously or semicontinuously tapping the slag from the reducing zone end of the smelter; continuously or semicontinuously tapping the molten iron from the oxidizing zone end of the smelter; and adding to both zones iron ore, coal, oxygen, and flux at addition rates sufficient to keep the molten iron in the reducing zone substantially saturated with carbon, maintain in the slag being tapped an FeO content of about 5 weight percent or less, and maintain in the molten iron being tapped a carbon content of about 0.5 to 5 weight percent. A slag dam preferably is included in the smelter, to impede the backflow of the slag from the reducing zone to the oxidizing zone. A metal bath dam with one or more flow-through portals also is preferably used, submerged below the slag dam, to impede the backflow of the hot metal.

  17. Two-zone countercurrent smelter system and process

    DOEpatents

    Cox, J.H.; Fruehan, R.J.; Elliott, J.F.

    1995-01-03

    A process for continuously smelting iron ore by use of coal to yield molten iron or semi-steel is disclosed. The process comprises the steps of establishing a melt covered by slag; inducing the slag and the molten iron to flow countercurrently to one another, toward opposite ends of the smelter; maintaining iron oxide-reducing conditions in that zone of the smelter towards which the slag flows; maintaining carbon-oxidizing conditions in that zone of the smelter towards which the molten iron flows; continuously or semicontinuously tapping the slag from the reducing zone end of the smelter; continuously or semicontinuously tapping the molten iron from the oxidizing zone end of the smelter; and adding to both zones iron ore, coal, oxygen, and flux at addition rates sufficient to keep the molten iron in the reducing zone substantially saturated with carbon, maintain in the slag being tapped an FeO content of about 5 weight percent or less, and maintain in the molten iron being tapped a carbon content of about 0.5 to 5 weight percent. A slag dam preferably is included in the smelter, to impede the backflow of the slag from the reducing zone to the oxidizing zone. A metal bath dam with one or more flow-through portals also is preferably used, submerged below the slag dam, to impede the backflow of the hot metal. 8 figures.

  18. Triangular Helical Column for Centrifugal Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Yu, Henry

    2009-01-01

    Effective column space and stationary phase retention have been improved by changing the configuration of the helical column originally used for toroidal coil countercurrent chromatography. The use of an equilateral triangular core for the helix column doubles effective column space and retains the stationary phase over 40% of the total column capacity without increasing the column pressure. The present results suggest that the stationary phase retention and the peak resolution will be further improved using new column designs fabricated by a new technology called “laser sintering for rapid prototyping.” PMID:20046940

  19. Expiratory flow limitation in morbidly obese postoperative mechanically ventilated patients.

    PubMed

    Koutsoukou, A; Koulouris, N; Bekos, B; Sotiropoulou, C; Kosmas, E; Papadima, K; Roussos, C

    2004-10-01

    Although obesity promotes tidal expiratory flow limitation (EFL), with concurrent dynamic hyperinflation (DH), intrinsic PEEP (PEEPi) and risk of low lung volume injury, the prevalence and magnitude of EFL, DH and PEEPi have not yet been studied in mechanically ventilated morbidly obese subjects. In 15 postoperative mechanically ventilated morbidly obese subjects, we assessed the prevalence of EFL [using the negative expiratory pressure (NEP) technique], PEEPi, DH, respiratory mechanics, arterial oxygenation and PEEPi inequality index as well as the levels of PEEP required to abolish EFL. In supine position at zero PEEP, 10 patients exhibited EFL with a significantly higher PEEPi and DH and a significantly lower PEEPi inequality index than found in the five non-EFL (NEFL) subjects. Impaired gas exchange was found in all cases without significant differences between the EFL and NEFL subjects. Application of 7.5 +/- 2.5 cm H2O of PEEP (range: 4-16) abolished EFL with a reduction of PEEPi and DH and an increase in FRC and the PEEPi inequality index but no significant effect on gas exchange. The present study indicates that: (a) on zero PEEP, EFL is present in most postoperative mechanically ventilated morbidly obese subjects; (b) EFL (and concurrent risk of low lung volume injury) is abolished with appropriate levels of PEEP; and (c) impaired gas exchange is common in these patients, probably mainly due to atelectasis.

  20. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    A neutral polymer phase system consisting of 7.5 percent dextran 40/4.5 percent PEG 6, 0.11 M Na phosphate, 5 percent fetal bovine serum (FBS), pH 7.5, was developed which has a high phase droplet electrophoretic mobility and retains cell viability over many hours. In this and related systems, the drop mobility was a linear function of drop size, at least in the range 4-30 micron diameter. Applications of and electric field of 4.5 v/cm to a system containing 10 percent v/v bottom phase cleared the system more than two orders of magnitude faster than in the absence of the field. At higher bottom phase concentrations a secondary phenomenon intervened in the field driven separations which resulted in an increase in turbidity after clearing had commenced. The increase was associated with a dilution of the phase system in the chamber. The effect depended on the presence of the electric field. It may be due to electroosmotic flow of buffer through the Amicon membranes into the sample chamber and flow of phase system out into the rinse stream. Strategies to eliminate this problem are proposed.

  1. Applications and limitations of a rheology for granular flows

    NASA Astrophysics Data System (ADS)

    Cawthorn, Chris; Hinch, John; Huppert, Herbert

    2007-11-01

    In order to assess the validity of the rheological law for granular flows proposed by Jop, Pouliquen and Forterre [Nature, vol. 441, pp.727-730], we present its application to a number of different problems. Whilst it works well for steady flow on a confined sandpile, or in an inclined channel, we will show that the law fails to qualitatively predict flow some simple geometries, such as annular Couette flow and vertical chute flow. In addition, we consider perturbations to 2D flow on an inclined plane and 3D flow in an inclined channel, where the effect of the confining vertical walls becomes important. Implications for the use of Jop's rheology for more complicated problems, particularly those involving dam-break or column collapse will also be addressed.

  2. Maximal oxygen uptake validation in children with expiratory flow limitation.

    PubMed

    Robben, Katherine E; Poole, David C; Harms, Craig A

    2013-02-01

    A two-test protocol (incremental/ramp (IWT) + supramaximal constant-load (CWR)) to affirm max and obviate reliance on secondary criteria has only been validated in highly fit children. In girls (n = 15) and boys (n = 12) with a wide range of VO2max (17-47 ml/kg/min), we hypothesized that this procedure would evince a VO2-WR plateau and unambiguous VO2max even in the presence of expiratory flow limitation (EFL). A plateau in the VO2-work rate relationship occurred in 75% of subjects irrespective of EFL There was a range in RER at max exercise for girls (0.97-1.14; mean 1.06 ± 0.04) and boys (0.98-1.09; mean 1.03 ± 0.03) such that 3/15 girls and 2/12 boys did not achieve the criterion RER. Moreover, in girls with RER > 1.0 it would have been possible to achieve this criterion at 78% VO2max. Boys achieved 92% VO2max at RER = 1.0. This was true also for HRmax where 8/15 girls' and 6/12 boys' VO2max would have been rejected based on HRmax being < 90% of age-predicted HRmax. In those who achieved the HRmax criterion, it represented a VO2 of 86% (girls) and 87% (boys) VO2max. We conclude that this two-test protocol confirms VO2max in children across a threefold range of VO2max irrespective of EFL and circumvents reliance on secondary criteria.

  3. Ground Testing for Hypervelocity Flow, Capabilities and Limitations

    DTIC Science & Technology

    2010-03-29

    but high-enthalpy flows also occur naturally, e. g., when a meteorite enters a planetary atmosphere. The term hypersonic flow is used to describe... Meteorites entering planetary atmospheres typically have a speed of 20 km/s, and proposals for man-made vehicles have considered speeds in the vicinity of

  4. Countercurrent fixed-bed gasification of biomass at laboratory scale

    SciTech Connect

    Di Blasi, C.; Signorelli, G.; Portoricco, G.

    1999-07-01

    A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7% CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.

  5. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1982-01-01

    Detailed physiochemical studies of dextran/poly(ethylene glycol) (PEG) two phase systems were carried out to characterize and provide understanding of the properties of the systems which determine cell partition and the electrophoretic behavior of phase drops responsible for electric field driven phase separation. A detailed study of the electrostatic and electrokinetic potentials developed in these systems was carried out. The salt partition was examined both in phase systems and with pure polymer solutions via equilibrium dialysis and mechanism of sulfate, chloride and phosphate partition shown to be exclusion by PEG rather than binding by dextran. Salt partition was shown to have a strong effect on the polymer compositions of the phases as well, an effect which produces large changes in the interfacial tension between them. These effects were characterized and the interfacial tension shown to obey a power law with respect to its dependence on the length of the tie line describing the system composition on a phase diagram. The electrostatic potential differences measured via salt bridges were shown to obey thermodynamic predictions. The electrophoretic mobilities measured were utilized to provide a partial test of Levine's incomplete theory of phase drop electrophoresis. The data were consistent with Levine's expression over a limited range of the variables tested.

  6. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    PubMed

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase

  7. Capillarity-driven flows at the continuum limit.

    PubMed

    Vincent, Olivier; Szenicer, Alexandre; Stroock, Abraham D

    2016-08-21

    We experimentally investigate the dynamics of capillary-driven flows at the nanoscale, using an original platform that combines nanoscale pores (⋍3 nm in diameter) and microfluidic features. In particular, we show that drying involves a fine coupling between thermodynamics and fluid mechanics that can be used to generate precisely controlled nanoflows driven by extreme stresses - up to 100 MPa of tension. We exploit these tunable flows to provide quantitative tests of continuum theories (e.g. Kelvin-Laplace equation and Poiseuille flow) across an unprecedented range and we isolate the breakdown of continuum as a negative slip length of molecular dimension. Our results show a coherent picture across multiple experiments including drying-induced permeation flows, imbibition and poroelastic transients.

  8. Multidimensional counter-current chromatographic system and its application.

    PubMed

    Yang, F; Quan, J; Zhang, T Y; Ito, Y

    1998-04-17

    A multidimensional counter-current chromatographic system was set up for the first time with two sets of high-speed counter-current chromatography instruments. This system was successfully applied to the preparative separation of isorhamnetin, kaempferol and quercetin from crude flavone aglycones of Ginkgo biloba L. and Hippophae rhamnoides L. with a two-phase solvent system composed of chloroform-methanol-water (4:3:2, v/v/v).

  9. Nonlocal rheological properties of granular flows near a jamming limit

    NASA Astrophysics Data System (ADS)

    Aranson, Igor S.; Tsimring, Lev S.; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen’s flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  10. Capillarity-driven flows at the continuum limit

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Szenicer, Alexandre; Stroock, Abraham D.

    We experimentally investigate the dynamics of capillary-driven flows at the nanoscale, using an original platform that combines nanoscale pores and microfluidic features. Our results show a coherent picture across multiple experiments including imbibition, poroelastic transient flows, and a drying-based method that we introduce. In particular, we exploit extreme drying stresses - up to 100 MPa of tension - to drive nanoflows and provide quantitative tests of continuum theories of fluid mechanics and thermodynamics (e.g. Kelvin-Laplace equation) across an unprecedented range. We isolate the breakdown of continuum as a negative slip length of molecular dimension.

  11. Expiratory flow-limitation and heliox breathing in resting and exercising COPD patients.

    PubMed

    D'Angelo, Edgardo; Santus, Pierachille; Civitillo, Marco F; Centanni, Stefano; Pecchiari, Matteo

    2009-12-31

    In 26 stable patients with chronic obstructive pulmonary disease, tidal expiratory flow-limitation (TEFL), inspiratory capacity, breathing pattern and dyspnea sensation were assessed during air and heliox (20% O(2) in He) breathing at rest and during exercise up to 2/3 maximal work rate. Breathing air, the 13 patients with TEFL at rest remained flow-limited also during exercise, while 7 of the non-flow-limited patients became flow-limited; tidal volume increased more in non-flow-limited patients, whereas inspiratory capacity decreased in flow-limited and increased in the non-flow-limited patients. Heliox did not abolish flow-limitation, had no effect on breathing pattern, reduced exercise dynamic hyperinflation in 25% of the flow-limited patients, depending on the degree of the dynamic hyperinflation on air, and lessened dyspnea sensation in all patients. Hence, the presence of TEFL has no systematic effects on the respiratory response to heliox, and the heliox-induced decrease of exercise dyspnea is not mainly due to changes in dynamic hyperinflation or TEFL.

  12. Limitations of Adjoint-Based Optimization for Separated Flows

    NASA Astrophysics Data System (ADS)

    Otero, J. Javier; Sharma, Ati; Sandberg, Richard

    2015-11-01

    Cabin noise is generated by the transmission of turbulent pressure fluctuations through a vibrating panel and can lead to fatigue. In the present study, we model this problem by using DNS to simulate the flow separating off a backward facing step and interacting with a plate downstream of the step. An adjoint formulation of the full compressible Navier-Stokes equations with varying viscosity is used to calculate the optimal control required to minimize the fluid-structure-acoustic interaction with the plate. To achieve noise reduction, a cost function in wavenumber space is chosen to minimize the excitation of the lower structural modes of the structure. To ensure the validity of time-averaged cost functions, it is essential that the time horizon is long enough to be a representative sample of the statistical behaviour of the flow field. The results from the current study show how this scenario is not always feasible for separated flows, because the chaotic behaviour of turbulence surpasses the ability of adjoint-based methods to compute time-dependent sensitivities of the flow.

  13. The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows

    SciTech Connect

    Ruggles, A.E.; Brown, N.W.; Vasil`ev, A.D.; Wendel, M.W.

    1995-09-01

    Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flow situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.

  14. Reciprocal symmetry plots as a representation of countercurrent chromatograms.

    PubMed

    Friesen, J Brent; Pauli, Guido F

    2007-03-15

    Traditionally, chromatograms in countercurrent chromatography (CCC) have been plotted with retention volume or time on the x-axis. However, the distribution constant (K) is a more appropriate, reproducible value for the x-axis, because it is a physicochemical property of a particular analyte in a particular solvent system. Therefore, K is independent of both the total column volume and the stationary-phase volume ratio (SF) of the column. Going one step beyond simple K plots, the reciprocal symmetry (ReS) plot, with K and 1/K positioned on either side of a line of symmetry on the x-axis, represents all K values, zero to infinity. Based on experimental evidence, using a mixture of CCC reference standards, the ReS plot demonstrates both the invertible and "symmetric" nature of CCC, a consequence of the exchange of the mobile and stationary phases by reversing the direction of the flow and the symmetry of the liquid-liquid partitioning process between two immiscible phases, respectively. Moreover, the interval of optimal resolution can be centered on the ReS plot to focus on K values of interest, establishing the reciprocal shifted symmetry (ReSS) plots in CCC. Improved representation of peak shape across the whole CCC polarity range is an added advantage of ReSS plots over both K and classical retention volume plots.

  15. Robust design of binary countercurrent adsorption separation processes

    SciTech Connect

    Storti, G. ); Mazzotti, M.; Morbidelli, M.; Carra, S. )

    1993-03-01

    The separation of a binary mixture, using a third component having intermediate adsorptivity as desorbent, in a four section countercurrent adsorption separation unit is considered. A procedure for the optimal and robust design of the unit is developed in the frame of Equilibrium Theory, using a model where the adsorption equilibria are described through the constant selectivity stoichiometric model, while mass-transfer resistances and axial mixing are neglected. By requiring that the unit achieves complete separation, it is possible to identify a set of implicity constraints on the operating parameters, that is, the flow rate ratios in the four sections of the unit. From these constraints explicit bounds on the operating parameters are obtained, thus yielding a region in the operating parameters space, which can be drawn a priori in terms of the adsorption equilibrium constants and the feed composition. This result provides a very convenient tool to determine both optimal and robust operating conditions. The latter issue is addressed by first analyzing the various possible sources of disturbances, as well as their effect on the separation performance. Next, the criteria for the robust design of the unit are discussed. Finally, these theoretical findings are compared with a set of experimental results obtained in a six port simulated moving bed adsorption separation unit operated in the vapor phase.

  16. Scale invariance of subsurface flow patterns and its limitation

    NASA Astrophysics Data System (ADS)

    Hergarten, Stefan; Winkler, Gerfried; Birk, Steffen

    2015-04-01

    The morphology of river networks at the Earth's surface has been addressed in numerous studies. Numerical simulations of fluvial erosion processes and concepts of optimization have provided a rather comprehensive understanding about the scale invariance of river networks. Less is known about the structure of preferential flow patterns in the subsurface because these are only accessible by indirect measurements in most cases. As preferential flow patterns are crucial for all transport processes in the subsurface, unraveling their structure is a major challenge in subsurface hydrology. Transferring the idea of optimization from surface flow to subsurface flow it was recently suggested that preferential subsurface flow patterns should also have a dendritic, scale-invariant structure similar to that of river networks. In this study we analyzed the mean discharges of serval thousand springs with respect to scale invariance. For this purpose we reanalyzed a data set comprising about 17,000 springs from Spain already published in the literature and three new data sets from the Eastern Alps in Austria. We found that the probability density f(Q) of the discharge distribution can be described by a power law with an exponential cutoff, f(Q) ≈ Q-τe- QQc. The scaling exponent τ was found to be about 1.6, which is slightly larger than the exponent τ = 1.5 of river networks. In contrast to rivers, the distributions of the spring discharges are characterized by a significant cutoff at large discharges. This cutoff strongly depends on the lithology of the aquifers, while the scaling exponent τ ˜ 1.6 seems to be universal. The highest cutoff was found for limestones being one of the primary host rocks for karstic aquifers. We found Qc ˜ 6000 l/s for the limestones in the data set from Spain, suggesting a scale-invariant subsurface flow pattern up to catchment sizes of several thousand square kilometers. At the other edge, we found a cutoff at catchment sizes in the order of

  17. Limiting flows of a viscous fluid with stationary separation zones with Re approaching infinity

    NASA Technical Reports Server (NTRS)

    Taganov, G. I.

    1982-01-01

    The limiting flows of a viscous noncondensable fluid, which are approached by flows with stationary separation zones behind planar symmetrical bodies, with an unlimited increase in the Reynolds number are studied. Quantitative results are obtained in the case of a circulation flow inside of a separation zone.

  18. Endocannabinoids Control Platelet Activation and Limit Aggregate Formation under Flow

    PubMed Central

    De Angelis, Valentina; Koekman, Arnold C.; Weeterings, Cees; Roest, Mark; de Groot, Philip G.; Herczenik, Eszter; Maas, Coen

    2014-01-01

    Background The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function. Objectives Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo. Methods and Results We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa. Conclusions Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function

  19. Preconditioning and the limit to the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Fiterman, A.; Vanleer, B.

    1993-01-01

    The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.

  20. Pluto's Polygonal Terrain Places Lower Limit on Planetary Heat Flow

    NASA Astrophysics Data System (ADS)

    Trowbridge, A.; Steckloff, J. K.; Melosh, H., IV; Freed, A. M.

    2015-12-01

    During its recent flyby of Pluto, New Horizons imaged an icy plains region (Sputnik Planum) whose surface is divided into polygonal blocks, ca. 20-30 km across, bordered by what appear to be shallow troughs. The lack of craters within these plains suggests they are relatively young, implying that the underlying material is recently active. The scale of these features argues against an origin by cooling and contraction. Here we investigate the alternative scenario that they are the surface manifestation of shallow convection in a thick layer of nitrogen ice. Typical Rayleigh-Bernard convective cells are approximately three times wider than the depth of the convecting layer, implying a layer depth of ca. 7-10 km. Our convection hypothesis requires that the Rayleigh number exceed a minimum of about 1000 in the nitrogen ice layer. We coupled a parameterized convection model with a temperature dependent rheology of nitrogen ice (Yamashita, 2008), finding a Rayleigh number 1500 to 7500 times critical for a plausible range of heat flows for Pluto's interior. The computed range of heat flow (3.5-5.2 mW/m2) is consistent with the radiogenic heat generated by a carbonaceous chondrite (CC) core implied by Pluto's bulk density. The minimum heat flow at the critical Rayleigh number is 0.13 mW/m2. Our model implies a core temperature of 44 K in the interior of the convecting layer. This is very close to the exothermic β-α phase transition in nitrogen ice at 35.6 K (for pure N2 ice; dissolved CO can increase this, depending on its concentration), suggesting that the warm cores of the rising convective cells may be β phase, whereas the cooler sinking limbs may be α phase. This transition may thus be observable due to the large difference in their spectral signature. Further applying our model to Pluto's putative water ice mantle, the heat flow from CC is consistent with convection in Pluto's mantle and the activity observed on its surface.

  1. Using the liquid nature of the stationary phase in countercurrent chromatography. IV. The cocurrent CCC method.

    PubMed

    Berthod, Alain; Hassoun, Mahmoud

    2006-05-26

    The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.

  2. Heart-Cut Two-Dimensional Countercurrent Chromatography with a Single Instrument.

    PubMed

    Englert, Michael; Brown, Leslie; Vetter, Walter

    2015-10-20

    Countercurrent chromatography (CCC) is a separation technique based on the liquid-liquid partitioning of compounds between the two phases of a biphasic solvent system. Limitations in the separation efficiency and peak capacity of one-dimensional (1D) CCC often result in insufficiently resolved peaks. Therefore, partially resolved peak fractions have to be rechromatographed in order to improve the yield and purity. Additional solvent evaporation steps can be circumvented by the application of two-dimensional CCC (2D CCC). Existing 2D CCC configurations are based on the linking of two CCC instruments which are not readily available in every laboratory. In this study, we introduce a technical improvement which allows performing multiple heart-cuts and 2D CCC separations with one instrument which has up to four independent coils, one pump, and one detector. For this purpose, we modified a commercially available CCC system by the addition of three six-port selection valves and a T-piece. The applicability of the 2D CCC system was shown under overloading conditions with eight alkyl hydroxybenzoates with nonideal conditions. We used two solvent systems which were hydrodynamically compatible and which showed different selectively characteristics with regard to the compounds. Four unresolved compounds in the first dimension were baseline resolved by means of the heart-cut technique, in which between 4 and 9 mL of the flow from coil 1 was transferred to coil 2. Three successive heart-cuts were performed that led to baseline resolution of unresolved compounds in the first dimension. The obtained recovery rates were 94-100%, and the purities of the compounds as determined by GC/MS were 90-100%.

  3. The dynamic connection of the Indonesian Throughflow, South Indian Ocean Countercurrent and the Leeuwin Current

    NASA Astrophysics Data System (ADS)

    Lambert, E.; Le Bars, D.; de Ruijter, W. P. M.

    2015-09-01

    East of Madagascar, wind and surface buoyancy fluxes reinforce each other, leading to frontogenesis, outcrop and an eastward along-front flow: the South Indian Ocean Countercurrent (SICC). In the east the Leeuwin Current (LC) is a unique eastern boundary current which flows poleward along Australia. It is often described as a regional coastal current forced by an off-shore meridional density gradient or a sea surface slope, yet little is known of the forcing and dynamics that control these open ocean meridional gadients. To complete this understanding, we make use of both an ocean general circulation model and a conceptual two-layer model. The SICC impinges on west Australia and adds to a sea level slope and a southward geostrophic coastal jet: the Leeuwin Current. The SICC and the LC are thus dynamically connected. An observed transport maximum of the LC around 22° S is directly related to this impingement of the SICC. The circulation of the Indonesian Throughflow (ITF) through the Indian Ocean appears to be partly trapped in the upper layer north of the outcrop line and is redirected along this outcrop line to join the eastward flow of the SICC. Shutdown of the ITF in both models strongly decreases the Leeuwin Current transport and breaks the connection between the LC and SICC. In this case, most of the SICC was found to reconnect to the internal gyre circulation in the Indian Ocean. The Indonesian Throughflow, South Indian Ocean Countercurrent and the Leeuwin Current are thus dynamically coupled.

  4. Mean flow stability wave models for coherent structures in open shear flows: experimental assessment of potentials and limitations

    NASA Astrophysics Data System (ADS)

    Oberleithner, Kilian; Rukes, Lothar; Paschereit, Oliver; Soria, Julio

    2014-11-01

    We report on a number of experimental and theoretical investigations of shear flow instabilities in jet flows. In these studies, linear stability analysis is employed to the time-averaged flow taken from experiments, contrasting the ``classic'' stability approach that is based on a stationary base flow. The eigenmodes of the time-averaged flow are considered as models for the nonlinearly saturated state of the instability waves. The accuracy of these models is validated through a detailed comparison with experiments. In this talk we outline the potential and limitation of these flow models for convectively and globally unstable jet flows. The first author was supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD). The support of the Australian Research Council (ARC) and the German Research Foundation (DFG) is greatfully acknowledged.

  5. Design and optimization of a back-flow limiter for the high performance light water reactor

    SciTech Connect

    Fischer, Kai; Laurien, Eckart; Claas, Andreas G.; Schulenberg, Thomas

    2007-07-01

    Design and Analysis of a back-flow limiter are presented, which is implemented as a safety device in the four inlet lines of the Reactor Pressure Vessel (RPV) of the High Performance Light Water Reactor (HPLWR). As a passive component, the back-flow limiter has no moving parts and belongs to the group of fluid diodes. It has low flow resistance for regular operation condition and a high flow resistance when the flow direction is reversed which is the case if a break of the feedwater line occurs. The increased flow resistance is due to a substantially increased swirl for reverse flow condition. The design is optimized employing 1D flow analyses in combination with 3D CFD analyses with respect to geometrical modifications, like the nozzle shape and swirler angles. (authors)

  6. Binary concepts and standardization in counter-current separation technology.

    PubMed

    Friesen, J B; Pauli, G F

    2009-05-08

    Counter-current separation (CS) technology is currently faced with the challenge of being fit for the purpose of omics analysis, which involves highly complex samples and digitized research environments. Resembling a network of binary decisions, CS requires standardization of operation parameters in order to be efficient. While recent CS engineering solutions uniformly involve centrifugal force designs to overcome the limitation of the earth's 1xg force, factors of instrument design, operation, and graphical representation of the outcome are equally important targets for standardization. For example, chromatograms that emphasize the unique K-based nature of CS, such as reciprocal symmetry (ReS) plots, foster the fundamental understanding of CS operation. Because significant differences exist in underlying mechanism (e.g., stationary phase volume), outcome (e.g., construction of chromatograms), and scale (e.g., factors affecting overall method sensitivity) of solid-liquid vs. liquid-liquid chromatography technologies, standardization will enable the systematic exploration of the differential properties of the two LC technologies, and will be key to making CS fit for the digital omics age.

  7. An Official American Thoracic Society Workshop Report: Noninvasive Identification of Inspiratory Flow Limitation in Sleep Studies.

    PubMed

    Pamidi, Sushmita; Redline, Susan; Rapoport, David; Ayappa, Indu; Palombini, Luciana; Farre, Ramon; Kirkness, Jason; Pépin, Jean-Louis; Polo, Olli; Wellman, Andrew; Kimoff, R John

    2017-07-01

    This report summarizes the proceedings of the American Thoracic Society Workshop on the Noninvasive Identification of Inspiratory Flow Limitation in Sleep Studies held on May 16, 2015, in Denver, Colorado. The goal of the workshop was to discuss methods for standardizing the scoring of flow limitation from nasal cannula pressure tracings. The workshop began with presentations on the physiology underlying flow limitation, existing methods of scoring flow limitation, the effects of signal acquisition and filtering on flow shapes, and a review of the literature examining the adverse outcomes related to flow limitation. After these presentations, the results from online scoring exercises, which were crowdsourced to workshop participants in advance of the workshop, were reviewed and discussed. Break-out sessions were then held to discuss potential algorithms for scoring flow limitation. Based on these discussions, subsequent online scoring exercises, and webinars after the workshop, a consensus-based set of recommendations for a scoring algorithm for flow limitation was developed. Key conclusions from the workshop were: (1) a standardized and automated approach to scoring flow limitation is needed to provide a metric of nonepisodic elevated upper airway resistance, which can then be related to clinical outcomes in large cohorts and patient groups; (2) at this time, the most feasible method for standardization is by proposing a consensus-based framework, which includes scoring rules, developed by experts (3) hardware and software settings of acquisition devices, including filter settings, affect the shape of the flow curve, and should be clearly specified; and (4) a priority for future research is the generation of an open-source, expert-derived training set to encourage and support validation of automated flow limitation scoring algorithms.

  8. Emplacing a cooling-limited rhyolite lava flow: similarities with basaltic lava flows

    NASA Astrophysics Data System (ADS)

    Magnall, Nathan; James, Mike R.; Tuffen, Hugh; Vye-Brown, Charlotte

    2017-06-01

    Accurate forecasts of lava flow length rely on estimates of eruption and magma properties and, potentially more challengingly, an understanding of the relative influence of characteristics such as the apparent viscosity, the yield strength of the flow core, or the strength of the surface crust. Consequently, even the most straightforward models of lava advance involve sufficient parameters that constraints can be relatively easily fitted within the uncertainties involved, at the expense of gaining insight. Here, for the first time, we incorporate morphological observations from during and after flow field evolution to improve model constraints and reduce uncertainties. After demonstrating the approach on a basaltic lava flow (Mt. Etna, 2001), we apply it to the 2011-12 Cordón Caulle rhyolite flow, where unprecedented observations and syn-emplacement satellite imagery of an advancing silica-rich lava flow have indicated an important crustal influence on flow emplacement. Our results show that an initial phase of viscosity-controlled advance at Cordón Caulle was followed by later crustal control, accompanied by formation of flow surface folds and large-scale crustal fractures. Where the lava was unconstrained by topography, the cooled crust ultimately halted advance of the main flow and led to the formation of breakouts from the flow front and margins, influencing the footprint of the lava, its advance rate, and the duration of flow advance. Highly similar behaviour occurred in the 2001 Etna basaltic lava flow. The processes controlling the advance of crystal-poor rhyolite and basaltic lava flow therefore appear similar, indicating common controlling mechanisms that transcend profound rheological and compositional differences.

  9. A model-based method for flow limitation analysis in the heterogeneous human lung.

    PubMed

    Polak, Adam G

    2008-02-01

    Flow limitation in the airways is a fundamental process constituting the maximal expiratory flow-volume curve. Its location is referred to as the choke point. In this work, expressions enabling the calculation of critical flows in the case of wave-speed, turbulent or viscous limitation were derived. Then a computational model for the forced expiration from the heterogeneous lung was used to analyse the regime and degree of flow limitation as well as movement and arrangement of the choke points. The conclusion is that flow limitation begins at similar time in every branch of the bronchial tree developing a parallel arrangement of the choke points. A serial configuration of flow-limiting sites is possible for short time periods in the case of increased airway heterogeneity. The most probable locations of choke points are the regions of airway junctions. The wave-speed mechanism is responsible for flow choking over most of vital capacity and viscous dissipation of pressure for the last part of the test. Turbulent dissipation, however, may play a significant role as a supporting factor in transition between wave-speed and viscous flow limitation.

  10. Singular Limits in a Model of Radiative Flow

    NASA Astrophysics Data System (ADS)

    Ducomet, Bernard; Nečasová, Šárka

    2015-06-01

    We consider a "semi-relativistic" model of radiative viscous compressible Navier-Stokes-Fourier system coupled to the radiative transfer equation extending the classical model introduced in Ducomet et al. (Ann Inst Henri Poincarè AN 28:797-812, 2011) and we study some of its singular limits (low Mach and diffusion) in the case of well-prepared initial data and Dirichlet boundary condition for the velocity field. In the low Mach number case we prove the convergence toward the incompressible Navier-Stokes system coupled to a system of two stationary transport equations. In the diffusion case we prove the convergence toward the compressible Navier-Stokes with modified state functions (equilibrium case) or toward the compressible Navier-Stokes coupled to a diffusion equation (non equilibrium case).

  11. Countercurrent soil washing system for remediation of viscous hydrocarbons, heavy metals, radionuclides

    SciTech Connect

    Kuhlman, M.I.; Karlsson, M.K.; Downie, C.A.

    1995-12-31

    Drying augers and multicell DAF tanks are excellent machines in which to countercurrently wash soil and remove hazardous hydrocarbons, metals or radionuclides. An auger works well because it preferentially moves soil along one side of its trough. Thus, when enough high pressure and temperature water jets are placed along that path, contaminants can be melted, or dissolved and scoured from the soil. Contaminants and fines flow down the opposite side of the auger and out for extraction in a series of flotation tanks. Countercurrent washing of the silt results when soil settles in tanks through rising water and air bubbles then is pumped through cyclones placed above the next DAF tank of the series. LNAPLs, DNAPLs, or metallic contaminants made hydrophobic by chemicals in the system are removed at the overflow of the cyclones or by flotation in the tanks. The overflow from the cyclones and DAF tanks flows into the previous tank of the series. Examples of contaminants remediated include; arsenic, cadmium, lead and mercury, Naturally Occurring Radioactive Materials (NORM), uranium, solid oils, polyaromatic hydrocarbons in creosote and coal tars, and polychlorinated hydrocarbons.

  12. Expiratory flow limitation relates to symptoms during COPD exacerbations requiring hospital admission

    PubMed Central

    Jetmalani, Kanika; Timmins, Sophie; Brown, Nathan J; Diba, Chantale; Berend, Norbert; Salome, Cheryl M; Wen, Fu-Qiang; Chen, Peng; King, Gregory G; Farah, Claude S

    2015-01-01

    Background Expiratory flow limitation (EFL) is seen in some patients presenting with a COPD exacerbation; however, it is unclear how EFL relates to the clinical features of the exacerbation. We hypothesized that EFL when present contributes to symptoms and duration of recovery during a COPD exacerbation. Our aim was to compare changes in EFL with symptoms in subjects with and without flow-limited breathing admitted for a COPD exacerbation. Subjects and methods A total of 29 subjects with COPD were recruited within 48 hours of admission to West China Hospital for an acute exacerbation. Daily measurements of post-bronchodilator spirometry, resistance, and reactance using the forced oscillation technique and symptom (Borg) scores until discharge were made. Flow-limited breathing was defined as the difference between inspiratory and expiratory respiratory system reactance (EFL index) greater than 2.8 cmH2O·s·L−1. The physiological predictors of symptoms during recovery were determined by mixed-effect analysis. Results Nine subjects (31%) had flow-limited breathing on admission despite similar spirometry compared to subjects without flow-limited breathing. Spirometry and resistance measures did not change between enrolment and discharge. EFL index values improved in subjects with flow-limited breathing on admission, with resolution in four patients. In subjects with flow-limited breathing on admission, symptoms were related to inspiratory resistance and EFL index values. In subjects without flow-limited breathing, symptoms related to forced expiratory volume in 1 second/forced vital capacity. In the whole cohort, EFL index values at admission was related to duration of stay (Rs=0.4, P=0.03). Conclusion The presence of flow-limited breathing as well as abnormal respiratory system mechanics contribute independently to symptoms during COPD exacerbations. PMID:25999709

  13. Novel Design for Centrifugal Counter-Current Chromatography: III. Saw Tooth Column

    PubMed Central

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The toroidal coil using an equilateral triangular core and zigzag pattern column have improved both retention of the stationary phase and peak resolution of the conventional toroidal coil in centrifugal counter-current chromatography. To further improve the retention of stationary phase and peak resolution, a novel saw tooth column was designed and the performance of the system was evaluated at various flow rates. The results indicated that both retention of the stationary phase and peak resolution were improved as the flow rate was decreased and at a flow rate of 0.005 ml/min the resolution is remarkably increased. Modification of the tubing called flat-twisted tubing further improved the peak resolution without increasing the column pressure. With a decreased column length at a capacity of about 0.2 ml, resolution of the saw tooth column was 1.02. PMID:20543965

  14. Pleistocene dynamics of the Pacific South Equatorial Countercurrent

    NASA Astrophysics Data System (ADS)

    Nuernberg, D.; Raddatz, J.; Rippert, N.; Tiedemann, R.

    2014-12-01

    The Western Pacific Warm Pool (WPWP) with extremely high sea-surface-temperatures (SST) is a key area for global climate. It also acts as a crossroad for mode and intermediate water masses such as the South Equatorial Countercurrent (SECC) transporting water masses originating from higher latitudes. The SECC flows above the main thermocline and strongly interacts with the Intertropical Convergence Zone (ITCZ) and South Pacific Convergence Zone (SPCZ). To constrain changes in sea-surface and subsurface water mass dynamics affecting thermocline depth, we reconstruct SST, subSST and salinity conditions using combined δ18O and Mg/Ca signals of surface (Globigerinoides ruber, Globigerinoides sacculifer) and subsurface dwelling (Globorotalia tumida) planktonic foraminifera. Our study is based on RV SONNE SO-225 piston cores retrieved from Manihiki plateau, which is located at the southeastern margin of the WPWP (between ~ 5°S-15°S and 170-160°W). The proxy records cover the last ~ 3 Myr SSTMg/Ca remained nearly constant throughout the entire Pleistocene varying between ~30 to 32 (°C), while the subSSTMg/Ca reconstructions reveal pronounced variations from ~10 to 16 (°C). Our results imply that the WPWP thermocline depth has undergone significant vertical movements throughout the Pleistocene. Notably, thermocline depth is continuously decreasing from the early to the late Pleistocene, and coincides with the change from the 41 kyr to a dominant 100 kyr climate periodicity between 1 and 1.7 Ma. We hypothesize that the repeated change in thermocline depth is due to either 1) changes in mode or intermediate water masses advection from Southern Ocean sources via "ocean tunneling", 2) changes in the tropical Pacific wind regime, and/or 3) changes in the Western Pacific Monsoon sytem.

  15. Use of partition coefficients in flow-limited physiologically-based pharmacokinetic modeling.

    PubMed

    Thompson, Matthew D; Beard, Daniel A; Wu, Fan

    2012-08-01

    Permeability-limited two-subcompartment and flow-limited, well-stirred tank tissue compartment models are routinely used in physiologically-based pharmacokinetic modeling. Here, the permeability-limited two-subcompartment model is used to derive a general flow-limited case of a two-subcompartment model with the well-stirred tank being a specific case where tissue fractional blood volume approaches zero. The general flow-limited two-subcompartment model provides a clear distinction between two partition coefficients typically used in PBPK: a biophysical partition coefficient and a well-stirred partition coefficient. Case studies using diazepam and cotinine demonstrate that, when the well-stirred tank is used with a priori predicted biophysical partition coefficients, simulations overestimate or underestimate total organ drug concentration relative to flow-limited two-subcompartment model behavior in tissues with higher fractional blood volumes. However, whole-body simulations show predicted drug concentrations in plasma and lower fractional blood volume tissues are relatively unaffected. These findings point to the importance of accurately determining tissue fractional blood volume for flow-limited PBPK modeling. Simulations using biophysical and well-stirred partition coefficients optimized with flow-limited two-subcompartment and well-stirred models, respectively, lead to nearly identical fits to tissue drug distribution data. Therefore, results of whole-body PBPK modeling with diazepam and cotinine indicate both flow-limited models are appropriate PBPK tissue models as long as the correct partition coefficient is used: the biophysical partition coefficient is for use with two-subcompartment models and the well-stirred partition coefficient is for use with the well-stirred tank model.

  16. Counter-current thermocapillary migration of bubbles in self-rewetting liquids

    NASA Astrophysics Data System (ADS)

    Nazareth, R.; Saenz, P.; Sefiane, K.; Kim, J.; Valluri, P.

    2016-11-01

    In this work, we study the counter-current thermocapillary propulsion of a suspended bubble in the fluid flowing inside a channel subject to an axial temperature gradient when the surface tension dependence on temperature is non-monotonic. We use direct numerical simulations to address the two-phase conservation of mass, momentum and energy with a volume-of-fluid method to resolve the deformable interface. Two distinct regimes of counter-current bubble migration are characterized: i) "exponential decay" where the bubble decelerates rapidly until it comes to a halt at the spatial position corresponding to the minimum surface tension and ii) "sustained oscillations" where the bubble oscillates about the point of minimum surface tension. We illustrate how these sustained oscillations arise at low capillary number O(10-5) and moderate Reynolds number O(10) and, they are dampened by viscosity at lower Reynolds number. These results are in agreement with the experiments by Shanahan and Sefiane (Sci. Rep. 4, 2014). The work was supported by the Science without Borders program from CAPES agency of Brazilian Ministry of Education and the European Commission's Thermapower Project (294905).

  17. Euglossine bees mediate only limited long-distance gene flow in a tropical vine.

    PubMed

    Opedal, Øystein H; Falahati-Anbaran, Mohsen; Albertsen, Elena; Armbruster, W Scott; Pérez-Barrales, Rocío; Stenøien, Hans K; Pélabon, Christophe

    2017-03-01

    Euglossine bees (Apidae: Euglossini) have long been hypothesized to act as long-distance pollinators of many low-density tropical plants. We tested this hypothesis by the analysis of gene flow and genetic structure within and among populations of the euglossine bee-pollinated vine Dalechampia scandens. Using microsatellite markers, we assessed historical gene flow by the quantification of regional-scale genetic structure and isolation by distance among 18 populations, and contemporary gene flow by the estimation of recent migration rates among populations. To assess bee-mediated pollen dispersal on a smaller scale, we conducted paternity analyses within a focal population, and quantified within-population spatial genetic structure in four populations. Gene flow was limited to certain nearby populations within continuous forest blocks, whereas drift appeared to dominate on larger scales. Limited long-distance gene flow was supported by within-population patterns; gene flow was biased towards nearby plants, and significant small-scale spatial genetic structure was detected within populations. These findings suggest that, although female euglossine bees might be effective at moving pollen within populations, and perhaps within forest blocks, their contribution to gene flow on the regional scale seems too limited to counteract genetic drift in patchily distributed tropical plants. Among-population gene flow might have been reduced following habitat fragmentation.

  18. Counter-current carbon dioxide extraction of soy skim

    USDA-ARS?s Scientific Manuscript database

    The use of carbon dioxide in a counter-current fractionation column was investigated as a means to remove residual fat from soy skim after enzyme-assisted aqueous extraction of soybeans. The stainless steel column was 1.2 meters long with an internal diameter of 1.75 cm and filled protruded stainles...

  19. Do Sverdrup transports account for the Pacific North Equatorial Countercurrent

    SciTech Connect

    Meyers, G.

    1980-02-20

    Poleward and equatorward geostrophic transports calculated from density are nearly equal to Sverdrup transports calculated from the curl of the wind stress in the North and South Pacific subtropical gyres. But the Sverdrup transports do not account for the Pacific North Equatorial Countercurrent.

  20. Low frequency filtering of nasal pressure channel causes loss of flow limitation.

    PubMed

    Walter, Robert N; Vaughn, Bradley V

    2013-03-01

    The objective of this clinical vignette is to explore whether changes in low filter settings for respiratory waveforms have a clinically significant effect on patient management of obstructive sleep apnea (OSA). This is a case report. We collected data from a continuous positive airway pressure (CPAP) titration polysomnogram (PSG) performed in our university based sleep laboratory. We reviewed the flow signal using low frequency filter settings of 0.0, 0.1, 0.3, and 0.5 Hz. We noted that a change in the low frequency filter for respiratory flow caused a change in the appearance of an otherwise flattened waveform indicating flow limitation to no longer appear flat. We noted that indiscriminate use of the low frequency filter for nasal pressure and flow estimate channels may lead to greater difficulty recognizing respiratory flow limitation.

  1. Bifurcations of limit cycles in open and closed loop reverse flow reactors

    NASA Astrophysics Data System (ADS)

    Russo, Lucia; Crescitelli, Silvestro; Brasiello, Antonio

    2013-10-01

    The present work analyses the bifurcations of limit cycles in open and loop reverse flow reactors. The open loop system consists of a reactor where the flow direction is periodically forced whereas in the closed loop system, the flow inversion is dictated by a control law which activates when the temperature at the edge of catalytic bed falls below the set-point value. We performed the bifurcation analysis of the open loop system as the switch time is varied and we constructed the solution diagram through the application of continuation technique. Many Naimark-Sacker bifurcations leading to quasi-periodic regimes have been found on the limit cycles branches. Finally, we compared these limit cycles with those of the closed loop system where the flow inversion is dictated by a control system which acts if the temperature measured at the edge of reactor falls below a set-point value.

  2. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Zakharov, L. E.; Xie, H.; Chen, Z. X.

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  3. Electrode shapes for high-power diodes with non-space-charge-limited flow

    NASA Astrophysics Data System (ADS)

    Peter, William

    1992-04-01

    Electrode shapes appropriate to diodes with non-space-charge-limited flow (e.g., laser-irradiated photocathodes) and high-power (eV0 ≳ mc2) are derived. The electrode shapes are designed to keep the electron beam rectilinear, and generalize the shapes derived by Pierce for space-charge-limited cathodes in low-power diodes.

  4. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  5. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  6. Mixer-settler counter-current chromatography with multiple spiral disk assembly.

    PubMed

    Ito, Yoichiro; Clary, Robert; Sharpnak, Frank; Metger, Howard; Powell, Jimmie

    2007-11-23

    A novel system for performing high-speed counter-current chromatography has been developed for separation of biopolymers using polymer phase systems. The spiral disk assembly consisting of eight units, each equipped with over 300 mixer-settler sets, was constructed and performance evaluated in terms of retention of the stationary phase and separation efficiency. A series of experiments was performed with a polymer phase system composed of polyethylene glycol 1000 (12.5%, w/w) and dibasic potassium phosphate (12.5%, w/w) using two stable protein samples of myoglobin and lysozyme at various experimental conditions of flow rates and revolution speeds. The best results were obtained with revolution speeds of 800-1000rpm at flow rates of 0.25-0.5ml/min where the partition efficiency of several 100 theoretical plates was achieved with over 50% stationary phase retention.

  7. Inspiratory Flow Limitation in a Normal Population of Adults in São Paulo, Brazil

    PubMed Central

    Palombini, Luciana O.; Tufik, Sergio; Rapoport, David M.; Ayappa, Indu A.; Guilleminault, Christian; de Godoy, Luciana B. M.; Castro, Laura S.; Bittencourt, Lia

    2013-01-01

    Study Objectives: Inspiratory flow limitation (IFL) during sleep occurs when airflow remains constant despite an increase in respiratory effort. This respiratory event has been recognized as an important parameter for identifying sleep breathing disorders. The purpose of this study was to investigate how much IFL normal individuals can present during sleep. Design: Cross-sectional study derived from a general population sample. Setting: A “normal” asymptomatic sample derived from the epidemiological cohort of São Paulo. Patients and Participants: This study was derived from a general population study involving questionnaires and nocturnal polysomnography of 1,042 individuals. A subgroup defined as a nonsymptomatic healthy group was used as the normal group. Interventions: N/A. Measurements and Results: All participants answered several questionnaires and underwent full nocturnal polysomnography. IFL was manually scored, and the percentage of IFL of total sleep time was considered for final analysis. The distribution of the percentage of IFL was analyzed, and associated factors (age, sex, and body mass index) were calculated. There were 95% of normal individuals who exhibited IFL during less than 30% of the total sleep time. Body mass index was positively associated with IFL. Conclusions: Inspiratory flow limitation can be observed in the polysomnography of normal individuals, with an influence of body weight on percentage of inspiratory flow limitation. However, only 5% of asymptomatic individuals will have more than 30% of total sleep time with inspiratory flow limitation. This suggests that only levels of inspiratory flow limitation > 30% be considered in the process of diagnosing obstructive sleep apnea in the absence of an apnea-hypopnea index > 5 and that < 30% of inspiratory flow limitation may be a normal finding in many patients. Citation: Palombini LO; Tufik S; Rapoport DM; Ayappa IA; Guilleminault C; de Godoy LBM; Castro LS; Bittencourt L

  8. Mass transfer in thin films under counter-current gas: experiments and numerical study

    NASA Astrophysics Data System (ADS)

    Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant

    2016-11-01

    Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.

  9. Flow motifs reveal limitations of the static framework to represent human interactions

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Blondel, Vincent D.

    2013-04-01

    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.

  10. An analysis of small target feature detection limits using optic flow

    NASA Astrophysics Data System (ADS)

    Conroy, Joseph; Gremillion, Gregory; Mathis, Allison; Nothwang, William

    2015-05-01

    The neurophysiology of insects suggests that they are able to track conspecifics, which manifest as small targets, against a variety of backgrounds with ease. This perception occurs at the same stage as motion perception suggesting a role for optic flow in target discrimination. Optic flow also is an attractive method of perception for visual system design due to the possibility of parallel processing that lends itself to implementation in hardware acceleration. This paper investigates some of the limits for reliable target discrimination solely from an optic flow field which are dependent on algorithm parameters, the nature of the target, and imager noise properties.

  11. END-DIASTOLIC FLOW REVERSAL LIMITS THE EFFICACY OF PEDIATRIC INTRAAORTIC BALLOON PUMP COUNTERPULSATION

    PubMed Central

    Bartoli, Carlo R.; Rogers, Benjamin D.; Ionan, Constantine E.; Koenig, Steven C.; Pantalos, George M.

    2013-01-01

    OBJECTIVE Counterpulsation with an intraaortic balloon pump (IABP) has not achieved the same successes or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. METHODS In Yorkshire piglets (n=19, 13.0±0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7cc) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. RESULTS Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105±3bmp, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. CONCLUSIONS Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy

  12. One-step purification of proteins from chicken egg white using counter-current chromatography.

    PubMed

    Shibusawa, Y; Kihira, S; Ito, Y

    1998-05-29

    Proteins present in chicken egg white are separated by counter-current chromatography (CCC) in one step using a cross-axis coil planet centrifuge (X-axis CPC). The separation was performed with an aqueous polymer two-phase system composed of 16% (w/w) poly(ethylene glycol) 1000 and 12.5% (w/w) dibasic potassium phosphate by eluting the lower phase at a flow-rate of 1.0 ml/min. From about 20 g of the crude egg white solution, lysozyme, ovalbumin, and ovotransferrin were resolved within 5.5 h. Each component was identified by 12% SDS gel electrophoresis with Coomassie brilliant blue staining.

  13. Improved spiral tube assembly for high-speed counter-current chromatography

    PubMed Central

    Ito, Y.; Clary, R.; Powell, J.; Knight, M.; Finn, T. M.

