Chen, Lixiang; She, Weilong
2008-09-15
We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.
Pre-Service Physics Teachers' Comprehension of Quantum Mechanical Concepts
ERIC Educational Resources Information Center
Didis, Nilufer; Eryilmaz, Ali; Erkoc, Sakir
2010-01-01
When quantum theory caused a paradigm shift in physics, it introduced difficulties in both learning and teaching of physics. Because of its abstract, counter-intuitive and mathematical structure, students have difficulty in learning this theory, and instructors have difficulty in teaching the concepts of the theory. This case study investigates…
Simultaneous weak measurement of angular and spatial Goos-Hänchen and Imbert-Fedorov shifts
NASA Astrophysics Data System (ADS)
Prajapati, Chandravati; Viswanathan, Nirmal K.
2017-10-01
We propose and demonstrate the weak measurement scheme to simultaneously measure the amplified angular and spatial contributions to the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts, due to transmission through a glass plate. We have studied two cases of post-selection using a polarizer in the first case and a quarter-wave plate (QWP)-polarizer combination in the second case. The two cases are analyzed theoretically using Jones calculus of polarization formalism and the results are verified experimentally. In the first case of post-selection, the projection of the polarizer at +/- {{Δ }} away from the crossed position amplifies the angular GH and IF shifts, while in the second case of post-selection, the projection of QWP at +/- {{Δ }} and polarizer kept fixed measures the polarization ellipticity in the beam and thus amplifies the spatial shift along with the angular shift simultaneously, for {{Δ }}\\ll 1.
Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids
NASA Astrophysics Data System (ADS)
Gao, T.; Li, G.; Estrecho, E.; Liew, T. C. H.; Comber-Todd, D.; Nalitov, A.; Steger, M.; West, K.; Pfeiffer, L.; Snoke, D. W.; Kavokin, A. V.; Truscott, A. G.; Ostrovskaya, E. A.
2018-02-01
We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.
NASA Astrophysics Data System (ADS)
Ziauddin; Lee, Ray-Kuang; Qamar, Sajid
2016-09-01
We theoretically investigate spatial and angular Goos-Hänchen (GH) shifts (both negative and positive) in the reflected light for a partial coherent light incident on a cavity. A four-level Raman gain atomic medium is considered in a cavity. The effects of spatial coherence, beam width, and mode index of partial coherent light fields on spatial and angular GH shifts are studied. Our results reveal that a large magnitude of negative and positive GH shifts in the reflected light is achievable with the introduction of partial coherent light fields. Furthermore, the amplitude of spatial (negative and positive) GH shifts are sharply affected by the partial coherent light beam as compared to angular (negative and positive) GH shifts in the reflected light.
Modelling of rotation-induced frequency shifts in whispering gallery modes
NASA Astrophysics Data System (ADS)
Venediktov, V. Yu; Kukaev, A. S.; Filatov, Yu V.; Shalymov, E. V.
2018-02-01
We study the angular velocity sensors based on whispering gallery mode resonators. Rotation of such resonators gives rise to various effects that can cause a spectral shift of their modes. Optical methods allow this shift to be determined with high precision, which can be used practically to measure the angular velocity in inertial orientation and navigation systems. The basic principles of constructing the angular velocity sensors utilising these effects are considered, their advantages and drawbacks are indicated. We also study the interrelation between the effects and the possibility of their mutual influence on each other. Based on the analytical studies of the effects, we consider the possibility of their combined application for angular velocity measurements.
NASA Astrophysics Data System (ADS)
Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang
2017-12-01
We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.
Systematic description of the effect of particle shape on the strength properties of granular media
NASA Astrophysics Data System (ADS)
Azéma, Emilien; Estrada, Nicolas; Preechawuttipong, Itthichai; Delenne, Jean-Yves; Radjai, Farhang
2017-06-01
In this paper, we explore numerically the effect of particle shape on the mechanical behavior of sheared granular packings. In the framework of the Contact Dynamic (CD)Method, we model angular shape as irregular polyhedral particles, non-convex shape as regular aggregates of four overlapping spheres, elongated shape as rounded cap rectangles and platy shape as square-plates. Binary granular mixture consisting of disks and elongated particles are also considered. For each above situations, the number of face of polyhedral particles, the overlap of spheres, the aspect ratio of elongated and platy particles, are systematically varied from spheres to very angular, non-convex, elongated and platy shapes. The level of homogeneity of binary mixture varies from homogenous packing to fully segregated packings. Our numerical results suggest that the effects of shape parameters are nonlinear and counterintuitive. We show that the shear strength increases as shape deviate from spherical shape. But, for angular shapes it first increases up to a maximum value and then saturates to a constant value as the particles become more angular. For mixture of two shapes, the strength increases with respect of the increase of the proportion of elongated particles, but surprisingly it is independent with the level of homogeneity of the mixture. A detailed analysis of the contact network topology, evidence that various contact types contribute differently to stress transmission at the micro-scale.
Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.
Cowen, Stephen L; Nitz, Douglas A
2014-01-01
Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.
Sensor fault-tolerant control for gear-shifting engaging process of automated manual transmission
NASA Astrophysics Data System (ADS)
Li, Liang; He, Kai; Wang, Xiangyu; Liu, Yahui
2018-01-01
Angular displacement sensor on the actuator of automated manual transmission (AMT) is sensitive to fault, and the sensor fault will disturb its normal control, which affects the entire gear-shifting process of AMT and results in awful riding comfort. In order to solve this problem, this paper proposes a method of fault-tolerant control for AMT gear-shifting engaging process. By using the measured current of actuator motor and angular displacement of actuator, the gear-shifting engaging load torque table is built and updated before the occurrence of the sensor fault. Meanwhile, residual between estimated and measured angular displacements is used to detect the sensor fault. Once the residual exceeds a determined fault threshold, the sensor fault is detected. Then, switch control is triggered, and the current observer and load torque table estimates an actual gear-shifting position to replace the measured one to continue controlling the gear-shifting process. Numerical and experiment tests are carried out to evaluate the reliability and feasibility of proposed methods, and the results show that the performance of estimation and control is satisfactory.
Observation of pendular butterfly Rydberg molecules
Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H.; Ott, Herwig
2016-01-01
Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron–perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance. PMID:27703143
Westerman, Marjan J; The, Anne-Mei; Sprangers, Mirjam A G; Groen, Harry J M; van der Wal, Gerrit; Hak, Tony
2007-06-01
Response shift has gained increasing attention in the measurement of health-related quality of life (QoL) as it may explain counter-intuitive findings as a result of adaptation to deteriorating health. To search for response shift type explanations to account for counter-intuitive findings in QoL measurement. Qualitative investigation of the response behaviour of small-cell lung cancer (SCLC) patients (n = 23) in the measurement of fatigue with The European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire (EORTC QLQ-C30) question 'were you tired'. Interviews were conducted at four points during 1st line chemotherapy: at the start of chemotherapy, 4 weeks later, at the end of chemotherapy, and 6 weeks later. Patients were asked to 'think aloud' when filling in the questionnaire. Fifteen patients showed discrepancies between their answer to the EORTC question 'were you tired' and their level of fatigue spontaneously reported during the interview. These patients chose the response options 'not at all' or 'a little' and explained their answers in various ways. In patients with and without discrepancies, we found indications of recalibration response shift (e.g. using a different comparison standard over time) and of change in perspective (e.g. change towards a more optimistic perspective). Patients in the discrepancy group reported spontaneously how they dealt with diagnosis and treatment, i.e. by adopting protective and assertive behaviour and by fighting the stigma. They distanced themselves from the image of the stereotypical cancer patient and presented themselves as not suffering and accepting fatigue as consequence of treatment. In addition to response shift, this study suggests that 'self-presentation' might be an important mechanism affecting QoL measurement, particularly during phases when a new equilibrium needs to be found.
The, Anne-Mei; Sprangers, Mirjam A. G.; Groen, Harry J. M.; van der Wal, Gerrit; Hak, Tony
2007-01-01
Background Response shift has gained increasing attention in the measurement of health-related quality of life (QoL) as it may explain counter-intuitive findings as a result of adaptation to deteriorating health. Objective To search for response shift type explanations to account for counter-intuitive findings in QoL measurement. Methods Qualitative investigation of the response behaviour of small-cell lung cancer (SCLC) patients (n = 23) in the measurement of fatigue with The European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire (EORTC QLQ-C30) question ‘were you tired’. Interviews were conducted at four points during 1st line chemotherapy: at the start of chemotherapy, 4 weeks later, at the end of chemotherapy, and 6 weeks later. Patients were asked to ‘think aloud’ when filling in the questionnaire. Results Fifteen patients showed discrepancies between their answer to the EORTC question ‘were you tired’ and their level of fatigue spontaneously reported during the interview. These patients chose the response options ‘not at all’ or ‘a little’ and explained their answers in various ways. In patients with and without discrepancies, we found indications of recalibration response shift (e.g. using a different comparison standard over time) and of change in perspective (e.g. change towards a more optimistic perspective). Patients in the discrepancy group reported spontaneously how they dealt with diagnosis and treatment, i.e. by adopting protective and assertive behaviour and by fighting the stigma. They distanced themselves from the image of the stereotypical cancer patient and presented themselves as not suffering and accepting fatigue as consequence of treatment. Conclusion In addition to response shift, this study suggests that ‘self-presentation’ might be an important mechanism affecting QoL measurement, particularly during phases when a new equilibrium needs to be found. PMID:17450423
Reversal of orbital angular momentum arising from an extreme Doppler shift
Toninelli, Ermes; Horsley, Simon A. R.; Hendry, Euan; Phillips, David B.; Padgett, Miles J.
