Sample records for countercurrent two-phase flow

  1. A mixture theory approach to model co- and counter-current two-phase flow in porous media accounting for viscous coupling

    NASA Astrophysics Data System (ADS)

    Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.

    2018-02-01

    It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.

  2. Counter-current convection in a volcanic conduit

    NASA Astrophysics Data System (ADS)

    Fowler, A. C.; Robinson, Marguerite

    2018-05-01

    Volcanoes of Strombolian type are able to maintain their semi-permanent eruptive states through the constant convective recycling of magma within the conduit leading from the magma chamber. In this paper we study the form of this convection using an analytic model of degassing two-phase flow in a vertical channel. We provide solutions for the flow at small Grashof and large Prandtl numbers, and we suggest that permanent steady-state counter-current convection is only possible if an initial bubbly counter-current flow undergoes a régime transition to a churn-turbulent flow. We also suggest that the magma in the chamber must be under-pressured in order for the flow to be maintained, and that this compromises the assumed form of the flow.

  3. An easy-to-use calculating machine to simulate steady state and non-steady-state preparative separations by multiple dual mode counter-current chromatography with semi-continuous loading of feed mixtures.

    PubMed

    Kostanyan, Artak E; Shishilov, Oleg N

    2018-06-01

    Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Hybrid upwind discretization of nonlinear two-phase flow with gravity

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.

    2015-08-01

    Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.

  5. C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.

    2016-10-01

    Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the buoyancy effect can be expressed as a sum of two buoyancy effects from two-phase flows, i.e., oil-water and oil-gas systems. We propose an upwind scheme for the buoyancy flux term from three-phase flow as a sum of two buoyancy terms from two-phase flows. The upwind direction of the buoyancy flux in two phase flow is always fixed such that the heavier fluid goes downward and the lighter fluid goes upward. It is shown that the Implicit Hybrid-Upwinding (IHU) scheme for three-phase flow is locally conservative and produces physically-consistent numerical solutions. As in two phase flow, the primary advantage of the IHU scheme is that the flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions as a function of time, or (Newton) iterations. This is in contrast to the standard phase-potential-based upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the transition between co-current and counter-current flows.

  6. Improved separation with the intermittently pressed tubing of multilayer coil in type-I counter-current chromatography.

    PubMed

    Yang, Yi; Yang, Jiao; Fang, Chen; Wang, Jihui; Gu, Dongyu; Tian, Jing; Ito, Yoichiro

    2018-05-25

    The intermittently pressed tubing was introduced in type-I counter-current chromatographic system as the separation column to improve the separation performance in the present study. The separations were performed with two different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW) and hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMW) using dipeptides and DNP-amino acids as test samples, respectively. The chromatographic performance was evaluated in terms of retention of the stationary phase (Sf), theoretical plate (N) and peak resolution (Rs). In general, the type-I planetary motion with the multilayer coil of non-modified standard tubing can yield the best separation at a low revolution speed of 200 rpm with lower flow rate. The present results with intermittently pressed tubing indicated that the performance was also optimal at the revolution speed of 200 rpm where the lower flow rate was more beneficial to retention of stationary phase and resolution. In the moderately hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1 M hydrochloric acid (1:1:1:1, v/v), DNP-amino acids were separated with Rs at 1.67 and 1.47, respectively, with 12.66% of stationary phase retention at a flow rate of 0.25 ml/min. In the polar solvent system composed of 1-butanol-acetic acid-water (4:1:5, v/v), dipeptide samples were resolved with Rs at 2.18 and 18.75% of stationary phase retention at a flow rate of 0.25 ml/min. These results indicate that the present system substantially improves the separation efficiency of type-I counter-current chromatographic system. Published by Elsevier B.V.

  7. Gas holdup and flow regime transition in spider-sparger bubble column: effect of liquid phase properties

    NASA Astrophysics Data System (ADS)

    Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.

    2017-01-01

    This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004-0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.

  8. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    PubMed

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1990-07-17

    Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.

  10. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1990-01-01

    Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.

  11. A laboratory exercise using a physical model for demonstrating countercurrent heat exchange.

    PubMed

    Loudon, Catherine; Davis-Berg, Elizabeth C; Botz, Jason T

    2012-03-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of heat or chemicals between the fluids occurs when the flows are in opposite directions (countercurrent) than in the same direction (concurrent). When a vessel loops back on itself, countercurrent exchange can occur between the two arms of the loop, minimizing loss or uptake at the bend of the loop. Comprehension of the physical principles underlying countercurrent exchange helps students to understand how kidneys work and how modifications of a circulatory system can influence the movement of heat or chemicals to promote or minimize exchange and reinforces the concept that heat and chemicals move down their temperature or concentration gradients, respectively. One example of a well-documented countercurrent exchanger is the close arrangement of veins and arteries inside bird legs; therefore, the setup was arranged to mimic blood vessels inside a bird leg, using water flowing inside tubing as a physical proxy for blood flow within blood vessels.

  12. Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels

    PubMed Central

    Lu, Y.; Michel, C. C.

    2012-01-01

    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance. PMID:22604885

  13. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    PubMed

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Spiral counter-current chromatography of small molecules, peptides and proteins using the spiral tubing support rotor.

    PubMed

    Knight, Martha; Finn, Thomas M; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-09-09

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was constructed by laser sintering technology into which FEP tubing was placed in 4 spiral loops per layer from the bottom to the top and a cover affixed allowing the tubing to connect to flow-tubing of the planetary centrifuge. The rotor was mounted and run in a P.C. Inc. type instrument. Examples of compounds of molecular weights ranging from <300 to approximately 15,000 were chromatographed in appropriate two-phase solvent systems to assess the capability for separation and purification. A mixture of small molecules including aspirin was completely separated in hexane-ethyl acetate-methanol-water. Synthetic peptides including a very hydrophobic peptide were each purified to a very high purity level in a sec-butanol solvent system. In the STS rotor high stationary phase retention was possible with the aqueous sec-butanol solvent system at a normal flow rate. Finally, the two-phase aqueous polyethylene glycol-potassium phosphate solvent system was applied to separate a protein from a lysate of an Escherichia coli expression system. These experiments demonstrate the versatility of spiral CCC using the STS rotor. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Counter-current motion in counter-current chromatography.

    PubMed

    Ito, Yoichiro

    2014-12-12

    After the CCC2012 meeting, I have received an e-mail regarding the terminology of "Countercurrent Chromatography". It stated that the term "Countercurrent" is a misnomer, because its stationary phase is motionless in the column and that the method should be renamed as liquid-liquid separations or centrifugal separations. However, it was found that these names are already used for various other techniques as found via Google search. The term "Countercurrent Chromatography" was originally made after two preparative methods of Countercurrent distribution and liquid Chromatography, both having no countercurrent motion in the column. However, it is surprising to find that this F1 hybrid method "Countercurrent Chromatography" can clearly exhibit countercurrent motion within the separation column in both hydrodynamic and hydrostatic equilibrium systems. This justifies that "Countercurrent Chromatography" is a proper term for this chromatographic method. Published by Elsevier B.V.

  16. Heat and Momentum Transfer Studies in High Reynolds Number Wavy Films at Normal and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.

    1996-01-01

    We examined the effect of the gas flow on the liquid film when the gas flows in the countercurrent direction in a vertical pipe at normal gravity conditions. The most dramatic effect of the simultaneous flow of gas and liquid in pipes is the greatly increased transport rates of heat, mass, and momentum. In practical situations this enhancement can be a benefit or it can result in serious operational problems. For example, gas-liquid flow always results in substantially higher pressure drop and this is usually undesirable. However, much higher heat transfer coefficients can be expected and this can obviously be of benefit for purposes of design. Unfortunately, designers know so little of the behavior of such two phase systems and as a result these advantages are not utilized. Due to the complexity of the second order boundary model as well as the fact that the pressure variation across the film is small compared to the imposed gas phase pressure, the countercurrent gas flow affect was studied for the standard boundary layer model. A different stream function that can compensate the shear stress affect was developed and this stream function also can predict periodic solutions. The discretized model equations were transformed to a traveling wave coordinate system. A stability analysis of these sets of equations showed the presence of a Hopf bifurcation for certain values of the traveling wave velocity and the shear stress. The Hopf celerity was increased due to the countercurrent shear. For low flow rate the increases of celerity are more than for the high flow rate, which was also observed in experiments. Numerical integration of a traveling wave simplification of the model also predicts the existence of chaotic large amplitude, nonperiodic waves as observed in the experiments. The film thickness was increased by the shear.

  17. Reflux cooling experiments on the NCSU scaled PWR facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doster, J.M.; Giavedoni, E.

    1993-01-01

    Under loss of forced circulation, coupled with the loss or reduction in primary side coolant inventory, horizontal stratified flows can develop in the hot and cold legs of pressurized water reactors (PWRs). Vapor produced in the reactor vessel is transported through the hot leg to the steam generator tubes where it condenses and flows back to the reactor vessel. Within the steam generator tubes, the flow regimes may range from countercurrent annular flow to single-phase convection. As a result, a number of heat transfer mechanisms are possible, depending on the loop configuration, total heat transfer rate, and the steam flowmore » rate within the tubes. These include (but are not limited to) two-phase natural circulation, where the condensate flows concurrent to the vapor stream and is transported to the cold leg so that the entire reactor coolant loop is active, and reflux cooling, where the condensate flows back down the interior of the coolant tubes countercurrent to the vapor stream and is returned to the reactor vessel through the hot leg. While operating in the reflux cooling mode, the cold leg can effectively be inactive. Heat transfer can be further influenced by noncondensables in the vapor stream, which accumulate within the upper regions of the steam generator tube bundle. In addition to reducing the steam generator's effective heat transfer area, under these conditions operation under natural circulation may not be possible, and reflux cooling may be the only viable heat transfer mechanism. The scaled PWR (SPWR) facility in the nuclear engineering department at North Carolina State Univ. (NCSU) is being used to study the effectiveness of two-phase natural circulation and reflux cooling under conditions associated with loss of forced circulation, midloop coolant levels, and noncondensables in the primary coolant system.« less

  18. Counter-current thermocapillary migration of bubbles in self-rewetting liquids

    NASA Astrophysics Data System (ADS)

    Nazareth, R.; Saenz, P.; Sefiane, K.; Kim, J.; Valluri, P.

    2016-11-01

    In this work, we study the counter-current thermocapillary propulsion of a suspended bubble in the fluid flowing inside a channel subject to an axial temperature gradient when the surface tension dependence on temperature is non-monotonic. We use direct numerical simulations to address the two-phase conservation of mass, momentum and energy with a volume-of-fluid method to resolve the deformable interface. Two distinct regimes of counter-current bubble migration are characterized: i) "exponential decay" where the bubble decelerates rapidly until it comes to a halt at the spatial position corresponding to the minimum surface tension and ii) "sustained oscillations" where the bubble oscillates about the point of minimum surface tension. We illustrate how these sustained oscillations arise at low capillary number O(10-5) and moderate Reynolds number O(10) and, they are dampened by viscosity at lower Reynolds number. These results are in agreement with the experiments by Shanahan and Sefiane (Sci. Rep. 4, 2014). The work was supported by the Science without Borders program from CAPES agency of Brazilian Ministry of Education and the European Commission's Thermapower Project (294905).

  19. Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N

    2014-06-20

    The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Separation and purification of triterpene saponins from roots of Radix phytolaccae by high-speed countercurrent chromatography coupled with evaporative light scattering detection

    PubMed Central

    Ma, Jie; Chen, Qianliang; Lai, Daowan; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    Coupled with evaporative light scattering detection, high-speed countercurrent chromatography was successfully applied for the first time to separation and purification of four triterpene saponins including esculentoside A, B, C and D from roots of Radix Phytolaccae. The separation was performed with an optimized two-phase solvent system composed of chloroform-methanol-water (4:4:2, v/v) using the lower phase as the mobile phase at a flow rate of 1.5 ml/min,. From 150 mg of crude extract 46.3 mg of esculentoside A, 21.8 mg of esculentoside B, 7.3 mg of esculentoside C, and 13.6 mg of esculentoside D were obtained at purities of 96.7%, 99.2%, 96.5% and 97.8%, respectively, as determined by HPLC analysis. The structures of the four triterpene saponins were identified by ESI-MS,1H NMR and 13C NMR. PMID:20454595

  1. Preparative separation of six rhynchophylla alkaloids from Uncaria macrophylla wall by pH-zone refining counter-current chromatography.

    PubMed

    Zhang, Qinghai; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Luo, Aiqin

    2013-12-12

    pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether-ethyl acetate-isopropanol-water (2:6:3:9, v/v), adding 10 mM triethylamine in organic stationary phase and 5 mM hydrochloric acid in aqueous mobile phase. Then pH-zone refining counter-current chromatography using the other two-phase solvent system was used for final purification. Six target compounds were finally isolated and purified by following two-phase solvent system composed of methyl tert-butyl ether (MTBE)-acetonitrile-water (4:0.5:5, v/v), adding triethylamine (TEA) (10 mM) to the organic phase and HCl (5 mM) to aqueous mobile phase. The separation of 2.8 g enriched total alkaloids yielded 36 mg hirsutine, 48 mg hirsuteine, 82 mg uncarine C, 73 mg uncarine E, 163 mg rhynchophylline, and 149 mg corynoxeine, all with purities above 96% as verified by HPLC Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and 1H-NMR spectroscopy.

  2. Efficient counter-current chromatographic isolation and structural identification of two new cinnamic acids from Echinacea purpurea.

    PubMed

    Lu, Ying; Li, JiaYin; Li, MiLu; Hu, Xia; Tan, Jun; Liu, Zhong Hua

    2012-10-01

    Two new cinnamic acids, 2-O-caffeoyl-3-O-isoferuloyltartaric (3), and 2, 3-di-O-isoferuloyltartaric acid (5), along with three known caffeic acids, cichoric acid (1), 2-O-caffeoyl-3-O-feruloyltartaric acid (2) and 2-O-caffeoyl-3-O-p-coumaroyltartaric acid (4), have been successfully isolated and purified from Echinacea purpurea. In this study, we investigated an efficient method for the preparative isolation and purification of cinnamic acids from E. purpurea by high-speed counter-current chromatography (HSCCC). The separation was performed using a two-phase solvent composed of n-hexane-ethyl-acetate-methanol-0.5% aqueous acetic acid (1:3:1:4, v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase, with a flow rate of 1.6 mL/min. From 250 mg of crude extracts, 65.1 mg of 1, 8.3 mg of 2, 4.0 mg of 3, 4.5 mg of 4, and 4.3 mg of 5 were isolated in one-step, with purities of 98.5%, 97.7%, 94.6%, 94.3%, and 98.6%, respectively, as evaluated by HPLC-DAD. The chemical structures were identified by electro spray ionization mass spectrometry (ESI-MS) and one- and two-dimensional NMR spectra. HSCCC was very efficient for the separation and purification of the cinnamic acids from

  3. Flow enhancement of deformable self-driven objects by countercurrent

    NASA Astrophysics Data System (ADS)

    Mashiko, Takashi; Fujiwara, Takashi

    2016-10-01

    We report numerical simulations of the mixed flows of two groups of deformable self-driven objects. The objects belonging to the group A (B) have drift coefficient D =DA (DB), where a positive (negative) value of D denotes the rightward (leftward) driving force. For co-current flows (DA ,DB > 0), the result is rather intuitive: the net flow of one group (QA) increases if the driving force of the other group is stronger than its own driving force (i.e., DB >DA), and decreases otherwise (DB

  4. Spiral counter-current chromatography: Design, development, application, and challenges.

    PubMed

    Huang, Xin-Yi; Sun, Xiao-Ming; Pei, Dong; Di, Duo-Long

    2017-01-01

    Depending on the rapid growth in the radial gradient of the centrifugal force, spiral counter-current chromatography can greatly improve the retention of stationary phase, especially for the aqueous two-phase systems with ultra-polar and high viscosity that are not well retained in the conventional multilayer coils counter-current chromatography. As a result, it is an attractive and alternative technology that is suited for separation of hydrophilic compounds and has led to many exciting progress in recent years. This review presents the recent advances and applications of spiral counter-current chromatography, including its major benefits and limitations, some novel methods to improve the separation efficiency and its applications in separation of real samples. In addition, the remaining challenges and future perspectives on development of spiral counter-current chromatography also are proposed in this article. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modeling pH-zone refining countercurrent chromatography: a dynamic approach.

    PubMed

    Kotland, Alexis; Chollet, Sébastien; Autret, Jean-Marie; Diard, Catherine; Marchal, Luc; Renault, Jean-Hugues

    2015-04-24

    A model based on mass transfer resistances and acid-base equilibriums at the liquid-liquid interface was developed for the pH-zone refining mode when it is used in countercurrent chromatography (CCC). The binary separation of catharanthine and vindoline, two alkaloids used as starting material for the semi-synthesis of chemotherapy drugs, was chosen for the model validation. Toluene/CH3CN/water (4/1/5, v/v/v) was selected as biphasic solvent system. First, hydrodynamics and mass transfer were studied by using chemical tracers. Trypan blue only present in the aqueous phase allowed the determination of the parameters τextra and Pe for hydrodynamic characterization whereas acetone, which partitioned between the two phases, allowed the determination of the transfer parameter k0a. It was shown that mass transfer was improved by increasing both flow rate and rotational speed, which is consistent with the observed mobile phase dispersion. Then, the different transfer parameters of the model (i.e. the local transfer coefficient for the different species involved in the process) were determined by fitting experimental concentration profiles. The model accurately predicted both equilibrium and dynamics factors (i.e. local mass transfer coefficients and acid-base equilibrium constant) variation with the CCC operating conditions (cell number, flow rate, rotational speed and thus stationary phase retention). The initial hypotheses (the acid-base reactions occurs instantaneously at the interface and the process is mainly governed by mass transfer) are thus validated. Finally, the model was used as a tool for catharanthine and vindoline separation prediction in the whole experimental domain that corresponded to a flow rate between 20 and 60 mL/min and rotational speeds from 900 and 2100 rotation per minutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deendarlianto; Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden; Ousaka, Akiharu

    2010-10-15

    The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined atmore » 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)« less

  7. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography

    PubMed Central

    Ito, Yoichiro; Clary, Robert

    2016-01-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621

  8. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography.

    PubMed

    Ito, Yoichiro; Clary, Robert

    2016-12-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.

  9. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography. I. Hydrodynamic distribution of two solvent phases in a helical column subjected to two types of synchronous planetary motion.

    PubMed

    Ito, Y

    1984-10-05

    Hydrodynamic distribution of two-phase solvent systems in a rotating helical column subjected to centrifugal fields produced by two different types of synchronous planetary motion has been studied by the use of the combined horizontal flow-through coil planet centrifuge. With continuous elution of the mobile phase, the simpler type of motion resulted in low retention of the stationary phase in the column whereas a more complex motion, which produces a quasi-radial centrifugal field varying in both intensity and direction, yielded high stationary phase retention for commonly used solvent systems having a wide range of hydrophobicity. These solvent systems display highly complex modes of hydrodynamic interaction in the coil according to their particular physical properties.

  10. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    PubMed

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase mixing and mass transfer of the two phases by additional and more vigorous agitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  12. Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization.

    PubMed

    Almenglo, Fernando; Bezerra, Tercia; Lafuente, Javier; Gabriel, David; Ramírez, Martín; Cantero, Domingo

    2016-08-01

    Hydrogen sulfide removal from biogas was studied under anoxic conditions in a pilot-scale biotrickling filter operated under counter- and co-current gas-liquid flow patterns. The best performance was found under counter-current conditions (maximum elimination capacity of 140 gS m(-3) h(-1)). Nevertheless, switching conditions between co- and counter-current flow lead to a favorable redistribution of biomass and elemental sulfur along the bed height. Moreover, elemental sulfur was oxidized to sulfate when the feeding biogas was disconnected and the supply of nitrate (electron acceptor) was maintained. Removal of elemental sulfur was important to prevent clogging in the packed bed and, thereby, to increase the lifespan of the packed bed between maintenance episodes. The larger elemental sulfur removal rate during shutdowns was 59.1 gS m(-3) h(-1). Tag-encoded FLX amplicon pyrosequencing was used to study the diversity of bacteria under co-current flow pattern with liquid recirculation and counter-current mode with a single-pass flow of the liquid phase. The main desulfurizing bacteria were Sedimenticola while significant role of heterotrophic, opportunistic species was envisaged. Remarkable differences between communities were found when a single-pass flow of industrial water was fed to the biotrickling filter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    NASA Astrophysics Data System (ADS)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  14. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The renewal-length model for puffing frequency of pool fire plumes was extended to puffing countercurrent flows by estimating inflow dilution. Puffing frequencies at several conditions were reduced to Strouhal number based on dilute plume density. Results for D = 5.08 cm compared favorably to published measurements of puffing pool fires, suggesting that the two different flows obey the same periodic dynamic process.

  15. Separation of polyphenols and caffeine from the acetone extract of fermented tea leaves (Camellia sinensis) using high-performance countercurrent chromatography.

    PubMed

    Choi, Soo Jung; Hong, Yong Deog; Lee, Bumjin; Park, Jun Seong; Jeong, Hyun Woo; Kim, Wan Gi; Shin, Song Seok; Yoon, Kee Dong

    2015-07-21

    Leaves from Camellia sienensis are a popular natural source of various beverage worldwide, and contain caffeine and polyphenols derived from catechin analogues. In the current study, caffeine (CAF, 1) and three tea polyphenols including (-)-epigallocatechin 3-O-gallate (EGCg, 2), (-)-gallocatechin 3-O-gallate (GCg, 3), and (-)-epicatechin 3-O-gallate (ECg, 4) were isolated and purified by flow-rate gradient high-performance countercurrent chromatography (HPCCC) using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:9:1:9, v/v). Two hundred milligrams of acetone-soluble extract from fermented C. sinensis leaves was separated by HPCCC to give 1 (25.4 mg), 2 (16.3 mg), 3 (11.1 mg) and 4 (4.4 mg) with purities over 98%. The structures of 1-4 were elucidated by QTOF-MS, as well as 1H- and 13C-NMR, and the obtained data were compared to the previously reported values.

  16. Using the liquid nature of the stationary phase in countercurrent chromatography. IV. The cocurrent CCC method.

    PubMed

    Berthod, Alain; Hassoun, Mahmoud

    2006-05-26

    The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.

  17. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic-aqueous two-phase solvent systems.

    PubMed

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-05-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1=300 rpm, ω2=150 rpm and ω3=150 rpm. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Purification of Proteins From Cell-Culture Medium or Cell-Lysate by High-Speed Counter-Current Chromatography Using Cross-Axis Coil Planet Centrifuge

    PubMed Central

    Shibusawa, Yoichi; Ito, Yoichiro

    2014-01-01

    This review describes protein purifications from cell culture medium or cell-lysate by high speed counter-current chromatography using the cross-axis coil planet centrifuge. Purifications were performed using aqueous two phase systems composed of polyethylene glycols and dextrans. PMID:25360182

  19. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION.

    PubMed

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.

  20. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    PubMed Central

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2011-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, 1H NMR and 13C NMR. PMID:23008527

  1. Spiral Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  2. Semi-industrial isolation of salicin and amygdalin from plant extracts using slow rotary counter-current chromatography.

    PubMed

    Du, Qizhen; Jerz, Gerold; Ha, Yangchun; Li, Lei; Xu, Yuanjin; Zhang, Qi; Zheng, Qunxiong; Winterhalter, Peterb; Ito, Yoichiro

    2005-05-13

    Salicin in the bark extract of Salix alba and amygdalin in the fruit extract of Semen armeniacae were each separated by slow rotary counter-current chromatography (SRCCC). The apparatus was equipped with a 40-L column made of 17 mm i.d. convoluted Teflon tubing. A 500g amount of crude extract containing salicin at 13.5% was separated yielding 63.5 g of salicin at 95.3% purity in 20h using methyl tert-butyl ether-l-butanol (1:3) saturated by methanol-water (1:5) as a stationary phase and methanol-water (1:5) saturated by methyl tert-butyl ether-1-butanol (1:3) as a mobile phase. A 400g amount of crude extract containing amygdalin at 55.3% was isolated to yield 221.2g of amygdalin at 94.1% purity in 19h using ethyl acetate-1-butanol (1:2) saturated by water as a stationary phase and water saturated by ethyl acetate-1-butanol (1:2) as a mobile phase. The flow rate of the mobile phase was 50 ml/min. The results show that industrial SRCCC separation of salicin and amygdalin is feasible using a larger column at a higher flow rate of the mobile phase.

  3. Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase high-speed counter-current chromatography.

    PubMed

    Liu, Dan; Su, Zhiguo; Wang, Changhai; Gu, Ming; Xing, Siliang

    2010-08-01

    Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one-step by both reversed-phase and normal-phase high-speed counter-current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (1:10:0.2:0.2:20) by reversed-phase high-speed counter-current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (0.2:10:2:1:5) by normal-phase high-speed counter-current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed-phase and normal-phase high-speed counter-current chromatography to separate high-polarity of low-molecular-weight substances.

  4. Preparative isolation and purification of astaxanthin from the microalga Chlorococcum sp. by high-speed counter-current chromatography.

    PubMed

    Li, H B; Chen, F

    2001-08-03

    High-speed counter-current chromatography was applied to the isolation and purification of astaxanthin from microalgae. The crude astaxanthin was obtained by extraction with organic solvents after the astaxanthin esters were saponified. Preparative high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (5:5:6.5:3, v/v) was successfully performed yielding astaxanthin at 97% purity from 250 mg of the crude extract in a one-step separation.

  5. pH-zone-refining elution-extrusion countercurrent chromatography: Separation of hydroxyanthraquinones from Cassiae semen.

    PubMed

    Bu, Zhisi; Lv, Liqiong; Li, Xingnuo; Chu, Chu; Tong, Shengqiang

    2017-11-01

    Seven hydroxyanthraquinones were successfully separated from the traditional Chinese medicinal herb Cassiae semen by conventional and pH-zone-refining countercurrent chromatography with an environmentally friendly biphasic solvent system, in which elution-extrusion mode was investigated for pH-zone-refining countercurrent chromatography for the first time. A two-phase solvent system composed of n-hexane/ethyl acetate/ethanol/water (5:3:4:4, v/v/v/v) was used for the conventional countercurrent chromatography while the same system with a different volume ratio n-hexane/ethyl acetate/ethanol/water (3:5:2:6, v/v/v/v) was used for pH-zone-refining countercurrent chromatography, in which 20 mmol/L of trifluoroacetic acid was added in the organic phase as a retainer and 15 mmol/L of ammonia was added to the aqueous phase as an eluter. A 400 mg crude sample could be well separated by pH-zone-refining countercurrent chromatography, yielding 53 mg of aurantio-obtusin, 40 mg of chryso-obtusin, 18 mg of obtusin, 24 mg of obtusifolin, 10 mg of emodin, and 105 mg of the mixture of chrysophanol and physcion with a purity of over 95.8, 95.7, 96.9, 93.5, 97.4, 77.1, and 19.8%, as determined by high-performance liquid chromatography. Furthermore, the difference in elution sequence between conventional and pH-zone-refining mode was observed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design of a novel coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with organic-aqueous two-phase solvent systems

    PubMed Central

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-01-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1 = ω2 + ω3. This relation enabled to lay out the flow tube by two different ways, the SS type and the JS type. In the SS type, the flow tube was introduced from the upper side of the apparatus into the sun axis of the first rotary frame and connected to the planet axis of the second rotary frame like a double letter SS. In the JS type, the flow tube was introduced from the bottom of the apparatus into the sun axis reaching the upper side of the planet axis an inversed letter J, followed by distribution as in the SS type. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for lower phase mobile and (1 : 4 : 5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) – CCW (ω2) – CCW (ω3) by the JS type flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) – CW (ω2) – CW (ω3) by the JS type flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1 = 300 rpm, ω2 = 150 rpm and ω3 = 150 rpm. PMID:25805719

  7. Effect of Coriolis force on counter-current chromatographic separation by centrifugal partition chromatography.

    PubMed

    Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro

    2004-02-06

    The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.

  8. Preparation of the monomers of gingerols and 6-shogaol by flash high speed counter-current chromatography.

    PubMed

    Qiao, Qingliang; Du, Qizhen

    2011-09-09

    The flash high speed counter-current chromatographic (FHSCCC) separation of gingerols and 6-shogaol was performed on a HSCCC instrument equipped with a 1200-ml column (5 mm tubing i.d.) at a flow rate of 25 ml/min. The performance met the FHSCCC feature that the flow rate of mobile phase (ml) is equal to or greater than the square of the diameter of the column tubing (mm). The separation employed the upper phase of stationary phase of the n-hexane-ethyl acetate-methanol-water (3:2:2:3, v/v) as the stationary phase. A stepwise elution was performed by eluting with the lower phase of n-hexane-ethyl acetate-methanol-water (3:2:2:3, v/v) for first 90 min and the lower phase of the n-hexane-ethyl acetate-methanol-water (3:2:6:5, v/v) for the second 90 min. In each separation 5 g of the ethyl acetate extract of rhizomes of ginger was loaded, yielding 1.96 g of 6-gingerol (98.3%), 0.33 g of 8-gingerol (97.8%), 0.64 g of 6-shogaol (98.8%) and 0.57 g of 10-gingerol (98.2%). The separation can be expected to scale up to industrial separation. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Direct numerical simulation of annular flows

    NASA Astrophysics Data System (ADS)

    Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  10. Use of Inert Gases and Carbon Monoxide to Study the Possible Influence of Countercurrent Exchange on Passive Absorption from the Small Bowel

    PubMed Central

    Bond, John H.; Levitt, David G.; Levitt, Michael D.

    1974-01-01

    The purpose of the present study was to quantitate the influence of countercurrent exchange on passive absorption of highly diffusible substances from the small intestine of the rabbit. The absorption of carbon monoxide, which is tightly bound to hemoglobin and therefore cannot exchange, was compared to the absorption of four unbound gases (H2, He, CH4, and 133Xe), which should exchange freely. The degree to which the observed absorption of the unbound gases falls below that predicted from CO absorption should provide a quantitative measure of countercurrent exchange. CO uptake at high luminal Pco is flow-limited and, assuming that villus and central hemoglobin concentrations are equal, the flow that equilibrates with CO (Fco) was calculated to equal 7.24 ml/min/100 g. The observed absorption rate of the unbound gases was from two to four times greater than would have been predicted had their entire uptake been accounted for by equilibration with Fco. This is the opposite of what would occur if countercurrent exchange retarded absorption of the unbound gases. The unbound gases have both flow- and diffusion-limited components, and Fco should account for only the fraction of absorption that is flow limited. A simple model of perfusion and diffusion made it possible to calculate the fraction of the total uptake of unbound gases that was flow limited. This fraction of the total observed absorption rate was still about 1.8 times greater than predicted by CO absorption. A possible explanation for this discrepancy is that plasma skimming reduces the hemoglobin of villus blood to about 60% of that of central blood. Thus, Fco is actually about 1.7 times greater than initially calculated, and with this correction, there is close agreement between the predicted and observed rates of absorption of each of the unbound gases. We conclude that countercurrent exchange does not influence passive absorption under the conditions of this study. PMID:4436431

  11. Three-phase flow? Consider helical-coil heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraburda, S.S.

    1995-07-01

    In recent years, chemical process plants are increasingly encountering processes that require heat exchange in three-phase fluids. A typical application, for example, is heating liquids containing solid catalyst particles and non-condensable gases. Heat exchangers designed for three-phase flow generally have tubes with large diameters (typically greater than two inches), because solids can build-up inside the tube and lead to plugging. At the same time, in order to keep heat-transfer coefficients high, the velocity of the process fluid within the tube should also be high. As a result, heat exchangers for three-phase flow may require less than five tubes -- eachmore » having a required linear length that could exceed several hundred feet. Given these limitations, it is obvious that a basic shell-and-tube heat exchanger is not the most practical solution for this purpose. An alternative for three-phase flow is a helical-coil heat exchanger. The helical-coil units offer a number of advantages, including perpendicular, counter-current flow and flexible overall dimensions for the exchanger itself. The paper presents equations for: calculating the tube-side heat-transfer coefficient; calculating the shell-side heat-transfer coefficient; calculating the heat-exchanger size; calculating the tube-side pressure drop; and calculating shell-side pressure-drop.« less

  12. An interesting two-phase solvent system and its use in preparative isolation of aconitines from aconite roots by counter-current chromatography.

    PubMed

    Han, Quan-Bin; Tang, Wai-Lun; Dong, Cai-Xia; Xu, Hong-Xi; Jiang, Zhi-Hong

    2013-04-01

    Two-phase solvent system plays crucial role in successful separation of organic compounds using counter-current chromatography (CCC). An interesting two-phase solvent system, composed of chloroform/ethyl acetate/methanol/water, is reported here, in which both phases contain sufficient organic solvents to balance their dissolving capacities. Adjusting the solvent system to get satisfactory partition coefficients (K values) for target compounds becomes relatively simple. This solvent system succeeded in sample preparation of aconitine (8.07 mg, 93.69%), hypaconitine (7.74 mg, 93.17%), mesaconitine (1.95 mg, 94.52%) from raw aconite roots (102.24 mg, crude extract), benzoylmesaconine (34.79 mg, 98.67%) from processed aconite roots (400.01 mg, crude extract), and yunaconitine (253.59 mg, 98.65%) from a crude extract of Aconitum forrestii (326.69 mg, crude extract). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Revisiting low-fidelity two-fluid models for gas-solids transport

    NASA Astrophysics Data System (ADS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  14. Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography.

    PubMed

    Yanagida, Akio; Shoji, Atsushi; Shibusawa, Yoichi; Shindo, Heisaburo; Tagashira, Motoyuki; Ikeda, Mitsuo; Ito, Yoichiro

    2006-04-21

    High-speed counter-current chromatography (HSCCC) using the type-J coil planet centrifuge was applied to compositional analysis of tea catechins and separation of other food-related polyphenols. The HSCCC separation of nine different standard compounds and those from extracts of commercial tea leaves was performed with a two-phase solvent system composed of tert-butyl methyl ether-acetonitrile-0.1% aqueous trifluoroacetic acid (TFA) (2:2:3, v/v/v) by eluting the upper organic phase at a flow rate of 2 ml/min. The main compounds in the extract of non-fermented green tea were found to be monomeric catechins, their galloylated esters and caffeine. In addition to these compounds, oxidized pigments, such as hydrophobic theaflavins (TFs) and polar thearubigins (TRs) were also separated and detected from the extracts of semi-fermented oolong tea and fermented black tea. Furthermore, several food-related polyphenols, such as condensed catechin oligomers (procyanidins), phenolic acids and flavonol glycosides were clearly separated under the same HSCCC condition. These separation profiles of HSCCC provide useful information about the hydrophobic diversity of these bioactive polyphenols present in various types of teas and food products.

  15. Velocity and void distribution in a counter-current two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities frommore » flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)« less

  16. Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos

    2016-11-01

    The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.

  17. Effects of capillary heterogeneity on vapor-liquid counterflow in porous media

    NASA Astrophysics Data System (ADS)

    Stubos, A. K.; Satik, C.; Yortsos, Y. C.

    1992-06-01

    Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the 'infinite' two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated-dry, or liquid-vapor dominated-dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.

  18. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    PubMed

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Combinative application of pH-zone-refining and conventional high-speed counter-current chromatography for preparative separation of caged polyprenylated xanthones from gamboge.

    PubMed

    Xu, Min; Fu, Wenwei; Zhang, Baojun; Tan, Hongsheng; Xiu, Yanfeng; Xu, Hongxi

    2016-02-01

    An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography for the first time. pH-zone-refining counter-current chromatography was performed with the solvent system composed of n-hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high-speed counter-current chromatography with a solvent system composed of n-hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n-hexane/methyl tert-butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β-morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high-performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    A neutral polymer phase system consisting of 7.5 percent dextran 40/4.5 percent PEG 6, 0.11 M Na phosphate, 5 percent fetal bovine serum (FBS), pH 7.5, was developed which has a high phase droplet electrophoretic mobility and retains cell viability over many hours. In this and related systems, the drop mobility was a linear function of drop size, at least in the range 4-30 micron diameter. Applications of and electric field of 4.5 v/cm to a system containing 10 percent v/v bottom phase cleared the system more than two orders of magnitude faster than in the absence of the field. At higher bottom phase concentrations a secondary phenomenon intervened in the field driven separations which resulted in an increase in turbidity after clearing had commenced. The increase was associated with a dilution of the phase system in the chamber. The effect depended on the presence of the electric field. It may be due to electroosmotic flow of buffer through the Amicon membranes into the sample chamber and flow of phase system out into the rinse stream. Strategies to eliminate this problem are proposed.

  1. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification

    PubMed Central

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 – 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography. PMID:27818942

  2. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    PubMed

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  3. Reacting flow studies in a dump combustor: Enhanced volumetric heat release rates and flame anchorability

    NASA Astrophysics Data System (ADS)

    Behrens, Alison Anne

    Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics. Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame. Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring. The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.

  4. New Adsorption Methods.

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    1984-01-01

    Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)

  5. [Isolation and preparation of an imidazole alkaloid from radix radix of Aconitum pendulum Busch by semi-preparative high-speed counter-current chromatography].

    PubMed

    Liu, Yongling; Chen, Tao; Chen, Chen; Zou, Denglang; Li, Yulin

    2014-05-01

    Aconitum pendulum Busch is rich C19 diterpenoid alkaloids, but there is no report of imidazole alkaloid in Aconitum pendulum Busch. In this study, an imidazole alkaloid named 1H-imidazole-2-carboxylic acid, butyl ester (ICABE) was successfully separated from Aconitum pendulum Busch with semi-preparative high-speed counter-current chromatography (HSCCC). The partition coefficient was measured by HPLC to select the solvent systems for ICABE separation by HSCCC. The separation was performed with a two-phase solvent system composed of n-hexane-chloroform-ethanol-water (10:1 : 13:2, v/v/v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase. It was operated at a flow rate of 1.8 mL/min. The apparatus was rotated at 850 r/min, and the detection wavelength was set at 230 nm. Under the selected conditions, a high efficiency separation of HSCCC was achieved, and 7.5 mg of ICABE was obtained from 100 mg of the crude sample of Aconitum pendulum in one-step separation within 350 min. The HPLC analysis showed that the purity of the compound was over 98%. The chemical structure was confirmed by UV, 1H-NMR and 13C-NMR. The established method is simple, highly efficient and suitable for large scale separation of ICABE from radix of Aconitum pendulum Busch.

  6. Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography.

    PubMed

    Xingfeng, Guo; Daijie, Wang; Wenjuan, Duan; Jinhua, Du; Xiao, Wang

    2010-01-01

    Flavonoids, the primary constituents of the petals of Nelumbo nucifera, are known to have antioxidant properties and antibacterial bioactivities. However, efficient methods for the preparative isolation and purification of flavonoids from this plant are not currently available. To develop an efficient method for the preparative isolation and purification of flavonoids from the petals of N. nucifera by high-speed counter-current chromatography (HSCCC). Following an initial clean-up step on a polyamide column, HSCCC was utilised to separate and purify flavonoids. Purities and identities of the isolated compounds were established by HPLC-PAD, ESI-MS, (1)H-NMR and (13)C-NMR. The separation was performed using a two-phase solvent system composed of ethyl acetate-methanol-water-acetic acid (4 : 1 : 5 : 0.1, by volume), in which the upper phase was used as the stationary phase and the lower phase was used as the mobile phase at a flow-rate of 1.0 mL/min in the head-to-tail elution mode. Ultimately, 5.0 mg syringetin-3-O-beta-d-glucoside, 6.5 mg quercetin-3-O-beta-d-glucoside, 12.8 mg isorhamnetin-3-O-beta-d-glucoside and 32.5 mg kaempferol-3-O-beta-d-glucoside were obtained from 125 mg crude sample. The combination of HSCCC with a polyamide column is an efficient method for the preparative separation and purification of flavonoids from the petals of N. nucifera. (c) 2009 John Wiley & Sons, Ltd.