    2009-01-01

    The original spiral tube support (STS) assembly is improved by changing the shape of the tubing, with 1-cm presses perpendicularly along the length. This modification interrupts the laminar flow of the mobile phase. The tubing in the 4 return grooves to the center of the rotor is flattened by a specially made pressing tool to decrease the dead volume and thus increase the column efficiency. The performance of this spiral tube assembly was tested in separations of dipeptides and proteins with suitable polar two-phase solvent systems. The results revealed that the present system yields high partition efficiency with a satisfactory level of stationary phase retention in a short elution time. The present high-speed counter-current chromatographic system will be efficiently applied to a broad spectrum of two-phase solvent systems including aqueous-aqueous polymer phase systems which are used for separation of biopolymers such as proteins and nucleic acids. . PMID:19062024

  14. New analytical spiral tube assembly for separation of proteins by counter-current chromatography

    PubMed Central

    Ma, Xiaofeng; Ito, Yoichiro

    2015-01-01

    A new spiral column assembly for analytical separation by counter-current chromatography is described. The column is made from a plastic spiral tube support which has 12 interwoven spiral grooves. The PTFE tubing of 1.6 mm ID was first flattened by extruding through a narrow slit and inserted into the grooves to make 5 spiral layers with about 60 ml capacity. The performance of the spiral column assembly was tested with separation of three stable protein samples including cytochrome C, myoglobin and lysozyme in a polymer phase system composed of polyethylene glycol 1000 and dibasic potassium phosphate each at 12.5 % (w/w) in water. At 2 ml/min, three protein samples were well resolved in one hour. The separation time may be further shortened by application of higher revolution speed and flow rate by improving the strength of the spiral tube support in the future. PMID:26074099

  15. Methods for Assessing Expiratory Flow Limitation during Tidal Breathing in COPD Patients.

    PubMed

    Koulouris, Nickolaos G; Kaltsakas, Georgios; Palamidas, Anastasios F; Gennimata, Sofia-Antiopi

    2012-01-01

    Patients with severe COPD often exhale along the same flow-volume curve during quite breathing as during forced expiratory vital capacity manoeuvre, and this has been taken as indicating expiratory flow limitation at rest (EFL(T)). Therefore, EFL(T), namely, attainment of maximal expiratory flow during tidal expiration, occurs when an increase in transpulmonary pressure causes no increase in expiratory flow. EFL(T) leads to small airway injury and promotes dynamic pulmonary hyperinflation with concurrent dyspnoea and exercise limitation. In fact, EFL(T) occurs commonly in COPD patients (mainly in GOLD III and IV stage) in whom the latter symptoms are common. The existing up-to-date physiological methods for assessing expiratory flow limitation (EFL(T)) are reviewed in the present work. Among the currently available techniques, the negative expiratory pressure (NEP) has been validated in a wide variety of settings and disorders. Consequently, it should be regarded as a simple, non invasive, most practical, and accurate new technique.

  16. GUESSmix-guided optimization of elution-extrusion counter-current separations.

    PubMed

    Friesen, J Brent; Pauli, Guido F

    2009-05-08

    Rational strategies for the optimization of separations are vital to any chromatographic technique. In counter-current separations (CS), once a suitable solvent system is selected for a given separation, the operator is faced with the task of optimizing the separation through the manipulation of those adjustable operation parameters allowed for by the current CS technology. This study employed a mixture of 21 natural products of varying polarity, molecular mass, and functionality, termed the GUESSmix, as a tool to assess the effectiveness of optimization strategies. The behavior of the GUESSmix was observed in the hexane/ethyl acetate/methanol/water 4:6:4:6 (HEMWat +3) solvent system. The effect of operation parameters on both the elution and extrusion stages of a recently introduced CS methodology, termed elution-extrusion counter-current chromatography (EECCC), was investigated. The resulting chromatograms were plotted with K-based reciprocal symmetry plots (ReS and ReSS), which allow comparison of the K values of significant peaks and assessment of resolution of eluting compounds in the interval 0< or =K< or =infinity. The operation parameters studied were: (1) the effect of temperature controlled water circulation around the centrifuge; (2) the combination of flow rate and revolution speed; (3) sample loading capacity; (4) the direction of rotation either agreeing with or opposing the direction of coil winding; (5) injection before equilibration, a practice that saves operator time and reduces solvent consumption. The GUESSmix was found to be a highly useful reference mixture to compare and contrast stationary phase retention volume ratios, resolution, K-values, peak shapes, and extrusion characteristics between CS experiments. EECCC is shown to be a robust technique that may be enhanced with appropriate temperature, rpm, flow rate, sample loading, direction of rotation, and injection timing. Plotting ReS[S] chromatograms enables systematic study of CS

  17. Counter-current extraction of sweet sorghum sugar for fermentation

    SciTech Connect

    Toledo, R.T.

    1985-01-01

    A small counter-current extractor in the form of a heated inclined screw was tested to remove residual sugar from the bagasse after sweet sorghum was passed through one roller mill. Roller milling alone recovered only 45% of total sugar. Combined efficiency of milling and extraction was 95%. Combined pressed juice (17% sugar) and extract (10% sugar) produces a 12.5% solids juice for fermentation.

  18. Countercurrent Process for Lignin Separation from Biomass Matrix

    SciTech Connect

    Kiran Kadam; Ed Lehrburger

    2006-03-31

    The overall goal of the project was to test the concept of using a twin-screw extruder to conduct autohydrolysis pretreatment of wheat straw in countercurrent fashion, demonstrate in situ solid/liquid separation, and produce a low-lignin cellulose product using ethanol as an extractant. The resultant solid product is suitable for sugar production through enzymatic hydrolysis and for pulp applications. Pilot-scale equipment was used to successfully demonstrate the process both for sugar and pulp applications.

  19. Cyclooxygenase blockade limits blood flow to collateral-dependent myocardium during exercise.

    PubMed

    Altman, J D; Klassen, C L; Bache, R J

    1995-11-01

    Cyclooxygenase blockade has been found to cause vasoconstriction of coronary collateral vessels in open-chest animals. This study was carried out to determine whether cyclooxygenase blockade can limit blood flow to collateral-dependent myocardium during exercise. Studies were performed in 8 adult mongrel dogs in which intermittent followed by permanent occlusion of the left anterior descending coronary artery produced an area of collateral-dependent myocardium. Myocardial blood flow was measured with radioactive microspheres at rest and during treadmill exercise to produce heart rates of 215 +/-0 7 beats/min. At rest collateral zone blood flow (1.00 +/- 0.10 ml/min per g) was significantly less than normal zone flow (1.23 +/- 0.14) (P < 0.05). During control exercise blood flow increased 91 +/- 22% in the collateral zone and 102 +/- 28% in the normal zone (each P < 0.05). Thirty minutes after cyclooxygenase blockade with indomethacin (5 mg/kg i.v.) blood flow in the normal zone and the collateral zone was not different from control during resting conditions. Indomethacin did not change heart rate or arterial pressure during exercise, but significantly increased the aortic-to-distal coronary pressure gradient from 33 +/- 3 to 40 +/- 5 mmHg (P < 0.05). Indomethacin increased transcollateral resistance during exercise by 42 +/- 10% (P < 0.05); this was associated with a 27 +/- 11% decrease in subendocardial flow in the collateral zone (P < 0.05) with no significant change in subepicardial flow, and no change in normal zone blood flow. These findings demonstrate that in the intact awake animal cyclooxygenase blockade causes coronary collateral vasoconstriction which can impair blood flow to the dependent myocardium during exercise.

  20. On the structural limitations of recursive digital filters for base flow estimation

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Costelloe, Justin F.; Peterson, Tim J.; Western, Andrew W.

    2016-06-01

    Recursive digital filters (RDFs) are widely used for estimating base flow from streamflow hydrographs, and various forms of RDFs have been developed based on different physical models. Numerical experiments have been used to objectively evaluate their performance, but they have not been sufficiently comprehensive to assess a wide range of RDFs. This paper extends these studies to understand the limitations of a generalized RDF method as a pathway for future field calibration. Two formalisms are presented to generalize most existing RDFs, allowing systematic tuning of their complexity. The RDFs with variable complexity are evaluated collectively in a synthetic setting, using modeled daily base flow produced by Li et al. (2014) from a range of synthetic catchments simulated with HydroGeoSphere. Our evaluation reveals that there are optimal RDF complexities in reproducing base flow simulations but shows that there is an inherent physical inconsistency within the RDF construction. Even under the idealized setting where true base flow data are available to calibrate the RDFs, there is persistent disagreement between true and estimated base flow over catchments with small base flow components, low saturated hydraulic conductivity of the soil and larger surface runoff. The simplest explanation is that low base flow "signal" in the streamflow data is hard to distinguish, although more complex RDFs can improve upon the simpler Eckhardt filter at these catchments.

  1. Lung and chest wall mechanics during exercise: effects of expiratory flow limitation.

    PubMed

    Aliverti, Andrea

    2008-11-30

    This short review summarizes how lung and chest wall mechanics can be modelled and which are the mechanical constraints imposed on the ventilatory system and its components during exercise. In healthy humans the structural and functional characteristics of the ventilator pump are able to meet the increased demands of ventilation during exercise and it is rare that arterial blood gas is significantly altered up to maximal exercise. In contrast, exercise is frequently limited by the ventilator system in disease, especially when altered mechanical properties of the airway and lung make expiratory flow limitation (EFL) a common feature. EFL is a phenomenon that can be understood in terms of the viscous effects of gas flowing from the alveoli to the airway opening along a collapsible airway which leads during exercise to dynamic hyperflation and several abnormalities of the ventilatory pump. These, in turn, determine a series of secondary manifestations, namely dyspnoea, exercise limitation and hypercapnia that can cause serious morbidity.

  2. A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis

    2012-10-01

    The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.

  3. Rapid separation of cyanidin-3-glucoside and cyanidin-3-rutinoside from crude mulberry extract using high-performance countercurrent chromatography and establishment of a volumetric scale-up process.

    PubMed

    Choi, Soo-Jung; Choi, Janggyoo; Lee, Chang Uk; Yoon, Shin Hee; Bae, Soo Kyung; Chin, Young-Won; Kim, Jinwoong; Yoon, Kee Dong

    2015-06-01

    This study describes the rapid separation of mulberry anthocyanins; namely, cyanidin-3-glucoside and cyanidin-3-rutinoside, using high-performance countercurrent chromatography, and the establishment of a volumetric scale-up process from semi-preparative to preparative-scale. To optimize the separation parameters, biphasic solvent systems composed of tert-butyl methyl ether/n-butanol/acetonitrile/0.01% trifluoroacetic acid, flow rate, sample amount and rotational speed were evaluated for the semi-preparative-scale high-performance countercurrent chromatography. The optimized semi-preparative-scale high-performance countercurrent chromatography parameters (tert-butyl methyl ether/n-butanol/acetonitrile/0.01% trifluoroacetic acid, 1:3:1:5, v/v; flow rate, 4.0 mL/min; sample amount, 200-1000 mg; rotational speed, 1600 rpm) were transferred directly to a preparative-scale (tert-butyl methyl ether/n-butanol/acetonitrile/0.01% trifluoroacetic acid, 1:3:1:5, v/v; flow rate, 28 mL/min; sample amount, 5.0-10.0 g; rotational speed, 1400 rpm) to achieve separation results identical to cyanidin-3-glucoside and cyanidin-3-rutinoside. The separation of mulberry anthocyanins using semi-preparative high-performance countercurrent chromatography and its volumetric scale-up to preparative-scale was addressed for the first time in this report.

  4. Mean Field Limit and Propagation of Chaos for a Pedestrian Flow Model

    NASA Astrophysics Data System (ADS)

    Chen, Li; Göttlich, Simone; Yin, Qitao

    2017-01-01

    In this paper a rigorous proof of the mean field limit for a pedestrian flow model in two dimensions is given by using a probabilistic method. The model under investigation is an interacting particle system coupled to the eikonal equation on the microscopic scale. For stochastic initial data, it is proved that the solution of the N-particle pedestrian flow system with properly chosen cut-off converges in the probability sense to the solution of the characteristics of the non-cut-off Vlasov equation. Furthermore, the result on propagation of chaos is also deduced in terms of bounded Lipschitz distance.

  5. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards

    USGS Publications Warehouse

    Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.

    2010-01-01

    The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the

  6. Recovering mean flow quantities from limited time-resolved PIV measurements through a data assimilation framework

    NASA Astrophysics Data System (ADS)

    Symon, Sean; Schmid, Peter; Sipp, Denis; McKeon, Beverley

    2016-11-01

    Data assimilation combines experimental and numerical realizations of the same flow to produce hybrid flow fields. These have the advantages of less noise contamination and higher resolution while simultaneously reproducing the main physical features of the measured flow. This study investigates data assimilation of the mean flow around an idealized airfoil (Re = 13500) obtained from time-averaged PIV data. The experimental data, which represents a low-dimensional representation of the full flow field due to resolution and field of view limitations, is incorporated into a simulation governed by the incompressible RANS equations with an unknown momentum forcing. This forcing, which corresponds to the divergence of the Reynolds stress tensor, is calculated from a direct-adjoint optimization procedure to match the experimental and numerical mean velocity fields. The simulation is projected to the low-dimensional subspace of the experiment to calculate the discrepancy and a smoothing procedure is used to recover adjoint solutions on the higher-dimensional subspace of the simulation. The study quantifies how well data assimilation can reconstruct the mean flow and the minimum experimental measurements needed by altering the resolution and domain size of the time-averaged PIV.

  7. Efficacy of Flow Restrictors in Limiting Access of Liquid Medicines by Young Children

    PubMed Central

    Lovegrove, Maribeth C.; Hon, Stephanie; Geller, Robert J.; Rose, Kathleen O.; Hampton, Lee M.; Bradley, Jill; Budnitz, Daniel S.

    2015-01-01

    Objectives Annually, tens of thousands of children are brought to emergency departments for unsupervised medicine ingestions. We assessed whether adding flow restrictors to liquid medicine bottles can provide additional protection against unsupervised medicine ingestions by young children, even when the child-resistant closure is not fully secured. Study Design From April – May 2012, we conducted a block randomized trial with a convenience sample of 110 3- and 4-year-old children from 5 local preschools. Participants attempted to remove test liquid from an uncapped bottle with a flow restrictor and a control bottle without a flow restrictor (with either no cap or an incompletely-closed cap). Results Ninety-six percent (25/26) of open controls and 82% of incompletely-closed control bottles (68/83) were emptied within 2 minutes. Only 6% (7/110) of bottles with flow restrictors were emptied during the 10-minute testing period, none before 6 minutes. Overall, children removed less liquid from bottles with flow restrictors than from open or incompletely-closed controls (both P < .001). All children assigned open controls and 90% assigned incompletely-closed controls removed ≥25 mL liquid. In contrast, 11% of children removed ≥25 mL liquid from uncapped bottles with flow restrictors. Older children (54 – 59 months) were more successful than younger children at removing ≥25 mL liquid (P = .002) from bottles with flow restrictors. Conclusions Findings suggest that adding flow restrictors to liquid medicine bottles limits the accessibility of their contents to young children and could complement the safety provided by current child-resistant packaging. PMID:23896185

  8. SPH modelling of depth‐limited turbulent open channel flows over rough boundaries

    PubMed Central

    Kazemi, Ehsan; Nichols, Andrew; Tait, Simon

    2016-01-01

    Summary A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd PMID:28066121

  9. SPH modelling of depth-limited turbulent open channel flows over rough boundaries.

    PubMed

    Kazemi, Ehsan; Nichols, Andrew; Tait, Simon; Shao, Songdong

    2017-01-10

    A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-particle-scale model is applied to account for the effect of turbulence. The sub-particle-scale model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.

  10. Sinks as limited resources? A new indicator for evaluating anthropogenic material flows.

    PubMed

    Kral, Ulrich; Brunner, Paul H; Chen, Pi-Cheng; Chen, Sih-Rong

    2014-11-01

    Besides recyclables, the use of materials inevitably yields non-recyclable materials such as emissions and wastes for disposal. These flows must be directed to sinks in a way that no adverse effects arise for humans and the environment. The objective of this paper is to present a new indicator for the assessment of substance flows to sinks on a regional scale. The indicator quantifies the environmentally acceptable mass share of a substance in actual waste and emission flows, ranging from 0% as worst case to 100% as best case. This paper consists of three parts: first, the indicator is defined. Second, a methodology to determine the indicator score is presented, including (i) substance flows analysis and (ii) a distant-to-target approach based on an adaptation of the Ecological Scarcity Method 2006. Third, the metric developed is applied in three case studies including copper (Cu) and lead (Pb) in the city of Vienna, and perfluorooctane sulfonate (PFOS) in Switzerland. The following results were obtained: in Vienna, 99% of Cu flows to geogenic and anthropogenic sinks are acceptable when evaluated by the distant-to-target approach. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters are beyond the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, and 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The examples demonstrate the need (i) for appropriate data of good quality to calculate the sink indicator and (ii) for standards, needed for the assessment of substance flows to urban soils and receiving waters. This study corroborates that the new indicator is well suited as a base for decisions regarding the control of hazardous substances in waste and environmental management.

  11. Sinks as limited resources? A new indicator for evaluating anthropogenic material flows

    PubMed Central

    Kral, Ulrich; Brunner, Paul H.; Chen, Pi-Cheng; Chen, Sih-Rong

    2014-01-01

    Besides recyclables, the use of materials inevitably yields non-recyclable materials such as emissions and wastes for disposal. These flows must be directed to sinks in a way that no adverse effects arise for humans and the environment. The objective of this paper is to present a new indicator for the assessment of substance flows to sinks on a regional scale. The indicator quantifies the environmentally acceptable mass share of a substance in actual waste and emission flows, ranging from 0% as worst case to 100% as best case. This paper consists of three parts: first, the indicator is defined. Second, a methodology to determine the indicator score is presented, including (i) substance flows analysis and (ii) a distant-to-target approach based on an adaptation of the Ecological Scarcity Method 2006. Third, the metric developed is applied in three case studies including copper (Cu) and lead (Pb) in the city of Vienna, and perfluorooctane sulfonate (PFOS) in Switzerland. The following results were obtained: in Vienna, 99% of Cu flows to geogenic and anthropogenic sinks are acceptable when evaluated by the distant-to-target approach. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters are beyond the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, and 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The examples demonstrate the need (i) for appropriate data of good quality to calculate the sink indicator and (ii) for standards, needed for the assessment of substance flows to urban soils and receiving waters. This study corroborates that the new indicator is well suited as a base for decisions regarding the control of hazardous substances in waste and environmental management. PMID:25368543

  12. [Purification of ovalbumin from hen egg white by high-speed counter-current aqueous two-phase chromatography].

    PubMed

    Zhi, Wen-Bo; Deng, Qiu-Yun; Song, Jiang-Nan; Ouyang, Fan

    2005-01-01

    High-speed counte-recurrent chromatography (HSCCC) is a continuous liquid-liquid partition chromatography without solid matrix, which has the significant features of high resolution and high recovery. The separation of bio-macromolecule in aqueous two-phase systems (ATPs) with HSCCC is still under research, and the establishment of high-speed counter-current aqueous two-phase chromatography (HSCCC-ATP) relies on the improvement of equipment structure and optimization of operation parameters. By using a multi-column high-speed counter-current chromatograph, the separation of protein mixture and the purification of ovalbumin from hen egg white were studied. The effects of pH and PEG concentration on the partition coefficients of proteins were tested in PEG1000-phosphate ATPs, and distinct differences among partition coefficients of proteins were found at pH 9.2 and 15.0% (W/W) PEG concentration in said system. The separation of protein mixture, consisting of cytochrome C, lysozyme and myoglobin was successfully performed in 15.0% (W/W) PEG1000-17.0% (W/W) potassium phosphate ATPs at pH 9.2 with high-speed counter-current chromatograph at rotation speed of 850r/min and flow rate of 0.8mL/min, using upper phase as stationary phase. pH and PEG concentration also had distinct effects on the partition coefficients of the major protein components in hen egg white, including ovaltransferrin, ovalbumin and lysozyme. The optimal pH value and PEG concentration for the purification of ovalbumin by HSCCC-ATP were found to be 9.2 and 16.0% (W/W) respectively. Ovalbumin was successfully purified to homogeneity from the hen egg white sample in 16.0% (W/W) PEG1000-17.0% (W/W) potassium phosphate ATPs at pH 9.2 with high-speed counter-current chromatograph at rotation speed of 850r/min and flow rate of 1.8mL/min, using upper phase as stationary phase. The purification recovery of ovalbumin was around 95%.

  13. Characterizing the interaction between enantiomers of eight psychoactive drugs and highly sulfated-β-cyclodextrin by counter-current capillary electrophoresis.

    PubMed

    Asensi-Bernardi, Lucía; Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Sagrado, Salvador; Medina-Hernández, María José

    2014-01-01

    The estimation of apparent binding constants and limit mobilities of the complexes of the enantiomers that characterize the interaction of enantiomers with chiral selectors, in this case highly sulfated β-cyclodextrin, was approached using a simple and economic electrophoretic modality, the complete filling technique (CFT) in counter-current mode. The enantiomers of eight psychoactive drugs, four antihistamines (dimethindene, promethazine, orphenadrine and terfenadine) and four antidepressants (bupropion, fluoxetine, nomifensine and viloxazine) were separated for the first time for this cyclodextrin (CD). Estimations of thermodynamic and electrophoretic enantioselectivies were also performed. Results indicate that, in general, thermodynamic enantioselectivity is the main component explaining the high resolution found, but also one case suggests that electrophoretic enantioselectivity itself is enough to obtain a satisfactory resolution. CFT results advantageous compared with conventional capillary electrophoresis (CE) and partial filling technique (PFT) for the study of the interaction between drugs and chiral selectors. It combines the use of a simple fitting model (as in CE), when the enantiomers do not exit the chiral selector plug during the separation (i.e. mobility of electroosmotic flow larger than mobility of CD), and drastic reduction of the consumption (and cost; ~99.7%) of the CD reagent (as in PFT) compared with the conventional CE.

  14. Experimental investigation of flow induced limit cycle oscillations in a tensioned ribbon

    NASA Astrophysics Data System (ADS)

    Chatterjee, Punnag; Mazzoleni, Nicholas; Bryant, Matthew

    2017-04-01

    Researchers have performed theoretical investigations of flow induced limit cycle oscillations (LCOs) of tensioned ribbons. Furthermore, attempts have been made to tap into the energy harvesting capability of such ribbons, owing to its structural simplicity, low weight and ease of fabrication. However, in order to tune the ribbon to perform optimally at a given location, a robust, reliable model of the ribbon is essential to predict the limit cycle behavior. The model needs validation across a broad spectrum of its operating envelope based on experimentally obtained results. This paper seeks to provide experimental data for a sample tensioned ribbon in cross flow to serve as basis for validation of an aeroelastic model. This paper experimentally characterizes a PTFE (polytetrafluoroethylene) ribbon of aspect ratio 18 across a range of applied axial preload tension and wind speeds.

  15. Experimental verification of subcooled flow boiling for tokamak pump limiter designs

    SciTech Connect

    Koski, J.A.; Beattie, A.G.; Whitley, J.B.; Croessmann, C.D.

    1987-01-01

    In fusion energy research devices such as tokamaks, limiters are used to define the plasma boundary, and may serve the additional functions of plasma density and impurity control by removing neutralized particles from the plasma edge region. Because the devices must operate in the plasma edge, they are subject to high heat fluxes. In this paper, experimental studies conducted in support of a pump limiter design currently under development are discussed. Subcooled flow boiling of water and twisted tape flow enhancement are combined to enable heat removal of highly peaked local heat fluxes at the tube-water boundary in the 40 to 50 MW/m/sup 2/ range. Critical heat flux and heat removal experiments were conducted on copper tube targets with the use of a rastered 30 kV electron beam apparatus capable of producing the desired steady state heat flux levels.

  16. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  17. The "Limiting Line" in Mixed Subsonic and Supersonic Flow of Compressible Fluids

    DTIC Science & Technology

    1944-11-01

    burble ." Along a shock wave, the change of state of the fluid is no longer isentropic, although still adiabatic. This results in an increase in en...number,-" The actual critical Mach number for the appearance of shock waves and the compressibility burble must lie between these two limits. By...gradients along the \\ surface of the body, the compressibility burble can be delayed, / AXIALLY SYMMETEIC FLOW The solution of the exact

  18. Role of edge turbulence and shear flows in density limit on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Hong, Rongjie; Tynan, George; Xu, Min; Nie, Lin; Guo, Dong; Ke, Rui; Long, Ting; Wu, Yifang; Yuan, Boda

    2016-10-01

    The tokamak density limit has long been suspected as a consequence of the enhanced turbulent transport in edge plasmas. In this study, evolutions of the turbulence and shear flows were investigated at different normalized density ne /nG in the plasma boundary region of HL-2A tokamak using Langmuir probes. As the density limit was approached, the equilibrium profile of density was flattened in the Scrape-Off Layer (SOL) and steepened inside the separatrix, while the edge cooling was observed from the electron temperature profile. The turbulent cross-field transport also increased substantially with the ne /nG and the collisionality. In addition, the amplitude of the poloidal phase velocity decreased at higher densities. This destruction of the shear layer was associated with the collapse of the Reynolds stress and thus the reduction in the nonlinear energy transfer from high-frequency fluctuations to low-frequency shear flows. These observations indicate an important role of the edge turbulence and the turbulence-driven shear flow in the underlying physics of tokamak density limit. Thank the HL-2A team for machine operation. Partly supported by DOE Grant No. DE-SC0008378.

  19. Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake.

    PubMed

    Nyberg, Michael; Mortensen, Stefan P; Saltin, Bengt; Hellsten, Ylva; Bangsbo, Jens

    2010-03-01

    The effect of low blood flow at onset of moderate-intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5-min one-legged knee-extensor exercise bout (24 +/- 1 W, mean +/- SD) without (Con) and with (double blockade; DB) arterial infusion of inhibitors of nitric oxide synthase (N(G)-monomethyl-l-arginine) and cyclooxygenase (indomethacin) to inhibit the synthesis of nitric oxide and prostanoids, respectively. Leg blood flow and leg oxygen delivery throughout exercise was 25-50% lower (P < 0.05) in DB compared with Con. Leg oxygen extraction (arteriovenous O(2) difference) was higher (P < 0.05) in DB than in Con (5 s: 127 +/- 3 vs. 56 +/- 4 ml/l), and leg oxygen uptake was not different between Con and DB during exercise. The difference between leg oxygen delivery and leg oxygen uptake was smaller (P < 0.05) during exercise in DB than in Con (5 s: 59 +/- 12 vs. 262 +/- 39 ml/min). The present data demonstrate that muscle blood flow and oxygen delivery can be markedly reduced without affecting muscle oxygen uptake in the initial phase of moderate-intensity exercise, suggesting that blood flow does not limit muscle oxygen uptake at the onset of exercise. Additionally, prostanoids and/or nitric oxide appear to play important roles in elevating skeletal muscle blood flow in the initial phase of exercise.

  20. Using LAHARZ to Forecast Inundation from lahars, debris flows, and rock avalanches: Confidence Limits on Prediction

    NASA Astrophysics Data System (ADS)

    Schilling, S. P.; Griswold, J. P.; Iverson, R. M.

    2008-12-01

    LAHARZ is a computational model that uses statistical descriptions of areas inundated by past mass-flow events to forecast areas likely to be inundated by hypothetical future events. The forecasts are based on sets of physically motivated and statistically calibrated power-law equations that each have a form A = cV2/3, relating mass-flow volume (V) to planimetric or cross-sectional areas (A) inundated by an average flow as it descends a given drainage. Calibration of the equations utilizes logarithmic transformation and linear regression to determine the best-fit values of c. The LAHARZ software uses specified values of V, an algorithm for idenitifying mass-flow source areas, and digital elevation models of topography to portray forecast hazard zones on maps. In typical applications, a range of plausible V values results in a set of nested hazard zones showing areas likely to be inundated by a range of hypothetical flows. LAHARZ forecasts have not included explicit confidence limits for areas likely to be inundated by individual flows, however; here we describe work that remedies this shortcoming. The basic elements required to generate explict confidence limits in LAHARZ forecasts are the sets of data pairs relating values of V and A, the statistically calibrated prediction equations, a user-specified level of confidence, and t-distribution statistics. The prediction equations and data are used to calculate the standard error of regression, standard error of the mean, and standard error of prediction. Calculation of these standard errors closely parallels procedures described in many statistics books, but differs subtly because the LAHARZ prediction equations have only one calibrated parameter (c), not two as in typical linear regression. Standard errors do not fully determine prediction uncertainty, however, because it does not account for the fact that predictions are based on an incomplete sample of the population of V and A values. The effect of incomplete

  1. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  2. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    PubMed

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  3. Evaporation rate from square capillaries limited by corner flow viscous losses

    NASA Astrophysics Data System (ADS)

    Hoogland, F.; Lehmann, P.; Yiotis, A.; Or, D.

    2012-04-01

    High evaporation rates from soil surfaces are sustained by capillary flows drawing water from the receding drying front along liquid pathways in crevices of the pore space. With increasing depth of the drying front viscous losses add to growing gravitational head and at a certain depth overcome capillary drive and disrupt liquid pathways. Viscous losses are significant in fine textured media resulting in earlier capillary failure than predicted by gravity-capillary force balance. To reproduce limitations of viscous corner flow on evaporation rates from angular pores (capillaries) we imaged drying dynamics from a square shaped glass capillary using a high speed camera, to provide for detailed record on receding menisci and thickness of liquid corner films including detachment dynamics at the top of the capillary. Additionally, deposition patterns of dye delineated regions of high rates of phase change (evaporation) showing a decrease in drying rate with recession of menisci and films into the capillary due to increasing diffusive path and reduced gradients. Effects of viscous losses on evaporation dynamics were systematically evaluated by varying ratio of viscous, gravity and capillary forces using different liquids (water, ethanol and octane), capillary geometry (0.5 and 1.0 mm width), and flow rate and direction with respect to gravity (horizontal and vertical arrangement). Experimental results were compared with analytical solutions for corner flow considering viscous losses. Preliminary results indicate that the maximum (main) meniscus depth supporting corner flow is not only dependent on the effective conductivity behind the interfaces, but also on interfacial processes taking place at the very top of the capillary. The pore scale findings will be incorporated into macroscopic models for determining viscous losses from soils and for estimating elapsed times for transition from high capillary-sustained evaporation rates to diffusion limited rates.

  4. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    PubMed

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies.

  5. Lean-limit extinction of propane/air mixtures in the stagnation-point flow

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Ishizuka, S.; Mizomoto, M.

    1981-01-01

    The extinction limits of lean propane/air mixtures in the stagnation-point flow of a flat surface were mapped as functions of the surface temperature and the mixture concentration, velocity, and temperature. The maximum flame temperatures and the flame locations were also measured. The results show that the extinction limits are extremely insensitive to the nature of the surface, which can be heated to 1000 C. On the other hand preheating the gas mixture increases the flame temperature by an almost equal amount and therefore significantly extends the extinction limits. It is also found that at extinction the maximum flame temperatures and the flame locations, which when scaled with the velocity gradient, assume almost constant values independent of the other system variables investigated.

  6. Liquid cooled counter flow turbine bucket

    DOEpatents

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  7. Counter-current chromatography of black tea infusions.

    PubMed

    Wedzicha, B L; Lo, M F; Donovan, T J

    1990-05-04

    Counter-current chromatography using a multilayer coil planet centrifuge, with solvent system ethyl acetate-butanol-water, permits the separation of black tea infusions into fractions which include pure SII and a mixture of SI and SIa thearubigins. Good resolution of several components of the infusion may be achieved in elution times of 1 to 2 h. The appearance of chromatograms is altered on decaffeinating the infusion. The effect of stationary phase composition is considered. Resolution of the peaks improves with butanol content.

  8. The "limiting line" in mixed subsonic and supersonic flow of compressible fluids

    NASA Technical Reports Server (NTRS)

    Tsien, Hsue-Shen

    1944-01-01

    It is well known that the vorticity for any fluid element is constant if the fluid is non-viscous and the change of state of the fluid is isentropic. When a solid body is placed in a uniform stream, the flow far ahead of the body is irrotational. Then if the flow is further assumed to be isentropic, the vorticity will be zero over the whole filed of flow. In other words, the flow is irrotational. For such flow over a solid body, it is shown by Theodorsen that the solid body experiences no resistance. If the fluid has a small viscosity, its effect will be limited in the boundary layer over the solid body and the body will have a drag due to the skin friction. This type of essentially isentropic irrotational flow is generally observed for a streamlined body placed in a uniform stream, if the velocity of the stream is kept below the so-called "critical speed." At the critical speed or rather at a certain value of the ratio of the velocity of the undisturbed flow and the corresponding velocity of sound, shock waves appear. This phenomenon is called the "compressibility bubble." Along a shock wave, the change of state of the fluid is no longer isentropic, although still adiabatic. This results in an increase in entropy of the fluid and generally introduces vorticity in an originally irrotational flow. The increase in entropy of the fluid is, of course, the consequence of changing part of the mechanical energy into heat energy. In other words, the part of fluid affected by the shock wave has a reduced mechanical energy. Therefore, with the appearance of shock waves, the wake of the streamline body is very much widened, and the drag increases drastically. Furthermore, the accompanying change in the pressure distribution over the body changes the aerodynamic moment acting on it and in the case of an airfoil decreases the lift force. All these consequences of the breakdown of isentropic irrotational flow are generally undesirable in applied aerodynamics. Its occurrence

  9. A DGBGK scheme based on WENO limiters for viscous and inviscid flows

    SciTech Connect

    Ni Guoxi Jiang Song Xu Kun

    2008-05-10

    This paper presents a discontinuous Galerkin BGK (DGBGK) method for both viscous and inviscid flow simulations under a DG framework with a gas-kinetic flux and WENO limiters. In the DGBGK method, the construction of the flux in the DG method is based on the particle transport and collisional mechanism which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous terms in the flux formulation. Due to the connection between the gas-kinetic BGK model and the Euler as well as the Navier-Stokes equations, both viscous and inviscid flow equations can be simulated by a unified formulation. WENO limiters are used to obtain uniform high-order accuracy and sharp non-oscillatory shock transition. In the current method, the time accuracy is achieved by the direct integration of both time-dependent flux function at a cell interface and the flow variables inside each element. Numerical examples in one and two space dimensions are presented to illustrate the robustness and accuracy of the present scheme.

  10. Schinus terebinthifolius countercurrent chromatography (Part III): Method transfer from small countercurrent chromatography column to preparative centrifugal partition chromatography ones as a part of method development.

    PubMed

    das Neves Costa, Fernanda; Hubert, Jane; Borie, Nicolas; Kotland, Alexis; Hewitson, Peter; Ignatova, Svetlana; Renault, Jean-Hugues

    2017-03-03

    Countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC) are support free liquid-liquid chromatography techniques sharing the same basic principles and features. Method transfer has previously been demonstrated for both techniques but never from one to another. This study aimed to show such a feasibility using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. Heptane - ethyl acetate - methanol -water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds. The optimized separation methodology previously described in Part I and II, was scaled up from an analytical hydrodynamic CCC column (17.4mL) to preparative hydrostatic CPC instruments (250mL and 303mL) as a part of method development. Flow-rate and sample loading were further optimized on CPC. Mobile phase linear velocity is suggested as a transfer invariant parameter if the CPC column contains sufficient number of partition cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS

    SciTech Connect

    Fang, X.; Xia, C.; Keppens, R.; Doorsselaere, T. Van

    2015-07-10

    We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer (>6 hr) time span. We quantify how blob-like condensations forming in situ grow along and across field lines and show that rain showers can occur in limit cycles, here demonstrated for the first time in 2.5D setups. We discuss dynamical, multi-dimensional aspects of the rebound shocks generated by the siphon inflows and quantify the thermodynamics of a prominence–corona transition-region-like structure surrounding the blobs. We point out the correlation between condensation rates and the cross-sectional size of loop systems where catastrophic cooling takes place. We also study the variations of the typical number density, kinetic energy, and temperature while blobs descend, impact, and sink into the transition region. In addition, we explain the mechanisms leading to concurrent upflows while the blobs descend. As a result, there are plenty of shear flows generated with relative velocity difference around 80 km s{sup −1} in our simulations. These shear flows are siphon flows set up by multiple blob dynamics and they in turn affect the deformation of the falling blobs. In particular, we show how shear flows can break apart blobs into smaller fragments, within minutes.

  12. Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals

    NASA Astrophysics Data System (ADS)

    Bie, Qunyi; Cui, Haibo; Wang, Qiru; Yao, Zheng-An

    2017-10-01

    The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678-2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.

  13. Marine heat flow measurements across subsea permafrost limit in the eastern Mackenzie Trough, Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Kim, Y. G.; Hong, J. K.; Jin, Y. K.; Riedel, M.; Melling, H.; Kang, S. G.; Dallimore, S.

    2015-12-01

    Marine heat flow measurements using a 5 m-long Ewing-type heat probe were made during Korean icebreaker R/V Araon's Arctic expeditions (ARA04C in 2013 and ARA05B in 2014) to better know the shallow subsurface thermal structure in the eastern slope of Mackenzie Trough, the Canadian Beaufort Sea, in which associative geological processes of permafrost degradation and gas hydrate dissociation occur because of long-term warming since the Last Glacial Maximum. Heat flow in the continental slope was collected for the first time and is rather higher than those from deep boreholes (up to a few km below the seafloor) in the continental shelf. However, the smaller geothermal gradient and thermal conductivity were observed from sites along a transect line across permafrost limit on the eastern slope of the trough. It is noted that geothermal gradients are relatively constant in the vicinity of permafrost limit but are much smaller (even minus) only at deeper depths with positive bottom water temperature. Reason for such distribution is unclear yet. Based on observed geothermal gradient and bottom water temperature, permafrost table shown in subbottom profile seems to be controlled not by temperature. On the other hand, our finding of permafrost evidence on the other subbottom profile located landward may support that permafrost limit in the trough is along with ~100 m isobath.

  14. Experimental verification of subcooled flow boiling for tokamak pump limiter designs

    SciTech Connect

    Koski, J.A.; Beattie, A.G.; Whitley, J.B.; Croessmann, C.D.

    1987-01-01

    In fusion energy research devices such as tokamaks, limiters are used to define the plasma boundary, and may serve the additional functions of plasma density and impurity control by removing neutralized particles from the plasma edge region. Because the devices must operate in the plasma edge or ''scrape-off-layer,'' they are subject to high heat fluxes. In this paper, experimental studies for a pump limiter design currently under development are discussed. Subcooled flow boiling of water and twisted tape flow enhancement are combined to enable heat removal of highly peaked local heat fluxes at the tube-water boundary in the 40 to 50 MW/m/sup 2/ range. Experiments were conducted with the use of a rastered 30 kV electron beam apparatus which is capable of producing the desired steady state heat flux levels. Objectives of the experiment were (1) to verify the heat removal model used for finite element thermal and stress analyses, (2) selection of appropriate critical heat flux (CHF) margins and criteria, and (3) development of acoustic techniques to monitor the onset of CHF during actual limiter operation.

  15. Improving Landslide Inventories by Limiting Land Classification to Drainage Areas of Debris Flow-Dominated Channels

    NASA Astrophysics Data System (ADS)

    Lyons, N. J.; Mitasova, H.; Wegmann, K. W.

    2011-12-01

    Landslide inventories, frequently created by aerial photograph interpretation (API), are often used in the production of hillslope hazard maps to characterize past landslides or to evaluate a hazard model. In the former application of inventories, potential landslides in hazard maps are delineated as areas that have similar morphometrics as past landslides at locations of modeled hillslope instability. Therefore, the accuracy of the inventory has a strong influence upon hazard extent. In the latter application, the partial inventories that sometimes result from API, due to the subjectivity of interpretation and revegetation of landslides, likely results in incorrect evaluations. A more complete, less subjective technique is needed to not only better characterize past landslides and improve evaluation of hazard models, but also to assess the extent of areas prone to significant mass wasting in mountainous regions due to the evolution of landscapes. Inventory accuracy continues to improve with new technology and automated techniques, though rarely is the form of a channel's topography incorporated into the inventory process despite the growing evidence of a topographic signature of debris flows. This signature demarcates the transition between the dominant channel erosional process: fluvial or debris flow. These process transitions are often observed at scaling breaks in log-log plots of a channel's drainage area versus slope (DS plot). The scaling breaks, above which the effects of fluvial power laws upon channel topography are not observed and below which debris flow scars are not found, may signify the lowest point in the watershed where debris flows occur. We present an inventory technique that limits a land classification algorithm to areas that are upstream from this scaling break determined from DS plots of five streams in the Great Smoky Mountains National Park (GSMNP) region of the southern Appalachians. Topographic data for the DS plots and the

  16. Stoichiometry, Metabolism and Nutrient Limitation Across the Periodic Table in Natural Flowing-Water Chemostats

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Nifong, R. L.; Kurz, M. J.; Cropper, W. P.; Martin, J. B.

    2014-12-01

    Relative supplies of macro and micronutrients (C,N,P, various metals), along with light and water, controls ecosystem metabolism, trophic energy transfer and community structure. Here we test the hypothesis, using measurements from 41 spring-fed rivers in Florida, that tissue stoichiometry indicates autotroph nutrient limitation status. Low variation in discharge, temperature and chemical composition within springs, but large variation across springs creates an ideal setting to assess the relationship between limitation and resource supply. Molar N:P ranges from 0.4 to 90, subjecting autotrophs to dramatically different nutrient supply. Over this gradient, species-specific autotroph tissue C:N:P ratios are strictly homeostatic, and with no evidence that nutrient supply affects species composition. Expanding to include 19 metals and micronutrients revealed autotrophs are more plastic in response to micronutrient variation, particularly for iron and manganese whose supply fluxes are small compared to biotic demand. Using a Droop model modified to reflect springs conditions (benthic production, light limitation, high hydraulic turnover), we show that tissue stoichiometry transitions from homeostatic to plastic with the onset of nutrient limitation, providing a potentially powerful new tool for predicting nutrient limitation and thus eutrophication in flowing waters.

  17. Tidal expiratory flow limitation, dyspnoea and exercise capacity in patients with bilateral bronchiectasis.

    PubMed

    Koulouris, N G; Retsou, S; Kosmas, E; Dimakou, K; Malagari, K; Mantzikopoulos, G; Koutsoukou, A; Milic-Emili, J; Jordanoglou, J

    2003-05-01

    In this study the authors investigated whether expiratory flow limitation (FL) is present during tidal breathing in patients with bilateral bronchiectasis (BB) and whether it is related to the severity of chronic dyspnoea (Medical Research Council (MRC) dyspnoea scale), exercise capacity (maximal mechanical power output (WRmax)) and severity of the disease, as assessed by high-resolution computed tomography (HRCT) scoring. Lung function, MRC dyspnoea, HRCT score, WRmax and FL were assessed in 23 stable caucasian patients (six males) aged 56 +/- 17 yrs. FL was assessed at rest both in seated and supine positions. To detect FL, the negative expiratory pressure (NEP) technique was used. The degree of FL was rated using a five-point FL score. WRmax was measured using a cyclo-ergometer. According to the NEP technique, five patients were FL during resting breathing when supine but not seated, four were FL both seated and supine, and 14 were NFL both seated and supine. Furthermore, it was shown that: 1) in stable BB patients FL during resting breathing is common, especially in the supine position; 2) the degree of MRC dyspnoea is closely related to the five-point FL score; 3) WRmax (% pred) is more closely correlated with the MRC dyspnoea score than with the five-point FL score; and 4) HRCT score is closely related to forced expiratory volume in one second % pred but not five-point FL score. In conclusion, flow limitation is common at rest in sitting and supine positions in patients with bilateral bronchiectasis. Flow limitation and reduced exercise capacity are both associated with more severe dyspnoea. Finally, high-resolution computed tomography scoring correlates best with forced expiratory volume in one second.

  18. The limitation of pulsatile flow through the aqueduct of Sylvius as a cause of hydrocephalus.

    PubMed

    White, D N; Wilson, K C; Curry, G R; Stevenson, R J

    1979-06-01

    The concept is advanced that hydrocephalus results from limitation in the pulsatile flow of CSF downwards through the aqueduct of Sylvius during systole which is necessary to accommodate for the pulsatile pressure and volume increase that accompanies the propagation of the arterial pulse through the brain. Evidence is given to show that flow through the fixed human aqueduct is disturbed and not laminar. Further, with the pressures availalbe, the aqueduct is only just large enough to pass the quantity of fluid which must be vented extracranially during systole. Should the capacity of this systolic venting mechanism be exceeded, physical strain will cause cellular damage in the periventricular and periaqueductal regions which, if prolonged, will lead to tissue destruction and hydrocephalus. There appear to be two main causes for hydrocephalus resulting from this mechanism. Firstly, structural lesions, restricting the lumina of the CSF-venting pathways, especially the aqueduct, will reduce the volume of CSF that can flow through these pathways during systole. The hydrocephalic process will then be continuous and only limited when tissue destruction reduces the systolic volume expansion of the brain such that it can be accomodated by the restricted CSF venting pathways. Secondly, conditions which may increase the amount of the systolic volume expansion of the brain beyond the capacity of the CSF venting pathways. Raised mean intracranial pressure is the most important of these conditions. In such cases the hydrocephalus will be limited by the duration of the causal process and possibly also by the enlargement of the venting pathways, as a result of tissue destruction. This hypothesis also accounts for hydrocephalus resulting from obliteration of the cortical subarachnoid space, obstruction to the cranial venous drainage, deformities in the region of the foramen magnum and arterial encroachment upon the ventricular system.

  19. Unique laminar-flow stability limit based shallow-water theory

    USGS Publications Warehouse

    Chen, Cheng-lung

    1993-01-01

    Two approaches are generally taken in deriving the stability limit for the Froude member (Fs) for laminar sheet flow. The first approach used the Orr-Sommerfeld equation, while the second uses the cross-section-averaged equations of continuity and motion. Because both approaches are based on shallow-water theory, the values of Fs obtained from both approaches should be identical, yet in the literature they are not. This suggests that a defect exists in at least one of the two approaches. After examining the governing equations used in both approaches, one finds that the existing cross-section -averaged equation of motion is dependent on the frame of reference.

  20. Subextensive Scaling in the Athermal, Quasistatic Limit of Amorphous Matter in Plastic Shear Flow

    SciTech Connect

    Maloney, C; Lemaitre, A

    2004-01-29

    We present the results of numerical simulations of an atomistic system undergoing plastic shear flow in the athermal, quasistatic limit. The system is shown to undergo cascades of local re-arrangements, associated with quadrupolar energy fluctuations, which induce system-spanning events organized into lines of slip oriented along the Bravais axes of the simulation cell. A finite size scaling analysis reveals subextensive scaling of the energy drops and participation numbers, linear in the length of the simulation cell, in good agreement with the real-space structure of plastic events

  1. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    PubMed

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  2. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification

    PubMed Central

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 – 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography. PMID:27818942

  3. Extinction Limits of Nonadiabatic, Catalyst-Assisted Flames in Stagnation-Point Flow

    SciTech Connect

    Stephen B. Margolis; Timothy J. Gardner

    2001-02-01

    An idealized geometry corresponding to a premixed flame in stagnation-point flow is used to investigate the effects of catalysis on extending the extinction limits of on adiabatic stretched flames. Specifically, a surface catalytic reaction is assumed to occur on the stagnation plane, thereby augmenting combustion in the bulk gas with a exothermic surface reaction characterized by a reduced activation energy. Assuming the activation energies remain large, an asymptotic analysis of the resulting flame structure yields a formula for the extinction limit as a function of various parameters. In particular, it is demonstrated that the presence of a surface catalyst can extend the burning regime, thus counterbalancing the effects of heat loss and flame stretch that tend to shrink it. The analysis is relevant to small-volume combustors, where the increased surface-to-volume ratio can lead to extinction of the nonadiabatic flame in the absence of a catalyst.

  4. Two-dimensional relativistic space charge limited current flow in the drift space

    SciTech Connect

    Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.

    2014-04-15

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  5. The role of Coulomb collisions in limiting differential flow and temperature differences in the solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1976-01-01

    Data obtained by OGO 5 are used to confirm IMP 6 observations of an inverse dependence of the helium-to-hydrogen temperature ratio in the solar wind on the ratio of solar-wind expansion time to the Coulomb-collision equipartition time. The analysis is then extended to determine the relation of the difference between the hydrogen and helium bulk velocities (the differential flow vector) with the ratio between the solar-wind expansion time and the time required for Coulomb collisions to slow down a beam of ions passing through a plasma. It is found that the magnitude of the differential flow vector varies inversely with the time ratio when the latter is small and approaches zero when it is large. These results are shown to suggest a model of continuous preferential heating and acceleration of helium (or cooling and deceleration of hydrogen), which is cancelled or limited by Coulomb collisions by the time the plasma has reached 1 AU. Since the average dependence of the differential flow vector on the time ratio cannot explain all the systematic variations of the vector observed in corotating high-velocity streams, it is concluded that additional helium acceleration probably occurs on the leading edge of such streams.

  6. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    PubMed

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-06-01

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fluid mechanics of osmotic pipe flows and limitations on the lengths of conifer needles

    NASA Astrophysics Data System (ADS)

    Bohr, Tomas; Rademaker, Hanna; Jensen, Kaare; Zwieniecki, Maciej

    2016-11-01

    Plant leaves produce sugars, which are exported osmotically through the sieve tubes of the leaf. Leaf sizes vary by more than 3 orders of magnitude, from a few millimeters to over one meter. Conifer leaves (needles), however, are relatively short and the majority of needles are no longer than 6 cm. The reason for this limitation is unknown, but we argue that it can be explained by the linear venation pattern and the narrow sieve tubes, combined with the osmotic flow mechanism. Thus sugars produced near the tip of long needles cannot be exported efficiently, because the pressure required to drive vascular flow would exceed the greatest available pressure (the osmotic pressure). This basic constraint leads to the formation of an inactive region of stagnant fluid near the needle tip, which does not contribute to sugar flow. The active region, emerging from the base of the needle, has the length Leff =r 3 / 2 16 ηLp 1 / 2 , where r is the conduit radius, η is the sap viscosity, and Lp is the cell membrane permeability. It is independent of the needle length and corresponds well with maximal needle lengths observed in nature.

  8. Nonlinear mechanisms determining expiratory flow limitation in mechanical ventilation: a model-based interpretation.

    PubMed

    Barbini, Paolo; Cevenini, Gabriele; Avanzolni, Guido

    2003-09-01

    A nonlinear model of breathing mechanics, in which the tracheobronchial airways are considered in three serial segments, is presented to obtain insights into the mechanisms underlying expiratory flow limitation (EFL) in mechanically ventilated patients. Chronic obstructive pulmonary disease (COPD) and normal conditions were simulated and EFL was detected by application of negative expiratory pressure at the mouth or resistance reduction of the expiratory circuit. Simulation results confirm that both techniques reveal remarkable differences in the flow-volume curves between normal subjects and COPD patients, the former showing absence of EFL and the latter exhibiting EFL over most of the expiration. To interpret the role of different nonlinear mechanisms in producing EFL, different flow-volume curves obtained by changing model parameter values were analyzed. An increase in lower-airway resistance did not give rise to EFL, whereas a change in the pressure-volume characteristic of the intermediate-airway segment, towards increased resistance and easier collapse, significantly modified system behavior. In particular, EFL was observed when this intermediate-segment change was combined with an increase in lower-airway resistance. This evidence suggests that modifications, producing loss of radial traction and consequent narrowing of the airways in the peribronchial region, may play a leading role in EFL in COPD patients.