2018-01-01
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes “negative.” In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at ≈100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the “negative frequency” regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. PMID:29581257
Effect of angular velocity on sensors based on morphology dependent resonances.
Ali, Amir R; Ioppolo, Tindaro
2014-04-22
We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle.
Inhibitory control and counterintuitive science and maths reasoning in adolescence.
Brookman-Byrne, Annie; Mareschal, Denis; Tolmie, Andrew K; Dumontheil, Iroise
2018-01-01
Existing concepts can be a major barrier to learning new counterintuitive concepts that contradict pre-existing experience-based beliefs or misleading perceptual cues. When reasoning about counterintuitive concepts, inhibitory control is thought to enable the suppression of incorrect concepts. This study investigated the association between inhibitory control and counterintuitive science and maths reasoning in adolescents (N = 90, 11-15 years). Both response and semantic inhibition were associated with counterintuitive science and maths reasoning, when controlling for age, general cognitive ability, and performance in control science and maths trials. Better response inhibition was associated with longer reaction times in counterintuitive trials, while better semantic inhibition was associated with higher accuracy in counterintuitive trials. This novel finding suggests that different aspects of inhibitory control may offer unique contributions to counterintuitive reasoning during adolescence and provides further support for the hypothesis that inhibitory control plays a role in science and maths reasoning.
Reversal of orbital angular momentum arising from an extreme Doppler shift.
Gibson, Graham M; Toninelli, Ermes; Horsley, Simon A R; Spalding, Gabriel C; Hendry, Euan; Phillips, David B; Padgett, Miles J
2018-04-10
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. Copyright © 2018 the Author(s). Published by PNAS.
NASA Technical Reports Server (NTRS)
Bautista, Abigail B.
1994-01-01
Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).
Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces
Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal
2016-01-01
Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection. PMID:26758471
Counterintuitive Religious Ideas and Metaphoric Thinking: An Event-Related Brain Potential Study.
Fondevila, Sabela; Aristei, Sabrina; Sommer, Werner; Jiménez-Ortega, Laura; Casado, Pilar; Martín-Loeches, Manuel
2016-05-01
It has been shown that counterintuitive ideas from mythological and religious texts are more acceptable than other (non-religious) world knowledge violations. In the present experiment we explored whether this relates to the way they are interpreted (literal vs. metaphorical). Participants were presented with verification questions that referred to either the literal or a metaphorical meaning of the sentence previously read (counterintuitive religious, counterintuitive non-religious and intuitive), in a block-wise design. Both behavioral and electrophysiological results converged. At variance to the literal interpretation of the sentences, the induced metaphorical interpretation specifically facilitated the integration (N400 amplitude decrease) of religious counterintuitions, whereas the semantic processing of non-religious counterintuitions was not affected by the interpretation mode. We suggest that religious ideas tend to operate like other instances of figurative language, such as metaphors, facilitating their acceptability despite their counterintuitive nature. Copyright © 2015 Cognitive Science Society, Inc.
Dual-polarity plasmonic metalens for visible light
NASA Astrophysics Data System (ADS)
Chen, Xianzhong; Huang, Lingling; Mühlenbernd, Holger; Li, Guixin; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Qiu, Cheng-Wei; Zhang, Shuang; Zentgraf, Thomas
2012-11-01
Surface topography and refractive index profile dictate the deterministic functionality of a lens. The polarity of most lenses reported so far, that is, either positive (convex) or negative (concave), depends on the curvatures of the interfaces. Here we experimentally demonstrate a counter-intuitive dual-polarity flat lens based on helicity-dependent phase discontinuities for circularly polarized light. Specifically, by controlling the helicity of the input light, the positive and negative polarity are interchangeable in one identical flat lens. Helicity-controllable real and virtual focal planes, as well as magnified and demagnified imaging, are observed on the same plasmonic lens at visible and near-infrared wavelengths. The plasmonic metalens with dual polarity may empower advanced research and applications in helicity-dependent focusing and imaging devices, angular-momentum-based quantum information processing and integrated nano-optoelectronics.
Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joonkyu; Mangeri, John; Zhang, Qingteng
The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment resultsmore » from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Thus, our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.« less
Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures
Park, Joonkyu; Mangeri, John; Zhang, Qingteng; ...
2018-01-22
The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment resultsmore » from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Thus, our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.« less
NASA Astrophysics Data System (ADS)
Kümmel, Stephan
Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.