  7. Fractionation of technical octabromodiphenyl ether by countercurrent chromatography combined with gas chromatography/mass spectrometry and offline and online (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hammann, Simon; Conrad, Jürgen; Vetter, Walter

    2015-06-12

    Countercurrent chromatography (CCC) is a technique, which uses two immiscible liquid phases for a separation process in a long and hollow tube. The technique allows the separation of high amounts of sample (50mg to several grams) with a low consumption of solvents. In this study, we fractionated 50mg technical octabromodiphenyl ether (DE-79) and analyzed the fractions by gas chromatography with mass spectrometry (GC/MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. CCC separations were performed with n-hexane/acetonitrile as solvent system in tail-to-head (i.e. the upper phase is mobile) mode. Twelve CCC fractions were studied for the PBDE composition. CCC elution of PBDE congeners was dependent both on the degree of bromination and substitution pattern. Higher brominated congeners eluted faster than lower brominated congeners and isomers with vicinal hydrogen atoms eluted last. In addition to several known PBDE congeners in DE-79, we were able to unequivocally identify BDE 195 in DE-79 and we could verify the presence of BDE 184. Finally, we also established the online hyphenation of CCC with (1)H NMR. The use of deuterated solvents could be avoided by using n-hexane/acetonitrile as two-phase system. By online CCC-(1)H NMR in stop-flow mode we were able to detect eight PBDE congeners in the mixture. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    ERIC Educational Resources Information Center

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  9. Countercurrent flow of supercritical anti-solvent in the production of pure xanthophylls from Nannochloropsis oculata.

    PubMed

    Cho, Yueh-Cheng; Wang, Yuan-Chuen; Shieh, Chwen-Jen; Lin, Justin Chun-Te; Chang, Chieh-Ming J; Han, Esther

    2012-08-10

    This study examined pilot scaled elution chromatography coupled with supercritical anti-solvent precipitation (using countercurrent flow) in generating zeaxanthin-rich particulates from a micro-algal species. Ultrasonic agitated acetone extract subjected to column fractionation successfully yielded a fraction containing 349.4 mg/g of zeaxanthin with a recovery of 85%. Subsequently, supercritical anti-solvent (SAS) precipitation of the column fraction at 150 bar and 343 K produced submicron-sized particulates with a concentration of 845.5mg/g of zeaxanthin with a recovery of 90%. Experimental results from a two-factor response surface method SAS precipitation indicated that purity, mean size and morphology of the precipitates were significantly affected by the flow type configuration, feed flow rate and injection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems.

    PubMed

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-12-27

    A new design of universal high-speed counter-current chromatograph (HSCCC) was fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The impact of capillary backpressure on spontaneous counter-current imbibition in porous media

    NASA Astrophysics Data System (ADS)

    Foley, Amir Y.; Nooruddin, Hasan A.; Blunt, Martin J.

    2017-09-01

    We investigate the impact of capillary backpressure on spontaneous counter-current imbibition. For such displacements in strongly water-wet systems, the non-wetting phase is forced out through the inlet boundary as the wetting phase imbibes into the rock, creating a finite capillary backpressure. Under the assumption that capillary backpressure depends on the water saturation applied at the inlet boundary of the porous medium, its impact is determined using the continuum modelling approach by varying the imposed inlet saturation in the analytical solution. We present analytical solutions for the one-dimensional incompressible horizontal displacement of a non-wetting phase by a wetting phase in a porous medium. There exists an inlet saturation value above which any change in capillary backpressure has a negligible impact on the solutions. Above this threshold value, imbibition rates and front positions are largely invariant. A method for identifying this inlet saturation is proposed using an analytical procedure and we explore how varying multiphase flow properties affects the analytical solutions and this threshold saturation. We show the value of this analytical approach through the analysis of previously published experimental data.

  12. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns.

    PubMed

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-12-01

    Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule.

  13. Parasitic momentum flux in the tokamak core

    DOE PAGES

    Stoltzfus-Dueck, T.

    2017-03-06

    A geometrical correction to the E × B drift causes an outward flux of co-current momentum whenever electrostatic potential energy is transferred to ion parallel flows. The robust, fully nonlinear symmetry breaking follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The resulting rotation peaking is counter-current and scales as temperature over plasma current. Lastly, this peaking mechanism can only act when fluctuations are low-frequency enough to excite ion parallel flows, which may explain some recent experimental observations related to rotation reversals.

  14. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    ERIC Educational Resources Information Center

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  15. Revisiting low-fidelity two-fluid models for gas–solids transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The modelmore » equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.« less

  16. Scale-up protein separation on stainless steel wide bore toroidal columns in the type-J counter-current chromatography.

    PubMed

    Guan, Yue Hugh; Hewitson, Peter; van den Heuvel, Remco N A M; Zhao, Yan; Siebers, Rick P G; Zhuang, Ying-Ping; Sutherland, Ian

    2015-12-11

    Manufacturing high-value added biotech biopharmaceutical products (e.g. therapeutic proteins) requires quick-to-develop, GMP-compliant, easy-to-scale and cost effective preparatory chromatography technologies. In this work, we describe the construction and testing of a set of 5-mm inner diameter stainless steel toroidal columns for use on commercially available preparatory scale synchronous J-type counter-current chromatography (CCC) machinery. We used a 20.2m long column with an aqueous two-phase system containing 14% (w/w) PEG1000 and 14% (w/w) potassium phosphate at pH 7, and tested a sample loading of 5% column volume and a mobile phase flow rate of 20ml/min. We then satisfactorily demonstrated the potential for a weekly protein separation and preparation throughput of ca. 11g based on a normal weekly routine for separating a pair of model proteins by making five stacked injections on a single portion of stationary phase with no stripping. Compared to our previous 1.6mm bore PTFE toroidal column, the present columns enlarged the nominal column processing throughput by nearly 10. For an ideal model protein injection modality, we observed a scaling up factor of at least 21. The 2 scales of protein separation and purification steps were realized on the same commercial CCC device. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Pressurized liquid extraction coupled with countercurrent chromatography for systematic isolation of chemical constituents by preprogrammed automatic control.

    PubMed

    Zhang, Yuchi; Guo, Liping; Liu, Chunming; Fu, Zi' ao; Cong, Lei; Qi, Yanjuan; Li, Dongping; Li, Sainan; Wang, Jing

    2013-09-15

    Pressurized liquid extraction (PLE) coupled with high-speed countercurrent chromatography (HSCCC) via an automated procedure was firstly developed to extract and isolate ginsenosides from Panax quinquefolium. The experiments were designed under the guidance of mathematical model. The partition coefficient (K) values of the target compounds and resolutions of peak profiles were employed as the research indicators, and exponential function and binomial formulas were used to optimizing the solvent systems and flow rates of the mobile phases in a three-stage separation. In the first stage, ethyl acetate, n-butanol, and water were simultaneously pumped into the solvent separator at the flow rates 11.0, 10.0, and 23.0mL/min, respectively. The upper phase of the solvent system in the solvent separator was used as both the PLE solvent and the HSCCC stationary phase, followed by elution with the lower phase of the corresponding solvent system to separate the common ginsenosides. In the second and third stages, rare ginsenosides were first separated by elution with ethyl acetate, n-butanol, methanol, and water (flow rates: 20.0, 3.0, 5.0, and 11.0mL/min, respectively), then with n-heptane, n-butanol, methanol, and water (flow rates: 17.5, 6.0, 5.0, and 22.5mL/min, respectively). Nine target compounds, with purities exceeding 95.0%, and three non-target compounds, with purities above 84.48%, were successfully separated at the semipreparative scale in 450min. The separation results prove that the PLE/HSCCC parameters calculated via mathematical model and formulas were accurately and scientifically. This research has opened up great prospects for industrial automation application. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.

  19. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less

  20. Structure and Variability of the Mesoscale Circulation in the Caribbean sea as Deduced From Satellite Altimetry

    DTIC Science & Technology

    1998-06-01

    countercurrent along Costa Rica and Panama, which ends on the Colombian coast. This flow is usually called the Darien Countercurrent. Also, a counter flow...Marine Geology , vol. 68,25-52, 1985. Le Traon, P. Y., P. Gaspar, F. Bouyssel, and H. Makhmara, Using Topex / Poseidon Data to Enhance ERS-1 Data

  1. ORGANIC-HIGH IONIC STRENGTH AQUEOUS SOLVENT SYSTEMS FOR SPIRAL COUNTER-CURRENT CHROMATOGRAPHY: GRAPHIC OPTIMIZATION OF PARTITION COEFFICIENT

    PubMed Central

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2012-01-01

    A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system. PMID:23467197

  2. Preparative separation of grape skin polyphenols by high-speed counter-current chromatography.

    PubMed

    Luo, Lanxin; Cui, Yan; Zhang, Shuting; Li, Lingxi; Li, Yuanyuan; Zhou, Peiyu; Sun, Baoshan

    2016-12-01

    To develop an efficient method for large preparation of various individual polyphenols from white grape skins (Fernão Pires; Vitis vinifera) by preparative high-speed counter-current chromatography (HSCCC) and preparative-HPLC, an optimized preparative HSCCC condition with two-phase solvent system composed of Hex-EtOAc-H2O (1:50:50, v/v) was used to separate grape skin polyphenols into various fractions. Both the tail-head and head-tail elution modes were used with a flow rate of 3.0ml/min and a rotary speed of 950rpm. Afterwards, a preparative-HPLC separation was applied to isolate individual polyphenols in each of the fractions from HSCCC. Total of 7 fractions (Fraction A to G) were obtained from grape skin extract by HSCCC. After preparative-HPLC isolation, fifteen individual compounds were obtained, most of which presented high yields and purity (all over 90%). The HSCCC method followed with preparative-HPLC appeared to be convenient and economical, constituting an efficient strategy for the isolation of grape skin polyphenols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Schinus terebinthifolius countercurrent chromatography (Part III): Method transfer from small countercurrent chromatography column to preparative centrifugal partition chromatography ones as a part of method development.

    PubMed

    das Neves Costa, Fernanda; Hubert, Jane; Borie, Nicolas; Kotland, Alexis; Hewitson, Peter; Ignatova, Svetlana; Renault, Jean-Hugues

    2017-03-03

    Countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC) are support free liquid-liquid chromatography techniques sharing the same basic principles and features. Method transfer has previously been demonstrated for both techniques but never from one to another. This study aimed to show such a feasibility using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. Heptane - ethyl acetate - methanol -water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds. The optimized separation methodology previously described in Part I and II, was scaled up from an analytical hydrodynamic CCC column (17.4mL) to preparative hydrostatic CPC instruments (250mL and 303mL) as a part of method development. Flow-rate and sample loading were further optimized on CPC. Mobile phase linear velocity is suggested as a transfer invariant parameter if the CPC column contains sufficient number of partition cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. METHOD OF CENTRIFUGE OPERATION

    DOEpatents

    Cohen, K.

    1960-05-10

    A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.

  5. Preparative enantioseparation of loxoprofen precursor by recycling countercurrent chromatography with hydroxypropyl-β-cyclodextrin as a chiral selector.

    PubMed

    Zhang, Hui; Qiu, Xujun; Lv, Liqiong; Sun, Wenyu; Wang, Chaoyue; Yan, Jizhong; Tong, Shengqiang

    2018-04-17

    Recycling countercurrent chromatography was successfully applied to the resolution of 2-(4-bromomethylphenyl)propionic acid, a key synthetic intermediate for synthesis of nonsteroidal anti-inflammatory drug loxoprofen, using hydroxypropyl-β-cyclodextrin as chiral selector. The two-phase solvent system composed of n-hexane/n-butyl acetate/0.1 mol/L citrate buffer solution with pH 2.4 (8:2:10, v/v/v) was selected. Influence factors for the enantioseparation were optimized, including type of substituted β-cyclodextrin, concentration of hydroxypropyl-β-cyclodextrin, separation temperature, and pH of aqueous phase. Under optimized separation conditions, 50 mg of 2-(4-bromomethylphenyl)propionic acid was enantioseparated using preparative recycling countercurrent chromatography. Technical details for recycling elution mode were discussed. The purities of both the S and R enantiomers were over 99.0% as determined by high-performance liquid chromatography. The enantiomeric excess of the S and R enantiomers reached 98.0%. The recovery of the enantiomers from eluted fractions was 40.8-65.6%, yielding 16.4 mg of the S enantiomer and 10.2 mg of the R enantiomer. At the same time, we attempted to enantioseparate the anti-inflammatory drug loxoprofen by countercurrent chromatography and high-performance liquid chromatography using a chiral mobile phase additive. However, no successful enantioseparation was achieved so far. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  7. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.

    PubMed

    Hassanpour, Saeid; Saboonchi, Ahmad

    2016-12-01

    This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Changes in glycolytic enzyme activities in aging erythrocytes fractionated by counter-current distribution in aqueous polymer two-phase systems.

    PubMed Central

    Jimeno, P; Garcia-Perez, A I; Luque, J; Pinilla, M

    1991-01-01

    Human and rat erythrocytes were fractionated by counter-current distribution in charge-sensitive dextran/poly(ethylene glycol) two-phase systems. The specific activities of the key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase) declined along the distribution profiles, although the relative positions of the activity profiles were reversed in the two species. These enzymes maintained their normal response to specific regulatory effectors in all cell fractions. No variations were observed for phosphoglycerate kinase and bisphosphoglycerate mutase activities. Some correlations between enzyme activities (pyruvate kinase/hexokinase, pyruvate kinase/phosphofructokinase, pyruvate kinase/pyruvate kinase plus phosphoglycerate kinase, pyruvate kinase/bisphosphoglycerate mutase and phosphoglycerate kinase/bisphosphoglycerate mutase ratios) were studied in whole erythrocyte populations as well as in cell fractions. These results strongly support the fractionation of human erythrocytes according to cell age, as occurs with rat erythrocytes. PMID:1656939

  9. Isolation of four phenolic compounds from Mangifera indica L. flowers by using normal phase combined with elution extrusion two-step high speed countercurrent chromatography.

    PubMed

    Shaheen, Nusrat; Lu, Yanzhen; Geng, Ping; Shao, Qian; Wei, Yun

    2017-03-01

    Two-step high speed countercurrent chromatography method, following normal phase and elution-extrusion mode of operation by using selected solvent systems, was introduced for phenolic compounds separation. Phenolic compounds including gallic acid, ethyl gallate, ethyl digallate and ellagic acid were separated from the ethanol extract of mango (Mangifera indica L.) flowers for the first time. In the first step, gallic acid of 3.7mg and ethyl gallate of 3.9mg with the purities of 98.87% and 99.55%, respectively, were isolated by using hexane-ethylacetate-methanol-water (4:6:4:6, v/v) in normal phase high speed countercurrent chromatography from 200mg of crude extract, while ethyl digallate and ellagic acid were collected in the form of mixture fraction. In the second step, further purification of the mixture was carried out with the help of another selected solvent system of dichloromethane-methanol-water (4:3:2, v/v) following elusion-extrusion mode of operation. Ethyl digallate of 3.8mg and ellagic acid of 5.7mg were separated well with high purities of 98.68% and 99.71%, respectively. The separated phenolic compounds were identified and confirmed by HPLC, UPLC-QTOF/ESI-MS, 1 H and 13 C NMR spectrometric analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns

    PubMed Central

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-01-01

    1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507

  11. Countercurrent Chromatographic Separation of Proteins Using an Eccentric Coiled Column with Synchronous and Nonsynchronous Type-J Planetary Motions

    PubMed Central

    SHINOMIYA, Kazufusa; YOSHIDA, Kazunori; TOKURA, Koji; TSUKIDATE, Etsuhiro; YANAGIDAIRA, Kazuhiro; ITO, Yoichiro

    2015-01-01

    Protein separation was performed using the high-speed counter-current chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution. PMID:25765276

  12. Countercurrent chromatographic separation of proteins using an eccentric coiled column with synchronous and nonsynchronous type-J planetary motions.

    PubMed

    Shinomiya, Kazufusa; Yoshida, Kazunori; Tokura, Koji; Tsukidate, Etsuhiro; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-01-01

    Protein separation was performed using the high-speed countercurrent chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution.

  13. A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magnetic resonance pattern recognition and following conical counter-current chromatography separation: Podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples.

    PubMed

    Yang, Zhi; Wu, Youqian; Wu, Shihua

    2016-01-29

    Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Investigation of nutrient feeding strategies in a countercurrent mixed-acid multi-staged fermentation: development of segregated-nitrogen model.

    PubMed

    Smith, Aaron D; Holtzapple, Mark T

    2010-12-01

    The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Countercurrent fixed-bed gasification of biomass at laboratory scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Blasi, C.; Signorelli, G.; Portoricco, G.

    1999-07-01

    A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7%more » CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.« less

  16. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  17. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    PubMed Central

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  18. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    PubMed

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  19. [Simultaneous isolation and purification of gallic acid and brevifolincarboxylic acid from Polygonum capitatum by high-speed counter-current chromatography].

    PubMed

    Chen, Xinxia; Zhang, Liyan; Wan, Jinzhi; Liang, Bin; Xie, Yu

    2010-08-01

    To isolate and purify gallic acid and brevifolincarboxylic acid simultaneously by high-speed counter-current chromatography (HSCCC) from a crude extract of Polygonum capitatum. The biphasic solvent system composed of ethyl acetate-n-butanol-0.44% acetic acid (3:1:5) was used at a flow rate of 2.0 mL x min(-1), while the aqueous phase was selected as the mobile phase and the apparatus was rotated at 860 r x min(-1). The effluent was detected at 272 nm. 51.5 mg of gallic acid and 5.9 mg of brevifolincarboxylic acid were separated from 1.07 g of the crude extract with the purities of 99.7% and 97.5%, respectively, while brevifolincarboxylic acid was obtained firstly from the genus Polygonum. The structures of the compounds were identified by ultraviolet spectrometry (UV), infra-red spectrometry (IR), liquid chromatography/mass spectrometry (LC/MS), time-of-flight mass spectrometry( TOF-MS), 1H-nuclear magnetic resonance (NMR) and 13C-NMR. This method is feasible and rapid for isolation and purification of gallice acid and brevifolincarboxylil acid.

  20. [Separation of alkaloids in tea by high-speed counter-current chromatography].

    PubMed

    Yuan, L; Fu, R; Zhang, T; Deng, J; Li, X

    1998-07-01

    Alkaloids extracted from the green tea were separated by high-speed counter-current chromatography. A series of experiments have been performed to investigate effects of different solvent system. A system of CHCl3-CH3OH-NaH2PO4(23 mmol/L) = (4:3:2) was selected, in which the upper phase was used as the stationary phase, and the lower phase as mobile phase. When acidity of solvent system is pH 5.6, three chemical components are very efficiently isolated by one injection of 50 mg sample mixture. Analyzing the eluted fractions by TLC, we know that one is caffeine, and the other is theophylline. In comparing the separation results by high-speed counter-current chromatography with those by TLC, the advantages of this method is verified. It should find wide applications of this technology for the separation of crude mixture of plant components.

  1. New analytical spiral tube assembly for separation of proteins by counter-current chromatography.

    PubMed

    Ma, Xiaofeng; Ito, Yoichiro

    2015-07-31

    A new spiral column assembly for analytical separation by counter-current chromatography is described. The column is made from a plastic spiral tube support which has 12 interwoven spiral grooves. The PTFE tubing of 1.6mm ID was first flattened by extruding through a narrow slit and inserted into the grooves to make 5 spiral layers with about 60ml capacity. The performance of the spiral column assembly was tested with separation of three stable protein samples including cytochrome C, myoglobin and lysozyme in a polymer phase system composed of polyethylene glycol 1000 and dibasic potassium phosphate each at 12.5% (w/w) in water. At 2ml/min, three protein samples were well resolved in 1h. The separation time may be further shortened by application of higher revolution speed and flow rate by improving the strength of the spiral tube support in the future. Published by Elsevier B.V.

  2. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  3. PH-zone-refining counter-current chromatography with a hydrophilic organic/salt-containing two-phase solvent system for preparative separation of polar alkaloids from natural products.

    PubMed

    Zou, Denglang; Du, Yurong; Kuang, Jianyuan; Sun, Shihao; Ma, Jianbin; Jiang, Renwang

    2018-06-08

    This study presents an efficient strategy based on pH-zone-refining counter-current chromatography with a hydrophilic organic/salt-containing two-phase system composed of acetonitrile, sodium chloride and water for preparative separation of polar alkaloids from natural products. Acetonitrile-sodium chloride-water system provides a wider range of polarity for polar alkaloids than classical aqueous two-phase systems. It gets rid of the effect of free hydrogen ion, strong ionic strength, hold low viscosity and the sharp retainer border could be formed easily. So acetonitrile-sodium chloride-water system showed great advantages to pH-zone-refining counter-current chromatography for polar alkaloids. The separation of polar indole alkaloids from toad venom was selected as an example to show the advantage and practicability of this strategy. An optimized acetonitrile-sodium chloride-water (54%:5%:41%, w%) system was applied in this study, where 10 mM triethylamine (TEA) as the retainer and 15 mM hydrochloric acid (HCl) as the eluter were added. As a result, three polar indole alkaloids, including 19 mg of serotonin, 45 mg of 5-Hydroxy-N'-methyl tryptamine, 33 mg of bufotenine were simultaneously separated from 500 mg of 5% ethanol elution fraction of toad venom on macroporous resin chromatography, with the purity of 91.3%, 97.5% and 89.4%, respectively. Their structures were identified by spectroscopic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Hydrophilic organic/salt-containing aqueous two-phase solvent system for counter-current chromatography: a novel technique for separation of polar compounds.

    PubMed

    Liu, Dan; Zou, Xiaowei; Gao, Mingzhe; Gu, Ming; Xiao, Hongbin

    2014-08-22

    Hydrophilic organic/salt-containing aqueous two-phase system composing of ethanol, water and ammonium sulfate for separation polar compounds was investigated on multilayer coil associated with J-type HSCCC devices. Compared to the classical polar solvent system based on 1-butanol-water or PEG1000-ammonium sulfate-water, the water content of upper phase in ethanol-ammonium sulfate-water systems was from 53.7% to 32.8% (wt%), closed to PEG1000-ammonium sulfate-water aqueous two-phase systems and higher than 1-butanol-water (22.0%, wt%). Therefore, the polarity of ethanol-ammonium sulfate-water is in the middle of 1-butanol-water and PEG-ammonium sulfate-water system, which is quite good for separating polar compounds like phenols, nucleosides and amino acids with low partition coefficient in 1-octanol-water system. The retention of stationary phase in four elution mode on type-J counter-current chromatography devices with multilayer coil column changed from 26% to 71%. Hydrodynamic trend possess both intermediate and hydrophilic solvent system property, which closely related to the composition of solvent system. The applicability of this system was demonstrated by successful separation of adenosine, uridine guanosine and cytidine. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.

    1990-10-12

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results aremore » related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.« less

  6. Efficient C1-continuous phase-potential upwind (C1-PPU) schemes for coupled multiphase flow and transport with gravity

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-10-01

    In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.

  7. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling.

    PubMed

    Kim, Jeong Chul; Cruz, Dinna; Garzotto, Francesco; Kaushik, Manish; Teixeria, Catarina; Baldwin, Marie; Baldwin, Ian; Nalesso, Federico; Kim, Ji Hyun; Kang, Eungtaek; Kim, Hee Chan; Ronco, Claudio

    2013-01-01

    Continuous renal replacement therapy (CRRT) is commonly used for critically ill patients with acute kidney injury. During treatment, a slow dialysate flow rate can be applied to enhance diffusive solute removal. However, due to the lack of the rationale of the dialysate flow configuration (countercurrent or concurrent to blood flow), in clinical practice, the connection settings of a hemodiafilter are done depending on nurse preference or at random. In this study, we investigated the effects of flow configurations in a hemodiafilter during continuous venovenous hemodialysis on solute removal and fluid transport using computational fluid dynamic modeling. We solved the momentum equation coupling solute transport to predict quantitative diffusion and convection phenomena in a simplified hemodiafilter model. Computational modeling results showed superior solute removal (clearance of urea: 67.8 vs. 45.1 ml/min) and convection (filtration volume: 29.0 vs. 25.7 ml/min) performances for the countercurrent flow configuration. Countercurrent flow configuration enhances convection and diffusion compared to concurrent flow configuration by increasing filtration volume and equilibrium concentration in the proximal part of a hemodiafilter and backfiltration of pure dialysate in the distal part. In clinical practice, the countercurrent dialysate flow configuration of a hemodiafilter could increase solute removal in CRRT. Nevertheless, while this configuration may become mandatory for high-efficiency treatments, the impact of differences in solute removal observed in slow continuous therapies may be less important. Under these circumstances, if continuous therapies are prescribed, some of the advantages of the concurrent configuration in terms of simpler circuit layout and simpler machine design may overcome the advantages in terms of solute clearance. Different dialysate flow configurations influence solute clearance and change major solute removal mechanisms in the proximal and distal parts of a hemodiafilter. Advantages of each configuration should be balanced against the overall performance of the treatment and its simplicity in terms of treatment delivery and circuit handling procedures. Copyright © 2013 S. Karger AG, Basel.

  8. Use of limonene in countercurrent chromatography: a green alkane substitute.

    PubMed

    Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain

    2013-05-07

    Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.

  9. Purification of α-glucosidase from mouse intestine by countercurrent chromatography coupled with a reverse micelle solvent system.

    PubMed

    He, Kai; Zou, Zongyao; Hu, Yinran; Yang, Yong; Xiao, Yubo; Gao, Pincao; Li, Xuegang; Ye, Xiaoli

    2016-02-01

    Countercurrent chromatography coupled with a reverse micelle solvent was applied to separate α-glucosidase, which is stable at pH 6.0-8.8, 15-50°C. The separation conditions are as follows: stationary phase: pH 4.0 Tris-HCl buffer phase containing 50 mM Tris-HCl and 50 mM KCl; mobile phase A: isooctane containing 50 mM anionic surfactant sodium di(2-ethylhexyl)sulfosuccinate; mobile phase B: 50 mM Tris-HCl buffer containing 500 mM KCl (pH 8.0); In total, 25 mL (23.9 mg) crude enzyme was injected through the injection valve, the enzymatic reaction and sodium dodecylsulfate polyacrylamide gel electrophoresis results imply that the activity of purified α-glucosidase is 6.63-fold higher than that of the crude enzyme. Therefore, countercurrent chromatography coupled with a reverse micelle solvent is capable for protein separation and enrichment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparative isolation of alkaloids from Corydalis bungeana Turcz. by high-speed counter-current chromatography using stepwise elution

    PubMed Central

    Niu, Lili; Xie, Zhensheng; Cai, Tanxi; Wu, Peng; Xue, Peng; Chen, Xiulan; Wu, Zhiyong; Ito, Yoichiro; Li, Famei; Yang, Fuquan

    2011-01-01

    High-speed counter-current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two-phase solvent systems composed of CHCl3–MeOH–(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl3–MeOH–0.2 M HCl (4:2:2, v/v) and CHCl3–MeOH–0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12-hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94–99% as determined by HPLC. Their chemical structures were characterized on the basis of 1H-NMR, 13C-NMR, and LC-ESI-Q-TOF-MS/MS analyses. PMID:21387560

  11. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational testsmore » were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a small amount of heat is added to the processed solution by the mechanical energy of the contactors. The temperature profiles match the ambient temperature of the laboratory but are nearly 10° C higher toward the middle of the cascade. Heated input solution testing provides temperature profiles with smaller temperature gradients and are more influenced by the temperature of the inlet solutions than the ambient laboratory temperature. The temperature effects of solution mixing, even at 4000 rpm, were insignificant in any of the studies conducted on lamp oil and water.« less

  12. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  13. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  14. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  15. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    PubMed Central

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  16. Separation of two major chalcones from Angelica keiskei by high-speed counter-current chromatography.

    PubMed

    Kil, Yun-Seo; Nam, Joo-Won; Lee, Jun; Seo, Eun Kyoung

    2015-08-01

    Angelica keiskei (Shin-sun cho) is an edible higher plant with the beneficial preventive effects on cancer, hypertension, and coronary heart disease. Two bioactive chalcones of Shin-sun cho, xanthoangelol (1) and 4-hydroxyderricin (2), were separated simultaneously by using high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-EtOAc-MeOH-H2O (9:5:9:4). Only nonconsuming processes, solvent fractionations and Sephadex LH-20 column chromatography, were conducted as presteps. Xanthoangelol (1, 35.9 mg, 99.9 % purity at 254 and 365 nm) and 4-hydroxyderricin (2, 4.4 mg, 98.7 % purity at 254 nm and 98.8 % purity at 365 nm) were successfully purified from 70 mg of the processed extract from A. keiskei. The structures of two compounds were confirmed by (1)H- and (13)C-NMR analysis.

  17. Isolation and Purification of Two Isoflavones from Hericium erinaceum Mycelium by High-Speed Counter-Current Chromatography.

    PubMed

    He, Jinzhe; Fan, Peng; Feng, Simin; Shao, Ping; Sun, Peilong

    2018-03-02

    High-speed counter-current chromatography (HSCCC) was used to separate and purify two isoflavones for the first time from Hericium erinaceum ( H. erinaceum ) mycelium using a two-phase solvent system composed of chloroform-dichloromethane-methanol-water (4:2:3:2, v / v / v / v ). These two isoflavones were identified as genistein (4',5,7-trihydroxyisoflavone, C 15 H 10 O₅) and daidzein (4',7-dihydroxyisoflavone, C 15 H 10 O₄), using infrared spectroscopy (IR), electro-spary ionisation mass (ESI-MS), ¹H-nuclear magnetic resonance (NMR) and 13 C-NMR spectra. About 23 mg genistein with 95.7% purity and 18 mg daidzein with 97.3% purity were isolated from 150 mg ethanolic extract of H. erinaceum mycelium. The results demonstrated that HSCCC was a feasible method to separate and purify genistein and daidzein from H. erinaceum mycelium.

  18. Flooding Experiments and Modeling for Improved Reactor Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solmos, M.; Hogan, K. J.; Vierow, K.

    2008-09-14

    Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge linemore » can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.« less

  19. Preparative high-speed counter-current chromatography for purification of shikonin from the Chinese medicinal plant Lithospermum erythrorhizon.

    PubMed

    Lu, Hai-Tao; Jiang, Yue; Chen, Feng

    2004-01-09

    The bioactive compound shikonin was successfully isolated and purified from the crude extract of the traditional Chinese medicinal plant Lithospermum erythrorhizon Sieb. et Zucc. by preparative high-speed counter-current chromatography (HSCCC). The preparative HSCCC was performed using a two-phase solvent system composed of n-hexane-ethylacetate-ethanol-water (16:14:14:5 (v/v)). A total amount of 19.6 mg of shikonin at 98.9% purity was obtained from 52 mg of the crude extract (containing 38.9% shikonin) with 96.9% recovery. The preparative isolation and purification of shikonin by HSCCC was completed in 200 min in a one-step separation.

  20. The dispersal of the Amazon's water

    NASA Technical Reports Server (NTRS)

    Muller-Karger, Frank E.; Mcclain, Charles R.; Richardson, Philip L.

    1988-01-01

    New information obtained with NASA's Coastal Zone Color Scanner and with drifting buoys reveals that the discharge of the Amazon is carried offshore around a retroflection of the North Brazil Current and into the North Equatorial Countercurrent towards Africa between June and January each year. From about February to May, the countercurrent and the retroflection weaken or vanish, and Amazon water flows northwestward toward the Caribbean Sea.

  1. Optimising resolution for a preparative separation of Chinese herbal medicine using a surrogate model sample system.

    PubMed

    Ye, Haoyu; Ignatova, Svetlana; Peng, Aihua; Chen, Lijuan; Sutherland, Ian

    2009-06-26

    This paper builds on previous modelling research with short single layer columns to develop rapid methods for optimising high-performance counter-current chromatography at constant stationary phase retention. Benzyl alcohol and p-cresol are used as model compounds to rapidly optimise first flow and then rotational speed operating conditions at a preparative scale with long columns for a given phase system using a Dynamic Extractions Midi-DE centrifuge. The transfer to a high value extract such as the crude ethanol extract of Chinese herbal medicine Millettia pachycarpa Benth. is then demonstrated and validated using the same phase system. The results show that constant stationary phase modelling of flow and speed with long multilayer columns works well as a cheap, quick and effective method of optimising operating conditions for the chosen phase system-hexane-ethyl acetate-methanol-water (1:0.8:1:0.6, v/v). Optimum conditions for resolution were a flow of 20 ml/min and speed of 1200 rpm, but for throughput were 80 ml/min at the same speed. The results show that 80 ml/min gave the best throughputs for tephrosin (518 mg/h), pyranoisoflavone (47.2 mg/h) and dehydrodeguelin (10.4 mg/h), whereas for deguelin (100.5 mg/h), the best flow rate was 40 ml/min.

  2. Studies on polar high-speed counter-current chromatographic systems in separation of amaranthine-type betacyanins from Celosia species.

    PubMed

    Spórna-Kucab, Aneta; Milo, Angelika; Kumorkiewicz, Agnieszka; Wybraniec, Sławomir

    2018-01-15

    Betacyanins, natural plant pigments exhibiting antioxidant and chemopreventive properties, were extracted from Celosia spicata (Thouars) Spreng. inflorescences and separated by high-speed counter-current chromatography (HSCCC) in two polar solvent systems composed of: TBME - 1-BuOH - ACN - H 2 O (0.7% HFBA, 2:2:1:5, v/v/v/v) (system I) and EtOH - ACN - 1-PrOH - (NH 4 ) 2 SO 4satd.soln - H 2 O (0.5:0.5:0.5:1.2:1, v/v/v/v/v) (system II). The systems were used in the head-to-tail (system I) and tail-to-head (system II) mode. The flow rate of the mobile phase was 2.0 ml/min and the column rotation speed was 860 rpm. The retention of the stationary phase was 73.5% (system I) and 80.0% (system II). For the identification of separated betacyanins in the crude extract as well as in the HSCCC fractions, LC-DAD-ESI-MS/MS analyses were performed. Depending on the target compounds, each of the systems exhibit meaningfully different selectivity and applicability. For the pairs of amaranthines (1/1') and betanins (2/2'), the best choice is the system II, but the acylated amaranthine pairs (3/3' and 4/4') can be resolved only in the ion-pair system I. For the indication of the most suitable solvent system for Celosia plumosa hort., Celosia cristata L. and Celosia spicata (Thouars) Spreng. species, the profiles of betacyanins in different plant parts were studied. Copyright © 2017. Published by Elsevier B.V.

  3. Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high-performance liquid chromatography.

    PubMed

    Fan, Chen; Cao, Xueli; Liu, Man; Wang, Wei

    2016-03-04

    Alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA) are some of the main Alternaria mycotoxins that can be found as contaminants in food materials. The objective of this study was to develop a pretreatment method with countercurrent chromatography (CCC) for enrichment and cleanup of trace Alternaria mycotoxins in food samples prior to high-performance liquid chromatography (HPLC) analysis. An Analytical CCC instrument with a column volume 22.5mL was used, and a two-phase solvent system composed of ethyl acetate and water modified with 6% [HOOMIM][Cl] in mass to volume ratio was selected. Under the optimized CCC operation conditions, trace amounts of AOH, AME, and TeA in large volume of liquid sample were efficiently extracted and enriched in the stationary phase, and then eluted out just by reversing the stationary phase as mobile phase in the opposite flowing direction tail-to-head. The enrichment and elution strategies are unique and can be fulfilled online with high enrichment factors (87-114) and high recoveries (81.14-110.94%). The method has been successively applied to the determination of Alternaria mycotoxins in real apple juice and wine samples with the limits of detection (LOD) in the range of 0.03-0.14μgL(-1). Totally 12 wine samples and 15 apple juice samples from the local market were analyzed. The detection rate of AOH and AME in both kinds of the samples were more than 50%, while TeA was found in relatively high level of 1.75-49.61μgL(-1) in some of the apple juice samples. The proposed method is simple, rapid, and sensitive and could also be used for the analysis and monitoring of Alternaria mycotoxin in other food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparative isolation and purification of three sesquiterpenoid lactones from Eupatorium lindleyanum DC. by high-speed counter-current chromatography.

    PubMed

    Yan, Guilong; Ji, Lilian; Luo, Yuming; Hu, Yonghong

    2012-07-27

    A high-speed counter-current chromatography (HSCCC) method was established for the preparative separation of three sesquiterpenoid lactones from Eupatorium lindleyanum DC. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:4:2:3, v/v/v/v) was selected. From 540 mg of the n-butanol fraction of Eupatorium lindleyanum DC., 10.8 mg of 3β-hydroxy-8β-[4'-hydroxytigloyloxy]-costunolide, 17.9 mg of eupalinolide A and 19.3 mg of eupalinolide B were obtained in a one-step HSCCC separation, with purities of 91.8%, 97.9% and 97.1%, respectively, as determined by HPLC. Their structures were further identified by ESI-MS and ¹H-NMR.

  5. Transition to turbulence in stratified shear flow: experiments in an inclined square duct

    NASA Astrophysics Data System (ADS)

    Meyer, Colin; Linden, Paul

    2013-11-01

    We describe laboratory experiments of countercurrent stratified shear flow in an inclined square duct. To achieve this, a long water tank was partitioned into regions of higher and lower density saltwater that are connected by an inclined square duct. The flow regime was characterized to be turbulent, intermittent, Holmboe or laminar as a function of the duct inclination, θ, and the density difference, Δρ , between the two reservoirs. The density difference and duct angle were systematically varied and a phase plane of flow regime was developed. The transition between the interrmittent regime and turbulence was experimentally determined to occur at θΔρ ~= 20 [degrees kg m-3]. This critical combination of parameters fits into the buoyancy-compensated Reynolds number scaling proposed by Brethouwer et al. (J. Fluid Mech., 2007). The turbulent interfacial thickness was found to be a function of the inclination angle, which can be predicted using the buoyancy lengthscale from Waite and Bartello (J. Fluid Mech., 2004) and others. Furthermore, we measured the density profiles at multiple points along the duct, and using these profiles, we modeled the entrainment at the interface. Support provided by the Winston Churchill Foundation of the United States.

  6. [Preparative isolation and purification of the active components from Viticis Fructus by high-speed counter-current chromatography].