  9. An efficient collision limiter Monte Carlo simulation for hypersonic near-continuum flows

    NASA Astrophysics Data System (ADS)

    Liang, Jie; Li, Zhihui; Li, Xuguo; Fang, Boqiang Du Ming

    2016-11-01

    The implementation of a collision limiter DSMC-based hybrid approach is presented to simulate hypersonic near-continuum flow. The continuum breakdown parameters based on gradient-length local Knudsen number are characterized different regions of the flowfield. The collision limiter is used in continuum inviscid regions with large time step and cell size. Local density gradient-based dynamic adaptation of collision and sampling cells refinement is employed in high gradient regions including strong shocks and boundary layer near surface. A variable time step scheme is adopted to make sure a more uniform distribution of model particles per collision cell throughout the computational domain, with a constant ratio of local time step interval to particle weights to avoid particles cloned or destroyed when crossing interface from cell to cell. The surface pressure and friction coefficients of hypersonic reentry flow for a blunt capsule are computed in different conditions and compared with benchmark case in transitional regime to examine the efficiency and accuracy. The aerodynamic characteristics of a wave rider shape with sharp leading edge are simulated in the test state for hypersonic near-continuum. The computed aerodynamic coefficients have good agreements with experimental data in low density wind tunnel of CARDC and have less computational expense.

  10. Implicit high-order discontinuous Galerkin method with HWENO type limiters for steady viscous flow simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen-Hua; Yan, Chao; Yu, Jian

    2013-08-01

    Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.

  11. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow.

    PubMed

    Whittaker, Kerry A; Rynearson, Tatiana A

    2017-03-07

    The ability for organisms to disperse throughout their environment is thought to strongly influence population structure and thus evolution of diversity within species. A decades-long debate surrounds processes that generate and support high microbial diversity, particularly in the ocean. The debate concerns whether diversification occurs primarily through geographic partitioning (where distance limits gene flow) or through environmental selection, and remains unresolved due to lack of empirical data. Here we show that gene flow in a diatom, an ecologically important eukaryotic microbe, is not limited by global-scale geographic distance. Instead, environmental and ecological selection likely play a more significant role than dispersal in generating and maintaining diversity. We detected significantly diverged populations (FST > 0.130) and discovered temporal genetic variability at a single site that was on par with spatial genetic variability observed over distances of 15,000 km. Relatedness among populations was decoupled from geographic distance across the global ocean and instead, correlated significantly with water temperature and whole-community chlorophyll a Correlations with temperature point to the importance of environmental selection in structuring populations. Correlations with whole-community chlorophyll a, a proxy for autotrophic biomass, suggest that ecological selection via interactions with other plankton may generate and maintain population genetic structure in marine microbes despite global-scale dispersal. Here, we provide empirical evidence for global gene flow in a marine eukaryotic microbe, suggesting that everything holds the potential to be everywhere, with environmental and ecological selection rather than geography or dispersal dictating the structure and evolution of diversity over space and time.

  12. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow

    PubMed Central

    Whittaker, Kerry A.; Rynearson, Tatiana A.

    2017-01-01

    The ability for organisms to disperse throughout their environment is thought to strongly influence population structure and thus evolution of diversity within species. A decades-long debate surrounds processes that generate and support high microbial diversity, particularly in the ocean. The debate concerns whether diversification occurs primarily through geographic partitioning (where distance limits gene flow) or through environmental selection, and remains unresolved due to lack of empirical data. Here we show that gene flow in a diatom, an ecologically important eukaryotic microbe, is not limited by global-scale geographic distance. Instead, environmental and ecological selection likely play a more significant role than dispersal in generating and maintaining diversity. We detected significantly diverged populations (FST > 0.130) and discovered temporal genetic variability at a single site that was on par with spatial genetic variability observed over distances of 15,000 km. Relatedness among populations was decoupled from geographic distance across the global ocean and instead, correlated significantly with water temperature and whole-community chlorophyll a. Correlations with temperature point to the importance of environmental selection in structuring populations. Correlations with whole-community chlorophyll a, a proxy for autotrophic biomass, suggest that ecological selection via interactions with other plankton may generate and maintain population genetic structure in marine microbes despite global-scale dispersal. Here, we provide empirical evidence for global gene flow in a marine eukaryotic microbe, suggesting that everything holds the potential to be everywhere, with environmental and ecological selection rather than geography or dispersal dictating the structure and evolution of diversity over space and time. PMID:28209775

  13. Sample injection strategy to increase throughput in counter-current chromatography: Case study of Honokiol purification.

    PubMed

    Peng, Aihua; Hewitson, Peter; Ye, Haoyu; Zu, Liansuo; Garrard, Ian; Sutherland, Ian; Chen, Lijuan; Ignatova, Svetlana

    2016-12-09

    Counter-current chromatography (CCC) has been widely used as a preparative separation method to purify natural products from plant extracts and fermentation broths. Traditionally, throughput optimization in CCC has focused on sample concentration and sample volume. In this paper sample injection was considered as consisting of three variables: injection flow rate, post-injection flow rate and sample solvent. The effects of these parameters were studied using a honokiol purification from a Magnolia officinalis bark extract as a case study aiming to achieve the highest throughput/yield ratio for greater than 99% purity of this potential anti-cancer drug obtained for submission to the Chinese FDA. An injection method was established that increased the throughput of honokiol by 46.5% (from 3.05g/h to 4.47g/h), and decreased the solvent consumption of mobile phase and stationary phase per gram of honokiol by 40.0% (from 0.68L/g to 0.41L/g) and 48.4% (from 0.40L/g to 0.21L/g) respectively. These results show the importance of understanding the whole injection process when optimizing a given CCC separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The South Indian Ocean Countercurrent: a return pathway of the Indonesian Throughflow?

    NASA Astrophysics Data System (ADS)

    Lambert, Erwin; leBars, Dewi; de Ruijter, Will

    2014-05-01

    The South Indian Ocean Counter Current (SICC) is associated with a thermal front embedded in a broad eastward flow across the subtropical Indian Ocean and feeds into the poleward Leeuwin Current (LC). Previous studies have shown that the LC and SICC are sensitive to variations of the inflow of Pacific water through the Indonesian Passages (ITF). These subtropical countercurrents, of which the SICC is an example, are characterized by high eddy activity and theoretical work has shown the non-linear nature of their dynamics. That has motivated us to investigate the inertial response to the ITF of the IO circulaion. Analysis of two global eddy resolving model runs with the Indonesian Passages open and closed showed that the full 15 Sv of the ITF flows through the Mozambique Channel but only 10 Sv ends up in the Agulhas Current. This suggests that the SICC-LC system forms part of the return pathway of the ITF to the Pacific. Using the Hallberg Isopycnal Model we have investigated the combined effect of ITF, wind- and buoyancy forcing on the Indian Ocean circulation in the inertial boundary layer regime.

  15. Estimates of the zonal slope and seasonal transport of the Atlantic North Equatorial Countercurrent

    NASA Technical Reports Server (NTRS)

    Carton, James A.; Katz, Eli J.

    1990-01-01

    Data from six inverted echo sounder moorings and the Geosat satellite altimeter are used to examine the seasonal variability of sea surface elevation. Monthly sea level maps are constructed using a contemporaneous subsurface temperature survey to provide a reference sea level field. The maps are then used to describe the origin and structure of the western tropical Atlantic North Equatorial Countercurrent (NECC) during a two-year period beginning in November 1987. The data reveal a zonal current which is confined between 3 deg N and 9 deg N with a typical width of 300 km. The NECC flows strongly eastward during November and December 1986 and May 1987 through January 1988. The reappearance of the current is then delayed until August, but the current flows strongly from August until the end of the record in October 1988. Volume transport is estimated for the two-year period from surface elevation by approximating the vertical structure of the ocean as a two-layer fluid. It is found that the NECC has a maximum transport of 40 x 10 to the 6th cu m/s at 38 deg W.

  16. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs

    PubMed Central

    Fitzpatrick, Megan J.; Mathewson, Paul D.; Porter, Warren P.

    2015-01-01

    Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model. PMID:26308207

  17. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs.

    PubMed

    Fitzpatrick, Megan J; Mathewson, Paul D; Porter, Warren P

    2015-01-01

    Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model.

  18. Upper airway collapsibility and patterns of flow limitation at constant end-expiratory lung volume.

    PubMed

    Owens, Robert L; Edwards, Bradley A; Sands, Scott A; Butler, James P; Eckert, Danny J; White, David P; Malhotra, Atul; Wellman, Andrew

    2012-09-01

    The passive pharyngeal critical closing pressure (Pcrit) is measured using a series of pressure drops. However, pressure drops also lower end-expiratory lung volume (EELV), which independently affects Pcrit. We describe a technique to measure Pcrit at a constant EELV. Continuous positive airway pressure (CPAP)-treated obstructive sleep apnea (OSA) patients and controls were instrumented with an epiglottic catheter, magnetometers (to measure change in EELV), and nasal mask/pneumotachograph and slept supine on nasal CPAP. Pcrit was measured in standard fashion and using our novel "biphasic technique" in which expiratory pressure only was lowered for 1 min before the inspiratory pressure was dropped; this allowed EELV to decrease to the drop level before performing the pressure drop. Seven OSA and three controls were studied. The biphasic technique successfully lowered EELV before the inspiratory pressure drop. Pcrit was similar between the standard and biphasic techniques (-0.4 ± 2.6 vs. -0.6 ± 2.3 cmH(2)O, respectively, P = 0.84). Interestingly, we noted three different patterns of flow limitation: 1) classic Starling resistor type: flow fixed and independent of downstream pressure; 2) negative effort dependence within breaths: substantial decrease in flow, sometimes with complete collapse, as downstream pressure decreased; and 3) and negative effort dependence across breaths: progressive reductions in peak flow as respiratory effort on successive breaths increased. Overall, EELV changes do not influence standard passive Pcrit measurements if breaths 3-5 of pressure drops are used. These results also highlight the importance of inspiratory collapse in OSA pathogenesis. The cause of negative effort dependence within and across breaths is not known and requires further study.

  19. Enhanced Dissipation, Hypoellipticity, and Anomalous Small Noise Inviscid Limits in Shear Flows

    NASA Astrophysics Data System (ADS)

    Bedrossian, Jacob; Coti Zelati, Michele

    2017-02-01

    We analyze the decay and instant regularization properties of the evolution semigroups generated by two-dimensional drift-diffusion equations in which the scalar is advected by a shear flow and dissipated by full or partial diffusion. We consider both the space-periodic {T^2} setting and the case of a bounded channel {T × [0,1]} with no-flux boundary conditions. In the infinite Péclet number limit (diffusivity {νto 0} ), our work quantifies the enhanced dissipation effect due to the shear. We also obtain hypoelliptic regularization, showing that solutions are instantly Gevrey regular even with only partial diffusion. The proofs rely on localized spectral gap inequalities and ideas from hypocoercivity with an augmented energy functional with weights replaced by pseudo-differential operators (of a rather simple form). As an application, we study small noise inviscid limits of invariant measures of stochastic perturbations of passive scalars, and show that the classical Freidlin scaling between noise and diffusion can be modified. In particular, although statistically stationary solutions blow up in {H^1} in the limit {ν to 0} , we show that viscous invariant measures still converge to a unique inviscid measure.

  20. Enhanced Dissipation, Hypoellipticity, and Anomalous Small Noise Inviscid Limits in Shear Flows

    NASA Astrophysics Data System (ADS)

    Bedrossian, Jacob; Coti Zelati, Michele

    2017-06-01

    We analyze the decay and instant regularization properties of the evolution semigroups generated by two-dimensional drift-diffusion equations in which the scalar is advected by a shear flow and dissipated by full or partial diffusion. We consider both the space-periodic T^2 setting and the case of a bounded channel T × [0,1] with no-flux boundary conditions. In the infinite Péclet number limit (diffusivity {ν\\to 0}), our work quantifies the enhanced dissipation effect due to the shear. We also obtain hypoelliptic regularization, showing that solutions are instantly Gevrey regular even with only partial diffusion. The proofs rely on localized spectral gap inequalities and ideas from hypocoercivity with an augmented energy functional with weights replaced by pseudo-differential operators (of a rather simple form). As an application, we study small noise inviscid limits of invariant measures of stochastic perturbations of passive scalars, and show that the classical Freidlin scaling between noise and diffusion can be modified. In particular, although statistically stationary solutions blow up in {H^1} in the limit {ν \\to 0}, we show that viscous invariant measures still converge to a unique inviscid measure.

  1. Scaling of Counter-Current Imbibition Process in Low-Permeability Porous Media, TR-121

    SciTech Connect

    Kvoscek, A.R.; Zhou, D.; Jia, L.; Kamath, J.

    2001-01-17

    This project presents the recent work on imaging imbibition in low permeability porous media (diatomite) with X-ray completed tomography. The viscosity ratio between nonwetting and wetting fluids is varied over several orders of magnitude yielding different levels of imbibition performance. Also performed is mathematical analysis of counter-current imbibition processes and development of a modified scaling group incorporating the mobility ratio. This modified group is physically based and appears to improve scaling accuracy of countercurrent imbibition significantly.

  2. Hydrodynamics of a packed countercurrent column for the gas extraction

    SciTech Connect

    Stockfleth, R.; Brunner, G.

    1999-10-01

    The hydraulic capacity of a countercurrent column with gauze packing was examined at pressures between 8 and 30 MPa and temperatures between 313 and 373 K. The systems used were water + carbon dioxide, aqueous surfactant solution + carbon dioxide, and Toco, a substance whose physical properties are roughly similar to those of {alpha}-Tocopherol + carbon dioxide. A distinctive change in the flooding mechanisms from liquid layer flooding to bubble column flooding was observed. The different liquids, water and Toco, showed the same flooding behavior, indicating that the influence of the density on the flooding behavior prevails over the influence of any other physical property of the liquid. The foamability of the surfactant solution decreased significantly with increasing pressure--its influence on the flooding behavior could not be proved. The liquid holdup ranged between 2% and 6%. The dry pressure drop adhered to the Ergun equation.

  3. Combined micro and macro geodynamic modelling of mantle flow: methods, potentialities and limits.

    NASA Astrophysics Data System (ADS)

    Faccenda, M.

    2015-12-01

    Over the last few years, geodynamic simulations aiming at reconstructing the Earth's internal dynamics have increasingly attempted to link processes occurring at the micro (i.e., strain-induced lattice preferred orientation (LPO) of crystal aggregates) and macro scale (2D/3D mantle convection). As a major outcome, such a combined approach results in the prediction of the modelled region's elastic properties that, in turn, can be used to perform seismological synthetic experiments. By comparison with observables, the geodynamic simulations can then be considered as a good numerical analogue of specific tectonic settings, constraining their deep structure and recent tectonic evolution. In this contribution, I will discuss the recent methodologies, potentialities and current limits of combined micro- and macro-flow simulations, with particular attention to convergent margins whose dynamics and deep structure is still the object of extensive studies.

  4. Threshold scaling limits of RO concentrates flowing in a long waste disposal pipeline.

    PubMed

    Semiat, R; Hasson, D; Zelmanov, G; Hemo, I

    2004-01-01

    Disposal of RO concentrates emanating from inland brackish water desalination plants presents a difficult environmental problem. The solution adopted by Mekorot--the National Water Company of Israel--is to construct a 30 km waste disposal pipeline for collecting concentrates emanating from several RO desalination plants and discharging them into the sea. The discharged concentrates are highly supersaturated with respect to CaCO3. Scale precipitation during concentrate flow through the RO module is inhibited by the presence of anti-scalants. The retention time of the concentrate solution in the discharge pipe will exceed 100 hours. This raises the issue of the risk of scale precipitation in the discharge pipe that could impair its proper functioning. The aim of the present study was to provide data for guiding the design and operation of the disposal pipeline. The extent of the induction period prior to the onset of precipitation was measured in a pilot plant simulating flow of concentrate solutions dosed with anti-scalants. The parameters investigated were the scaling potential, the anti-scalant concentration and the presence of a mixture of several anti-scalants. The results of this study provide threshold scaling limits under various conditions.

  5. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.

    PubMed

    Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent

    2015-01-01

    This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams.

  6. Fractional Flow Reserve: Physiological Basis, Advantages and Limitations, and Potential Gender Differences

    PubMed Central

    Crystal, George J.; Klein, Lloyd W.

    2015-01-01

    Fractional flow reserve (FFR) is a physiological index of the severity of a stenosis in an epicardial coronary artery, based on the pressure differential across the stenosis. Clinicians are increasingly relying on this method because it is independent of baseline flow, relatively simple, and cost effective. The accurate measurement of FFR is predicated on maximal hyperemia being achieved by pharmacological dilation of the downstream resistance vessels (arterioles). When the stenosis causes FFR to be impaired by > 20%, it is considered to be significant and to justify revascularization. A diminished hyperemic response due to microvascular dysfunction can lead to a false normal FFR value, and a misguided clinical decision. The blunted vasodilation could be the result of defects in the signaling pathways modulated (activated or inhibited) by the drug. This might involve a downregulation or reduced number of vascular receptors, endothelial impairment, or an increased activity of an opposing vasoconstricting mechanism, such as the coronary sympathetic nerves or endothelin. There are data to suggest that microvascular dysfunction is more prevalent in post-menopausal women, perhaps due to reduced estrogen levels. The current review discusses the historical background and physiological basis for FFR, its advantages and limitations, and the phenomenon of microvascular dysfunction and its impact on FFR measurements. The question of whether it is warranted to apply gender-specific guidelines in interpreting FFR measurements is addressed. PMID:25329922

  7. Fractional flow reserve: physiological basis, advantages and limitations, and potential gender differences.

    PubMed

    Crystal, George J; Klein, Lloyd W

    2015-01-01

    Fractional flow reserve (FFR) is a physiological index of the severity of a stenosis in an epicardial coronary artery, based on the pressure differential across the stenosis. Clinicians are increasingly relying on this method because it is independent of baseline flow, relatively simple, and cost effective. The accurate measurement of FFR is predicated on maximal hyperemia being achieved by pharmacological dilation of the downstream resistance vessels (arterioles). When the stenosis causes FFR to be impaired by > 20%, it is considered to be significant and to justify revascularization. A diminished hyperemic response due to microvascular dysfunction can lead to a false normal FFR value, and a misguided clinical decision. The blunted vasodilation could be the result of defects in the signaling pathways modulated (activated or inhibited) by the drug. This might involve a downregulation or reduced number of vascular receptors, endothelial impairment, or an increased activity of an opposing vasoconstricting mechanism, such as the coronary sympathetic nerves or endothelin. There are data to suggest that microvascular dysfunction is more prevalent in post-menopausal women, perhaps due to reduced estrogen levels. The current review discusses the historical background and physiological basis for FFR, its advantages and limitations, and the phenomenon of microvascular dysfunction and its impact on FFR measurements. The question of whether it is warranted to apply gender-specific guidelines in interpreting FFR measurements is addressed.

  8. Oxygen kinetics and debt during recovery from expiratory flow-limited exercise in healthy humans.

    PubMed

    Vogiatzis, I; Zakynthinos, S; Georgiadou, O; Golemati, S; Pedotti, A; Macklem, P T; Roussos, C; Aliverti, A

    2007-02-01

    In healthy subjects expiratory flow limitation (EFL) during exercise can lower O(2) delivery to the working muscles. We hypothesized that if this affects exercise performance it should influence O(2) kinetics at the end of exercise when the O(2) debt is repaid. We performed an incremental exercise test on six healthy males with a Starling resistor in the expiratory line limiting expiratory flow to approximately 1 l s(-1) to determine maximal EFL exercise workload (W (max)). In two more square-wave exercise runs subjects exercised with and without EFL at W (max) for 6 min, while measuring arterial O(2) saturation (% SaO(2)), end-tidal pressure of CO(2) (P (ET)CO(2)) and breath-by-breath O(2) consumption VO2 taking into account changes in O(2) stored in the lungs. Over the last minute of EFL exercise, mean P (ET)CO(2) (54.7 +/- 9.9 mmHg) was significantly higher (P < 0.05) compared to control (41.4 +/- 3.9 mmHg). At the end of EFL exercise %SaO(2) fell significantly by 4 +/- 3%. When exercise stopped, EFL was removed, and we continued to measure VO2. During recovery, there was an immediate step increase in [Formula: see text] so that repayment of EFL O(2) debt started at a higher VO2 than control. Recovery VO2 kinetics after EFL exercise was best characterized by a double-exponential function with fundamental and slow time constants of 27 +/- 11 and 1,020 +/- 305 s, compared to control values of 41 +/- 10 and 1,358 +/- 320 s, respectively. EFL O(2) debt was 52 +/- 22% greater than control (2.19 +/- 0.58 vs. 1.49 +/- 0.38 l). We conclude that EFL exercise increases the O(2) debt and leads to hypoxemia in part due to hypercapnia.

  9. Investigations of Internal Flow Fields of Constant-Area Mixing-Tubes under Starting-Limit Conditions

    NASA Astrophysics Data System (ADS)

    Kitamura, Eijiro; Tomioka, Sadatake; Sakuranaka, Noboru; Watanabe, Syuichi; Masuya, Goro

    Flow fields in the constant-area mixing tubes of ejector jets were investigated under the starting-limit conditions of an aerodynamic choking mode by performing numerical simulations and cold flow experiments. Pressure recovery was almost completed in the shock-train region. The length of the shock-train region (Lst) was measured under various conditions. Lst was proportional to the mass flow rate ratio of the secondary flow to the primary flow when this ratio was less than 0.15. On the other hand, Lst became almost constant when the mass flow rate ratio exceeded 0.15. Numerical studies showed that this change was caused by the difference in the mechanism of the flow fields. In the cases with low air mass flow rates, the primary and secondary flows almost mixed in a region between the inlets of the mixing tubes and the choking points. The pressure was recovered by a pseudo-shock-wave generated downstream of the choking point. On the other hand, when the mass flow rate ratio was higher than 0.15, the primary and secondary flows were clearly separated at the choking point. The pressure recovery was achieved by the mixing between the primary and secondary flows downstream of the choking point.

  10. Novel design for centrifugal counter-current chromatography: VI. Ellipsoid column.

    PubMed

    Gu, Dongyu; Yang, Yi; Xin, Xuelei; Aisa, Haji Akber; Ito, Yoichiro

    2015-01-01

    A novel ellipsoid column was designed for centrifugal counter-current chromatography. Performance of the ellipsoid column with a capacity of 3.4 mL was examined with three different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW), hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMH), and 12.5% (w/w) PEG1000 and 12.5% (w/w) dibasic potassium phosphate in water (PEG-DPP) each with suitable test samples. In dipeptide separation with BAW system, both stationary phase retention (Sf) and peak resolution (Rs) of the ellipsoid column were much higher at 0° column angle (column axis parallel to the centrifugal force) than at 90° column angle (column axis perpendicular to the centrifugal force), where elution with the lower phase at a low flow rate produced the best separation yielding Rs at 2.02 with 27.8% Sf at a flow rate of 0.07 ml/min. In the DNP-amino acid separation with HEMW system, the best results were obtained at a flow rate of 0.05 ml/min with 31.6% Sf yielding high Rs values at 2.16 between DNP-DL-glu and DNP-β-ala peaks and 1.81 between DNP-β-ala and DNP-L-ala peaks. In protein separation with PEG-DPP system, lysozyme and myolobin were resolved at Rs of 1.08 at a flow rate of 0.03 ml/min with 38.9% Sf. Most of those Rs values exceed those obtained from the figure-8 column under similar experimental conditions previously reported.

  11. Novel design for centrifugal counter-current chromatography: VI. Ellipsoid column

    PubMed Central

    Gu, Dongyu; Yang, Yi; Xin, Xuelei; Aisa, Haji Akber; Ito, Yoichiro

    2014-01-01

    A novel ellipsoid column was designed for centrifugal counter-current chromatography. Performance of the ellipsoid column with a capacity of 3.4 mL was examined with three different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW), hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMH), and 12.5% (w/w) PEG1000 and 12.5% (w/w) dibasic potassium phosphate in water (PEG-DPP) each with suitable test samples. In dipeptide separation with BAW system, both stationary phase retention (Sf) and peak resolution (Rs) of the ellipsoid column were much higher at 0° column angle (column axis parallel to the centrifugal force) than at 90° column angle (column axis perpendicular to the centrifugal force), where elution with the lower phase at a low flow rate produced the best separation yielding Rs at 2.02 with 27.8% Sf at a flow rate of 0.07 ml/min. In the DNP-amino acid separation with HEMW system, the best results were obtained at a flow rate of 0.05 ml/min with 31.6% Sf yielding high Rs values at 2.16 between DNP-DL-glu and DNP-β-ala peaks and 1.81 between DNP-β-ala and DNP-L-ala peaks. In protein separation with PEG-DPP system, lysozyme and myolobin were resolved at Rs of 1.08 at a flow rate of 0.03 ml/min with 38.9% Sf. Most of those Rs values exceed those obtained from the figure-8 column under similar experimental conditions previously reported. PMID:25309116

  12. The effect of water temperature and flow on respiration in barnacles: patterns of mass transfer versus kinetic limitation.

    PubMed

    Nishizaki, Michael T; Carrington, Emily

    2014-06-15

    In aquatic systems, physiological processes such as respiration, photosynthesis and calcification are potentially limited by the exchange of dissolved materials between organisms and their environment. The nature and extent of physiological limitation is, therefore, likely to be dependent on environmental conditions. Here, we assessed the metabolic sensitivity of barnacles under a range of water temperatures and velocities, two factors that influence their distribution. Respiration rates increased in response to changes in temperature and flow, with an interaction where flow had less influence on respiration at low temperatures, and a much larger effect at high temperatures. Model analysis suggested that respiration is mass transfer limited under conditions of low velocity (<7.5 cm (-1)) and high temperature (20-25°C). In contrast, limitation by uptake reaction kinetics, when the biotic capacity of barnacles to absorb and process oxygen is slower than its physical delivery by mass transport, prevailed at high flows (40-150 cm s(-1)) and low temperatures (5-15°C). Moreover, there are intermediate flow-temperature conditions where both mass transfer and kinetic limitation are important. Behavioral monitoring revealed that barnacles fully extend their cirral appendages at low flows and display abbreviated 'testing' behaviors at high flows, suggesting some form of mechanical limitation. In low flow-high temperature treatments, however, barnacles displayed distinct 'pumping' behaviors that may serve to increase ventilation. Our results suggest that in slow-moving waters, respiration may become mass transfer limited as temperatures rise, whereas faster flows may serve to ameliorate the effects of elevated temperatures. Moreover, these results underscore the necessity for approaches that evaluate the combined effects of multiple environmental factors when examining physiological and behavioral performance.

  13. Effect of several porous casing treatments on stall limit and on overall performance of an axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Osborn, W. M.; Lewis, G. W., Jr.; Heidelberg, L. J.

    1971-01-01

    Several geometrically different porous casings were tested with an axial-flow compressor rotor to determine their effects upon the rotor stall-limit line and overall performance. The tests were conducted using both uniform and nonuniform inlet-flow conditions. The rotor performance with the various casing treatments is compared with that obtained with a solid casing. The ability of the various casing treatments to displace the rotor stall-limit line to lower weight flows was observed. Significant stall-margin increases were obtained with several of the porous casings. Peak efficiencies with two of the porous casings were as high as or slightly higher than that obtained with solid casing.

  14. Temporal analysis of transonic flow field characteristics associated with limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Pasiliao, Crystal Lynn

    Limit Cycle Oscillation (LCO) is a sustained, non-divergent, periodic motion experienced by aircraft with certain external store configurations. Flutter, an instability caused by the aerodynamic forces coupling with the structural dynamics, and LCO are related as evidenced by the accuracy with which linear flutter models predict LCO frequencies and modal mechanisms. However, since the characteristics of LCO motion are a result of nonlinear effects, flutter models do not accurately predict LCO onset speed and amplitude. Current engineering knowledge and theories are not sufficient to provide an analytical means for direct prediction of LCO; instead engineers rely heavily on historical experience and interpretation of traditional flutter analyses and flight tests as they may correlate to the expected LCO characteristics for the configuration of concern. There exists a significant need for a detailed understanding of the physical mechanisms involved in LCO that can lead to a unified theory and analysis methodology. This dissertation aims for a more thorough comprehension of the nature of the nonlinear aerodynamic effects for transonic LCO mechanisms, providing a significant building block in the understanding of the overall aeroelastic effects in the LCO mechanism. Examination of a true fluid-structure interaction (FSI) LCO case (flexible structure coupled with CFD) is considered quasi-incrementally since this capability does not yet exist in the flutter community. The first step in this process is to perform fluid-structure reaction (FSR) simulations, examining the flow-field during rigid body pitch and roll oscillations, simulating the torsional and bending nature of an LCO mechanism. More complicated configurations and motions will be examined as the state of technology progresses. Through this build-up FSR approach, valuable insight is gained into the characteristics of the flow-field during transonic LCO conditions in order to assess any possible influences on

  15. Turbulence, flows and edge localized mode (ELM) dynamics in limiter H-mode plasmas in TEXTOR

    NASA Astrophysics Data System (ADS)

    Soldatov, S.; Krämer-Flecken, A.; Kantor, M.; Unterberg, B.; Sun, Y.; Van Oost, G.; Reiter, D.; TEXTOR Team

    2010-08-01

    The turbulence, plasma flow and edge localized mode (ELM) dynamics in the limiter H-mode TEXTOR plasmas are investigated. Properties of both ambient turbulence within 0 < k⊥ < 4.2 cm-1 and coherent modes are studied on the ELM time scale in detail. The turbulence level near the pedestal is shown to evolve several times with the period of ELMs. Within the inter-ELM period the 'silent stage' is found which is characterized by an extremely low (below that for Ohmic plasmas) turbulence level and a phase growth in the reflectometry signal. The silent stage is associated with the quasi-steady state when the pedestal is formed and confinement is improved between two successive ELMs. Quasi-coherent density oscillations near the pedestal region with m ≈ 3, 5, 16 and 38 are measured with correlation reflectometry. Low-m modes are found to reveal the signatures of precursor mode. At first, the radial structure of the rotation shear and radial electric field Er in limiter H-mode in TEXTOR is presented. The characteristic negative electric field well with the sharp gradient ∇Er ≈ 250 V cm-2 at ≈2 cm inside separatrix is resolved. The Er × B rotation profile defines both the resulting plasma rotation in the electron diamagnetic drift direction and a significant rotation shear near the separatrix which exceeds the decorrelation rate of ambient turbulence by several times.

  16. Limits to the evolution of assortative mating by female choice under restricted gene flow.

    PubMed

    Servedio, Maria R

    2011-01-22

    The evolution of assortative mating is a key component of the process of speciation with gene flow. Several recent theoretical studies have pointed out, however, that sexual selection which can result from assortative mating may cause it to plateau at an intermediate level; this is primarily owing to search costs of individuals with extreme phenotypes and to assortative preferences developed by individuals with intermediate phenotypes. I explore the limitations of assortative mating further by analysing a simple model in which these factors have been removed. Specifically, I use a haploid two-population model to ask whether the existence of assortative mating is sufficient to drive the further evolution of assortative mating. I find that a weakening in the effective strength of sexual selection with strong assortment leads to the existence of both a peak level of trait differentiation and the evolution of an intermediate level of assortative mating that will cause that peak. This result is robust to the inclusion of local adaptation and different genetic architecture of the trait. The results imply the existence of fundamental limits to the evolution of assortment via sexual selection in this situation, with which other factors, such as search costs, may interact.

  17. The upper limit of cerebral blood flow autoregulation in acute intracranial hypertension.

    PubMed

    Hauerberg, J; Xiaodong, M; Willumsen, L; Pedersen, D B; Juhler, M

    1998-04-01

    The present series of experiments was performed to investigate the influence of acute intracranial hypertension on the upper limit (UL) of cerebral blood flow (CBF) autoregulation. Three groups of eight rats each--one with normal intracranial pressure (ICP) (2 mmHg), one with ICP = 30 mmHg, and one with ICP = 50 mmHg--were investigated. Intracranial hypertension was maintained by continuous infusion of lactated Ringer's solution into the cisterna magna, where the pressure was used as ICP. Cerebral perfusion pressure (CPP), calculated as mean arterial blood pressure (MABP)-ICP, was increased stepwise by continuous intravenous infusion of norepinephrine. CBF was calculated by the intracarotid 133Xe method. In all three groups the corresponding CBF/CPP curve included a plateau where CBF was independent of changes in CPP, showing intact autoregulation. At normal ICP the UL was found at a CPP of 141 +/-2 mmHg, at ICP = 30 mmHg the UL was 103+/-5 mmHg, and at ICP = 50 mmHg the UL was found at 88+/-7 mmHg. This shift of the UL was more pronounced than the shift of the lower limit (LL) of the CBF autoregulation found previously. We conclude that intracranial hypertension is followed by both a shift toward lower CPP values and a narrowing of the autoregulated interval between the LL and the UL.

  18. Improved spiral tube assembly for high-speed counter-current chromatography.

    PubMed

    Ito, Y; Clary, R; Powell, J; Knight, M; Finn, T M

    2009-05-08

    The original spiral tube support (STS) assembly is improved by changing the shape of the tubing, with 1-cm presses perpendicularly along the length. This modification interrupts the laminar flow of the mobile phase. The tubing in the four return grooves to the center of the rotor is flattened by a specially made pressing tool to increase the number of spiral layers and decrease the dead space volume, thus increasing the column efficiency. The performance of this spiral tube assembly was tested in separations of dipeptides and proteins with suitable polar two-phase solvent systems. The results revealed that the present system yields high partition efficiency with a satisfactory level of stationary phase retention in a short elution time. The present high-speed counter-current chromatographic (HSCCC) system will be efficiently applied to a broad spectrum of two-phase solvent systems including aqueous-aqueous polymer phase systems (TPAS) which are used for separation of biopolymers such as proteins and nucleic acids.

  19. Compact type-I coil planet centrifuge for counter-current chromatography

    PubMed Central

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979

  20. Compact type-I coil planet centrifuge for counter-current chromatography.

    PubMed

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2010-02-19

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.

  1. [Preparative isolation and purification of scopoletin from Lycium barbarum L. by high-speed countercurrent chromatography].

    PubMed

    Li, Xiaoduo; Li, Xuegang; Song, Shanghua; Zhang, Bo; Liu, Xujing; Ye, Xiaoli

    2012-09-01

    An effective and rapid method for the separation of scopoletin from Lycium barbarum L. by high-speed counter-current chromatography (HSCCC) was established. The ethyl alcohol extract of the Lycium barbarum L. was initially separated using D-101 macroporous resins and further purified by HSCCC. The thin layer chromatography coupling with fluorometric spectrophotometry (TLC-F) method was used to determine the partitioning coefficient of scopoletin in different solvent systems. The results showed the solvent system of chloroformmethanol-water (10:7:3, v/v/v) was the best one for the HSCCC separation. A total of 10.2 mg of scopoletin with high purity (98. 3%, analyzed by high performance liquid chromatography (HPLC)) was obtained in one step by the following separation procedures: the upper phase as the stationary phase, the lower phase as the mobile phase, with a flow rate of 1.5 mL/min, with the apparatus rotated at 850 r/min, and detected at 365 nm. The structure of the obtained compound was identified by 'H-nuclear magnetic resonance and 13C-nuclear magnetic resonance. The sample could be injected into HSCCC twice successively and the whole separation was achieved with satisfactory peak resolution. These results suggested that the TLC-F method is useful in measuring the partitioning coefficients of the target compound in HSCCC solvent systems and HSCCC is a fast and convenient method for the separation of scopoletin.

  2. The impact of capillary backpressure on spontaneous counter-current imbibition in porous media

    NASA Astrophysics Data System (ADS)

    Foley, Amir Y.; Nooruddin, Hasan A.; Blunt, Martin J.

    2017-09-01

    We investigate the impact of capillary backpressure on spontaneous counter-current imbibition. For such displacements in strongly water-wet systems, the non-wetting phase is forced out through the inlet boundary as the wetting phase imbibes into the rock, creating a finite capillary backpressure. Under the assumption that capillary backpressure depends on the water saturation applied at the inlet boundary of the porous medium, its impact is determined using the continuum modelling approach by varying the imposed inlet saturation in the analytical solution. We present analytical solutions for the one-dimensional incompressible horizontal displacement of a non-wetting phase by a wetting phase in a porous medium. There exists an inlet saturation value above which any change in capillary backpressure has a negligible impact on the solutions. Above this threshold value, imbibition rates and front positions are largely invariant. A method for identifying this inlet saturation is proposed using an analytical procedure and we explore how varying multiphase flow properties affects the analytical solutions and this threshold saturation. We show the value of this analytical approach through the analysis of previously published experimental data.

  3. Preparative separation of grape skin polyphenols by high-speed counter-current chromatography.

    PubMed

    Luo, Lanxin; Cui, Yan; Zhang, Shuting; Li, Lingxi; Li, Yuanyuan; Zhou, Peiyu; Sun, Baoshan

    2016-12-01

    To develop an efficient method for large preparation of various individual polyphenols from white grape skins (Fernão Pires; Vitis vinifera) by preparative high-speed counter-current chromatography (HSCCC) and preparative-HPLC, an optimized preparative HSCCC condition with two-phase solvent system composed of Hex-EtOAc-H2O (1:50:50, v/v) was used to separate grape skin polyphenols into various fractions. Both the tail-head and head-tail elution modes were used with a flow rate of 3.0ml/min and a rotary speed of 950rpm. Afterwards, a preparative-HPLC separation was applied to isolate individual polyphenols in each of the fractions from HSCCC. Total of 7 fractions (Fraction A to G) were obtained from grape skin extract by HSCCC. After preparative-HPLC isolation, fifteen individual compounds were obtained, most of which presented high yields and purity (all over 90%). The HSCCC method followed with preparative-HPLC appeared to be convenient and economical, constituting an efficient strategy for the isolation of grape skin polyphenols.

  4. Preparative separation of high-purity cordycepin from Cordyceps militaris(L.) Link by high-speed countercurrent chromatography

    PubMed Central

    Zhu, Licai; Liang, Yong; Lao, Deqiang; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    A high-speed counter-current chromatography (HSCCC) technique in a preparative scale has been applied to separate and purify cordycepin from the extract of Cordyceps militaris(L.) Link by a one-step separation. A high efficiency of HSCCC separation was achieved on a two-phase solvent system of n-hexane–n-butanol–methanol–water (23:80:30:155, v/v/v/v) by eluting the lower mobile phase at a flow rate of 2 ml/min under a revolution speed of 850 rpm. HSCCC separation of 216.2 mg crude sample (contained cordycepin at 44.7% purity after 732 cation-exchange resin clean-up) yielded 64.8 mg cordycepin with purity of 98.9% and 91.7% recovery. Identification of the target compound was performed by UV, IR, MS, 1H NMR and 13C NMR. PMID:21643461

  5. Application of atmospheric pressure chemical ionisation mass spectrometry in the analysis of barbiturates by high-speed analytical countercurrent chromatography.

    PubMed

    Jones, Jonathan J; Kidwell, Huw; Games, David E

    2003-01-01

    Four barbiturates (barbital, allobarbital, phenobarbital and butalbital) were analysed using high-speed analytical countercurrent chromatography (HSACCC) and high-performance liquid chromatography (HPLC) interfaced with mass spectrometry, using negative mode atmospheric pressure chemical ionisation (APCI). The polar biphasic solvent system of butyronitrile/acetonitrile/water (1:1:1) was used, in the upper-stationary, lower-mobile mode of operation, at a flow rate of 1 mL/min and a rotational speed of 1200 rpm, equating to an applied "g"-field of 177 g. The fractional stationary phase retention (S(F)) was 0.58. Representative mass spectral data are presented from the HPLC and the HSACCC analyses. Structural information was obtained using source-induced fragmentation at increased source block voltages. The effect of increasing g-field on chromatographic resolution is illustrated using the binary base system of butyronitrile/water (1:1), under electrospray ionisation. Copyright 2003 John Wiley & Sons, Ltd.

  6. Sequential determination of anionic-type detergents by complexation with methylene blue using dual high speed counter-current chromatography.

    PubMed

    Kitazume, Eiichi; Koikawa, Saki; Hui, Lu; Sannohe, Syou; Yang, Yanjun; Maki, Yonosuke; Ito, Yoichiro

    2012-05-04

    A new dual high-speed counter-current chromatographic system using organic extraction phase and aqueous mobile phase containing methylene blue was applied to the analysis of anionic-type detergents. After selecting appropriate conditions such as flow rate of each mobile phase and sample volume, the new system was successfully applied to the analysis of anionic detergent in river water. As all the analytical procedures can be made in a closed system, the method has no health hazard. The present method is safe, precise, and highly sensitive, and can be applied for sequential determination of multiple samples in a short analysis time. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Isolation of all-trans lycopene by high-speed counter-current chromatography using a temperature-controlled solvent system.

    PubMed

    Baldermann, Susanne; Ropeter, Katharina; Köhler, Nils; Fleischmann, Peter

    2008-05-23

    The effect of solvent system, partition coefficient, retention of stationary phase, column, revolution speed, and flow rate of mobile phase are well known parameters to effect HSCCC (high-speed counter-current chromatography) separations. Temperature effects on chromatographic techniques like HPLC and GC are well studied, but the influence of temperature on CCC solvent systems is hardly investigated. This paper presents the influence of temperature on several key parameters (partition coefficient, settling time, volume ratios) in the hydrophobic HSCCC solvent system hexane:dichloromethane:acetonitrile (30:11:18, v/v/v) used for the isolation of lycopene from tomato paste at 10, 15, 20 and 25 degrees C.

  8. Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates.

    PubMed

    Linares, Elisângela M; Kubota, Lauro T; Michaelis, Jens; Thalhammer, Stefan

    2012-01-31

    There is an increasing demand for convenient and accurate point-of-care tools that can detect and diagnose different stages of a disease in remote or impoverished settings. In recent years, lateral flow immunoassays (LFIA) have been indicated as a suitable medical diagnostic tool for these environments because they require little or no sample preparation, provide rapid and reliable results with no electronic components and thus can be manufactured at low costs and operated by unskilled personnel. However, even though they have been successfully applied to acute and chronic disease detection, LFIA based on gold nanoparticles, the standard marker, show serious limitations when high sensitivity is needed, such as early stage disease detection. Moreover, based on the lack of comparative information for label performance, significant optimization of the systems that are currently in use might be possible. To this end, in the presented work, we compare the detection limit between the four most used labels: colloidal-gold, silver enhanced gold, blue latex bead and carbon black nanoparticles. Preliminary results were obtained by using the biotin-streptavidin coupling as a model system and showed that carbon black had a remarkably low detection limit of 0.01 μg/mL in comparison to 0.1 μg/mL, 1 μg/mL and 1mg/mL for silver-coated gold nanoparticles, gold nanoparticles and polystyrene beads, respectively. Therefore, as a proof of concept, carbon black was used in a detection system for Dengue fever. This was achieved by immobilizing monoclonal antibodies for the nonstructural glycoprotein (NS1) of the Dengue virus to carbon black. We found that the colorimetric detection limit of 57 ng/mL for carbon black was ten times lower than the 575 ng/mL observed for standard gold nanoparticles; which makes it sensitive enough to diagnose a patient on the first days of infection. We therefore conclude that, careful screening of detection labels should be performed as a necessary step

  9. High-frequency limit of non-autonomous gradient flows of functionals with time-periodic forcing

    NASA Astrophysics Data System (ADS)

    Plazotta, Simon; Zinsl, Jonathan

    2016-12-01

    We study the high-frequency limit of non-autonomous gradient flows in metric spaces of energy functionals comprising an explicitly time-dependent perturbation term which might oscillate in a rapid way. On grounds of the existence results by Ferreira and Guevara (2015) on non-autonomous gradient flows (which we also extend to a broader range of energy functionals), we prove that the associated solution curves converge to a solution of the time-averaged evolution equation in the limit of infinite frequency. Under additional assumptions on the energy, we obtain an explicit rate of convergence. Furthermore, we specifically investigate nonlinear drift-diffusion equations with time-dependent drift which formally are gradient flows with respect to the L2-Wasserstein distance. We prove that a family of weak solutions obtained as a limit of the Minimizing Movements scheme exhibits the above-mentioned behavior in the high-frequency limit.

  10. Seasonal variation of the surface North Equatorial Countercurrent (NECC) in the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Li, Yuanlong; Wang, Fan

    2016-11-01

    The North Equatorial Countercurrent (NECC) is an important zonal flow in the upper circulation of the tropical Pacific Ocean, which plays a vital role in the heat budget of the western Pacific warm pool. Using satellite-derived data of ocean surface currents and sea surface heights (SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacific Ocean was investigated. It was found that the intensity (INT) and axis position (Y CM ) of the surface NECC exhibit strikingly different seasonal fluctuations in the upstream (128°-136°E) and downstream (145°-160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and YCM are greatly influenced by variations of the Mindanao Eddy, Mindanao Dome (MD), and equatorial Rossby waves to its south. Both INT and Y CM also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacific and local wind forcing in the western Pacific Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacific Ocean. Those in the MD region are especially important in modulating the YCM of the downstream NECC. In addition to the SSH-related geostrophic flow, zonal Ekman flow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions reflect the high complexity of regional ocean dynamics.

  11. Pulmonary function and expiratory flow limitation in acute cervical spinal cord injury.

    PubMed

    Alvisi, Valentina; Marangoni, Elisabetta; Zannoli, Silvia; Uneddu, Mariella; Uggento, Riccardo; Farabegoli, Lucia; Ragazzi, Riccardo; Milic-Emili, Joseph; Belloni, Gian P; Alvisi, Raffaele; Volta, Carlo A

    2012-11-01

    To identify the nature of the changes of respiratory mechanics in patients with middle cervical spinal cord injury (SCI) and their correlation with posture. Clinical trial. Acute SCI unit. Patients with SCI (N=34) at C4-5 level studied within 6 months of injury. Patients were assessed by the negative expiratory pressure test, maximal static respiratory pressure test, and standard spirometry. The following respiratory variables were recorded in both the semirecumbent and supine positions: (1) tidal expiratory flow limitation (TEFL); (2) airway resistances; (3) mouth occlusion pressure developed 0.1 seconds after occluded inspiration at functional residual capacity (P(0.1)); (4) maximal static inspiratory pressure (MIP) and maximal static expiratory pressure (MEP); and (5) spirometric data. TEFL was detected in 32% of the patients in the supine position and in 9% in the semirecumbent position. Airway resistances and P(0.1) were much higher compared with normative values, while MIP and MEP were markedly reduced. The ratio of forced expiratory volume in 1 second to forced vital capacity was less than 70%, while the other spirometric data were reduced up to 30% of predicted values. Patients with middle cervical SCI can develop TEFL. The presence of TEFL, associated with increased airway resistance, could increase the work of breathing in the presence of a reduced capacity of the respiratory muscles to respond to the increased load. The semirecumbent position and the use of continuous positive airway pressure can be helpful to (1) reduce the extent of TEFL and avoid the opening/closure of the small airways; (2) decrease airway resistance; and (3) maintain the expiratory flow as high as possible, which aids in the removal of secretions. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Amino acid limitation and flow to the duodenum at four stages of lactation. 2. Extent of lysine limitation.

    PubMed

    Schwab, C G; Bozak, C K; Whitehouse, N L; Olson, V M

    1992-12-01

    Four multiparous Holstein cows with ruminal and duodenal cannulas were assigned to 4 x 4 Latin squares at peak (wk 4), early (wk 14 to 16), mid (wk 21 to 23), and late (wk 29 to 31) lactation to determine, in the presence of supplemental Met, the extent of Lys limitation and its required contribution to total essential AA in duodenal digesta. Treatments were duodenal infusions of 1) water alone or water with 2) 10 g/d of DL-Met plus 10 g/d of L-Lys, 3) 10 g/d of Met plus 20 g/d of Lys, and 4) 10 g/d of Met plus 30 g/d of Lys; quantities were reduced by 20% in late lactation. Rations were corn based (corn and grass-legume silages, corn meal, wheat middlings, soybean meal, and distillers dried grains with solubles) and most limiting in Lys and Met. Intakes of ruminally degraded and undegraded intake protein (percentage of NRC requirements) were (peak) 115, 97; (early) 112, 83; (mid) 113, 87; and (late) 127, 96. Contribution of Lys to passage of total essential AA to the duodenum without infusions were 13.2, 12.4, 13.8, and 14.8% at the four respective stages of lactation. Extent of Lys limitation determined from responses in content and yield of milk protein approximated 25, 20, and 10 g/d during peak, early, and midlactation.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Larval tolerance, gene flow, and the northern geographic range limit of fiddler crabs.

    PubMed

    Sanford, Eric; Holzman, Samuel B; Haney, Robert A; Rand, David M; Bertness, Mark D

    2006-11-01

    Despite growing interest in species' range shifts, little is known about the ecological and evolutionary factors that control geographic range boundaries. We investigated the processes that maintain the northern range limit of the mud fiddler crab (Uca pugnax) at North Scituate, Massachusetts, USA (42 degrees 14' N), located approximately 60 km north of Cape Cod. Larvae from five populations in Massachusetts were reared under controlled temperatures to test whether cooler water near the edge of this species' range inhibits planktonic development. Few larvae completed development at temperatures < 18 degrees C, a threshold that larvae would regularly encounter north of Cape Cod. Extensive salt marshes are present north of the current range boundary, and a transplant experiment using field enclosures confirmed that benthic fiddler crabs can survive severe winter conditions in this northern habitat. Taken with oceanographic data, these results suggest that the range boundary of fiddler crabs is likely maintained by the influence of cooler water temperatures on the larval phase. Analyses of mitochondrial DNA sequences from a neutral marker (COI) indicate high gene flow among U. pugnax populations in Massachusetts with little differentiation across Cape Cod. Consistent with predictions regarding the homogenizing influence of gene flow, larvae from source populations north and south of Cape Cod shared a common lower threshold for development. However, larvae produced near the range edge had faster growth rates than those from the south side of Cape Cod (typically reaching the final megalopal stage 1.0-5.5 d faster at 18 degrees C). Additional studies are needed to determine the mechanism underlying this counter-gradient variation in development time. We hypothesize that dispersal into cooler water on the north side of Cape Cod may act as a selection filter that sieves out slow developers from the larval pool by increasing planktonic duration and exposure to associated

  14. First results of the use of a continuously flowing lithium limiter in high performance discharges in the EAST device

    NASA Astrophysics Data System (ADS)

    Hu, J. S.; Zuo, G. Z.; Ren, J.; Yang, Q. X.; Chen, Z. X.; Xu, H.; Zakharov, L. E.; Maingi, R.; Gentile, C.; Meng, X. C.; Sun, Z.; Xu, W.; Chen, Y.; Fan, D.; Yan, N.; Duan, Y. M.; Yang, Z. D.; Zhao, H. L.; Song, Y. T.; Zhang, X. D.; Wan, B. N.; Li, J. G.; EAST Team

    2016-04-01

    As an alternative choice of solid plasma facing components (PFCs), flowing liquid lithium can serve as a limiter or divertor PFC and offers a self-healing surface with acceptable heat removal and good impurity control. Such a system could improve plasma performance, and therefore be attractive for future fusion devices. Recently, a continuously flowing liquid lithium (FLiLi) limiter has been successfully designed and tested in the EAST superconducting tokamak. A circulating lithium layer with a thickness of  <0.1 mm and a flow rate ~2 cm3 s-1 was achieved. A novel in-vessel electro-magnetic pump, working with the toroidal magnetic field of the EAST device, was reliable to control the lithium flow speed. The flowing liquid limiter was found to be fully compatible with various plasma scenarios, including high confinement mode plasmas heated by lower hybrid waves or by neutral beam injection. It was also found that the controllable lithium emission from the limiter was beneficial for the reduction of recycling and impurities, for the reduction of divertor heat flux, and in certain cases, for the improvement of plasma stored energy, which bodes well application for the use of flowing liquid lithium PFCs in future fusion devices.