    PubMed

    Guan, Renjun; Wang, Daijie; Yu, Zongyuan; Wang, Xiao; Lan, Tianfeng

    2010-11-01

    Vitex trifolia L. var. simplicifolia Cham. is widely distributed in Asia, and its fruits are used as a folk medicine for headaches, colds, migraine, eyepain, etc. In order to effectively separate high-purity active components from the seeds of Vitex trifolia L. var. simplicifolia Cham., a high-speed counter-current chromatography (HSCCC) procedure was performed to separate four components from the crude extract of the fruits. A two-phase solvent system composed of light petroleum-ethyl acetate-methanol-water (3:6: 3.6: 3, v/v/v/ v) was used. Within 230 min, 23 mg of 4-hydroxybenzoic acid, 15 mg of 3,6,7-trimethylquercetagetin, 24 mg of casticin and 5 mg of artemetin were obtained from 250 mg of the crude extract of Viticis Fructus in one-step elution under the conditions of a flow rate of 1.5 mL/min, 800 r/min and the detection wavelength of 254 nm. The purities of the four fractions were 93.1%, 97.3%, 98.7% and 98.5%, respectively. The obtained fractions were analyzed by high performance liquid chromatography (HPLC), and identified by electrospray ionization mass spectrometry (ESI-MS), 1H-nuclear magnetic resonance (NMR) and 13C-NMR. The results indicate that HSCCC is a powerful technique for the purification of active components from Viticis Fructus.

  7. Compact type-I coil planet centrifuge for counter-current chromatography

    PubMed Central

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979

  8. Compact type-I coil planet centrifuge for counter-current chromatography.

    PubMed

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2010-02-19

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.

  9. Preparative isolation and purification of senkyunolide-I, senkyunolide-H and ferulic acid from Rhizoma Chuanxiong using counter-current chromatography.

    PubMed

    Wei, Yun; Hu, Jia; Li, Hao; Liu, Jiangang

    2011-12-01

    Three active compounds, senkyunolide-I, senkyunolide-H and ferulic acid (FA), were successfully isolated and purified from the extracts of Rhizoma Chuanxiong by counter-current chromatography (CCC). Based on the principle of the partition coefficient values (k) for target compounds and the separation factor (α) between target compounds, the two-phase solvent system that contains n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 3:7:4:6 v/v was selected for the CCC separation, and the lower phase was employed as the mobile phase in the head-to-tail elution mode. In a single run, 400 mg of the crude extract yielded pure senkyunolide-I (6.4 mg), senkyunolide-H (1.7 mg) and FA (4.4 mg) with the purities of 98, 93 and 99%, respectively. The CCC fractions were analyzed by high-performance liquid chromatography, and the structures of the three active compounds were identified by MS and (1)H NMR. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Isolation and purification of arctigenin from Fructus Arctii by enzymatic hydrolysis combined with high-speed counter-current chromatography.

    PubMed

    Liu, Feng; Xi, Xingjun; Wang, Mei; Fan, Li; Geng, Yanling; Wang, Xiao

    2014-02-01

    Enzymatic hydrolysis pretreatment combined with high-speed counter-current chromatography for the transformation and isolation of arctigenin from Fructus Arctii was successfully developed. In the first step, the extract solution of Fructus Arctii was enzymatic hydrolyzed by β-glucosidase. The optimal hydrolysis conditions were 40°C, pH 5.0, 24 h of hydrolysis time, and 1.25 mg/mL β-glucosidase concentration. Under these conditions, the content of arctigenin was transformed from 2.60 to 12.59 mg/g. In the second step, arctigenin in the hydrolysis products was separated and purified by high-speed counter-current chromatography with a two-phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (10:25:15:20, v/v), and the fraction was analyzed by HPLC, ESI-MS, and (1)H NMR spectroscopy. Finally, 102 mg of arctigenin with a purity of 98.9% was obtained in a one-step separation from 200 mg of hydrolyzed sample. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent chromatography.

    PubMed

    Wang, Kunbo; Liu, Zhonghua; Huang, Jian-an; Dong, Xinrong; Song, Lubing; Pan, Yu; liu, Fang

    2008-05-15

    High-speed countercurrent chromatography (HSCCC) has been applied for the separation of theaflavins and catechins. The HSCCC run was carried out with a two-phase solvent system composed of hexane-ethyl acetate-methanol-water-acetic acid (1:5:1:5:0.25, v/v) by eluting the lower aqueous phase at 2 ml/min at 700 rpm. The results indicated that pure theaflavin, theaflavins-3-gallate, theaflavins-3'-gallate and theaflavin-3,3'-digallate could be obtained from crude theaflavins sample and black tea. The structures of the isolated compounds were positively confirmed by (1)H NMR and (13)C NMR, MS analysis, HPLC data and TLC data. Meanwhile, catechins including epigallocatechin gallate, gallocatechin gallate, epicatechin gallate and epigallocatechin were isolated from the aqueous extract of green tea by using the same solvent system. This study developed a modified method combined with enrichment theaflavins method by using HSCCC for separation of four individual theaflavins, especially for better separation of theaflavins monogallates.

  12. Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores.

    PubMed

    Unsal, Evren; Mason, Geoffrey; Morrow, Norman R; Ruth, Douglas W

    2009-04-09

    A previous paper (Unsal, E.; Mason, G.; Ruth, D. W.; Morrow, N. R. J. Colloid Interface Sci. 2007, 315, 200-209) reported experiments involving counter-current spontaneous imbibition into a model pore system consisting of a rod in an angled slot covered by a glass plate. Such an arrangement gives two tubes with different cross-sections (both size and shape) with an interconnection through the gap between the rod and the plate. In the previous experiments, the wetting phase advanced in the small tube and nonwetting phase retreated in the large tube. No bubbles were formed. In this paper, we study experimentally and theoretically the formation of bubbles at the open end of the large tube and their subsequent snap-off. Such bubbles reduce the capillary back pressure produced by the larger tube and can thus have an effect on the local rate of imbibition. In the model pore system, the rod was either in contact with the glass, forming two independent tubes, or the rod was spaced from the glass to allow cross-flow between the tubes. For small gaps, there were three distinct menisci. The one with the highest curvature was between the rod and the plate. The next most highly curved was in the smaller tube, and the least highly curved meniscus was in the large tube and this was the tube from which the bubbles developed. The pressure in the dead end of the system was recorded during imbibition. Once the bubble starts to form outside of the tube, the pressure drops rapidly and then steadies. After the bubble snaps off, the pressure rises to almost the initial value and stays essentially constant until the next bubble starts to form. After snap-off, the meniscus in the large tube appears to invade the large tube for some distance. The snap-off is the result of capillary instability; it takes place significantly inside the large tube with flow of wetting phase moving in the angular corners. As imbibition into the small tube progresses, the rate of imbibition decreases and the time taken for each bubble to form increases, slightly increasing the pressure at which snap-off occurs. The snap-off curvature is only about two-thirds of the curvature of a theoretical cylindrical meniscus within the large tube and about 40% of the curvature of the actual meniscus spanning the large tube.

  13. Performance comparison of three types of high-speed counter-current chromatographs for the separation of components of hydrophilic and hydrophobic color additives.

    PubMed

    Weisz, Adrian; Ito, Yoichiro

    2011-09-09

    The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II. Published by Elsevier B.V.

  14. Preparative isolation and purification of three stilbene glycosides from the tibetan medicinal plant Rheum tanguticum maxim. Ex Balf. by high-speed counter-current chromatography.

    PubMed

    Zhao, Xiao-Hui; Han, Fa; Li, Yu-Lin; Yue, Hui-Lan

    2013-02-01

    Stilbene glycosides are the primary constituents of Rheum tanguticum Maxim. ex Balf., to which different bioactivities has been attributed, including: anti-HIV, anti-oxidant, anti-tumour, anti-malarial, and anti-allergy activity. However, effective methods for the isolation and purification of stilbene glycosides, such as trans-rhapontin, cis-rhapontin and trans-desoxyrhaponticin, from this herb are not currently available. To develop an efficient method for the preparative isolation and purification of three stilbene glycosides from Rheum tanguticum Maxim. ex Balf. via high-speed counter-current chromatography (HSCCC). A solvent system composed of chloroform:n-butanol:methanol:water (4:1:3:2, v/v/v/v) was developed for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. The flow rate was 1.8 mL/min. The apparatus was controlled at 800 rpm and 25 °C, and the effluent was monitored at 280 nm. Chemical constituents were analysed by high-performance liquid chromatography (HPLC), and their structures were identified by ¹H- and ¹³C-NMR. Under the optimised conditions, 25.5 mg trans-rhapontin, 16.0 mg cis-rhapontin and 20.5 mg trans-desoxyrhaponticin were separated from 80 mg crude sample; the isolates had purities of 99.6, 97.2 and 99.2%, respectively. A simple and efficient HSCCC method has been optimised for the preparative separation of stilbene glycosides from Rheum tanguticum Maxim. ex Balf. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Preparative isolation and purification of harpagoside and angroside C from the root of Scrophularia ningpoensis Hemsley by high-speed counter-current chromatography.

    PubMed

    Tian, Jinfeng; Ye, Xiaoli; Shang, Yuanhong; Deng, Yafei; He, Kai; Li, Xuegang

    2012-10-01

    In this study, the bioactive component harpagoside and angroside C in the root of Scrophularia ningpoensis Hemsley was simultaneously separated by high-speed counter-current chromatography (HSCCC). A two-phase solvent system containing chloroform/n-butanol/methanol/water (4:1:3:2, v/v/v/v) was selected following consideration of the partition coefficient of the target compound. The crude extract (200 mg) was loaded onto a 280-mL HSCCC column and yielded 22 mg harpagoside and 31 mg angroside C with the purity of higher than 98 and 98.5%, respectively. It is feasible to isolate active compounds harpagoside and angroside C from S. ningpoensis using HSCCC. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Separation and purification of astaxanthin from Phaffia rhodozyma by preparative high-speed counter-current chromatography.

    PubMed

    Du, Xiping; Dong, Congcong; Wang, Kai; Jiang, Zedong; Chen, Yanhong; Yang, Yuanfan; Chen, Feng; Ni, Hui

    2016-09-01

    An effective high-speed counter-current chromatography (HSCCC) method was established for the preparative isolation and purification of astaxanthin from Phaffia rhodozyma. With a two-phase solvent system composed of n-hexane-acetone-ethanol-water (1:1:1:1, v/v/v/v), 100mg crude extract of P. rhodozyma was separated to yield 20.6mg of astaxanthin at 92.0% purity. By further one step silica gel column chromatography, the purity reached 99.0%. The chemical structure of astaxanthin was confirmed by thin layer chromatography (TLC), UV spectroscopy scanning, high performance liquid chromatography with a ZORBAX SB-C18 column and a Waters Nova-pak C18 column, and ESI/MS/MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Combination of Sonodynamic and Photodynamic Therapy against Cancer Would Be Effective through Using a Regulated Size of Nanoparticles

    PubMed Central

    Miyoshi, N.; Kundu, S. K.; Tuziuti, T.; Yasui, K.; Shimada, I.; Ito, Y.

    2016-01-01

    Nanoparticles have been used for many functional materials in nano-sciences and photo-catalyzing surface chemistry. The titanium oxide nanoparticles will be useful for the treatment of tumor by laser and/or ultrasound as the sensitizers in nano-medicine. We have studied the combination therapy of photo- and sono-dynamic therapies in an animal tumor model. Oral-administration of two sensitizers titanium oxide, 0.2%-TiO2 nanoparticles for sono-dynamic and 1 mM 5-aminolevulinic acid for photodynamic therapies have resulted in the best combination therapeutic effects for the cancer treatment. Our light microscopic and Raman spectroscopic studies revealed that the titanium nanoparticles were distributed inside the blood vessel of the cancer tissue (1–3 μm sizes). Among these nanoparticles with a broad size distribution, only particular-sized particles could penetrate through the blood vessel of the cancer tissue, while other particles may only exhibit the side effects in the model mouse. Therefore, it may be necessary to separate the optimum size particles. For this purpose we have separated TiO2 nanoparticles by countercurrent chromatography with a flat coiled column (1.6 mm ID) immersed in an ultrasonic bath (42 KHz). Separation was performed with a two-phase solvent system composed of 1-butanol-acetic acid-water at a volume ratio of 4:1:5 at a flow rate of 0.1 ml/min. Countercurrent chromatographic separation yielded fractions containing particle aggregates at 31 and 4400 nm in diameter. PMID:27088115

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltzfus-Dueck, T.; Scott, B.

    An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less

  19. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    PubMed Central

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  20. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    PubMed

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Isolation and purification of two antioxidant isomers of resveratrol dimer from the wine grape by counter-current chromatography.

    PubMed

    Kong, Qingjun; Ren, Xueyan; Hu, Ruilin; Yin, Xuefeng; Jiang, Guoshan; Pan, Yuanjiang

    2016-06-01

    Resveratrol dimers belong to a group of compounds called stilbenes, which along with proanthocyanidins, anthocyanins, catechins, and flavonols are natural phenolic compounds found in grapes and red wine. Stilbenes have a variety of structural isomers, all of which exhibit various biological properties. Counter-current chromatography with a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water (2:5:4:5, v/v/v/v) was applied to isolate and purify stilbene from the stems of wine grape. Two isomers of resveratrol dimers trans-ε-viniferin and trans-δ-viniferin were obtained from the crude sample in a one-step separation, with purities of 93.2 and 97.5%, respectively, as determined by high-performance liquid chromatography. The structures of these two compounds were identified by (1) H and (13) C NMR spectroscopy. In addition, their antioxidant activities were assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The antioxidant activities of trans-δ-viniferin were higher than that of trans-ε-viniferin in this model. This work demonstrated that counter-current chromatography is a powerful and effective method for the isolation and purification of polyphenols from wine grape. Additionally, the DPPH radical assay showed that the isolated component trans-δ-viniferin exhibited stronger antioxidant activities than trans-ε-viniferin and a little bit weaker than vitamin E at the same concentration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Two-zone countercurrent smelter system and process

    DOEpatents

    Cox, J.H.; Fruehan, R.J.; Elliott, J.F.

    1995-01-03

    A process for continuously smelting iron ore by use of coal to yield molten iron or semi-steel is disclosed. The process comprises the steps of establishing a melt covered by slag; inducing the slag and the molten iron to flow countercurrently to one another, toward opposite ends of the smelter; maintaining iron oxide-reducing conditions in that zone of the smelter towards which the slag flows; maintaining carbon-oxidizing conditions in that zone of the smelter towards which the molten iron flows; continuously or semicontinuously tapping the slag from the reducing zone end of the smelter; continuously or semicontinuously tapping the molten iron from the oxidizing zone end of the smelter; and adding to both zones iron ore, coal, oxygen, and flux at addition rates sufficient to keep the molten iron in the reducing zone substantially saturated with carbon, maintain in the slag being tapped an FeO content of about 5 weight percent or less, and maintain in the molten iron being tapped a carbon content of about 0.5 to 5 weight percent. A slag dam preferably is included in the smelter, to impede the backflow of the slag from the reducing zone to the oxidizing zone. A metal bath dam with one or more flow-through portals also is preferably used, submerged below the slag dam, to impede the backflow of the hot metal. 8 figures.

  3. Two-zone countercurrent smelter system and process

    DOEpatents

    Cox, James H.; Fruehan, Richard J.; Elliott, deceased, John F.

    1995-01-01

    A process for continuously smelting iron ore by use of coal to yield molten iron or semi-steel is disclosed. The process comprises the steps of establishing a melt covered by slag; inducing the slag and the molten iron to flow countercurrently to one another, toward opposite ends of the smelter; maintaining iron oxide-reducing conditions in that zone of the smelter towards which the slag flows; maintaining carbon-oxidizing conditions in that zone of the smelter towards which the molten iron flows; continuously or semicontinuously tapping the slag from the reducing zone end of the smelter; continuously or semicontinuously tapping the molten iron from the oxidizing zone end of the smelter; and adding to both zones iron ore, coal, oxygen, and flux at addition rates sufficient to keep the molten iron in the reducing zone substantially saturated with carbon, maintain in the slag being tapped an FeO content of about 5 weight percent or less, and maintain in the molten iron being tapped a carbon content of about 0.5 to 5 weight percent. A slag dam preferably is included in the smelter, to impede the backflow of the slag from the reducing zone to the oxidizing zone. A metal bath dam with one or more flow-through portals also is preferably used, submerged below the slag dam, to impede the backflow of the hot metal.

  4. Separation of chlorogenic acid and concentration of trace caffeic acid from natural products by pH-zone-refining countercurrent chromatography.

    PubMed

    Lu, Yuanyuan; Dong, Genlai; Gu, Yanxiang; Ito, Yoichiro; Wei, Yun

    2013-07-01

    Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH-zone-refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4 OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH-zone-refining CCC, a slightly polar two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/n-butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4 OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH-zone-refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Efficient Strategy Based on Liquid-Liquid Extraction with Three-Phase Solvent System and High Speed Counter-Current Chromatography for Rapid Enrichment and Separation of Epimers of Minor Bufadienolide from Toad Meat.

    PubMed

    Zou, Denglang; Zhu, Xuelin; Zhang, Fan; Du, Yurong; Ma, Jianbin; Jiang, Renwang

    2018-01-31

    This study presents an efficient strategy based on liquid-liquid extraction with three-phase solvent system and high speed counter-current chromatography for rapid enrichment and separation of epimers of minor bufadienolide from toad meat. The reflux extraction conditions were optimized by response surface methodology first, and a novel three-phase solvent system composed of n-hexane/methyl acetate/acetonitrile/water (3:6:5:5, v/v) was developed for liquid-liquid extraction of the crude extract. This integrative extraction process could enrich minor bufadienolide from complex matrix efficiently and minimize the loss of minor targets induced by repeated extraction with different kinds of organic solvents occurring in the classical liquid two-phase extraction. As a result, four epimers of minor bufadienolide were greatly enriched in the middle phase and total content of these epimers of minor bufadienolide was increased from 3.25% to 46.23%. Then, the enriched four epimers were separated by HSCCC with a two-phase solvent system composed of chloroform/methanol/water (4:2:2, v/v) successfully. Furthermore, we tested Na + ,K + -ATPase (NKA) inhibitory effect of the four epimers. 3β-Isomers of bufadienolide showed stronger (>8-fold) inhibitory activity than 3α-isomers. The characterization of minor bufadienolide in toad meat and their significant difference of inhibitory effect on NKA would promote the further quantitative analysis and safety evaluation of toad meat as a food source.

  6. Liquid cooled counter flow turbine bucket

    DOEpatents

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  7. Separation and characterisation of five polar herbicides using countercurrent chromatography with detection by negative ion electrospray ionisation mass spectrometry.

    PubMed

    Kidwell, H; Jones, J J; Games, D E

    2001-01-01

    Five polar herbicides were separated and characterised using high-speed analytical countercurrent chromatography (HSACCC) in conjunction with online electrospray mass spectrometry (ESI-MS). The countercurrent chromatography used a standard isocratic biphasic solvent system of hexane/ethyl acetate/methanol/water in reverse phase to effect the separation of these five environmentally important compounds. The chromatograph was coupled to a triple quadrupole mass spectrometer via a standard electrospray liquid chromatography interface that was able to give mass spectra in negative ion mode of each compound. Limits of detection are reported for this series of compounds along with representative negative ion ESI-MS data and calibrations for the separation. Copyright 2001 John Wiley & Sons, Ltd.

  8. Preparative isolation of alkaloids from Dactylicapnos scandens using pH-zone-refining counter-current chromatography by changing the length of the separation column.

    PubMed

    Wang, Xiao; Dong, Hongjing; Yang, Bin; Liu, Dahui; Duan, Wenjuan; Huang, Luqi

    2011-12-01

    pH-Zone-refining counter-current chromatography was successfully applied for the preparative separation of alkaloids from Dactylicapnos scandens. The two-phase solvent system was composed of petroleum ether-ethyl acetate-methanol-water (3:7:1:9, v/v), where 20 mM of triethylamine (TEA) was added to the upper phase as a retainer and 5 mM of hydrochloric acid (HCl) to the aqueous phase as an eluter. In this experiment, the apparatus with an adjustable length of the separation column was used for the separation of alkaloids from D. scandens and the resolution of the compounds can be remarkably improved by increasing the length of the separation column. As a result, 70 mg protopin, 30 mg (+) corydine, 120 mg (+) isocorydine and 40 mg (+) glaucine were obtained from 1.0 g of the crude extracts and each with 99.2%, 96.5%, 99.3%, 99.5% purity as determined by HPLC. The chemical structures of these compounds were confirmed by positive ESI-MS and (1)H NMR. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Momentum flux parasitic to free-energy transfer

    DOE PAGES

    Stoltzfus-Dueck, T.; Scott, B.

    2017-05-11

    An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less

  10. A general ionic liquid pH-zone-refining countercurrent chromatography method for separation of alkaloids from Nelumbo nucifera Gaertn.

    PubMed

    Fang, Yingtong; Li, Quan; Shao, Qian; Wang, Binghai; Wei, Yun

    2017-07-21

    The alkaloids from lotus (Nelumbo nucifera Gaertn) are effective in lowering hyperlipemia and level of cholesterol. However, there is not a general method for their separation. In this work, a general ionic liquid pH-zone-refining countercurrent chromatography method for isolation and purification of six alkaloids from the whole lotus plant was successfully established by using ionic liquids as the modifier of the two-phase solvent system. The conditions of ionic liquid pH-zone-refining countercurrent chromatography, involving solvent systems, concentration of retainer and eluter, types of ionic liquids, the content of ionic liquids as well as ionic liquids posttreatment, were optimized to improve extraction efficiency. Finally, the separation of these six alkaloids was performed with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water-[C 4 mim][PF 6 ] at a volume ratio of 5:2:2:8:0.1, where 10mM TEA was added to the organic stationary phase as a retainer and 3mM HCl was added to the aqueous mobile phase as an eluter. As a result, six alkaloids including N-nornuciferine, liensinine, nuciferine, isoliensinine, roemerine and neferine were successfully separated with the purities of 97.0%, 90.2%, 94.7%, 92.8%, 90.4% and 95.9%, respectively. The established general method has been respectively applied to the crude samples of lotus leaves and lotus plumules. A total of 37.3mg of liensinine, 57.7mg of isoliensinine and 179.9mg of neferine were successfully purified in one run from 1.00g crude extract of lotus plumule with the purities of 93.2%, 96.5% and 98.8%, respectively. Amount of 45.6mg N-nornuciferine, 21.6mg nuciferine and 11.7mg roemerine was obtained in one step separation from 1.05g crude extract of lotus leaves with the purity of 96.9%, 95.6% and 91.33%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Application and comparison of high performance liquid chromatography and high speed counter-current chromatography in enantioseparation of (±)-2-phenylpropionic acid.

    PubMed

    Tong, Shengqiang; Zheng, Ye; Yan, Jizhong

    2013-03-15

    High performance liquid chromatography (HPLC) and high speed counter-current chromatography (HSCCC) were applied and compared in enantioseparation of 2-phenylpropionic acid (2-PPA) when hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as chiral mobile phase additive. For HPLC, the enantioseparation was achieved on ODS C(18) reverse phase column and the mobile phase was 25 mmol L(-1) HP-β-CD aqueous buffer solution (pH 4.0, adjusted with triethylamine): methanol: glacial acetic acid (85:15:0.5 (v/v/v)). For HSCCC, the two-phase solvent system was composed of n-hexane-ethyl acetate-0.1 mol L(-1) phosphate buffer solution pH2.67 (5:5:10 for isocratic elution and 8:2:10 for recycling elution (v/v/v)) added with 0.1 mol L(-1) HP-β-CD. The key parameters, such as a substitution degree of HP-β-CD, the concentration of HP-β-CD, pH value of the aqueous phase and the temperature were optimized for both separation methods. Using the optimum conditions a complete HSCCC enantioseparation of 40 mg of 2-propylpropionic acid in a recycling elution mode gave 15-18 mg of (+)-2-PPA and (-)-2-PPA enantiomers with 95-98% purity and 85-93% recovery. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.

    PubMed

    Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun

    2018-05-01

    The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mass transfer in thin films under counter-current gas: experiments and numerical study

    NASA Astrophysics Data System (ADS)

    Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant

    2016-11-01

    Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.

  14. Countercurrent flow afterburner

    DOEpatents

    Leggett, Ronald L.; Presse, Donald E.; Smith, Carl J.; Teter, Alton R.

    1976-01-01

    Afterburner apparatus for receiving from an incinerator products of combustion and distributing them through a domed distributor in counterflow manner throughout a housing, in opposition to a stream of combustible gas.

  15. Preparative enantioseparation of propafenone by counter-current chromatography using di-n-butyl L-tartrate combined with boric acid as the chiral selector.

    PubMed

    Tong, Shengqiang; Shen, Mangmang; Zheng, Ye; Chu, Chu; Li, Xing-Nuo; Yan, Jizhong

    2013-09-01

    This paper extends the research of the utilization of borate coordination complexes in chiral separation by counter-current chromatography (CCC). Racemic propafenone was successfully enantioseparated by CCC with di-n-butyl l-tartrate combined with boric acid as the chiral selector. The two-phase solvent system was composed of chloroform/ 0.05 mol/L acetate buffer pH 3.4 containing 0.10 mol/L boric acid (1:1, v/v), in which 0.10 mol/L di-n-butyl l-tartrate was added in the organic phase. The influence of factors in the enantioseparation of propafenone were investigated and optimized. A total of 92 mg of racemic propafenone was completely enantioseparated using high-speed CCC in a single run, yielding 40-42 mg of (R)- and (S)-propafenone enantiomers with an HPLC purity over 90-95%. The recovery for propafenone enantiomers from fractions of CCC was in the range of 85-90%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparative isolation and purification of macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    He, Shan; Wang, Hongqiang; Yan, Xiaojun; Zhu, Peng; Chen, Juanjuan; Yang, Rui

    2013-01-11

    Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of two macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens for the first time using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:4:1:4, v/v) and (3:4:3:4, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding macrolactin B (22.7 mg) and macrolactin A (40.4 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, (1)H NMR and (13)C NMR. Our results demonstrated that HSCCC was an efficient technique to separate marine antibiotics, which provide an approach to solve the problem of their sample availability for drug development. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. New solvent systems for gradient counter-current chromatography in separation of betanin and its derivatives from processed Beta vulgaris L. juice.

    PubMed

    Spórna-Kucab, Aneta; Garrard, Ian; Ignatova, Svetlana; Wybraniec, Sławomir

    2015-02-06

    Betalains, natural plant pigments, are beneficial compounds due to their antioxidant and possible chemoprotective properties. A mixture of betalains: betanin/isobetanin, decarboxybetanins and neobetanin from processed red beet roots (Beta vulgaris L.) juice was separated in food-grade, gradient solvent systems using high-performance counter-current chromatography (HPCCC). The decarboxylated and dehydrogenated betanins were obtained by thermal degradation of betanin/isobetanin from processed B. vulgaris L. juice under mild conditions. Two solvent systems (differing in their composition by phosphoric acid and ethanol volume gradient) consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-1000:1300:700:2.5-10) in the 'tail-to-head' mode were run. The flow rate of the mobile phase (organic phase) was 1.0 or 2.0 ml/min and the column rotation speed was 1,600 rpm (20°C). The retention of the solvent system stationary phase (aqueous phase) was ca. 80%. The system with the acid and ethanol volume gradient consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-240:1300:700:2.5-4.5) pumped at 2.0 ml/min was the most effective for a separation of betanin/isobetanin, 17-decarboxy-betanin/-isobetanin, 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin pairs as well as neobetanin. The pigments were detected by LC-DAD and LC-MS. The results are crucial in the application of completely food-grade solvent systems in separation of food-grade compounds as well, and the systems can possibly be extended to other ionizable and polar compounds with potential health benefits. In particular, the method is applicable for the isolation and purification of betalains present in such rich sources as B. vulgaris L. roots as well as cacti fruits and Amaranthaceae flowering plants due to modification possibilities of the solvent systems polarity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Semi-Preparative Isolation and Purification of Three Tauro-Conjugated Cholic Acids from Pulvis Fellis Suis by HSCCC Coupled with ELSD Detection.

    PubMed

    He, Jiao; Zhang, Yongmin; Ito, Yoichiro; Sun, Wenji

    2011-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was applied to the separation and purification of three tauro-conjugated cholic acids of taurochenodeoxycholic acid (TCDCA), taurohyodeoxycholic acid (THDCA) and taurohyocholic acid (THCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The two-phase solvent system composed of chloroform-methanol-water-acetic acid (4:4:2:0.3, v/v/v/v) was selected for the one-step separation where the lower phase was used as the mobile phase in the head to tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 1.5 ml/min and 25°C respectively. From 100 mg of the crude extract, 10.2 mg of TCDCA, 11.8 mg of THDCA and 5.3 mg of THCA were obtained with the purity of 94.6%, 96.5% and 95.4%, respectively. in one step separation The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three tauro-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.

  19. Controlling the column spacing in isothermal magnetic advection to enable tunable heat and mass transfer.

    DOE PAGES

    Solis, Kyle Jameson; Martin, James E.

    2012-11-01

    Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less

  20. Enhancement of Condensation Heat Transfer by Counter-Corrent Wavy Flow in a Vertical Tube

    NASA Astrophysics Data System (ADS)

    Teranishi, Tsunenobu; Ozawa, Takanori; Takimoto, Akira

    As a basic research for the development of a high-performance and environment-friendly thermal energy recovery system, detailed experiments have been conducted to investigate the mechanism of the enhancement of condensation heat transfer by the counter-current moist air flow in a vertical tube. From the results of visual observation of the phenomena by using a high-speed video recorder and the measurement of condensate rate respectively from an upper and a bottom end of a cooled tube, in which various humidity vapor of air and water flowed upward or downward, the dynamic behavior of liquid film condensed on cooled surface and moist air flow was classified into four distinctive patterns in quality and quantity. Further, the effect of the scale and the operating condition such as the diameter and the length of tube, the vapor concentration and the moist air temperature, on the condensation rate of counter-current wavy flow was clarified in relation to the pattern and condition of occurrence of the wavy flow of liquid film and flooding due to the shear forces between the interface of liquid and moist air flow.

  1. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    PubMed

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs

    PubMed Central

    Lahondère, Chloé; Insausti, Teresita C; Belev, George; Pereira, Marcos H

    2017-01-01

    Blood-sucking insects experience thermal stress at each feeding event on endothermic vertebrates. We used thermography to examine how kissing-bugs Rhodnius prolixus actively protect themselves from overheating. During feeding, these bugs sequester and dissipate the excess heat in their heads while maintaining an abdominal temperature close to ambient. We employed a functional-morphological approach, combining histology, µCT and X-ray-synchrotron imaging to shed light on the way these insects manage the flow of heat across their bodies. The close alignment of the circulatory and ingestion systems, as well as other morphological characteristics, support the existence of a countercurrent heat exchanger in the head of R. prolixus, which decreases the temperature of the ingested blood before it reaches the abdomen. This kind of system has never been described before in the head of an insect. For the first time, we show that countercurrent heat exchange is associated to thermoregulation during blood-feeding. PMID:29157359

  3. Preparative isolation and purification of anti-tumor agent ansamitocin P-3 from fermentation broth of Actinosynnema pretiosum using high-performance counter-current chromatography.

    PubMed

    Yao, Yuqin; Cheng, Zhihui; Ye, Haoyu; Xie, Yongmei; He, Jing; Tang, Minghai; Shen, Tao; Wang, Jiangman; Zhou, Yan; Lu, Zejun; Luo, Feng; Chen, Lijuan; Yu, Luoting; Yang, Jin-Liang; Peng, Aihua; Wei, Yuquan

    2010-05-01

    Ansamitocin P-3 is a potent anti-tumor maytansinoid found in Actinosynnema pretiosum. However, due to the complexity of the fermentation broth of Actinomycete, how to effectively separate ansamitocin P-3 is still a challenge. In this study, both analytical and preparative high-performance counter-current chromatography were successfully used to separate and purify ansamitocin P-3 from fermentation broth. A total of 28.8 mg ansamitocin P-3 with purity of 98.4% was separated from 160 mg crude sample of fermentation broth in less than 80 min with the two-phase solvent system of hexane-ethyl acetate-methanol-water (0.6:1:0.6:1, v/v/v/v). The purity and structural identification were determined by HPLC, (1)H NMR, (13)C NMR and mass spectroscopy.

  4. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY.

    PubMed

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2014-04-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside ( I , 20.2 mg),, syringin ( II , 56.8 mg), sinapaldehyde glucoside ( III , 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside ( IV , 20.4 mg), and pedunculoside ( V , 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1 H and 13 C NMR studies. Glycoside I was isolated from this plant for the first time.

  5. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY

    PubMed Central

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside (I, 20.2 mg),, syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside (IV, 20.4 mg), and pedunculoside (V, 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1H and 13C NMR studies. Glycoside I was isolated from this plant for the first time. PMID:25132792

  6. Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system.

    PubMed

    Song, Guanglei; Du, Qizhen

    2010-09-17

    Polysaccharides from a crude extract of Auricularia polytricha were separated by high-speed countercurrent chromatography (HSCCC). The separation was performed with an aqueous two-phase system of PEG1000-K2HPO4-KH2PO4-H2O (0.5:1.25:1.25:7.0, w/w). The crude sample (2.0 g) was successfully separated into three polysaccharide components of AAPS-1 (192 mg), AAPS-2 (137 mg), and AAPS-3 (98 mg) with molecular weights of 162, 259, and 483 kDa, respectively. These compounds were tested for growth inhibition of transplanted S180 sarcoma in mice. AAPS-2 had an inhibition rate of 40.4%. The structure of AAPS-2 was elucidated from partial hydrolysis, periodate oxidation, acetylation, methylation analysis, and NMR spectroscopy (1H, 13C). These results showed AAPS-2 is a polysaccharide with a backbone of (1-->3)-linked-beta-d-glucopyranosyl and (1-->3, 6)-linked-beta-D-glucopyranosyl residues in a 2:1 ratio, and has one terminal (1-->)-beta-D-glucopyranosyl at the O-6 position of (1-->3, 6)-linked-beta-D-glucopyranosyl of the main chain. 2010 Elsevier B.V. All rights reserved.

  7. Purification of optical imaging ligand-Cybesin by high-speed counter-current chromatography

    PubMed Central

    Ma, Zhiyong; Ma, Ying; Sun, Xilin; Ye, Yunpeng; Shen, Baozhong; Chen, Xiaoyuan; Ito, Yoichiro

    2010-01-01

    Fluorescent Cybesin (Cypate-Bombesin Peptide Analogue Conjugate) was synthesized from Indocyanine Green (ICG) and the bombesin receptor ligand as a contrast agent for detecting pancreas tumors. However, the LC–MS analysis indicated that the target compound was only a minor component in the reaction mixture. Since preparative HPLC can hardly separate such a small amount of the target compound directly from the original crude reaction mixture without a considerable adsorptive loss onto the solid support, high-speed counter-current chromatography (HSCCC) was used for purification since the method uses no solid support and promises high sample recovery. A suitable two-phase solvent system composed of hexane/ethyl acetate/methanol/methyl t.-butyl ether/acetonitrile/water) at a volume ratio of 1:1:1:4:4:7 was selected based on the partition coefficient of Cybesin (K ≈ 0.9) determined by LC–MS. The separation was performed in two steps using the same solvent system with lower aqueous mobile phase. From 400 mg of the crude reaction mixture the first separation yielded 7.7 mg of fractions containing the target compound at 12.8% purity, and in the second run 1 mg of Cybesin was obtained at purity of 94.0% with a sample recovery rate of over 95% based on the LC–MS Analysis. PMID:20933483

  8. Solvent systems with n-hexane and/or cyclohexane in countercurrent chromatography--Physico-chemical parameters and their impact on the separation of alkyl hydroxybenzoates.

    PubMed

    Englert, Michael; Vetter, Walter

    2014-05-16

    Countercurrent chromatography (CCC) is an efficient preparative separation technique based on the liquid-liquid distribution of compounds between two phases of a biphasic liquid system. The crucial parameter for the successful application is the selection of the solvent system. Especially for nonpolar analytes the selection options are limited. On the search for a suitable solvent system for the separation of an alkyl hydroxybenzoate homologous series, we noted that the substitution of cyclohexane with n-hexane was accompanied with unexpected differences in partitioning coefficients of the individual analytes. In this study, we investigated the influence of the subsequent substitution of n-hexane with cyclohexane in the n-hexane/cyclohexane/tert-butylmethylether/methanol/water solvent system family. Exact phase compositions and polarity, viscosity and density differences were determined to characterize the different mixtures containing n-hexane and/or cyclohexane. Findings were confirmed by performing CCC separations with different mixtures, which led to baseline resolution for positional isomers when increasing the amount of cyclohexane while the resolution between two pairs of structural isomers decreased. With the new methodology described, structurally similar compounds could be resolved by choosing a certain ratio of n-hexane to cyclohexane. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    EPA Science Inventory

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  10. Application of off-line two-dimensional high-performance countercurrent chromatography on the chloroform-soluble extract of Cuscuta auralis seeds.

    PubMed

    Rho, Taewoong; Yoon, Kee Dong

    2018-05-01

    In this study, the chloroform-soluble extract of Cuscuta auralis was separated successfully using off-line two-dimensional high-performance countercurrent chromatography, yielding a γ-pyrone, two alkaloids, a flavonoid, and four lignans. The first-dimensional countercurrent separation using a methylene chloride/methanol/water (11:6:5, v/v/v) system yielded three subfractions (fractions I-III). The second-dimensional countercurrent separations, conducted on fractions I-III using n-hexane/ethyl acetate/methanol/water/acetic acid (5:5:5:5:0, 3:7:3:7:0, and 1:9:1:9:0.01, v/v/v/v/v) systems, gave maltol (1), (-)-(13S)-cuscutamine (2), (+)-(13R)-cuscutamine (3), (+)-pinoresinol (4), (+)-epipinoresinol (5), kaempferol (6), piperitol (7), and (9R)-hydroxy-d-sesamin (8). To the best of our knowledge, maltol was identified for the first time in Cuscuta species. Furthermore, this report details the first full assignment of spectroscopic data of two cuscutamine epimers, (-)-(13S)-cuscutamine and (+)-(13R)-cuscutamine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Wire-packed heat exchangers for dilution refrigerators.

    PubMed

    Polturak, E; Rappaport, M; Rosenbaum, R

    1978-03-01

    Very simple wire-packed step heat exchangers for dilution refrigerators are described. No sintering is used in fabrication. Flow impedances and thermal resistance between the liquid and the copper wires are low. A refrigerator with five wire-packed heat exchangers in addition to a countercurrent heat exchanger attains a temperature of 11.4 mK with a single mixing chamber and 6.1 mK with two mixing chambers. High cooling power is achieved at modest (3)He circulation rates.

  12. Investigation of different ethylenediamine-N,N'-disuccinic acid-enhanced washing configurations for remediation of a Cu-contaminated soil: process kinetics and efficiency comparison between single-stage and multi-stage configurations.

    PubMed

    Ferraro, Alberto; Fabbricino, Massimiliano; van Hullebusch, Eric D; Esposito, Giovanni

    2017-09-01

    A comparison of Cu extraction yields for three different ethylenediamine-N,N'-disuccinic acid (EDDS)-enhanced washing configurations was performed on a Cu-contaminated soil. Batch experiments were used to simulate a single-stage continuous stirred tank reactor (CSTR) and a multi-stage (side feeding and counter-current) reactor. Single-stage CSTR conditions were simulated for various EDDS:(Cu + Cd + Pb + Co + Ni + Zn) molar ratio (EDDS:M ratio) (from 1 to 30) and liquid to soil (L/S) ratio (from 15 to 45). The highest Cu extraction yield (≃56%) was achieved with EDDS:M = 30. In contrast, a Cu extraction yield decrease was observed with increasing L/S ratio with highest extracted Cu achievement (≃48%) for L/S = 15. Side feeding configuration was tested in four experimental conditions through different fractionation mode of EDDS dose and treatment time at each washing step. Results from the four tests showed all enhanced Cu extraction (maximum values from ≃43 to ≃51%) achieved at lower treatment time and lower EDDS:M molar ratio compared to CSTR configuration with L/S = 25 and EDDS:M = 10. The counter-current washing was carried out through two washing flows achieving a process performance enhancement with 27% increase of extracted Cu compared to single-stage CSTR configuration. Higher Cu extraction percentage (36.8%) was observed in the first washing phase than in the second one (24.7%).

  13. Circulating moving bed system for CO.sub.2 separation, and method of same

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James

    2016-12-27

    A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO.sub.2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO.sub.2 by concentration swing adsorption and adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.

  14. Comprehensive separation of secondary metabolites in natural products by high-speed counter-current chromatography using a three-phase solvent system.

    PubMed

    Yanagida, Akio; Yamakawa, Yutaka; Noji, Ryoko; Oda, Ako; Shindo, Heisaburo; Ito, Yoichiro; Shibusawa, Yoichi

    2007-06-01

    High-speed counter-current chromatography (HSCCC) using the three-phase solvent system n-hexane-methyl acetate-acetonitrile-water at a volume ratio of 4:4:3:4 was applied to the comprehensive separation of secondary metabolites in several natural product extracts. A wide variety of secondary metabolites in each natural product was effectively extracted with the three-phase solvent system, and the filtered extract was directly submitted to the HSCCC separation using the same three-phase system. In the HSCCC profiles of crude natural drugs listed in the Japanese Pharmacopoeia, several physiologically active compounds were clearly separated from other components in the extracts. The HSCCC profiles of several tea products, each manufactured by a different process, clearly showed their compositional difference in main compounds such as catechins, caffeine, and pigments. These HSCCC profiles also provide useful information about hydrophobic diversity of whole components present in each natural product.

  15. Circulation Plasma Centrifuge with Product Flow

    NASA Astrophysics Data System (ADS)

    Borisevich, V. D.; Potanin, E. P.

    2018-05-01

    We have analyzed the isotope separation in a high-frequency plasma circulating centrifuge operating with a product flow. The rotation of a weakly ionized plasma is ensured by a rotating magnetic field, while the countercurrent flow (circulation) is produced by a traveling magnetic field. We have calculated the dependences of the enrichment factor and the separative power of the centrifuge on a product flow. The optimal characteristics of the separation unit have been determined.

  16. Method and apparatus for the removal of bioconversion of constituents of organic liquids

    DOEpatents

    Scott, Timothy; Scott, Charles D.

    1994-01-01

    A method and apparatus for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing.

  17. Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by countercurrent chromatography combined with polymeric resins and HPLC.

    PubMed

    Cheel, José; Urajová, Petra; Hájek, Jan; Hrouzek, Pavel; Kuzma, Marek; Bouju, Elodie; Faure, Karine; Kopecký, Jiří

    2017-02-01

    Puwainaphycins are a recently described group of β-amino fatty acid cyclic lipopeptides of cyanobacterial origin that possess interesting biological activities. Therefore, the development of an efficient method for their isolation from natural sources is necessary. Following the consecutive adsorption of the crude extract on Amberlite XAD-16 and XAD-7 resins, countercurrent chromatography (CCC) was applied to separate seven puwainaphycin variants from a soil cyanobacterium (Cylindrospermum alatosporum CCALA 988). The resin-enriched extract was first fractionated by CCC into fractions I and II with use of the n-hexane-ethyl acetate-ethanol-water (1:5:1:5, v/v/v/v) system at a flow rate of 2 mL min -1 and a rotational speed of 1400 rpm. The CCC separation of fraction I, with use of the ethyl acetate-ethanol-water (5:1:5, v/v/v) system, afforded compounds 1 and 2. The CCC separation of fraction II, with use of the n-hexane-ethyl acetate-ethanol-water (1:5:1:5, v/v/v/v) system, afforded compounds 3-7. In both cases, the lower phases were used as mobile phases at a flow rate of 1 mL min -1 with a rotational speed of 1400 rpm and a temperature of 28 °C. The CCC target fractions obtained were repurified by semipreparative high-performance liquid chromatography (HPLC), leading to compounds 1-7 with purities of 95 %, 95 %, 99 %, 99 %, 95 %, 99 %, and 90 % respectively, as determined by HPLC-electrospray ionization high-resolution mass spectrometry (ESI-HRMS). The chemical identity of the isolated puwainaphycins (compounds 1-7) was confirmed by ESI-HRMS and NMR analyses. Three new puwainaphycin variants (compounds 1, 2, and 5) are reported for the first time. This study provides a new approach for the isolation of puwainaphycins from cyanobacterial biomass. Graphical Abstract Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by countercurrent chromatography combined with polymeric resins and HPLC. Compounds 1 (12-hydroxy-4-methyl-Ahtea-Puw-F), 2 (11-chloro-4-methyl-Ahdoa-Puw-F), 3 (4-methyl-Ahdoa-Puw-F), 4 (4-methyl-Ahdoa-Puw-G), 5 (12-chloro-4-methyl-Ahtea-Puw-F), 6 (4-methyl-Ahtea-Puw-F) and 7 (4-methyl-Ahtea-Puw-G). Ahtea: 3-amino-2-hydroxy tetradecanoic acid. Ahdoa: 3-amino-2-hydroxy dodecanoic acid.

  18. How-to-Do-It: Countercurrent Heat Exchange in Vertebrate Limbs.

    ERIC Educational Resources Information Center

    Franklin, George B.; Plakke, Ronald K.

    1988-01-01

    Describes principals of physics that are manifested in simple biological systems of heat conservation structures. Outlines materials needed, data collection, analysis, and discussion questions for construction and operation of two models, one that is a countercurrent heat exchange model and one that is not. (RT)

  19. Separation of catechin constituents from five tea cultivars using high-speed counter-current chromatography.

    PubMed

    Kumar, N Savitri; Rajapaksha, Maheshinie

    2005-08-12

    Catechins were extracted from five different tea (Camellia sinensis L.) cultivars. High-speed counter-current chromatography was found to be an efficient method for the separation of seven catechins from the catechin extracts. High-performance liquid chromatography was used to assess the purity of the catechins isolated. Epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and epigallocatechin (EGC) of high purity (91-99%) were isolated in high yield after a single high-speed counter-current chromatography run. The two-phase solvent mixtures used for the separation of the catechin extracts were hexane:ethyl acetate:methanol:water (1:6:1:6 for TRI 2023); (1:7:1:7 for TRI 2025 and TRI 2043); (1:5:1:5 for TRI 3079) and (1:6.5:1:6.5 for TRI 4006). Fresh tea shoots from the tea cultivar TRI 2023 (150 g) gave 440 mg of 96% pure EGCG while TRI 2025 (235 g) gave 347 mg of 99% pure EGCG and 40 mg of 97% ECG, and TRI 3079 (225 g) gave 432 mg of 97% pure EGCG and 32 mg of 96% pure ECG. Tea cultivar TRI 4006 (160 g) gave EGCG (272 mg, 96% pure) and EGC (104 mg, 90% pure). 1H and 13C NMR chemical shifts for catechin gallate (CG), EGC, ECG, EGCG and epigallocatechin 3,5-di-O-gallate (EGCDG) in CD3OD were also recorded.

  20. Separation and purification of five alkaloids from Aconitum duclouxii by counter-current chromatography.

    PubMed

    Wang, Yarong; Cai, Shining; Chen, Yang; Deng, Liang; Zhou, Xumei; Liu, Jia; Xu, Xin; Xia, Qiang; Lin, Mao; Zhang, Jili; Huang, Weili; Wang, Wenjun; Xiang, Canhui; Cui, Guozhen; Du, Lianfeng; He, Huan; Qi, Baohui

    2015-07-01

    C19 -diterpenoid alkaloids are the main components of Aconitum duclouxii Levl. The process of separation and purification of these compounds in previous studies was tedious and time consuming, requiring multiple chromatographic steps, thus resulted in low recovery and high cost. In the present work, five C19 -diterpenoid alkaloids, namely, benzoylaconine (1), N-deethylaconitine (2), aconitine (3), deoxyaconitine (4), and ducloudine A (5), were efficiently prepared from A. duclouxii Levl (Aconitum L.) by ethyl acetate extraction followed with counter-current chromatography. In the process of separation, the critical conditions of counter-current chromatography were optimized. The two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water/NH3 ·H2 O (25%) (1:1:1:1:0.1, v/v) was selected and 148.2 mg of 1, 24.1 mg of 2, 250.6 mg of 3, 73.9 mg of 4, and 31.4 mg of 5 were obtained from 1 g total Aconitum alkaloids extract, respectively, in a single run within 4 h. Their purities were found to be 98.4, 97.2, 98.2, 96.8, and 96.6%, respectively, by ultra-high performance liquid chromatography analysis. The presented separation and purification method was simple, fast, and efficient, and the obtained highly pure alkaloids are suitable for biochemical and toxicological investigation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparative separation of bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze using steam distillation extraction and one step high-speed counter-current chromatography.

    PubMed

    Wei, Yun; Du, Jilin; Lu, Yuanyuan

    2012-10-01

    In order to utilize and control the invasive weed, bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze were studied. Steam distillation extraction and one step high-speed counter-current chromatography were applied to separate and purify the caryophyllene oxide, 7,11-dimethyl-3-methylene-1,6,10-dodecatriene, and caryophyllene from essential oil of Flaveria bidentis (L.) Kuntze. The two-phase solvent system containing n-hexane/acetonitrile/ethanol (5:4:3, v/v/v) was selected for the one step separation mode according to the partition coefficient values (K) of the target compounds and the separation factor (α). The purity of each isolated fraction after a single high-speed counter-current chromatography run was determined by high performance liquid chromatography. A 3.2 mg of caryophyllene oxide at a purity of 92.6%, 10.4 mg of 7,11-dimethyl-3-methylene-1,6,10-dodecatriene at a purity of 99.1% and 5.7 mg of caryophyllene at a purity of 98.8% were obtained from 200 mg essential oil of Flaveria bidentis (L.) Kuntze. The chemical structures of these components were identified by GC-MS, (1) H-NMR, and (13) C-NMR. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Isolation and Purification of Three Ecdysteroids from the Stems of Diploclisia glaucescens by High-Speed Countercurrent Chromatography and Their Anti-Inflammatory Activities In Vitro.

    PubMed

    Fang, Lei; Li, Jialian; Zhou, Jie; Wang, Xiao; Guo, Lanping

    2017-08-07

    High-speed counter-current chromatography was used to separate and purify ecdysteroids for the first time from the stems of Diploclisia glaucescens using a two-phase solvent system composed of ethyl acetate- n -butanol-ethanol-water (3:0.2:0.8:3, v / v ). Three ecdysteroids were obtained from 260 mg of ethyl acetate extract of the residue obtained after evaporation of the crude ethanolicextractof D. glaucescens in one-step separation, which were identified as paristerone ( I , 30.5 mg), ecdysterone ( II , 7.2 mg), and capitasterone ( III , 8.1 mg) by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). Their anti-inflammatory activities were evaluated by measuring the inhibitory ratios of β-glucuronidase release in rat polymorphonuclear leukocytes (PMNs) induced by platelet-activating factor. Compounds I - III showed significant anti-inflammatory activities with IC 50 -values ranging from 1.51 to 11.68 μM, respectively.

  3. Ultrahigh pressure extraction of lignan compounds from Dysosma versipellis and purification by high-speed counter-current chromatography.

    PubMed

    Zhu, Qing; Liu, Feng; Xu, Meixia; Lin, Xiaojing; Wang, Xiao

    2012-09-15

    Ultrahigh pressure extraction (UPE) was employed to extract podophyllotoxin and 4'-demethylpodophyllotoxin from Dysosma versipellis. The effects of extraction parameters including extraction solvents, pressure, time and solid/liquid ratio were investigated using a High Hydrostatic Pressure Processor. The optimal condition for UPE of the target compounds was 80% methanol, 200 MPa of pressure, 1 min of extraction time and 1:12 (g/mL) of solid/liquid ratio. Podophyllotoxin and 4'-demethylpodophyllotoxin in the crude extract were purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water (10:10:8:12, v/v), and the fractions were analyzed by HPLC, ESI-MS and (1)H NMR. As a result, 73.7 mg podophyllotoxin and 16.5mg 4'-demethylpodophyllotoxin with purities over 96% were obtained from 260 mg crude sample in one-step separation. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less

  5. An efficient and target-oriented sample enrichment method for preparative separation of minor alkaloids by pH-zone-refining counter-current chromatography.

    PubMed

    Feng, Rui-Hong; Hou, Jin-Jun; Zhang, Yi-Bei; Pan, Hui-Qin; Yang, Wenzhi; Qi, Peng; Yao, Shuai; Cai, Lu-Ying; Yang, Min; Jiang, Bao-Hong; Liu, Xuan; Wu, Wan-Ying; Guo, De-An

    2015-08-28

    An efficient and target-oriented sample enrichment method was established to increase the content of the minor alkaloids in crude extract by using the corresponding two-phase solvent system applied in pH-zone-refining counter-current chromatography. The enrichment and separation of seven minor indole alkaloids from Uncaria rhynchophylla (Miq.) Miq. ex Havil(UR) were selected as an example to show the advantage of this method. An optimized two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v) was used in this study, where triethylamine (TEA) as the retainer and hydrochloric acid (HCl) as the eluter were added at the equimolar of 10mM. Crude alkaloids of UR dissolved in the corresponding upper phase (containing 10mM TEA) were extracted twice with lower phase (containing 10mM TEA) and lower phase (containing 10mM HCl), respectively, the second lower phase extract was subjected to pH-zone-refining CCC separation after alkalization and desalination. Finally, from 10g of crude alkaloids, 4g of refined alkaloids was obtained and the total content of seven target indole alkaloids was increased from 4.64% to 15.78%. Seven indole alkaloids, including 54mg isocorynoxeine, 21mg corynoxeine, 46mg isorhynchophylline, 35mg rhynchophylline, 65mg hirsutine, 51mg hirsuteine and 27mg geissoschizine methylether were all simultaneously separated from 2.5g of refined alkaloids, with the purity of 86.4%, 97.5%, 90.3%, 92.1%, 98.5%, 92.3%, and 92.8%, respectively. The total content and purities of the seven minor indole alkaloids were tested by HPLC and their chemical structures were elucidated by ESI-HRMS and (1)H NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dynamic pH junction high-speed counter-current chromatography coupled with microwave-assisted extraction for online separation and purification of alkaloids from Stephania cepharantha.

    PubMed

    Yuan, Zhiquan; Xiao, Xiaohua; Li, Gongke

    2013-11-22

    A simple and efficient dynamic pH junction high-speed counter-current chromatography method was developed and further applied to the online extraction, separation and purification of alkaloids from Stephania cepharantha by coupling with microwave-assisted extraction. Mineral acid and organic base were added into the mobile phase and the sample solution, respectively, leading to the formation of a dynamic pH junction in the column and causing focus of alkaloids. Selective focus of analytes can be achieved on the basis of velocity changes of the pH junction through appropriate selection of solvent systems and optimization of additive concentrations. The extract can be directly introduced into the HSCCC for the online extraction, separation and purification of alkaloids from S. cepharantha. Continuous separation can be easily achieved with the same solvent system. Under the optimum conditions, 6.0 g original sample was extracted with 60 mL of the upper phase of hexane-ethyl acetate-methanol-water (1:1:1:1, v/v/v/v) containing 10% triethylamine under 50 °C and 400 W irradiation power for 10 min, the extracts were directly separated and purified by high-speed counter-current chromatography. A total of 5.7 mg sinomenine, 8.3mg 6,7-di-O-acetylsinococuline, 17.9 mg berbamine, 12.7 mg isotetrandrine and 14.6 mg cepharanthine were obtained with purities of 96.7%, 93.7%, 98.7%, 97.3% and 99.3%, respectively. The online method provides good selectivity to ionizable compounds and improves the separation and purification efficiency of the high-speed counter-current chromatography technique. It has good potential for separation and purification of effective compounds from natural products. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Method and apparatus for the removal or bioconversion of constituents of organic liquids

    DOEpatents

    Scott, T.; Scott, C.D.

    1994-10-25

    A method and apparatus are disclosed for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing. 1 fig.

  8. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  9. Elution-extrusion counter-current chromatography for the separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix.

    PubMed

    Chu, Chu; Zhang, Shidi; Tong, Shengqiang; Li, Xingnuo; Li, Qingyong; Yan, Jizhong

    2015-09-01

    In this work, a simple and efficient protocol for the rapid separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix was developed by combining macroporous resin and elution-extrusion counter-current chromatography. The crude extract was firstly subjected to a D101 macroporous resin column eluted with water and a series of different concentrations of ethanol. Then, effluents of 30 and 95% ethanol were collected as sample 1 and sample 2 for further counter-current chromatography purification. Finally, a pair of isomers, 96 mg of compound 1 and 48 mg of compound 2 with purities of 91.1 and 96.2%, respectively, was isolated from 200 mg of sample 1. The other pair of isomers, 14 mg of compound 3 and 8 mg of compound 4 with purities of 93.6 and 88.9%, respectively, was isolated from 48 mg of sample 2. Their purities were analyzed by high-performance liquid chromatography, and their chemical structures were identified by mass spectrometry and (1) H NMR spectroscopy. Compared to a normal counter-current chromatography separation, the separation time and solvent consumption of elution-extrusion counter-current chromatography were reduced while the resolutions were still good. The established protocol is promising for the separation of natural products with great disparity of content in herbal medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simultaneous separation of three isomeric sennosides from senna leaf (Cassia acutifolia) using counter-current chromatography.

    PubMed

    Park, Sait Byul; Kim, Yeong Shik

    2015-10-01

    Senna leaf is widely consumed as tea to treat constipation or to aid in weight loss. Sennoside A, A1 , and B are dirheinanthrone glucosides that are abundant and the bioactive constituents in the plant. They are isomers that refer to the (R*R*), (S*S*), and (R*S*) forms of protons on C-10 and C-10' centers and it is difficult to refine them individually due to their structural similarities. The new separation method using counter-current chromatography successfully purified sennoside A, A1 , and B from senna leaf (Cassia acutifolia) while reversed-phase medium-pressure liquid chromatography yielded sennoside A only. n-Butanol/isopropanol/water (5:1:6, v/v/v) was selected as the solvent system for counter-current chromatography operation, and the partition coefficients were carefully determined by adding different concentrations of formic acid. High-resolution mass spectrometry and NMR spectroscopy were performed to verify the chemical properties of the compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Separation and preparation of xanthochymol and guttiferone E by high performance liquid chromatography and high speed counter-current chromatography combined with silver nitrate coordination reaction.

    PubMed

    Li, Jun; Gao, Ruixi; Zhao, Dan; Huang, Xianju; Chen, Yu; Gan, Fei; Liu, Hui; Yang, Guangzhong

    2017-08-18

    Xanthochymol (XCM) and guttiferone E (GFE), a pair of π bond benzophenone isomers from Garcinia xanthochymus, were once reported to be difficult or impossible to separate. The present study reports the successful separation of these two isomers through high performance liquid chromatography (HPLC), as well as their effective isolation using high speed counter-current chromatography (HSCCC) based on the silver nitrate (AgNO 3 ) coordination reaction. First, an effective HPLC separation system was developed, achieving a successful baseline separation with resolution of 2.0. Based on the partition coefficient (K) resolved by HPLC, the two-phase solvent system was determined as n-hexane, methanol and water with the uncommon volume ratio of 4:6:1. A crude extract of Garcinia xanthochymus (0.2g) was purified by normal HSCCC and refined with AgNO 3 -HSCCC. Monomers of XCM and GFE were identified by HPLC, mass spectrometry (MS) and nuclear magnetic resonance (NMR). The results demonstrate the separation and isolation of π bond benzophenone isomers using ordinary octadecyl silane (C 18 ) columns and HSCCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparative separation of sulfur-containing diketopiperazines from marine fungus Cladosporium sp. using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    Gu, Binbin; Zhang, Yanying; Ding, Lijian; He, Shan; Wu, Bin; Dong, Junde; Zhu, Peng; Chen, Juanjuan; Zhang, Jinrong; Yan, Xiaojun

    2015-01-09

    High-speed counter-current chromatography (HSCCC) was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs) (including two new compounds cladosporin A (1) and cladosporin B (3), and a known compound haematocin (2)) from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v) and (2:1:2:1, v/v), in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was performed on 300 mg of crude sample yielding 26.7 mg of compound 3 at a purity of over 95%, 53.6 mg of a mixture of compounds 1 and 2, which was further separated by preparative-HPLC yielding 14.3 mg of compound 1 and 25.4 mg of compound 2 each at a purity of over 95%. Their structures were established by spectroscopic methods. The sulfur-containing DKPs suppressed the proliferation of hepatocellular carcinoma cell line HepG2. The present work represents the first application of HSCCC in the efficient preparation of marine fungal natural products.

  13. Preparative Separation of Sulfur-Containing Diketopiperazines from Marine Fungus Cladosporium sp. Using High-Speed Counter-Current Chromatography in Stepwise Elution Mode

    PubMed Central

    Gu, Binbin; Zhang, Yanying; Ding, Lijian; He, Shan; Wu, Bin; Dong, Junde; Zhu, Peng; Chen, Juanjuan; Zhang, Jinrong; Yan, Xiaojun

    2015-01-01

    High-speed counter-current chromatography (HSCCC) was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs) (including two new compounds cladosporin A (1) and cladosporin B (3), and a known compound haematocin (2)) from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v) and (2:1:2:1, v/v), in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was performed on 300 mg of crude sample yielding 26.7 mg of compound 3 at a purity of over 95%, 53.6 mg of a mixture of compounds 1 and 2, which was further separated by preparative-HPLC yielding 14.3 mg of compound 1 and 25.4 mg of compound 2 each at a purity of over 95%. Their structures were established by spectroscopic methods. The sulfur-containing DKPs suppressed the proliferation of hepatocellular carcinoma cell line HepG2. The present work represents the first application of HSCCC in the efficient preparation of marine fungal natural products. PMID:25584683

  14. Preparative separation of capsaicin and dihydrocapsaicin from Capsicum frutescens by high-speed counter-current chromatography.

    PubMed

    Peng, Aihua; Ye, Haoyu; Li, Xia; Chen, Lijuan

    2009-09-01

    Capsaicin and dihydrocapsaicin are two main bioactive components of Capsicum frutescens and are widely used as food additives and drugs in China and India. Due to their similarity in structures, isolation of capsaicin and dihydrocapsaicin with traditional methods such as silica gel column chromatography, normal-phase thin-layer chromatography (TLC) becomes difficult. This study involves separating capsaicin and dihydrocapsaicin with sufficient purity and recovery using high-speed counter-current chromatography (HSCCC) with a solvent system composed of n-hexane-ethyl acetate-methanol-water-acetic acid (20:20:20:20:2, v/v/v/v/v). Separation parameters such as sample volume, and sample concentration were first optimized on analytical HSCCC, and then scaled up to preparative HSCCC. 0.65 g capsaicin and 0.28 g dihydrocapsaicin were obtained from 1.2 g crude extract and their purities were 98.5 and 97.8%, respectively. The recoveries of the two compounds were 86.3 and 85.4%, respectively. The purity of the isolated compounds was analyzed by high-performance liquid chromatography (HPLC) and their structures were identified by (1)H nuclear magnetic resonance (NMR) and (13)C NMR analysis.

  15. Application and comparison of high-speed countercurrent chromatography and high performance liquid chromatography in preparative enantioseparation of α-substitution mandelic acids

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L−1 phosphate buffer at pH 2.68 containing 20 mmol L−1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L−1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n-hexane-methyl tert.-butyl ether-0.1 molL−1 phosphate buffer solution at pH 2.67 containing 0.1 mol L−1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L−1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects. PMID:25983356

  16. Application and comparison of high-speed countercurrent chromatography and high performance liquid chromatography in preparative enantioseparation of α-substitution mandelic acids.

    PubMed

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong

    2015-04-01

    Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C 18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L -1 phosphate buffer at pH 2.68 containing 20 mmol L -1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L -1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n -hexane-methyl tert. -butyl ether-0.1 molL -1 phosphate buffer solution at pH 2.67 containing 0.1 mol L -1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L -1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects.

  17. Development of solvent systems with room temperature ionic liquids for the countercurrent chromatographic separation of very nonpolar lipid compounds.

    PubMed

    Müller, Marco; Englert, Michael; Earle, Martyn J; Vetter, Walter

    2017-03-10

    Solvent systems are not readily available for the separation of very nonpolar compounds by countercurrent chromatography (CCC). In this study we therefore evaluated the suitability of room temperature ionic liquids (IL) in organic solvents for the CCC separation of the extremely nonpolar lipid compounds tripalmitin (PPP) and cholesteryl stearate (CS). The four IL tested were [C 10 mim][OTf], [C 2 mim][NTf 2 ], [P66614][NTf 2 ], and [P66614][Cl]. Search for a CCC-suited solvent system started with solubility studies with fourteen organic solvents. Following this, combinations were made with one organic solvent miscible and one organic solvent immiscible with IL (147 combinations). Twenty-four initially monophasic mixtures of two organic solvents became biphasic by adding IL. Several unexpected results could be observed. For instance, n-hexane and n-heptane became biphasic with [P66614][Cl]. Further nine systems became biphasic although the IL was not miscible in any of the two components. These 33 solvent systems were investigated with regard to phase ratio, settling time, share of IL in the upper phase and last not least the K U/L values of PPP and CS, which were 8.1 and 7.7 respectively. The most promising system, n-heptane/chloroform/[C 10 mim][OTf] (3:3:1, v/v/v) allowed a partial separation of PPP and CS by CCC which was not achieved beforehand. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Calmodulin-stimulated Ca(2+)-ATPases in the vacuolar and plasma membranes in cauliflower.

    PubMed

    Askerlund, P

    1997-07-01

    The subcellular locations of Ca(2+)-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and caM-binding Ca(2+)-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913-922; S. Malmström, P. Askerlund, M.G. Plamgren [1997] FEBS Lett 400: 324-328) comigrated with vacuolar membrane markers, whereas a 116-kD caM-binding Ca(2+)-ATPase co-migrated with a marker for the plasma membrane. The 116 kD Ca(2+)-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca(2+)-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca(2+)-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca(2+)-AtPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca(2+)-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.

  19. The determination of residence times in a pilot plant

    NASA Astrophysics Data System (ADS)

    Ramírez, F. Pablo; Cortés, M. Eugenia

    2004-01-01

    It is well known that residence time distributions (RTD) are very important in many chemical processes such as separation, reforming, hydrocracking, fluid catalytic cracking, hydrodesulfuration, hydrogenation among others [3 Procédés de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. In addition, tracers can be used to measure the velocity, distribution and residence time of any stream through any part of an industrial [Guidebook on Radioisotope Tracers in Industry, IAEA, Vienna, 1990] or experimental system. Perhaps the best quality of radiotracers is that they do not interfere with normal unit operations or production scheduling. In this paper are presented the RTDs obtained in a pilot plant for a hydrogenation process [IMP, Technical Report, Determinación del tiempo de residencia promedio en el reactor de la planta piloto de hidroagotamiento de crudo, 2002]. The RTDs show a random phenomenon, which is not typical of this type of chemical processes. Several RTDs were determined in order to confirm this random behavior. The data were obtained using as a tracer a radioactive form of sodium iodide containing iodine-131 [The Condensed Chemical Dictionary, 10th Ed., Van Nostrand Reinhold, USA, 1981]. The process works with two phases in a countercurrent flow, inside a packed column. The liquid phase goes down by gravity. The gas phase goes up due to pressure difference [3 Procédés de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. The tracer was selected such that it would follow the liquid phase.

  20. Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst.

    PubMed

    Hu, Shengyang; Wen, Libai; Wang, Yun; Zheng, Xinsheng; Han, Heyou

    2012-11-01

    A continuous-flow integration process was developed for biodiesel production using rapeseed oil as feedstock, based on the countercurrent contact reaction between gas and liquid, separation of glycerol on-line and cyclic utilization of methanol. Orthogonal experimental design and response surface methodology were adopted to optimize technological parameters. A second-order polynomial model for the biodiesel yield was established and validated experimentally. The high determination coefficient (R(2)=98.98%) and the low probability value (Pr<0.0001) proved that the model matched the experimental data, and had a high predictive ability. The optimal technological parameters were: 81.5°C reaction temperature, 51.7cm fill height of catalyst KF/CaO and 105.98kPa system pressure. Under these conditions, the average yield of triplicate experiments was 93.7%, indicating the continuous-flow process has good potential in the manufacture of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Dual pressure-dual temperature isotope exchange process

    DOEpatents

    Babcock, D.F.

    1974-02-12

    A liquid and a gas stream, each containing a desired isotope, flow countercurrently through two liquid-gas contacting towers maintained at different temperatures and pressures. The liquid is enriched in the isotope in one tower while the gas is enriched within the other and a portion of at least one of the enriched streams is withdrawn from the system for use or further enrichment. The tower operated at the lower temperature is also maintained at the lower pressure to prevent formation of solid solvates. Gas flow between the towers passes through an expander-compressor apparatas to recover work from the expansion of gas to the lower pressure and thereby compress the gas returning to the tower of higher pressure. (Official Gazette)

  2. Southward flow on the western flank of the Florida Current

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Hirons, Amy; Maingot, Christopher; Dean, Cayla W.; Dodge, Richard E.; Yankovsky, Alexander E.; Wood, Jon; Weisberg, Robert H.; Luther, Mark E.; McCreary, Julian P.

    2017-07-01

    A suite of long-term in situ measurements in the Straits of Florida, including the ADCP bottom moorings at an 11-m isobath and 244-m isobath (Miami Terrace) and several ADCP ship transects, have revealed a remarkable feature of the ocean circulation - southward flow on the western, coastal flank of the Florida Current. We have observed three forms of the southward flow - a seasonally varying coastal countercurrent, an undercurrent jet attached to the Florida shelf, and an intermittent undercurrent on the Miami Terrace. According to a 13-year monthly climatology obtained from the near-shore mooring, the coastal countercurrent is a persistent feature from October through January. The southward flow in the form of an undercurrent jet attached to the continental slope was observed during five ship transects from April through September but was not observed during three transects in February, March, and November. This undercurrent jet is well mixed due to strong shear at its top associated with the northward direction of the surface flow (Florida Current) and friction at the bottom. At the same time, no statistically significant seasonal cycle has been observed in the undercurrent flow on the Miami Terrace. Theoretical considerations suggest that several processes could drive the southward current, including interaction between the Florida Current and the shelf, as well as forcing that is independent of the Florida Current. The exact nature of the southward flow on the western flank of the Florida Current is, however, unknown.

  3. Opposed slant tube diabatic sorber

    DOEpatents

    Erickson, Donald C.

    2004-01-20

    A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermanoski, Ivan; Orozco, Adrian

    In this report we present the development of a packed particle bed recirculator and heat exchanger. The device is intended to create countercurrent flows of packed particle beds and exchange heat between the flows. The project focused on the design, fabrication, demonstration, and modifications of a simple prototype, in order to attain high levels of heat exchange between particle flows while maintaining an effective particle conveying rate in a scalable package. Despite heat losses in a package not optimized for heat retention, 50% heat recovery was achieved, at a particle conveying efficiency of 40%.

  5. Isolation of plasma membranes from the nervous system by countercurrent distribution in aqueous polymer two-phase systems.

    PubMed

    Schindler, Jens; Nothwang, Hans Gerd

    2009-01-01

    The plasma membrane separates the cell-interior from the cell's environment. To maintain homeostatic conditions and to enable transfer of information, the plasma membrane is equipped with a variety of different proteins such as transporters, channels, and receptors. The kind and number of plasma membrane proteins are a characteristic of each cell type. Owing to their location, plasma membrane proteins also represent a plethora of drug targets. Their importance has entailed many studies aiming at their proteomic identification and characterization. Therefore, protocols are required that enable their purification in high purity and quantity. Here, we report a protocol, based on aqueous polymer two-phase systems, which fulfils these demands. Furthermore, the protocol is time-saving and protects protein structure and function.

  6. MICROBIAL COMETABOLISM OF RECALCITRANT CHEMICALS IN CONTAMINATED AIR STREAMS

    EPA Science Inventory

    Chlorinated Solvents: The treatment system consists of a laboratory-scale hollow fiber membrane (HFM) module containing a center baffle and a radial cross-flow pattern on the shell side of the fibers. The shell and lumen fluids are contacting in a counter-current f...

  7. Isolation and purification of prenylated phenolics from Amorpha fruticosa by high-speed counter-current chromatography.

    PubMed

    Chen, Chu; Wu, Yan; Chen, Yang; Du, Leilei

    2015-08-01

    Prenylated phenolics such as amorfrutins are recently identified potent anti-inflammatory and antidiabetic natural products. In this work, high-speed counter-current chromatography was investigated for the isolation and purification of prenylated phenolics from the fruits of Amorpha fruticosa by using a two-phase solvent system composed of n-hexane/ethanol/water (5:4:1, v/v). As a result, 14.2 mg of 5,7-dihydroxy-8-geranylflavanone, 10.7 mg of amorfrutin A and 17.4 mg of amorfrutin B were obtained from 200 mg of n-hexane-soluble crude extract in one step within 250 min. The purities of 5,7-dihydroxy-8-geranylflavanone, amorfrutins A and B were 95.2, 96.7 and 97.1%, respectively, as determined by ultra high performance liquid chromatography. The structural identification was performed by mass spectrometry and (1) H and (13) C NMR spectroscopy. The results indicated that the established method is an efficient and convenient way to purified prenylated phenolics from A. fruticosa extract. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Energy-efficient membrane separations in the sweetener industry. Final report for Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babcock, W.C.

    1984-02-14

    The objective of the program is to investigate the use of membrane processes as energy-efficient alternatives to conventional separation processes in current use in the corn sweetener industry. Two applications of membranes were studied during the program: (1) the concentration of corn steep water by reverse osmosis; and (2) the concentration of dilute wastes called sweetwater with a combination of reverse osmosis and a process known as countercurrent reverse osmosis. Laboratory experiments were conducted for both applications, and the results were used to conduct technical and economic analyses of the process. It was determined that the concentration of steep watermore » by reverse osmosis plus triple-effect evaporation offers savings of a factor of 2.5 in capital costs and a factor of 4.5 in operating costs over currently used triple-effect evaporation. In the concentration of sweetwater by reverse osmosis and countercurrent reverse osmosis, capital costs would be about the same as those for triple-effect evaporation, but operating costs would be only about one-half those of triple-effect evaporation.« less

  9. Preparative Isolation and Purification of Flavone C-Glycosides from the Leaves of Ficus microcarpa L. f by Medium-Pressure Liquid Chromatography, High-Speed Countercurrent Chromatography, and Preparative Liquid Chromatography

    PubMed Central

    Wang, Xiaohong; Liang, Yong; Zhu, Licai; Xie, Huichun; Li, Hang; He, Junting; Pan, Man; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    Combined with medium-pressure liquid chromatography (MPLC) and preparative high-performance liquid chromatography (perp-HPLC), high-speed countercurrent chromatography (HSCCC) was applied for separation and purification of flavone C-glycosides from the crude extract of leaves of Ficus microcarpae L. f. HSCCC separation was performed on a two-phase solvent system composed of methyl tert- butyl ether - ethyl acetate – 1-butanol – acetonitrile – 0.1% aqueous trifluoroacetic acid at a volume ratio of 1:3:1:1:5. Partially resolved peak fractions from HSCCC separation were further purified by preparative HPLC. Four well-separated compounds were obtained and their purities were determined by HPLC. The purities of these peaks were 97.28%, 97.20%, 92.23%, and 98.40%.. These peaks were characterized by ESI-MSn. According to the reference, they were identified as orientin (peak I), isovitexin-3″-O-glucopyranoside (peak II), isovitexin (peak III), and vitexin (peak IV), yielded 1.2 mg, 4.5 mg, 3.3 mg, and 1.8 mg, respectively. PMID:20190866

  10. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  11. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  12. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  13. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  14. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  15. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  16. Development of a method to screen and isolate potential xanthine oxidase inhibitors from Panax japlcus var via ultrafiltration liquid chromatography combined with counter-current chromatography.

    PubMed

    Li, Sainan; Tang, Ying; Liu, Chunming; Li, Jing; Guo, Liping; Zhang, Yuchi

    2015-03-01

    Panax japlcus var is a typical Chinese herb with a large number of saponins existing in all parts of it. The common methods of screening and isolating saponins are mostly labor-intensive and time-consuming. In this study, a new assay based on ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) was developed for the rapid screening and identifying of the ligands for xanthine oxidase from the extract of P. japlcus. Six saponins were identified as xanthine oxidase inhibitors from the extract. Subsequently, the specific binding ligands, namely, 24 (R)-majoroside R1, chikusetsusaponin IVa, oleanolic acid-28-O-β-D-glucopyranoside, notoginsenoside Fe, ginsenoside Rb2 and ginsenoside Rd (the purities of them were 95.74%, 96.12%, 93.19%, 94.83%, 95.07% and 94.62%, respectively) were separated by high-speed counter-current chromatography (HSCCC). The component ratio of the solvent system of HSCCC was calculated with the help of a multiexponential function model was optimized. The partition coefficient (K) values of the target compounds and resolutions of peaks were employed as the research indicators, and exponential function and binomial formulas were used to optimize the solvent system and flow rate of the mobile phases in a two-stage separation. An optimized two-phase solvent system composed of ethyl acetate, isopropanol, 0.1% aqueous formic acid (1.9:1.0:1.3, v/v/v, for the first-stage) and that composed of methylene chloride, acetonitrile, isopropanol, 0.1% aqueous formic acid (5.6:1.0:2.4:5.2, v/v/v/v, for the second-stage) were used to isolate the six compounds from P. japlcus. The targeted compounds isolated, collected and purified by HSCCC were analyzed by high performance liquid chromatography (UPLC), and the chemical structures of all the six compounds were identified by UV, MS and NMR. The results demonstrate that UF-LC-MS combined with HSCCC might provide not only a powerful tool for screening and isolating xanthine oxidase inhibitors in complex samples but also a useful platform for discovering bioactive compounds for the prevention and treatment of gout. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    PubMed

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Purification of semiconducting single-walled carbon nanotubes by spiral counter-current chromatography.