  15. Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high-performance liquid chromatography.

    PubMed

    Fan, Chen; Cao, Xueli; Liu, Man; Wang, Wei

    2016-03-04

    Alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA) are some of the main Alternaria mycotoxins that can be found as contaminants in food materials. The objective of this study was to develop a pretreatment method with countercurrent chromatography (CCC) for enrichment and cleanup of trace Alternaria mycotoxins in food samples prior to high-performance liquid chromatography (HPLC) analysis. An Analytical CCC instrument with a column volume 22.5mL was used, and a two-phase solvent system composed of ethyl acetate and water modified with 6% [HOOMIM][Cl] in mass to volume ratio was selected. Under the optimized CCC operation conditions, trace amounts of AOH, AME, and TeA in large volume of liquid sample were efficiently extracted and enriched in the stationary phase, and then eluted out just by reversing the stationary phase as mobile phase in the opposite flowing direction tail-to-head. The enrichment and elution strategies are unique and can be fulfilled online with high enrichment factors (87-114) and high recoveries (81.14-110.94%). The method has been successively applied to the determination of Alternaria mycotoxins in real apple juice and wine samples with the limits of detection (LOD) in the range of 0.03-0.14μgL(-1). Totally 12 wine samples and 15 apple juice samples from the local market were analyzed. The detection rate of AOH and AME in both kinds of the samples were more than 50%, while TeA was found in relatively high level of 1.75-49.61μgL(-1) in some of the apple juice samples. The proposed method is simple, rapid, and sensitive and could also be used for the analysis and monitoring of Alternaria mycotoxin in other food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Flow limitations in the iliac arteries in endurance athletes. Current knowledge and directions for the future.

    PubMed

    Schep, G; Bender, M H; Kaandorp, D; Hammacher, E; de Vries, W R

    1999-10-01

    Pain and powerless feeling in the leg during cycling may indicate a serious problem that limits the performance in cyclists. Apart from the well-known muscular and neurological origin, such complaints can also be attributed to flow limitations in the iliac arteries caused by functional lesions (kinking and/or excessive length of vessels) and/or intravascular lesions (endofibrosis). Reliable insight in the prevalence is lacking. Most intravascular lesions (approximately 90%) are located in the external iliac artery. The diagnosis is frequently missed because physiotherapists and medical doctors are often unacquainted with the problem. The only finding in physical examination, discriminating for a vascular problem, is a bruit in the inguinal region with the thigh maximally flexed. Available diagnostic techniques are proven to be inadequate for this specific lesion, which has characteristics other than those of atherosclerotic lesions. Moreover, common techniques in a vascular laboratory do not incorporate the specific sport conditions necessary for provoking the complaints. Provocative testing on a bicycle ergometer with high intensity of exercise, combined with postexercise blood pressure measurements (at the ankle of both legs, or the ankle to arm pressure ratio) is used. Imaging techniques (echo-doppler, arterial digital subtraction angiography, magnetic resonance imaging and angiography) are necessary for proper classification of the problem. The application of specific provoking manoeuvres (hip flexion, psoas contraction, high-intensity exercise) in combination with these imaging techniques prove to be potentially valuable, although the diagnostic accuracy has to be established. Treatment should be tailored to the specific problems of the individual patient. Conservative treatment mainly indicates an advice to change sports activity. Surgical mobilization of the iliac arteries for functional lesions, and vascular reconstructions in case of intravascular lesions

  17. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  18. Subpulse drift velocity of pulsar magnetosphere within the space-charge limited flow model

    NASA Astrophysics Data System (ADS)

    Ahmedov, Bobomurat; Morozova, Viktoriya; Zanotti, Olindo

    We attempt to explain the subpulse drift phenomena adopting the space-charge limited flow (SCLF) model and comparing the plasma drift velocity in the inner region of pulsar magnetospheres with the observed velocity of drifting subpulses. We apply the approach described in a recent paper of van Leeuwen & Timokhin (2012), where it was shown that the standard estimation of the subpulse drift velocity through the total value of the scalar potential drop in the inner gap gives inaccurate results, while the exact expression relating the drift velocity to the gradient of the scalar potential should be used instead. After considering a selected sample of sources taken from the catalog of Weltevrede, Edwards & Stappers (2006) with coherently drifting subpulses and reasonably known observing geometry, we show that their subpulse drift velocities would correspond to the drift of the plasma located very close or above the pair formation front. Moreover, a detailed analysis of PSR B0826-34 and PSR B0818-41 reveals that the variation of the subpulse separation with the pulse longitude can be successfully explained by the dependence of the plasma drift velocity on the angular coordinates.

  19. Explaining the subpulse drift velocity of pulsar magnetosphere within the space-charge limited flow model

    NASA Astrophysics Data System (ADS)

    Morozova, Viktoriya S.; Ahmedov, Bobomurat J.; Zanotti, Olindo

    2014-10-01

    We try to explain the subpulse drift phenomena adopting the space-charge limited flow model and comparing the plasma drift velocity in the inner region of pulsar magnetospheres with the observed velocity of drifting subpulses. We apply the approach described in a recent paper of van Leeuwen & Timokhin, where it was shown that the standard estimation of the subpulse drift velocity through the total value of the scalar potential drop in the inner gap gives inaccurate results, while the exact expression relating the drift velocity to the gradient of the scalar potential should be used instead. After considering a selected sample of sources taken from the catalogue of Weltevrede et al. with coherently drifting subpulses and reasonably known observing geometry, we show that their subpulse drift velocities would correspond to the drift of the plasma located very close or above the pair formation front. Moreover, a detailed analysis of PSR B0826-34 and PSR B0818-41 reveals that the variation of the subpulse separation with the pulse longitude can be successfully explained by the dependence of the plasma drift velocity on the angular coordinates.

  20. Respiratory muscle dynamics and control during exercise with externally imposed expiratory flow limitation.

    PubMed

    Aliverti, Andrea; Iandelli, Iacopo; Duranti, Roberto; Cala, Stephen J; Kayser, Bengt; Kelly, Susan; Misuri, Gianni; Pedotti, Antonio; Scano, Giorgio; Sliwinski, Pawel; Yan, Sheng; Macklem, Peter T

    2002-05-01

    To determine how decreasing velocity of shortening (U) of expiratory muscles affects breathing during exercise, six normal men performed incremental exercise with externally imposed expiratory flow limitation (EFLe) at approximately 1 l/s. We measured volumes of chest wall, lung- and diaphragm-apposed rib cage (Vrc,p and Vrc,a, respectively), and abdomen (Vab) by optoelectronic plethysmography; esophageal, gastric, and transdiaphragmatic pressures (Pdi); and end-tidal CO2 concentration. From these, we calculated velocity of shortening and power (W) of diaphragm, rib cage, and abdominal muscles (di, rcm, ab, respectively). EFLe forced a decrease in Uab, which increased Pab and which lasted well into inspiration. This imposed a load, overcome by preinspiratory diaphragm contraction. Udi and inspiratory Urcm increased, reducing their ability to generate pressure. Pdi, Prcm, and Wab increased, indicating an increased central drive to all muscle groups secondary to hypercapnia, which developed in all subjects. These results suggest a vicious cycle in which EFLe decreases Uab, increasing Pab and exacerbating the hypercapnia, which increases central drive increasing Pab even more, leading to further CO2 retention, and so forth.

  1. [Chronic cough in the elderly is associated with expiratory flow limitation].

    PubMed

    Frappé, E; Gautier-Guillot, M; Barthélémy, J-C; Maudoux, D; Roche, F; Costes, F

    2013-03-01

    As chronic respiratory symptoms and the presence of expiratory flow limitation (EFL) are commonly reported in the elderly, we investigated whether they were associated in a population of 75 years old volunteers. We analyzed the results of a prevalence survey of chronic respiratory symptoms and respiratory infections, and performed spirometry and measured EFL after application of a negative expiratory pressure at the mouth (NEP). EFL was present in 170 (46%) subjects, a chronic cough in 49 (13%), chronic sputum in 58 (29%) and a history of respiratory infection in 62 (17%). Chronic cough and the composite outcome "chronic cough or sputum" were significantly associated with the presence of EFL (respectively 60% vs. 43%, OR=2.04 [1.09 to 3.78], P=0.023, and 56% vs. 43%, OR=1.74 [1.05 to 2.87], P=0.04), after controlling for smoking or airway obstruction. History of respiratory infections were not associated with an increased prevalence of EFL. We concluded that the presence of a LED could be an interesting indicator of respiratory aging. Its detection could be advocated in elderly subjects presenting with respiratory symptoms.

  2. Is tidal expiratory flow limitation predictive of sleep-related disorders in the elderly?

    PubMed

    Guillot, M; Costes, F; Sforza, E; Maudoux, D; Bertoletti, L; Barthélémy, J C; Roche, F

    2010-10-01

    Sleep-related disorders represent an important health burden and their prevalence increases with age. In patients with snoring or sleepiness, the presence of expiratory flow limitation (EFL), determined via the negative expiratory pressure (NEP) method, is related to the apnoea/hypopnoea index (AHI). In this study, we examined whether EFL can be used to predict obstructive sleep apnoea syndrome (OSAS) in healthy asymptomatic older subjects. A group of 72-yr-old subjects (n = 448, 44% males) with a mean body mass index of 25.5±3.8 kg·m(-2) were examined. All subjects underwent spirometry, NEP (-5 cmH(2)O, sitting position) and ventilatory polygraphy (VP). Spirometry was within normal values in 88% of the group and EFL was present in 143 (32%) subjects with a higher prevalence in females (89 out of 249 versus 54 out of 199 in females and males, respectively). VP showed an AHI<15 h(-1) in 238 subjects (53%) and OSAS with an AHI ≥15 h(-1) in 47%. EFL was found in 15% of subjects with OSAS. Consequently, EFL had low sensitivity and specificity in the prediction of OSAS (31.4% and 67.7%, respectively). We conclude that the prevalence of EFL is elevated in healthy older subjects and cannot be used to predict the presence of sleep-related disorders in an older population.

  3. Accurate early-time and late-time modeling of countercurrent spontaneous imbibition

    NASA Astrophysics Data System (ADS)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2016-08-01

    Spontaneous countercurrent imbibition into a finite porous medium is an important physical mechanism for many applications, included but not limited to irrigation, CO2 storage, and oil recovery. Symmetry considerations that are often valid in fractured porous media allow us to study the process in a one-dimensional domain. In 1-D, for incompressible fluids and homogeneous rocks, the onset of imbibition can be captured by self-similar solutions and the imbibed volume scales with √t. At later times, the imbibition rate decreases and the finite size of the medium has to be taken into account. This requires numerical solutions. Here we present a new approach to approximate the whole imbibition process semianalytically. The onset is captured by a semianalytical solution. We also provide an a priori estimate of the time until which the imbibed volume scales with √t. This time is significantly longer than the time it takes until the imbibition front reaches the model boundary. The remainder of the imbibition process is obtained from a self-similarity solution. We test our approach against numerical solutions that employ parametrizations relevant for oil recovery and CO2 sequestration. We show that this concept improves common first-order approaches that heavily underestimate early-time behavior and note that it can be readily included into dual-porosity models.

  4. Fluid Dynamics Panel Working Group 10 on Calculation of 3D Separate Turbulent Flows in Boundary Layer Limit (Le Calcul des Ecoulements Turbulents, Decolles Tridimensionnels en Couche Limite)

    DTIC Science & Technology

    1990-05-01

    sufficient inspiration to appreciate the work performed by the various members of the Working Group and their co-workers. The participants’ names are given...Depuis la premiere reunion, organis&c vera la fin de l’annee 1985, un certain nombre de problimes d’ordre technique et logistique se sont poses et le...96503-0007 1. INTRODUCTION Flow separation plays a dominant role in the high lift performance of combat aircraft, invariably limiting takeoff and

  5. Channel Flow Model of Extrusion of the Higher Himalaya- Successes & Limitations

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2009-04-01

    During laminar ‘channel flow'/‘Plane Poiseuille flow' of an incompressible Newtonian viscous fluid through a very long parallel horizontal static walls of a channel due to a pressure gradient, a parabolic velocity profile is produced. The sense of ductile shearing across the middle of the channel is opposite. Grujic et al. (1996) and Beaumont et al. (2001) applied this flow mechanism to explain the extrusion of the Higher Himalaya (HH). In their sequel, the Dalhousie school of modelers kept enumerating this extrusion model. Successes of the channel flow extrusion model are that it explains (1) extensional top-to-NE sense of ductile shearing in the South Tibetan Detachment System (STDS) simultaneous to the top-to-SW sense of compressional shearing in the remainder of the HH; (2) fluid activity below the southern part of the Tibetan plateau; and (3) inverted metamorphism in the HH. However, limitations of this extrusion model are as follows. (1) A previous top-to-SW sense of compressional shearing in the STDS is not taken care by the model alone. (2) The thickness of the STDS in reality is thinner than the remainder of the HH. In the model, on the other hand, their thicknesses should be the same. (3) Presence of a second strand of the STDS inside the HH that is absent in some sections of the mountain chain remained unexplained in the model. (4) The ductile shear fabric of more commonly sigmoid-, and less commonly parallelogram- and lenticular geometries are found inside the HH. However, had the channel flow been the extrusion mechanism and rocks deformed as a Newtonian fluid, parabolic shear fabrics are expected. Additionally, can the genesis of the intrafolial folds inside the two strands of the STDS (e.g. Mukherjee, 2007) be explained by the channel flow mechanism? (5) Regions and their spatial extents with different senses of ductile shearing would change if the rocks deformed Non-Newtonically. The exact geometry of the velocity profile will depend on the

  6. PIC simulations of conical magnetically insulated transmission line with LTD generator: Transition from self-limited to load-limited flow

    NASA Astrophysics Data System (ADS)

    Liu, Laqun; Wang, Huihui; Guo, Fan; Zou, Wenkang; Liu, Dagang

    2017-04-01

    Based on the 3-dimensional Particle-In-Cell (PIC) code CHIPIC3D, with a new circuit boundary algorithm we developed, a conical magnetically insulated transmission line (MITL) with a 1.0-MV linear transformer driver (LTD) is explored numerically. The values of switch jitter time of LTD are critical parameters for the system, which are difficult to be measured experimentally. In this paper, these values are obtained by comparing the PIC results with experimental data of large diode-gap MITL. By decreasing the diode gap, we find that all PIC results agree well with experimental data only if MITL works on self-limited flow no matter how large the diode gap is. However, when the diode gap decreases to a threshold, the self-limited flow would transfer to a load-limited flow. In this situation, PIC results no longer agree with experimental data anymore due to the anode plasma expansion in the diode load. This disagreement is used to estimate the plasma expansion speed.

  7. On Postoperative Day Balloon Angioplasty for Salvage of Newly-Placed, Flow-Limiting Native Arteriovenous Fistula

    PubMed Central

    Park, Jae Young; Yoo, Chang Hyun

    2015-01-01

    Purpose: To report result and usefulness of immediate postoperative balloon angioplasty of de novo arteriovenous fistula (AVF) with limited flow just after creation. Materials and Methods: From January 1, 2012 to March 31, 2014, 1,270 patients received native AVF creations in a single vascular clinic. In twenty-four patients (1.9% of total AVF creation), immediate postoperative balloon angioplasty was performed because of limited flow on palpation (only pulsation or no thrill) just after AVF creation. Medical records were reviewed retrospectively; technical success (restoration of AVF flow)/clinical success (growing as functional AVF) rate, maturation time, primary patency rate and fistula survival outcome were analyzed during a mean 10.8 months of follow-up. Results: Technical/clinical success rate was 95.8% (23/24 cases); AVF flow was restored after balloon angioplasty, and all the flow-restorated AVFs grew as functional AVFs with mean±standard deviation, 4.5±1.5 weeks of maturation time. In seven (30.4%) patients, a secondary balloon angioplasty was needed to enhance maturation. The overall primary patency after immediate postoperative balloon angioplasty was 69.6% at 1 and 6 months and 59.0% at 12 months. There was 1 complication (operation site hematoma). Conclusion: Immediate postoperative balloon angioplasty for salvage of newly-placed, flow-limiting native AVF is a useful, effective and safe procedure. PMID:26217640

  8. Numerical model for swirl flow cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    SciTech Connect

    Milora, S.L.; Combs, S.K.; Foster, C.A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code has been used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter installed in the Medium Energy Test Facility, which has been subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cm/sup 2/, has been modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/cm/sup 2/ occur at the water-cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes wih straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  9. Prediction of cavitation performance and choking flow limit of inducers for cold water and for fluids with thermodynamic effect

    NASA Astrophysics Data System (ADS)

    Sauvage-Boutar, E.; Desclaux, J.

    1990-07-01

    Two methods of prediction of partial cavitation in inducers of rocket engine turbopumps have been developed. The first one is an analytical method previously developed to predict minimum NPSH (inlet total head minus vapor pressure) and the choking flow limit which was modified to include the computation of blade and boundary layer blockage. The second one is a method based on the work of Moore and Ruggeri (1969). This method takes into account thermodynamic effect for the prediction of the cavitation parameter Ki. For the choking flow limit, the first method can be extended to cryogenic fluids. Comparisons with available experimental data obtained with VULCAIN inducer pumping water and liquid hydrogen are presented.

  10. Characterisation of coastal counter-currents on the inner shelf of the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Garel, E.; Laiz, I.; Drago, T.; Relvas, P.

    2016-03-01

    At the Gulf of Cadiz (GoC), poleward currents leaning along the coast alternate with coastal upwelling jets of opposite direction. Here the patterns of these coastal countercurrents (CCCs) are derived from ADCP data collected during 7 deployments at a single location on the inner shelf. The multiyear (2008-2014) time-series, constituting ~ 18 months of hourly records, are further analysed together with wind data from several sources representing local and basin-scale conditions. During one deployment, temperature sensors were also installed near the mooring site to examine the vertical thermal stratification associated with periods of poleward flow. These observations indicate that the coastal circulation is mainly alongshore and barotropic. However, a baroclinic flow is often observed shortly at the time of flow inversion to poleward. CCCs develop all year-round and exclusively control the occurrence of warm coastal water during the upwelling season. On average, one poleward flow lasting 3 days was observed every week, corresponding to CCCs during ~ 40% of the time without seasonal variability. Thus, the studied region is distinct from typical upwelling systems where equatorward coastal upwelling jets largely predominate. CCCs often start to develop near the bed and are frequently associated with 2-layer cross-shore flows characteristic of downwelling conditions (offshore near the bed). In general, the action of alongshore wind stress alone does not justify the development of CCCs. The coastal circulation is best correlated and shows the highest coherence with south-eastward wind in the basin that proceeds from the rotation of southward wind at the West coast of Portugal, hence suggesting a dominant control of large-scale wind conditions. In agreement, wavelet analyses indicate that CCCs are best correlated with alongshore wind occurring in a band period characteristic of the upwelling system (8-32 days). Furthermore, in the absence of wind coastal currents tend

  11. Annual and longitudinal variations of the Pacific North Equatorial Countercurrent

    NASA Technical Reports Server (NTRS)

    Lolk, Nina K.

    1992-01-01

    The climatological annual cycle of the Pacific North Equatorial Countercurrent (NECC) simulated by an ocean general circulation model (OGCM) was studied. The longitudinal variation of transports, degree of geostrophy, and the relationship between Ekman pumping and vertical displacement of the thermocline were emphasized. The longitudinal variation was explored using six sections along 150 deg E, 180 deg, 160 deg W, 140 deg W, 125 deg W, and 110 deg W. A primitive equation OGCM of the Pacific Ocean was run for three years and the fields used were from the third year. The fields consisted of zonal, meridional, and vertical current components and temperature and salinity averaged every three days. The model was forced with the Hellerman and Rosenstein climatological wind stress. The mean annual eastward transport (19.9 Sv) was largest at 160 deg W. The maximum-current boundaries along 160 deg W were 9.2 deg N (1.0 deg), 5.1 deg N (1.1 deg), and 187 m (90.6 m). The annual-cycle amplitude of the NECC was greatest between 160 deg W and 140 deg W. Although the NECC is geostrophic to the first order, deviations from geostrophy were found in the boreal spring and summer near the southern boundary and near the surface. Meridional local acceleration played a role between 3 deg N-5 deg N.

  12. Eddy properties in the Subtropical Countercurrent, Western Philippine Sea

    NASA Astrophysics Data System (ADS)

    Ramp, S. R.; Colosi, J. A.; Worcester, P. F.; Bahr, F. L.; Heaney, K. D.; Mercer, J. A.; Van Uffelen, L. J.

    2017-07-01

    An array of six oceanographic moorings with acoustic and environmental sensors was deployed in the central Philippine Sea from April 2010 to April 2011. The location spanned 18-23°N, 124 - 130°E in the Subtropical Countercurrent (STCC). The most prominent feature of the data set was a densely-packed eddy field with about equal numbers of cyclones and anticyclones moving westward at 6-12 km d-1. Eddies of either sign displaced the thermocline about ±50 m and had surface velocities exceeding 110 cm s-1. While warm eddies were slightly larger than cold eddies, the distance to maximum radial velocity was similar for both at about 65 km, close to the local Rossby radius of deformation. The steepness parameter U/c in the eddies ranged from 3 to 10, accompanied by relative vorticity of order 0.1-0.3 f, suggesting nonlinear, quasigeostrophic features with trapped cores rather than linear waves. This was borne out by the water mass analysis which showed high salinity, high spice North Pacific Tropical Water (NPTW) being transported westward in the warm eddy cores. The total KE and APE in eddies of both signs was about 1×1015 J with 85% of the APE and 74% of the KE located above 250 m depth. This equipartitioning of energy suggests mature eddies near equilibrium, that had been evolving for some time as they propagated into the area from the east.

  13. Enantioselective Recognition in Solution: The Case of Countercurrent Chromatography

    NASA Astrophysics Data System (ADS)

    Rubio, Núria; Minguillón, Cristina

    Countercurrent chromatography (CCC) is a preparative separation technique that works with a liquid stationary phase. Biphasic liquid systems are needed to perform a separation. Since a chiral selector is required to perform enantiomer separations, special requirements are imposed in CCC. The chiral selector (CS) must be located in the stationary phase since partitioning with the mobile phase would cause losses of the valuable chiral selector in the mobile phase. Sulfated cyclodextrins and proteins were used as polar CS located in the polar stationary phase (reversed phase mode). Apolar CSs such as N-dodecyl-L-proline 3,5-dimethylanilide or Whelk-O selectors, quinine and quinidine derivatives, cellulose or amylose apolar derivatives were used located in the apolar stationary phase (normal phase mode). The special CCC displacement method called pH-zone refining was found useful in the increase of the loading capacity for cellulose, quinine, quinidine, and proline-derived selectors. Dual and multidual mode uses of CCC could produce an increase in peak separation thereby broadening the applicability of moderately enantioselective CSs.

  14. Use of limonene in countercurrent chromatography: a green alkane substitute.

    PubMed

    Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain

    2013-05-07

    Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.

  15. High-speed counter-current chromatographic separation of phytosterols.

    PubMed

    Schröder, Markus; Vetter, Walter

    2011-07-01

    Phytosterols are bioactive compounds which occur in low concentrations in plant oils. Due to their beneficial effects on human health, phytosterols have already been supplemented to food. Commercial phytosterol standards show insufficient purity and/or are very expensive. In this study, we developed a high-speed counter-current chromatography (HSCCC) method for the fractionation and analysis of a commercial crude β-sitosterol standard (purity ∼60% according to supplier). Different solvent systems were tested in shake-flask experiments, and the system n-hexane/methanol/aqueous silver nitrate solution (34/24/1, v/v/v) was finally used for HSCCC fractionation. About 50 mg phytosterols was injected and distributed into 57 fractions. Selected fractions were condensed and re-injected into the HSCCC system. This measure provided pure sitostanol (>99%) and β-sitosterol (∼99%), as well as a mixture of campesterol and stigmasterol without further phytosterols. An enriched HSCCC fraction facilitated the mass spectrometric analysis of further 11 minor phytosterols (after trimethylsilylation). It was also shown that the commercial product contained about 0.3% carotinoids which eluted without delay into an early HSCCC fraction and which were separated from the phytosterols.

  16. Influence of expiratory flow-limitation during exercise on systemic oxygen delivery in humans.

    PubMed

    Aliverti, A; Dellacà, R L; Lotti, P; Bertini, S; Duranti, R; Scano, G; Heyman, J; Lo Mauro, A; Pedotti, A; Macklem, P T

    2005-10-01

    To determine the effects of exercise with expiratory flow-limitation (EFL) on systemic O(2) delivery, seven normal subjects performed incremental exercise with and without EFL at approximately 0.8 l s(-1) (imposed by a Starling resistor in the expiratory line) to determine maximal power output under control (W'(max,c)) and EFL (W'(max,e)) conditions. W'(max,e) was 62.5% of W'(max,c), and EFL exercise caused a significant fall in the ventilatory threshold. In a third test, after exercising at W'(max,e) without EFL for 4 min, EFL was imposed; exercise continued for 4 more minutes or until exhaustion. O(2) consumption (V'(O)(2)) was measured breath-by-breath for the last 90 s of control, and for the first 90 s of EFL exercise. Assuming that the arterio-mixed venous O(2) content remained constant immediately after EFL imposition, we used V'(O)(2) as a measure of cardiac output (Q'(c)). Q'(c) was also calculated by the pulse contour method with blood pressure measured continuously by a photo-plethysmographic device. Both sets of data showed a decrease of Q'(c) due to a decrease in stroke volume by 10% (p < 0.001 for V'(O)(2)) with EFL and remained decreased for the full 90 s. Concurrently, arterial O(2) saturation decreased by 5%, abdominal, pleural and alveolar pressures increased, and duty cycle decreased by 43%. We conclude that this combination of events led to a decrease in venous return secondary to high expiratory pressures, and a decreased duty cycle which decreased O(2) delivery to working muscles by approximately 15%.

  17. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis.

    PubMed

    Gottschalk, Fadri; Sonderer, Tobias; Scholz, Roland W; Nowack, Bernd

    2010-05-01

    Information on environmental concentrations is needed to assess the risks that engineered nanomaterials (ENM) may pose to the environment. In this study, predicted environmental concentrations (PEC) were modeled for nano-TiO2, carbon nanotubes (CNT) and nano-Ag for Switzerland. Based on a life-cycle perspective, the model considered as input parameters the production volumes of the ENMs, the manufacturing and consumption quantities of products containing those materials, and the fate and pathways of ENMs in natural and technical environments. Faced with a distinct scarcity of data, we used a probabilistic material flow analysis model, treating all parameters as probability distributions. The modeling included Monte Carlo and Markov Chain Monte Carlo simulations as well as a sensitivity and uncertainty analysis. The PEC values of the ENMs in the different environmental compartments vary widely due to different ENM production volumes and different life cycles of the nanoproducts. The use of ENM in products with high water relevance leads to higher water and sediment concentrations for nano-TiO2 and nano-Ag, compared to CNTs, where smaller amounts of ENM reach the aquatic compartments. This study also presents a sensitivity analysis and a comprehensive discussion of the uncertainties of the simulation results and the limitations of the used approach. To estimate potential risks, the PEC values were compared to the predicted-no-effect concentrations (PNEC) derived from published data. The risk quotients (PEC/PNEC) for nano-TiO2 and nano-Ag were larger than one for treated wastewater and much smaller for all other environmental compartments (e.g., water, sediments, soils). We conclude that probabilistic modeling is very useful for predicting environmental concentrations of ENMs given the current lack of substantiated data.

  18. Application of step-wise gradient high-performance counter-current chromatography for rapid preparative separation and purification of diterpene components from Pseudolarix kaempferi Gordon.

    PubMed

    He, Shichao; Li, Shucai; Yang, Jianhong; Ye, Haoyu; Zhong, Shijie; Song, Hang; Zhang, Yongkui; Peng, Cheng; Peng, Aihua; Chen, Lijuan

    2012-04-27

    In general, simultaneously separation and purification of components with a broad polarity range from traditional Chinese medicine (TCM) is a challenge by an ordinary high-speed counter-current chromatography (HSCCC) method. In this paper, we describes a rapid and efficient separation method of combining three-step gradient elution and two-step flow-rate gradient elution using high-performance counter-current chromatography (HPCCC) to separate 8 diterpene compounds simultaneously within 80 min in a single run from the alcohol extract of Pseudolarix kaempferi Gordon. This separation process produced 166 mg pseudolaric acid B O-β-d-glucopyranoside (PABGly), 152 mg pseudolaric acid C (PAC), 8 mg deacetylpseudolaric acid A (deacetylPAA), 5 mg pseudolaric acid A O-β-d-glucopyranoside (PAAGly), 484 mg pseudolaric acid B (PAB), 33 mg pseudolaric acid B methyl ester (PAB methyl ester), 10mg pseudolaric acid A (PAA) and 18 mg pseudolaric acid H (PAH) from 1.0 g crude sample with purities of 98.6%, 99.6%, 92.3%, 92.2%, 99.2%, 99.4%, 98.3%, 91.0%, respectively. Our study indicates that the suitable combination of step-wise gradient elution and flow-rate gradient elution using HPCCC is an effective strategy to separate complex components from natural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Intermittent counter-current extraction-Equilibrium cell model, scaling and an improved bobbin design.

    PubMed

    Hewitson, Peter; Sutherland, Ian; Kostanyan, Artak E; Voshkin, Andrei A; Ignatova, Svetlana

    2013-08-16

    This paper describes an equilibrium cell model for intermittent counter-current extraction that is analytically solved for the first time for continuous sample injection between a pair of columns. The model is compared with practice for injections of a model mixture of compounds on a standard high-performance counter-current chromatography instrument giving good agreement for compound elution order and the times to maximum concentration for the eluted components. An improved design of end fittings for the counter-current chromatography bobbins is described which permits on-column switching of the mobile and stationary phases. This on-column switching successfully eliminates the displaced stationary phase seen in fractions when operating ICcE with standard flying leads and gives a 6% reduction in the retention time of compounds and improved resolution due to the elimination of the time delay required to pump the previous mobile phase from standard flying leads.

  20. Steady-state and non-steady state operation of counter-current chromatography devices.

    PubMed

    Kostanyan, Artak E; Ignatova, Svetlana N; Sutherland, Ian A; Hewitson, Peter; Zakhodjaeva, Yulya A; Erastov, Andrey A

    2013-11-01

    Different variants of separation processes based on steady-state (continuous sample loading) and non-steady state (batch) operating modes of CCC columns have been analyzed and compared. The analysis is carried out on the basis of the modified equilibrium cell model, which takes into account both mechanisms of band broadening - interphase mass transfer and axial mixing. A full theoretical treatment of the intermittent counter-current chromatography with short sample loading time is performed. Analytical expressions are presented allowing the simulation of the intermittent counter-current chromatography separations for various experimental conditions. Chromatographic and extraction separations have been compared and advantages and disadvantages of the two methods have been evaluated. Further technical development of the CCC machines to implement counter-current extraction separations is considered.

  1. MOLECULAR METHODS USED TO ASSESS THE RISKS OF TRANSGENE FLOW; BENEFITS AND LIMITATIONS

    EPA Science Inventory

    The US EPA WED has initiated a gene flow project to characterize ecological risks of gene flow from GM plants to native species. Development of molecular assays for risk characterization down to gene expression level is of high interest to the EPA. Phylogenetic analyses of ampl...

  2. Comparison of laser excited fluorescence and photoacoustic limits of detection for static and flow cells

    SciTech Connect

    Voigtman, E.; Jurgensen, A.; Winefordner, J.D.

    1981-10-01

    The fluorescence and photoacoustic characteristics of a windowless flow cell intended for liquid chromatographic applications are compared with respective characteristics of a static cuvette cell. In addition, a photoionization mode of operation for the flow cell is exhibited which utilizes the ionization products of two-photon excitation of polynuclear aromatic hydrocarbons in n-alkanes to effect a sensitive detection of those PAHs.

  3. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers.

    PubMed

    Pindera, Maciej Z; Ding, Hui; Athavale, Mahesh M; Chen, Zhijian

    2009-05-01

    We describe results of numerical simulations of steady flows in tubes with branch bifurcations using fully 3D and reduced 1D geometries. The intent is to delineate the range of validity of reduced models used for simulations of flows in microcapillary networks, as a function of the flow Reynolds number Re. Results from model problems indicate that for Re less than 1 and possibly as high as 10, vasculatures may be represented by strictly 1D Poiseuille flow geometries with flow variation in the axial dimensions only. In that range flow rate predictions in the different branches generated by 1D and 3D models differ by a constant factor, independent of Re. When the cross-sectional areas of the branches are constant these differences are generally small and appear to stem from an uncertainty of how the individual branch lengths are defined. This uncertainty can be accounted for by a simple geometrical correction. For non-constant cross-sections the differences can be much more significant. If additional corrections for the presence of branch junctions and flow area variations are not taken into account in 1D models of complex vasculatures, the resultant flow predictions should be interpreted with caution.

  4. Pollination of pima pineapple cactus (Coryphantha sheeri var. robustispina): does pollen flow limit abundance of this endangered species?

    Treesearch

    Christopher J. McDonald; Guy R. McPherson

    2005-01-01

    Pima pineapple cactus (PPC) (Coryphantha sheeri var. robustispina), a federally listed endangered species, occurs throughout southeastern Arizona and has relatively low population densities. To determine whether pollination limits reproduction of PPC we used florescent dye to quantify pollen flow between individuals in a PPC...

  5. 2D application of a friction-limited model for debris flow propagation

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, M.; Demierre, J.; Rudaz, B.

    2012-04-01

    Debris flows are each year responsible of severe infrastructure damages and human losses. Accurate simulation of this phenomenon allows for prevention of risks related to such events and can help for a sustainable territorial planning. A simple and intuitive 2-D debris flow model is developed using MatLab. It is based on the coupling of a mass point motion along the slope and the flattening of a volume linked to this mass point. Three main parameters have to be tuned in order to obtain a realistic prediction: the basal friction angle, the flattening coefficient and the debris flow maximum velocity. The model enables to simulate the location of the debris as a function of time and thus predict an important parameter of debris flow events, the runout distance. This tool allows for rapid calculations and has the advantage to use parameters that are easily assessable, such as the thickness of the debris flow deposit. The model is applied and compared to a debris flow event that occurred in Switzerland (Fully, VS) in October 2000. Following heavy rainfall and a hydroelectric pipe failure, a morainic deposit failed and propagated as a debris flow, reaching human-occupied areas (vineyards and roads). The event is well documented, with the initiation point, the flow velocity and runout distance known. A good agreement is found between the model prediction and the data from the debris flow event described above. This shows that the developed simple model can be an efficient tool to predict important debris flow characteristics, such as the runout distance. A further development would be to implement a 3-D model based on this approach

  6. Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements

    SciTech Connect

    Bright, Ido; Lin, Guang; Kutz, Nathan

    2013-12-05

    Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

  7. Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements

    NASA Astrophysics Data System (ADS)

    Bright, Ido; Lin, Guang; Kutz, J. Nathan

    2013-12-01

    Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

  8. Fractionation of wheat gliadins by counter-current distribution using an organic two-phase system.

    PubMed

    Truust, H; Johansson, G

    1998-06-26

    A liquid liquid two-phase system based on N,N-dimethylformamide and the two polymers, poly(ethyleneglycol) and Ficoll, useful for partitioning of hydrophobic proteins, has been developed. The system has been applied to a counter-current distribution process in 56 steps for analysing the heterogeneity of proteins extracted with N,N-dimethylformamide from wheat flour. The counter-current distribution patterns of proteins, extracted from eight kinds of wheat, have been analysed. The minimum number of hypothetical proteins necessary to describe the patterns was found to be seven. The relative amount of these hypothetical components varied among the wheats.

  9. Isolation of chlorophylls a and b from spinach by counter-current chromatography.

    PubMed

    Jubert, Carole; Bailey, George

    2007-01-26

    A method for the isolation of chlorophylls from spinach by counter-current chromatography was developed. An initial extraction protocol was devised to avoid the notorious sensitivity of chlorophylls to degradation by light, heat, oxygen, acids and bases. Further purification and separation of chlorophylls a and b were achieved using counter-current chromatography. Chlorophyll structures and purities were established by HPLC, fast atom bombardment mass spectrometry and nuclear magnetic resonance. Purity was estimated to be >95% (100% by HPLC). Typical yields from 30g of freeze-dried spinach were 300mg of chlorophyll a and 100mg of chlorophyll b.

  10. Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Rice, J. E.; Hubbard, A. E.; Hughes, J. W.; Greenwald, M.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Lipschultz, B.; Marmar, E. S.; Marr, K.; Mossessian, D.; Parker, R.; Rowan, W.; Smick, N.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S. J.

    2005-05-01

    Factor of ˜2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when B ×∇B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when B ×∇B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL flows are also found similar, suggesting a connection.

  11. Readdressing the issue of thermally significant blood vessels using a countercurrent vessel network.

    PubMed

    Shrivastava, Devashish; Roemer, Robert B

    2006-04-01

    A physiologically realistic arterio-venous countercurrent vessel network model consisting of ten branching vessel generations, where the diameter of each generation of vessels is smaller than the previous ones, has been created and used to determine the thermal significance of different vessel generations by investigating their ability to exchange thermal energy with the tissue. The temperature distribution in the 3D network (8178 vessels; diameters from 10 to 1000 microm) is obtained by solving the conduction equation in the tissue and the convective energy equation with a specified Nusselt number in the vessels. The sensitivity of the exchange of energy between the vessels and the tissue to changes in the network parameters is studied for two cases; a high temperature thermal therapy case when tissue is heated by a uniformly distributed source term and the network cools the tissue, and a hypothermia related case, when tissue is cooled from the surface and the blood heats the tissue. Results show that first, the relative roles of vessels of different diameters are strongly determined by the inlet temperatures to those vessels (e.g., as affected by changing mass flow rates), and the surrounding tissue temperature, but not by their diameter. Second, changes in the following do not significantly affect the heat transfer rates between tissue and vessels; (a) the ratio of arterial to venous vessel diameter, (b) the diameter reduction coefficient (the ratio of diameters of successive vessel generations), and (c) the Nusselt number. Third, both arteries and veins play significant roles in the exchange of energy between tissue and vessels, with arteries playing a more significant role. These results suggest that the determination of which diameter vessels are thermally important should be performed on a case-by-case, problem dependent basis. And, that in the development of site-specific vessel network models, reasonable predictions of the relative roles of different

  12. Sports-related flow limitations in the iliac arteries in endurance athletes: aetiology, diagnosis, treatment and future developments.

    PubMed

    Bender, Mart H M; Schep, Goof; de Vries, Wouter R; Hoogeveen, Adwin R; Wijn, Pieter F F

    2004-01-01

    Approximately one in five top-level cyclists will develop sports-related flow limitations in the iliac arteries. These flow limitations may be caused by a vascular lumen narrowing due to endofibrotic thickening of the intima and/or by kinking of the vessels. In some athletes, extreme vessel length contributes to this kinking. Endofibrotic thickening is a result of a repetitive vessel damage due to haemodynamic and mechanical stress. Atherosclerotic intimal thickening is seldom encountered in these young athletes. This type of sports-related flow limitation shows no relationship with the classical risk factors for atherosclerosis like smoking, hypercholesterolaemia or family predisposition for arterial diseases. The patient's history is paramount for diagnosis. If an athlete reports typical claudication-like complaints in a leg at maximal effort, which disappear quickly at rest, approximately two out of three will have a flow limitation in the iliac artery. In current (sports) medical practice, this diagnosis is often missed, since a vascular cause is not expected in this healthy athletic population. Even if suspected, the routinely available diagnostic tests often appear insufficient. Definite diagnosis can be made by a combination of the patient's history and special designed tests consisting of a maximal cycle ergometer test with ankle blood pressure measurements and/or an echo-Doppler examination with provocative manoeuvres like hip flexion and exercise. Conservative treatment consists of diminishing or even completely stopping the provocative sports activity. If conservative treatment is insufficient or deemed unacceptable, surgical treatment might be considered. As surgery needs to be tailored to the underlying lesions, a detailed analysis before surgery is necessary. Standard clinical tests, used for visualising atherosclerotic diseases, are inadequate to identify and quantify the causes of flow limitations. Echo-Doppler examination and magnetic resonance

  13. Flat-Twisted Tubing: Novel Column Design for Spiral High-Speed Counter-Current Chromatography

    PubMed Central

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The original spiral tube assembly for high-speed counter-current chromatography (HSCCC) is further improved by a new tube configuration called “flat-twisted tubing” which was made by extruding the tube (1.6 mm I.D.) through a narrow slot followed by twisting along its axis forming about 1 cm twisted screw pitch. This modification interrupts the laminar flow of the mobile phase through the tube and continuously mixes the two phases through the column. The performance of this spiral tube assembly was tested by three types of two-phase solvent systems with different polarity each with a set of suitable test samples such as DNP-amino acids, dipeptides and proteins at the optimal elution modes. In general all these test samples yielded higher resolution with the lower mobile phase than the upper mobile phase. In the most hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1M hydrochloric acid (1:1:1:1, v/v), DNP-amino acids were separated with Rs-a (peak resolution based on the same column capacity adjusted for comparison) at 4.40 and 73 % of stationary phase retention at a flow rate of 0.5 ml/min with the lower mobile phase. In the polar solvent system composed of 1-butanol-acetic acid-water (4: 1: 5, v/v), dipeptide samples were resolved with Rs-a at 4.06, compared to 2.79 with the cross-pressed tube assembly at 45 % stationary phase retention, each at a flow rate of 1 ml/min. Finally in the aqueous-aqueous polymer phase systems composed of polyethylene glycol 1000 – dibasic potassium phosphate each 12.5% (w/w) in water, protein samples were resolved with Rs-a at 2.53 compared to 1.10 with the cross-pressed tube assembly at 52 % of stationary phase retention, each at a flow rate of 1 ml/min. These results indicate that the present system substantially improves the partition efficiency with a satisfactory level of stationary phase retention by the lower mobile phase. PMID:19486987

  14. Flat-twisted tubing: novel column design for spiral high-speed counter-current chromatography.

    PubMed

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-07-03

    The original spiral tube assembly for high-speed counter-current chromatography (HSCCC) is further improved by a new tube configuration called "flat-twisted tubing" which was made by extruding the tube (1.6 mm I.D.) through a narrow slot followed by twisting along its axis forming about 1cm twisted screw pitch. This modification interrupts the laminar flow of the mobile phase through the tube and continuously mixes the two phases through the column. The performance of this spiral tube assembly was tested by three types of two-phase solvent systems with different polarities each with a set of suitable test samples such as DNP-amino acids, dipeptides and proteins at the optimal elution modes. In general all these test samples yielded higher resolution with the lower mobile phase than the upper mobile phase. In the most hydrophobic two-phase solvent system composed of hexane-ethyl acetate-methanol-0.1 M hydrochloric acid (1:1:1:1, v/v/v/v), DNP-amino acids were separated with Rs-a (peak resolution based on the same column capacity adjusted for comparison) at 4.40 and 73% of stationary phase retention at a flow rate of 0.5 ml/min with the lower mobile phase. In the polar solvent system composed of 1-butanol-acetic acid-water (4:1:5, v/v/v), dipeptide samples were resolved with Rs-a at 4.06, compared to 2.79 with the cross-pressed tube assembly at 45% stationary phase retention, each at a flow rate of 1 ml/min. Finally in the aqueous-aqueous polymer phase systems composed of polyethylene glycol 1000 - dibasic potassium phosphate each 12.5% (w/w) in water, protein samples were resolved with Rs-a at 2.53 compared to 1.10 with the cross-pressed tube assembly at 52% of stationary phase retention, each at a flow rate of 1 ml/min. These results indicate that the present system substantially improves the partition efficiency with a satisfactory level of stationary phase retention by the lower mobile phase.

  15. Countercurrent Gaseous Diffusion Model of Oxidation Through a Porous Coating

    SciTech Connect

    Holcomb, G.R.

    1996-07-01

    A countercurrent gaseous diffusion model was developed to describe oxidation through porous coatings and scales. The specific system modeled involved graphite oxidized through a porous alumina (Al{sub 2}O{sub 3}) overcoat between 570 C (1,058 F) and 975 C (1,787 F). The model separated the porous Al{sub 2}O{sub 3} coating into two gas diffusion regions separated by a flame front, where oxygen (O{sub 2}) and carbon monoxide (CO) react to form carbon dioxide (CO{sub 2}). In the outer region O{sub 2} and CO{sub 2} counterdiffused. In the inner region, CO{sub 2} and CO counterdiffused. Concentration gradients of each gaseous specie in the pores of the Al{sub 2}O{sub 3} were determined, and the oxidation rate was calculated. The model was verified by oxidation experiments using graphite through various porous Al{sub 2}O{sub 3} overcoats. The Al{sub 2}O{sub 3} overcoats ranged in fractional porosity and in average pore radius from 0.077 {micro}m (3.0 x 10{sup -6} in., Knudsen diffusion) to 10.0 {micro}m (3.9 x 10{sup -4} in., molecular diffusion). Predicted and measured oxidation rates were shown to have the same dependence upon porosity, pore radius, temperature, and oxygen partial pressure (P{sub O{sub 2}}). Use of the model was proposed for other oxidation systems and for chemical vapor infiltration (CVI). This work was part of the U.S. Bureau of Mines corrosion research program.

  16. The limit of the film extraction technique for annular two-phase flow in a small tube

    SciTech Connect

    Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.

    1999-07-01

    The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et. al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In these experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirely from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.

  17. The limit of the film extraction technique for annular two-phase flow in a small tube

    SciTech Connect

    Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.

    1999-07-01

    The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In the experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirely from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.

  18. Physical Limits on the Predictability of Erosion and Sediment Transport by Landslides and Debris Flows

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.

    2015-12-01

    Episodic landslides and debris flows play a key role in sculpting many steep landscapes, and they also pose significant natural hazards. Field evidence, laboratory experiments, and theoretical analyses show that variations in the quantity, speed, and distance of sediment transport by landslides and debris flows can depend strongly on nuanced differences in initial conditions. Moreover, initial conditions themselves can be strongly dependent on the geological legacy of prior events. The scope of these dependencies is revealed by the results of landslide dynamics experiments [Iverson et al., Science, 2000], debris-flow erosion experiments [Iverson et al., Nature Geosci., 2011], and numerical simulations of the highly destructive 2014 Oso, Washington, landslide [Iverson et al., Earth Planet. Sci. Let., 2015]. In each of these cases, feedbacks between basal sediment deformation and pore-pressure generation cause the speed and distance of sediment transport to be very sensitive to subtle differences in the ambient sediment porosity and water content. On the other hand, the onset of most landslides and debris flows depends largely on pore-water pressure distributions and only indirectly on sediment porosity and water content. Thus, even if perfect predictions of the locations and timing of landslides and debris flows were available, the dynamics of the events - and their consequent hazards and sediment transport - would be difficult to predict. This difficulty is a manifestation of the nonlinear physics involved, rather than of poor understanding of those physics. Consequently, physically based models for assessing the hazards and sediment transport due to landslides and debris flows must take into account both evolving nonlinear dynamics and inherent uncertainties about initial conditions. By contrast, landscape evolution models that use prescribed algebraic formulas to represent sediment transport by landslides and debris flows lack a sound physical basis.

  19. Combination of integrated expanded bed adsorption chromatography and countercurrent chromatography for the direct extraction and purification of pseudohypericin and hypericin from St. John's wort (Hypericum perforatum L.).

    PubMed

    Cai, Fanfan; Li, Yang; Zhang, Min; Zhang, Hongyang; Wang, Yuerong; Hu, Ping

    2015-08-01

    St. John's wort has attracted particular attention because of its beneficial effects as an antidepressant, antiviral, and anticancer agent. A method for the combination of integrated expanded bed adsorption chromatography and countercurrent chromatography for the simultaneous extraction and purification of pseudohypericin and hypericin from the herb is presented in this paper. Firstly, the constituents were extracted and directly adsorbed by expanded bed adsorption chromatography under optimal conditions. The stepwise elution was then performed by expanded bed adsorption chromatography that enriched the targets with higher purities and recoveries compared to other methods. Secondly, the eluent fractions from expanded bed adsorption chromatography were further separated by two-step high-speed countercurrent chromatography. A two-step high-speed countercurrent chromatography method with a biphasic solvent system composed of n-hexane/ethyl acetate/methanol/water with a volume ratio of 1:2:1:2 was performed by stepwise changing the flow rate of the mobile phase. Consequently, 5.6 mg of pseudohypericin and 2.2 mg of hypericin with purities of 95.5 and 95.0%, respectively, were successfully obtained from 40 mg of crude sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Relative contributions of large and small airways to flow limitation in normal subjects before and after atropine and isoproterenol.

    PubMed Central

    Ingram, R H; Wellman, J J; McFadden, E R; Mead, J

    1977-01-01

    Bronchodilatation was produced in normal subjects by the inhalation of atropine, a parasympatholytic agent, and isoproterenol, a beta adrenergic stimulator. Density dependence of maximal expiratory flow (Vmax), expressed as a ratio of Vmax with an 80% helium-20% oxygen gas mixture to Vmax with air at isolung volumes, indicated that the predominant flow regimes across upstream airways changed differently after each agent was given separately. After atropine Vmax increased, elastic recoil pressure did not change, and density dependence decreased. Utilizing the equal pressure points analysis which defines upstream and downstream segments of the intrathoracic airways at flow limitation, these results suggest a greater relative dilatation of the larger upstream airways such that more of the driving pressure is dissipated across the smaller airways in which flow is less dependent upon gas density. After isoproterenol Vmax increased, elastic recoil pressure did not change, and density dependence increased. This suggests a preferential dilatation of the smaller and more peripheral airways with less density-dependent flow regimes such that more of the driving pressure would be dissipated in the larger airways in which flow is more dependent upon gas density. Systematic decreases after isoproterenol lead independently to the same conclusion. After both agents together, Vmax increased and density dependence and critical alveolar pressures did not change from control, suggesting a relatively uniform dilatation of all the airways comprising the upstream segment. PMID:845256

  1. A high performance cocurrent-flow heat pipe for heat recovery applications

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. C.

    1980-01-01

    By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.

  2. Three-dimensional inviscid analysis of radial turbine flow and a limited comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  3. Non-local rheological properties of granular flows near a jamming limit.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Malloggi, F.; Clement, E.; Materials Science Division; Univ. of California at San Diego; CNRS-ESPCI Univ.

    2008-01-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  4. Upper Limit of the Viscosity Parameter in Accretion Flows around a Black Hole with Shock Waves

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-01-01

    Black hole accretion is necessarily transonic; thus, flows must become supersonic and, therefore, sub-Keplerian before they enter into the black hole. The viscous timescale is much longer than the infall timescale close to a black hole. Hence, the angular momentum remains almost constant and the centrifugal force ˜ {l}2/{r}3 becomes increasingly dominant over the gravitational force ˜ 1/{r}2. The slowed down matter piles creating an accretion shock. The flow between shock and inner sonic point is puffed up and behaves like a boundary layer. This so-called Comptonizing cloud/corona produces hard X-rays and jets/outflows and, therefore, is an important component of black hole astrophysics. In this paper, we study steady state viscous, axisymmetric, transonic accretion flows around a Schwarzschild black hole. We adopt a viscosity parameter α and compute the highest possible value of α (namely, {α }{cr}) for each pair of two inner boundary parameters (namely, specific angular momentum carried to horizon, lin and specific energy at inner sonic point, E({x}{in})) which is still capable of producing a standing or oscillating shock. We find that while such possibilities exist for α as high as {α }{cr}=0.3 in very small regions of the flow parameter space, typical {α }{cr} appears to be about ˜0.05-0.1. Coincidentally, this also happens to be the typical viscosity parameter achieved by simulations of magnetorotational instabilities in accretion flows. We therefore believe that all realistic accretion flows are likely to have centrifugal pressure supported shocks unless the viscosity parameter everywhere is higher than {α }{cr}.

  5. The microanatomy of the rectal salt gland of the Port Jackson Shark, Heterodontus portusjacksoni (Meyer) (Heterodontidae): suggestions for a counter-current exchange system.

    PubMed

    Newbound, D R; O'Shea, J E

    2001-01-01

    A comprehensive anatomical study was undertaken to examine the rectal salt gland in the Port Jackson shark, Heterodontus portusjacksoni, a shark known to invade estuarine environments. The microstructure and vascular organisation of the rectal salt gland was investigated using histological observation and scanning electron microscopy of vascular corrosion casts. Cellular specialisation was observed in the lining of the central lumen of this gland. This may indicate that there is some modification of the principal product of the gland prior to its secretion. The rectal salt gland has a complex structure related to its function. Contrary to previous reports, the flow in secretory tubules is in the opposite direction to that of the capillaries and thus constitutes a counter-current arrangement. The similarity in the organisation of the counter-current and lobulate arrangement of salt-secreting glands through phylogenetically diverse organisms, such as sharks and birds, suggests that this arrangement is important in achieving efficient salt secretion. Copyright 2001 S. Karger AG, Basel

  6. Streams of Content, Limited Attention: The Flow of Information through Social Media

    ERIC Educational Resources Information Center

    Boyd, Danah

    2010-01-01

    The future of Web 2.0 is about content streams or streams of information. The metaphor implied by "streams" is powerful. The idea is that individuals are living inside the stream: adding to it, consuming it, redirecting it. The goal today is to be attentively aligned--"in flow"--with these information streams, to be aware of information as it…

  7. Limitations in the hydraulic pathway: Effects of xylem embolisms on sap velocity and flow

    USDA-ARS?s Scientific Manuscript database

    Sap flow in plants takes place in the xylem, a hydraulic system that is usually under negative pressure and in which gas and liquid phases are separated by nanoporous, fibrous pit membranes. It has long been known that this system is at risk of drawing gas nanobubbles through these membranes into th...

  8. Limitations of respiratory muscle and vastus lateralis blood flow during continuous exercise.

    PubMed

    Henderson, William R; Guenette, Jordan A; Dominelli, Paolo B; Griesdale, Donald E G; Querido, Jordan S; Boushel, Robert; Sheel, A William

    2012-05-31

    Measurement of regional blood flow to the respiratory muscles has traditionally been invasive. The blood flow index (BFI), a minimally invasive method using indocyanine green dye (ICG) and near infrared spectroscopy, allows assessment of within subject changes in regional blood flow. This study assessed regional BFI to the vastus lateralis muscle (QBFI) and the superficial respiratory muscles in the seventh intercostal space (RMBFI). Eight healthy subjects cycled continuously at incrementally more difficulty stages to exhaustion. In our subjects, QBFI declined between 83% and 100% of maximal exertion (p=0.002) and no statistically significant changes in RMBFI were seen despite steadily increasing ventilatory workloads. Post hoc pairwise comparisons demonstrated that QBFI at 83% work (0.015μmoless(-1)±0.005) was significantly higher than at maximum work output (0.011μmoless(-1)±0.004, p=0.007). There were no other significant differences of QBFI between maximum work output and different levels of work. The current study suggests that respiratory and locomotor muscle blood flow during sub-maximal and maximal exertion is unable to match increasing workloads.

  9. Recognizing the importance of tropical forests in limiting rainfall-induced debris flows

    EPA Science Inventory

    Worldwide concern for continuing loss of montane forest cover in the tropics usually focuses on adverse ecological consequences. Less recognized, but equally important to inhabitants of these affected regions, is an increasing susceptibility to rainfall-induced debris flows and t...

  10. Streams of Content, Limited Attention: The Flow of Information through Social Media

    ERIC Educational Resources Information Center

    Boyd, Danah

    2010-01-01

    The future of Web 2.0 is about content streams or streams of information. The metaphor implied by "streams" is powerful. The idea is that individuals are living inside the stream: adding to it, consuming it, redirecting it. The goal today is to be attentively aligned--"in flow"--with these information streams, to be aware of information as it…

  11. Recognizing the importance of tropical forests in limiting rainfall-induced debris flows

    EPA Science Inventory

    Worldwide concern for continuing loss of montane forest cover in the tropics usually focuses on adverse ecological consequences. Less recognized, but equally important to inhabitants of these affected regions, is an increasing susceptibility to rainfall-induced debris flows and t...

  12. Isolation of bitter acids from hops (Humulus lupulus L.) using countercurrent chromatography.

    PubMed

    Dahlberg, Clinton J; Harris, Guy; Urban, Jan; Tripp, Matthew L; Bland, Jeffrey S; Carroll, Brian J

    2012-05-01

    Commercially available hops (Humulus lupulus L.) bitter acid extracts contain a mixture of three major congeners (co-, n-, and ad-) in addition to cis/trans diastereomers for each congener. Individual isomerized α-acids were obtained by the consecutive application of two separate countercurrent chromatography methods. First, individual isomerized α-acid congeners as a mixture of cis/trans diastereomers were obtained using a solvent system consisting of hexane and aqueous buffer. The second purification, capable of separating cis/trans diastereomers, was accomplished using a quaternary solvent system; an alternative procedure using β-cyclodextrin followed by countercurrent chromatography was also investigated. The NaBH(4) reduction of the purified isomerized α-acid compounds followed by countercurrent chromatography purification resulted in individual ρ iso α-acids (>95%). Similarly, catalytic hydrogenation of the purified isomerized α-acid compounds followed by countercurrent chromatography purification produced individual tetrahydro isomerized α-acids (>95%). Reported herein is a widely applicable approach that focuses on three critical variables--solvent system composition, pH, and buffer-to-sample ratio--that enable the efficient purification of individual bitter acids (≥95%) from commercially available hops extracts. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Equations for Calculating Recovery of Soluble Values in a Countercurrent Decantation Washing System

    NASA Astrophysics Data System (ADS)

    Scandrett, H. F.

    Mud washing variables are equated in a manner which simplifies the calculation of multistage countercurrent systems. Imperfect mixing is accommodated. In a simplified case, the number of stages becomes the exponent in the term which sets the ratio of concentration differences at the terminals.

  14. How-to-Do-It: Countercurrent Heat Exchange in Vertebrate Limbs.

    ERIC Educational Resources Information Center

    Franklin, George B.; Plakke, Ronald K.

    1988-01-01

    Describes principals of physics that are manifested in simple biological systems of heat conservation structures. Outlines materials needed, data collection, analysis, and discussion questions for construction and operation of two models, one that is a countercurrent heat exchange model and one that is not. (RT)

  15. The Countercurrent Extraction of Ink: A Demonstration of the Chromatographic Mechanism.

    ERIC Educational Resources Information Center

    Bricker, Clark E.; Sloop, Gregory T.

    1985-01-01

    Describes an experiment (carried out in less than two hours) in which the merits of countercurrent extraction are immediately evident by visible colors. The experiment requires eight 125-ml separatory funnels, 250ml of 1-butanol, 250ml of 0.1-0.5 molar hydrochloric acid, and a small amount of Sheaffer's Skrip blue-black soluble ink. (JN)

  16. Counter-current carbon dioxide purification of partially deacylated sunflower oil

    USDA-ARS?s Scientific Manuscript database

    High oleic sunflower oil was partially deacylated by propanolysis to produce a mixture of diglycerides and triglycerides. To remove by-product fatty acid propyl esters (FAPEs) from this reaction mixture, a liquid carbon dioxide (L-CO2) counter-current fractionation method was developed. The fracti...

  17. Counter-current acid leaching process for copper azole treated wood waste.

    PubMed

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  18. The Countercurrent Extraction of Ink: A Demonstration of the Chromatographic Mechanism.

    ERIC Educational Resources Information Center

    Bricker, Clark E.; Sloop, Gregory T.

    1985-01-01

    Describes an experiment (carried out in less than two hours) in which the merits of countercurrent extraction are immediately evident by visible colors. The experiment requires eight 125-ml separatory funnels, 250ml of 1-butanol, 250ml of 0.1-0.5 molar hydrochloric acid, and a small amount of Sheaffer's Skrip blue-black soluble ink. (JN)

  19. Purification of SoyScreen using critical carbon dioxide in a counter-current fractionation column

    USDA-ARS?s Scientific Manuscript database

    This research evaluated the use of critical carbon dioxide (CO2) in a counter-current fractionation column for purifying SoyScreen, a mixture of feruloylated glycerides. The process concept was tested using a mixture consisting of triacylglycerides (TAGs), ethyl ferulate and fatty acid ethyl esters...

  20. Design of Countercurrent Separation of Ginkgo biloba Terpene Lactones by Nuclear Magnetic Resonance

    PubMed Central

    Qiu, Feng; Friesen, Brent J.; McAlpine, James B.; Pauli, Guido F.

    2012-01-01

    Terpene lactones such as bilobalide, ginkgolides A, B, C, and J are major bioactive compounds of Ginkgo biloba L. Purification of these compounds is tedious due to their similar chemical properties. For the purpose of developing an effective and efficient method for both analytical and preparative separation of terpene lactones in G. biloba, an innovative orthogonality-enhanced high-speed countercurrent chromatography (HSCCC) method was established. Taking advantage of quantitative 1H NMR (qHNMR) methodology, partition coefficients (K) of individual terpene lactones were calculated directly from crude G. biloba leaf extract, using their H-12 signals as distinguishing feature. The partitioning experiment assisted the design of a two dimensional (2D) HSCCC procedure using a pair of orthogonal HSCCC solvent systems (SSs), ChMWat +4 and HEMSoWat +3/0.05%. It was surprising that the resolution of ginkgolides A and B was improved by 25% in the HEMWat +3 SS modified with 0.5% DMSO. Consequently, all five terpene lactones could be well separated with qHNMR purity > 95% from G. biloba leaf extract. The separation was further evaluated by offline qHNMR analysis of HSCCC fractions associated with Gaussian curve fitting. The results showed less than 2% error in HSCCC retention predicted from the partitioning experiment. This compelling consistency demonstrates that qHNMR-derived K determination (“K-by-NMR”) can be used to predict CCC fractionation and target purification of analytes from complex mixtures. Furthermore, Gaussian curve fitting enabled an accurate prediction of less than 2% impurity in the CCC fraction, which demonstrates its potential as a powerful tool to study the presence of minor constituents, especially when they are beyond the detection limit of conventional spectroscopic detectors. PMID:22579361

  1. The formation of perched lava ponds on basaltic volcanoes: the influence of flow geometry on cooling-limited lava flow lengths

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Parfitt, Elisabeth A.

    1993-05-01

    Analysis of the formation of morphologically distinctive perched lava ponds produced in effusive basaltic eruptions focusses attention on the ways in which cooling and fluid dynamics interact to limit the distance a lava flow can travel. If a previously channelised flow spreads laterally on encountering a sudden decrease in the slope of the substrate or some other abrupt change in topography, its speed and thickness decrease progressively, in a way dictated by the requirements of mass and energy conservation. There is a consequent dramatic increase in heat loss from the lava as it thins. Where a flow spreads approximately radially in this way, it may form a perched lava pond. The high heat loss limits the size of any such pond to be at most a few hundred meters under almost all circumstances. Pond size depends much more strongly on lava volume flux than on any other physical parameter involved in the system, and the formation of these features provides a means of estimating eruption rates in paleo-eruptive episodes.

  2. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part I: theory.

    PubMed

    Broeckhoven, K; Verstraeten, M; Choikhet, K; Dittmann, M; Witt, K; Desmet, G

    2011-02-25

    We report on a general theoretical assessment of the potential kinetic advantages of running LC gradient elution separations in the constant-pressure mode instead of in the customarily used constant-flow rate mode. Analytical calculations as well as numerical simulation results are presented. It is shown that, provided both modes are run with the same volume-based gradient program, the constant-pressure mode can potentially offer an identical separation selectivity (except from some small differences induced by the difference in pressure and viscous heating trajectory), but in a significantly shorter time. For a gradient running between 5 and 95% of organic modifier, the decrease in analysis time can be expected to be of the order of some 20% for both water-methanol and water-acetonitrile gradients, and only weakly depending on the value of V(G)/V₀ (or equivalently t(G)/t₀). Obviously, the gain will be smaller when the start and end composition lie closer to the viscosity maximum of the considered water-organic modifier system. The assumptions underlying the obtained results (no effects of pressure and temperature on the viscosity or retention coefficient) are critically reviewed, and can be inferred to only have a small effect on the general conclusions. It is also shown that, under the adopted assumptions, the kinetic plot theory also holds for operations where the flow rate varies with the time, as is the case for constant-pressure operation. Comparing both operation modes in a kinetic plot representing the maximal peak capacity versus time, it is theoretically predicted here that both modes can be expected to perform equally well in the fully C-term dominated regime (where H varies linearly with the flow rate), while the constant pressure mode is advantageous for all lower flow rates. Near the optimal flow rate, and for linear gradients running from 5 to 95% organic modifier, time gains of the order of some 20% can be expected (or 25-30% when accounting for

  3. On Fully Developed Channel Flows: Some Solutions and Limitations, and Effects of Compressibility, Variable Properties, and Body Forces

    NASA Technical Reports Server (NTRS)

    Maslen, Stephen H.

    1959-01-01

    An examination of the effects of compressibility, variable properties, and body forces on fully developed laminar flow has indicated several limitations on such streams. In the absence of a pressure gradient, but presence of a body force (e.g., gravity), an exact fully developed gas flow results. For a liquid this follows also for the case of a constant streamwise pressure gradient. These motions are exact in the sense of a Couette flow. In the liquid case two solutions (not a new result) can occur for the same boundary conditions. An approximate analytic solution was found which agrees closely with machine calculations.In the case of approximately exact flows, it turns out that for large temperature variations across the channel the effects of convection (due to, say, a wall temperature gradient) and frictional heating must be negligible. In such a case the energy and momentum equations are separated, and the solutions are readily obtained. If the temperature variations are small, then both convection effects and frictional heating can consistently be considered. This case becomes the constant-property incompressible case (or quasi-incompressible case for free-convection flows) considered by many authors. Finally there is a brief discussion of cases wherein streamwise variations of all quantities are allowed but only a such form that independent variables are separable. For the case where the streamwise velocity varies inversely as the square root distance along the channel a solution is given.

  4. Blood flow and vascular reactivity during attacks of classic migraine--limitations of the Xe-133 intraarterial technique

    SciTech Connect

    Skyhoj Olsen, T.; Lassen, N.A.

    1989-01-01

    The present study reports cerebral blood flow (CBF) measurements in 11 patients during attacks of classic migraine (CM)--migraine with aura. In 6 and 7 patients, respectively, cerebral vascular reactivity to increased blood pressure and to hypocapnia was also investigated during the CM attacks. The Xenon-133 intraarterial injection technique was used to measure CBF. In this study, based in part on previously published data, methodological limitations, in particular caused by scattered radiation (Compton scatter), are critically analysed. Based on this analysis and the results of the CBF studies it is concluded: During CM attacks CBF appears to decrease focally in the posterior part of the brain to a level around 20 ml/100 g/min which is consistent with a mild degree of ischemia. Changes of CBF in focal low flow areas are difficult to evaluate accurately with the Xe-133 technique. In most cases true CBF may change 50% or more in the low flow areas without giving rise to significantly measurable changes of CBF. This analysis suggests that the autoregulation response cannot be evaluated in the low flow areas with the technique used while the observations are compatible with the concept that a vasoconstrictive state, unresponsive to hypocapnia, prevails in the low flow areas during CM attacks. The gradual increase in size of the low flow area seen in several cases may be interpreted in two different ways. A spreading process may actually exist. However, due to Compton scatter, a gradual decrease of CBF in a territory that does not increase in size will also appear as a gradually spreading low flow area when studied with the Xe-133 intracarotid technique.

  5. Co-current and counter-current imbibition in independent tubes of non-axisymmetric geometry.

    PubMed

    Unsal, E; Mason, G; Morrow, N R; Ruth, D W

    2007-02-01

    Experiments that illustrate and quantify the basics of co- and counter-current spontaneous imbibition have been conducted in a series of simple model pore systems. The fundamental pore geometry is a rod in an angled round-bottomed slot with the rod touching a capping glass plate. The capillaries thus formed by the surfaces of the slot, rod and plate do not have circular cross-sections but more complicated geometric structures with angular corners. The tubes formed at each side of the rod connect at both ends. A viscous, refined oil was applied from one end. For co-current experiments, the opposite end was left open to the atmosphere and oil imbibed into both tubes. For counter-current experiments the opposite end was sealed and connected to a sensitive pressure transducer. Oil imbibed into the smaller capillary and expelled air as a series of bubbles from the end of the larger capillary. Bubble snap-off was observed to be rate-dependent and occurred at a lower curvature than that of the cylindrical meniscus that just fits inside the tube. Only the corners of the larger capillary filled with oil during counter-current imbibition. Meniscus curvatures were calculated using the Mayer and Stowe-Princen method and were compared with actual values by measuring the capillary rise in the tubes; agreement was close. A simple model for co-current and counter-current imbibition has also been developed and the predictions compared with the experimental results. The model results were in agreement with the experiments. The experiments demonstrate that the capillary back pressure generated by the interfaces and bubbles in counter-current imbibition can slow the process significantly.

  6. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    DOE PAGES

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; ...

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less

  7. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    SciTech Connect

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; Kosovic, Branko

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocity and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.

  8. Semi-industrial isolation of salicin and amygdalin from plant extracts using slow rotary counter-current chromatography.

    PubMed

    Du, Qizhen; Jerz, Gerold; Ha, Yangchun; Li, Lei; Xu, Yuanjin; Zhang, Qi; Zheng, Qunxiong; Winterhalter, Peterb; Ito, Yoichiro

    2005-05-13

    Salicin in the bark extract of Salix alba and amygdalin in the fruit extract of Semen armeniacae were each separated by slow rotary counter-current chromatography (SRCCC). The apparatus was equipped with a 40-L column made of 17 mm i.d. convoluted Teflon tubing. A 500g amount of crude extract containing salicin at 13.5% was separated yielding 63.5 g of salicin at 95.3% purity in 20h using methyl tert-butyl ether-l-butanol (1:3) saturated by methanol-water (1:5) as a stationary phase and methanol-water (1:5) saturated by methyl tert-butyl ether-1-butanol (1:3) as a mobile phase. A 400g amount of crude extract containing amygdalin at 55.3% was isolated to yield 221.2g of amygdalin at 94.1% purity in 19h using ethyl acetate-1-butanol (1:2) saturated by water as a stationary phase and water saturated by ethyl acetate-1-butanol (1:2) as a mobile phase. The flow rate of the mobile phase was 50 ml/min. The results show that industrial SRCCC separation of salicin and amygdalin is feasible using a larger column at a higher flow rate of the mobile phase.

  9. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  10. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  11. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification.

    PubMed

    Akse, J R; Thompson, J O; Sauer, R L; Atwater, J E

    1998-07-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  12. Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation.

    PubMed

    Salomon, Eitan; Bar-Eyal, Leeat; Sharon, Shir; Keren, Nir

    2013-03-01

    Nitrogen limitation forces photosynthetic organisms to reallocate available nitrogen to essential functions. At the same time, it increases the probability of photo-damage by limiting the rate of energy-demanding metabolic processes, downstream of the photosynthetic apparatus. Non-diazotrophic cyanobacteria cope with this situation by decreasing the size of their phycobilisome antenna and by modifying their photosynthetic apparatus. These changes can serve two purposes: to provide extra amino-acids and to decrease excitation pressure. We examined the effects of nitrogen limitation on the form and function of the photosynthetic apparatus. Our aim was to study which of the two demands serve as the driving force for the remodeling of the photosynthetic apparatus, under different growth conditions. We found that a drastic reduction in light intensity allowed cells to maintain a more functional photosynthetic apparatus: the phycobilisome antenna was bigger, the activity of both photosystems was higher and the levels of photosystem (PS) proteins were higher. Pre-acclimating cells to Mn limitation, under which the activity of both PSI and PSII is diminished, results in a very similar response. The rate of PSII photoinhibition, in nitrogen limited cells, was found to be directly related to the activity of the photosynthetic apparatus. These data indicate that, under our experimental conditions, photo-damage avoidance was the more prominent determinant during the acclimation process. The combinations of limiting factors tested here is by no means artificial. Similar scenarios can take place under environmental conditions and should be taken into account when estimating nutrient limitations in nature.

  13. Seasonal Shift in Climatic Limiting Factors on Tree Transpiration: Evidence from Sap Flow Observations at Alpine Treelines in Southeast Tibet

    PubMed Central

    Liu, Xinsheng; Nie, Yuqin; Luo, Tianxiang; Yu, Jiehui; Shen, Wei; Zhang, Lin

    2016-01-01

    Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii) and juniper (Juniperus saltuaria) treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0°C. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change. PMID:27468289

  14. Seasonal Shift in Climatic Limiting Factors on Tree Transpiration: Evidence from Sap Flow Observations at Alpine Treelines in Southeast Tibet.

    PubMed

    Liu, Xinsheng; Nie, Yuqin; Luo, Tianxiang; Yu, Jiehui; Shen, Wei; Zhang, Lin

    2016-01-01

    Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii) and juniper (Juniperus saltuaria) treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0°C. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change.

  15. Electrochemical flow injection analysis of hydrazine in an excess of an active pharmaceutical ingredient: achieving pharmaceutical detection limits electrochemically.

    PubMed

    Channon, Robert B; Joseph, Maxim B; Bitziou, Eleni; Bristow, Anthony W T; Ray, Andrew D; Macpherson, Julie V

    2015-10-06

    The quantification of genotoxic impurities (GIs) such as hydrazine (HZ) is of critical importance in the pharmaceutical industry in order to uphold drug safety. HZ is a particularly intractable GI and its detection represents a significant technical challenge. Here, we present, for the first time, the use of electrochemical analysis to achieve the required detection limits by the pharmaceutical industry for the detection of HZ in the presence of a large excess of a common active pharmaceutical ingredient (API), acetaminophen (ACM) which itself is redox active, typical of many APIs. A flow injection analysis approach with electrochemical detection (FIA-EC) is utilized, in conjunction with a coplanar boron doped diamond (BDD) microband electrode, insulated in an insulating diamond platform for durability and integrated into a two piece flow cell. In order to separate the electrochemical signature for HZ such that it is not obscured by that of the ACM (present in excess), the BDD electrode is functionalized with Pt nanoparticles (NPs) to significantly shift the half wave potential for HZ oxidation to less positive potentials. Microstereolithography was used to fabricate flow cells with defined hydrodynamics which minimize dispersion of the analyte and optimize detection sensitivity. Importantly, the Pt NPs were shown to be stable under flow, and a limit of detection of 64.5 nM or 0.274 ppm for HZ with respect to the ACM, present in excess, was achieved. This represents the first electrochemical approach which surpasses the required detection limits set by the pharmaceutical industry for HZ detection in the presence of an API and paves the wave for online analysis and application to other GI and API systems.

  16. Analytical Investigation of Icing Limit for Diamond-Shaped Airfoil in Transonic and Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E.; Serafini, John S.

    1953-01-01

    Calculations have been made for the icing limit of a diamond airfoil at zero angle of attack in terms of the stream Mach number, stream temperature, and pressure altitude. The icing limit is defined as a wetted-surface temperature of 320 F and is related to the stream conditions by the method of Hardy. The results show that the point most likely to ice on the airfoil lies immediately behind the shoulder and is subject to possible icing at Mach numbers as high as 1.4.

  17. Limit cycles for the motion of finite-size particles in axisymmetric thermocapillary flows in liquid bridges

    NASA Astrophysics Data System (ADS)

    Romanò, Francesco; Kuhlmann, Hendrik C.; Ishimura, Misa; Ueno, Ichiro

    2017-09-01

    The motion of a small spherical particle of finite size in an axisymmetric thermocapillary liquid bridge is investigated numerically and experimentally. Due to the crowding of streamlines towards the free surface and the recirculating nature of the flow, advected particles visit the free surface repeatedly. The balance between centrifugal inertia and the strong short-range repulsive forces a particle experiences near the free surface leads to an attracting limit cycle for the particle motion. The existence of this limit cycle is established experimentally. It is shown that limit cycles obtained numerically by one-way-coupled simulations based on the Maxey-Riley equation and a particle-surface interaction model compare favorably with the experimental results if the thickness of the lubrication gap between the free surface and the surface of the particle is properly taken into account.

  18. Flow-through SIP - A novel stable isotope probing approach limiting cross-feeding

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Kitzinger, Katharina; Schintlmeister, Arno; Kjedal, Henrik; Nielsen, Jeppe Lund; Nielsen, Per; Wagner, Michael

    2017-04-01

    Stable isotope probing (SIP) is a widely applied tool to link specific microbial populations to metabolic processes in the environment without the prerequisite of cultivation, which has greatly advanced our understanding of the role of microorganisms in biogeochemical cycling. SIP relies on tracing specific isotopically labeled substrates (e.g., 13C, 15N, 18O) into cellular biomarkers, such as DNA, RNA or phospholipid fatty acids, and is considered to be a robust technique to identify microbial populations that assimilate the labeled substrate. However, cross-feeding can occur when labeled metabolites are released from a primary consumer and then used by other microorganisms. This leads to erroneous identification of organisms that are not directly responsible for the process of interest, but are rather connected to primary consumers via a microbial food web. Here, we introduce a new approach that has the potential to eliminate the effect of cross-feeding in SIP studies and can thus also be used to distinguish primary consumers from other members of microbial food webs. In this approach, a monolayer of microbial cells are placed on a filter membrane, and labeled substrates are supplied by a continuous flow. By means of flow-through, labeled metabolites and degradation products are constantly removed, preventing secondary consumption of the substrate. We present results from a proof-of-concept experiment using nitrifiers from activated sludge as model system, in which we used fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes for identification of nitrifiers in combination with nanoscale secondary ion mass spectrometry (NanoSIMS) for visualization of isotope incorporation at the single-cell level. Our results show that flow-through SIP is a promising approach to significantly reduce cross-feeding and secondary substrate consumption in SIP experiments.

  19. Metabolite profiling of polyphenols in peels of Citrus limetta Risso by combination of preparative high-speed countercurrent chromatography and LC-ESI-MS/MS.

    PubMed

    Rodríguez-Rivera, M Paulina; Lugo-Cervantes, Eugenia; Winterhalter, Peter; Jerz, Gerold

    2014-09-01

    The polar constituents of peels from Citrus limetta variety Risso (Rutaceae) were investigated by a combination of two complementary chromatographic techniques consisting of preparative high-speed countercurrent chromatography (HSCCC), and off-line LC-ESI-MS/MS analysis to design a two-dimensional metabolite profile. Countercurrent chromatography (CCC) using solely immiscible solvent systems allowed the fractionation of principal components and an enrichment of minor concentrated metabolites from a crude polar solvent partition of C. limetta peels for subsequent structural identification by LC-ESI-MS/MS analysis. The combination of two very different chromatographic techniques resulted in lower detection limits for electrospray mass-spectrometry and revealed eighty-five compounds, including three abscisic acid derivatives, five limonoid glycosides, twenty-six dihydro-cinnamic and cinnamic acid glycosides, eleven flavanone glycosides, seven flavone glycosides, seventeen flavonol glycosides, including limocitrol and limocitrin derivatives. As a chemocharacteristic for C. limetta metabolites, many of the detected structures were linked to single and multiple 3-hydroxy-3-methyl-glutaryl (HMG) substitutions. C. limetta peels are a by-product of juice production, and not only the antioxidant fractions but also some of the fortified compounds could be used for food and pharmaceutical purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Generally Useful Estimate of Solvent Systems (GUESS) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography

    PubMed Central

    Liu, Yang; Friesen, J. Brent; Klein, Larry L.; McAlpine, James B.; Lankin, David C.; Pauli, Guido F.; Chen, Shao-Nong

    2016-01-01

    The TLC-based Generally Useful Estimate of Solvent Systems (GUESS) method was employed for countercurrent chromatography solvent system selection, in order to separate the three synthetic isomers: 3-O-methylpyridoxine, 4′-O-methylpyridoxine (ginkgotoxin) and 5′-O-methylpyridoxine. The Rf values of the three isomers indicated that ChMWat +2 (chloroformmethanol-water 10:5:5, v/v/v) was appropriate for the countercurrent chromatography. The isomer separation was highly selective and demonstrated that the TLC-based GUESS method can accelerate solvent system selection for countercurrent chromatography. Accordingly, the study re-emphasizes the practicality of TLC as a tool to facilitate the rapid development of new countercurrent and centrifugal partition chromatography methods for this solvent system. Purity and structure characterization of all samples was performed by quantitative 1H NMR. PMID:26680272

  1. The Generally Useful Estimate of Solvent Systems (GUESS) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography.

    PubMed

    Liu, Yang; Friesen, J Brent; Klein, Larry L; McAlpine, James B; Lankin, David C; Pauli, Guido F; Chen, Shao-Nong

    2015-12-24

    The TLC-based Generally Useful Estimate of Solvent Systems (GUESS) method was employed for countercurrent chromatography solvent system selection, in order to separate the three synthetic isomers: 3-O-methylpyridoxine, 4'-O-methylpyridoxine (ginkgotoxin), and 5'-O-methylpyridoxine. The Rf values of the three isomers indicated that ChMWat+2 (chloroform-methanol-water 10:5:5, v/v/v) was appropriate for the countercurrent separation. The isomer separation was highly selective and demonstrated that the TLC-based GUESS method can accelerate solvent system selection for countercurrent separation. Accordingly, the study re-emphasizes the practicality of TLC as a tool to facilitate the rapid development of new countercurrent and centrifugal partition chromatography methods for this solvent system. Purity and structure characterization of all samples was performed by quantitative (1)H NMR.

  2. Identifying Natural syNergist from Pongamia pinnata Using High-Speed Counter-Current Chromatography Combined with Isobolographic Analysis.

    PubMed

    Yin, Hao; Wei, Yubai; Chen, Rouwen; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; He, Weihong

    2017-03-03

    For identifying the synergistic compounds from Pongamia pinnata, an approach based on high-speed counter-current chromatography (HSCCC) combined with isobolographic analysis was designed to detect the synergistic effects in the complex mixture [...].

  3. Circadian photosynthetic reductant flow in the dinoflagellate Lingulodinium is limited by carbon availability.

    PubMed

    Mackenzie, Tyler D B; Morse, David

    2011-04-01

    Circadian rhythms are the observed outputs of endogenous daily clocks and are thought to provide a selective advantage to cells adapted to daily light/dark cycles. However, the biochemical links between the clock and the overt rhythms in cell physiology are generally not known. Here, we examine the circadian rhythm in O₂ evolution by cultures of the dinoflagellate Lingulodinium, a rhythm previously ascribed to rhythmic electron flow through photosystem II. We find that O₂ evolution rates increase when CO₂ concentrations are increased, either following addition of DIC or a rapid decrease in culture pH. In medium containing only nitrate as an electron acceptor, O₂ evolution rates mirror the circadian rhythm of nitrate reductase activity in the cells. Furthermore, competition between photosynthetic electron flow to carbon and to nitrate varies in its relative efficiency through the day-night cycle. We also find, using simultaneous and continuous monitoring of pH and O₂ evolution rates over several days, that while culture pH is normally rhythmic, circadian changes in rates of O₂ evolution depend not on the external pH but on levels of internal electron acceptors. We propose that the photosynthetic electron transport rhythm in Lingulodinium is driven by the availability of a reductant sink. © 2011 Blackwell Publishing Ltd.

  4. Minimum current principle and variational method in theory of space charge limited flow

    SciTech Connect

    Rokhlenko, A.

    2015-10-21

    In spirit of the principle of least action, which means that when a perturbation is applied to a physical system, its reaction is such that it modifies its state to “agree” with the perturbation by “minimal” change of its initial state. In particular, the electron field emission should produce the minimum current consistent with boundary conditions. It can be found theoretically by solving corresponding equations using different techniques. We apply here the variational method for the current calculation, which can be quite effective even when involving a short set of trial functions. The approach to a better result can be monitored by the total current that should decrease when we on the right track. Here, we present only an illustration for simple geometries of devices with the electron flow. The development of these methods can be useful when the emitter and/or anode shapes make difficult the use of standard approaches. Though direct numerical calculations including particle-in-cell technique are very effective, but theoretical calculations can provide an important insight for understanding general features of flow formation and even sometimes be realized by simpler routines.

  5. Radially dependent large-scale dynamos in global cylindrical shear flows and the local cartesian limit

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Blackman, E. G.

    2016-06-01

    For cylindrical differentially rotating plasmas, we study large-scale magnetic field generation from finite amplitude non-axisymmetric perturbations by comparing numerical simulations with quasi-linear analytic theory. When initiated with a vertical magnetic field of either zero or finite net flux, our global cylindrical simulations exhibit the magnetorotational instability (MRI) and large-scale dynamo growth of radially alternating mean fields, averaged over height and azimuth. This dynamo growth is explained by our analytic calculations of a non-axisymmetric fluctuation-induced electromotive force that is sustained by azimuthal shear of the fluctuating fields. The standard `Ω effect' (shear of the mean field by differential rotation) is unimportant. For the MRI case, we express the large-scale dynamo field as a function of differential rotation. The resulting radially alternating large-scale fields may have implications for angular momentum transport in discs and corona. To connect with previous work on large-scale dynamos with local linear shear and identify the minimum conditions needed for large-scale field growth, we also solve our equations in local Cartesian coordinates. We find that large-scale dynamo growth in a linear shear flow without rotation can be sustained by shear plus non-axisymmetric fluctuations - even if not helical, a seemingly previously unidentified distinction. The linear shear flow dynamo emerges as a more restricted version of our more general new global cylindrical calculations.

  6. Limiting pumping from the Edwards Aquifer: An economic investigation of proposals, water markets, and spring flow guarantees

    NASA Astrophysics Data System (ADS)

    McCarl, Bruce A.; Dillon, Carl R.; Keplinger, Keith O.; Williams, R. Lynn

    1999-04-01

    The Edwards Aquifer, near San Antonio, Texas, is an important water source for both pumping and spring flow, which in turn provides water for recreation and habitat for several endangered species. A management authority is charged with aquifer management and is mandated to reduce pumping, facilitate water markets, protect agricultural rights, and protect the species habitat. This paper examines the economic dimensions of authority duties. A combined hydrologic-economic model is used in the investigation. The results indicate that proposed pumping limits are shown to have large consequences for agricultural usage and to decrease the welfare of current aquifer pumping users. However, the spring flow habitat is found to be protected, and the gains from that protection would have to exceed pumping user losses in order for the protection measures to increase regional economic welfare. Agricultural guarantees are shown to cause use value differences, indicating the opportunity for emergence of an active water market. Fixed quantity pumping limits are found to be an expensive way of insuring adequate spring flow.

  7. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part II: experimental.

    PubMed

    Verstraeten, M; Broeckhoven, K; Dittmann, M; Choikhet, K; Witt, K; Desmet, G

    2011-02-25

    We report on a first series of experiments comparing the selectivity and the kinetic performance of constant flow rate and constant pressure mode gradient elution separations. Both water-methanol and water-acetonitrile mobile phase mixtures have been considered, as well as different samples and gradient programs. Instrument pressures up to 1200 bar have been used. Neglecting some small possible deviations caused by viscous heating effects, the experiments could confirm the theoretical expectation that both operation modes should lead to identical separation selectivities provided the same mobile phase gradient program is run in reduced volumetric coordinates. Also in agreement with the theoretical expectations, the cP-mode led to a gain in analysis time amounting up to some 17% for linear gradients running from 5 to 95% of organic modifier at ultra-high pressures. Gains of over 25% were obtained for segmented gradients, at least when the flat portions of the gradient program were situated in regions where the gradient composition was the least viscous. Detailed plate height measurements showed that the single difference between the constant flow rate and the constant pressure mode is a (small) difference in efficiency caused by the difference in average flow rate, in turn leading to a different intrinsic band broadening. Separating a phenone sample with a 20-95% water-acetonitrile gradient, the cP-mode leads to gradient plate heights that are some 20-40% smaller than in the cF-mode in the B-term dominated regime, while they are some 5-10% larger in the C-term dominated regime. Considering a separation with sub 2-μm particles on a 350 mm long coupled column, switching to the constant pressure mode allowed to finish the run in 29 instead of in 35 min, while also a larger peak capacity is obtained (going from 334 in the cF-mode to 339 in the cP-mode) and the mutual selectivity between the different peaks is fully retained. Copyright © 2010 Elsevier B.V. All rights

  8. Two-dimensional space-charge-limited flows in a crossed-field gap

    SciTech Connect

    Koh, W. S.; Ang, L. K.

    2007-04-02

    This letter presents a two-dimensional (2D) model of space-charge-limited current in a planar crossed-field gap with a magnetic strength of B/B{sub H}=0-3, where B{sub H} is the Hull cutoff magnetic field. The electrons are emitted from an infinite length strip of finite width W comparable to the gap spacing D. It is found that the 2D enhancement of the crossed-field limiting current is 1+Fx4D/({pi}W), where F (=0.05-0.5) is a normalized mean-position factor, and it is a function of B/B{sub H}. Good agreement has been obtained in comparisons with particle-in-cell simulation.

  9. Theory of Molecular Cloud Formation through Colliding Flows: Successes and Limits

    NASA Astrophysics Data System (ADS)

    Hennebelle, P.

    2013-10-01

    We discuss the recent efforts which have been made to understand the formation of molecular clouds through the accumulation of diffuse material, a scenario sometimes called “colliding flows”. We present a set of statistics which have been inferred from these simulations and which seem to agree reasonably with observations seemingly suggesting that this scenario could indeed be applied to understand molecular cloud formation. We also emphasize the limits of this highly idealized model.

  10. Solution of the Burnett equations for hypersonic flows near the continuum limit

    NASA Technical Reports Server (NTRS)

    Imlay, Scott T.

    1992-01-01

    The INCA code, a three-dimensional Navier-Stokes code for analysis of hypersonic flowfields, was modified to analyze the lower reaches of the continuum transition regime, where the Navier-Stokes equations become inaccurate and Monte Carlo methods become too computationally expensive. The two-dimensional Burnett equations and the three-dimensional rotational energy transport equation were added to the code and one- and two-dimensional calculations were performed. For the structure of normal shock waves, the Burnett equations give consistently better results than Navier-Stokes equations and compare reasonably well with Monte Carlo methods. For two-dimensional flow of Nitrogen past a circular cylinder the Burnett equations predict the total drag reasonably well. Care must be taken, however, not to exceed the range of validity of the Burnett equations.

  11. Solution of the Burnett equations for hypersonic flows near the continuum limit

    NASA Technical Reports Server (NTRS)

    Imlay, Scott T.

    1992-01-01

    The INCA code, a three-dimensional Navier-Stokes code for analysis of hypersonic flowfields, was modified to analyze the lower reaches of the continuum transition regime, where the Navier-Stokes equations become inaccurate and Monte Carlo methods become too computationally expensive. The two-dimensional Burnett equations and the three-dimensional rotational energy transport equation were added to the code and one- and two-dimensional calculations were performed. For the structure of normal shock waves, the Burnett equations give consistently better results than Navier-Stokes equations and compare reasonably well with Monte Carlo methods. For two-dimensional flow of Nitrogen past a circular cylinder the Burnett equations predict the total drag reasonably well. Care must be taken, however, not to exceed the range of validity of the Burnett equations.

  12. Current limitations in endoscopic CO₂ insufflation for NOTES: flow and pressure study.

    PubMed

    Nakajima, Kiyokazu; Nishida, Toshirou; Milsom, Jeffrey W; Takahashi, Tsuyoshi; Souma, Yoshihito; Miyazaki, Yasuaki; Iijima, Hideki; Mori, Masaki; Doki, Yuichiro

    2010-11-01

    Natural orifice transluminal endoscopic surgery (NOTES) requires fast and steady CO₂ insufflation into the intraluminal and intra-abdominal spaces through a flexible endoscope. However, an optimal endoscopic insufflation system has yet to be determined. To verify the performances of 2 currently available CO₂ insufflators in an experimental NOTES setting: (1) an automatic pressure-regulated surgical insufflator (UHI-3) and (2) a manual endoscopic insufflator (UCR). An inanimate bench study followed by an acute animal experiment. Osaka University and Olympus Research and Development Department. The UHI-3 or UCR was connected to an endoscope of differing length and diameter via an insufflating line of differing length and diameter. The flow rates at the tip of the endoscope (bench test), the time to establish pneumoperitoneum, and the time to re-establish pneumoperitoneum after forceful suction (porcine model) were obtained. The UHI-3 failed to feed CO₂ through an insufflating channel but fed CO₂ via a working channel but required a large channel (>3 mm) and a wide insufflating line (>7 mm) to accomplish an acceptable flow rate. UCR fed CO₂ through the insufflating channel; however, the time taken to establish pneumoperitoneum and the time taken to re-establish pneumoperitoneum after forceful suction were longer compared with the time taken for UHI-3 insufflation via the working channel or laparoscopic cannula. Bench/animal study with small sample numbers; no human trial. The currently available CO₂ insufflators are not optimal for NOTES. Modification of an endoscopic insufflation system and/or development of a dedicated overtube with an insufflating function are therefore essential. Copyright © 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  13. Limits to Diffusive O2 Transport: Flow, Form, and Function in Nudibranch Egg Masses from Temperate and Polar Regions

    PubMed Central

    Moran, Amy L.; Woods, H. Arthur

    2010-01-01

    Background Many aquatic animals enclose embryos in gelatinous masses, and these embryos rely on diffusion to supply oxygen. Mass structure plays an important role in limiting or facilitating O2 supply, but external factors such as temperature and photosynthesis can play important roles as well. Other external factors are less well understood. Methodology/Principal Findings We first explored the effects of water flow on O2 levels inside nudibranch embryo masses and compared the effects of flow on masses from temperate and polar regions. Water flow (still vs. vigorously bubbled) had a strong effect on central O2 levels in all masses; in still water, masses were considerably more hypoxic than in bubbled water. This effect was stronger in temperate than in polar masses, likely due to the increased metabolic demand and O2 consumption of temperate masses. Second, we made what are to our knowledge the first measurements of O2 in invertebrate masses in the field. Consistent with laboratory experiments, O2 in Antarctic masses was high in masses in situ, suggesting that boundary-layer effects do not substantially limit O2 supply to polar embryos in the field. Conclusions/Significance All else being equal, boundary layers are more likely to depress O2 in masses in temperate or tropical regions; thus, selection on parents to choose high-flow sites for mass deposition is likely greater in warm water. Because of the large number of variables affecting diffusive O2 supply to embryos in their natural environment, field observations are necessary to test hypotheses generated from laboratory experiments and mathematical modeling. PMID:20711406

  14. Limits to diffusive O2 transport: flow, form, and function in nudibranch egg masses from temperate and polar regions.

    PubMed

    Moran, Amy L; Woods, H Arthur

    2010-08-11

    Many aquatic animals enclose embryos in gelatinous masses, and these embryos rely on diffusion to supply oxygen. Mass structure plays an important role in limiting or facilitating O2 supply, but external factors such as temperature and photosynthesis can play important roles as well. Other external factors are less well understood. We first explored the effects of water flow on O2 levels inside nudibranch embryo masses and compared the effects of flow on masses from temperate and polar regions. Water flow (still vs. vigorously bubbled) had a strong effect on central O2 levels in all masses; in still water, masses were considerably more hypoxic than in bubbled water. This effect was stronger in temperate than in polar masses, likely due to the increased metabolic demand and O2 consumption of temperate masses. Second, we made what are to our knowledge the first measurements of O2 in invertebrate masses in the field. Consistent with laboratory experiments, O2 in Antarctic masses was high in masses in situ, suggesting that boundary-layer effects do not substantially limit O2 supply to polar embryos in the field. All else being equal, boundary layers are more likely to depress O2 in masses in temperate or tropical regions; thus, selection on parents to choose high-flow sites for mass deposition is likely greater in warm water. Because of the large number of variables affecting diffusive O2 supply to embryos in their natural environment, field observations are necessary to test hypotheses generated from laboratory experiments and mathematical modeling.

  15. [Separation of proteins in aqueous two-phase systems with high-speed counter-current chromatography].

    PubMed

    Zhi, Wenbo; Deng, Qiuyun; Song, Jiangnan; Gu, Ming; Ouyang, Fan

    2005-01-01

    High-speed counter-current chromatography (HSCCC) is a continuous liquid-liquid partition chromatography, with remarkable advantages of high separation efficiency and no adsorption or denaturation by solid phase. The retention of stationary phase and the separation of proteins in polyethylene glycol 1000 (PEG1000)-phosphate aqueous two-phase system (ATPs) were studied with a multi-column high speed-counter-current chromatograph. The flow direction and speed of the mobile phase, and the rotation direction and speed of the apparatus showed different effects on the retention of the stationary phase, which reached the maximum at 33.3% with a flow rate of 0.6 mL/min and a rotation speed of 900 r/min in 14.0% PEG1000-16.0% phosphate ATPs. Distinct differences in partition coefficients among cytochrome C, lysozyme and hemoglobin were found at pH 9.2 and these three proteins were successfully separated in 14.0% PEG1000-16.0% phosphate ATPs at pH 9.2 by HSCCC with the apparatus rotating at 850 r/min and the mobile phase flow rate of 1.0 mL/min. The major protein components in hen egg white, including ovaltransferrin, ovalbumin and lysozyme also show distinct differences of partition coefficients in PEG1000-phosphate ATPs at pH 9.2. Ovalbumin and lysozyme were successfully purified to homogeneity and ovaltransferrin to ca 60% purity from the hen egg white sample with yields over 90% in 15.0% PEG1000-17.0% phosphate ATPs at pH 9.2 with the apparatus rotating at 850 r/min and mobile phase flow rate of 1.0 mL/min.

  16. Pressurized liquid extraction coupled with countercurrent chromatography for systematic isolation of chemical constituents by preprogrammed automatic control.

    PubMed

    Zhang, Yuchi; Guo, Liping; Liu, Chunming; Fu, Zi' ao; Cong, Lei; Qi, Yanjuan; Li, Dongping; Li, Sainan; Wang, Jing

    2013-09-15

    Pressurized liquid extraction (PLE) coupled with high-speed countercurrent chromatography (HSCCC) via an automated procedure was firstly developed to extract and isolate ginsenosides from Panax quinquefolium. The experiments were designed under the guidance of mathematical model. The partition coefficient (K) values of the target compounds and resolutions of peak profiles were employed as the research indicators, and exponential function and binomial formulas were used to optimizing the solvent systems and flow rates of the mobile phases in a three-stage separation. In the first stage, ethyl acetate, n-butanol, and water were simultaneously pumped into the solvent separator at the flow rates 11.0, 10.0, and 23.0mL/min, respectively. The upper phase of the solvent system in the solvent separator was used as both the PLE solvent and the HSCCC stationary phase, followed by elution with the lower phase of the corresponding solvent system to separate the common ginsenosides. In the second and third stages, rare ginsenosides were first separated by elution with ethyl acetate, n-butanol, methanol, and water (flow rates: 20.0, 3.0, 5.0, and 11.0mL/min, respectively), then with n-heptane, n-butanol, methanol, and water (flow rates: 17.5, 6.0, 5.0, and 22.5mL/min, respectively). Nine target compounds, with purities exceeding 95.0%, and three non-target compounds, with purities above 84.48%, were successfully separated at the semipreparative scale in 450min. The separation results prove that the PLE/HSCCC parameters calculated via mathematical model and formulas were accurately and scientifically. This research has opened up great prospects for industrial automation application.

  17. A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric

    2015-01-01

    Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.