    PubMed

    Knight, Martha; Lazo-Portugal, Rodrigo; Ahn, Saeyoung Nate; Stefansson, Steingrimur

    2017-02-03

    Over the last decade man-made carbon nanostructures have shown great promise in electronic applications, but they are produced as very heterogeneous mixtures with different properties so the achievement of a significant commercial application has been elusive. The dimensions of single-wall carbon nanotubes are generally a nanometer wide, up to hundreds of microns long and the carbon nanotubes have anisotropic structures. They are processed to have shorter lengths but they need to be sorted by diameter and chirality. Thus counter-current chromatography methods developed for large molecules are applied to separate these compounds. A modified mixer-settler spiral CCC rotor made with 3 D printed disks was used with a polyethylene glycol-dextran 2-phase solvent system and a surfactant gradient to purify the major species in a commercial preparation. We isolated the semi-conducting single walled carbon nanotube chiral species identified by UV spectral analysis. The further development of spiral counter-current chromatography instrumentation and methods will enable the scalable purification of carbon nanotubes useful for the next generation electronics. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evaluation of the approach based on the concept of hyperbolicity breaking for prediction of flooding velocity of both room temperature and cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Zhou, Rui; Yu, Liu; Xie, Huangjun; Qiu, Limin; Zhi, Xiaoqin; Zhang, Xiaobin

    2018-07-01

    The theoretical approach for the prediction of flooding velocity based on the concept of hyperbolicity breaking was evaluated in the counter-current two-phase flow. Detailed mathematical derivations of neutral stability condition together with the correlation of the void fraction are presented. The flooding velocity is obtained by assuming that the wavelength at flooding is proportional to the wavelength of the fastest-growing wave at Helmholtz instability. Some available experimental data for different fluid pair flow in inclined tubes is adopted for comparison with the theoretical calculations, which includes the data of water/air, aqueous oleic acid natrium solution/air, Aq. butanol 2%/air and kerosene/air in the published papers, as well as the liquid nitrogen/vapor nitrogen by the present authors. The comparison of flooding velocity proves that the approach can predict the flooding velocity with accepted accuracy for the water/air and liquid nitrogen/vapor nitrogen flow if the tube diameter is greater than 9 mm. While the diameter is smaller than 9 mm, regardless of the inclinations and the fluid pairs, the error becomes larger relative to the cases of diameter larger than 9 mm. The calculations for small diameter cases also fail to predict the critical liquid velocity at which the flooding velocity of gas reaches the maximum value, as revealed by the experiments. The reasons for the increased errors were qualitatively explained.

  20. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  1. Isolation and purification of series bioactive components from Hypericum perforatum L. by counter-current chromatography.

    PubMed

    Cao, Xueli; Wang, Qiaoe; Li, Yan; Bai, Ge; Ren, Hong; Xu, Chunming; Ito, Yoichiro

    2011-03-01

    Counter-current chromatography (CCC) combined with pre-separation by ultrasonic solvent extraction was successively used for the separation of series bioactive compounds from the crude extract of Hypericum perforatum L. The petroleum ether extract was separated by the solvent system of n-heptane-methanol-acetonitrile (1.5:0.5:0.5, v/v) and n-heptane-methanol (1.5:1, v/v) in gradient elution, yielding a phloroglucinol compound, hyperforin with HPLC purity over 98%. The ethyl acetate extract was separated by using the solvent system composed of hexane-ethyl acetate-methanol-water (1:1:1:1 and 1:3:1:3, v/v) in gradient through both reverse phase and normal phase elution mode, yielding a naphthodianthrone compound, hypericin with HPLC purity about 95%. The n-butanol extract was separated with the solvent system composed of n-butanol-ethyl acetate-water (1:4:5 and 1.5:3.5:5, v/v) in elution and back-extrusion mode, yielding two of flavones, rutin and hyperoside, with HPLC purity over 95%. HPLC-MS, reference sample and UV spectrum were selectively used in separation to search for target compounds from HPLC-DAD profiles of different sub-extracts. The structures of isolated compounds were further identified by ESI-MS, ¹HNMR and ¹³CNMR. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Isolation and purification of series bioactive components from Hypericum Perforatum L. by high-speed counter-current chromatography

    PubMed Central

    Cao, Xueli; Wang, Qiaoe; Li, Yan; Bai, Ge; Ren, Hong; Ito, Yiochiro

    2011-01-01

    High-speed counter-current chromatography (HSCCC) combined with pre-separation by ultrasonic solvent extraction was successively used for the separation of series bioactive compounds from the crude extract of Hypericum perforatum L. The petroleum ether extract was separated by the solvent system of n-heptane-methanol-acetonitrile (1.5:0.5:0.5, v/v) and n-heptane-methanol (1.5:1, v/v) in gradient elution, yielding a phloroglucinol compound, hyperforin with HPLC purity over 98%. The ethyl acetate extract was separated by using the solvent system composed of hexane-ethyl acetate-methanol-water (1:1:1:1 and 1:3:1:3, v/v) in gradient through both reverse phase and normal phase elution mode, yielding a naphthodianthrone compound, hypericin with HPLC purity about 95%. The n-butanol extract was separated with the solvent system composed of n-butanol-ethyl acetate–water (1:4:5 and 1.5:3.5:5, v/v) in elution and back-extrusion mode, yielding two of flavones, rutin and hyperoside, with HPLC purity over 95%. HPLC-MS, reference sample and UV spectrum were selectively used in separation to search for target compounds from HPLC-DAD profiles of different sub-extracts. The structures of isolated compounds were further identified by ESI-MS, 1HNMR and 13CNMR. PMID:21306961

  3. Recovery of hydrogen iodide

    DOEpatents

    Norman, John H.

    1983-01-01

    A method of extraction of HI from an aqueous solution of HI and I.sub.2. HBr is added to create a two-phase liquid mixture wherein a dry phase consists essentially of HBr, I and HI and is in equilibrium with a wet phase having a far greater HBr:HI ratio. Using a countercurrent extractor, two solutions can be obtained: a dry HBr--HI--I.sub.2 solution and a wet essentially HBr solution. The dry and wet phases are easily separable, and HI is recovered from the dry phase, after first separating I.sub.2, as by distillation. Alternatively, the HI-HBr liquid mixture is treated to catalytically decompose the HI. HBr is recovered from the wet phase by suitable treatment, including high-pressure distillation, to produce an H.sub.2 O--HBr azeotrope that is not more than 25 mole percent HBr. The azeotrope may be returned for use in an earlier step in the overall process which results in the production of the aqueous solution of HI and I.sub.2 without major detriment because of the presence of HBr.

  4. Recovery of hydrogen iodide

    DOEpatents

    Norman, J.H.

    1983-08-02

    A method is described for extraction of HI from an aqueous solution of HI and I[sub 2]. HBr is added to create a two-phase liquid mixture wherein a dry phase consists essentially of HBr, I and HI and is in equilibrium with a wet phase having a far greater HBr:HI ratio. Using a countercurrent extractor, two solutions can be obtained: a dry HBr--HI--I[sub 2] solution and a wet essentially HBr solution. The dry and wet phases are easily separable, and HI is recovered from the dry phase, after first separating I[sub 2], as by distillation. Alternatively, the HI-HBr liquid mixture is treated to catalytically decompose the HI. HBr is recovered from the wet phase by suitable treatment, including high-pressure distillation, to produce an H[sub 2]O--HBr azeotrope that is not more than 25 mole percent HBr. The azeotrope may be returned for use in an earlier step in the overall process which results in the production of the aqueous solution of HI and I[sub 2] without major detriment because of the presence of HBr. 1 fig.

  5. Conical coils counter-current chromatography for preparative isolation and purification of tanshinones from Salvia miltiorrhiza Bunge.

    PubMed

    Liang, Junling; Meng, Jie; Guo, Mengzhe; Yang, Zhi; Wu, Shihua

    2013-05-03

    Modern counter-current chromatography (CCC) originated from the helical coil planet centrifuge. Recently, spiral coils were found to possess higher separation efficiency in both the retention of stationary phase and solutes resolution than other CCC coils like the helical and toroidal coils used on type-J CCC and cross-axis CCC. In this work, we built a novel conical coil CCC for the preparative isolation and purification of tanshinones from Salvia miltiorrhiza Bunge. The conical coils were wound on three identical upright tapered holders in head-to-tail and left-handed direction and connected in series. Compared with helical and spiral coil CCC, conical coil CCC not only placed CCC column in a two-dimensional centrifugal field, but also provided a potential centrifugal force gradient both in axial and radial directions. The extra centrifugal gradient made mobile phase move faster and enabled CCC much higher retention of stationary phase and better resolution. As a result, higher efficiency has been obtained with the solvent system of hexane-ethyl acetate-methanol-water (HEMWat) with the volume ratio of 5:5:7:3 by using conical coil CCC apparatus. Four tanshinones, including cryptotanshinone (1), tanshinone I (2), 1,2-dihydrotanshinquinone (3) and tanshinone IIA (4), were well resolved from 500mg to 1g crude samples with high purity. Furthermore, the conical coil CCC can make a much higher solid phase retention, which makes it to be a powerful separation tool with high throughput. This is the first report about conical coil CCC for separation of tanshinones and it may also be an important advancement for natural products isolation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    DOEpatents

    Klunder, Edgar B [Bethel Park, PA

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  7. Isolation of Flavonoids From Wild Aquilaria sinensis Leaves by an Improved Preparative High-Speed Counter-Current Chromatography Apparatus.

    PubMed

    Yang, Mao-Xun; Liang, Yao-Guang; Chen, He-Ru; Huang, Yong-Fang; Gong, Hai-Guang; Zhang, Tian-You; Ito, Yoichiro

    2018-01-01

    Four flavonoids including apigenin-7,4'-dimethylether, genkwanin, quercetin, and kaempferol were isolated in a preparative or semi-preparative scale from the leaves of wild Aquilaria sinensis using an improved preparative high-speed counter-current chromatography apparatus. The separations were performed with a two-phase solvent system composed of hexane-ethyl acetate, methanol-water at suitable volume ratios. The obtained fractions were analyzed by HPLC, and the identification of each target compound was carried out by ESI-MS and NMR. The yields of the above four target flavonoids were 4.7, 10.0, 11.0 and 4.4%, respectively. All these four flavonoids exhibited nitrite scavenging activities with the clearance rate of 12.40 ± 0.20%, 5.84 ± 0.03%, 28.10 ± 0.17% and 5.19 ± 0.11%, respectively. Quercetin was originally isolated from the Thymelaeaceae family, while kaempferol was isolated from the Aquilaria genus for the first time. In cytotoxicity test these two flavonoids exhibited moderate inhibitory activities against HepG2 cells with the IC50 values of 12.54 ± 1.37 and 38.63 ± 4.05 μM, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Schinus terebinthifolius scale-up countercurrent chromatography (Part I): High performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Vieira, Mariana Neves; Costa, Fernanda das Neves; Leitão, Gilda Guimarães; Garrard, Ian; Hewitson, Peter; Ignatova, Svetlana; Winterhalter, Peter; Jerz, Gerold

    2015-04-10

    'Countercurrent chromatography' (CCC) is an ideal technique for the recovery, purification and isolation of bioactive natural products, due to the liquid nature of the stationary phase, process predictability and the possibility of scale-up from analytical to preparative scale. In this work, a method developed for the fractionation of Schinus terebinthifolius Raddi berries dichloromethane extract was thoroughly optimized to achieve maximal throughput with minimal solvent and time consumption per gram of processed crude extract, using analytical, semi-preparative and preparative 'high performance countercurrent chromatography' (HPCCC) instruments. The method using the biphasic solvent system composed of n-heptane-ethyl acetate-methanol-water (6:1:6:1, v/v/v/v) was volumetrically scaled up to increase sample throughput up to 120 times, while maintaining separation efficiency and time. As a fast and specific detection alternative, the fractions collected from the CCC-separations were injected to an 'atmospheric pressure chemical ionization mass-spectrometer' (APCI-MS/MS) and reconstituted molecular weight MS-chromatograms of the APCI-ionizable compounds from S. terebinthifolius were obtained. This procedure led to the direct isolation of tirucallane type triterpenes such as masticadienonic and 3β-masticadienolic acids. Also oleanonic and moronic acids have been identified for the first time in the species. In summary, this approach can be used for other CCC scale-up processes, enabling MS-target-guided isolation procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Centrifugal contactor modified for end stage operation in a multistage system

    DOEpatents

    Jubin, Robert T.

    1990-01-01

    A cascade formed of a plurality of centrifugal contactors useful for countercurrent solvent extraction processes such as utilizable for the reprocessing of nuclear reactor fuels is modified to permit operation in the event one or both end stages of the cascade become inoperative. Weir assemblies are connected to each of the two end stages by suitable conduits for separating liquids discharged from an inoperative end stage based upon the weight of the liquid phases uses in the solvent extraction process. The weir assembly at one end stage is constructed to separate and discharge the heaviest liquid phase while the weir assembly at the other end stage is constructed to separate and discharge the lightest liquid phase. These weir assemblies function to keep the liquid discharge from an inoperative end stages on the same weight phase a would occur from an operating end stage.

  10. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yortsos, Yanis C.

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  11. User's guide to the SEPHIS computer code for calculating the Thorex solvent extraction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, S.B.; Rainey, R.H.

    1979-05-01

    The SEPHIS computer program was developed to simulate the countercurrent solvent extraction process. The code has now been adapted to model the Acid Thorex flow sheet. This report represents a practical user's guide to SEPHIS - Thorex containing a program description, user information, program listing, and sample input and output.

  12. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  13. A laplace transform-based technique for solving multiscale and multidomain problems: Application to a countercurrent hemodialyzer model.

    PubMed

    Simon, Laurent

    2017-08-01

    An integral-based method was employed to evaluate the behavior of a countercurrent hemodialyzer model. Solute transfer from the blood into the dialysate was described by writing mass balance equations over a section of the device. The approach provided Laplace transform concentration profiles on both sides of the membrane. Applications of the final value theorem led to the development of the effective time constants and steady-state concentrations in the exit streams. Transient responses were derived by a numerical inversion algorithm. Simulations show that the period elapsed, before reaching equilibrium in the effluents, decreased when the blood flow rate increased from 0.25 to 0.30 ml/s. The performance index decreased from 0.80 to 0.71 when the blood-to-dialysate flow ratio increased by 20% and increased from 0.80 to 0.85 when this fraction was reduced by 17%. The analytical solution predicted methadone removal in patients undergoing dialysis. Clinicians can use these findings to predict the time required to achieve a target extraction ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    PubMed

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  15. Effect of operating temperature on styrene mass transfer characteristics in a biotrickling filter.

    PubMed

    Parnian, Parham; Zamir, Seyed Morteza; Shojaosadati, Seyed Abbas

    2017-05-01

    To study the effect of operating temperature on styrene mass transfer from gas to liquid phase in biotrickling filters (BTFs), overall mass transfer coefficient (K L a) was calculated through fitting test data to a general mass balance model under abiotic conditions. Styrene was used as the volatile organic compound and the BTF was packed with a mixture of pall rings and pumice. Operating temperature was set at 30°C and 50°C for mesophilic and thermophilic conditions, respectively. K L a values increased from 54 to 70 h -1 at 30°C and from 60 to 90 h -1 at 50°C, respectively, depending on the countercurrent gas to liquid flow ratio that varied in the range of 7.5-32. Evaluation of styrene mass transfer capacity (MTC) showed that liquid-phase mass transfer resistance decreased as the flow ratio increased at constant temperature. MTC also decreased with an increase in operating temperature. Both gas-liquid partition coefficient and K L a increased with increasing temperature; however the effect on gas-liquid partition coefficient was more significant and served to increase mass transfer limitations. Thermophilic biofiltration on the one hand increases mass transfer limitations, but on the other hand may enhance the biodegradation rate in favor of enhancing BTFs' performance.

  16. Passive restriction of blood flow and counter-current heat exchange via lingual retia in the tongue of a neonatal gray whale Eschrichtius robustus (Cetacea, Mysticeti).

    PubMed

    Ekdale, Eric G; Kienle, Sarah S

    2015-04-01

    Retia mirabilia play broad roles in cetacean physiology, including thermoregulation during feeding and pressure regulations during diving. Vascular bundles of lingual retia are described within the base of the tongue of a neonatal female gray whale (Eschrichtius robustus). Each rete consists of a central artery surrounded by four to six smaller veins. The retia and constituent vessels decrease in diameter as they extend anteriorly within the hyoglossus muscle from a position anterior to the basihyal cartilage toward the apex of the tongue. The position of the retia embedded in the hyoglossus and the anterior constriction of the vessels differs from reports of similar vascular bundles that were previously identified in gray whales. The retia likely serve as a counter-current heat exchange system to control body temperature during feeding. Cold blood flowing toward the body center within the periarterial veins would accept heat from warm blood in the central artery flowing toward the anterior end of the tongue. Although thermoregulatory systems have been identified within the mouths of a few mysticete species, the distribution of such vascular structures likely is more widespread among baleen whales than has previously been described. © 2015 Wiley Periodicals, Inc.

  17. Preparative isolation and purification of lignans from Justicia procumbens using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    Zhou, Peijuan; Luo, Qijun; Ding, Lijian; Fang, Fang; Yuan, Ye; Chen, Juanjuan; Zhang, Jinrong; Jin, Haixiao; He, Shan

    2015-04-20

    Lignans, which are recognized as main constituents in Justicia procumbens, have attracted considerable attention due to their pharmacological activities, including antitumor, anti-hepatitic, cytotoxic, anti-microbial, and anti-virus properties. Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of four lignans (justicidin B (1), justicidin A (2), 6'-hydroxyjusticidin C (3) and lignan J1 (4)) from J. procumbens using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1.3:1:1.3:1, v/v) and (2.5:1:2.5:1, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding compounds 1 (19.7 mg), 2 (9.86 mg), 3 (11.26 mg), and 4 (2.54 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, 1H-NMR and 13C-NMR. This is the first report on the application of HSCCC to the efficient separation of lignans from J. procumbens.

  18. Separation and Purification of Ombuoside from Gynostemma Pentaphyllum by Microwave-Assisted Extraction Coupled with High-Speed Counter-current Chromatography.

    PubMed

    Jiang, Wenhui; Shan, Hu; Song, Jiying; Lü, Haitao

    2017-01-01

    A rapid and efficient method for the separation and purification of ombuoside from Gynostemma pentaphyllum by microwave-assisted extraction coupled with high-speed counter-current chromatography (HSCCC) was successfully developed. Using an orthogonal array design L 9 (3 4 ), the extraction conditions, including microwave power, irradiation time, solid-to-liquid ratio and extraction times, were optimized. Ombuoside was isolated and purified from the crude extraction by HSCCC with two-phase solvent system composed of n-hexane:ethyl acetate:ethanol:water (5:6:5:5, v/v) in a single run. A 210 mg quantity of the crude extract containing 2.16% ombuoside was loaded, yielding 3.9 mg of ombuoside at 96.7% purity. The chemical structure of ombuoside was determined by comparison with the high-performance liquid chromatography retention time of standard substance as well as UV, FT-IR, ESI-MS, 1 H NMR and 13 C NMR spectra. The purified ombuoside had strong 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radical scavenging activities. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor

    PubMed Central

    2016-01-01

    We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H2O and CO2. The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kWth lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O2 for smaller particles. PMID:27853339

  20. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor.

    PubMed

    Welte, Michael; Barhoumi, Rafik; Zbinden, Adrian; Scheffe, Jonathan R; Steinfeld, Aldo

    2016-10-12

    We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H 2 O and CO 2 . The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kW th lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O 2 for smaller particles.

  1. Parasitic momentum flux in the tokamak core

    NASA Astrophysics Data System (ADS)

    Stoltzfus-Dueck, T.

    2017-10-01

    Tokamak plasmas rotate spontaneously without applied torque. This intrinsic rotation is important for future low-torque devices such as ITER, since rotation stabilizes certain instabilities. In the mid-radius `gradient region,' which reaches from the sawtooth inversion radius out to the pedestal top, intrinsic rotation profiles may be either flat or hollow, and can transition suddenly between these two states, an unexplained phenomenon referred to as rotation reversal. Theoretical efforts to explain the mid-radius rotation shear have largely focused on quasilinear models, in which the phase relationships of some selected instability result in a nondiffusive momentum flux (``residual stress''). In contrast, the present work demonstrates the existence of a robust, fully nonlinear symmetry-breaking momentum flux that follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The physical origin is an often-neglected portion of the radial ExB drift, which is shown to drive a symmetry-breaking outward flux of co-current momentum whenever free energy is transferred from the electrostatic potential to ion parallel flows. The fully nonlinear derivation relies only on conservation properties and symmetry, thus retaining the important contribution of damped modes. The resulting rotation peaking is counter-current and scales as temperature over plasma current. As first demonstrated by Landau, this free-energy transfer (thus also the corresponding residual stress) becomes inactive when frequencies are much higher than the ion transit frequency, which allows sudden transitions between hollow and flat profiles. Simple estimates suggest that this mechanism may be consistent with experimental observations. This work was funded in part by the Max-Planck/Princeton Center for Plasma Physics and in part by the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-09CH11466.

  2. Caanyon Mediated Cross-Slope Transport

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.; Cabrera De Leo, F.; Sastri, A. R.; Matabos, M.; Heesemann, M.; Ogata, B.

    2017-12-01

    Three current meter and water property stations along the west coast of Vancouver Island along with video and acoustic backscatter observations are used to gain insight into mechanisms of cross-slope transport. The setting is an eastern boundary current region with a active poleward flowing countercurrent. The significant effects of these currents flowing over a strongly incised continental slope along with cross-slope density flows are contrasted with the seasonally varying upwelling and downwelling regime. The video and acoustic backscatter enabled by Ocean Networks Canada's NEPTUNE observatory provide a view on the materials being transported between the abyssal plain and the continental shelf.

  3. Separation of Calcium Isotopes by Counter-Current Electro-Migration in Molten Salts; SEPARATION DES ISOTOPES DU CALCIUM PAR ELECTRO-MIGRATION A CONTRECOURANT EN SELS FONDUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menes, F.; Dirian, G.; Roth, E.

    1962-01-01

    The method of counter-current electromigration in molten salts was applied to CaBr/sub 2/ with an alkali metal bromide added to the cathode compartment. Enrichments on Ca/sup 46/ greater than a factor of two were obtained at the anode. The mass effect was found to be about 0.06. An estimation of the cost of energy for a process based on this method was made. (auth)

  4. Efficient protocol for isolation and purification of different soyasaponins from soy hypocotyls.

    PubMed

    Zhao, Dayun; Yan, Mingxia; Huang, Yuai; Sun, Xiangjun

    2012-12-01

    Soyasaponins are naturally occurring triterpenoid glycosides associated with many biological activities. The aim of the present study was to develop an effective method for isolation and purification of differently glycosylated, acetylated, and 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP)-conjugated soyasaponins from soy hypocotyls. Both gel filtration using Sephadex LH-20 chromatography (Amersham Pharmacia Biotech AB; elution phase: methanol, flow rate: 3.0 mL/min, sample loading: 60 mg) and high-speed countercurrent chromatography (stationary phase: n-butanol-acetic acid (5.0%, v/v), mobile phase: water flow rate: 3.0 mL/min, sample loading: 100 mg) could effectively fractionate isoflavones and soyasaponins from the crude extract with yield of soyasaponin complexes 20.5 mg and 22.3 mg, respectively. After fractionation, the soyasaponin complexes could be purified further using preparative HPLC to separate individuals. A total of nine soyasaponins, triacetyl soyasaponin Ab (yield 1.55%, HPLC purity >98%), Aa (2.68%, >99%), Ab (18.53%, >98%), Ae (0.85%, >98%), Ba (0.63%, >91%), Af (1.12%, >85%), Bb (3.45%, >98%) and Be (0.59%, >76.8%) were obtained. DDMP-conjugated groups, αg (2.06%, >85%), βg (7.59%, >85%), and γg (0.29%, >85%) that were very labile even in mild conditions, were also collected. The method described here can be used as an effective protocol to separate different soyasaponins occurring in the original sample. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    NASA Astrophysics Data System (ADS)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

  6. Two-step purification of scutellarin from Erigeron breviscapus (vant.) Hand. Mazz. by high-speed counter-current chromatography.

    PubMed

    Gao, Min; Gu, Ming; Liu, Chun-Zhao

    2006-07-11

    Scutellarin, a flavone glycoside, popularly applied for the treatment of cardiopathy, has been purified in two-step purification by high-speed counter-current chromatography (HSCCC) from Erigeron breviscapus (vant.) Hand. Mazz. (Deng-zhan-hua in Chinese), a well-known traditional Chinese medicinal plant for heart disease. Two solvent systems, n-hexane-ethyl acetate-methanol-acetic acid-water (1:6:1.5:1:4, v/v/v/v/v) and ethyl acetate-n-butanol-acetonitrile-0.1% HCl (5:2:5:10, v/v/v/v) were used for the two-step purification. The purity of the collected fraction of scutellarin was 95.6%. This study supplies a new alternative method for purification of scutellarin.

  7. Countercurrent direct contact heat exchange process and system

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1979-01-01

    Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

  8. Steady state preparative multiple dual mode counter-current chromatography: Productivity and selectivity. Theory and experimental verification.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A

    2015-08-07

    In the steady state (SS) multiple dual mode (MDM) counter-current chromatography (CCC), at the beginning of the first step of every cycle the sample dissolved in one of the phases is continuously fed into a CCC device over a constant time, not exceeding the run time of the first step. After a certain number of cycles, the steady state regime is achieved, where concentrations vary over time during each cycle, however, the concentration profiles of solutes eluted with both phases remain constant in all subsequent cycles. The objective of this work was to develop analytical expressions to describe the SS MDM CCC separation processes, which can be helpful to simulate and design these processes and select a suitable compromise between the productivity and the selectivity in the preparative and production CCC separations. Experiments carried out using model mixtures of compounds from the GUESSmix with solvent system hexane/ethyl acetate/methanol/water demonstrated a reasonable agreement between the predictions of the theory and the experimental results. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Assessment of elemental mobility in soil using a fluidised bed approach with on-line ICP-MS analysis.

    PubMed

    Beeston, Michael Philip; Glass, Hylke Jan; van Elteren, Johannes Teun; Slejkovec, Zdenka

    2007-09-19

    A new method has been developed to analyse the mobility of elements within soils employing counter-current flow soil contacting in a fluidised bed (FB) column. This method alleviates the problem of irreproducible peaks suffered by state-of-the-art micro-column techniques as a result of particle compaction. Reproducible extraction profiles are produced through the leaching of soil with a linear gradient of 0.05 mol L(-1) ammonium sulphate to 0.11 mol L(-1) acetic acid using a high pressure liquid chromatography (HPLC) quaternary pump, and the continuous monitoring of the elements in the leachate with inductively coupled plasma mass spectrometry (ICP-MS). Quantification of the procedure is achieved with an external flow injection (FI) calibration method. Flow rate and FB column length were investigated as critical parameters to the efficiency of the extraction methodology. It was found that an increase in the column length from 10 to 20 cm using a flow rate of 0.15 mL min(-1) produced the same increase in extracted elemental concentration as an increase in flow rate from 0.15 to 0.30 mL min(-1). In both examples, the increase in the concentration of elements leached from the soil may be ascribed to the increase in the concentration gradient between the solid and liquid. The exhaustive nature of the technique defines the maximum leachable concentration within the operationally defined leaching parameters of the exchangeable phase, providing a more accurate assessment of the risk associated with the elements in the soil for the phase providing the greatest risk to the environment. The multi-elemental high sensitivity nature of the on-line detector provides an accurate determination of the associations present between the elements in the soil, and the identification of multiple phases within the exchangeable phase through the presence of multiple peaks in the extraction profiles. It is possible through the deconvolution of these extraction profiles that the concentration corresponding to the peaks identified can be defined.

  10. Downhole steam generator having a downhole oxidant compressor

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

  11. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    1982-01-01

    It is known that the addition of phosphate buffer to two polymer aqueous phase systems has a strong effect on the partition behavior of cells and other particles in such mixtures. The addition of sodium phosphate to aqueous poly(ethylene glycol) dextran phase systems causes a concentration-dependent shift in binodial on the phase diagram, progressively lowering the critical conditions for phase separation as the phosphate concentration is increased. Sodium chloride produces no significant shift in the critical point relative to the salt-free case. Accurate determinations of the phase diagram require measurements of the density of the phases; data is presented which allows this parameter to be calculated from polarimetric measurements of the dextran concentrations of both phases. Increasing polymer concentrations in the phase systems produce increasing preference of the phosphate for the dextran-rich bottom phase. Equilibrium dialysis experiments showed that poly(ethylene glycol) effectively rejected phosphate, and to a lesser extent chloride, but that dextran had little effect on the distribution of either salt. Increasing ionic strength via addition of 0.15 M NaCl to phase systems containing 0.01 M phosphate produces an increased concentration of phosphate ions in the bottom dextran-rich phase, the expected effect in this type of Donnan distribution.

  12. Candidate space processing techniques for biomaterials other than preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1976-01-01

    The advantages of performing the partition and countercurrent distribution (CCD) of cells in phase separated aqueous polymer systems under reduced gravity were assessed. Other possible applications considered for the space processing program include the freezing front separation of cells, adsorption of cells at the air-water interface, and the macrophage electrophoretic mobility test for cancer.

  13. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs.

    PubMed

    Fitzpatrick, Megan J; Mathewson, Paul D; Porter, Warren P

    2015-01-01

    Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model.

  14. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs

    PubMed Central

    Fitzpatrick, Megan J.; Mathewson, Paul D.; Porter, Warren P.

    2015-01-01

    Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model. PMID:26308207

  15. Rapid isolation and purification of phorbol esters from Jatropha curcas by high-speed countercurrent chromatography.

    PubMed

    Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo

    2015-03-18

    In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum.

  16. SEPARATION OF THE MINOR FLAVONOLS FROM FLOS GOSSYPII BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY

    PubMed Central

    Yang, Yi; Zhao, Yongxin; Gu, Dongyu; Ayupbek, Amatjan; Huang, Yun; Dou, Jun; Ito, Yoichiro; Zhang, Tianyou; Aisa, Haji Akber

    2010-01-01

    An effective high-speed countercurrent chromatography (HSCCC) method was established for further separation and purification of four minor flavonols in addition to five major flavonols which were reported by our previous study from extracts of Flos Gossypii. HSCCC was performed with three two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (7.5:15:6:7, v/v), (2.5:15:2:7, v/v) and (0:1:0:1, v/v). The separation was repeated 3 times, and 3.8 mg of 8-methoxyl-kaempferol-7-O-β-D-rhamnoside (HPLC purity 98.27%), 6.7 mg of astragalin (HPLC purity 94.18%), 3.3 mg of 4′-methoxyl-quercetin-7-O-β-D-glucoside (HPLC purity 94.30%) and 8.2 mg of hyperoside (HPLC purity 93.48%) were separated from 150 mg of the crude sample. The chemical structures of the flavonols were confirmed by MS, 1H NMR and 13C NMR. Meanwhile, the results indicated that the target compound with smaller K value (<0.5) can be separated by increasing column length of HSCCC. And four separation rules of flavonols according to the present study and references were summarized, which can be used as a useful guide for separation of flavonols by HSCCC. PMID:21494318

  17. Separation and preparation of 6-gingerol from molecular distillation residue of Yunnan ginger rhizomes by high-speed counter-current chromatography and the antioxidant activity of ginger oils in vitro.

    PubMed

    Gan, Zhilin; Liang, Zheng; Chen, Xiaosong; Wen, Xin; Wang, Yuxiao; Li, Mo; Ni, Yuanying

    2016-02-01

    Molecular distillation residue (MD-R) from ginger had the most total phenol content of 247.6mg gallic acid equivalents per gram (GAE/g) among the ginger oils. High-speed counter-current chromatography (HSCCC) technique in semi-preparative scale was successfully performed in separation and purification of 6-gingerol from MD-R by using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10:2:5:7, v/v/v/v). The target compound was isolated, collected, purified by HSCCC in the head-tail mode, and then analyzed by HPLC. A total of 90.38±0.53mg 6-gingerol was obtained from 600mg MD-R, with purity of 99.6%. In addition, the structural identification of 6-gingerol was performed by EI/MS, (1)H NMR and (13)C NMR. Moreover, the orders of antioxidant activity were vitamin E (VE)>supercritical fluid extraction oleoresin (SFE-O)=MD-R=6-gingerol>molecular distillation essential oil (MD-EO) and butylated hydroxytoluene (BHT)=VE>6-gingerol>MD-R=SFE-O>MD-EO, respectively in 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging and β-Carotene bleaching. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Microwave-Assisted Extraction and Purification of Arctiin and Arctigenin from Fructus Arctii by High-Speed Countercurrent Chromatography.

    PubMed

    Lü, Haitao; Sun, Zhaoyun; Shan, Hu; Song, Jiying

    2016-03-01

    An efficient method for the rapid extraction, separation and purification of bioactive lignans, arctiin and arctigenin, from Fructus arctii by microwave-assisted extraction coupled with high-speed countercurrent chromatography was developed. The optimal extraction conditions of arctiin and arctigenin were evaluated by orthogonal array. Arctigenin could be converted from arctiin by hydrochloric acid hydrolysis. The separations were performed at a preparative scale with two-phase solvents composed of ethyl acetate-ethanol-water (5 : 1 : 5, v/v/v) for arctiin, and n-hexane-ethyl acetate-ethanol-water (4 : 4 : 3 : 4, v/v/v/v) for arctigenin. From 500 mg of crude extract sample, 122.3 mg of arctiin and 45.7 mg of arctigenin were obtained with the purity of 98.46 and 96.57%, and the recovery of 94.3 and 81.6%, respectively. Their structures were determined by comparison with the high-performance liquid chromatography retention time of standard substance as well as UV, FT-IR, electrospray ion source (ESI)-MS, (1)H-NMR and (13)C-NMR spectrum. According to the antioxidant activity assay, arctigenin had stronger 1,1-diphenyl-2-picrylhydrazyl free radicals scavenging activity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.

    PubMed

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2015-07-15

    The main procyanidins, including dimeric B2 and B5, trimeric C1, tetrameric and pentameric procyanidins, were isolated from unroasted cocoa beans (Theobroma cacao L.) using various techniques of countercurrent chromatography, such as high-speed countercurrent chromatography (HSCCC), low-speed rotary countercurrent chromatography (LSRCCC) and spiral-coil LSRCCC. Furthermore, dimeric procyanidins B1 and B7, which are not present naturally in the analysed cocoa beans, were obtained after semisynthesis of cocoa bean polymers with (+)-catechin as nucleophile and separated by countercurrent chromatography. In this way, the isolation of dimeric procyanidin B1 in considerable amounts (500mg, purity>97%) was possible in a single run. This is the first report concerning the isolation and semisynthesis of dimeric to pentameric procyanidins from T. cacao by countercurrent chromatography. Additionally, the chemical structures of tetrameric (cinnamtannin A2) and pentameric procyanidins (cinnamtannin A3) were elucidated on the basis of (1)H NMR spectroscopy. Interflavanoid linkage was determined by NOE-correlations, for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Thermally conductive porous element-based recuperators

    NASA Technical Reports Server (NTRS)

    Du, Jian Hua (Inventor); Chow, Louis C (Inventor); Lin, Yeong-Ren (Inventor); Wu, Wei (Inventor); Kapat, Jayanta (Inventor); Notardonato, William U. (Inventor)

    2012-01-01

    A heat exchanger includes at least one hot fluid flow channel comprising a first plurality of open cell porous elements having first gaps there between for flowing a hot fluid in a flow direction and at least one cold fluid flow channel comprising a second plurality of open cell porous elements having second gaps therebetween for flowing a cold fluid in a countercurrent flow direction relative to the flow direction. The thermal conductivity of the porous elements is at least 10 W/mK. A separation member is interposed between the hot and cold flow channels for isolating flow paths associated these flow channels. The first and second plurality of porous elements at least partially overlap one another to form a plurality of heat transfer pairs which transfer heat from respective ones of the first porous elements to respective ones of the second porous elements through the separation member.

  1. Suitability of frequency modulated thermal wave imaging for skin cancer detection-A theoretical prediction.

    PubMed

    Bhowmik, Arka; Repaka, Ramjee; Mulaveesala, Ravibabu; Mishra, Subhash C

    2015-07-01

    A theoretical study on the quantification of surface thermal response of cancerous human skin using the frequency modulated thermal wave imaging (FMTWI) technique has been presented in this article. For the first time, the use of the FMTWI technique for the detection and the differentiation of skin cancer has been demonstrated in this article. A three dimensional multilayered skin has been considered with the counter-current blood vessels in individual skin layers along with different stages of cancerous lesions based on geometrical, thermal and physical parameters available in the literature. Transient surface thermal responses of melanoma during FMTWI of skin cancer have been obtained by integrating the heat transfer model for biological tissue along with the flow model for blood vessels. It has been observed from the numerical results that, flow of blood in the subsurface region leads to a substantial alteration on the surface thermal response of the human skin. The alteration due to blood flow further causes a reduction in the performance of the thermal imaging technique during the thermal evaluation of earliest melanoma stages (small volume) compared to relatively large volume. Based on theoretical study, it has been predicted that the method is suitable for detection and differentiation of melanoma with comparatively large volume than the earliest development stages (small volume). The study has also performed phase based image analysis of the raw thermograms to resolve the different stages of melanoma volume. The phase images have been found to be clearly individuate the different development stages of melanoma compared to raw thermograms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Advances in studies on multi-stage countercurrent extraction technology in traditional Chinese medicine].

    PubMed

    Xie, Zhi-Peng; Liu, Xue-Song; Chen, Yong; Cai, Ming; Qu, Hai-Bin; Cheng, Yi-Yu

    2007-05-01

    Multi-stage countercurrent extraction technology, integrating solvent extraction, repercolation with dynamic and countercurrent extraction, is a novel extraction technology for the traditional Chinese medicine. This solvent-saving, energy-saving and high-extraction-efficiency technology can at the most drive active compounds to diffuse from the herbal materials into the solvent stage by stage by creating concentration differences between the herbal materials and the solvents. This paper reviewed the basic principle, the influence factors and the research progress and trends of the equipments and the application of the multi-stage countercurrent extraction.

  3. Synchronized mammalian cell culture: part I--a physical strategy for synchronized cultivation under physiological conditions.

    PubMed

    Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping

    2015-01-01

    Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This strategy, combined with population-resolved model analysis and parameter extraction as described in the accompanying paper, offers new possibilities for studies of cell lines and processes at levels of cell cycle and population under physiological conditions. © 2014 American Institute of Chemical Engineers.

  4. The 9th International Countercurrent Chromatography Conference held at Dominican University, Chicago, USA, August 1-3, 2016.

    PubMed

    Friesen, J Brent; McAlpine, James B; Chen, Shao-Nong; Pauli, Guido F

    2017-10-20

    The 9th International Countercurrent Chromatography Conference (CCC 2016) was held at Dominican University near Chicago, IL (USA), from August 1st-3rd, 2016. The biennial CCC 20XX conferences provide an opportunity for countercurrent chromatography and centrifugal partition chromatography (CCC/CPC) manufactures, marketers, theorists, and research scientists to gather together socially, learn from each other, and advance countercurrent separation technology. A synopsis of the conference proceedings as well as a series of short reviews of the special edition articles is included in this document. Many productive discussions and collegial conversation at CCC 2016 attested to the liveliness, connectivity, and productivity of the global countercurrent research community and bodes well for the success of the 10th conference at the University of Braunschweig, Germany on August 1-3, 2018. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. GASEOUS DISPOSAL PROCESS

    DOEpatents

    Ryan, R.F.; Thomasson, F.R.; Hicks, J.H.

    1963-01-22

    A method is described of removing gaseous radioactive Xe and Kr from water containing O. The method consists in stripping the gases from the water stream by means of H flowing countercurrently to the stream. The gases are then heated in a deoxo bed to remove O. The carrier gas is next cooled and passed over a charcoal adsorbent bed maintained at a temperature of about --280 deg F to remove the Xe and Kr. (AEC)

  6. Target-guided separation of Bougainvillea glabra betacyanins by direct coupling of preparative ion-pair high-speed countercurrent chromatography and electrospray ionization mass-spectrometry.

    PubMed

    Jerz, Gerold; Wybraniec, Sławomir; Gebers, Nadine; Winterhalter, Peter

    2010-07-02

    In this study, preparative ion-pair high-speed countercurrent chromatography was directly coupled to an electrospray ionization mass-spectrometry device (IP-HSCCC/ESI-MS-MS) for target-guided fractionation of high molecular weight acyl-oligosaccharide linked betacyanins from purple bracts of Bougainvillea glabra (Nyctaginaceae). The direct identification of six principal acyl-oligosaccharide linked betacyanins in the mass range between m/z 859 and m/z 1359 was achieved by positive ESI-MS ionization and gave access to the genuine pigment profile already during the proceeding of the preparative separation. Inclusively, all MS/MS-fragmentation data were provided during the chromatographic run for a complete analysis of substitution pattern. On-line purity evaluation of the recovered fractions is of high value in target-guided screening procedures and for immediate decisions about suitable fractions used for further structural analysis. The applied preparative hyphenation was shown to be a versatile screening method for on-line monitoring of countercurrent chromatographic separations of polar crude pigment extracts and also traced some minor concentrated compounds. For the separation of 760mg crude pigment extract the biphasic solvent system tert.-butylmethylether/n-butanol/acetonitrile/water 2:2:1:5 (v/v/v/v) was used with addition of ion-pair forming reagent trifluoroacetic acid. The preparative HSCCC-eluate had to be modified by post-column addition of a make-up solvent stream containing formic acid to reduce ion-suppression caused by trifluoroacetic acid and later significantly maximized response of ESI-MS/MS detection of target substances. A variable low-pressure split-unit guided a micro-eluate to the ESI-MS-interface for sensitive and direct on-line detection, and the major volume of the effluent stream was directed to the fraction collector for preparative sample recovery. The applied make-up solvent mixture significantly improved smoothness of the continuously measured IP-HSCCC-ESI-MS base peak ion trace in the experimental range of m/z 50-2200 by masking stationary phase bleeding and generating a stable single solvent phase for ESI-MS/MS detection. Immediate structural data were retrieved throughout the countercurrent chromatography run containing complete MS/MS-fragmentation pattern of the separated acyl-substituted betanidin oligoglycosides. Single ion monitoring indicated clearly the base-line separation of higher concentrated acylated betacyanin components. Copyright 2010 Elsevier B.V. All rights reserved.

  7. A mathematical model for the iron/chromium redox battery

    NASA Technical Reports Server (NTRS)

    Fedkiw, P. S.; Watts, R. W.

    1984-01-01

    A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.

  8. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1982-01-01

    Detailed physiochemical studies of dextran/poly(ethylene glycol) (PEG) two phase systems were carried out to characterize and provide understanding of the properties of the systems which determine cell partition and the electrophoretic behavior of phase drops responsible for electric field driven phase separation. A detailed study of the electrostatic and electrokinetic potentials developed in these systems was carried out. The salt partition was examined both in phase systems and with pure polymer solutions via equilibrium dialysis and mechanism of sulfate, chloride and phosphate partition shown to be exclusion by PEG rather than binding by dextran. Salt partition was shown to have a strong effect on the polymer compositions of the phases as well, an effect which produces large changes in the interfacial tension between them. These effects were characterized and the interfacial tension shown to obey a power law with respect to its dependence on the length of the tie line describing the system composition on a phase diagram. The electrostatic potential differences measured via salt bridges were shown to obey thermodynamic predictions. The electrophoretic mobilities measured were utilized to provide a partial test of Levine's incomplete theory of phase drop electrophoresis. The data were consistent with Levine's expression over a limited range of the variables tested.

  9. Colonization of the Hawaiian Archipelago via Johnston Atoll: a characterization of oceanographic transport corridors for pelagic larvae using computer simulation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Donald R.

    2006-08-01

    Larval transport between Johnston Atoll and the Hawaiian Archipelago was examined using computer simulation and high-resolution ocean current data. The effects of pelagic larval duration and spawning seasonality on long-distance transport and local retention were examined using a Lagrangian, individual-based approach. Retention around Johnston Atoll appeared to be low, and there appeared to be seasonal effects on both retention and dispersal. Potential larval transport corridors between Johnston Atoll and the Hawaiian Archipelago were charted. One corridor connects Johnston Atoll with the middle portion of the Hawaiian Archipelago in the vicinity of French Frigate Shoals. Another corridor connects Johnston Atoll with the lower inhabited islands in the vicinity of Kauai. Transport appears to be related to the subtropical countercurrent and the Hawaiian Lee countercurrent, both located to the west of the archipelago and flowing to the east. A new analytical tool, termed CONREC-IRC is presented for the quantification of spatial patterns.

  10. Gradient x Isocratic Elution CCC on the Isolation of Verbascoside and Other Phenylethanoids: Influence of the Complexity of the Matrix.

    PubMed

    Leitão, Gilda Guimarães; Pinto, Shaft Correa; de Oliveira, Danilo Ribeiro; Timoteo, Patrícia; Guimarães, Michelle Guedes; Cordova, Wilmer H Perera; Leitão, Suzana Guimarães

    2015-11-01

    Verbascoside is a phenylethanoid glycoside widely distributed in nature, especially among the order Lamiales, occurring in numerous plants that are constituents of folk medicine preparations. This natural compound, previously isolated by our group from the ethyl acetate extract of Lantana trifolia using the gradient approach in countercurrent chromatography, was now isolated from the butanol extract of the same plant and from Lippia alba f. intermedia (Verbenaceae) using countercurrent chromatography in either gradient or isocratic elution modes. The ethyl acetate extract of L. alba, rich in phenylethanoids and flavonoids, was fractionated using countercurrent chromatography in the step-gradient elution approach. The four-step solvent system was composed of n-hexane-ethyl acetate-n-butanol-water (4 : 10 : X : 10), where X = 1 (solvent system A), 3 (solvent system B), 5 (solvent system C), and 7 (solvent system D), and allowed for the isolation of verbascoside along with other phenylethanoids and flavonoids from both plants. Verbascoside and 2'-O-β-apiosylverbascoside were further isolated from the n-butanol extract of L. trifolia using the solvent system ethyl acetate-n-butanol-water 10 : 2 : 10 on an isocratic run. The difference in the complexity of the two plant extracts demanded different purification steps, which included a second high-speed countercurrent chromatography purification using the isocratic elution mode. Georg Thieme Verlag KG Stuttgart · New York.

  11. Counter-current chromatography: simple process and confusing terminology.

    PubMed

    Conway, Walter D

    2011-09-09

    The origin of counter-current chromatography is briefly stated, followed by a description of the mechanism of elution of solutes, which illustrates the elegance and simplicity of the technique. The CCC retention equation can be mentally derived from three facts; that a substance with a distribution coefficient of 0 elutes at the mobile phase solvent front (one mobile phase volume); and one with a distribution coefficient of 1 elutes at the column volume of mobile phase; and solutes with higher distribution coefficients elute at additional multiples of the stationary phase volume. The pattern corresponds to the classical solute retention equation for chromatography, V(R)=V(M)+K(C)V(S), K(C) not being limited to integer values. This allows the entire pattern of solute retention to be visualized on the chromatogram. The high volume fraction of stationary phase in CCC greatly enhances resolution. A survey of the names, symbols and definitions of several widely used chromatography and liquid-liquid distribution parameters in the IUPAC Gold Book and in a recent summary in LC-GC by Majors and Carr revealed numerous conflicts in both names and definitions. These will retard accurate dissemination of CCC research unless the discordance is resolved. It is proposed that the chromatography retention parameter, K(C), be called the distribution coefficient and that a new biphasic distribution parameter, K(Δ(A)), be defined for CCC and be called the species partition ratio. The definition of V(M) should be clarified. V(H) is suggested to represent the holdup volume and V(X) is suggested for the extra-column volume. H(V) and H(L) are suggested to represent the volume and length of a theoretical plate in CCC. Definitions of the phase ratio, β, conflict and should be clarified. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Sample selection and testing of separation processes

    NASA Technical Reports Server (NTRS)

    Karr, L. J.

    1985-01-01

    Phase partitioning, which has become an important tool for the separation and purification of biological materials, was studied. Instruments available for this technique were researched and a countercurrent distribution apparatus, the Biosheff MK2N, was purchased. Various proteins, polysaccharides and cells were studied as models to determine operating procedures and conditions for this piece of equipment. Results were compared with those obtained from other similar equipment, including a nonsynchronous coil planet centrifuge device. Additionally, work was done with affinity ligands attached to PEG, which can further enhance the separation capabilities of phase partitioning.

  13. Counter-current acid leaching process for copper azole treated wood waste.

    PubMed

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  14. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    PubMed

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef

    2009-10-09

    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also authentic reference materials.

  15. Preparative separation of phenolic compounds from Halimodendron halodendron by high-speed counter-current chromatography.

    PubMed

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-08-31

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3) and 3-O-methylquercetin (4). Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC). The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3) and 3-O-methylquercetin (4) (26.43% and 71.89%, respectively) in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5) at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1) at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2) at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  16. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  17. A completely automated flow, heat-capacity, calorimeter for use at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Rogers, P. S. Z.; Sandarusi, Jamal

    1990-11-01

    An automated, flow calorimeter has been constructed to measure the isobaric heat capacities of concentrated, aqueous electrolyte solutions using a differential calorimetry technique. The calorimeter is capable of operation to 700 K and 40 MPa with a measurement accuracy of 0.03% relative to the heat capacity of the pure reference fluid (water). A novel design encloses the calorimeter within a double set of separately controlled, copper, adiabatic shields that minimize calorimeter heat losses and precisely control the temperature of the inlet fluids. A multistage preheat train, used to efficiently heat the flowing fluid, includes a counter-current heat exchanger for the inlet and outlet fluid streams in tandem with two calorimeter preheaters. Complete system automation is accomplished with a distributed control scheme using multiple processors, allowing the major control tasks of calorimeter operation and control, data logging and display, and pump control to be performed simultaneously. A sophisticated pumping strategy for the two separate syringe pumps allows continuous fluid delivery. This automation system enables the calorimeter to operate unattended except for the reloading of sample fluids. In addition, automation has allowed the development and implementation of an improved heat loss calibration method that provides calorimeter calibration with absolute accuracy comparable to the overall measurement precision, even for very concentrated solutions.

  18. An improved design of spiral tube assembly for separation of proteins by high-speed counter-current chromatography.

    PubMed

    Dasarathy, Dhweeja; Ito, Yoichiro

    2015-10-30

    A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the constituent components. Published by Elsevier B.V.

  19. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    PubMed

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  20. Characterization of pigments from different high speed countercurrent chromatography wine fractions.

    PubMed

    Salas, Erika; Dueñas, Montserrat; Schwarz, Michael; Winterhalter, Peter; Cheynier, Véronique; Fulcrand, Hélène

    2005-06-01

    A red wine, made from Cabernet Sauvignon (60%) and Tannat (40%) cultivars, was fractionated by high speed countercurrent chromatography (HSCCC). The biphasic solvent system consisting of tert-butyl methyl ether/n-butanol/acetonitrile/water (2/2/1/5, acidified with 0.1% trifluoroacetic acid) was chosen for its demonstrated efficiency in separating anthocyanins. The different native and derived anthocyanins were identified on the basis of their UV-visible spectra, their elution time on reversed-phase high-performance liquid chromatography (HPLC), and their mass spectra, before and after thiolysis. The HSCCC method allowed the separation of different families of anthocyanin-derived pigments that were eluted in different fractions according to their structures. The hydrosoluble fraction was almost devoid of native anthocyanins. Further characterization (glucose quantification, UV-visible absorbance measurements) indicated that it contained flavanol and anthocyanin copolymers in which parts of the anthocyanin units were in colorless forms. Pigments in the hydrosoluble fraction showed increased resistance to sulfite bleaching and to the nucleophilic attack of water.

  1. Metal separations using aqueous biphasic partitioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less

  2. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  3. Carbon wastewater treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Simmons, G. M.; Dowler, W. L.

    1974-01-01

    A new powdered-carbon treatment process is being developed for the elimination of the present problems, associated with the disposal of biologically active sewage waste solids, and with water reuse. This counter-current flow process produces an activated carbon, which is obtained from the pyrolysis of the sewage solids, and utilizes this material to remove the adulterating materials from the water. Additional advantages of the process are the elimination of odors, the removal of heavy metals, and the potential for energy conservation.

  4. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    DTIC Science & Technology

    2015-12-31

    AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments

  5. Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study.

    PubMed

    Gavioli, Elena; Maier, Norbert M; Minguillón, Cristina; Lindner, Wolfgang

    2004-10-01

    A countercurrent chromatography protocol for support-free preparative enantiomer separation of the herbicidal agent 2-(2,4-dichlorphenoxy)propionic acid (dichlorprop) was developed utilizing a purposefully designed, highly enantioselective chiral stationary-phase additive (CSPA) derived from bis-1,4-(dihydroquinidinyl)phthalazine. Guided by liquid-liquid extraction experiments, a solvent system consisting of 10 mM CSPA in methyl tert-butyl ether and 100 mM sodium phosphate buffer (pH 8.0) was identified as a suitable stationary/mobile-phase combination. This solvent system provided an ideal compromise among stationary-phase retention, enantioselectivity, and well-balanced analyte distribution behavior. Using a commercial centrifugal partition chromatography instrument, complete enantiomer separations of up to 366 mg of racemic dichlorprop could be achieved, corresponding to a sample load being equivalent to the molar amount of CSPA employed. Comparison of the preparative performance characteristics of the CPC protocol with that of a HPLC separation using a silica-supported bis-1,4-(dihydroquinidinyl)phthalazine chiral stationary phase CSP revealed comparable loading capacities for both techniques but a significantly lower solvent consumption for CPC. With respect to productivity, HPLC was found to be superior, mainly due to inherent flow rate restrictions of the CPC instrument. Given that further progress in instrumental design and engineering of dedicated, highly enantioselective CSPAs can be achieved, CPC may offer a viable alternative to CSP-based HPLC for preparative-scale enantiomer separation.

  6. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  7. Two-phase damping and interface surface area in tubes with vertical internal flow

    NASA Astrophysics Data System (ADS)

    Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.

    2009-01-01

    Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.

  8. Scaling of Counter-Current Imbibition Process in Low-Permeability Porous Media, TR-121

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvoscek, A.R.; Zhou, D.; Jia, L.

    2001-01-17

    This project presents the recent work on imaging imbibition in low permeability porous media (diatomite) with X-ray completed tomography. The viscosity ratio between nonwetting and wetting fluids is varied over several orders of magnitude yielding different levels of imbibition performance. Also performed is mathematical analysis of counter-current imbibition processes and development of a modified scaling group incorporating the mobility ratio. This modified group is physically based and appears to improve scaling accuracy of countercurrent imbibition significantly.

  9. High-speed counter-current chromatography coupled online to high performance liquid chromatography-diode array detector-mass spectrometry for purification, analysis and identification of target compounds from natural products.

    PubMed

    Liang, Xuejuan; Zhang, Yuping; Chen, Wei; Cai, Ping; Zhang, Shuihan; Chen, Xiaoqin; Shi, Shuyun

    2015-03-13

    A challenge in coupling high-speed counter-current chromatography (HSCCC) online with high performance liquid chromatography (HPLC) for purity analysis was their time incompatibility. Consequently, HSCCC-HPLC was conducted by either controlling HPLC analysis time and HSCCC flow rate or using stop-and-go scheme. For natural products containing compounds with a wide range of polarities, the former would optimize experimental conditions, while the latter required more time. Here, a novel HSCCC-HPLC-diode array detector-mass spectrometry (HSCCC-HPLC-DAD-MS) was developed for undisrupted purification, analysis and identification of multi-compounds from natural products. Two six-port injection valves and a six-port switching valve were used as interface for collecting key HSCCC effluents alternatively for HPLC-DAD-MS analysis and identification. The ethyl acetate extract of Malus doumeri was performed on the hyphenated system to verify its efficacy. Five main flavonoids, 3-hydroxyphloridzin (1), phloridzin (2), 4',6'-dihydroxyhydrochalcone-2'-O-β-D-glucopyranoside (3, first found in M. doumeri), phloretin (4), and chrysin (5), were purified with purities over 99% by extrusion elution and/or stepwise elution mode in two-step HSCCC, and 25mM ammonium acetate solution was selected instead of water to depress emulsification in the first HSCCC. The online system shortened manipulation time largely compared with off-line analysis procedure and stop-and-go scheme. The results indicated that the present method could serve as a simple, rapid and effective way to achieve target compounds with high purity from natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    DOEpatents

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  11. Scaling of Two-Phase Flows to Partial-Earth Gravity

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Witte, Larry C.

    2003-01-01

    A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, Michael B.; Litster, Shawn, E-mail: litster@andrew.cmu.edu

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurablemore » regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.« less

  13. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  14. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  15. Development of "ultrasound-assisted dynamic extraction" and its combination with CCC and CPC for simultaneous extraction and isolation of phytochemicals.

    PubMed

    Zhang, Yuchi; Liu, Chunming; Li, Jing; Qi, Yanjuan; Li, Yuchun; Li, Sainan

    2015-09-01

    A new method for the extraction of medicinal herbs termed ultrasonic-assisted dynamic extraction (UADE) was designed and evaluated. This technique was coupled with counter-current chromatography (CCC) and centrifugal partition chromatography (CPC) and then applied to the continuous extraction and online isolation of chemical constituents from Paeonia lactiflora Pall (white peony) roots. The mechanical parameters, including the pitch and diameter of the shaft, were optimized by means of mathematical modeling. Furthermore, the configuration and mechanism of online UADE coupled with CCC and CPC were elaborated. The stationary phases of the two-phase solvent systems from CCC and CPC were utilized as the UADE solution. The extraction solution was pumped into the sample loop and then introduced into the CCC column; the target compounds were eluted with the lower aqueous phase of the two-phase solvent system. During the CCC separation, the extraction solution was continuously fed in the sample loop by turning the ten-port valve; the extraction solution was then pumped into the CPC column and eluted by the mobile phase of the two-phase solvent system mentioned above. When the first cycle of the UADE/CCC/CPC was completed, the second cycle experiment could be carried out, and so on. Four target compounds (albiflorin, benzoylpaeoniflorin, paeoniflorin, and galloylpaeoniflorin) with purities above 94.96% were successfully extracted and isolated online using the two-phase solvent system comprising ethyl acetate-n-butanol-ethanol-water (1:3.5:2:4.5, v/v/v/v). Compared with conventional extraction methods, the instrumental setup of the present method offers the advantages of automation and systematic extraction and isolation of natural products. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  16. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance.

    PubMed

    Ngo, Jennifer P; Ow, Connie P C; Gardiner, Bruce S; Kar, Saptarshi; Pearson, James T; Smith, David W; Evans, Roger G

    2016-11-01

    Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases, and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries and veins in the cortex are also arranged in a countercurrent fashion, as are descending and ascending vasa recta in the medulla. For countercurrent diffusion to occur, barriers to diffusion must be small. This appears to be characteristic of larger vessels in the renal cortex. There must also be gradients in the concentration of molecules between afferent and efferent vessels, with the transport of molecules possible in either direction. Such gradients exist for oxygen in both the cortex and medulla, but there is little evidence that large gradients exist for other molecules such as carbon dioxide, nitric oxide, superoxide, hydrogen sulfide, and ammonia. There is some experimental evidence for arterial-to-venous (AV) oxygen shunting. Mathematical models also provide evidence for oxygen shunting in both the cortex and medulla. However, the quantitative significance of AV oxygen shunting remains a matter of controversy. Thus, whereas the countercurrent arrangement of vasa recta in the medulla appears to have evolved as a consequence of the evolution of Henle's loop, the evolutionary significance of the intimate countercurrent arrangement of blood vessels in the renal cortex remains an enigma. Copyright © 2016 the American Physiological Society.

  17. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  18. Method of independently operating a group of stages within a diffusion cascade

    DOEpatents

    Benedict, Manson; Fruit, Allen J.; Levey, Horace B.

    1976-06-08

    1. A method of operating a group of the diffusion stages of a productive diffusion cascade with countercurrent flow, said group comprising a top and a bottom stage, which comprises isolating said group from said cascade, circulating the diffused gas produced in said top stage to the feed of said bottom stage while at the same time circulating the undiffused gas from said bottom stage to the feed of said top stage whereby major changes in

  19. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.

  20. Rivers in the sea - Can we quantify pigments in the Amazon and the Orinoco River plumes from space?

    NASA Technical Reports Server (NTRS)

    Muller-Karger, Frank E.; Walsh, John J.; Carder, Kendall L.; Zika, Rod G.

    1989-01-01

    Coastal Zone Color Scanner (CZCS) images of the western tropical Atlantic (1979-1982) were combined into monthly mean surface pigment fields. These suggest that Amazon River water flows along northeastern South America directly toward the Caribbean sea early in the year. After June, however, the North Brazil Current is shunted eastward, carrying a large fraction of Amazon water into the North Equatorial Countercurrent (NECC). This eastward flow causes diminished flow through the Caribbean, which permits northwestward dispersal of Orinoco River water due to local Ekman forcing. The Orinoco plume crosses the Caribbean, leading to seasonal variation in surface salinity near Puerto Rico. At least 50 percent of the pigment concentration estimated in these plumes seems due to viable phytoplankton.

  1. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Wang; X. Sun; H. Zhao

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.« less

  2. Features of two-phase flow in a microchannel of 0.05×20 mm

    NASA Astrophysics Data System (ADS)

    Ronshin, Fedor

    2017-10-01

    We have studied the two-phase flow in a microchannel with cross-section of 0.05×20 mm2. The following two-phase flow regimes have been registered: jet, bubble, stratified, annular, and churn ones. The main features of flow regimes in this channel such as formation of liquid droplets in all two-phase flows have been distinguished.

  3. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography◊

    PubMed Central

    Roque, Jose A.; Mazzola, Eugene P.; Ito, Yoichiro

    2014-01-01

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Colour Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) with the recently introduced highly polar organic/high-ionic strength aqueous solvent systems to separate Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ~3.5% Pk5 and ~0.7% Pk7. Multiple ~1.0 g portions of FD&C Yellow No. 5 (totaling 6.4 g dye) were separated, using the upper phase of the solvent system 1-BuOH/EtOHabs/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After applying a specially developed method for removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched mixture (~160 mg) of Pk5 and Pk7 (~46% and ~21%, respectively). Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ~ 61 mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7% (by HPLC at 254 nm). Pk7 (20.7 mg, ~83% purity) was recovered from the upper phase of the column content. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass spectrometry and several 1H and 13C nuclear magnetic resonance spectroscopic techniques (COSY, NOESY, HSQC, and HMBC). PMID:24755184

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less

  5. Cross-axis synchronous flow-through coil planet centrifuge for large-scale preparative counter-current chromatography. III. Performance of large-bore coils in slow planetary motion.

    PubMed

    Ito, Y; Zhang, T Y

    1988-11-25

    A preparative capability of the present cross-axis synchronous flow-through coil planet centrifuge was demonstrated with 0.5 cm I.D. multilayer coils. Results of the model studies with short coils indicated that the optimal separations are obtained at low revolutional speeds of 100-200 rpm in both central and lateral coil positions. Preparative separations were successfully performed on 2.5-10 g quantities of test samples in a pair of multilayer coils connected in series with a total capacity of 2.5 l. The sample loading capacity will be scaled up in several folds by increasing the column width.

  6. At-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography for bioassay-guided separation of antioxidants from vine tea (Ampelopsis grossedentata).

    PubMed

    Ma, Ruyi; Zhou, Rongrong; Tong, Runna; Shi, Shuyun; Chen, Xiaoqing

    2017-01-01

    Vine tea (Ampelopsis grossedentata), a widely used healthy tea, beverage and herbal medicine, exhibited strong antioxidant activity. However, systematic purification of antioxidants, especially for those with similar structures or polarities, is a challenging work. Here, we present a novel at-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography (HSCCC-Sephadex LH-20 CC) for rapid and efficient separation of antioxidants from vine tea target-guided by 1,1-diphenyl-2-picryl-hydrazyl radical-high performance liquid chromatography (DPPH-HPLC) experiment. A makeup pump, a six-port switching valve and a trapping column were served as interface. The configuration had no operational time and mobile phase limitations between two dimensional chromatography and showed great flexibility without tedious sample-handling procedure. Seven targeted antioxidants were firstly separated by stepwise HSCCC using petroleum ether-ethyl acetate-methanol-water (4:9:4:9, v/v/v/v) and (4:9:5:8, v/v/v/v) as solvent systems, and then co-eluted antioxidants were on-line trapped, concentrated and desorbed to Sephadex LH-20 column for further off-line purification by methanol. It is noted that six elucidated antioxidants with purity over 95% exhibited stronger activity than ascorbic acid (VC). More importantly, this at-line hyphenated strategy could sever as a rapid and efficient pathway for systematic purification of bioactive components from complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow.« less

  9. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    PubMed Central

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  10. Separation of three anthraquinone glycosides including two isomers by preparative high-performance liquid chromatography and high-speed countercurrent chromatography from Rheum tanguticum Maxim. ex Balf.

    PubMed

    Chen, Tao; Li, Hongmei; Zou, Denglang; Liu, Yongling; Chen, Chen; Zhou, Guoying; Li, Yulin

    2016-08-01

    Anthraquinone glycosides, such as chrysophanol 1-O-β-d-glucoside, chrysophanol 8-O-β-d-glucoside, and physion 8-O-β-d-glucoside, are the accepted important active components of Rheum tanguticum Maxim. ex Balf. due to their pharmacological properties: antifungal, antimicrobial, cytotoxic, and antioxidant activities. However, an effective method for the separation of the above-mentioned anthraquinone glycosides from this herb is not currently available. Especially, greater difficulty existed in the separation of the two isomers chrysophanol 1-O-β-d-glucoside and chrysophanol 8-O-β-d-glucoside. This study demonstrated an efficient strategy based on preparative high-performance liquid chromatography and high-speed countercurrent chromatography for the separation of the above-mentioned anthraquinone glycosides from Rheum tanguticum Maxim.ex Balf. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Locked-mode avoidance and recovery without external momentum input

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Gates, D. A.; Wolfe, S.; Rice, J. E.; Gao, C.; Wukitch, S.; Greenwald, M.; Hughes, J.; Marmar, E.; Scott, S.

    2014-10-01

    Error-field-induced locked-modes (LMs) have been studied in C-Mod at ITER toroidal fields without NBI fueling and momentum input. The use of ICRH heating in synch with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW and a transition into H-mode when PICRH > 2 MW. The recovery experiments consisted in applying ICRH power during the LM non-rotating phase successfully unlocking the core plasma. The ``induced'' toroidal rotation was in the counter-current direction, restoring the direction and magnitude of the toroidal flow before the LM formation, but contrary to the expected Rice-scaling in the co-current direction. However, the LM occurs near the LOC/SOC transition where rotation reversals are commonly observed. Once PICRH is turned off, the core plasma ``locks'' at later times depending on the evolution of ne and Vt. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT and DE-AC02-09CH11466 at PPPL.

  12. Permeability evolution of shale during spontaneous imbibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, N.; Karpyn, Z. T.; Liu, S.

    Shales have small pore and throat sizes ranging from nano to micron scales, low porosity and limited permeability. The poor permeability and complex pore connectivity of shales pose technical challenges to (a) understanding flow and transport mechanisms in such systems and, (b) in predicting permeability changes under dynamic saturation conditions. This paper presents quantitative experimental evidence of the migration of water through a generic shale core plug using micro CT imaging. In addition, in-situ measurements of gas permeability were performed during counter-current spontaneous imbibition of water in nano-darcy permeability Marcellus and Haynesville core plugs. It was seen that water blocksmore » severely reduced the effective permeability of the core plugs, leading to losses of up to 99.5% of the initial permeability in experiments lasting 30 days. There was also evidence of clay swelling which further hindered gas flow. When results from this study were compared with similar counter-current gas permeability experiments reported in the literature, the initial (base) permeability of the rock was found to be a key factor in determining the time evolution of effective gas permeability during spontaneous imbibition. With time, a recovery of effective permeability was seen in the higher permeability rocks, while becoming progressively detrimental and irreversible in tighter rocks. Finally, these results suggest that matrix permeability of ultra-tight rocks is susceptible to water damage following hydraulic fracturing stimulation and, while shut-in/soaking time helps clearing-up fractures from resident fluid, its effect on the adjacent matrix permeability could be detrimental.« less

  13. Permeability evolution of shale during spontaneous imbibition

    DOE PAGES

    Chakraborty, N.; Karpyn, Z. T.; Liu, S.; ...

    2017-01-05

    Shales have small pore and throat sizes ranging from nano to micron scales, low porosity and limited permeability. The poor permeability and complex pore connectivity of shales pose technical challenges to (a) understanding flow and transport mechanisms in such systems and, (b) in predicting permeability changes under dynamic saturation conditions. This paper presents quantitative experimental evidence of the migration of water through a generic shale core plug using micro CT imaging. In addition, in-situ measurements of gas permeability were performed during counter-current spontaneous imbibition of water in nano-darcy permeability Marcellus and Haynesville core plugs. It was seen that water blocksmore » severely reduced the effective permeability of the core plugs, leading to losses of up to 99.5% of the initial permeability in experiments lasting 30 days. There was also evidence of clay swelling which further hindered gas flow. When results from this study were compared with similar counter-current gas permeability experiments reported in the literature, the initial (base) permeability of the rock was found to be a key factor in determining the time evolution of effective gas permeability during spontaneous imbibition. With time, a recovery of effective permeability was seen in the higher permeability rocks, while becoming progressively detrimental and irreversible in tighter rocks. Finally, these results suggest that matrix permeability of ultra-tight rocks is susceptible to water damage following hydraulic fracturing stimulation and, while shut-in/soaking time helps clearing-up fractures from resident fluid, its effect on the adjacent matrix permeability could be detrimental.« less

  14. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    PubMed

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  15. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    PubMed Central

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  16. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  17. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.

  18. Using artificial intelligence to improve identification of nanofluid gas-liquid two-phase flow pattern in mini-channel

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin

    2018-01-01

    This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  19. Two phase flow bifurcation due to turbulence: transition from slugs to bubbles

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2015-09-01

    The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.

  20. The separation of flavonoids from Pongamia pinnata using combination columns in high-speed counter-current chromatography with a three-phase solvent system.

    PubMed

    Yin, Hao; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; Luo, Xiongming; Nan, Haihan; He, Sha

    2013-11-08

    The mangrove plant Pongamia pinnata (Leguminosae) is well known as a plant pesticide. Previous studies have indicated that the flavonoids are responsible of the biological activities of the plant. A new high-speed counter-current chromatography (HSCCC) method for the separation of three flavonoids, karanjin (1), pinnatin (2), and pongaflavone (3), from P. pinnata was developed in the present study. The lower and intermediate phase (LP and IP) of a new three-phase solvent system, n-hexane-acetonitrile-dichloromethane-water, at a volume ratio of 5:5:1:5, were used as the stationary phases, while the upper phase (UP) was used as the mobile phase, and the volume ratio between the stationary phases in the CCC column could be tuned by varying the initial pumped volume ratio of the stationary phases. The CCC columns containing all three phases of the solvent system were considered combination columns. According to the theories of combination column, it is possible to optimize the retention time of the target compounds by varying the volume ratio of the stationary phases in the HSCCC combination columns, as well as the suitable volume ratios of the stationary phases for the separation of the target compounds were predicted from the partition coefficients of the compounds in the three-phase solvent system. Then, three HSCCC separations using the combination columns with initial pumped LP:IP volume ratios of 1:0, 0.9:0.1, and 0.7:0.3 were performed separately based on the prediction. Three target compounds were prepared with high purity when the initial pumped volume ratio of the stationary phases was 0.9:0.1. The baseline separation of compounds 2 and 3 was achieved on the combination column with an initial pumped volume ratio of 0.7:0.3. Furthermore, the three experiments clearly demonstrated that the retentions and resolutions of the target compounds increased with an increasing volume ratio of IP, which is consistent with the prediction for the retention times for the solutes on combination columns. The method proposed here reduces the need for solvent selection compared with the conventional method and may have broad potential applicability in the preparation of natural products. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. DSMC simulation of two-phase plume flow with UV radiation

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-01

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  2. Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.

    This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.

  3. On-line coupling of counter-current chromatography and macroporous resin chromatography for continuous isolation of arctiin from the fruit of Arctium lappa L.

    PubMed

    Guo, Mengzhe; Liang, Junling; Wu, Shihua

    2010-08-13

    In this work, we have developed a novel hybrid two-dimensional counter-current chromatography and liquid chromatography (2D CCC x LC) system for the continuous purification of arctiin from crude extract of Arctium lappa. The first dimensional CCC column has been designed to fractionalize crude complex extract into pure arctiin effluent using a one-component organic/salt-containing system, and the second dimensional LC column has been packed with macroporous resin for on-line adsorption, desalination and desorption of arctiin which was effluent purified from the first CCC dimension. Thus, the crude arctiin mixture has been purified efficiently and conveniently by on-line CCC x LC in spite of the use of a salt-containing solvent system in CCC separation. As a result, high purity (more than 97%) of arctiin has been isolated by repeated injections both using the ethyl acetate-8% sodium chloride aqueous solution and butanol-1% sodium chloride aqueous solution. By contrast with the traditional CCC processes using multi-component organic/aqueous solvent systems, the present on-line CCC x LC process only used a one-component organic solvent and thus the solvent is easier to recover and regenerate. All of used solvents such as ethyl acetate, n-butanol and NaCl aqueous solution are low toxicity and environment-friendly. Moreover, the lower phase of salt-containing aqueous solution used as mobile phase, only contained minor organic solvent, which will save much organic solvent in continuous separation. In summary, our results indicated that the on-line hybrid 2D CCC x LC system using one-component organic/salt-containing aqueous solution is very promising and powerful tool for high-throughput purification of arctiin from fruits of A. lappa. 2010 Elsevier B.V. All rights reserved.

  4. Open-type miniature heat pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliev, L.L.

    1994-01-01

    The hypothesis that systems of thermoregulation, similar to open-type micro heat pipes, exist in nature (soils, living organisms, plants) and in a number of technological processes (drying, thermodynamic cycles on solid adsorbents) is considered. The hydrodynamics and heat transfer in such thermoregulation systems differ from the hydrodynamics and heat transfer in classical heat pipes, since their geometrical dimensions are extremely small (dozens of microns), adhesion forces are powerful, the effect of the field of capillary and gravitational forces is significant, and strong interaction between counter-current flows of vapor and liquid takes place.

  5. Isolation and purification of orientin and vitexin from Trollius chinensis Bunge by high-speed counter-current chromatography.

    PubMed

    Yu, Xiao-Xue; Huang, Jie-Yun; Xu, Dan; Xie, Zhi-Yong; Xie, Zhi-Sheng; Xu, Xin-Jun

    2014-01-01

    Orientin and vitexin are the two main bioactive compounds in Trollius chinensis Bunge. In this study, a rapid method was established for the isolation and purification of orientin and vitexin from T. chinensis Bunge using high-speed counter-current chromatography in one step, with a solvent system of ethyl acetate-ethanol-water (4:1:5, v/v/v). A total of 9.8 mg orientin and 2.1 mg vitexin were obtained from 100 mg of the ethyl acetate extract, with purities of 99.2% and 96.0%, respectively. Their structures were identified by UV, MS and NMR. The method was efficient and convenient, which could be used for the preparative separation of orientin and vitexin from T. chinensis Bunge.

  6. High-speed counter-current chromatography in separation of betacyanins from flowers of red Gomphrena globosa L. cultivars.

    PubMed

    Spórna-Kucab, Aneta; Hołda, Ewelina; Wybraniec, Sławomir

    2016-10-15

    Antioxidant and possible chemopreventive properties of betacyanins, natural plant pigments, contribute to a growing interest in their chemistry and separation. Mixtures of betacyanins from fresh red Gomphrena globosa L. cultivar flowers were separated in three highly polar solvent systems by high-speed counter-current chromatography (HSCCC) for a direct comparison of their separation effectiveness. Three samples of crude extract (600mg) were run on semi-preparative scale in solvent system (NH4)2SO4soln - EtOH (2.0:1.0, v/v) (system I) and the modified systems: EtOH - ACN - 1-PrOH - (NH4)2SO4satd.soln - H2O (0.5:0.5:0.5:1.2:1.0, v/v/v/v/v) (system II) and EtOH - ACN - (NH4)2SO4satd.soln - H2O (1.0:0.5:1.2:1.0, v/v/v/v) (system III). The systems were used in the head-to-tail (system I) or tail-to-head (systems II and III) mode. The flow rate of the mobile phase was 2.0ml/min and the column rotation speed was 860rpm. The retention of the stationary phase was 52.0% (system I), 80.2% (systems II) and 82.0% (system III). The betacyanins in the crude extract as well as HSCCC fractions were analyzed by LC-MS/MS. System I was applied for the first time in HSCCC for the separation of betacyanins and was quite effective in separation of amaranthine and 17-decarboxy-amaranthine (αI=1.19) and very effective for 17-decarboxy-amaranthine and betanin (αI=2.20). Modification of system I with acetonitrile (system III) as well as acetonitrile and propanol (system II) increased their separation effectiveness. Systems II-III enable complete separation of 17-decarboxy-amaranthine (KD(II)=2.94,KD(III)=2.42) and betanin (KD(II)=2.46,KD(III)=1.10) as well as betanin and gomphrenin I (KD(II)=1.62, KD(III)=0.74). In addition, separation of amaranthine and 17-decarboxy-amaranthine is the most effective in system II, therefore, this system proved to be the most suitable for the separation of all polar betacyanins. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Counter-current carbon dioxide purification of partially deacylated sunflower oil

    USDA-ARS?s Scientific Manuscript database

    High oleic sunflower oil was partially deacylated by propanolysis to produce a mixture of diglycerides and triglycerides. To remove by-product fatty acid propyl esters (FAPEs) from this reaction mixture, a liquid carbon dioxide (L-CO2) counter-current fractionation method was developed. The fracti...

  8. New results in gravity dependent two-phase flow regime mapping

    NASA Astrophysics Data System (ADS)

    Kurwitz, Cable; Best, Frederick

    2002-01-01

    Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .

  9. Regimes of Two-Phase Flow in Short Rectangular Channel

    NASA Astrophysics Data System (ADS)

    Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.

    2009-08-01

    Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.

  10. Gas-water two-phase flow characterization with Electrical Resistance Tomography and Multivariate Multiscale Entropy analysis.

    PubMed

    Tan, Chao; Zhao, Jia; Dong, Feng

    2015-03-01

    Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography.

    PubMed

    Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues

    2014-04-11

    Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Modeling two-phase flow in PEM fuel cell channels

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.

  13. Experimental Investigation of two-phase nitrogen Cryo transfer line

    NASA Astrophysics Data System (ADS)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  14. Experimental measurement of oil-water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    NASA Astrophysics Data System (ADS)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-09-01

    Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.

  15. A Shunt Model of the Inner Medullary Nephron with Pre-Bend Transitions

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. T.; Hegarty, A. F.; Thomas, S. R.

    2009-09-01

    Mathematical models of the renal medulla face the problem of representing water and solute transfer among tens of thousands of nephrons and blood vessels of various lengths, arranged in countercurrent fashion. Published models fall into two broad categories with respect to this issue: multi-nephron models, which explicitly represent a large number of individual nephrons, or lumped models with virtual shunts that represent the turning back of nephrons and vessels at varying depths. Shunt models have the advantage of a compact description and relatively rapid execution time but are ill-suited to faithfully represent features such as prebend transitions of epithelial permeabilities in nephrons of different lengths. A new shunt model approach that can accommodate pre-bend transitions of nephrons at all medullary depths is presented in this work together with the results of simulation of predicted flows and concentrations.