  18. A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data

    NASA Astrophysics Data System (ADS)

    Ashrafi, Mohammad; Chua, Lloyd Hock Chye; Quek, Chai; Qin, Xiaosheng

    2017-02-01

    Current state-of-the-art online neuro fuzzy models (NFMs) such as DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) have been used for runoff forecasting. Online NFMs adopt a local learning approach and are able to adapt to changes continuously. The DENFIS model however requires upper/lower bound for normalization and also the number of rules increases monotonically. This requirement makes the model unsuitable for use in basins with limited data, since a priori data is required. In order to address this and other drawbacks of current online models, the Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) is adopted in this study for forecast applications in basins with limited data. GSETSK is a fully-online NFM which updates its structure and parameters based on the most recent data. The model does not require the need for historical data and adopts clustering and rule pruning techniques to generate a compact and up-to-date rule-base. GSETSK was used in two forecast applications, rainfall-runoff (a catchment in Sweden) and river routing (Lower Mekong River) forecasts. Each of these two applications was studied under two scenarios: (i) there is no prior data, and (ii) only limited data is available (1 year for the Swedish catchment and 1 season for the Mekong River). For the Swedish Basin, GSETSK model results were compared to available results from a calibrated HBV (Hydrologiska Byråns Vattenbalansavdelning) model. For the Mekong River, GSETSK results were compared against the URBS (Unified River Basin Simulator) model. Both comparisons showed that results from GSETSK are comparable with the physically based models, which were calibrated with historical data. Thus, even though GSETSK was trained with a very limited dataset in comparison with HBV or URBS, similar results were achieved. Similarly, further comparisons between GSETSK with DENFIS and the RBF (Radial Basis Function) models highlighted further advantages of GSETSK as having a rule-base (compared to

  19. Technical requirements and limitations of miniaturized axial flow pumps for circulatory support.

    PubMed

    Reul, H

    1994-01-01

    The engineering principles of rotary blood pumps are elucidated by means of a basic introduction into turbomachinery. Additionally, some important dimensionless quantities which relate to pumping characteristics and pump type are introduced. These theoretical fundamentals are applied to the design of high-speed microaxial pumps, especially the two Hemopump versions. The theoretical estimates clearly show that each pump version has its physical limits, especially at small impeller sizes. It is also demonstrated that not any clinically desirable working point of an axial pump can be achieved with an arbitrarily small pump size.

  20. Linking skeletal muscle blood flow and metabolism to the limits of human performance.

    PubMed

    Boushel, Robert

    2017-01-01

    Over the last 50 years, Bengt Saltin's contributions to our understanding of physiology of the circulation, the matching of the circulation to muscle metabolism, and the underlying mechanisms that set the limits for exercise performance were enormous. His research addressed the key questions in the field using sophisticated experimental methods including field expeditions. From the Dallas Bedrest Study to the 1-leg knee model to the physiology of lifelong training, his prodigious body of work was foundational in the field of exercise physiology and his leadership propelled integrative human physiology into the mainstream of biological sciences.

  1. Self-potential method for characterizing streaming flows in the saturated and vadose zones: state of the art and limitations

    NASA Astrophysics Data System (ADS)

    Sailhac, P.

    2005-12-01

    Self-Potential (SP) method is sensitive not only to the water content, but, above all, to flow velocities within the underground porous medium. So it can be considered as a crucial help in hydrogeophysics. This is underlined by the so-called electrokinetic coupling and has been early used in geophysics (e.g. Bogoslovsky and Ogilvy, 1970) and hydrology (Abaza and Clyde 1969). During the last decade, both experimental and theoretical progresses have moved ahead SP to provide quantitative flow parameters. Now SP time and/or spatial variations can be used to monitor water fluxes during infiltration (e.g. Thony et al. 1997, Doussan et al. 2002, Darnet & Marquis 2004), seepage (Titov et al. 2000), or pumping (e.g. Fagerlund & Heinson 2003, Darnet et al. 2003, Revil et al. 2003). In order that SP is used by a larger community, it would be useful to recall the fundamentals, to review recent interpretation techniques in a simple framework and to precise their limitations. First considering flows in the saturated zone and a pumping experiment, I will show different interpretation techniques that are based upon Green function decompositions (e.g. wavelets, COP tomography of Patella, and iso-α line of Revil et al.). Classical application of theses techniques is underlined by the assumption of a constant electrical conductivity medium that involves uncertainty and bias in quantitative flow parameter estimates. For instance, the diffusive effect of a conductive shallow layer tends to increase the apparent depth of an underground flow source or sink. To correct this problem, one can use Green functions of a tabular medium in the COP tomography. In the complex case of unsaturated zone, the hydraulic and electric conductivities are depending on the water content. We will discuss on different soil models and different experiments that can be used for the monitoring of the infiltration and the characterisation of the soil hydraulic parameters.

  2. Disk-to-disk transfer as the rate-limiting step for energy flow in phycobilisomes

    SciTech Connect

    Glazer, A.N.; Yeh, S.W.; Webb, S.P.; Clark, J.H.

    1985-01-25

    A broadly tunable picosecond laser source and an ultrafast streak camera were used to measure temporally and spectrally resolved emission from intact phycobilisomes and from individual phycobiliproteins as a function of excitation wavelength. Both wild-type and mutant phycobilisomes of the unicellular cyanobacterium Synechocystis 6701 were examined, as well as two biliproteins, R-phycoerythrin (240 kilodaltons, 34 bilins) and allophycocyanin (100 kilodaltons, 6 bilins). Measurements of intact phycobilisomes with known structural differences showed that the addition of an average of 1.6 phycoerythrin disks in the phycobilisome rod increased the overall energy transfer time by 30 +/- 5 picoseconds. In the isolated phycobiliproteins the onset of emission was as prompt as that of a solution of rhodamine B laser dye and was independent of excitation wavelength. This imposes an upper limit of 8 picoseconds (instrument-limited) on the transfer time from sensitizing to fluorescing chromophores in these biliproteins. These results indicate that disk-to-disk transfer is the slowest energy transfer process in phycobilisomes and, in combination with previous structural analyses, show that with respect to energy transfer the lattice of approximately 625 light-harvesting chromophores in the Synechocystis 6701 wild-type phycobilisome functions as a linear five-point array.

  3. Possible complication regarding phosphorus removal with a continuous flow biofilm system: diffusion limitation.

    PubMed

    Falkentoft, C M; Arnz, P; Henze, M; Mosbaek, H; Müller, E; Wilderer, P A; Harremoës, P

    2001-01-01

    Diffusion limitation of phosphate possibly constitutes a serious problem regarding the use of a biofilm reactor for enhanced biological phosphorus removal. A lab-scale reactor for simultaneous removal of phosphorus and nitrate was operated in a continuous alternating mode of operation. For a steady-state operation with excess amounts of carbon source (acetate) during the anaerobic phase, the same amount of phosphate was released during the anaerobic phase as was taken up during the anoxic phase. The measured phosphorus content of the biomass that detached during backwash after an anoxic phase was low, 2.4 +/- 0.4% (equal to 24 +/- 4 mg P/g TS). A simplified computer model indicated the reason to be phosphate diffusion limitation and the model revealed a delicate balance between the obtainable phosphorus contents of the biomass and operating parameters, such as backwash interval, biofilm thickness after backwash, and phase lengths. The aspect of diffusion is considered of crucial importance when evaluating the performance of a biofilter for phosphate removal. Copyright 2001 John Wiley & Sons, Inc.

  4. Peering below the diffraction limit: robust and specific sorting of viruses with flow cytometry.

    PubMed

    Lance, Shea T; Sukovich, David J; Stedman, Kenneth M; Abate, Adam R

    2016-12-01

    Viruses are incredibly diverse organisms and impact all forms of life on Earth; however, individual virions are challenging to study due to their small size and mass, precluding almost all direct imaging or molecular analysis. Moreover, like microbes, the overwhelming majority of viruses cannot be cultured, impeding isolation, replication, and study of interesting new species. Here, we introduce PCR-activated virus sorting, a method to isolate specific viruses from a heterogeneous population. Specific sorting opens new avenues in the study of uncultivable viruses, including recovering the full genomes of viruses based on genetic fragments in metagenomes, or identifying the hosts of viruses. PAVS enables specific sorting of viruses with flow cytometry. A sample containing a virus population is processed through a microfluidic device to encapsulate it into droplets, such that the droplets contain different viruses from the sample. TaqMan PCR reagents are also included targeting specific virus species such that, upon thermal cycling, droplets containing the species become fluorescent. The target viruses are then recovered via droplet sorting. The recovered virus genomes can then be analyzed with qPCR and next generation sequencing. We describe the PAVS workflow and demonstrate its specificity for identifying target viruses in a heterogeneous population. In addition, we demonstrate recovery of the target viruses via droplet sorting and analysis of their nucleic acids with qPCR.

  5. Studies on the Effect of Column Angle in Figure-8 Centrifugal Counter-current Chromatography

    PubMed Central

    Yang, Yi; Gu, Dongyu; Aisa, Haji Akber; Ito, Yoichiro

    2010-01-01

    The performance of the figure-8 column configuration in centrifugal counter-current chromatography was investigated by changing the angle between the column axis (a line through the central post and the peripheral post on which the figure-8 coil is wound) and the centrifugal force. The first series of experiments was performed using a polar two-phase solvent system composed of 1-butanol-acetic acid-water (4:1:5, v/v) to separate two dipeptide samples, Trp-Tyr and Val-Tyr, at a flow rate of 0.05 ml/min at 1000 rpm. When the column angle was changed from 0° (column axis parallel to the centrifugal force) to 45° and 45° to 90° (column axis perpendicular to the centrifugal force), peak resolution (Rs) changed from 1.93 (Sf = 37.8%) to 1.54 (Sf=30.6%), then to 1.31 (Sf = 40.5%) with the lower mobile phase and from 1.21 (Sf = 38.8%) to 1.10 (Sf =34.4%), then to 0.99 (Sf = 42.2%) with the upper mobile phase, respectively, where the stationary phase retention, Sf, is given in parentheses. The second series of experiments was similarly performed with a more hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1M hydrochloric acid (1:1:1:1, v/v) to separate three DNP-amino acids, DNP-glu, DNP-α-ala and DNP-ala, at a flow rate of 0.05 ml/min at 1000 rpm. When the column angle was altered from 0° to 45° and 45° to 90°, Rs changed from 1.77 (1st peak/ 2nd peak) and 1.52 (2nd peak/3rd peak) (Sf = 27.3%) to 1.24 and 1.02 (Sf = 35.4%), then to 1.69 and 1.49 (Sf = 42.1%) with the lower mobile phase, and from 1.73 and 0.84 (SF = 41.2%) to 1.44 and 0.73 (Sf = 45.6%), then to 1.21 and 0.63 (Sf = 55.6%) with the upper mobile phase, respectively. The performance of figure-8 column at 0° and 90° was also compared at different flow rates. The results show that Rs was increased with decreased flow rate yielding the highest value at the 0° column angle with lower mobile phase. The overall results of our studies indicated that a 0° column angle for the

  6. pH-zone-refining counter-current chromatography: origin, mechanism, procedure and applications.

    PubMed

    Ito, Yoichiro

    2013-01-04

    Since 1980, high-speed counter-current chromatography (HSCCC) has been used for separation and purification of natural and synthetic products in a standard elution mode. In 1991, a novel elution mode called pH-zone refining CCC was introduced from an incidental discovery that an organic acid in the sample solution formed the sharp peak of an acid analyte. The cause of this sharp peak formation was found to be bromoacetic acid present in the sample solution which formed a sharp trailing border to trap the acidic analyte. Further studies on the separation of DNP-amino acids with three spacer acids in the stationary phase revealed that increased sample size resulted in the formation of fused rectangular peaks, each preserving high purity and zone pH with sharp boundaries. The mechanism of this phenomenon was found to be the formation of a sharp trailing border of an acid (retainer) in the column which moves at a lower rate than that of the mobile phase. In order to facilitate the application of the method, a new method was devised using a set of retainer and eluter to form a sharp retainer rear border which moves through the column at a desired rate regardless of the composition of the two-phase solvent system. This was achieved by adding the retainer in the stationary phase and the eluter in the mobile phase at a given molar ratio. Using this new method the hydrodynamics of pH-zone-refining CCC was diagrammatically illustrated by three acidic samples. In this review paper, typical pH-zone-refining CCC separations were presented, including affinity separations with a ligand and a separation of a racemic mixture using a chiral selector in the stationary phase. Major characteristics of pH-zone-refining CCC over conventional HSCCC are as follows: the sample loading capacity is increased over 10 times; fractions are highly concentrated near saturation level; yield is improved by increasing the sample size; minute charged compounds are concentrated and detected at the peak

  7. pH-zone-refining counter-current chromatography: Origin, mechanism, procedure and applications✩

    PubMed Central

    Ito, Yoichiro

    2012-01-01

    Since 1980, high-speed counter-current chromatography (HSCCC) has been used for separation and purification of natural and synthetic products in a standard elution mode. In 1991, a novel elution mode called pH-zone refining CCC was introduced from an incidental discovery that an organic acid in the sample solution formed the sharp peak of an acid analyte. The cause of this sharp peak formation was found to be bromoacetic acid present in the sample solution which formed a sharp trailing border to trap the acidic analyte. Further studies on the separation of DNP-amino acids with three spacer acids in the stationary phase revealed that increased sample size resulted in the formation of fused rectangular peaks, each preserving high purity and zone pH with sharp boundaries. The mechanism of this phenomenon was found to be the formation of a sharp trailing border of an acid (retainer) in the column which moves at a lower rate than that of the mobile phase. In order to facilitate the application of the method, a new method was devised using a set of retainer and eluter to form a sharp retainer rear border which moves through the column at a desired rate regardless of the composition of the two-phase solvent system. This was achieved by adding the retainer in the stationary phase and the eluter in the mobile phase at a given molar ratio. Using this new method the hydrodynamics of pH-zone-refining CCC was diagrammatically illustrated by three acidic samples. In this review paper, typical pH-zone-refining CCC separations were presented, including affinity separations with a ligand and a separation of a racemic mixture using a chiral selector in the stationary phase. Major characteristics of pH-zone-refining CCC over conventional HSCCC are as follows: the sample loading capacity is increased over 10 times; fractions are highly concentrated near saturation level; yield is improved by increasing the sample size; minute charged compounds are concentrated and detected at the peak

  8. [Isolation and purification of diarylheptanoids from Alpinia officinarum Hance by high-speed counter-current chromatography].

    PubMed

    Ye, Qiongxian; Tan, Xiong; Zhu, Longping; Zhao, Zhimin; Yang, Depo; Yin, Sheng; Wang, Dongmei

    2012-03-01

    Three diarylheptanoids were isolated and purified from Alpinia officinarum Hance by high-speed counter-current chromatography (HSCCC). A two-phase solvent system composed of hexane-ethyl acetate-methanol-water (2: 3: 1.75: 1, v/v/v/v) was used. The lower phase was used as the stationary phase. From 122.20 mg petroleum ether extract of A. officinarum, 5R-hydroxy-7-(4-hydroxy-3-methoxyphenyl )-1-phenyl-3-heptanone (7.37 mg), 7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-4E-en-3-heptanone (9.11 mg) and 1,7-diphenyl-4E-en-3-heptanone (15.44 mg) with purities over 93% were obtained within 140 min in one-step separation by HSCCC under the conditions of a flow rate of 1.5 mL/min and 858 r/min. The obtained compounds were analyzed by high performance liquid chromatography to provide their purities, and their structures were confirmed by using mass spectrometry, 1H-nuclear magnetic resonance (1H-NMR) and 13C-NMR. The established HSCCC method is relatively simple, fast and suitable for the isolation and purification of diarylheptanoids from A. officinarum.

  9. Flow-through, viral co-infection assay for resource-limited settings.

    PubMed

    Cretich, Marina; Torrisi, Marcello; Daminelli, Serena; Gagni, Paola; Plavisch, Lauren; Chiari, Marcella

    2015-01-01

    Here we present a new and rapid immunofiltration assay for simultaneous detection of HIV p24 and hepatitis B virus antigens. The assay platform is composed of a 13 mm nitrocellulose filter spotted with capturing bioprobes and inserted in a Swinnex(®) syringe filter holder. Samples and reagents are flown through the nitrocellulose filter by manual pressure on the syringe. A colorimetric detection allows for naked eye results interpretation. The assay provides sensitivity in the picomolar range in just 5 min, even using low volumes of sample in complex matrix. Probe deposition by spotting allows for flexible combinations of different capturing agents and multiple diagnoses; furthermore, the very simple and inexpensive set-up makes the syringe-based immunoassay on paper microarray a suitable diagnostic system for resource-limited settings.

  10. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    PubMed

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E-J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  11. Counter-current chromatographic separation of glycoprotein components from Morchella esculenta (L.) with a polymer phase system by a cross-axis coil planet centrifuge.

    PubMed

    Wei, Y; Zhang, T; Ito, Y

    2001-05-11

    Using a cross-axis coil planet centrifuge, glycoproteins were separated from fermentation media of Morchella esculenta (L.) by high-speed counter-current chromatography. The performance of the apparatus was optimized with four standard proteins including pepsin, lysozyme, ovalbumin and hemoglobin and a polymer phase system composed of 12.5% (w/w) polyethylene glycol 8000 and 25% (w/w) potassium phosphate in distilled water at various pH values. Separations were performed by eluting the lower phosphate-rich phase at a flow-rate of 1.0 ml/min. Under the optimized conditions three glycoprotein components in Morchella esculenta (L.) were resolved within 6 h.

  12. Mass transfer in countercurrent packed columns: Application to supercritical CO[sub 2] extraction of terpenes

    SciTech Connect

    Simoes, P.C.; Matos, H.A.; Carmelo, P.J.; Gomes de Azevedo, E.; Nunes da Ponte, M. . Faculdade de Ciencias e Tecnologia)

    1995-02-01

    Supercritical fluid extraction (SFE) is an alternative separation method to more conventional processes such as liquid extraction and distillation. However, up to now, few works have been devoted to the investigation of the efficiency of countercurrent packed columns under supercritical conditions from a mass transfer point of view. Mass transfer in a countercurrent column, filled with structured gauze packing, was measured for the separation of a mixture of terpenes (d-limonene/1,8-cineole) by supercritical carbon dioxide, at 313 and 318 K and pressures up to 9 MPa. The extraction efficiency was determined in terms of the overall mass transfer coefficient. Operating lines for this process had an appreciable curvature due to a high miscibility of the two contacting phases. The real slope of these lines had to be estimated. Available mass transfer models for packed columns predicted efficiencies diverging to a great extent from the experimental results.

  13. Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP).

    PubMed

    Müller-Späth, Thomas; Aumann, Lars; Melter, Lena; Ströhlein, Guido; Morbidelli, Massimo

    2008-08-15

    Multicolumn countercurrent solvent gradient purification (MCSGP) is a continuous chromatographic process developed in recent years (Aumann and Morbidelli, 2007a; Aumann et al., 2007) that is particularly suited for applications in the field of bioseparations. Like batch chromatography, MCSGP is suitable for three-fraction chromatographic separations and able to perform solvent gradients but it is superior in terms of solvent consumption, yield, purity, and productivity due to the countercurrent movement of the liquid and the solid phases. In this work, the MCSGP process is applied to the separation of three monoclonal antibody variants on a conventional preparative cation exchange resin. The experimental process performance was compared to simulations based on a lumped kinetic model. Yield and purity values of the target variant of 93%, respectively were obtained experimentally. The batch reference process was clearly outperformed by the MCSGP process.

  14. Separation of Catalpol from Rehmannia glutinosa Libosch. by High-Speed Countercurrent Chromatography

    PubMed Central

    Tong, Shengqiang; Chen, Lin; Zhang, Qing; Liu, Jian; Yan, Jizhong; Ito, Yoichiro

    2015-01-01

    The bioactive iridoid component catalpol was successfully separated by high-speed countercurrent chromatography with high purity from the partially purified crude extract of Rehmannia glutinosa. A polar two-phase solvent system composed of ethyl acetate–n-butanol–water (2:1:3, v/v/v) was selected by thin-layer chromatography and run on a preparative scale where the lower aqueous phase was used as the mobile phase with a head-to-tail elution mode. A 105 mg quantity of the partially purified sample containing 39.2% catalpol was loaded on a 270-mL capacity high-speed countercurrent separation column, yielding 35 mg of catalpol at 95.6% purity. The chemical structure of catalpol was determined by comparison with the high-performance liquid chromatography retention time of standard substance as well as the 1H NMR spectrum. PMID:25214499

  15. Application of perfluorocarbons in novel continuous counter-current protein chromatography.

    PubMed

    Owen, R O; McCreath, G E; Chase, H A

    1996-01-01

    In this work the development of a process capable of extracting proteins from particulate-containing solutions (such as fermentation broths) on a continuous basis, and in which absorbent and process streams are contacted counter-currently is described. The process consists of four stages, required for the loading, washing, elution and regeneration of the adsorbent. Because of its counter-current nature, it has improved performance over existing (though not yet commercialized) continuous processes, which have been based on CSTR-type contractors (e.g. PERCAS (McCreath et al., 1993). The improved efficiency has been shown by carrying out extraction of lysozyme from a single component feed stream. The adsorbent used in this work is a Procion Red HE-7B-derivatized perfluorocarbon support, which has shown particular suitability for continuous processes due to its inherently high mechanical strength and high density. Results illustrating yields obtained using this equipment are presented and discussed.

  16. Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish

    PubMed Central

    van der Meer, Martin H; Horne, John B; Gardner, Michael G; Hobbs, Jean-Paul A; Pratchett, Morgan; van Herwerden, Lynne

    2013-01-01

    Extensive ongoing degradation of coral reef habitats worldwide has lead to declines in abundance of coral reef fishes and local extinction of some species. Those most vulnerable are ecological specialists and endemic species. Determining connectivity between locations is vital to understanding recovery and long-term persistence of these species following local extinction. This study explored population connectivity in the ecologically-specialized endemic three-striped butterflyfish (Chaetodon tricinctus) using mt and msatDNA (nuclear microsatellites) to distinguish evolutionary versus contemporary gene flow, estimate self-replenishment and measure genetic diversity among locations at the remote Australian offshore coral reefs of Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI), and Norfolk Island (NI). Mt and msatDNA suggested genetic differentiation of the most peripheral location (NI) from the remaining three locations (MR, ER, LHI). Despite high levels of mtDNA gene flow, there is limited msatDNA gene flow with evidence of high levels of self-replenishment (≥76%) at all four locations. Taken together, this suggests prolonged population recovery times following population declines. The peripheral population (NI) is most vulnerable to local extinction due to its relative isolation, extreme levels of self-replenishment (95%), and low contemporary abundance. PMID:23789075

  17. Rate-limited mass transfer of octane, decane, and dodecane into nonionic surfactants solutions under laminar flow conditions.

    PubMed

    Prak, Dianne J Luning

    2008-05-01

    A key component to predicting the success of utilizing surfactants to enhance the removal of organic liquids from soil system is quantifying micellar solubilization kinetics. In this study, a flow reactor was employed to investigate the influence of surfactant ethoxylate chain length on the rates of solubilization of octane, decane, and dodecane in micellar solutions of a homologous series of purified dodecyl alcohol ethoxylates. Effluent concentration data were fit using a finite element model utilizing a linear-driving-force model to represent mass transfer at the interface. For flow rates between 0.1 and 2 ml min(-1), mass transfer coefficients ranged from 5 x 10(-8) to 7 x 10(-7)m s(-1) and did not vary in a systematic way with either solute structure or surfactant ethoxylate chain length and were lower than those found in pure water. Correlations developed for the Sherwood number based on diffusion coefficients of surfactant micelles containing organic material (organic-laden micelle) exhibit a velocity dependence similar to that found for systems based on aqueous diffusion. These results suggest that under gentle flowing conditions, the mass transfer is limited by diffusion of the organic-laden micelle. Although these trends are specific for this experimental system, the results demonstrate the importance of selecting the proper diffusion coefficient when modeling surfactant solubilization processes.

  18. Prospects and limits of the flow cytometric seed screen – insights from Potentilla sensu lato (Potentilleae, Rosaceae)

    PubMed Central

    Dobeš, Christoph; Lückl, Andrea; Hülber, Karl; Paule, Juraj

    2013-01-01

    The flow cytometric seed screen allows for identification of reproductive modes of seed formation and inference of the ploidy of contributing gametes. However, the lack of a mathematical formalization to infer male/female genomic contributions, and the prerequisite of a binucleate female contribution to the endosperm limits its applicability. We evaluated this assumption combining a DNA-based progeny survey with a comparison of the cytology of reproductive pathways co-occurring within single individuals representing 14 Potentilleae species from six phylogenetic lineages. A numerical framework valid for sexual and pseudogamous taxa was developed, enabling quantification of female and male genomes contributing to embryo and endosperm independent of gametophyte origins, numbers of sperm involved and ploidy of parents. The inference strongly depended on accurate peak index estimation. The endosperm of Potentilleae species received a binucleate female contribution in five evolutionary lineages whereas endosperm formation remained uncertain in the Tormentillae. A modified flow cytometric seed screen protocol was developed to cope with low endosperm contents. Evolutionary conservation of a binucleate female contribution to the endosperm suggested wide applicability of flow cytometric seed screen – at least in the Potentilleae. However, alternative progeny surveys and precise embryo/endosperm ploidy estimates are required for a comprehensive understanding of the cytology of seed formation. PMID:23425259

  19. Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish.

    PubMed

    van der Meer, Martin H; Horne, John B; Gardner, Michael G; Hobbs, Jean-Paul A; Pratchett, Morgan; van Herwerden, Lynne

    2013-06-01

    Extensive ongoing degradation of coral reef habitats worldwide has lead to declines in abundance of coral reef fishes and local extinction of some species. Those most vulnerable are ecological specialists and endemic species. Determining connectivity between locations is vital to understanding recovery and long-term persistence of these species following local extinction. This study explored population connectivity in the ecologically-specialized endemic three-striped butterflyfish (Chaetodon tricinctus) using mt and msatDNA (nuclear microsatellites) to distinguish evolutionary versus contemporary gene flow, estimate self-replenishment and measure genetic diversity among locations at the remote Australian offshore coral reefs of Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI), and Norfolk Island (NI). Mt and msatDNA suggested genetic differentiation of the most peripheral location (NI) from the remaining three locations (MR, ER, LHI). Despite high levels of mtDNA gene flow, there is limited msatDNA gene flow with evidence of high levels of self-replenishment (≥76%) at all four locations. Taken together, this suggests prolonged population recovery times following population declines. The peripheral population (NI) is most vulnerable to local extinction due to its relative isolation, extreme levels of self-replenishment (95%), and low contemporary abundance.

  20. Level-set reconstruction algorithm for ultrafast limited-angle X-ray computed tomography of two-phase flows.

    PubMed

    Bieberle, M; Hampel, U

    2015-06-13

    Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Chronic air-flow limitation does not increase respiratory epithelial permeability assessed by aerosolized solute, but smoking does

    SciTech Connect

    Huchon, G.J.; Russell, J.A.; Barritault, L.G.; Lipavsky, A.; Murray, J.F.

    1984-09-01

    To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the control group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation.

  2. Expected climate change impacts on extreme flows in Vietnam: The limits of bias correction techniques

    NASA Astrophysics Data System (ADS)

    Laux, Patrick; Dang, Thinh; Kunstmann, Harald

    2016-04-01

    increase of 4%, 65%, and 94% HQ100 is estimated for 2011-2030, 2031-2050, and 2080-2099, respectively. Albeit there is a large spread of simulated peak magnitudes, a tendency towards positive future peak flows can be concluded. Due to the obtained large spread of simulated peak magnitudes, we stress the need for combined climate and hydrological ensemble simulations. This inherently large spread of future peak magnitudes is further increased by the inflated distributions obtained from the bias corrected meteorological input variables. The wide spread of future expected magnitudes remains a crucial problem for decision makers in climate change assessments, as demonstrated here for the VuGia-ThuBon river basin.

  3. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

    NASA Astrophysics Data System (ADS)

    Timokhin, A. N.; Arons, J.

    2013-02-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/jGJ < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ < 0, the system develops similar bursts of pair creation

  4. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X.

    PubMed

    Safenkova, Irina; Zherdev, Anatoly; Dzantiev, Boris

    2012-06-01

    Key factors influencing the analyte detection limit of the sandwich immunochromatographic assay (ICA), namely, the size of gold nanoparticles, the antibody concentration, the conjugation pH, and characteristics of membranes, are discussed. The impacts of these factors were quantitatively characterized and compared for the first time using the same antigen (potato virus X). The antibody-colloidal gold conjugates synthesized at pH 9.0-9.5 (the pH was examined in the range from 7.5 to 10.0) and at an antibody concentration of 15 μg/mL (the concentration was tested from 10 to 100 μg/mL) demonstrated maximum binding with the analyte. The relationship between the size of gold nanoparticles and the ICA detection limit was determined. The detection limit decreases from 80 to 3 ng/mL (for antibodies with K (D) = 1.0 × 10(-9) M, data were obtained using a BIAcore X instrument) for a series of particles with a diameter from 6.4 to 33.4 nm (electron microscopy and dynamic light scattering data). In the case of larger particles (52 nm in diameter), the detection limit increases and reaches 9 ng/mL. A 10 mM phosphate buffer, pH 8, and a 50 mM phosphate buffer, pH 7, were the conditions of choice for the deposition of reactants. Taking into account these facts, we developed a lateral-flow test system for the rapid (10 min) detection of potato virus X in plant leaves. The ICA provided a visual detection limit of 3 ng/mL. In the case of the instrumental processing, potato virus X can be determined in the concentration range from 3 to 300 ng/mL with a detection limit 2 ng/mL.

  5. A probabilistic method for determining effluent temperature limits for flow instability for SRS reactors: Addendum

    SciTech Connect

    Hardy, B.J.

    1991-02-01

    Previous values used for the uncertainties in the K14.1 limits calculations were based on the best available data at the time. Some of the data was in preliminary form and many assumptions were made. In addition, not all of the calculations made with the previous data were well documented. Because of an increase in both the volume and quality of data, and to verify calculations, revisions to the values for the uncertainties were appropriate. The revised uncertainty values include updated information which is more accurate and has a high level of quality assurance. The previously developed methodology for the uncertainty analysis was used in the current calculations. This document provides a complete description of the changes to the uncertainty analysis calculations made since closure. A number of the uncertainty for the K14.1 charge were recalculated to improve accuracy, to reflect updates in the values of significant uncertainty parameters, and to provide complete documentation of bases for these parameters. In this addendum, the uncertainty calculations are described in greater detail than in Reference 1.

  6. Counter-current carbon dioxide extraction of fat from soy skim

    USDA-ARS?s Scientific Manuscript database

    This research aims to investigate the use of counter-current carbon dioxide extraction method as a means to reduce residual fat in soy skim after the enzyme-assisted aqueous extraction of soybeans. Extractions with liquid CO2 at 25°C and 10.34 MPa and supercritical CO2 at 50°C and 25.16 MPa are comp...

  7. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability.

    PubMed

    Firmansyah, I; Spiller, M; de Ruijter, F J; Carsjens, G J; Zeeman, G

    2017-01-01

    Nitrogen (N) and phosphorus (P) are two essential macronutrients required in agricultural production. The major share of this production relies on chemical fertilizer that requires energy and relies on limited resources (P). Since these nutrients are lost to the environment, there is a need to shift from this linear urban metabolism to a circular metabolism in which N and P from domestic waste and wastewater are reused in agriculture. A first step to facilitate a transition to more circular urban N and P management is to understand the flows of these resources in a coupled urban-agricultural system. For the first time this paper presents a Substance Flow Analysis (SFA) approach for the assessment of the coupled agricultural and urban systems under limited data availability in a small island. The developed SFA approach is used to identify intervention points that can provide N and P stocks for agricultural production. The island of St. Eustatius, a small island in the Caribbean, was used as a case study. The model developed in this study consists of eight sub-systems: agricultural and natural lands, urban lands, crop production, animal production, market, household consumption, soakage pit and open-dump landfill. A total of 26 flows were identified and quantified for a period of one year (2013). The results showed that the agricultural system is a significant source for N and P loss because of erosion/run-off and leaching. Moreover, urban sanitation systems contribute to deterioration of the island's ecosystem through N and P losses from domestic waste and wastewater by leaching and atmospheric emission. Proposed interventions are the treatment of blackwater and greywater for the recovery of N and P. In conclusion, this study allows for identification of potential N and P losses and proposes mitigation measures to improve nutrient management in a small island context.

  8. Pleistocene isolation and recent gene flow in Haliotis asinina, an Indo-Pacific vetigastropod with limited dispersal capacity.

    PubMed

    Imron; Jeffrey, Benardine; Hale, Peter; Degnan, Bernard M; Degnan, Sandie M

    2007-01-01

    Haliotis asinina is a broadcast-spawning mollusc that inhabits Indo-Pacific coral reefs. This tropical abalone develops through a nonfeeding larval stage that is competent to settle on specific species of coralline algae after 3-4 days in the plankton. Failure to contact an inductive algae within 10 days of hatching usually results in death. These life cycle characteristics suggest a limited capacity for dispersal and thus gene flow. This makes H. asinina particularly suitable for elucidating phylogeographical structure throughout the Indo-Malay Archipelagoes, and eastern Indian and western Pacific Oceans, all regions of biogeographical complexity and high conservation value. We assayed 482 bp of the mitochondrial cytochrome oxidase II gene in 206 abalone collected from 16 geographically discrete sites across the Indian and Pacific Oceans and Indo-Malay Archipelagoes. DNA sequence variation was analysed via population genetics and phylogenetics, and by nested clade analyses (NCA). Our data resolved clear phylogeographical breaks among major biogeographical regions, with sequence divergences ranging from a high of 3.7% and 3.0% between Indian and Pacific sites and Pacific and Indo-Malay sites, respectively, to a low of 1.1% between Indian and Indo-Malay sites. Despite the apparent limited dispersal capacity of H. asinina, no finer scale phylogeographical structure was resolved within the respective biogeographical regions. However, amova and NCA identified several significant associations between haplotypes and geographical distribution, most notably higher gene flow among geographical populations associated with major ocean currents. Our study provides further evidence that larval dispersal capacity alone is not a good predictor of population genetic structure in marine invertebrates. We infer instead that a combination of historical events (long-term barriers followed by range expansion associated with Pleistocene sea level changes) and contemporary processes

  9. Flow cytometry is of limited utility in the early identification of "double-hit" B-cell lymphomas.

    PubMed

    Platt, Mia Y; DeLelys, Michelle E; Preffer, Frederic I; Sohani, Aliyah R

    2013-05-01

    B-cell lymphomas with concurrent translocations of MYC and BCL2 or BCL6, also known as "double-hit" lymphomas (DHL), are rare malignancies characterized by aggressive clinical behavior and poor prognosis. Previous reports suggest that decreased CD20 and/or CD19 expression by flow cytometry is relatively common in DHL and may help to identify cases requiring additional cytogenetic analysis. We conducted a retrospective analysis of 26 cases of DHL, and compared their flow cytometric characteristics to cases of Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). Cases were analyzed by four-color flow cytometry, and bivariate dot-plots were reviewed for light scatter characteristics, CD19, CD20, CD45, and surface light chain. Relatively few DHL cases showed dim expression of CD19 or CD20, and statistically significant differences were found only in the frequency of dim CD19 expression between DHL and BL or DLBCL. Although concomitant dim CD19 and CD20 expression was exclusive to DHL, it was present in only a minority of cases. We conclude that although a subset of DHL expresses aberrant levels of CD19 and/or CD20 by flow cytometry, these findings are of limited utility in identifying cases requiring cytogenetic analysis due to their low frequency. Until more sensitive pathologic parameters can be identified and validated, the decision to perform cytogenetic analysis should rest on a combination of clinical, morphologic, and immunophenotypic features suggestive of high-grade, aggressive disease. Copyright © 2013 International Clinical Cytometry Society.

  10. Limited influence of local and landscape factors on finescale gene flow in two pond-breeding amphibians.

    PubMed

    Coster, Stephanie S; Babbitt, Kimberly J; Cooper, Andrew; Kovach, Adrienne I

    2015-02-01

    Dispersal and gene flow within animal populations are influenced by the composition and configuration of the landscape. In this study, we evaluated hypotheses about the impact of natural and anthropogenic factors on genetic differentiation in two amphibian species, the spotted salamander (Ambystoma maculatum) and the wood frog (Lithobates sylvaticus) in a commercial forest in central Maine. We conducted this analysis at two scales: a local level, focused on factors measured at each breeding pond, and a landscape level, focused on factors measured between ponds. We investigated the effects of a number of environmental factors in six categories including Productivity, Physical, Land Composition, Land Configuration, Isolation and Location. Embryos were sampled from 56 spotted salamander breeding ponds and 39 wood frog breeding ponds. We used a hierarchical Bayesian approach in the program GESTE at each breeding pond and a random forest algorithm in conjunction with a network analysis between the ponds. We found overall high genetic connectivity across distances up to 17 km for both species and a limited effect of natural and anthropogenic factors on gene flow. We found the null models best explained patterns of genetic differentiation at a local level and found several factors at the landscape level that weakly influenced gene flow. This research indicates multiscale investigations that incorporate local and landscape factors are valuable for understanding patterns of gene flow. Our findings suggest that dispersal rates in this system are high enough to minimize genetic structuring and that current forestry practices do not significantly impede dispersal. © 2015 John Wiley & Sons Ltd.

  11. Selective isolation of components from natural volatile oil by countercurrent chromatography with cyclodextrins as selective reagent.

    PubMed

    Tong, Shengqiang; Lu, Mengxia; Chu, Chu; Yan, Jizhong; Huang, Juan; Ying, Yongfei

    2016-04-29

    Selective separation of chemical components from seven kinds of volatile oil by countercurrent chromatography with three types of cyclodextrins as selective reagent was investigated in this work. Preparative separation of chemical components from volatile oil is generally quite challenging due to their extremely complexity of the composition. A biphasic solvent system n-hexane-0.10 mol L(-1) cyclodextrin (1:1, v/v) was selected for separation of components from volatile oil and three types of cyclodextrins were investigated, including β-cyclodexrin, methyl-β-cyclodexrin and hydroxypropyl-β-cyclodexrin. All kinds of volatile oils are from seven kinds of traditional Chinese herb. Results showed that some chemical components could be well separated with high purity from each kind of volatile oil using different type of cyclodextrin as selective reagent. For example, germacrone and curcumenone could be selectively separated from volatile oil of Curcumae Rhizoma with methyl-β-cyclodexrin and hydroxypropyl-β-cyclodexrin as selector respectively, and other five components were selectively separated from volatile oil of Chuanxiong Rhizoma, Myristicae Semen, Aucklandiae Radix and Angelicae Sinensis Radix by countercurrent chromatography with different cyclodexrin as selective reagent. Separation mechanism for separation of components from volatile oil by countercurrent chromatography with cyclodextrin as selective reagent was proposed. Peak resolution of the present separation method could be greatly influenced by the chemical compositions of volatile oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Long-Term Observations of a Coastal Countercurrent on the Southeast Florida Shelf

    NASA Astrophysics Data System (ADS)

    Soloviev, A.

    2010-12-01

    Coastal circulation along the southeast Florida shelf is strongly related to the dynamics of the Florida Current as a part of the western boundary current system. We have conducted long-term observations with a mooring array deployed on the Ft. Lauderdale FL shelf. The array consists of a bottom ADCP mooring at 11 m isobath on the Dania Beach Shelf providing almost continuous observations since 1999 and a bottom ADCP mooring deployed on the Miami Terrace near Pompano Beach at 240 m isobath since 2007. There is a strong variability of the coastal current at this location on time scales ranging from hours to months, which is explained by the proximity to the Florida Current. An interesting feature revealed during these observations is an intermittent coastal countercurrent. This coastal countercurrent is seasonally modulated, reversing its direction during the summer season. The appearance of the countercurrent on the southeast Florida shelf and its relation to the Florida Current and undercurrent have not yet been completely understood. The possible physical mechanism behind this feature of the coastal circulation on the Southeast Florida shelf and practical applications are being discussed.

  13. Separation and purification of two taxanes and one xylosyl-containing taxane from Taxus wallichiana Zucc.: A comparison between high-speed countercurrent chromatography and reversed-phase flash chromatography.

    PubMed

    Tao, Junfei; Yan, Rongwei; Zhao, Leilei; Wang, Dongmei; Xu, Xinjun

    2017-03-01

    10-Deacetylbaccatin III, an important semisynthetic precursor of paclitaxel and docetaxel, can be extracted from Taxus wallichiana Zucc. A process for the isolation and purification of 10-deacetylbaccatin III (1), baccatin III (2), and 7β-xylosyl-10-deacetyltaxol (3) from the leaves and branches of Taxus wallichiana Zucc. via macroporous resin column chromatography combined with high-speed countercurrent chromatography or reversed-phase flash chromatography was developed in this study. After fractionation by macroporous resin column chromatography, 80% methanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis. A solvent system composed of n-hexane, ethyl acetate, methanol, and water (1.6:2.5:1.6:2.5, v/v/v/v) was used for the high-speed countercurrent chromatography separation at a flow rate of 2.5 mL/min. The reversed-phase flash chromatography separation was performed using methanol/water as the mobile phase at a flow rate of 3 mL/min. The high-speed countercurrent chromatography separation produced compounds 1 (10.2 mg, 94.4%), 2 (2.1 mg, 98.0%), and 3 (4.6 mg, 98.8%) from 100 mg of sample within 110 min, while the reversed-phase flash chromatography separation purified compounds 1 (9.8 mg, 95.6%) and 3 (4.9 mg, 97.9%) from 100 mg of sample within 120 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.

    PubMed

    Hagendorfer, Harald; Kaegi, Ralf; Traber, Jacqueline; Mertens, Stijn F L; Scherrers, Roger; Ludwig, Christian; Ulrich, Andrea

    2011-11-14

    In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 μg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the

  15. Diagnosis of acute bacterial pneumonia in Nigerian children. Value of needle aspiration of lung of countercurrent immunoelectrophoresis.

    PubMed Central

    Silverman, M; Stratton, D; Diallo, A; Egler, L J

    1977-01-01

    Eighty-eight Nigerian children with untreated, severe, acute pneumonia were investigated by standard bacteriological techniques (blood culture and culture of pharyngeal secretions) and by needle aspiration of the consolidated lung. Countercurrent immunoelectrophoresis (CIE) against grouped pneumococcal and Haemophilus influenzae type b antisera was carried out on serum samples from 45 patients. The aetiology of pneumonia was shown by examination of the needle aspirate in 70/88 patients (79%), by CIE in 9/45 patients (20%), and by blood culture in 4/36 patients (11%). Overall, a bacterial cause for pneumonia was shown in 73/88 patients (83%). The results of pharyngeal culture were misleading when compared with cultures of needle aspirates. The prediction of aetiology from the radiological appearance was alos inaccurate, even for labor pneumonia. Needle aspiration of the lung, with a low (5%) and minor complication rate, merits wider application in the diagnosis of acute pulmonary infections in children. Tradiational bacteriological techniques (blood culture and pharyngeal culture) are of very limited value. The place of CIE in the investigation of childhood pneumonia still needs thorough evaluation. PMID:343723

  16. Phenolic profiling of rooibos using off-line comprehensive normal phase countercurrent chromatography×reversed phase liquid chromatography.

    PubMed

    Walters, Nico A; de Villiers, André; Joubert, Elizabeth; de Beer, Dalene

    2017-03-24

    Limited performance of one dimensional chromatographic methods provides the incentive for the development of multidimensional chromatographic techniques for the analysis of complex mixtures. Rooibos (Aspalathus linearis) represents such a complex sample, containing a range of phenolic compounds that cannot be separated and identified using a single chromatographic technique within a reasonable run time. By implementing NP high performance countercurrent chromatography (NP-HPCCC) in the first dimension ((1)D) and RP ultra-high pressure LC (RP-UHPLC) in the second dimension ((2)D), a highly orthogonal (∼80%) off-line comprehensive two-dimensional separation of rooibos phenolic compounds was achieved in a total analysis time of 17h. The use of a gradient for the (1)D HPCCC separation ensured a good spread of relatively polar flavonoid di-C-glycosides and less polar mono- and di-O-glycosides, while the highly efficient UHPLC method was able to separate compounds eluting in the same (1)D fraction. Analysis of green ("unfermented") and traditional "fermented" rooibos samples enabled tentative identification of 39 phenolic compounds based on UV-vis and MS characteristics, of which 18 have not previously been reported in rooibos. Scolymoside (a flavone), hesperidin (a flavanone) and phloretin-3',5'-di-C-β-d-glucopyranoside (a dihydrochalcone) were identified for the first time in rooibos by comparison with authentic reference standards.

  17. Deep Seismic Reflection Profiles across the Karakoram Fault Limit the Role of Crustal Flow in the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Klemperer, S. L.; Lu, Z.; Gao, R.; Wang, H.; Li, W.; Li, H.; Dong, S.

    2016-12-01

    The 1000-km-long strike-slip Karakoram Fault (KF) in western Tibet has been interpreted as a small-offset upper-crustal fault beneath which channel flow returns underthrust material southwards, or as a large-offset fault penetrating the entire lithosphere and forming a barrier to channel flow. Sinoprobe acquired two deep reflection profiles across the KF: HKT-A from the Zada Basin across the Ayi Shan and the KF to the Gangdese Shan; and HKT-B, 170 km to the SE near Mt. Kailas, past Gurla Mandhata, across the Yarlung Zangbo Suture (YZS) and into the Gangdese Shan. The KF is a well-defined lineament where crossed by HKT-A, but splits into multiple traces spanning at least 15 km at the surface where crossed by HKT-B at its eastern extremity. Each 100-km, 72-fold profile was recorded to 30 s TWT ( 100 km depth) using explosive sources of 50-1000 kg. Processing culminated in Kirchhoff pre-stack time migration. HKT-B shows the KF limited to the upper 20-km of the crust, soling into the South Tibet Detachment (Gao et al., Nature Geo., 2016). South-verging, north-dipping reflections likely representing thrust duplexes within the Greater Himalayan Crystallines are separated by the Main Himalayan Thrust (MHT) from a transparent underthrust Indian basement above a reflective Moho. The sharp MHT reflection seems inconsistent with crustal flow of Indian basement upwards across the MHT into the upper plate south of the YZS. Channel flow, if occurring at this longitude, must be north of the YZS. HKT-A shows mid-crustal north-dipping reflections (similar to those imaged on HKT-B above the MHT) beneath reflections with apparent dip 18°S (all south of the KF) and mid-crustal south-dipping reflectors beneath reflections dipping 12°N (all north of the KF). The distinctive mid-crustal reflections persist to at least 20 s TWT suggesting a minimum depth of penetration of the KF to c. 65km with a width of <25km at that depth. The Moho is bowed down along the entire profile, deepening by

  18. Effects of an aging pulmonary system on expiratory flow limitation and dyspnoea during exercise in healthy women.

    PubMed

    Wilkie, Sabrina S; Guenette, Jordan A; Dominelli, Paolo B; Sheel, A William

    2012-06-01

    Aging related changes in pulmonary function may make older women (OW) more susceptible to expiratory flow limitation (EFL) and lead to higher dyspnoea ratings during exercise relative to young women (YW). Accordingly, the purpose of this study was to compare sensory responses and EFL susceptibility and magnitude in 8 YW (29 ± 7 years) and 8 healthy OW (64 ± 3 years) matched for percentage-predicted forced vital capacity (% predicted FVC) and % predicted forced expiratory volume in 1 s. EFL was calculated as the percent overlap between tidal flow-volume loops during maximal exercise and the maximal expiratory flow-volume (MEFV) curve. Peak oxygen consumption (V'O(2peak)) was lower in the OW compared to the YW (29.4 ± 3.6 vs. 49.1 ± 8.9 ml kg(-1) min(-1), P < 0.05) as was maximal ventilation (73.7 ± 18.4 vs. 108.7 ± 14.1 l min(-1), P < 0.05). EFL at maximal exercise was present in 2 of 8 YW and in 5 of 8 OW. There were no significant differences in the magnitude of EFL between OW (23 ± 24, range: 0-69 %EFL) and YW (9 ± 18, range: 0-46 %EFL, P = 0.21). The magnitude of EFL in OW was inversely related to % predicted FVC (r = -0.69, P = 0.06), but this relationships was not observed in the YW (r = -0.23, P = 0.59). The OW consistently reported greater dyspnoea and leg discomfort for any given absolute work rate, but not when work was expressed as a percentage of maximum. Reduced ventilatory and exercise capacities may cause OW to be more susceptible to EFL during exercise and experience greater dyspnoea relative to YW for a standardized physical task.

  19. Flow mechanism of self-induced reversed limit-cycle wing rock for a chined forebody configuration

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Deng, Xueying; Wang, Yankui; Li, Qian

    2015-11-01

    The wing rock phenomenon reduces the maneuverability and affects the flight safety of modern advanced fighters, such as the F-35, which have chined forebodies. Understanding the flow mechanism is critical to suppressing this phenomenon. In this study, experiments were conducted to reveal the motion and flow behavior over a chined forebody configuration. The tests were performed in a wind tunnel at an angle of attack of 50∘ with a Reynolds number of 1.87 × 105. Reversed limit-cycle oscillation was discovered in the free-to-roll tests. The unstable rolling moment around zero roll angle in the static case suggests that the model tends to be driven away from zero roll angle. Thus, the model cannot maintain its equilibrium at zero roll angle during free-to-roll motion. The unstable rolling moment is generated by the wing vortex structure above the upward wing, which is induced by the forebody asymmetric vortices. During wing rock, the wing vortex structure appears above the upward wing at a large roll angle after crossing zero roll angle owing to a time lag in the forebody vortex position, which is conducive to the motion. The forebody asymmetric vortices are thus the key to induce and maintain the motion.

  20. Nonlinear dynamical behavior of the limited Explodator in a CSTR under square wave perturbation of the flow rate

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomao; Schelly, Z. A.; Vastano, John A.

    1994-07-01

    Results of studies of the limited Explodator model in a continuous-flow stirred tank reactor (CSTR) under square wave perturbation of the flow rate are reported. The perturbation is applied in such a way that the system is alternately attracted to two different periodic attractors in the parameter region close the Hopf bifurcation point. The system is shown to display a variety of entrainment bands, birhythmicity, quasiperiodicity, resonance-like phenomenon, period doubling and intermittency routes to chaos, and a complicated window structure of the chaotic region. In addition, a novel phenomenon, “intermittent alternative laminar oscillations”, was observed in a chaotic regime sandwiched between two entrainment bands. Transient chaos occurs in one of the entrainment bands, which intimates chaos in the adjacent regime. Positive Lyapunov exponents were found to be associated with the chaotic behavior. The folding and stretching property of the chaotic attractors was analyzed through stroboscopic representations. The deterministic nature of the chaotic behavior was confirmed by the quadratic-like curve formed in the one-dimensional map.

  1. Current Flow and Pair Creation at Low Altitude in Rotation-Powered Pulsars' Force-Free Magnetospheres: Space Charge Limited Flow

    NASA Technical Reports Server (NTRS)

    Timokhin, A. N.; Arons, J.

    2013-01-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(sub GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(sup 2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(sub GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) < 0, the system develops similar

  2. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.