  16. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  17. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  18. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  19. Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions

    NASA Astrophysics Data System (ADS)

    Longeot, Matthieu J.; Best, Frederick R.

    1995-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.

  20. Design and numerical simulation on an auto-cumulative flowmeter in horizontal oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang

    2017-11-01

    In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

  1. Design and numerical simulation on an auto-cumulative flowmeter in horizontal oil-water two-phase flow.

    PubMed

    Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang

    2017-11-01

    In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

  2. Pore-level influence of micro-fracture parameters on visco-capillary behavior of two-phase displacements in porous media

    NASA Astrophysics Data System (ADS)

    Rokhforouz, M. R.; Akhlaghi Amiri, H. A.

    2018-03-01

    In this work, coupled Cahn-Hilliard phase field and Navier-Stokes equations were solved using finite element method to address the effects of micro-fracture and its characterizations on water-oil displacements in a heterogeneous porous medium. Sensitivity studies at a wide range of viscosity ratios (M) and capillary numbers (Ca), and the resultant log Ca-log M stability phase diagram, revealed that in both media, with/without fracture, the three regimes of viscous fingering, capillary fingering and stable displacement similarly occur. However, presence of the fracture caused water channeling phenomenon which resulted in reduction of the number of active fingers and hence the final oil recovery factor. At high Ca (especially in the stable regime, with log Ca ≥ -2.5 and log M ≥ 0), recovery factor for the fractured medium was relatively identical with the non-fractured one. At log M ≥ 0, the fracture was fully swept, but flow instabilities were observed inside the fracture at lower M values, especially for log Ca > -4.6. In the case of the fractured medium at log Ca = -4.6 and log M = 0 (capillary dominant flow), it is observed that the primary breakthrough took place by a finger progressed through the matrix, not those channeled through the fracture. Geometrical properties of the fracture, including length, aperture and orientation, highly affected both displacement profile and efficiency. The fracture length inversely influenced the oil recovery factor. It was observed that there is a critical fracture width (almost half of the medium average pore diameter) at which the recovery factor of the medium during displacement is minimum, compared to the media having thinner and thicker fractures. Minor channeling effect in the media with thinner fracture and larger fracture swept volume as well as high fracture/matrix cross flow in the media with thicker fracture were detected as the main cause of this non-monotonic behavior. In the models with thick fractures (with the thickness higher than the average pore diameter), considerable trapped oil volumes were observed inside the fracture at low M values. The fracture orientation had the most impressive effect on oil recovery compared to the other studied parameters; where the oil recovery factor incremented more than 20% as the fracture rotated 90° from flow direction. Due to the dominant effect of the channeling phenomenon, the change in the medium wettability from slightly oil-wet to slightly water-wet, did not considerably affect the displacement profile in the fractured medium. However, oil recovery factor increased as the medium became more water-wet. The fracture area was fully swept by the injected water in the oil-wet and neutral-wet media. However, flow instabilities were observed inside the fracture of the water-wet medium due to counter-current imbibition between fracture/matrix. Micro-scale mechanisms of pore doublet effect, interface coalesce, snap-off and reverse movements were captured during the studied unstable displacements.

  3. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite.

    PubMed

    Chen, Desheng; Zhao, Hongxin; Hu, Guoping; Qi, Tao; Yu, Hongdong; Zhang, Guozhi; Wang, Lina; Wang, Weijing

    2015-08-30

    An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite was developed. In this study, a mixed solvent system of di(2-ethylhexyl) phosphate (D2EHPA) and tri-n-butyl phosphate (TBP) diluted with kerosene was used for the selective extraction of vanadium from a hydrochloric acid leaching solution that contained low vanadium concentration with high concentrations of iron and impurities of Ca, Mg, and Al. In the extraction process, the initial solution pH and the phase ratio had considerable functions in the extraction of vanadium from the hydrochloric acid leaching solution. Under optimal extraction conditions (i.e., 30-40°C for 10min, 1:3 phase ratio (O/A), 20% D2EHPA concentration (v/v), and 0-0.8 initial solution pH), 99.4% vanadium and only 4.2% iron were extracted by the three-stage counter-current extraction process. In the stripping process with H2SO4 as the stripping agent and under optimal stripping conditions (i.e., 20% H2SO4 concentration, 5:1 phase ratio (O/A), 20min stripping time, and 40°C stripping temperature), 99.6% vanadium and only 5.4% iron were stripped by the three-stage counter-current stripping process. The stripping solution contained 40.16g/LV2O5,0.691g/L Fe, 0.007g/L TiO2, 0.006g/L SiO2 and 0.247g/L CaO. A V2O5 product with a purity of 99.12% V2O5 and only 0.026% Fe was obtained after the oxidation, precipitation, and calcination processes. The total vanadium recovered from the hydrochloric acid leaching solution was 85.5%. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    NASA Astrophysics Data System (ADS)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  5. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    PubMed

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  6. Chromium (Ⅵ) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption.

    PubMed

    Wang, Wenqiang

    2018-01-01

    To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%. Copyright © 2017. Published by Elsevier Ltd.

  7. On shapes and motion of an elongated bubble in downward liquid pipe flow

    NASA Astrophysics Data System (ADS)

    Fershtman, A.; Babin, V.; Barnea, D.; Shemer, L.

    2017-11-01

    In stagnant liquid, or in a steady upward liquid pipe flow, an elongated (Taylor) bubble has a symmetric shape. The translational velocity of the bubble is determined by buoyancy and the liquid velocity profile ahead of it. In downward flow, however, the symmetry of the bubble nose can be lost. Taylor bubble motion in downward flow is important in numerous applications such as chemical plants and cooling systems that often contain countercurrent gas-liquid flow. In the present study, the relation between the Taylor bubble shape and its translational velocity is investigated experimentally in a vertical pipe for various downward liquid flow rates. At higher downward velocities, the bubble may be forced by the background flow to propagate downward against buoyancy. In order to include those cases as well in our experimental analysis, the bubbles were initially injected into stagnant liquid, whereas the downward flow was initiated at a later stage. This experimental procedure allowed us to identify three distinct modes of translational velocities for a given downward background liquid flow; each velocity corresponds to a different bubble shape. Hydrodynamic mechanisms that govern the transition between the modes observed in the present study are discussed.

  8. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  9. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    PubMed

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  10. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  11. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  12. Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation

    NASA Astrophysics Data System (ADS)

    Saljoshi, P. S.; Autee, A. T.

    2017-09-01

    Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.

  13. Two-phase flow measurements with advanced instrumented spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  14. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography☆

    PubMed Central

    Weisz, Adrian; Ridge, Clark D.; Mazzola, Eugene P.; Ito, Yoichiro

    2015-01-01

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5 mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1 g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3 mg of B of >85% purity, and 91 mg of C of 65–72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. PMID:25591404

  15. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography.

    PubMed

    Weisz, Adrian; Ridge, Clark D; Mazzola, Eugene P; Ito, Yoichiro

    2015-02-06

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3mg of B of >85% purity, and 91 mg of C of 65-72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. Published by Elsevier B.V.

  16. A novel mechanical model for phase-separation in debris flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  17. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  18. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  19. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  20. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  1. Windflow circulation patterns in a coastal dune blowout, south coast of Lake Michigan

    USGS Publications Warehouse

    Fraser, G.S.; Bennett, S.W.; Olyphant, G.A.; Bauch, N.J.; Ferguson, V.; Gellasch, C.A.; Millard, C.L.; Mueller, B.; O'Malley, P. J.; Way, J.N.; Woodfield, M.C.

    1998-01-01

    The windflow patterns in a large active blowout in a coastal dune on the southern shore of Lake Michigan were intensively monitored during a two-day period when the predominant winds shifted from onshore (Day 1) to offshore (Day 2). The wind data were used in conjunction with mapped geomorphic features and sedimentologic characteristics to infer the following aspects of blowout evolution: (1) Prevailing winds are transformed considerably once they enter the blowout. Flow separation occurs when offshore winds enter the blowout over the steep back wall. Separated flows may, in turn, induce countercurrent flows within the trough. Flow expansion and deceleration occur when onshore winds enter over gently sloping walls at the front of the blowout. (2) Maximum erosion occurs along the deflationary floor near the entrance to the blowout, and lateral extensional lobes are also expanding the blowout to the east. Sand avalanches down the eastern and western lateral walls toward the deflationary floor where it is moved toward the rear of the blowout and up the ramp at the south end. Sand leaves the blowout as a series of depositional lobes prograding out onto the surface of the host dune along the south and east walls. (3) Vegetation prevents expansion of the blowout in certain directions and impediments to flow, such as slump blocks, alter circulation patterns and sand transport paths. (4) Prevailing onshore winds deflate the floor and promote eastward expansion of lateral erosional lobes, whereas strong flows from the southwest apparently are the main cause of transport up the transportational ramp and over the south wall of the blowout.

  2. Monitoring of multiphase flows for superconducting accelerators and others applications

    NASA Astrophysics Data System (ADS)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  3. Separation of betacyanins from purple flowers of Gomphrena globosa L. by ion-pair high-speed counter-current chromatography.

    PubMed

    Spórna-Kucab, Aneta; Jagodzińska, Joanna; Wybraniec, Sławomir

    2017-03-17

    Betacyanins, known as antioxidants and chemopreventive natural compounds with colourful properties, were extracted from purple flowers of Gomphrena globosa L. belonging to the Amaranthaceae family and separated for the first time by ion-pair high-speed counter-current chromatography (HSCCC). The pigments were detected by LC-DAD-ESI-MS/MS technique. Separation of betacyanins (300mg) by HSCCC was accomplished in four solvent systems: tert-butyl methyl ether - butanol - acetonitrile - water (0.7% and 1.0% HFBA - heptafluorobutyric acid - system I and III) and tert-butyl methyl ether - butanol - methanol - water (0.7% and 1.0% HFBA - system II and IV) (2:2:1:5, v/v/v/v) in the head-to-tail mode. The mobile phase (aqueous phase) was run at 2.0ml/min and the column rotation speed was 860rpm. The applied systems enabled to study the influence of HFBA concentration as well as systems polarity on betacyanins separation. Comparison of the systems containing 0.7% HFBA (systems I-II) demonstrates that the replacement of acetonitrile by methanol increases the resolution (R s ) between all betacyanins and does not influence the retention of the stationary phase (S f =76%). Higher concentration of the acid in systems III-IV slightly decreases S f to 71% in the systems with 1.0% HFBA. Comparison of the resolution values for betacyanins in the systems with 0.7% and 1.0% HFBA demonstrates that higher concentration of the acid improves the separation effectiveness for all betacyanins as a result of increasing of the chemical affinity of the pigments to the organic stationary phase in HSCCC. The systems III-IV with 1% HFBA are the most effective for the separation of all the studied betacyanins. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  5. Microgravity Fluid Separation Physics: Experimental and Analytical Results

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. Michael; Schrage, Dean S.

    1997-01-01

    Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.

  6. Recovery of butanol by counter-current carbon dioxide fractionation with its potential application to butanol fermentation

    USDA-ARS?s Scientific Manuscript database

    A counter-current CO2 fractionation method was studied as a means to recover butanol (also known as 1-butanol or n-butanol) and other compounds that are typically obtained from biobutanol fermentation broth from aqueous solutions. The influence of operating parameters, such as solvent-to-feed ratio,...

  7. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  8. An inkjet-printed microfluidic device for liquid-liquid extraction.

    PubMed

    Watanabe, Masashi

    2011-04-07

    A microfluidic device for liquid-liquid extraction was quickly produced using an office inkjet printer. An advantage of this method is that normal end users, who are not familiar with microfabrication, can produce their original microfluidic devices by themselves. In this method, the printer draws a line on a hydrophobic and oil repellent surface using hydrophilic ink. This line directs a fluid, such as water or xylene, to form a microchannel along the printed line. Using such channels, liquid-liquid extraction was successfully performed under concurrent and countercurrent flow conditions. © The Royal Society of Chemistry 2011

  9. A two phase Mach number description of the equilibrium flow of nitrogen in ducts

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.; Adcock, J. B.

    1979-01-01

    Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.

  10. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Technical Reports Server (NTRS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-01-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  11. The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus

    PubMed Central

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708

  12. The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.

    PubMed

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-11-18

    The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

  13. Osthole induces apoptosis, suppresses cell-cycle progression and proliferation of cancer cells.

    PubMed

    Jarząb, Agata; Grabarska, Aneta; Kiełbus, Michał; Jeleniewicz, Witold; Dmoszyńska-Graniczka, Magdalena; Skalicka-Woźniak, Krystyna; Sieniawska, Elwira; Polberg, Krzysztof; Stepulak, Andrzej

    2014-11-01

    The aim of the present study was to determine the effects of osthole on cell proliferation and viability, cell-cycle progression and induction of apoptosis in human laryngeal cancer RK33 and human medulloblastoma TE671 cell lines. Cell viability was measured by means of the MTT method and cell proliferation by the 5-bromo-2-deoxyuridine (BrdU) incorporation assay. Cell-cycle progression was determined by flow cytometry, and induction of apoptosis by release of oligonucleosomes to the cytosol. The gene expression was estimated by a quantitative polymerase chain reaction (qPCR) method. High-performance counter-current chromatography (HPCCC) was applied for isolation of osthole from fruits of Mutellina purpurea. Osthole decreased proliferation and cell viability of cancer cells in a dose-dependent manner. The tested compound induced apoptosis, increased the cell numbers in G1 and decreased cell number in S/G2 phases of the cell cycle, differentially regulating CDKN1A and TP53 gene expression depending on cancer cell type. Osthole could be considered as a potential compound for cancer therapy and chemoprevention. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Two-phase flow in short horizontal rectangular microchannels with a height of 300 μm

    NASA Astrophysics Data System (ADS)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in a narrow short horizontal channel with a rectangular cross section is studied experimentally. The channel has a width of 10, 20, or 30 mm and a height of 300 μm. The specifics of formation of such two-phase flows are investigated. It is demonstrated that the regions of bubble and churn flow regimes grow and constrain the region of jet flow as the channel gets wider. The boundaries of the regions of annular and stratified flow regimes remain almost unaltered.

  15. Obtaining of Analytical Relations for Hydraulic Parameters of Channels With Two Phase Flow Using Open CFD Toolbox

    NASA Astrophysics Data System (ADS)

    Varseev, E.

    2017-11-01

    The present work is dedicated to verification of numerical model in standard solver of open-source CFD code OpenFOAM for two-phase flow simulation and to determination of so-called “baseline” model parameters. Investigation of heterogeneous coolant flow parameters, which leads to abnormal friction increase of channel in two-phase adiabatic “water-gas” flows with low void fractions, presented.

  16. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  17. How to Use Chromatography as a Science Teaching Aid.

    ERIC Educational Resources Information Center

    Ganis, Frank M.

    Presented are five procedures which permit the effective teaching of chromatography with equipment which is readily available, economical, and simple in design. The first procedure involves a study of solute partition in two immiscible solvents and of countercurrent distribution. The second illustrates the use of unidimensional ascending paper…

  18. Preparative isolation and purification of antioxidative diarylheptanoid derivatives from Alnus japonica by high-speed counter-current chromatography.

    PubMed

    Lim, Soon Sung; Lee, Min Young; Ahn, Hong Ryul; Choi, Soon Jung; Lee, Jae-Yong; Jung, Sang Hoon

    2011-12-01

    This study employed the online HPLC-2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)(+) bioassay to rapidly determine the antioxidant compounds occurring in the crude extract of Alnus japonica. The negative peaks of the ABTS(+) radical scavenging detection system, which indicated the presence of antioxidant activity, were monitored by measuring the decrease in absorbance at 734 nm. The ABTS(+)-based antioxidant activity profile showed that three negative peaks exhibited antioxidant activity. High-speed counter-current chromatography (HSCCC) was used for preparative scale separation of the three active peaks from the extract. The purity of the isolated compounds was analyzed by HPLC and their structures were identified by (1)H- and (13)C-nuclear magnetic resonance spectrometry (NMR), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum correlation (HSQC). Two solvent systems composed of n-hexane/ethylacetate/methanol/water (4:6:4:6, v/v) and of ethyl acetate/methanol/water (1:0.1:1, v/v) were performed in high-speed counter-current chromatography. Consequently, a total of 527 mg of hirsutanonol 5-O-β-D-glucopyranoside, 80.04 mg of 3-deoxohirsutenonol 5-O-β-D-glucopyranoside, and 91.0 mg of hirsutenone were obtained with purity of 94.7, 90.5, and 98.6%, respectively. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. PREPARATIVE ISOLATION AND PURIFICATION OF CHEMICAL CONSTITUENTS OF BELAMCANDA BY MPLC, HSCCC AND PREP-HPLC

    PubMed Central

    Wang, Xiaohong; Liang, Yong; Peng, Cuilin; Xie, Huichun; Pan, Man; Zhang, Tianyou; Ito, Yoichiro

    2010-01-01

    Combined with medium-pressure liquid chromatography (MPLC) and preparative high-pressure liquid chromatography (Prep-HPLC), high-speed countercurrent chromatography (HSCCC) was successfully applied for separation and purification of isoflavonoids from the extract of belamcanda. HSCCC separation was performed on a two-phase solvent system composed of methyl tert-butyl ether -ethyl acetate - n-butyl alcohol – acetonitrile −0.1% aqueous trifluoroacetic acid at a volume radio of 1:2:1:1:5. Semi-purified peak fractions from HSCCC separation were further purified by Prep-HPLC. Nine well-separated fractions were analyzed by HPLC-UV absorption spectrometry to determine their purities and characterized with ESI-MSn. Except for peaksland VII (unknown) seven compounds were identified as apocynin (peak II), mangiferin (peak III), 7-O-methylmangiferin (peak IV), hispidulin (peak V), 3′-hydroxyltectoridin (peak VI), iristectorin B (peak VII), isoiridin (peak IX). PMID:21552369

  20. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"

    NASA Astrophysics Data System (ADS)

    Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.

    2011-12-01

    Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.

  1. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    NASA Astrophysics Data System (ADS)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  2. Tutorial on Quantification of Differences between Single- and Two-Component Two-Phase Flow and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2003-01-01

    Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control systems for various gravity environments.

  3. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chordia, Lalit; Portnoff, Marc A.; Green, Ed

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO 2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO 2. Additional project tasks included building a hot air-to-sCO 2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated amore » number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO 2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.« less

  4. Characterizing the interaction between enantiomers of eight psychoactive drugs and highly sulfated-β-cyclodextrin by counter-current capillary electrophoresis.

    PubMed

    Asensi-Bernardi, Lucía; Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Sagrado, Salvador; Medina-Hernández, María José

    2014-01-01

    The estimation of apparent binding constants and limit mobilities of the complexes of the enantiomers that characterize the interaction of enantiomers with chiral selectors, in this case highly sulfated β-cyclodextrin, was approached using a simple and economic electrophoretic modality, the complete filling technique (CFT) in counter-current mode. The enantiomers of eight psychoactive drugs, four antihistamines (dimethindene, promethazine, orphenadrine and terfenadine) and four antidepressants (bupropion, fluoxetine, nomifensine and viloxazine) were separated for the first time for this cyclodextrin (CD). Estimations of thermodynamic and electrophoretic enantioselectivies were also performed. Results indicate that, in general, thermodynamic enantioselectivity is the main component explaining the high resolution found, but also one case suggests that electrophoretic enantioselectivity itself is enough to obtain a satisfactory resolution. CFT results advantageous compared with conventional capillary electrophoresis (CE) and partial filling technique (PFT) for the study of the interaction between drugs and chiral selectors. It combines the use of a simple fitting model (as in CE), when the enantiomers do not exit the chiral selector plug during the separation (i.e. mobility of electroosmotic flow larger than mobility of CD), and drastic reduction of the consumption (and cost; ~99.7%) of the CD reagent (as in PFT) compared with the conventional CE. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. A boiling and condensing experiment was built in which R-12 was used as the working fluid. A two-phase pump was used to circulate a freon mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown five times aboard the NASA KC-135 aircraft which simulates zero-g conditions by its parabolic flight trajectory. Test conditions included stratified and annual flow regimes in 1-g which became bubbly, slug, or annular flow regimes on 0-g. A portion of this work is the analysis of adiabatic flow regimes. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes.

  6. Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán

    2016-11-01

    Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.

  7. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, M.

    1977-10-01

    In view of the practical importance of the drift-flux model for two-phase flow analysis in general and in the analysis of nuclear-reactor transients and accidents in particular, the kinematic constitutive equation for the drift velocity has been studied for various two-phase flow regimes. The constitutive equation that specifies the relative motion between phases in the drift-flux model has been derived by taking into account the interfacial geometry, the body-force field, shear stresses, and the interfacial momentum transfer, since these macroscopic effects govern the relative velocity between phases. A comparison of the model with various experimental data over various flow regimesmore » and a wide range of flow parameters shows a satisfactory agreement.« less

  8. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  9. Counter-current carbon dioxide extraction of fat from soy skim

    USDA-ARS?s Scientific Manuscript database

    This research aims to investigate the use of counter-current carbon dioxide extraction method as a means to reduce residual fat in soy skim after the enzyme-assisted aqueous extraction of soybeans. Extractions with liquid CO2 at 25°C and 10.34 MPa and supercritical CO2 at 50°C and 25.16 MPa are comp...

  10. A novel 9 × 9 map-based solvent selection strategy for targeted counter-current chromatography isolation of natural products.

    PubMed

    Liang, Junling; Meng, Jie; Wu, Dingfang; Guo, Mengzhe; Wu, Shihua

    2015-06-26

    Counter-current chromatography (CCC) is an efficient liquid-liquid chromatography technique for separation and purification of complex mixtures like natural products extracts and synthetic chemicals. However, CCC is still a challenging process requiring some special technical knowledge especially in the selection of appropriated solvent systems. In this work, we introduced a new 9 × 9 map-based solvent selection strategy for CCC isolation of targets, which permit more than 60 hexane-ethyl acetate-methanol-water (HEMWat) solvent systems as the start candidates for the selection of solvent systems. Among these solvent systems, there are clear linear correlations between partition coefficient (K) and the system numbers. Thus, an appropriate CCC solvent system (i.e., sweet spot for K = 1) may be hit by measurement of k values of the target only in two random solvent systems. Besides this, surprisingly, we found that through two sweet spots, we could get a line ("Sweet line") where there are infinite sweet solvent systems being suitable for CCC separation. In these sweet solvent systems, the target has the same partition coefficient (K) but different solubilities. Thus, the better sweet solvent system with higher sample solubility can be obtained for high capacity CCC preparation. Furthermore, we found that there is a zone ("Sweet zone") where all solvent systems have their own sweet partition coefficients values for the target in range of 0.4 < K< 2.5 or extended range of 0.25 < K < 16. All results were validated by using 14 pure GUESSmix mimic natural products as standards and further confirmed by isolation of several targets including honokiol and magnolol from the extracts of Magnolia officinalis Rehd. Et Wils and tanshinone IIA from Salvia miltiorrhiza Bunge. In practice, it is much easier to get a suitable solvent system only by making a simple screening two to four HEMWat two-phase solvent systems to obtain the sweet line or sweet zone without special knowledge or comprehensive standards as references. This is an important advancement for solvent system selection and also will be very useful for isolation of current natural products including Traditional Chinese Medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Isolation of a furan fatty acid from Hevea brasiliensis latex employing the combined use of pH-zone-refining and conventional countercurrent chromatography.

    PubMed

    Englert, Michael; Ulms, Kerstin; Wendlinger, Christine; Vetter, Walter

    2016-02-01

    Furan fatty acids are valuable and bioactive minor fatty acids that usually contribute <0.1% to the fatty acid content of food samples. Their biological role still remains unclear as authentic furan fatty acid standards are not readily available and thorough experimental studies verifying the relevance of furan fatty acids are thus virtually impossible. An efficient protocol for the isolation of the furan fatty acid 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid from hydrolyzed and centrifuged latex of Hevea brasiliensis was developed using countercurrent chromatography. A first run using pH-zone-refining countercurrent chromatography provided 48.4 mg of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid from 210 mg latex extract in a purity of 95%. The purity was increased to 99% by means of one second run in conventional countercurrent chromatography mode. The Structure and purity of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid were determined by gas chromatography coupled to mass spectrometry and (1)H and (13)C NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  13. Two-Phase flow instrumentation for nuclear accidents simulation

    NASA Astrophysics Data System (ADS)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  14. Novel Design for Centrifugal Countercurrent Chromatography: II. Studies on Novel Geometries of Zigzag Toroidal Tubing

    PubMed Central

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The toroidal column using a zigzag pattern has been improved in both retention of the stationary phase and peak resolution. To further improve the retention of stationary phase and peak resolution, a series of novel geometric designs of tubing (plain, mid-clamping, flattened and flat-twisted tubing) was evaluated their performance in CCC. The results showed that the tubing which was flattened vertically against centrifugal force (vert-flattened tubing) produced the best peak resolution among them. Using vert-flattened tubing a series of experiments was performed to study the effects of column capacity and sample size. The results indicated that a 0.25 ml capacity column is ideal for analysis of small amount samples. PMID:20454530

  15. A practicable process for phenol removal with liquid surfactant membrane permeation column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Takeshi; Osaki, Katsuhiko; Nishiki, Tadaaki

    1997-05-01

    A practicable liquid surfactant membrane process for phenol removal is proposed with a stirred countercurrent column used as the liquid membrane contact equipment. The constituents of liquid membranes, such as internal aqueous phase and surfactant, the type of column, and the operating conditions for efficient and continuous performance of the liquid surfactant membrane process, have been examined. When NaOH solution was used as the internal aqueous phase and ECA4360J was used as the surfactant, the W/O emulsion was stable for the duration of column operation. More than 97% phenol could be removed from the feed solution. Nearly complete demulsification wasmore » also achieved by gentle agitation with an electrostatic demulsifier.« less

  16. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.

  17. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  18. DNS study of speed of sound in two-phase flows with phase change

    NASA Astrophysics Data System (ADS)

    Fu, Kai; Deng, Xiaolong

    2017-11-01

    Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.

  19. [Application of ultrasound counter currentextraction in patent of traditional Chinese medicine].

    PubMed

    Miao, Yan-ni; Wu, Bin; Yue, Xue-lian

    2015-07-01

    The patent information of ultrasound countercurrent extraction used in traditional Chinese medicine was analyzed in this paper by the samples from Derwent World Patent Database (DWPI) and the Chinese Patent Abstracts Database (CNABS). The application of ultrasound countercurrent was discussed with the patent applicant,the amount of the annual distribution, and the pharmaceutical raw materials and other aspects. While the technical parameters published in the patent was deeply analyzed, such as material crushing, extraction solvent, extraction time and temperature, extraction equipment and ultrasonic frequency. Thought above research, various technical parameters of ultrasound countercurrent extraction used in traditional Chinese was summarize. The analysis conclusion of the paper can be used in discovering the technical advantages, optimizing extraction conditions, and providing a reference to extraction technological innovation of traditional Chinese medicine.

  20. Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium

    NASA Astrophysics Data System (ADS)

    Rokhforouz, M. R.; Akhlaghi Amiri, H. A.

    2017-06-01

    Spontaneous imbibition is well-known to be one of the most effective processes of oil recovery in fractured reservoirs. However, the detailed pore-scale mechanisms of the counter-current imbibition process and the effects of different fluid/rock parameters on this phenomenon have not yet been deeply addressed. This work presents the results of a new pore-level numerical study of counter-current spontaneous imbibition, using coupled Cahn-Hilliard phase field and Navier-Stokes equations, solved by a finite element method. A 2D fractured medium was constructed consisting of a nonhomogeneous porous matrix, in which the grains were represented by an equilateral triangular array of circles with different sizes and initially saturated with oil, and a fracture, adjacent to the matrix, initially saturated with water and supported by low rate water inflow. Through invasion of water into the matrix, oil drops were expelled one by one from the matrix to the fracture, and in the matrix, water progressed by forming capillary fingerings, with characteristics corresponding to the experimental observations. The effects of wettability, viscosity ratio, and interfacial tension were investigated. In strongly water-wet matrix, with grain contact angles of θ < π/8, different micro-scale mechanisms were successfully captured, including oil film thinning and rupture, fluids' contact line movement, water bridging, and oil drop detachment. It was notified that there was a specific grain contact angle for this simulated model, θ = π/4, above it, matrix oil recovery was negligible by imbibition, while below it, the imbibition rate and oil recovery were significantly increased by decreasing the contact angle. In simulated mixed wet models, water, coming from the fracture, just invaded the neighboring water-wet grains; the water front was stopped moving as it met the oil-wet grains or wide pores/throats. Increasing water-oil interfacial tension, in the range of 0.005-0.05 N/m, resulted in both higher rate of imbibition and higher ultimate oil recovery. Changing the water-oil viscosity ratio (M), in the range of 0.1-10, had a negligible effect on the imbibition rate, while due to co-effects of capillary fingering and viscous mobility ratio, the model with M = 1 had relatively higher ultimate oil recovery.

  1. Heat production in depth up to 2500m via in situ combustion of methane using a counter-current heat-exchange reactor

    NASA Astrophysics Data System (ADS)

    Schicks, Judith Maria; Spangenberg, Erik; Giese, Ronny; Heeschen, Katja; Priegnitz, Mike; Luzi-Helbing, Manja; Thaler, Jan; Abendroth, Sven; Klump, Jens

    2014-05-01

    In situ combustion is a well-known method used for exploitation of unconventional oil deposits such as heavy oil/bitumen reservoirs where the required heat is produced directly within the oil reservoir by combustion of a small percentage of the oil. A new application of in situ combustion for the production of methane from hydrate-bearing sediments was tested at pilot plant scale within the first phase of the German national gas hydrate project SUGAR. The applied method of in situ combustion was a flameless, catalytic oxidation of CH4 in a counter-current heat-exchange reactor with no direct contact between the catalytic reaction zone and the reservoir. The catalyst permitted a flameless combustion of CH4 with air to CO2 and H2O below the auto-ignition temperature of CH4 in air (868 K) and outside the flammability limits. This led to a double secured application of the reactor. The relatively low reaction temperature allowed the use of cost-effective standard materials for the reactor and prevented NOx formation. Preliminary results were promising and showed that only 15% of the produced CH4 was needed to be catalytically burned to provide enough heat to dissociate the hydrates in the environment and release CH4. The location of the heat source right within the hydrate-bearing sediment is a major advantage for the gas production from natural gas hydrates as the heat is generated where it is needed without loss of energy due to transportation. As part of the second period of the SUGAR project the reactor prototype of the first project phase was developed further to a borehole tool. The dimensions of this counter-current heat-exchange reactor are about 540 cm in length and 9 cm in diameter. It is designed for applications up to depths of 2500 m. A functionality test and a pressure test of the reactor were successfully carried out in October 2013 at the continental deep drilling site (KTB) in Windischeschenbach, Germany, in 600 m depth and 2000 m depth, respectively. In this study we present technical details of the reactor, the catalyst and potential fields of application beside the production of natural gas from hydrate bearing sediments.

  2. Counter-current chromatography with off-line detection by ultra high performance liquid chromatography/high resolution mass spectrometry in the study of the phenolic profile of Lippia origanoides.

    PubMed

    Leitão, Suzana Guimaraes; Leitão, Gilda Guimarães; Vicco, Douglas K T; Pereira, João Paulo Barreto; de Morais Simão, Gustavo; Oliveira, Danilo R; Celano, Rita; Campone, Luca; Piccinelli, Anna Lisa; Rastrelli, Luca

    2017-10-20

    Lippia origanoides (Verbenaceae) is an important Brazilian medicinal plant, also used for culinary purposes. Most chemical studies with this plant have been focused on its volatile composition. In this work, we combined High-Speed Counter-current Chromatography (HSCCC) and High Performance Liquid Chromatography coupled to Ultra Violet detection and High Resolution Mass Spectrometry (HPLC-UV-HRMS n ) methodologies to access the non-volatile chemical composition of L. origanoides. The crude ethanol extract of L. origanoides (LOEF) was first analyzed by HPLC-UV-HRMS n and allowed the identification of 7 major compounds. Among them, eriodictyol, naringenin and pinocembrin, were determined and are phytochemical markers of this plant. However, owing to the complexity of this plant matrix, LOEF was fractionated by HSCCC (hexane-ethanol-water, 4:3:1) as a tool for preparative pre-purification, affording a flavonoid-rich fraction. A column screening with the chromatographic stationary phases ZIC-HILIC, monolithic and particulate RP18 was performed. The best column separation was achieved with a Purospher STAR RP18e, which was used for HPLC-DAD-HRMS n studies. By this approach 12 compounds were further identified in addition to the major ones identified in the raw extract. Two of them, 6,8-di-C-hexosyl-luteolin and 6,8-di-C-glucosyl-apigenin, are being reported for the first time in the family Verbenaceae. This work shows the integration of HSCCC as a preparative tool for the fractionation and purification of natural products from a complex plant extract with other analytical techniques, with the purpose of showing each technique's potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quick identification of kuraridin, a noncytotoxic anti-MRSA (methicillin-resistant Staphylococcus aureus) agent from Sophora flavescens using high-speed counter-current chromatography.

    PubMed

    Chan, Ben Chung-Lap; Yu, Hua; Wong, Chun-Wai; Lui, Sau-Lai; Jolivalt, Claude; Ganem-Elbaz, Carine; Paris, Jean-Marc; Morleo, Barbara; Litaudon, Marc; Lau, Clara Bik-San; Ip, Margaret; Fung, Kwok-Pui; Leung, Ping-Chung; Han, Quan-Bin

    2012-01-01

    Bacterial resistance to antibiotics has become a serious problem of public health that concerns almost all currently used antibacterial agents and that manifests in all fields of their application. To find more antibacterial agents from natural resources is all the time considered as an important strategy. Sophora flavescens is a popularly used antibacterial herb in Chinese Medicine, from which prenylated flavones were reported as the antibacterial ingredients but with a major concern of toxicity. In our screening on the antibacterial activities of various chemicals of this herb, 18 fractions were obtained from 8 g of 50% ethanol extract on a preparative high-speed counter-current chromatography (HSCCC, 1000 ml). The system of n-hexane/ethyl acetate/methanol/water (1:1:1:1) was used as the two-phase separation solvent. A chalcone named kuraridin was isolated from the best anti-MRSA fraction, together with sophoraflavanone G, a known active ingredient of S. flavescens. Their structures were elucidated by analysis of the NMR spectra. Both compounds exhibited significant anti-MRSA effects, compared to baicalein that is a well known anti-MRSA natural product. More important, kuraridin showed no toxicity on human peripheral blood mononuclear cells (PBMC) at the concentration up to 64 μg/ml while sophoraflavanone G inhibited over 50% of cellular activity at 4 μg/ml or higher concentration. These data suggested that opening of ring A of the prenylated flavones might decrease the toxicity and remain the anti-MRSA effect, from a viewpoint of structure-activity relationship. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-04-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  5. Analysis of two-phase flow inter-subchannel mass and momentum exchanges by the two-fluid model approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninokata, H.; Deguchi, A.; Kawahara, A.

    1995-09-01

    A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less

  6. An investigation into the flow behavior of a single phase gas system and a two phase gas/liquid system in normal gravity with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Heist, Timothy J.

    1990-01-01

    The fluid behavior in normal gravity of a single phase gas system and a two phase gas/liquid system in an enclosed circular cylinder heated suddenly and nonuniformly from above was investigated. Flow visualization was used to obtain qualitative data on both systems. The use of thermochromatic liquid crystal particles as liquid phase flow tracers was evaluated as a possible means of simultaneously gathering both flow pattern and temperature gradient data for the two phase system. The results of the flow visualization experiments performed on both systems can be used to gain a better understanding of the behavior of such systems in a reduced gravity environment and aid in the verification of a numerical model of the system.

  7. Preparative isolation and purification of indigo and indirubin from Folium isatidis by high-speed counter-current chromatography.

    PubMed

    Lü, Hai-tao; Liu, Jing; Deng, Rui; Song, Ji-ying

    2012-01-01

    Indigo and indirubin are the main active ingredients found in traditional Chinese herbal medicine Folium isatidis. An effective method for the isolation and purification of indigo and indirubin from Folium isatidis is needed. Compared with the conventional column chromatographic techniques, high-speed counter-current chromatography (HSCCC) is a suitable alternative for the enrichment and purification of these target compounds, and eliminates the complications resulting from a solid support matrix. To develop a reliable HSCCC method for isolation and identification of indigo and indirubin in a one-step separation from Folium isatidis. The optimum extracting conditions of indigo and indirubin from Folium isatidis were investigated by orthogonal test L(16) (4(5)). The target compounds were isolated and purified with a solvent system of n-hexane:ethyl acetate:ethanol:water (1:1:1:1, v/v) and the lower phase was used as the mobile phase in the head-to-tail elution mode. The purities of target compounds were tested by HPLC and their structures were identified by UV, IR, electrospray ion source (ESI)-MS, (1) H-NMR and (13) C-NMR analyses. From 165 mg of the crude extract, 5.65 mg of indigo and 1.00 mg of indirubin were obtained by HPLC analysis with purities of 98.4% and 99.0% respectively, and their mean recoveries were 91.0% and 90.7%, respectively. The HSCCC method is effective for the preparative separation and purification of indigo and indirubin in a one-step separation from Folium isatidis. Copyright © 2012 John Wiley & Sons, Ltd.

  8. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    PubMed

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-08-24

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  9. An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images.

    PubMed

    Shanthi, C; Pappa, N

    2017-05-01

    Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Possible effects of two-phase flow pattern on the mechanical behavior of mudstones

    NASA Astrophysics Data System (ADS)

    Goto, H.; Tokunaga, T.; Aichi, M.

    2016-12-01

    To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.

  11. Seasonal variations of thermocline circulation and ventilation in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    1997-05-01

    Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow of RSW/PGW seems effectively blocked by the continuation of strong northward jet of the Somali Current along the western Arabian Sea during the summer, giving a rather small contribution of only up to 20% in the Arabian Sea. A schematic summer and winter thermocline circulation emerges from this study. Both hydrography and water - mass mixing ratios suggest that the contribution of the water from the South Indian Ocean and from the Indo-Pacific through flow controls the circulation and ventilation in the western boundary region during the summer. However, during the winter the water is carried into the eastern boundary by the Equatorial Countercurrent and leaks into the eastern Bay of Bengal, from where the water is advected into the northwestern Indian Ocean by the North Equatorial Current. The so-called East Madagascar Current as a southward flow occurs only during the summer, as is suggested by both hydrography and water-mass mixing patterns from this paper. During the winter (austral summer) the current seems reversal to a northward flow along east of Madagascar, somewhat symmetrical to the Somali Current in the north.

  12. Separation of polyphenols from leaves of Malus hupehensis (Pamp.) Rehder by off-line two-dimensional High Speed Counter-Current Chromatography combined with recycling elution mode.

    PubMed

    Liu, Qi; Zeng, Hualiang; Jiang, Shujing; Zhang, Li; Yang, Fuzhu; Chen, Xiaoqing; Yang, Hua

    2015-11-01

    In this study, off-line two-dimensional High Speed Counter-Current Chromatography (2D HSCCC) strategy combined with recycling elution mode was developed to isolate compounds from the ethyl acetate extract of a common green tea--leaves of Malus hupehensis (Pamp.) Rehder. In the orthogonal separation system, a conventional HSCCC was employed for the first dimension and two recycling HSCCCs were used for the second in parallel. Using a solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:4:0.6:4.4, v/v) in the first and second dimension, four compounds including 3-hydroxy-phlorizin (1), phloretin (2), avicularin (3) and kaempferol 3-O-β-D-glucoside (4) were obtained. The purities of these four compounds were all over 95.0% as determined by HPLC. And their structures were all identified through UV, MS and (1)H NMR. It has been demonstrated that the combination of off-line 2D HSCCC with recycling elution mode is an efficient technique to isolate compounds with similar polarities in natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Isolation and purification of macrocyclic components from Penicillium fermentation broth by high-speed counter-current chromatography.