    PubMed

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2015-07-15

    The main procyanidins, including dimeric B2 and B5, trimeric C1, tetrameric and pentameric procyanidins, were isolated from unroasted cocoa beans (Theobroma cacao L.) using various techniques of countercurrent chromatography, such as high-speed countercurrent chromatography (HSCCC), low-speed rotary countercurrent chromatography (LSRCCC) and spiral-coil LSRCCC. Furthermore, dimeric procyanidins B1 and B7, which are not present naturally in the analysed cocoa beans, were obtained after semisynthesis of cocoa bean polymers with (+)-catechin as nucleophile and separated by countercurrent chromatography. In this way, the isolation of dimeric procyanidin B1 in considerable amounts (500mg, purity>97%) was possible in a single run. This is the first report concerning the isolation and semisynthesis of dimeric to pentameric procyanidins from T. cacao by countercurrent chromatography. Additionally, the chemical structures of tetrameric (cinnamtannin A2) and pentameric procyanidins (cinnamtannin A3) were elucidated on the basis of (1)H NMR spectroscopy. Interflavanoid linkage was determined by NOE-correlations, for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [Application of spiral disk column in high-speed counter-current chromatography for peptide and protein separation].

    PubMed

    Hu, Guanghui; Cao, Xueli

    2009-04-01

    In order to improve the stationary phase retention of polar solvent systems and aqueous two-phase systems (ATPSs), we designed a multiple spiral disk assembly for type-J high-speed counter-current chromatography (HSCCC). The stationary phase retention was studied under different elution modes by using two solvent systems that contained 1-butanol-acetic acid-water (4:1:5, V/V/V) and polyethylene glycol (PEG) 1000-K2HPO4-water (12.5:12.5:75, W/W/W). The best retention was obtained in L-I-T, U-O-H, L-I-H three modes by pumping lower mobile phase from inner terminal (I) to outer terminal (O), and upper mobile phase from outer terminal (O) to inner terminal (I) at a relatively high flow rate. Meanwhile, the relationship between retention percentage of the stationary phase (Sf) and various parameters such as flow-rate (F), rotation speed (w) and column temperature (T) was also studied. Sf increased with the increase of w and decreased with the increase of F. Regression analysis showed a linear relationship between Sf and F1/2/w. The influence of T on Sf was not obvious between 20 degrees C and 40 degrees C, lower temperature than 20 degrees C was not suitable for viscous ATPSs. Acceptable resolutions were achieved when it was applied for the separation of dipeptides including Leu-Tyr and Val-Tyr by using 1-butanol-acetic acid-water (4:1:5, V/V/V) solvent system. The proteins including cytochrome C and myoglobin, lysozyme and myoglobin, and fresh chicken egg-white proteins were well separated by 12.5% PEG1000-12.5% K2HPO4-75% water (pH 9.0) and 16% PEG 1000-12.5% K2HPO4-71.5% water (pH 8.0) system.

  4. Separation and purification of two new and two known alkaloids from leaves of Nitraria sibirica by pH-zone-refining counter-current chromatography.

    PubMed

    Bakri, Mahinur; Chen, Qibin; Ma, Qingling; Yang, Yi; Abdukadir, Abdumijit; Aisa, Haji Akber

    2015-12-01

    The total alkaloids from Nitraria sibirica leaves have been confirmed to exhibit significant protective effects against inflammatory renal injury, hypertension and albuminuria in angiotensin II-salt hypertension. In the present study, a separation method of pH-zone-refining counter-current chromatography was established for separation of the alkaloids from N. sibirica. The separation was performed with a solvent system of MtBE-n-BuOH-H2O (2:2:5, v/v) at a flow rate of 2.0mL/min. And 15mM triethylamine (TEA) was added to the upper organic phase, while 10mM hydrochloric acid was added to the lower aqueous phase. As a result, a new alkaloid, schobemine (5.6mg), and a known alkaloid, nitraramine (5.0mg), together with fractions A and B were obtained from the total alkaloids of N. sibirica. The fractions A and B were further purified by means of pH-zone-refining counter-current chromatography with solvent systems of n-hexane-n-BuOH-H2O (1.5:3.5:5, v/v) and (2:3:5, v/v), respectively. TEA (10mM) was added to the upper phase, and 10mM of HCl was added to the lower phase in above two solvent systems, respectively. As a result, a known alkaloid, schoberidine (5.0mg), and a new alkaloid, schoberimine (3.0mg) were obtained from fractions A and B, respectively. The purities of the compounds were measured by HPLC-ELSD, and their structures were identified by ESI-MS, 1D and 2D NMR.

  5. Elution-extrusion counter-current chromatography separation of two new benzyl ester glucosides and three other high-polarity compounds from the tubers of Pleione bulbocodioides.

    PubMed

    Wang, Yang; Guan, Shu-hong; Feng, Rui-hong; Zhang, Jing-xian; Li, Qing; Chen, Xiao-hui; Bi, Kai-shun; Guo, De-an

    2013-01-01

    The tubers of Pleione bulbocodioides (Franch.) Rolfe, with gastrodin and benzyl ester glucosides as main components, have been used in traditional Chinese medicine for the treatment of various cancers and bacterial infections. Up to now, their official quality control method is still inadequate, and the difficulty of obtaining these high-polarity compounds is one of the major reasons. To develop a rapid and efficient method for preparative separation of the high-polarity compounds gastrodin and benzyl ester glucosides. An optimised solvent system composed of n-butanol:ethanol:water (20:1:20, v/v/v) was applied for the elution-extrusion counter-current chromatography (EECCC) separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase at a flow rate of 1.5 mL/min, a rotation speed of 850 rpm and a temperature of 35°C. Five high-polarity glucosides, including two new compounds, (E)-4-β-D-glucopyranosyloxycinnamic acid 9-(4-β-D-glucopyranosyloxybenzyl) ester (4 mg) and (Z)-2-(2-methylpropyl)butenedioic acid bis(4-β-D-glucopyranosyloxybenzyl) ester (9 mg), and three main components, gastrodin (87 mg), dactylorhin A (60 mg) and militarine (15 mg), with HPLC purities of 95.4%, 96.4%, 91.1%, 97.2% and 95.5% respectively, were yielded from 400 mg of the prepared sample. Elution-extrusion counter-current chromatography could be used as a useful tool for the separation of high-polarity compounds such as gastrodin and benzyl ester glucosides and the enrichment of the minor ones. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    PubMed

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (Tc ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (Pa ) of 2.57 kPa followed by incremental steps in Pa of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (Pcrit ) at which an upward inflection in Tc occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The Tc , mean skin temperature (Tsk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDFmean ), mean local sweat rate (forearm and thigh; LSRmean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDFmean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL, 186 ± 22

  7. Path of carbon flow during NO/sub 3//sup -/-induced photosynthetic suppression in N-limited Selenastrum minutum

    SciTech Connect

    Elrifi, I.R.; Turpin, D.H.

    1987-01-01

    Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In /sup 14/CO/sub 2/ pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4 position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 ..mu..moles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 ..mu..moles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation.

  8. Ripple Marks Show That Countercurrent Exists in Florida Straits.

    PubMed

    Hurley, R J; Fink, L K

    1963-02-15

    About 60 percent of the area shown in photographs taken at the axis of Florida Straits exhibits well-defined current ripple marks. These ripples indicate a flow of water of at least 0.2 to 0.6 knots from the north. This current is in the opposite direction from the surface currents of 2 to 4 or more knots.

  9. Use of two-stage membrane countercurrent cascade for natural gas purification from carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kurchatov, I. M.; Laguntsov, N. I.; Karaseva, M. D.

    2016-09-01

    Membrane technology scheme is offered and presented as a two-stage countercurrent recirculating cascade, in order to solve the problem of natural gas dehydration and purification from CO2. The first stage is a single divider, and the second stage is a recirculating two-module divider. This scheme allows natural gas to be cleaned from impurities, with any desired degree of methane extraction. In this paper, the optimal values of the basic parameters of the selected technological scheme are determined. An estimation of energy efficiency was carried out, taking into account the energy consumption of interstage compressor and methane losses in energy units.

  10. Separation of salidroside from Rhodiola crenulata by high-speed counter-current chromatography.

    PubMed

    Han, Xiao; Zhang, Tianyou; Wei, Yun; Cao, Xueli; Ito, Yoichiro

    2002-09-20

    High-speed counter-current chromatography (HSCCC) was used to purify salidroside from an extract of Rhodiola crenulata with two steps using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:4:5, v/v) in the first run and chloroform-methanol-isopropanol-water (5:6:1:4) in the second run. The method yielded 21.9 mg of salidroside from 1.216 g of the crude sample at 98% purity determined by HPLC analyses. Identification was performed by 1H NMR, 13C NMR, and MS.

  11. Two-Step Purification of Cordycepin from Cordyceps Millitaris by High-Speed Countercurrent Chromatography

    PubMed Central

    Ju, Xiuyun; Sun, Yong; Cao, Xiaoying; Jiang, Jihong; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    Cordycepin is successfully isolated and purified from Cordyceps millitaris in two-step purification by high-speed countercurrent chromatography. Two solvent systems, ethyl acetate–1-butanol–water (3:2:5, v/v/v) and trichloromethane–methanol–1-butanol–water (2:1:0.25:1, v/v/v/v), were used for the two-step purification. The purity of the prepared cordycepin was 98.1% according to the high-performance liquid chromatography analysis. PMID:20046921

  12. Modeling and separation of rare earth elements by countercurrent electromigration: A new separation column

    SciTech Connect

    Correa, S.M. |; Arbilla, G.; Carvalho, M.S.

    1998-07-01

    The separation of a samarium (90%) and europium (10%) mixture in {alpha}-hydroxy isobutyric acid was performed in a new countercurrent electromigration system. The mobilities of these elements were estimated, and samarium of better than 99.9% purity was obtained. The equilibrium of multicoordinate complexes of these elements with {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) plays an important role in the separation process. The equilibrium concentrations of the involved species were calculated by a computational procedure, and a kinetic study of the complexation reaction was also performed.

  13. High-speed counter-current chromatographic isolation of ricinine, an insecticide from Ricinus communis.

    PubMed

    Cazal, Cristiane de Melo; Batalhão, Jaqueline Raquel; Domingues, Vanessa de Cássia; Bueno, Odair Corrêa; Filho, Edson Rodrigues; Forim, Moacir R; da Silva, Maria Fátima G Fernandes; Vieira, Paulo Cezar; Fernandes, João Batista

    2009-05-08

    The alkaloid ricinine, an insecticide for leaf-cutting ant (Atta sexdens rubropilosa), was obtained from Ricinus communis. A two-phase solvent system composed of CH(2)Cl(2)/EtOH/H(2)O (93:35:72, v/v/v) was used for high-speed counter-current chromatographic (HSCCC) isolation of ricinine in high yield and with over 96% purity, as determined by liquid and gas chromatography-mass spectrometry (LC-MS and GC-MS). Identification of ricinine was performed by comparison of (1)H NMR, (13)C NMR and LC-MS/MS data.

  14. Antibiotic purification from fermentation broths by counter-current chromatography: analysis of product purity and yield trade-offs.

    PubMed

    Booth, A J; Ngiam, S H; Lye, G J

    2004-12-01

    Counter-current chromatography (CCC) is a low pressure, liquid-liquid chromatographic technique which has proven to be a powerful purification tool for the high-resolution fractionation of a variety of active pharmaceutical compounds. The successful integration of CCC into either existing or new manufacturing processes requires the predictable purification of target compounds from crude, fermentation-derived, feed streams. This work examines the feasibility of CCC for the purification of fermentation-derived erythromycin A (EA) from its structurally and chemically similar analogues. At the laboratory scale, the effect of feed pre-treatment using either clarified, forward extracted (butyl acetate) or back extracted broth on EA separation was investigated. This defined the degree of impurity removal required, i.e. back extracted broth, to ensure a reproducible elution profile of EA during CCC. Optimisation and scale-up of the separation studied the effects of mobile phase flow (2-40 ml.min(-1)) and solute loading (0.1-10 g) on the attainable EA purity and yield. The results in all cases demonstrated a high attainable EA purity (>97% w/w) with throughputs up to 0.33 kg.day(-1). Secondly, a predictive scale-up model was applied demonstrating, that from knowledge of the solute distribution ratio of EA (K(EA)) at the laboratory scale, the EA elution time at the pilot scale could be predicted to within 3-10%, depending upon the solute injection volume. In addition, this study has evaluated a "fractionation diagram" approach to visually determine the effects of key operational variables on separation performance. This resulted in accurate fraction cut-point determination for a required degree of product purity and yield. Overall, the results show CCC to be a predictable and scaleable separation technique capable of handling real feed streams.

  15. Efficient counter-current chromatographic isolation and structural identification of two new cinnamic acids from Echinacea purpurea.

    PubMed

    Lu, Ying; Li, JiaYin; Li, MiLu; Hu, Xia; Tan, Jun; Liu, Zhong Hua

    2012-10-01

    Two new cinnamic acids, 2-O-caffeoyl-3-O-isoferuloyltartaric (3), and 2, 3-di-O-isoferuloyltartaric acid (5), along with three known caffeic acids, cichoric acid (1), 2-O-caffeoyl-3-O-feruloyltartaric acid (2) and 2-O-caffeoyl-3-O-p-coumaroyltartaric acid (4), have been successfully isolated and purified from Echinacea purpurea. In this study, we investigated an efficient method for the preparative isolation and purification of cinnamic acids from E. purpurea by high-speed counter-current chromatography (HSCCC). The separation was performed using a two-phase solvent composed of n-hexane-ethyl-acetate-methanol-0.5% aqueous acetic acid (1:3:1:4, v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase, with a flow rate of 1.6 mL/min. From 250 mg of crude extracts, 65.1 mg of 1, 8.3 mg of 2, 4.0 mg of 3, 4.5 mg of 4, and 4.3 mg of 5 were isolated in one-step, with purities of 98.5%, 97.7%, 94.6%, 94.3%, and 98.6%, respectively, as evaluated by HPLC-DAD. The chemical structures were identified by electro spray ionization mass spectrometry (ESI-MS) and one- and two-dimensional NMR spectra. HSCCC was very efficient for the separation and purification of the cinnamic acids from

  16. Visualisation of J-type counter-current chromatography: A route to understand hydrodynamic phase distribution and retention

    PubMed Central

    Guan, Yue Hugh; van den Heuvel, Remco N.A.M.; Zhuang, Ying-Ping

    2012-01-01

    This paper has addressed decade sought-after questions on phase bilateral distribution and stationary phase retention in any J-type high-speed counter-current chromatographic (CCC) centrifuge. Using a 2-D spiral column operated on such a CCC device and an aqueous two-phase system, this work systematically observed the phase interaction during transitional period and at dynamic equilibration under stroboscopic illumination. The experimental results thus obtained were used to examine the effects of the liquid–solid friction force, tangential centrifugal force, and physical properties of the two-phase system on hydrodynamic phase behaviour. We identified that (a) density difference between lower and upper phases is the critical factor to cause unusual phase bilateral distribution in the 2-D spiral column and (b) interfacial tension (manifested primarily as phase settling time) of any two-phase system is the critical factor in explaining inability to retain stationary phase in 3-D helical column and, for certain flow modes, in the 2-D spiral column. This work thus has extended or modified the well-established rule-of-thumb for operating J-type CCC devices and our conclusions can accommodate virtually all the anomalies concerning both hydrophobic and hydrophilic phase systems. To this end, this work has not only documented valuable experimental evidences for directly observing phase behaviour in a CCC column, but also finally resolved fundamentally vital issues on bilateral phase distribution orientation and stationary phase retention in 2-D spiral and 3-D helical CCC columns. Revised recommendations to end users of this technology could thus be derived out of the essence of the present work presumably following further experimental validation and a consensus in the CCC R&D and manufacturing circle. PMID:22513130

  17. Effect of pulmonary rehabilitation on tidal expiratory flow limitation at rest and during exercise in COPD patients.

    PubMed

    Theodorakopoulou, Elpida P; Gennimata, Sofia-Antiopi; Harikiopoulou, Maria; Kaltsakas, Georgios; Palamidas, Anastasios; Koutsoukou, Antonia; Roussos, Charis; Kosmas, Epameinondas N; Bakakos, Petros; Koulouris, Nickolaos G

    2017-04-01

    We hypothesized that severe COPD patients who present with the disadvantageous phenomenon of Expiratory Flow Limitation (EFL) may benefit as COPD patients without EFL do after implementation of a Pulmonary Rehabilitation (PR) program. Forty-two stable COPD patients were studied at rest and during exercise. EFL and dynamic hyperinflation (DH) were documented using the negative expiratory pressure (NEP) technique and inspiratory capacity (IC) maneuvers, respectively. Patient centered outcomes were evaluated by the Saint-George's Respiratory Questionnaire (SGRQ) and the mMRC dyspnea scale. Before PR, 16 patients presented with EFL at rest and/or during exercise. After PR, EFL was abolished in 15 out of those 16 EFL patients who exhibited a significant increase in IC values. These were mainly accomplished through a modification of the breathing pattern. In the 26 NFL patients no increase was noted in their IC or a modification of their breathing pattern. However, both NFL and EFL COPD patients improved exercise capacity and patients centered outcomes undergoing the same PR program.

  18. Improving Efficiency of a Counter-Current Flow Moving Bed Granular Filter

    SciTech Connect

    Colver, G.M.; Brown, R.C.; Shi, H.; Soo, D.S-C.

    2002-09-18

    The goal of this research is to improve the performance of moving bed granular filters for gas cleaning at high temperatures and pressures. A second goal of the research is to optimize the performances of both solids and gas filtering processes through appropriate use of granular bed materials, particle sizes, feed rates etc. in a factorial study. These goals are directed toward applications of advanced coal-fired power cycles under development by the U.S. Department of Energy including pressurized fluidized bed combustion and integrated gasification/combined cycles based on gas turbines and fuel cells. Only results for particulate gas cleaning are reported here.

  19. Angina pectoris in patients without flow-limiting coronary artery disease (cardiac syndrome X). A forest of a variety of trees.

    PubMed

    Cocco, Giuseppe; Jerie, Paul

    2015-01-01

    Coronary heart disease (CHD) represents an important problem worldwide. At present, more women than men are evaluated for CHD and it has been recognized that the prevalence of this pathology in women is at least the same as in men. We have learned that cardiac syndrome X (CSX) is frequent because worldwide each year millions of people (mostly women) with angina pectoris without flow-limiting epicardial pathology are identified. Data from large myocardial infarction registries suggest a 5% to 25% prevalence of cases without flow-limiting coronary pathology. It must, however, be considered that these people are said to have normal coronary arteries by visual analysis of biplane coronarography. On the other hand, as demonstrated from autopsy, and in vivo by ultrasound intravascular studies, it would be more appropriate to say that in the majority of these cases no obstructive or flow-limiting coronary pathology was detected by coronarography. In CSX, endothelial dysfunction and microvascular dysfunction, sometimes with coronary microvascular spasm and epicardial coronary artery spasm, have been recognized as pathophysiologic mechanisms. In CSX, symptoms and pathologic signs are the same in patients with flow-limiting coronary pathology. The difference lies in the fact that the mechanisms of myocardial ischemia are microvascular and flow-limiting epicardial coronary pathology is absent. By interplay, the pathologic entities at work in CSX are linked with poor long-term outcome. The prevalence of these outcomes is probably smaller than in patients with flow-limiting coronary pathology but we lack precise values. Nonetheless, severe cardiovascular complications are frequent in CSX and it is thus the pathology is not benign. Drugs used in coronary ischemic disease are empirically prescribed to treat CSX, but we lack data from specific trials. It seems that statins and ranolazine might exert positive effects. However, specific research to target interventions in CSX would

  20. Influence of catalyticity of a porous medium on the concentration limit of filtration combustion of a water-organic mixture in a reversible flow reactor

    NASA Astrophysics Data System (ADS)

    Dobrego, K. V.; Koznacheev, I. A.

    2012-09-01

    The problem on oxidation purification of water in a reversible flow reactor with the use of a catalyst has been studied by numerical methods. We have made comparative studies of the concentration limits of mixture combustion attained in inert and catalytic porous media reactors at varied values of the liquid flow rate, the reactor length, the heat loss coefficient, and the size of the packed bed. It has been established that the use of a catalyst leads to an insignificant decrease in the concentration limit: 11.6% against 13.4% (adiabatic case) and 12.5% against 13.9% (standard insulation).

  1. Performance characteristics of countercurrent separation in analysis of natural products of agricultural significance.

    PubMed

    Friesen, J Brent; Pauli, Guido F

    2008-01-09

    A standard test mix consisting of 21 commercially available natural products of agricultural significance, termed the GUESSmix, was employed to measure the countercurrent chromatography performance characteristics of a very popular quaternary solvent system family made up of hexane-ethyl acetate-methanol-water (HEMWat). The polarity range of the GUESSmix combined with the elution-extrusion countercurrent chromatography (EECCC) technique and the newly developed reciprocal symmetry (ReS) and reciprocal shifted symmetry (ReSS) plots allow liquid-liquid distribution ratios ( K D) to be plotted for every compound eluted on a scale of zero to infinity. It was demonstrated that 16 of the 21 GUESSmix compounds are found in the optimal range of resolution (0.25 < K(D) < 16) of at least one HEMWat solvent system. The HEMWat solvent systems represented by the ratios 4:6:5:5, 4:6:4:6, and 3:7:4:6 possess the most densely populated optimal ranges of resolution for this standard mix. ReS plots have been shown to reveal the symmetrical reversibility of the EECCC method in reference to K(D) = 1. This study lays the groundwork for evaluation and comparison of solvent system families proposed in the literature, as well as the creation of new solvent system families with desired performance characteristics.

  2. Reverse osmosis concentrate treatment via a PAC-MF accumulative countercurrent adsorption process.

    PubMed

    Zhao, Chunxia; Gu, Ping; Cui, Hangyu; Zhang, Guanghui

    2012-01-01

    Organic pollutants in reverse osmosis (RO) concentrates from wastewater reclamation are mainly comprised of low molecular weight biorefractory compounds. Generally, advanced oxidation methods for oxidizing these organics require a relatively high level of energy consumption. In addition, conventional adsorption removal methods require a large dose of activated carbon. However, the dose can be reduced if its full adsorption capacity can be used. Therefore, the combined technology of powdered activated carbon (PAC) adsorption and microfiltration (MF) membrane filtration was studied to develop a countercurrent two-stage adsorption process. A PAC accumulative adsorption prediction method was proposed based on the verification of a PAC multi-stage adsorption capacity equation. Moreover, the prediction method was amended for a more accurate prediction of the effluent quality because adsorption isotherm constants were affected by the initial adsorbate concentration. The required PAC dose for the accumulative countercurrent two-stage adsorption system was 0.6 g/L, whereas that of the conventional adsorption process was 1.05 g/L when the dilution factor(F) was 0.1 and the COD and DOC removal rates were set to 70% and 68.1%, respectively. Organic pollutants were satisfactorily removed with less consumption of PAC. Effluent from this combined technology can be further reclaimed by an RO process to improve the overall recovery rate to between 91.0% and 93.8% with both economic and environmental benefits.

  3. Purification of semiconducting single-walled carbon nanotubes by spiral counter-current chromatography.

    PubMed

    Knight, Martha; Lazo-Portugal, Rodrigo; Ahn, Saeyoung Nate; Stefansson, Steingrimur

    2017-02-03

    Over the last decade man-made carbon nanostructures have shown great promise in electronic applications, but they are produced as very heterogeneous mixtures with different properties so the achievement of a significant commercial application has been elusive. The dimensions of single-wall carbon nanotubes are generally a nanometer wide, up to hundreds of microns long and the carbon nanotubes have anisotropic structures. They are processed to have shorter lengths but they need to be sorted by diameter and chirality. Thus counter-current chromatography methods developed for large molecules are applied to separate these compounds. A modified mixer-settler spiral CCC rotor made with 3 D printed disks was used with a polyethylene glycol-dextran 2-phase solvent system and a surfactant gradient to purify the major species in a commercial preparation. We isolated the semi-conducting single walled carbon nanotube chiral species identified by UV spectral analysis. The further development of spiral counter-current chromatography instrumentation and methods will enable the scalable purification of carbon nanotubes useful for the next generation electronics. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Separation and purification of five alkaloids from Aconitum duclouxii by counter-current chromatography.

    PubMed

    Wang, Yarong; Cai, Shining; Chen, Yang; Deng, Liang; Zhou, Xumei; Liu, Jia; Xu, Xin; Xia, Qiang; Lin, Mao; Zhang, Jili; Huang, Weili; Wang, Wenjun; Xiang, Canhui; Cui, Guozhen; Du, Lianfeng; He, Huan; Qi, Baohui

    2015-07-01

    C19 -diterpenoid alkaloids are the main components of Aconitum duclouxii Levl. The process of separation and purification of these compounds in previous studies was tedious and time consuming, requiring multiple chromatographic steps, thus resulted in low recovery and high cost. In the present work, five C19 -diterpenoid alkaloids, namely, benzoylaconine (1), N-deethylaconitine (2), aconitine (3), deoxyaconitine (4), and ducloudine A (5), were efficiently prepared from A. duclouxii Levl (Aconitum L.) by ethyl acetate extraction followed with counter-current chromatography. In the process of separation, the critical conditions of counter-current chromatography were optimized. The two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water/NH3 ·H2 O (25%) (1:1:1:1:0.1, v/v) was selected and 148.2 mg of 1, 24.1 mg of 2, 250.6 mg of 3, 73.9 mg of 4, and 31.4 mg of 5 were obtained from 1 g total Aconitum alkaloids extract, respectively, in a single run within 4 h. Their purities were found to be 98.4, 97.2, 98.2, 96.8, and 96.6%, respectively, by ultra-high performance liquid chromatography analysis. The presented separation and purification method was simple, fast, and efficient, and the obtained highly pure alkaloids are suitable for biochemical and toxicological investigation.

  5. Studies on the performance of different coiled column configurations for compact type-I countercurrent chromatography.

    PubMed

    Yang, Yi; Gu, Dongyu; Aisa, Haji Akber; Ito, Yoichiro

    2011-05-01

    Three types of novel coiled column configurations, i.e. a triangular coiled column and elliptical coiled columns I and II, were designed for type-I countercurrent chromatography and their performances were evaluated with two solvent systems each with suitable test samples. Three dinitrophenyl (DNP) amino acids (DNP-DL-glu, DNP-β-ala and DNP-L-ala) were separated with a moderately hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1 M hydrochloric acid (1:1:1:1, v/v), while two dipeptides (tryptophyl-tyrosine and valyl-tyrosine) were separated with a polar solvent system composed of 1-butanol-acetic acid-water (4.75:0.25:5, v/v). The overall results indicated that the performance of compact type-I countercurrent chromatography was improved by elliptical coiled column I which was mounted with its maximum coil diameter perpendicular to the surface of the column holder. Hydrodynamic effects involved in these separations were discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Recovery of butanol by counter-current carbon dioxide fractionation with its potential application to butanol fermentation

    USDA-ARS?s Scientific Manuscript database

    A counter-current CO2 fractionation method was studied as a means to recover butanol (also known as 1-butanol or n-butanol) and other compounds that are typically obtained from biobutanol fermentation broth from aqueous solutions. The influence of operating parameters, such as solvent-to-feed ratio,...

  7. Elution-extrusion counter-current chromatography for the separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix.

    PubMed

    Chu, Chu; Zhang, Shidi; Tong, Shengqiang; Li, Xingnuo; Li, Qingyong; Yan, Jizhong

    2015-09-01

    In this work, a simple and efficient protocol for the rapid separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix was developed by combining macroporous resin and elution-extrusion counter-current chromatography. The crude extract was firstly subjected to a D101 macroporous resin column eluted with water and a series of different concentrations of ethanol. Then, effluents of 30 and 95% ethanol were collected as sample 1 and sample 2 for further counter-current chromatography purification. Finally, a pair of isomers, 96 mg of compound 1 and 48 mg of compound 2 with purities of 91.1 and 96.2%, respectively, was isolated from 200 mg of sample 1. The other pair of isomers, 14 mg of compound 3 and 8 mg of compound 4 with purities of 93.6 and 88.9%, respectively, was isolated from 48 mg of sample 2. Their purities were analyzed by high-performance liquid chromatography, and their chemical structures were identified by mass spectrometry and (1) H NMR spectroscopy. Compared to a normal counter-current chromatography separation, the separation time and solvent consumption of elution-extrusion counter-current chromatography were reduced while the resolutions were still good. The established protocol is promising for the separation of natural products with great disparity of content in herbal medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mathematical model of quasiequilibrium counter-current solvent extraction of rare-earth metals with variable feed compositions

    SciTech Connect

    Pyartman, A.K.; Puzikov, E.A.; Kopyrin, A.A.

    1995-07-01

    A mathematical model is proposed for the distribution of trivalent rare-earth metals as a function of the number of contacts in quasiequilibrium counter-current solvent extraction with variable feed compositions. An algorithm for computer calculations is given. The model is used to select the optimal conditions for separating a didymium mixture.

  9. Isolation of chavibetol from essential oil of Pimenta pseudocaryophyllus leaf by high-speed counter-current chromatography.

    PubMed

    dos Santos, Bruna C B; da Silva, Júlio César T; Guerrero, Palimécio G; Leitão, Gilda G; Barata, Lauro E S

    2009-05-08

    Counter-current chromatography (CCC) was used to isolate chavibetol from the essential oil of leaves of Pimenta pseudocaryophyllus (Gomes) Landrum. Chavibetol was obtained in high purity (98%) and mass recovery (94.4%). Methyleugenol was also isolated. The CCC biphasic solvent system used was composed of hexane:n-butanol:methanol:water (12:4:4:3, v/v/v/v).

  10. Synthesis of medronic acid monoesters and their purification by high-performance countercurrent chromatography or by hydroxyapatite

    PubMed Central

    Vepsäläinen, Jouko; Turhanen, Petri A

    2016-01-01

    Summary We achieved the synthesis of important medronic acid monoalkyl esters via the dealkylation of mixed trimethyl monoalkyl esters of medronic acid. Two methods were developed for the purification of medronic acid monoesters: 1) small scale (10–20 mg) purification by using hydroxyapatite and 2) large scale (tested up to 140 mg) purification by high-performance countercurrent chromatography (HPCCC). PMID:27829921

  11. Online-storage recycling counter-current chromatography for preparative isolation of naphthaquinones from Arnebia euchroma (Royle) Johnst.

    PubMed

    He, Jian-Ming; Zhang, Shi-Yue; Mu, Qing

    2016-09-16

    Counter-current Chromatography (CCC) has gradually become a popular method for preparative separation, especially in natural product isolation. As an effective separation method, one-dimensional (1D) CCC often results in insufficiently resolved peaks, due to limitations in the separation efficiency and peak capacity in an equipment. Therefore, two dimensional (2D)/multi-dimensional (multi-D) CCC strategies with recycling elution mode were developed to achieve successful separation of target compounds. However, the reported 2D or multi-D CCC approaches lead to experimental costs, complicated procedures, higher requirements for equipment, and increased time consumption. In this study, an online-storage recycling (OSR) CCC strategy was designed to achieve sequential recycling elution for multi-fractions of effluent in non-stop separation with single instrument using three 6-port valves and two storage loops, which would be realized by introducing 2D or multi-D CCC method before. In this non-stop separation system, the fraction C of effluent was subjected to recycling separation while the other fractions (A and B) were storing online, following which these two fractions were subjected to subsequent recycling separations in order, after the completion of the previous recycling elution. Then, six natural occurring naphthaquinone analogues, namely, shikonin (1), propionylshikonin (2), deoxyshikonin (3), isobutyrylshikonin (4), β, β-dimethylacrylshikonin (5) and isovalerylshikonin (6), were isolated from the crude extract of Arnebia euchroma in single run. The purities of all compounds were > 95.0% as determined by HPLC, and their structures were determined by means of UV, MS, (1)H NMR, (13)C NMR, and optical rotatory dispersion (ORD).

  12. Limitations and empirical extensions of the k-epsilon model as applied to turbulent confined swirling flows

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Abujelala, M. T.

    1984-01-01

    Shortcomings and recommended corrections to the standard two-equation k-epsilon turbulence model suggested by previous investigators are presented. They are assessed regarding their applicability to turbulent swirling recirculating flow. Recent experimental data on swirling confined flows, obtained with a five-hole pitot probe and a six-orientation hot-wire probe, are used to obtain optimum values of the turbulence parameters C-mu, C2, and sigma-epsilon for swirling flows. General predictions of moderately and strongly swirling flows with these values are more accurate than predictions with the standard or previous simple extensions of the k-epsilon turbulence model.

  13. Limitations and empirical extensions of the k-epsilon model as applied to turbulent confined swirling flows

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Abujelala, M. T.

    1984-01-01

    Shortcomings and recommended corrections to the standard two-equation k-epsilon turbulence model suggested by previous investigators are presented. They are assessed regarding their applicability to turbulent swirling recirculating flow. Recent experimental data on swirling confined flows, obtained with a five-hole pitot probe and a six-orientation hot-wire probe, are used to obtain optimum values of the turbulence parameters C-mu, C2, and sigma-epsilon for swirling flows. General predictions of moderately and strongly swirling flows with these values are more accurate than predictions with the standard or previous simple extensions of the k-epsilon turbulence model.

  14. Numerical Studies of Fluid Leakage from a Geologic DisposalReservoir for CO2 Show Self-Limiting Feedback between Fluid Flow and HeatTransfer

    SciTech Connect

    Pruess, Karsten

    2005-03-22

    Leakage of CO2 from a hypothetical geologic storage reservoir along an idealized fault zone has been simulated, including transitions between supercritical, liquid, and gaseous CO2. We find strong non-isothermal effects due to boiling and Joule-Thomson cooling of expanding CO2. Leakage fluxes are limited by limitations in conductive heat transfer to the fault zone. The interplay between multiphase flow and heat transfer effects produces non-monotonic leakage behavior.

  15. The effect of statin treatment on the prevention of stent mediated flow limited edge dissections during PCI in patients with stable angina.

    PubMed

    Oksuz, Fatih; Yarlioglues, Mikail; Yayla, Cagrı; Canpolat, Ugur; Murat, Sani Namık; Aydogdu, Sinan

    2016-10-01

    The effect of statin therapy before PCI with direct stenting may reduce the development of flow limited edge dissections (ED) in patients with stable angina. Flow limited ED after PCI is associated with an increased risk of major adverse cardiovascular events. Statin therapy induces important changes in the plaque composition which have been previously identified as strong predictors of ED. 100 patients complicated with flow limited ED and 100 control patients with successful procedure were enrolled into the study. EDs were described as the 5-mm regions that were immediately adjacent to the stent borders, both distally and proximally on the coronary angiography. Rate of statin use and duration of statin use were significantly higher in patients with non-ED group (63%) versus ED group (25%) (p<0.001). In addition, patients in ED group had significantly higher levels of C-reactive protein (CRP) at admission (9.9mg/dL (5.89-16.45) vs. 4.40mg/dL (3.5-7.09), respectively, p=0.014). Our findings suggested that maintenance statin treatment before PCI with direct stenting may reduce the development of flow limited ED in patients with stable angina. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Numerical model for swirl cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    NASA Astrophysics Data System (ADS)

    Milora, S. L.; Combs, S. K.; Foster, C. A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code was used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cu cm, is modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/sq cm occur at the water cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes with straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  17. An investigation of flow-limited field-injection electrostatic spraying (FFESS) and its applications to thin film deposition

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra Pratap

    Electrostatic spraying is the process of controlled disruption of a liquid surface due to excess surface charge density. The technique has found applications in a wide range of fields from agricultural sprays to fuel injectors to colloidal thrusters for space vehicle propulsion. Over the past 20 years, the technique has been intensely studied in material processing for synthesis of ceramic and metal powders, nanoparticles and thin films. The importance of the technique lies in its simple setup, high deposition efficiency, and ambient atmosphere operation. In conventional electrostatic spraying (CESS), one uses a conducting nozzle to charge the liquid, mostly by induction charging. CESS is therefore restricted to the single jet mode of spraying which occurs at low spray currents. It lacks stability and reproducibility in the high current, multiple jet regime, which can generate much finer sprays. In flow-limited field-injection electrostatic spraying (FFESS), one uses a field-injection electrode to stably and controllably inject higher currents into the liquid, a la Fowler-Nordheim, using an otherwise insulating nozzle. This way, it is possible to stably electrospray in the multiple jet mode. In addition to producing much finer sprays, the multi-jet mode atomizes liquids at higher rates, and spreads the spray over a wider region and more uniformly than single jet sprays, thus paving way for large-area uniform thin film deposition. A simple yet comprehensive theory is formulated to describe the multi jet formation. The theory, which is based on the energy minimization principle, takes into account, for the first time, the interactions between charged jets which leads to saturation in the number of jets at high spray currents. The possibility of using an array of nozzles to obtain uniform large-area high-throughput thin film deposition is also investigated. A large number of FFESS nozzles with alternating positive and negative polarities arranged in a periodic 2

  18. Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores.

    PubMed

    Unsal, Evren; Mason, Geoffrey; Morrow, Norman R; Ruth, Douglas W

    2009-04-09

    A previous paper (Unsal, E.; Mason, G.; Ruth, D. W.; Morrow, N. R. J. Colloid Interface Sci. 2007, 315, 200-209) reported experiments involving counter-current spontaneous imbibition into a model pore system consisting of a rod in an angled slot covered by a glass plate. Such an arrangement gives two tubes with different cross-sections (both size and shape) with an interconnection through the gap between the rod and the plate. In the previous experiments, the wetting phase advanced in the small tube and nonwetting phase retreated in the large tube. No bubbles were formed. In this paper, we study experimentally and theoretically the formation of bubbles at the open end of the large tube and their subsequent snap-off. Such bubbles reduce the capillary back pressure produced by the larger tube and can thus have an effect on the local rate of imbibition. In the model pore system, the rod was either in contact with the glass, forming two independent tubes, or the rod was spaced from the glass to allow cross-flow between the tubes. For small gaps, there were three distinct menisci. The one with the highest curvature was between the rod and the plate. The next most highly curved was in the smaller tube, and the least highly curved meniscus was in the large tube and this was the tube from which the bubbles developed. The pressure in the dead end of the system was recorded during imbibition. Once the bubble starts to form outside of the tube, the pressure drops rapidly and then steadies. After the bubble snaps off, the pressure rises to almost the initial value and stays essentially constant until the next bubble starts to form. After snap-off, the meniscus in the large tube appears to invade the large tube for some distance. The snap-off is the result of capillary instability; it takes place significantly inside the large tube with flow of wetting phase moving in the angular corners. As imbibition into the small tube progresses, the rate of imbibition decreases and the

  19. Perfusion-diffusion compartmental models describe cerebral helium kinetics at high and low cerebral blood flows in sheep.

    PubMed

    Doolette, David J; Upton, Richard N; Grant, Cliff

    2005-03-01

    This study evaluated the relative importance of perfusion and diffusion mechanisms in compartmental models of blood:tissue helium exchange in the brain. Helium has different physiochemical properties from previously studied gases, and is a common diluent gas in underwater diving where decompression schedules are based on theoretical models of inert gas kinetics. Helium kinetics across the cerebrum were determined during and after 15 min of helium inhalation, at separate low and high steady states of cerebral blood flow in seven sheep under isoflurane anaesthesia. Helium concentrations in arterial and sagittal sinus venous blood were determined using gas chromatographic analysis, and sagittal sinus blood flow was monitored continuously. Parameters and model selection criteria of various perfusion-limited or perfusion-diffusion compartmental models of the brain were estimated by simultaneous fitting of the models to the sagittal sinus helium concentrations for both blood flow states. Purely perfusion-limited models fitted the data poorly. Models that allowed a diffusion-limited exchange of helium between a perfusion-limited tissue compartment and an unperfused deep compartment provided better overall fit of the data and credible parameter estimates. Fit to the data was also improved by allowing countercurrent diffusion shunt of helium between arterial and venous blood. These results suggest a role of diffusion in blood:tissue helium equilibration in brain.

  20. Perfusion–diffusion compartmental models describe cerebral helium kinetics at high and low cerebral blood flows in sheep

    PubMed Central

    Doolette, David J; Upton, Richard N; Grant, Cliff

    2005-01-01

    This study evaluated the relative importance of perfusion and diffusion mechanisms in compartmental models of blood:tissue helium exchange in the brain. Helium has different physiochemical properties from previously studied gases, and is a common diluent gas in underwater diving where decompression schedules are based on theoretical models of inert gas kinetics. Helium kinetics across the cerebrum were determined during and after 15 min of helium inhalation, at separate low and high steady states of cerebral blood flow in seven sheep under isoflurane anaesthesia. Helium concentrations in arterial and sagittal sinus venous blood were determined using gas chromatographic analysis, and sagittal sinus blood flow was monitored continuously. Parameters and model selection criteria of various perfusion-limited or perfusion–diffusion compartmental models of the brain were estimated by simultaneous fitting of the models to the sagittal sinus helium concentrations for both blood flow states. Purely perfusion-limited models fitted the data poorly. Models that allowed a diffusion-limited exchange of helium between a perfusion-limited tissue compartment and an unperfused deep compartment provided better overall fit of the data and credible parameter estimates. Fit to the data was also improved by allowing countercurrent diffusion shunt of helium between arterial and venous blood. These results suggest a role of diffusion in blood:tissue helium equilibration in brain. PMID:15649976

  1. Determination and purification of sesamin and sesamolin in sesame seed oil unsaponified matter using reversed-phase liquid chromatography coupled with photodiode array and tandem mass spectrometry and high-speed countercurrent chromatography.

    PubMed

    Takahashi, Miki; Nishizaki, Yuzo; Sugimoto, Naoki; Takeuchi, Hiroaki; Nakagawa, Kazuya; Akiyama, Hiroshi; Sato, Kyoko; Inoue, Koichi

    2016-10-01

    In Asian countries, sesame seed oil unsaponified matter is used as a natural food additive due to its associated antioxidant effects. We determined and purified the primary lignans sesamin and sesamolin in sesame seed oil unsaponified matter using reversed-phase liquid chromatography coupled with photodiode array and tandem mass spectrometry and high-speed countercurrent chromatography. Calibration curves showed good correlation coefficients (r(2) > 0.999, range 0.08 and/or 0.15 to 5 μg/mL) with a limit of detection (at 290 nm) of 0.02 μg/mL for sesamin and 0.04 μg/mL for sesamolin. Sesame seed oil unsaponified matter contained 2.82% sesamin and 2.54% sesamolin, respectively. Direct qualitative analysis of sesamin and sesamolin was achieved using quadrupole mass spectrometry with positive-mode electrospray ionization. Pure (>99%) sesamin and sesamolin standards were obtained using high-speed countercurrent chromatographic purification (hexane/ethyl acetate/methanol/water; 7:3:7:3). An effective method for determining and purifying sesamin and sesamolin from sesame seed oil unsaponified matter was developed by combining these separation techniques for standardized food additives.

  2. Chemical Safety Alert: Emergency Isolation for Hazardous Material Fluid Transfer Systems - Application and Limitations of Excess Flow Valves

    EPA Pesticide Factsheets

    While excess flow valves (EFV) are in extensive service and have prevented numerous pipe or hose breaks from becoming much more serious incidents, experience shows that in some cases the EFV did not perform as intended, usually because of misapplication.

  3. Effect of pregnancy and nitric oxide on the myogenic vasodilation of posterior cerebral arteries and the lower limit of cerebral blood flow autoregulation.

    PubMed

    Chapman, Abbie C; Cipolla, Marilyn J; Chan, Siu-Lung

    2013-09-01

    Hemorrhage during parturition can lower blood pressure beyond the lower limit of cerebral blood flow (CBF) autoregulation that can cause ischemic brain injury. However, the impact of pregnancy on the lower limit of CBF autoregulation is unknown. We measured myogenic vasodilation, a major contributor of CBF autoregulation, in isolated posterior cerebral arteries (PCAs) from nonpregnant and late-pregnant rats (n = 10/group) while the effect of pregnancy on the lower limit of CBF autoregulation was studied in the posterior cerebral cortex during controlled hemorrhage (n = 8). Pregnancy enhanced myogenic vasodilation in PCA and shifted the lower limit of CBF autoregulation to lower pressures. Inhibition of nitric oxide synthase (NOS) prevented the enhanced myogenic vasodilation during pregnancy but did not affect the lower limit of CBF autoregulation. The shift in the autoregulatory curve to lower pressures during pregnancy is likely protective of ischemic injury during hemorrhage and appears to be independent of NOS.

  4. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    PubMed

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  < Q max  < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r  < Q min  < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  5. Limitations of Snow-Water Equivalent and Precipitation Data in Seasonal Flow Forecasting in the Upper Klamath River Basin of Oregon and California

    NASA Astrophysics Data System (ADS)

    Risley, J. C.; Roehl, E. A.

    2005-12-01

    Water managers in the upper Klamath Basin, located in south-central Oregon and northeastern California, rely on accurate forecasts of spring and summer streamflow to optimally allocate increasingly limited water supplies for various demands that include irrigation for agriculture, habitat for endangered fishes, and hydropower production. Federal agencies make forecasts on the 1st of each month, from January through May, of the total volume of water expected to pass a stream gage or flow into a reservoir during an entire summer irrigation season. Often the forecasts are based on output from flow forecast models that use real-time snow-water equivalent (SWE) and precipitation data as input. Because the January and February forecasts are significantly less accurate than those made in the spring, we were interested in quantifying the limitations of real-time SWE and precipitation data in forecasting future flows. Using over 20 years of daily SWE, precipitation, and flow time-series from five sites in the upper Klamath Basin, we first decomposed the flow records into annual periodic, long-term climatic, and chaotic traces. Being the component of the original flow records with their seasonality and long-term trends removed, the chaotic traces were then lag correlated with SWE and precipitation records. After a 120 day lag (approximately 4 months), all of the correlation coefficients between the chaotic flow traces and the SWE and precipitation records were less than 0.4. From this, we could infer that SWE and precipitation data older than 120 days provide forecast models only with information regarding the annual seasonal and long-term climate patterns and do not provide information that is unique and specific for the upcoming irrigation season. These results also support the need to find new climate variables, such as mid-oceanic indicators, to improve forecast model accuracy rather than using just real-time SWE and precipitation conditions.

  6. Real-Time Volumetric Phase Monitoring: Advancing Chemical Analysis by Countercurrent Separation.

    PubMed

    Pauli, Guido F; Pro, Samuel M; Chadwick, Lucas R; Burdick, Thomas; Pro, Luke; Friedl, Warren; Novak, Nick; Maltby, John; Qiu, Feng; Friesen, J Brent

    2015-07-21

    Countercurrent separation (CCS) utilizes the differential partitioning behavior of analytes between two immiscible liquid phases. We introduce the first platform ("CherryOne") capable of real-time monitoring, metering, and control of the dynamic liquid-liquid CCS process. Automated phase monitoring and volumetrics are made possible with an array of sensors, including the new permittivity-based phase metering apparatus (PMA). Volumetric data for each liquid phase are converted into a dynamic real-time display of stationary phase retention (Sf) and eluent partition coefficients (K), which represent critical parameters of CCS reproducibility. When coupled with the elution-extrusion operational mode (EECCC), automated Sf and K determination empowers untargeted and targeted applications ranging from metabolomic analysis to preparative purifications.

  7. Preparative isolation of three anthraquinones from Rumex japonicus by high-speed counter-current chromatography.

    PubMed

    Guo, Shuying; Feng, Bo; Zhu, Ruonan; Ma, Jiankang; Wang, Wei

    2011-01-27

    Three anthraquinones--emodin, chrysophanol, and physcion--were successfully purified from the dichloromethane extract of the Chinese medicinal herb Rumex japonicus by high-speed counter-current chromatography (HSCCC). The extract was separated with n-hexane-ethanol-water (18:22:3, v/v/v) as the two-phase solvent system and yielded 3.4 mg of emodin, 24.1 mg of chrysophanol, and 2.0 mg of physcion from 500 mg of sample with purities of 99.2 %, 98.8% and 98.2%, respectively. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the chemical structures of the three anthraquinones were confirmed by ¹H-NMR and ¹³C-NMR analysis. This is the first time these anthraquinones have been obtained from R. japonicus by HSCCC.

  8. Separation of two major chalcones from Angelica keiskei by high-speed counter-current chromatography.

    PubMed

    Kil, Yun-Seo; Nam, Joo-Won; Lee, Jun; Seo, Eun Kyoung

    2015-08-01

    Angelica keiskei (Shin-sun cho) is an edible higher plant with the beneficial preventive effects on cancer, hypertension, and coronary heart disease. Two bioactive chalcones of Shin-sun cho, xanthoangelol (1) and 4-hydroxyderricin (2), were separated simultaneously by using high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-EtOAc-MeOH-H2O (9:5:9:4). Only nonconsuming processes, solvent fractionations and Sephadex LH-20 column chromatography, were conducted as presteps. Xanthoangelol (1, 35.9 mg, 99.9 % purity at 254 and 365 nm) and 4-hydroxyderricin (2, 4.4 mg, 98.7 % purity at 254 nm and 98.8 % purity at 365 nm) were successfully purified from 70 mg of the processed extract from A. keiskei. The structures of two compounds were confirmed by (1)H- and (13)C-NMR analysis.

  9. Nonvolatiles of commercial lime and grapefruit oils separated by high-speed countercurrent chromatography.

    PubMed

    Feger, Wolfgang; Brandauer, Herbert; Gabris, Paulina; Ziegler, Herta

    2006-03-22

    The nonvolatile fractions of cold-pressed peel oils of Key and Persian lime as well as grapefruit were separated by high-speed countercurrent chromatography (HS-CCC). In addition to the isolation of the main coumarins, psoralens and polymethoxyflavones, a number of minor constituents were enriched and successfully characterized by GC-MS and HPLC-UV. 5,7,8-Trimethoxycoumarin and the cyclical acetals of oxypeucedanin hydrate with citral were determined as new nonvolatile trace constituents of lime oils and confirmed by NMR spectroscopy. The citral oxypeucedaninyl acetals were found particularly in Key lime oil type A, which as a result of the juice-oil contact, is exposed to acidic conditions during industrial processing. Some of the confirmed minor constituents, such as pabulenol, isooxypeucedanin, and oxypeucedanin methanolate in lime as well as auraptenol in grapefruit, may have been generated by hydrolysis-sensitive precursors during CCC separation or their respective industrial processing techniques.