    PubMed

    Gao, Xiang; Zhuang, Rongqiang; Guo, Jiannan; Bao, Jian; Fang, Meijuan; Liu, Yan; Xu, Pengxiang; Zhao, Yufen

    2010-02-01

    In this paper, high-speed counter-current chromatography (HSCCC), assisted with ESI-MS, was first successfully applied to the preparative separation of three macrolide antibiotics, brefeldin A (12.6 mg, 99.0%), 7'-O-formylbrefeldin A (6.5 mg, 95.0%) and 7'-O-acetylbrefeldin A (5.0 mg, 92.3%) from the crude extract of the microbe Penicillium SHZK-15. Considering the chemical nature and partition coefficient (K) values of the three target compounds, a two-step HSCCC isolation protocol was developed in order to obtain products with high purity. In the two-step method, the crude ethyl acetate extract was first fractionated and resulted in two peak fractions by HSCCC using solvent system n-hexane/ethyl acetate/methanol/water (HEMWat) (3:7:5:5 v/v/v/v), then purified using solvent systems HEMWat (3:5:3:5 v/v/v/v) and HEMWat (7:3:5:5 v/v/v/v) for each fraction. The purities and structures of the isolated compounds were determined by HPLC, X-ray crystallography, ESI-MS and NMR. The results demonstrated that HSCCC is a fast and efficient technique for systematic isolation of bioactive compounds from the microbes.

  14. The dynamic two-fluid model OLGA; Theory and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendiksen, K.H.; Maines, D.; Moe, R.

    1991-05-01

    Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons withmore » evaluated field data are also presented.« less

  15. Application of two-component phase Doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    NASA Technical Reports Server (NTRS)

    Mcdonell, V. G.; Samuelsen, G. S.

    1989-01-01

    Two-component phase Doppler interferometry is described, along with its application for the spatially-resolved measurements of particle size, velocity, and mass flux as well as continuous phase velocity. This technique measures single particle events at a point in the flow; droplet size is deduced from the spatial phase shift of the Doppler signal. Particle size influence and discrimination of continuous and discrete phases are among issues covered. Applications are presented for four cases: an example of the discrimination of two sizes of glass beads in a jet flow; a demonstration of the discrimination of phases in a spray field; an assessment of atomizer symmetry with respect to fuel distribution; and a characterization of a droplet field in a reacting spray. It is noted that the above technique is especially powerful in delineating droplet interactions in the swirling, complex flows typical of realistic systems.

  16. Isolation of two new prenylated flavonoids from Sinopodophyllum emodi fruit by silica gel column and high-speed counter-current chromatography.

    PubMed

    Sun, Yanjun; Sun, Yinshi; Chen, Hui; Hao, Zhiyou; Wang, Junmin; Guan, Yanbin; Zhang, Yanli; Feng, Weisheng; Zheng, Xiaoke

    2014-10-15

    Two new prenylated flavonoids, sinoflavonoids A-B, were isolated from the dried fruits of Sinopodophyllum emodi by silica gel column chromatography (SGCC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with petroleum ether, dichloromethane, ethyl acetate, and n-butanol in water, respectively. The ethyl acetate fraction was pre-separated by SGCC with a petroleum ether-acetone gradient. The eluates containing target compounds were further separated by HSCCC with n-hexane-ethyl acetate-methanol-water (4:6:4:4, v/v). Finally, 17.3mg of sinoflavonoid A and 25.9mg of sinoflavonoid B were obtained from 100mg of the pretreated concentrate. The purities of sinoflavonoid A and sinoflavonoid B were 98.47% and 99.38%, respectively, as determined by HPLC. Their structures were elucidated on the basis of spectroscopic evidences (HR-ESI-MS, (1)H-NMR, (13)C-NMR, HSQC, HMBC). The separation procedures proved to be efficient, especially for trace prenylated flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  18. Application of Jacobian-free Newton–Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: Implementation, validation and benchmark

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-03-09

    This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less

  19. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  20. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilpueng, Kitti; Wongwises, Somchai

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less

  1. Irreversible entropy production in two-phase flows with evaporating drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N. A.

    2002-01-01

    A derivation of the irreversible entropy production, that is the dissipation, in two-phase flows is presented for the purpose of examining the effect of evaporative-drop modulation of flows having turbulent features.

  2. Radiolarian indicators of El Nino and anti-El Nino events in Holocene sediments of Santa Barbara basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, A.L.

    Radiolarian distributions and physical oceanographic data from the Santa Barbara basin indicate the following. Strong anti-El Nino periods can be characterized by (1) intermediate radiolarian density, (2) high percentage of transition-central radiolarian fauna, and (3) low percentage and number of warm-water radiolarian fauna. This distribution pattern is attributed to strong wind-driven upwelling and reduced northward transport by the California Countercurrent during anti-El Nino periods. Strong El Nino periods are typically (1) high in radiolarian density, and (2) low in percentage but high in number of warm-water fauna. This distribution is attributed to reduced wind-driven upwelling, enhanced northward countercurrent transport, andmore » geostrophic doming of the cold-water masses in the shear zone between the California Current and California Countercurrent.« less

  3. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    NASA Astrophysics Data System (ADS)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  4. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  5. Characterization of two-phase flow regimes in horizontal tubes using 81mKr tracer experiments.

    PubMed

    Oriol, Jean; Leclerc, Jean Pierre; Berne, Philippe; Gousseau, Georges; Jallut, Christian; Tochon, Patrice; Clement, Patrice

    2008-10-01

    The diagnosis of heat exchangers on duty with respect to flow mal-distributions needs the development of non-intrusive inlet-outlet experimental techniques in order to perform an online fault diagnosis. Tracer experiments are an example of such techniques. They can be applied to mono-phase heat exchangers but also to multi-phase ones. In this case, the tracer experiments are more difficult to perform. In order to check for the capabilities of tracer experiments to be used for the flow mal-distribution diagnosis in the case of multi-phase heat exchangers, we present here a preliminary study on the simplest possible system: two-phase flows in a horizontal tube. (81m)Kr is used as gas tracer and properly collimated NaI (TI) crystal scintillators as detectors. The specific shape of the tracer response allows two-phase flow regimes to be characterized. Signal analysis allows the estimation of the gas phase real average velocity and consequently of the liquid phase real average velocity as well as of the volumetric void fraction. These results are compared successfully to those obtained with liquid phase tracer experiments previously presented by Oriol et al. 2007. Characterization of the two-phase flow regimes and liquid dispersion in horizontal and vertical tubes using coloured tracer and no intrusive optical detector. Chem. Eng. Sci. 63(1), 24-34, as well as to those given by correlations from literature.

  6. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.

  7. Two-phase flow pressure drop and heat transfer during condensation in microchannels with uniform and converging cross-sections

    NASA Astrophysics Data System (ADS)

    Kuo, Ching Yi; Pan, Chin

    2010-09-01

    This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.

  8. Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.

  9. Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges.

    PubMed

    Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R

    2008-07-01

    Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.

  10. The path of the Levantine intermediate water to the Alboran sea

    NASA Astrophysics Data System (ADS)

    Font, Jordi

    1987-10-01

    The Levantine Intermediate Water (LIW) traditionally has been assumed to reach the Alboran Sea as a counter-current along the North African coast. Here data are presented that confirm the LIW flow through the sill that separates the Balearic Islands from the mainland, after contouring cyclonically the western Mediterranean along the continental slope. This seems to be a seasonal phenomenon related to the process of deep water formation in the northwestern Mediterranean and to fluctuations in the Ligurian Current. In winter the LIW can circulate across the Catalan Sea without remarkable dilution, while in summer the intermediate outflow has almost lost the LIW water mass characteristics.

  11. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.

    1988-05-01

    A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.

  12. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    PubMed

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  14. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  15. Two-Fluid Models and Interfacial Area Transport in Microgravity Condition

    NASA Technical Reports Server (NTRS)

    Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp

    2004-01-01

    The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.

  16. Oil recovery by imbibition in low-permeability chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuiec, L.; Bourbiaux, B.; Kalaydjian, F.

    1994-09-01

    This paper describes experimental studies of spontaneous imbibition of oil by water in a low-permeability outcrop chalk. At constant and high interfacial tension (IFT), the importance of capillary forces and the existence of a predominantly countercurrent mechanism were established. Additional experiments were performed to investigate the influence of length and of various boundary conditions. In another investigation the authors modified the IFT at the sample boundary by using pairs of conjugate phases of the n-hexane/ethanol/brine ternary system. Final recovery increased when IFT was lowered. They give a numerical interpretation for this last result.

  17. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2015-01-01

    The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

  18. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  19. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  20. Rocket injector anomalies study. Volume 1: Description of the mathematical model and solution procedure

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.

  1. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  2. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantagesmore » which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids« less

  3. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques.

    PubMed

    Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M

    2004-10-01

    To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.

  4. Experiment data for determination of uncertainty of two-phase mass flow rate in a Semiscale Mod-3 system spool piece at Karlsruhe Kernforschungzentrum. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, A.G.

    1979-06-01

    Steady state, steam-water testing of a Semiscale Mod-3 system instrumented spool piece was accomplished in the Gesellschaft fur Kernforschung (GfK) facility at Karlsruhe Kernforschungzentrum, West Germany. The testing was undertaken to determine the accuracy of spool piece, two-phase mass flow rate, inferential measurements by comparison with upstream single-phase reference measurements. Other two-phase measurements were also made to aid in understanding the flow conditions and to implement data reduction. A total of 132 single- and two-phase test points were acquired, covering pressures from 0.4 to 7.5 MPa, flow rates from 0.5 to 4.9 kg/s, and two-phase mixture qualities from 1.0 tomore » 83% in the 66.7 mm inside diameter spool piece. The report includes a detailed description of the hardware and software and a tabulation of the data.« less

  5. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    NASA Astrophysics Data System (ADS)

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  6. Countercurrent Separation of Natural Products: An Update

    PubMed Central

    2015-01-01

    This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod.2008, 71, 1489–1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources. PMID:26177360

  7. Application of an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum.

    PubMed

    Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin

    2014-01-01

    This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  9. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations tomore » study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.« less

  10. Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme.

    PubMed

    Bolivar, Juan M; Krämer, Christina E M; Ungerböck, Birgit; Mayr, Torsten; Nidetzky, Bernd

    2016-09-01

    Microstructured flow reactors are powerful tools for the development of multiphase biocatalytic transformations. To expand their current application also to O2 -dependent enzymatic conversions, we have implemented a fully integrated falling film microreactor that provides controllable countercurrent gas-liquid phase contacting in a multi-channel microstructured reaction plate. Advanced non-invasive optical sensing is applied to measure liquid-phase oxygen concentrations in both in- and out-flow as well as directly in the microchannels (width: 600 μm; depth: 200 μm). Protein-surface interactions are designed for direct immobilization of catalyst on microchannel walls. Target enzyme (here: d-amino acid oxidase) is fused to the positively charged mini-protein Zbasic2 and the channel surface contains a negatively charged γ-Al2 O3 wash-coat layer. Non-covalent wall attachment of the chimeric Zbasic2 _oxidase resulted in fully reversible enzyme immobilization with fairly uniform surface coverage and near complete retention of biological activity. The falling film at different gas and liquid flow rates as well as reactor inclination angles was shown to be mostly wavy laminar. The calculated film thickness was in the range 0.5-1.3 × 10(-4)  m. Direct O2 concentration measurements at the channel surface demonstrated that the liquid side mass transfer coefficient (KL ) for O2 governed the overall gas/liquid/solid mass transfer and that the O2 transfer rate (≥0.75 mM · s(-1) ) vastly exceeded the maximum enzymatic reaction rate in a wide range of conditions. A value of 7.5 (±0.5) s(-1) was determined for the overall mass transfer coefficient KL a, comprising a KL of about 7 × 10(-5)  m · s(-1) and a specific surface area of up to 10(5)  m(-1) . Biotechnol. Bioeng. 2016;113: 1862-1872. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Condensation heat transfer and flow friction in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng

    2008-11-01

    An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.

  12. Enrichment and purification of pedunculoside and syringin from the barks of Ilex rotunda with macroporous resins

    PubMed Central

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Jiubiying, the dried barks of Ilex rotunda Thunb. (Aquifoliaceae), has been used as herbal tea and traditional Chinese medicine for heat-clearing, detoxifying, dehumidification, and odynolysis. Pedunculoside and syringin are two main bioactive components. For the new drug development, we tried to isolate and purify several chemical constituents from Jiubiying by high-speed counter-current chromatography (HSCCC). The two-phase solvent system used was composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of Jiubiying extracts syringaresinol 4′,4″-bis-O-β-D- glucopyranoside (I, 20.2 mg), syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg), syringaresinol 4′-O-β-D-glucopyranoside (IV, 20.4 mg), and pedunculoside (V, 45.1 mg) were obtained by one run of TBE-1000A HSCCC machine with 1000 mL of column volume. Their structures were identified by IR, MS, and extensive NMR studies. Syringaresinol 4′,4″-bis-O-β-D-glucopyranoside (I) was isolated from this plant for the first time. PMID:25104900

  13. Enrichment and purification of pedunculoside and syringin from the barks of Ilex rotunda with macroporous resins.

    PubMed

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2014-02-01

    Jiubiying, the dried barks of Ilex rotunda Thunb. (Aquifoliaceae), has been used as herbal tea and traditional Chinese medicine for heat-clearing, detoxifying, dehumidification, and odynolysis. Pedunculoside and syringin are two main bioactive components. For the new drug development, we tried to isolate and purify several chemical constituents from Jiubiying by high-speed counter-current chromatography (HSCCC). The two-phase solvent system used was composed of ethyl acetate- n -butanol-water (1:6:7, v/v/v). From 1.0 g of Jiubiying extracts syringaresinol 4',4″ -bis-O-β- D- glucopyranoside ( I , 20.2 mg), syringin ( II , 56.8 mg), sinapaldehyde glucoside ( III , 26.2 mg), syringaresinol 4'- O - β -D-glucopyranoside ( IV , 20.4 mg), and pedunculoside ( V , 45.1 mg) were obtained by one run of TBE-1000A HSCCC machine with 1000 mL of column volume. Their structures were identified by IR, MS, and extensive NMR studies. Syringaresinol 4',4″ -bis-O-β- D-glucopyranoside ( I ) was isolated from this plant for the first time.

  14. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-01

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  15. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    NASA Astrophysics Data System (ADS)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  16. A high performance cocurrent-flow heat pipe for heat recovery applications

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. C.

    1980-01-01

    By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.

  17. Multi-Scale Morphological Analysis of Conductance Signals in Vertical Upward Gas-Liquid Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying

    2016-11-01

    The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.

  18. Upscaling Multiphase Fluid Flow in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Matthai, S.; Maghami-Nick, H.; Belayneh, M.; Geiger, S.

    2009-04-01

    Hydrocarbon recovery from fractured porous reservoirs is difficult to predict as it depends on the focusing of the flow and the local balance of viscous, gravitational, and capillary forces. Hecto-metre scale sub-volumes of fractured oil reservoirs contain thousands of fractures with highly variable flow properties, dimensions and orientations. This complexity precludes direct geometric incorporation into field scale multiphase flow models. Macroscopic laws of their integral effects on multiphase flow are required. These can be investigated by DFM (discrete fracture and matrix) numerical simulations based on discrete fracture models representing fractured reservoir analogues. Here we present DFM results indicating that hecto-metre-scale relative permeability, the time to water breakthrough, and the subsequent water cut primarily depend on the fracture-to-rock matrix flux ratio, qf/qm, quantifying the proportion of the cross-sectional flux that occurs through the fractures. Relative permeability during imbibition runs is best approximated by a rate-dependent new model taking into account capillary fracture-matrix transfer. The up-scaled fractional flow function fo(sw) derived from this new kri formulation is convex with a near-infinity slope at the residual water saturation. This implies that the hector-metre scale spatially averaged Buckley-Leverett equation for fractured porous media does not contain a shock, but a long leading edge in the averaged profile of the invading phase. This dispersive behaviour marks the progressively widening saturation front and an early water breakthrough observed in the discrete fracture reservoir analogues. Since fracture porosity φf is usually only a fraction of a percent, a cross-over from krw < kro to krw/kro ≈ qf/qm occurs after the first few percent of recovery, and because qf/qm ranges between 10-1,000, sweep efficiency ignoring the positive influence of counter-current imbibition is extremely low. The accuracy of reservoir performance predictions by the proposed fo(sw) up-scaling methodology depends on how well φf , qf/qm and a new parameter termed fraction of fracture matrix interface area in contact with the invading fluid, XA,if(si) can be constrained under in situ conditions.

  19. Capillary hydrodynamics and transport processes during phase change in microscale systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  20. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  1. A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method

    NASA Astrophysics Data System (ADS)

    Shams, Mosayeb; Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko

    2018-03-01

    This study presents a simple and robust numerical scheme to model two-phase flow in porous media where capillary forces dominate over viscous effects. The volume-of-fluid method is employed to capture the fluid-fluid interface whose dynamics is explicitly described based on a finite volume discretization of the Navier-Stokes equations. Interfacial forces are calculated directly on reconstructed interface elements such that the total curvature is preserved. The computed interfacial forces are explicitly added to the Navier-Stokes equations using a sharp formulation which effectively eliminates spurious currents. The stability and accuracy of the implemented scheme is validated on several two- and three-dimensional test cases, which indicate the capability of the method to model two-phase flow processes at the micro-scale. In particular we show how the co-current flow of two viscous fluids leads to greatly enhanced flow conductance for the wetting phase in corners of the pore space, compared to a case where the non-wetting phase is an inviscid gas.

  2. Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.

    The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.

  3. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  4. Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton–Krylov Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-04-01

    The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less

  5. Two-phase flow in the cooling circuit of a cryogenic rocket engine

    NASA Astrophysics Data System (ADS)

    Preclik, D.

    1992-07-01

    Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.

  6. Fast X-ray imaging of cavitating flows

    DOE PAGES

    Khlifa, Ilyass; Vabre, Alexandre; Hočevar, Marko; ...

    2017-10-20

    A new method based on ultra-fast X-ray imaging was developed in this work for simultaneous investigations of the dynamics and the structures of complex two-phase flows. Here in this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fieldsmore » of each phase were therefore calculated using image cross-correlations. The local vapour volume fractions were also obtained thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between then, and hence enable to improve our understanding of their behavior. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrates, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations.« less

  7. Fast X-ray imaging of cavitating flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlifa, Ilyass; Vabre, Alexandre; Hočevar, Marko

    A new method based on ultra-fast X-ray imaging was developed in this work for simultaneous investigations of the dynamics and the structures of complex two-phase flows. Here in this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fieldsmore » of each phase were therefore calculated using image cross-correlations. The local vapour volume fractions were also obtained thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between then, and hence enable to improve our understanding of their behavior. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrates, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations.« less

  8. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.

    PubMed

    Yue, Jun; Rebrov, Evgeny V; Schouten, Jaap C

    2014-05-07

    We report a three-phase slug flow and a parallel-slug flow as two major flow patterns found under the nitrogen-decane-water flow through a glass microfluidic chip which features a long microchannel with a hydraulic diameter of 98 μm connected to a cross-flow mixer. The three-phase slug flow pattern is characterized by a flow of decane droplets containing single elongated nitrogen bubbles, which are separated by water slugs. This flow pattern was observed at a superficial velocity of decane (in the range of about 0.6 to 10 mm s(-1)) typically lower than that of water for a given superficial gas velocity in the range of 30 to 91 mm s(-1). The parallel-slug flow pattern is characterized by a continuous water flow in one part of the channel cross section and a parallel flow of decane with dispersed nitrogen bubbles in the adjacent part of the channel cross section, which was observed at a superficial velocity of decane (in the range of about 2.5 to 40 mm s(-1)) typically higher than that of water for each given superficial gas velocity. The three-phase slug flow can be seen as a superimposition of both decane-water and nitrogen-decane slug flows observed in the chip when the flow of the third phase (viz. nitrogen or water, respectively) was set at zero. The parallel-slug flow can be seen as a superimposition of the decane-water parallel flow and the nitrogen-decane slug flow observed in the chip under the corresponding two-phase flow conditions. In case of small capillary numbers (Ca ≪ 0.1) and Weber numbers (We ≪ 1), the developed two-phase pressure drop model under a slug flow has been extended to obtain a three-phase slug flow model in which the 'nitrogen-in-decane' droplet is assumed as a pseudo-homogeneous droplet with an effective viscosity. The parallel flow and slug flow pressure drop models have been combined to obtain a parallel-slug flow model. The obtained models describe the experimental pressure drop with standard deviations of 8% and 12% for the three-phase slug flow and parallel-slug flow, respectively. An example is given to illustrate the model uses in designing bifurcated microchannels that split the three-phase slug flow for high-throughput processing.

  9. Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; O'Brien, James

    This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase withmore » a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for the low quality inlet period, the RCIC turbine shaft work dramatically decreases and results in a much reduced pump injection flow rate, and the mixture flow rate through the turbine increases due to the high liquid phase flow rate. The net effect for this period is net removal of coolant from the primary loop. With the periodic addition and removal of coolant to the primary loop, the self-regulation mode of the RCIC system can be maintained for a quite long time. Both the IHEM and Moody’s models generate similar phenomena; however noticeable differences can be observed.« less

  10. High-throughput countercurrent microextraction in passive mode.

    PubMed

    Xie, Tingliang; Xu, Cong

    2018-05-15

    Although microextraction is much more efficient than conventional macroextraction, its practical application has been limited by low throughputs and difficulties in constructing robust countercurrent microextraction (CCME) systems. In this work, a robust CCME process was established based on a novel passive microextractor with four units without any moving parts. The passive microextractor has internal recirculation and can efficiently mix two immiscible liquids. The hydraulic characteristics as well as the extraction and back-extraction performance of the passive CCME were investigated experimentally. The recovery efficiencies of the passive CCME were 1.43-1.68 times larger than the best values achieved using cocurrent extraction. Furthermore, the total throughput of the passive CCME developed in this work was about one to three orders of magnitude higher than that of other passive CCME systems reported in the literature. Therefore, a robust CCME process with high throughputs has been successfully constructed, which may promote the application of passive CCME in a wide variety of fields.

  11. Apparatus for monitoring two-phase flow

    DOEpatents

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  12. Method and apparatus for monitoring two-phase flow. [PWR

    DOEpatents

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  13. RELAP5 Analyses of OECD/NEA ROSA-2 Project Experiments on Intermediate-Break LOCAs at Hot Leg or Cold Leg

    NASA Astrophysics Data System (ADS)

    Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo

    Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.

  14. Smoldering of porous media: numerical model and comparison of calculations with experiment

    NASA Astrophysics Data System (ADS)

    Lutsenko, N. A.; Levin, V. A.

    2017-10-01

    Numerical modelling of smoldering in porous media under natural convection is considered. Smoldering can be defined as a flameless exothermic surface reaction; it is a type of heterogeneous combustion which can propagate in porous media. Peatbogs, landfills and other natural or man-made porous objects can sustain smoldering under natural (or free) convection, when the flow rate of gas passed through the porous object is unknown a priori. In the present work a numerical model is proposed for investigating smoldering in porous media under natural convection. The model is based on the assumption of interacting interpenetrating continua using classical approaches of the theory of filtration combustion and includes equations of state, continuity, momentum conservation and energy for solid and gas phases. Computational results obtained by means of the numerical model in one-dimensional case are compared with the experimental data of the smoldering combustion in polyurethane foam under free convection in the gravity field, which were described in literature. Calculations shows that when simulating both co-current combustion (when the smoldering wave moves upward) and counter-current combustion (when the smoldering wave moves downward), the numerical model can provide a good quantitative agreement with experiment if the parameters of the model are well defined.

  15. An interaction algorithm for prediction of mean and fluctuating velocities in two-dimensional aerodynamic wake flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1980-01-01

    A theoretical analysis is presented yielding sets of partial differential equations for determination of turbulent aerodynamic flowfields in the vicinity of an airfoil trailing edge. A four phase interaction algorithm is derived to complete the analysis. Following input, the first computational phase is an elementary viscous corrected two dimensional potential flow solution yielding an estimate of the inviscid-flow induced pressure distribution. Phase C involves solution of the turbulent two dimensional boundary layer equations over the trailing edge, with transition to a two dimensional parabolic Navier-Stokes equation system describing the near-wake merging of the upper and lower surface boundary layers. An iteration provides refinement of the potential flow induced pressure coupling to the viscous flow solutions. The final phase is a complete two dimensional Navier-Stokes analysis of the wake flow in the vicinity of a blunt-bases airfoil. A finite element numerical algorithm is presented which is applicable to solution of all partial differential equation sets of inviscid-viscous aerodynamic interaction algorithm. Numerical results are discussed.

  16. A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelanti, Marica, E-mail: Marica.Pelanti@ens.f; Bouchut, Francois, E-mail: francois.bouchut@univ-mlv.f; Mangeney, Anne, E-mail: mangeney@ipgp.jussieu.f

    2011-02-01

    We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resultingmore » relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouet and Masella [T. Gallouet, J.-M. Masella, Un schema de Godunov approche C.R. Acad. Sci. Paris, Serie I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.« less

  17. Exploring Capabilities of Electrical Capacitance Tomography Sensor and Velocity Analysis of Two-Phase R-134A Flow Through a Sudden Expansion

    DTIC Science & Technology

    2017-05-01

    SUDDEN EXPANSION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F 6. AUTHOR(S) Joseph Michael Cronin 5d. PROJECT ...heat transfer in order to manage the ever-increasing airframe and engine heat loads. Two-phase liquid-vapor refrigerant systems are one solution for...were compared with pressure drop correlations. 15. SUBJECT TERMS thermal management , two-phase flow, flow visualization, electric capacitance

  18. Simulation of two-phase flow in horizontal fracture networks with numerical manifold method

    NASA Astrophysics Data System (ADS)

    Ma, G. W.; Wang, H. D.; Fan, L. F.; Wang, B.

    2017-10-01

    The paper presents simulation of two-phase flow in discrete fracture networks with numerical manifold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete interfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated graphically and validated by the analytical method or the finite element method. Results show that the motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two-phase flow in a fracture network are demonstrated in the present study, which can be further developed for practical engineering applications.

  19. Dynamic interaction of two-phase debris flow with pyramidal defense structures: An optimal strategy to efficiently protecting the desired area

    NASA Astrophysics Data System (ADS)

    Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention and mitigation of natural hazards caused by geophysical mass flows. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  20. Study of gas-water flow in horizontal rectangular channels

    NASA Astrophysics Data System (ADS)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.

  1. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.« less

  2. Magnetic nanoparticles and high-speed countercurrent chromatography coupled in-line and using the same solvent system for separation of quercetin-3-O-rutinoside, luteoloside and astragalin from a Mikania micrantha extract.

    PubMed

    Wang, Juanqiang; Geng, Shan; Wang, Binghai; Shao, Qian; Fang, Yingtong; Wei, Yun

    2017-07-28

    A new in-line method of magnetic nanoparticles (MNPs) coupled with high-speed countercurrent chromatography (HSCCC) using a same solvent system during the whole separation process was established to achieve the rapid separation of flavonoids from Mikania micrantha. The adsorption and desorption capacities of five different MNPs for flavonoid standards and Mikania micrantha crude extract were compared and the most suitable magnetic nanoparticle Fe 3 O 4 @SiO 2 @DIH@EMIMLpro was selected as the in-line MNP column. An in-line separation system was established by combining this MNP column with HSCCC through a six-way valve. The comparison between two solvent systems n-hexane-ethyl acetate-methanol-water (3:5:3:5, v/v) and ethyl acetate-methanol-water (25:1:25, v/v) showed that the latter solvent system was more suitable for simultaneously in-line separating three flavonoids quercetin-3-O-rutinoside, luteoloside and astragalin from Mikania micrantha. The purities of these three compounds with the ethyl acetate-methanol-water solvent system were 95.13%, 98.54% and 98.19% respectively. Results showed the established in-line separation system of MNP-HSCCC was efficient, recyclable and served to isolate potential flavonoids with similar polarities from natural complex mixtures. The in-line combination of magnetic nanoparticles with high-speed countercurrent chromatography eluting with the same solvent system during the whole separation process was established for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.

  4. Fast-ion Dα spectrum diagnostic in the EAST

    NASA Astrophysics Data System (ADS)

    Hou, Y. M.; Wu, C. R.; Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Xu, Z.; Jin, Z.; Chang, J. F.; Zhu, Y. B.; Gao, W.; Chen, Y. J.; Lyu, B.; Hu, R. J.; Zhang, P. F.; Zhang, L.; Gao, W.; Wu, Z. W.; Yu, Y.; Ye, M. Y.

    2016-11-01

    In toroidal magnetic fusion devices, fast-ion D-alpha diagnostic (FIDA) is a powerful method to study the fast-ion feature. The fast-ion characteristics can be inferred from the Doppler shifted spectrum of Dα light according to charge exchange recombination process between fast ions and probe beam. Since conceptual design presented in the last HTPD conference, significant progress has been made to apply FIDA systems on the Experimental Advanced Superconducting Tokamak (EAST). Both co-current and counter-current neutral beam injectors are available, and each can deliver 2-4 MW beam power with 50-80 keV beam energy. Presently, two sets of high throughput spectrometer systems have been installed on EAST, allowing to capture passing and trapped fast-ion characteristics simultaneously, using Kaiser HoloSpec transmission grating spectrometer and Bunkoukeiki FLP-200 volume phase holographic spectrometer coupled with Princeton Instruments ProEM 1024B eXcelon and Andor DU-888 iXon3 1024 CCD camera, respectively. This paper will present the details of the hardware descriptions and experimental spectrum.

  5. New phenolic grape skin products from Vitis vinifera cv. Pinot Noir.

    PubMed

    Kneknopoulos, Petros; Skouroumounis, George K; Hayasaka, Yoji; Taylor, Dennis K

    2011-02-09

    Anthocyanins and their related compounds were extracted from grape skins of Pinot noir, using 50% aqueous methanol, and purified by solid phase extraction chromatography using XAD-7 resin to obtain a pigment-rich fraction. This fraction was subjected to multilayer coil countercurrent chromatography (MLCCC) using a quaternary solvent system consisting of tert-butyl methyl ether/n-butanol/acetonitrile/water acidified with 0.01% trifluoroacetic acid (2:2:0.1-1.8:5) (v/v/v/v) in a step gradient elution to separate anthocyanin oligomers from grape anthocyanins. In the process of the characterization of the MLCCC fractions by electrospray mass spectrometry, two noncolored anthocyanin derivatives were found and characterized on the basis of their mass spectral data. As a result, these compounds have been tentatively identified as coupling products between both hydrated malvidin-3-glucoside and peonidin-3-glucoside, with 2-S-glutathionyl caffeoyl tartaric acid (GRP). It is therefore proposed that grape skins contain this new class of coupling product, and a possible chemical pathway for their formation is suggested.

  6. Structure analysis of turbulent liquid phase by POD and LSE techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I.

    2014-10-24

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energymore » containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.« less

  7. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Chen, Ken S.

    2016-05-01

    In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.

  8. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    DOE PAGES

    Wang, Yun; Chen, Ken S.

    2016-03-21

    In the present study, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Here, analysis is performed on a dimensionless parameter Da 0 introduced in our previous paper and the parameter is further evaluated in a realisticmore » fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da 0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.« less

  9. Hybrid indirect/direct contactor for thermal management of counter-current processes

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  10. General phase transition models for vehicular traffic with point constraints on the flow

    NASA Astrophysics Data System (ADS)

    Dal Santo, E.; Rosini, M. D.; Dymski, N.; Benyahia, M.

    2017-12-01

    We generalize the phase transition model studied in [R. Colombo. Hyperbolic phase transition in traffic flow.\\ SIAM J.\\ Appl.\\ Math., 63(2):708-721, 2002], that describes the evolution of vehicular traffic along a one-lane road. Two different phases are taken into account, according to whether the traffic is low or heavy. The model is given by a scalar conservation law in the \\emph{free-flow} phase and by a system of two conservation laws in the \\emph{congested} phase. In particular, we study the resulting Riemann problems in the case a local point constraint on the flux of the solutions is enforced.

  11. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  12. Preparation of Sesquiterpenoids from Tussilago farfara L. by High-speed Counter-current Chromatography

    PubMed Central

    Cao, Kun; Xu, Yi; Zhao, Tian-Ming; Zhang, Qing

    2016-01-01

    Background: Sesquiterpenoids, such as tussilagone, has effects of raising blood pressure, antiplatelet aggregation, and anti-inflammation activities, which is regarded as index compound for quality control of Tussilago farfara L. Objective: This study was aimed to obtain an effective method for fast isolation of sesquiterpenoids from T. farfara L. by high-speed counter-current chromatography (HSCCC). Materials and Methods: A solvent optimization method for HSCCC was presented, i.e., the separation factors of compounds after the K values of solvent system should be investigated. Results: A ternary solvent system of n-hexane:methanol:water (5:8:2, v/v/v) was selected and applied for the HSCCC, and 56 mg of tussilagone (2) was isolated from T. farfara L., along with two other sesquiterpenoids 5.6 mg of 2,2-dimethyl-6-acetylchromanone (1) and 22 mg of 14-acetoxy-7 β-(3’-ethyl cis-crotonoyloxy)-lα-(2’-methylbutyryloxy)-notonipetranone (3) by HSCCC with high purities. Their chemical structures were elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance experiments. Conclusion: These results offered an efficient strategy for preparation of potentially health-relevant phytochemicals from T. farfara L., which might be used for further chemical research and pharmacological studies by preparative HSCCC. SUMMARY The real separation efficiency has been verified by analytical HSCCC.A solvent optimization method for HSCCC was presented and applied to separate and prepare active compounds.A method for rapid and effective separation of target compound Tussilagone with high yield and purity from the flower buds of Tussilago farfara.Two other compounds 2,2-Dimethyl-6-acetylchromanone and 14-acetoxy-7β-(3’-ethyl cis-crotonoyloxy) -lα- (2’-methylbutyryloxy). notonipetranone hasbeen obtained with high purities from flower buds of Tussilago farfara. Abbreviations used: HSCCC: High-Speed Counter-Current Chromatography; LC-MS: Liquid Chromatograph-Mass Spectrometer; NMR: Nuclear Magnetic Resonance; TCM: Traditional Chinese Medicine; HPLC: High Performance Liquid Chromatography; ESI-MS: Electrospray Ionization Mass Spectrometry; PE: petroleum ether PMID:27867270

  13. Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.

    2009-01-01

    Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.

  14. Flow Regime Identification of Horizontal Two Phase Refrigerant R-134a Flow Using Neural Networks (Postprint)

    DTIC Science & Technology

    2013-11-01

    Flows in Microchannels ," Heat Transfer Engineering, Vol. 27, No. 9, 2006, pp. 4-19. 2Kandlikar, S. G., " Heat Transfer Mechanisms During Flow...Boiling in Microchannels ," Journal of Heat Transfer , Vol. 126, No. 1, 2004, pp. 8-16. 3Kreitzer, P. J., Byrd, L., and Willebrand, B. J., "Initial...an integral aspect of modeling two phase flows as most pressure drop and heat transfer correlations rely on a priori knowledge of the flow regime for

  15. An Interactive Tool for Discrete Phase Analysis in Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Thoren, Stephen J.

    1993-01-01

    Under a NASA MSFC SBIR Phase 1 effort an interactive software package has been developed for the analysis of discrete (particulate) phase dynamics in two-phase flows in which the discrete phase does not significantly affect the continuous phase. This package contains a Graphical User Interface (based on the X Window system and the Motif tool kit) coupled to a particle tracing program, which allows the user to interactively set up and run a case for which a continuous phase grid and flow field are available. The software has been applied to a solid rocket motor problem, to demonstrate its ease of use and its suitability for problems of engineering interest, and has been delivered to NASA Marshall Space Flight Center.

  16. Two-phase flow regimes in a horizontal microchannel with the height of 50 μm and width of 10 mm

    NASA Astrophysics Data System (ADS)

    Fina, V. P.; Ronshin, F. V.

    2017-11-01

    Two-phase flows of distilled deionized nanofiltered water and nitrogen gas in a microchannel with a height of 50 μm and a width of 10 mm have been investigated experimentally. The schlieren method has been used to determine main features of the two-phase flow in the microchannel. This method allows detecting the liquid film on the lower and upper walls of the microchannel as well as droplets of various shapes and sizes or vertical liquid bridges. Two-phase flow regimes have been observed, and their boundaries precisely determined using post-processing of the recordings. The following flow regimes have been distinguished: bubble, churn, jet, stratified and annular. Comparison of regime maps for channels of different widths has been carried out, and this parameter showed to have a significant impact on the boundaries between the regimes in microchannels of a height of less than 100 μm.

  17. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    NASA Astrophysics Data System (ADS)

    Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian

    2017-11-01

    In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  18. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    NASA Astrophysics Data System (ADS)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  19. Schinus terebinthifolius countercurrent chromatography (Part II): Intra-apparatus scale-up and inter-apparatus method transfer.

    PubMed

    Costa, Fernanda das Neves; Vieira, Mariana Neves; Garrard, Ian; Hewitson, Peter; Jerz, Gerold; Leitão, Gilda Guimarães; Ignatova, Svetlana

    2016-09-30

    Countercurrent chromatography (CCC) is being widely used across the world for purification of various materials, especially in natural product research. The predictability of CCC scale-up has been successfully demonstrated using specially designed instruments of the same manufacturer. The reality is that the most of CCC users do not have access to such instruments and do not have enough experience to transfer methods from one CCC column to another. This unique study of three international teams is based on innovative approach to simplify the scale-up between different CCC machines using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. The optimized separation methodology, recently developed by the authors (Part I), was repeatedly performed on CCC columns of different design available at most research laboratories across the world. Hexane - ethyl acetate - methanol - water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds to monitor stationary phase retention and calculate peak resolution. It has been demonstrated that volumetric, linear and length scale-up transfer factors based on column characteristics can be directly applied to different i.d., volume and length columns independently on instrument make in an intra-apparatus scale-up and inter-apparatus method transfer. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Experimental study of phase separation in dividing two phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian Yong; Yang Zhilin; Xu Jijun

    1996-12-31

    Experimental study of phase separation of air-water two phase bubbly, slug flow in the horizontal T-junction is carried out. The influences of the inlet mass quality X1, mass extraction rate G3/G1, and fraction of extracted liquid QL3/QL1 on phase separation characteristics are analyzed. For the first time, the authors have found and defined pulsating run effect by the visual experiments, which show that under certain conditions, the down stream flow of the T-junction has strangely affected the phase redistribution of the junction, and firstly point out that the downstream geometric condition is very important to the study of phase separationmore » phenomenon of two-phase flow in a T-junction. This kind of phenomenon has many applications in the field of energy, power, petroleum and chemical industries, such as the loss of coolant accident (LOCA) caused by a small break in a horizontal coolant pipe in nuclear reactor, and the flip-flop effect in the natural gas transportation pipeline system, etc.« less

Top