  10. Novel Designs for Centrifugal Countercurrent chromatography: V. Comparative Studies on Performance of Various Column Configurations

    PubMed Central

    Yang, Yi; Gu, Dongyu; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The conventional toroidal coil in centrifugal countercurrent chromatography has a low level of stationary phase retention, since a half of each helical turn is entirely occupied by the mobile phase. In order to cope with this problem, several new column designs including zigzag, saw-tooth and figure-8 patterns have been introduced and their performance was compared in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate number (N) and column pressures. Overall results of experiments indicate that the figure-8 column yields the highest Rs when the lower phase is used as the mobile phase. Since the column pressure of all these new columns are much lower than that in the traditional toroidal coil column, the separation efficiency can be improved using a long separation column without a risk of column damage by high back pressure. PMID:21057664

  11. Experimental evidence for self-limiting reactive flow through a fractured cement core: implications for time-dependent wellbore leakage.

    PubMed

    Huerta, Nicolas J; Hesse, Marc A; Bryant, Steven L; Strazisar, Brian R; Lopano, Christina L

    2013-01-02

    We present a set of reactive transport experiments in cement fractures. The experiments simulate coupling between flow and reaction when acidic, CO(2)-rich fluids flow along a leaky wellbore. An analog dilute acid with a pH between 2.0 and 3.15 was injected at constant rate between 0.3 and 9.4 cm/s into a fractured cement core. Pressure differential across the core and effluent pH were measured to track flow path evolution, which was analyzed with electron microscopy after injection. In many experiments reaction was restricted within relatively narrow, tortuous channels along the fracture surface. The observations are consistent with coupling between flow and dissolution/precipitation. Injected acid reacts along the fracture surface to leach calcium from cement phases. Ahead of the reaction front, high pH pore fluid mixes with calcium-rich water and induces mineral precipitation. Increases in the pressure differential for most experiments indicate that precipitation can be sufficient to restrict flow. Experimental data from this study combined with published field evidence for mineral precipitation along cemented annuli suggests that leakage of CO(2)-rich fluids along a wellbore may seal the leakage pathway if the initial aperture is small and residence time allows mobilization and precipitation of minerals along the fracture.

  12. Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement Core: Implications for Time-Dependent Wellbore Leakage

    SciTech Connect

    Huerta, Nicolas J; Hesse, Marc A; Bryant, Steven L; Strazisar, Brian R; Lopano, Christina L

    2013-01-01

    We present a set of reactive transport experiments in cement fractures. The experiments simulate coupling between flow and reaction when acidic, CO{sub 2}-rich fluids flow along a leaky wellbore. An analog dilute acid with a pH between 2.0 and 3.15 was injected at constant rate between 0.3 and 9.4 cm/s into a fractured cement core. Pressure differential across the core and effluent pH were measured to track flow path evolution, which was analyzed with electron microscopy after injection. In many experiments reaction was restricted within relatively narrow, tortuous channels along the fracture surface. The observations are consistent with coupling between flow and dissolution/precipitation. Injected acid reacts along the fracture surface to leach calcium from cement phases. Ahead of the reaction front, high pH pore fluid mixes with calcium-rich water and induces mineral precipitation. Increases in the pressure differential for most experiments indicate that precipitation can be sufficient to restrict flow. Experimental data from this study combined with published field evidence for mineral precipitation along cemented annuli suggests that leakage of CO{sub 2}-rich fluids along a wellbore may seal the leakage pathway if the initial aperture is small and residence time allows mobilization and precipitation of minerals along the fracture.

  13. Inter-annual variability in the Yucatan Channel flow

    NASA Astrophysics Data System (ADS)

    Athié, G.; Sheinbaum, J.; Ochoa-de-La-Torre, J. L.; Romero-Arteaga, A.; Candela, J.

    2013-05-01

    Mooring measurements in the Yucatán Channel from May, 2010 to May, 2011 yield a mean transport of 27 Sv with a standard deviation of 3 Sv. This value is higher than the 23 Sv previously reported from 21 months (Sep., 1999 to May, 2001) of continuous measurements by the Canek Program. Analysis of low-frequency surface geostrophic velocities, derived from 18 years of altimetry data indicate that during the 1999-2001 measurement period, the southward flow on the eastern side of Yucatan Channel, commonly known as the Cuban Countercurrent was particularly strong. The average surface geostrophic flow on the eastern side of the channel (east of 86.5°W) during the 1999-2001 period is 0.17 ms-1, a value 28% lower than its long-term average, indicating the impact of the stronger Cuban Countercurrent during the period. SSH maps in the North Caribbean and Gulf of Mexico are used to investigate the causes of this inter-annual variability. High frequency transport fluctuations west and east of 86.5°W are inversely correlated, with strong pulses that strengthen the Yucatan Current (flow into de Gulf) correlated with a strengthened Cuban Countercurrent (flow into the Caribbean).

  14. Gene flow between Atlantic and Pacific Ocean basins in three lineages of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) and subsequent limited gene flow within the Atlantic

    NASA Astrophysics Data System (ADS)

    LaBella, Abigail Leavitt; Van Dover, Cindy L.; Jollivet, Didier; Cunningham, Clifford W.

    2017-03-01

    Pliocardiin (vesicomyid) clams rely on microbial symbionts for nutrition and are obligate inhabitants of deep-sea chemosynthetic ecosystems. Unlike many other invertebrate hosts of chemosynthetic microbes, pliocardiin clams are found in every ocean in a variety of reducing habitats, including hydrothermal vents, cold seeps, organic falls and deep-sea fans. The global distribution of pliocardiin clams suggests historical gene flow between ocean basins. We focus on 3 pliocardiin genera-'Pliocardia' I, Calyptogena and Abyssogena-each of which has a pair of sister clades in the Atlantic and Pacific. Our work tests the hypothesis that historical gene flow between the Atlantic and Pacific Oceans within these genera was interrupted by the closure of the Panamanian seaway and tests whether isolation between the ocean basins is the result of vicariance or past colonization. These questions are investigated in the context of fossil evidence, biogeography and phylogenetics. This study revealed a set of substitution rates consistent with other invertebrate studies (μ=0.8%/My/lineage), and a set consistent with much lower rates often attributed to deep-sea organisms (μ=0.3%/My/lineage). Among the Pacific/Atlantic sister pairs, 'Pliocardia' I COI divergence per lineage is intermediate (2.5%), Calyptogena is the highest (6.1%) and Abyssogena the lowest (0.8%). The substitution rates suggest that 'Pliocardia' I and Calyptogena have histories of at least 2.8 My in the Atlantic, with Calyptogena likely older. The slower rate, however, is inconsistent with both the maximum age of the family and several well studied fossils: leaving the faster rate preferred. With the faster rate, the Abyssogena southwardae clade diverged from its Pacific sister clade around 1 Mya, which likely post-dates the closure of the Isthmus of Panama and the opening of the Bering Strait. In light of this recent divergence, we test the previously proposed hypothesis that there is a high level of ongoing gene

  15. Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  16. Strictly hyperbolic models of co-current three-phase flow withgravity

    SciTech Connect

    Juanes, Ruben; Patzek, Tadeusz W.

    2002-11-18

    We study the character of the equations in the traditional formulation of one-dimensional immiscible three-phase flow with gravity, in the limit of negligible capillarity. We restrict our analysis to co-current flow required for a displacement process; in cases of mixed co-current and counter-current flow, capillarity effects cannot be dropped from the formulation. The model makes use of the classical multiphase extension of Darcy's equation. It is well known that, if relative permeabilities are taken as fixed functions of saturations, the model yields regions in the saturation space where the system of equations is locally elliptic. We regard elliptic behavior as a nonphysical artifact of an incomplete formulation, and derive conditions on the relative permeabilities that ensure strict hyperbolicity of the governing equations. The key point is to acknowledge that a Darcy-type formulation is insufficient to capture all the physics of three-phase flow and that, consequently, the relative permeabilities are functionals that depend on the fluid viscosity ratio and the gravity number. The derived conditions are consistent with the type of displacements that take place in porous media. By means of an illustrative example, we show how elliptic behavior can be removed, even when using simplistic relative permeability models.

  17. Fluid Dynamics of Contrast Dispersion in Coronary Arteries: Mechanism and Implications for Identification of Flow-Limiting Lesions

    NASA Astrophysics Data System (ADS)

    Eslami, Parastou; Seo, Jung-Hee; Lardo, Albert C.; Mittal, Rajat

    2013-11-01

    Recent coronary computed tomography angiography studies have noted the presence of axial contrast concentration gradients in stenosed coronary arteries, but the mechanism responsible for this phenomenon is not well understood. We use computational fluid dynamics to study intracoronary contrast dispersion and the correlation of concentration gradients with intracoronary blood flow and stenotic severity. Simulations of flow and contrast dispersion in both canonical and patient derived models of the left coronary artery (LCA) are carried out with a prescribed contrast bolus profile, and stenoses of varying severities (0% to 80%) considered. Data from our CFD simulations show the presence of measurable contrast gradients, the magnitude of which is found to decrease monotonically with stenotic severity and increase monotonically with the pressure drop across the stenosis. All simulated cases indicate a strong inverse correlation between contrast gradients and coronary flow rate. The study reveals that contrast gradients are generated by intracoronary advection effects, and therefore, encode coronary flow velocity. This research is supported by a grant from Coulter Foundation.

  18. Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study

    SciTech Connect

    Gerassimenko, M.

    2000-03-01

    We document quick running test problems for a reactive flow model of HE initiation incorporated into ALE3D. A quarter percent change in projectile velocity changes the outcome from detonation to HE burn that dies down. We study the sensitivity of calculated HE behavior to several parameters of practical interest where modeling HE initiation with ALE3D.

  19. Limitation of parallel flow in double diffusive convection: Two- and three-dimensional transitions in a horizontal porous domain

    SciTech Connect

    Mimouni, N.; Chikh, S.; Rahli, O.; Bennacer, R.

    2014-07-15

    Two-dimensional (2D) and three-dimensional (3D) numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out in the present work. The Boussinesq approximation is made in the formulation of the problem, and Neumann boundary conditions for temperature and concentration are adopted, respectively, on vertical and horizontal walls of the cavity. The used numerical method is based on the control volume approach, with the third order quadratic upstream interpolation scheme in approximating the advection terms. A semi implicit method algorithm is used to handle the velocity-pressure coupling. To avoid the excessively high computer time inherent to the solution of 3D natural convection problems, full approximation storage with full multigrid method is used to solve the problem. A wide range of the controlling parameters (Rayleigh-Darcy number Ra, lateral aspect ratio Ay, Lewis number Le, and the buoyancy ration N) is investigated. We clearly show that increasing the depth of the cavity (i.e., the lateral aspect ratio) has an important effect on the flow patterns. The 2D perfect parallel flows obtained for small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complex flow pattern and the usually considered 2D parallel flow model cannot be applied.

  20. Isolation of aspalathin and nothofagin from rooibos (Aspalathus linearis) using high-performance countercurrent chromatography: sample loading and compound stability considerations.

    PubMed

    de Beer, Dalene; Malherbe, Christiaan J; Beelders, Theresa; Willenburg, Elize L; Brand, D Jacobus; Joubert, Elizabeth

    2015-02-13

    Aspalathin and nothofagin, the major dihydrochalcones in rooibos (Aspalathus linearis), are valuable bioactive compounds, but their bioactivity has not been fully elucidated. Isolation of these compounds using high-performance countercurrent chromatography (HPCCC), a gentle, support-free, up-scalable technique, offers an alternative to synthesis for obtaining sufficient amounts. An HPLC-DAD method was adapted to allow rapid (16 min from injection to injection) quantification of the four major compounds (aspalathin, nothofagin, isoorientin, orientin) during development of the isolation protocol. The traditional shake-flask method, used to determine distribution constants (K(D)) for target compounds, was also adapted to obtain higher repeatability. Green rooibos leaves with a high aspalathin and nothofagin content were selected as source material. Sample loading of the polyphenol-enriched extract was limited due to constituents with emulsifying properties, but could be increased by removing ethanol-insoluble matter. Furthermore, problems with degradation of aspalathin during HPCCC separation and further processing could be limited by acidifying the HPCCC solvent system. Aspalathin was shown to be fairly stable at pH 3 (91% remaining after 29 h) compared to pH 7 (45% remaining after 29 h). Aspalathin and nothofagin with high purities (99% and 100%, respectively) were obtained from HPCCC fractions after semi-preparative HPLC.

  1. High-speed counter-current chromatography in separation of betacyanins from flowers of red Gomphrena globosa L. cultivars.

    PubMed

    Spórna-Kucab, Aneta; Hołda, Ewelina; Wybraniec, Sławomir

    2016-10-15

    Antioxidant and possible chemopreventive properties of betacyanins, natural plant pigments, contribute to a growing interest in their chemistry and separation. Mixtures of betacyanins from fresh red Gomphrena globosa L. cultivar flowers were separated in three highly polar solvent systems by high-speed counter-current chromatography (HSCCC) for a direct comparison of their separation effectiveness. Three samples of crude extract (600mg) were run on semi-preparative scale in solvent system (NH4)2SO4soln - EtOH (2.0:1.0, v/v) (system I) and the modified systems: EtOH - ACN - 1-PrOH - (NH4)2SO4satd.soln - H2O (0.5:0.5:0.5:1.2:1.0, v/v/v/v/v) (system II) and EtOH - ACN - (NH4)2SO4satd.soln - H2O (1.0:0.5:1.2:1.0, v/v/v/v) (system III). The systems were used in the head-to-tail (system I) or tail-to-head (systems II and III) mode. The flow rate of the mobile phase was 2.0ml/min and the column rotation speed was 860rpm. The retention of the stationary phase was 52.0% (system I), 80.2% (systems II) and 82.0% (system III). The betacyanins in the crude extract as well as HSCCC fractions were analyzed by LC-MS/MS. System I was applied for the first time in HSCCC for the separation of betacyanins and was quite effective in separation of amaranthine and 17-decarboxy-amaranthine (αI=1.19) and very effective for 17-decarboxy-amaranthine and betanin (αI=2.20). Modification of system I with acetonitrile (system III) as well as acetonitrile and propanol (system II) increased their separation effectiveness. Systems II-III enable complete separation of 17-decarboxy-amaranthine (KD(II)=2.94,KD(III)=2.42) and betanin (KD(II)=2.46,KD(III)=1.10) as well as betanin and gomphrenin I (KD(II)=1.62, KD(III)=0.74). In addition, separation of amaranthine and 17-decarboxy-amaranthine is the most effective in system II, therefore, this system proved to be the most suitable for the separation of all polar betacyanins.

  2. Age-Associated Induction of Cell Membrane CD47 Limits Basal and Temperature-Induced Changes in Cutaneous Blood Flow

    PubMed Central

    Rogers, Natasha M.; Roberts, David D.; Isenberg, Jeffrey S.

    2012-01-01

    Objective We tested the hypothesis that the matricellular protein thrombospondin-1 (TSP1), through binding to and activation of the cell receptor CD47, inhibits basal and thermal-mediated cutaneous blood flow. Background Data Abnormal and decreased cutaneous blood flow in response to temperature changes or vasoactive agents is a feature of cardiovascular disease and aging. The reasons for decreased cutaneous blood flow remain incompletely understood. Further, a role for matricellular proteins in the regulation skin blood flow has never been proposed. Methods C57BL/6 wild type, TSP1- and CD47-null 12 and 72 week old male mice underwent analysis of skin blood flow (SkBF) via laser Doppler in response to thermal stress and vasoactive challenge. Results Young and aged TSP1- and CD47-null mice displayed enhanced basal and thermal sensitive SkFB changes compared to age matched wild type controls. Nitric oxide-mediated increases in SkBF were also greater in null mice. TSP1 and CD47 were expressed in skin from young wild type mice, and both were significantly upregulated in aged animals. Tissue 3',5'-cyclic guanosine monophosphate (cGMP), a potent vasodilator, was greater in skin samples from null mice compared to wild type regardless of age. Finally, treating wild type animals with a CD47 monoclonal antibody, that inhibits TSP1 activation of CD47, enhanced SkBF in both young and aged animals. Conclusions The above results suggest that secreted TSP1, via its cognate receptor CD47, acutely modulates SkBF. These data further support therapeutically targeting CD47 to mitigate age-associated loss of SkBF and maximize wound healing. PMID:23275312

  3. [Isolation and preparation of an imidazole alkaloid from radix radix of Aconitum pendulum Busch by semi-preparative high-speed counter-current chromatography].

    PubMed

    Liu, Yongling; Chen, Tao; Chen, Chen; Zou, Denglang; Li, Yulin

    2014-05-01

    Aconitum pendulum Busch is rich C19 diterpenoid alkaloids, but there is no report of imidazole alkaloid in Aconitum pendulum Busch. In this study, an imidazole alkaloid named 1H-imidazole-2-carboxylic acid, butyl ester (ICABE) was successfully separated from Aconitum pendulum Busch with semi-preparative high-speed counter-current chromatography (HSCCC). The partition coefficient was measured by HPLC to select the solvent systems for ICABE separation by HSCCC. The separation was performed with a two-phase solvent system composed of n-hexane-chloroform-ethanol-water (10:1 : 13:2, v/v/v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase. It was operated at a flow rate of 1.8 mL/min. The apparatus was rotated at 850 r/min, and the detection wavelength was set at 230 nm. Under the selected conditions, a high efficiency separation of HSCCC was achieved, and 7.5 mg of ICABE was obtained from 100 mg of the crude sample of Aconitum pendulum in one-step separation within 350 min. The HPLC analysis showed that the purity of the compound was over 98%. The chemical structure was confirmed by UV, 1H-NMR and 13C-NMR. The established method is simple, highly efficient and suitable for large scale separation of ICABE from radix of Aconitum pendulum Busch.

  4. [Isolation and purification of solanesol from potato leaves by high-speed counter-current chromatography and identification by atmospheric pressure chemical ionization mass spectrometry].

    PubMed

    Hu, Jiangyong; Liang, Yong; Xie, Ya; Huang, Zhaofeng; Zhong, Hanzuo

    2007-07-01

    Preparative high-speed counter-current chromatography (HSCCC) was used for the isolation and purification of solanesol from potato leaves. Experimental conditions of the extraction of solanesol from potato leaves have been optimized. An ultrafine extraction method was applied in this study. The efficiency using an ultrafine extraction was found to be improved in the investigation, the yields of solanesol by different extraction methods were 0.083% by ultrafine extraction and 0.050% by ultrasonic extraction. Using n-hexane-methanol (10:7, v/v) as the two-phase solvent system, preparative HSCCC was successfully performed with the yield of 5 mg solanesol at 98.7% of purity from 60 mg of crude extract in the one-step separation. The mobile phase was the lower phase and operated at a flow rate of 1.5 mL/min, while the apparatus rotated at 800 r/min. The solanesol was identified by the atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The ionization and cleavage mechanisms of solanesol in APCI-MS and APCI-MS/MS are discussed.

  5. Normal-phase high-performance counter-current chromatography for the fractionation of dissolved organic matter from a freshwater source.

    PubMed

    Sandron, Sara; Nesterenko, Pavel N; McCaul, Margaret V; Kelleher, Brian; Paull, Brett

    2014-01-01

    Normal-phase high-performance counter-current chromatography (HPCCC) is used to obtain a preliminary fractionation of components in dissolved organic matter (DOM) from a freshwater source. The HPCCC solvent system involved a normal-phase approach with water/methanol (1:1) as the lower stationary phase and hexane/ethyl acetate (1:1) as the upper mobile phase. The critical experiment parameters were optimised: revolution speed 1800 rpm and flow rate 0.15 mL/min. Under these conditions 50 μL of a 0.50 mg/mL DOM solution was loaded. The detection wavelength was monitored at 330 nm in order to isolate the main portion of DOM, which includes substances such as carboxyl-rich alicyclic molecules. By optimising this system it was possible to isolate materials that, according to GC-MS, can be related to molecules with an analogous structural background. Where fraction analysis was not suitable for GC-MS, RP-HPLC with UV absorbance detection was used, showing unique chromatograms for each fraction at both 210 and 330 nm. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    PubMed Central

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2011-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, 1H NMR and 13C NMR. PMID:23008527

  7. Studies in batch and continuous solvent sublation. IV. Continuous countercurrent solvent sublation and bubble fractionation of hydrophobic organics from aqueous solutions

    SciTech Connect

    Lu, Xiao Y.; Valsaraj, K.T.; Thibodeaux, L.J. )

    1991-01-01

    Experimental results on the solvent sublation of four hydrophobic compounds (pentachlorophenol (PCP), 1,2,4-trichlorobenzene (TCB), 2,3,6-trichloroanisole (TCA), and 2,4,6-trichlorophenol (TCP)) from the aqueous phase to organic solvents are reported. The experiments were conducted with the aqueous and air phases in continuous countercurrent modes and the organic solvent as a stagnant layer, TCB, TCA, and TCP were sublated into mineral oil. PCP at pH 2.9 as neutral molecules were sublated into mineral oil and decyl alcohol while ionic PCP at pH 8.9 were sublated as a complex with hexadecyltrimethyl ammonium bromide into decyl alcohol. The effect of the two organic solvents were compared for neutral PCP sublation from the aqueous phase. The effects of air flow rates, influent feed rates, and the volume of organic solvent were studied. Comparisons were made between the bubble fractionation and solvent sublation of neutral PCP and TCP into mineral oil. The efficiency of sublation was largest for TCB, smallest for TCP, and followed the relative magnitudes of effective partition constants for the solutes between the air bubble and aqueous phase.

  8. Predictable and linear scale-up of four phenolic alkaloids separation from the roots of Menispermum dauricum using high-performance counter-current chromatography.

    PubMed

    Luo, Houding; Peng, Ming; Ye, Haoyu; Chen, Lijuan; Peng, Aihua; Tang, Minghai; Zhang, Fan; Shi, Jie

    2010-07-15

    This paper describes how distribution ratios were used for prediction of peak elution in analytical high-performance counter-current chromatography (HPCCC) to explore the method for separation and purification of bioactive compounds from the roots of Menispermum dauricum. Then important parameters related to HPCCC separations including solvent systems, sample concentration, sample loading volume and flow rate were optimized on an analytical Mini-DE HPCCC and finally linearly scaled up to a preparative Midi-DE HPCCC with nearly the same resolutions and separation time. Four phenolic alkaloids were for the first time obtained by HPCCC separation with a two-phase solvent system composed of petroleum ether-ethyl acetate-ethanol-water (1:2:1:2, v/v). This process produced 131.3 mg daurisolin, 197.1 mg dauricine, 32.4 mg daurinoline and 14.7 mg dauricicoline with the purity of 97.6%, 96.4%, 97.2% and 98.3%, respectively from 500 mg crude extract of the roots of M. dauricum in a one-step separation. The purities of compounds were determined by high-performance liquid chromatography (HPLC). Their structures were identified by electrospray ionization mass spectrometer (ESI-MS) and nuclear magnetic resonance (NMR).

  9. Preparative purification of bromelain (EC 3.4.22.33) from pineapple fruit by high-speed counter-current chromatography using a reverse-micelle solvent system.

    PubMed

    Yin, Lianhong; Sun, C K; Han, Xu; Xu, Lina; Xu, Youwei; Qi, Yan; Peng, Jinyong

    2011-12-01

    The crude protein of pineapple fruit was purified by high-speed counter-current chromatography (HSCCC). Excellent separation was achieved after careful investigation as follows: cetyltrimethylammonium bromide (CTAB) was selected to prepare the reverse micelle phase at the concentration of 0.10g/mL. The mobile phase was 0.05M sodium phosphate buffer solution, including mobile phase A (pH 9.5, containing 0.2M KCl) used for equilibration and mobile phase B (pH 7.0, containing 0.4M KCl) used for elution. The flow rate of the mobile phase was set at 1.5mL/min and the effluent was monitored at 280nm. Under these conditions, 127.3mg bromelain (EC 3.4.22.33) was produced from 200mg crude sample. A large-scale procedure was then carried out, and 3.01g bromelain was obtained from 5.00g crude extract in a 200min run. The separated protein was analysed by SDS-PAGE, compared with the standard and then identified by TOF/TOF-MS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Separation of polyphenols and caffeine from the acetone extract of fermented tea leaves (Camellia sinensis) using high-performance countercurrent chromatography.

    PubMed

    Choi, Soo Jung; Hong, Yong Deog; Lee, Bumjin; Park, Jun Seong; Jeong, Hyun Woo; Kim, Wan Gi; Shin, Song Seok; Yoon, Kee Dong

    2015-07-21

    Leaves from Camellia sienensis are a popular natural source of various beverage worldwide, and contain caffeine and polyphenols derived from catechin analogues. In the current study, caffeine (CAF, 1) and three tea polyphenols including (-)-epigallocatechin 3-O-gallate (EGCg, 2), (-)-gallocatechin 3-O-gallate (GCg, 3), and (-)-epicatechin 3-O-gallate (ECg, 4) were isolated and purified by flow-rate gradient high-performance countercurrent chromatography (HPCCC) using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:9:1:9, v/v). Two hundred milligrams of acetone-soluble extract from fermented C. sinensis leaves was separated by HPCCC to give 1 (25.4 mg), 2 (16.3 mg), 3 (11.1 mg) and 4 (4.4 mg) with purities over 98%. The structures of 1-4 were elucidated by QTOF-MS, as well as 1H- and 13C-NMR, and the obtained data were compared to the previously reported values.

  11. Online polar two phase countercurrent chromatography×high performance liquid chromatography for preparative isolation of polar polyphenols from tea extract in a single step.

    PubMed

    Chen, Wei-Bin; Li, Shu-Qi; Chen, Long-Jiang; Fang, Mei-Juan; Chen, Quan-Cheng; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2015-08-01

    Herein, we report an on-line two-dimensional system constructed by counter-current chromatography (CCC) coupling with preparative high-performance liquid chromatography (prep-HPLC) for the separation and purification of polar natural products. The CCC was used as the first dimensional isolation column, where an environmental friendly polar two-phase solvent system of isopropanol and 16% sodium chloride aqueous solution (1:1.2, v/v) was introduced for low toxicity and favorable resolution. In addition, by applying the stop-and-go flow technique, effluents pre-fractionated by CCC was further purified by a preparative column packed with octadecyl silane (ODS) as the second dimension. The interface between the two dimensions was comprised of a 6-port switching valve and an electronically controlled 2-position 10-port switching valve connected with two equivalent holding columns. To be highlighted here, this rationally designed interface for the purpose of smooth desalination, absorption and desorption, successfully solved the solvent compatibility problem between the two dimensional separation systems. The present integrated system was successfully applied in a one-step preparative separation and identification of 10 pure compounds from the water extracts of Tieguanyin tea (Chinese oolong tea). In short, all the results demonstrated that the on-line 2D CCC×LC method is an efficient and green approach for harvesting polar targets in a single step, which showed great promise in drug discovery.

  12. Scale-up protein separation on stainless steel wide bore toroidal columns in the type-J counter-current chromatography.

    PubMed

    Guan, Yue Hugh; Hewitson, Peter; van den Heuvel, Remco N A M; Zhao, Yan; Siebers, Rick P G; Zhuang, Ying-Ping; Sutherland, Ian

    2015-12-11

    Manufacturing high-value added biotech biopharmaceutical products (e.g. therapeutic proteins) requires quick-to-develop, GMP-compliant, easy-to-scale and cost effective preparatory chromatography technologies. In this work, we describe the construction and testing of a set of 5-mm inner diameter stainless steel toroidal columns for use on commercially available preparatory scale synchronous J-type counter-current chromatography (CCC) machinery. We used a 20.2m long column with an aqueous two-phase system containing 14% (w/w) PEG1000 and 14% (w/w) potassium phosphate at pH 7, and tested a sample loading of 5% column volume and a mobile phase flow rate of 20ml/min. We then satisfactorily demonstrated the potential for a weekly protein separation and preparation throughput of ca. 11g based on a normal weekly routine for separating a pair of model proteins by making five stacked injections on a single portion of stationary phase with no stripping. Compared to our previous 1.6mm bore PTFE toroidal column, the present columns enlarged the nominal column processing throughput by nearly 10. For an ideal model protein injection modality, we observed a scaling up factor of at least 21. The 2 scales of protein separation and purification steps were realized on the same commercial CCC device.

  13. Improved high-speed counter-current chromatograph with three multilayer coils connected in series. I. Design of the apparatus and performance of semipreparative columns in 2,4-dinitrophenyl amino acid separation.

    PubMed

    Ito, Y; Oka, H; Slemp, J L

    1989-07-28

    A compact desktop model of a high-speed counter-current chromatograph holds three identical multilayer coils in the symmetrical positions around the rotary frame to maintain perfect balance of the centrifuge system without the use of a counterweight. These multilayer coils are connected in series to make up a total capacity of 400 ml while the unique gear arrangement on the rotary frame establishes a twist-free mechanism of the flow tubes so that continuous elution can be performed without the use of rotary seal. The high performance of the present system was successfully demonstrated in separations of 10-250 mg of 2,4-dinitrophenyl amino acid mixtures in a two-phase solvent system composed of chloroform-acetic acid-0.1 M hydrochloric acid (2:2:1, v/v/v).

  14. [Noninvasive determination of the ratio of pulmonary to systemic blood flow with two-dimensional Doppler echocardiography: efficacy and limitation].

    PubMed

    Okamoto, M; Miyatake, K; Kinoshita, N; Nakasone, I; Ohwa, M; Takao, S; Fusejima, K; Sakakibara, H; Nimura, Y

    1984-06-01

    Noninvasive determination of the ratio of the pulmonary to systemic blood flow (Qp/Qs) was attempted in 31 cases with intracardiac shunt using two-dimensional pulsed Doppler echocardiography. The Qp/Qs of these cases was ranged from 0.99 to 4.55 with an average of 2.63 by cardiac catheterization. Technical problems in the measurement were also studied. Seventeen cases with no shunt were served as controls. Systemic and pulmonary flow volumes, Qp and Qs (ml/min), were calculated by the following equation: Q (ml/min) = mean flow velocity (cm/sec) X cross sectional area of the semilunar valve ring (cm2) X 60 Here, the sample volume was set in the center of the valve ring at the phase when the flow velocity attained its peak in a pulse period. The mean velocity was obtained by dividing the integration of instantaneous mean frequency in the sample volume for a pulse period by RR interval. The ultrasonic incident angle was measured on the echocardiogram. The velocity profile at the valve ring was assumed to be a plane wave. The diameter (D) of the valve ring was measured on the echocardiograms of the long-axis view of the outflow tract. To make a correction referring to the value obtained by angiocardiography, 0.22 cm was added to the value obtained on the echocardiogram (D). The cross sectional area of the valve ring was calculated according to the following formula: Cross sectional area (cm2) = pi X [(D + 0.22/2)]2 The Qp/Qs ratio by the Doppler method in the cases with no intracardiac shunt was 1.11 (S.D. = 0.21) on an average and the Qp/Qs in the cases with an intracardiac shunt was well correlated with that by catheterization (r = 0.82). These results suggested the feasibility of the clinical application of the Doppler method for noninvasive determination of Qp/Qs. In 17 cases, pulmonary and systemic flow volumes measured by the direct Fick method were compared with those by the Doppler method, respectively. Considerable differences were observed between them. There

  15. Separation of epimeric aromatic acid (-)-menthol esters by countercurrent chromatography using hydroxypropyl-β-cyclodextrin as an additive.

    PubMed

    Wang, Xiaoping; Lv, Liqiong; Bu, Zhisi; Yan, Jizhong; Tong, Shengqiang

    2017-02-28

    The separation of ten epimeric aromatic acid (-)-menthol esters by countercurrent chromatography with hydroxypropyl-β-cyclodextrin as the mobile phase additive was investigated, and methods for the analysis of all the epimeric esters by reversed-phase high-performance liquid chromatography were established. A biphasic solvent system composed of n-hexane/20-70% methanol containing 50 mmol/L of hydroxypropyl-β-cyclodextrin (1:1, v/v) was selected, which provided high separation factors for five of the epimeric esters, and successful separations by countercurrent chromatography were achieved. The complete separation of five pairs of epimeric ester was obtained with the purity being over 98% for each peak fractions, as determined by high-performance liquid chromatography. The recovery of each analyte from the eluted fractions reached around 80-88%.

  16. The contribution of nasal countercurrent heat exchange to water balance in the northern elephant seal, Mirounga angustirostris.

    PubMed

    Huntley, A C; Costa, D P; Rubin, R D

    1984-11-01

    Elephant seals fast completely from food and water for 1-3 months during terrestrial breeding. Temporal countercurrent heat exchange in the nasal passage reduces expired air temperature (Te) below body temperature (Tb). At a mean ambient temperature of 13.7 degrees C, Te is 20.9 degrees C. This results in the recovery of 71.5% of the water added to inspired air. The amount of cooling of the expired air (Tb - Te) and the percentage of water recovery varies inversely with ambient temperature. Total nasal surface area available for heat and water exchange, located in the highly convoluted nasal turbinates, is estimated to be 720 cm2 in weaned pups and 3140 cm2 in an adult male. Nasal temporal countercurrent heat exchange reduces total water loss sufficiently to allow maintenance of water balance using metabolic water production alone.

  17. Spatially-resolved temperature diagnostic for supersonic flow using cross-beam Doppler-limited laser saturation spectroscopy

    NASA Astrophysics Data System (ADS)

    Phillips, Grady T.

    Optical techniques for measuring the temperature in three-dimensional supersonic reactive flows have typically depended on lineshape measurements using single-beam laser absorption spectroscopy. However, absorption over extended path lengths in flows with symmetric, turbulent eddies can lead to systematically high extracted temperatures due to Doppler shifts resulting from flow along the absorption path. To eliminate these problems and provide full three-dimensional spatial resolution, two variants of laser saturation spectroscopy have been developed and demonstrated, for the first time, which utilize two crossed and nearly copropogating laser beams. Individual rotational lines in the visible I2 X 1Sigma 0+g → B 3pi 0+u transition were used to develop the two diagnostic to support research on the Chemical Oxygen-Iodine Laser (COIL), the weapon aboard the USAF Airborne Laser. Cross-Beam Saturation Absorption Spectroscopy (CBSAS) and Cross-Beam Inter-Modulated Fluorescence (CBIMF) were demonstrated as viable methods for recording the spectral signal of an I2 ro-vibrational line in a small three-dimensional volume using a tunable CW dye laser. Temperature is extracted by fitting the recorded signal with a theoretical signal constructed from the Doppler-broadened hyperfine components of the ro-vibrational line. The CBIMF technique proved successful for extracting the temperature of an I2-seeded, Ar gas flow within a small, Mach 2, Laval nozzle where the overlap volume of the two 1 mm diameter laser beams was 2.4 mm 3. At a test point downstream of the nozzle throat, the average temperature of 146 K +/- 1.5 K extracted from measurements of the I2 P(46) 17-1 spectral line compared favorably with the 138 K temperature calculated from isentropic, one-dimensional flow theory. CBIMF provides sufficient accuracy for characterizing the temperature of the gas flow in a COIL device, and could be applied to other areas of flow-field characterization and nozzle design. In

  18. Heat production in depth up to 2500m via in situ combustion of methane using a counter-current heat-exchange reactor

    NASA Astrophysics Data System (ADS)

    Schicks, Judith Maria; Spangenberg, Erik; Giese, Ronny; Heeschen, Katja; Priegnitz, Mike; Luzi-Helbing, Manja; Thaler, Jan; Abendroth, Sven; Klump, Jens

    2014-05-01

    In situ combustion is a well-known method used for exploitation of unconventional oil deposits such as heavy oil/bitumen reservoirs where the required heat is produced directly within the oil reservoir by combustion of a small percentage of the oil. A new application of in situ combustion for the production of methane from hydrate-bearing sediments was tested at pilot plant scale within the first phase of the German national gas hydrate project SUGAR. The applied method of in situ combustion was a flameless, catalytic oxidation of CH4 in a counter-current heat-exchange reactor with no direct contact between the catalytic reaction zone and the reservoir. The catalyst permitted a flameless combustion of CH4 with air to CO2 and H2O below the auto-ignition temperature of CH4 in air (868 K) and outside the flammability limits. This led to a double secured application of the reactor. The relatively low reaction temperature allowed the use of cost-effective standard materials for the reactor and prevented NOx formation. Preliminary results were promising and showed that only 15% of the produced CH4 was needed to be catalytically burned to provide enough heat to dissociate the hydrates in the environment and release CH4. The location of the heat source right within the hydrate-bearing sediment is a major advantage for the gas production from natural gas hydrates as the heat is generated where it is needed without loss of energy due to transportation. As part of the second period of the SUGAR project the reactor prototype of the first project phase was developed further to a borehole tool. The dimensions of this counter-current heat-exchange reactor are about 540 cm in length and 9 cm in diameter. It is designed for applications up to depths of 2500 m. A functionality test and a pressure test of the reactor were successfully carried out in October 2013 at the continental deep drilling site (KTB) in Windischeschenbach, Germany, in 600 m depth and 2000 m depth, respectively

  19. Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2017-07-01

    The gross amplification of the fluid velocity in pressure-driven flows due to the introduction of superhydrophobic walls is commonly quantified by an effective slip length. The canonical duct-flow geometry involves a periodic structure of longitudinal shear-free stripes at either one or both of the bounding walls, corresponding to flat-meniscus gas bubbles trapped within a periodic array of grooves. This grating configuration is characterized by two geometric parameters, namely the ratio κ of channel width to microstructure period and the areal fraction Δ of the shear-free stripes. For wide channels, κ ≫1 , this geometry is known to possess an approximate solution where the dimensionless slip length λ , normalized by the duct semiwidth, is small, indicating a weak superhydrophobic effect. We here address the other extreme of narrow channels, κ ≪1 , identifying large O (κ-2) values of λ for the symmetric configuration, where both bounding walls are superhydrophobic. This velocity enhancement is associated with an unconventional Poiseuille-like flow profile where the parabolic velocity variation takes place in a direction parallel (rather than perpendicular) to the boundaries. Use of matched asymptotic expansions and conformal-mapping techniques provides λ up to O (κ-1) , establishing the approximationλ ˜κ-2Δ/33 +κ-1Δ/2π ln4 +⋯, which is in excellent agreement with a semianalytic solution of the dual equations governing the respective coefficients of a Fourier-series representation of the fluid velocity. No similar singularity occurs in the corresponding asymmetric configuration, involving a single superhydrophobic wall; in that geometry, a Hele-Shaw approximation shows that λ =O (1 ) .

  20. Benefits and limitations of using the weather radar for the definition of rainfall thresholds for debris flows. Case study from Catalonia (Spain).

    NASA Astrophysics Data System (ADS)

    Abancó, C.; Hürlimann, M.; Sempere, D.; Berenguer, M.

    2012-04-01

    Torrential processes such as debris flows or hyperconcentrated flows are fast movements formed by a mix of water and different amounts of unsorted solid material. They occur in steep torrents and suppose a high risk for the human settlements. Rainfall is the most common triggering factor for debris flows. The rainfall threshold defines the rainfall conditions that, when reached or exceeded, are likely to provoke one or more events. Many different types of empirical rainfall thresholds for landslide triggering have been defined. Direct measurements of rainfall data are normally not available from a point next to or in the surroundings of the initiation area of the landslide. For this reason, most of the thresholds published for debris flows have been established by data measured at the nearest rain gauges (often located several km far from the landslide). Only in very few cases, the rainfall data to analyse the triggering conditions of the debris flows have been obtained by weather (Doppler) radar. Radar devices present certain limitations in mountainous regions due to undesired reboots, but their main advantage is that radar data can be obtained for any point of the territory. The objective of this work was to test the use of the weather radar data for the definition of rainfall thresholds for debris-flow triggering. Thus, rainfall data obtained from 3 to 5 rain gauges and from radar were compared for a dataset of events occurred in Catalonia (Spain). The goal was to determine in which cases the description of the rainfall episode (in particular the maximum intensity) had been more accurate. The analysed dataset consists of: 1) three events occurred in the Rebaixader debris-flow monitoring station (Axial Pyrenees) including two hyperconcentrated flows and one debris flow; 2) one debris-flow event occurred in the Port Ainé ski resort (Axial Pyrenees); 3) one debris-flow event in Montserrat (Mediterranean Coastal range). The comparison of the hyetographs from the

  1. Pressure Drop Versus Flow Rate Analysis of the Limited Streamer Tube Gas System of the BaBar Muon Detector Upgrade

    SciTech Connect

    Yi, M.

    2004-09-03

    It has been proposed that Limited Streamer Tubes (LST) be used in the current upgrade of the muon detector in the BaBar detector. An LST consists of a thin silver plated wire centered in a graphite-coated cell. One standard LST tube consists of eight such cells, and two or three such tubes form an LST module. Under operation, the cells are filled with a gas mixture of CO{sub 2}, argon and isobutane. During normal operation of the detector, the gas will be flushed out of the system at a constant low rate of one volume change per day. During times such as installation, however, it is often desired to flush and change the LST gas volumes very rapidly, leading to higher than normal pressure which may damage the modules. This project studied this pressure as a function of flow rate and the number of modules that are put in series in search of the maximal safe flow rate at which to flush the modules. Measurements of pressure drop versus flow rate were taken using a flow meter and a pressure transducer on configurations of one to five modules put in series. Minimal Poly-Flo tubing was used for all connections between test equipment and modules. They contributed less than 25% to all measurements. A ratio of 0.00022 {+-} 0.00001 mmHg per Standard Cubic Centimeter per Minute (SCCM) per module was found, which was a slight overestimate since it included the contributions from the tubing connections. However, for the purpose of finding a flow rate at which the modules can be safely flushed, this overestimate acts as a safety cushion. For a standard module with a volume of 16 liters and a known safe overpressure of 2 inches of water, the ratio translates into a flow rate of 17000 {+-} 1000SCCM and a time requirement of 56 {+-} 5 seconds to flush an entire module.

  2. Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations.

    PubMed

    Quadrio, Maurizio; Pipolo, Carlotta; Corti, Stefano; Lenzi, Riccardo; Messina, Francesco; Pesci, Chiara; Felisati, Giovanni

    2014-09-01

    Nasal breathing difficulties (NBD) are a widespread medical condition, yet decisions pertaining to the surgical treatment of chronic NBD still imply a significant degree of subjective judgement of the surgeon. The current standard objective examinations for nasal flow, e.g., rhinomanometry and acoustic rhinomanometry, do not suffice to reliably direct the surgeon on the extent of any necessary surgery. In the last two decades, several groups have therefore considered the numerical simulation of nasal airflow. Currently, these analyses take many hours of labor from the operator, and require a huge amount of computer time and the use of expensive commercial software. Most often, their results are insufficiently validated so that virtual surgery, which is the eventual application, is still absent in clinical practice. Very recently, however, attempts at considering the finest details of the flow are beginning to appear, for example unsteady turbulent simulations validated through laboratory measurements through particle image velocimetry. In this paper, we first discuss recent developments in how computational fluid dynamics (CFD) is helping surgeons improve their understanding of nasal physiology and the effect of surgical modifications on the airflow in the nasal cavity. In a second part, the procedural and modeling challenges that still prevent CFD from being routinely used in clinical practice are surveyed and critically discussed.

  3. Spatial genetic structure in wild cardoon, the ancestor of cultivated globe artichoke: Limited gene flow, fragmentation and population history.

    PubMed

    Rau, D; Rodriguez, M; Rapposelli, E; Murgia, M L; Papa, R; Brown, A H D; Attene, G

    2016-12-01

    Nuclear and chloroplast markers and phenotypic characters were integrated to analyse the population genetic structure of wild cardoon, Cynara cardunculus var. sylvestris, the ancestor of cultivated globe artichoke, Cynara cardunculus var. scolymus on the island of Sardinia, Italy. The spatial scale ranged from a few metres to ∼200km. Wild cardoon appears to be genetically fragmented, with significant genetic divergence at various scales, indicating that gene flow is insufficient to counterbalance the effects of genetic drift or founder effects. Divergence between populations was higher for chloroplast (40%) than for nuclear markers (15%), suggesting that gene flow via seed was lower than via pollen. Two main genetic groups were detected; these correlated with differences in flowering time, capitula size, glossiness, and anthocyanin pigmentation. A complex population structure of wild cardoon emerged over small spatial scales, likely resulting from the interplay between gene dispersal, colonisation history and selective forces. Indeed, Sardinia appears to be a 'hybrid zone' of different gene pools. The island has unique diverse germplasm that has originated from hybridisation among different gene pools. The sampling of seeds from a few plants but from many sites is suggested as the best strategy to harvest the genetic diversity of wild cardoon. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. At-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography for bioassay-guided separation of antioxidants from vine tea (Ampelopsis grossedentata).

    PubMed

    Ma, Ruyi; Zhou, Rongrong; Tong, Runna; Shi, Shuyun; Chen, Xiaoqing

    2017-01-01

    Vine tea (Ampelopsis grossedentata), a widely used healthy tea, beverage and herbal medicine, exhibited strong antioxidant activity. However, systematic purification of antioxidants, especially for those with similar structures or polarities, is a challenging work. Here, we present a novel at-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography (HSCCC-Sephadex LH-20 CC) for rapid and efficient separation of antioxidants from vine tea target-guided by 1,1-diphenyl-2-picryl-hydrazyl radical-high performance liquid chromatography (DPPH-HPLC) experiment. A makeup pump, a six-port switching valve and a trapping column were served as interface. The configuration had no operational time and mobile phase limitations between two dimensional chromatography and showed great flexibility without tedious sample-handling procedure. Seven targeted antioxidants were firstly separated by stepwise HSCCC using petroleum ether-ethyl acetate-methanol-water (4:9:4:9, v/v/v/v) and (4:9:5:8, v/v/v/v) as solvent systems, and then co-eluted antioxidants were on-line trapped, concentrated and desorbed to Sephadex LH-20 column for further off-line purification by methanol. It is noted that six elucidated antioxidants with purity over 95% exhibited stronger activity than ascorbic acid (VC). More importantly, this at-line hyphenated strategy could sever as a rapid and efficient pathway for systematic purification of bioactive components from complex matrix.

  5. Solvent systems with n-hexane and/or cyclohexane in countercurrent chromatography--Physico-chemical parameters and their impact on the separation of alkyl hydroxybenzoates.

    PubMed

    Englert, Michael; Vetter, Walter

    2014-05-16

    Countercurrent chromatography (CCC) is an efficient preparative separation technique based on the liquid-liquid distribution of compounds between two phases of a biphasic liquid system. The crucial parameter for the successful application is the selection of the solvent system. Especially for nonpolar analytes the selection options are limited. On the search for a suitable solvent system for the separation of an alkyl hydroxybenzoate homologous series, we noted that the substitution of cyclohexane with n-hexane was accompanied with unexpected differences in partitioning coefficients of the individual analytes. In this study, we investigated the influence of the subsequent substitution of n-hexane with cyclohexane in the n-hexane/cyclohexane/tert-butylmethylether/methanol/water solvent system family. Exact phase compositions and polarity, viscosity and density differences were determined to characterize the different mixtures containing n-hexane and/or cyclohexane. Findings were confirmed by performing CCC separations with different mixtures, which led to baseline resolution for positional isomers when increasing the amount of cyclohexane while the resolution between two pairs of structural isomers decreased. With the new methodology described, structurally similar compounds could be resolved by choosing a certain ratio of n-hexane to cyclohexane.

  6. Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium

    NASA Astrophysics Data System (ADS)

    Rokhforouz, M. R.; Akhlaghi Amiri, H. A.

    2017-06-01

    Spontaneous imbibition is well-known to be one of the most effective processes of oil recovery in fractured reservoirs. However, the detailed pore-scale mechanisms of the counter-current imbibition process and the effects of different fluid/rock parameters on this phenomenon have not yet been deeply addressed. This work presents the results of a new pore-level numerical study of counter-current spontaneous imbibition, using coupled Cahn-Hilliard phase field and Navier-Stokes equations, solved by a finite element method. A 2D fractured medium was constructed consisting of a nonhomogeneous porous matrix, in which the grains were represented by an equilateral triangular array of circles with different sizes and initially saturated with oil, and a fracture, adjacent to the matrix, initially saturated with water and supported by low rate water inflow. Through invasion of water into the matrix, oil drops were expelled one by one from the matrix to the fracture, and in the matrix, water progressed by forming capillary fingerings, with characteristics corresponding to the experimental observations. The effects of wettability, viscosity ratio, and interfacial tension were investigated. In strongly water-wet matrix, with grain contact angles of θ < π/8, different micro-scale mechanisms were successfully captured, including oil film thinning and rupture, fluids' contact line movement, water bridging, and oil drop detachment. It was notified that there was a specific grain contact angle for this simulated model, θ = π/4, above it, matrix oil recovery was negligible by imbibition, while below it, the imbibition rate and oil recovery were significantly increased by decreasing the contact angle. In simulated mixed wet models, water, coming from the fracture, just invaded the neighboring water-wet grains; the water front was stopped moving as it met the oil-wet grains or wide pores/throats. Increasing water-oil interfacial tension, in the range of 0.005-0.05 N/m, resulted in

  7. FLAVODIIRON2 and FLAVODIIRON4 Proteins Mediate an Oxygen-Dependent Alternative Electron Flow in Synechocystis sp. PCC 6803 under CO2-Limited Conditions1[OPEN

    PubMed Central

    Shimakawa, Ginga; Shaku, Keiichiro; Nishi, Akiko; Hayashi, Ryosuke; Yamamoto, Hiroshi; Sakamoto, Katsuhiko; Makino, Amane; Miyake, Chikahiro

    2015-01-01

    This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decreases concomitantly with a decrease in the photosynthetic oxygen evolution rate and then recovers to a rate that is close to the initial maximum. These results show that CO2 limitation suppresses photosynthesis and induces AEF. In contrast to the wild type, Synechocystis sp. PCC 6803 mutants deficient in the genes encoding FLAVODIIRON2 (FLV2) and FLV4 proteins show no recovery of Y(II) after prolonged illumination. However, Synechocystis sp. PCC 6803 mutants deficient in genes encoding proteins functioning in photorespiration show AEF activity similar to the wild type. In contrast to Synechocystis sp. PCC 6803, the cyanobacterium Synechococcus elongatus PCC 7942 has no FLV proteins with high homology to FLV2 and FLV4 in Synechocystis sp. PCC 6803. This lack of FLV2/4 may explain why AEF is not induced under CO2-limited photosynthesis in S. elongatus PCC 7942. As the glutathione S-transferase fusion protein overexpressed in Escherichia coli exhibits NADH-dependent oxygen reduction to water, we suggest that FLV2 and FLV4 mediate oxygen-dependent AEF in Synechocystis sp. PCC 6803 when electron acceptors such as CO2 are not available. PMID:25540330

  8. Effectiveness of flow inflating device in providing Continuous Positive Airway Pressure for critically ill children in limited-resource settings: A prospective observational study

    PubMed Central

    Anitha, G. Fatima Shirly; Velmurugan, Lakshmi; Sangareddi, Shanthi; Nedunchelian, Krishnamurthy; Selvaraj, Vinoth

    2016-01-01

    Bac