NASA Astrophysics Data System (ADS)
Pepe, Francesco V.; Di Lena, Francesco; Garuccio, Augusto; D'Angelo, Milena
2017-06-01
Plenoptic Imaging (PI) is a novel optical technique for achieving tridimensional imaging in a single shot. In conventional PI, a microlens array is inserted in the native image plane and the sensor array is moved behind the microlenses. On the one hand, the microlenses act as imaging pixels to reproduce the image of the scene; on the other hand, each microlens reproduces on the sensor array an image of the camera lens, thus providing the angular information associated with each imaging pixel. The recorded propagation direction is exploited, in post- processing, to computationally retrace the geometrical light path, thus enabling the refocusing of different planes within the scene, the extension of the depth of field of the acquired image, as well as the 3D reconstruction of the scene. However, a trade-off between spatial and angular resolution is built in the standard plenoptic imaging process. We demonstrate that the second-order spatio-temporal correlation properties of light can be exploited to overcome this fundamental limitation. Using two correlated beams, from either a chaotic or an entangled photon source, we can perform imaging in one arm and simultaneously obtain the angular information in the other arm. In fact, we show that the second order correlation function possesses plenoptic imaging properties (i.e., it encodes both spatial and angular information), and is thus characterized by a key re-focusing and 3D imaging capability. From a fundamental standpoint, the plenoptic application is the first situation where the counterintuitive properties of correlated systems are effectively used to beat intrinsic limits of standard imaging systems. From a practical standpoint, our protocol can dramatically enhance the potentials of PI, paving the way towards its promising applications.
Precise determination of lattice phase shifts and mixing angles
Lu, Bing -Nan; Lähde, Timo A.; Lee, Dean; ...
2016-07-09
Here, we introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles formore » all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.« less
Fazal, Irfan M; Ahmed, Nisar; Wang, Jian; Yang, Jeng-Yuan; Yan, Yan; Shamee, Bishara; Huang, Hao; Yue, Yang; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2012-11-15
We demonstrate a 2 Tbit/s free-space data link using two orthogonal orbital angular momentum beams each carrying 25 different wavelength-division-multiplexing channels. We measure the performance for different modulation formats, including directly detected 40 Gbit/s nonreturn-to-zero (NRZ) differential phase-shift keying, 40 Gbit/s NRZ on-off keying, and coherently-detected 10 Gbaud NRZ quadrature phase-shift keying, and achieve low bit error rates with penalties less than 5 dB.
ERIC Educational Resources Information Center
Kumar, David Devraj; Dunn, Jessica
2018-01-01
Analysis of self-reflections of undergraduate education students in a project involving web-supported counterintuitive science demonstrations is reported in this paper. Participating students (N = 19) taught science with counterintuitive demonstrations in local elementary school classrooms and used web-based resources accessed via wireless USB…
Memory and Mystery: The Cultural Selection of Minimally Counterintuitive Narratives
ERIC Educational Resources Information Center
Norenzayan, Ara; Atran, Scott; Faulkner, Jason; Schaller, Mark
2006-01-01
We hypothesize that cultural narratives such as myths and folktales are more likely to achieve cultural stability if they correspond to a minimally counterintuitive (MCI) cognitive template that includes mostly intuitive concepts combined with a minority of counterintuitive ones. Two studies tested this hypothesis, examining whether this template…
ERIC Educational Resources Information Center
Banerjee, Konika; Haque, Omar S.; Spelke, Elizabeth S.
2013-01-01
Previous research with adults suggests that a catalog of minimally counterintuitive concepts, which underlies supernatural or religious concepts, may constitute a cognitive optimum and is therefore cognitively encoded and culturally transmitted more successfully than either entirely intuitive concepts or maximally counterintuitive concepts. This…
NASA Astrophysics Data System (ADS)
Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman
2015-05-01
A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.
Performance as a function of ability, resources invested, and strategy used.
Botella, Juan; Peña, Daniel; Contreras, María José; Shih, Pei-Chun; Santacreu, José
2009-01-01
Computerized tasks allow a more fine-grained analysis of the strategy deployed in a task designed to map a specific ability than the usual assessment on the basis of only the level of performance. Manipulations expected to impair performance sometimes do not have that effect, probably because the level of performance alone can confound the assessment of the ability level if researchers ignore the strategy used. In a study with 1,872 participants, the authors applied the Spatial Orientation Dynamic Test-Revised (J. Santacreu, 1999) in single and dual task settings, identifying 3 different strategies. Strategy shifts were associated with the level of performance, as more apt individuals were more likely to shift to better strategies. Ignoring the strategies yields counterintuitive results that cannot be explained by simple, direct relations among the constructs involved.
A new approach to correct yaw misalignment in the spinning ultrasonic anemometer
NASA Astrophysics Data System (ADS)
Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.
2018-01-01
Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.
Amplification of Angular Rotations Using Weak Measurements
NASA Astrophysics Data System (ADS)
Magaña-Loaiza, Omar S.; Mirhosseini, Mohammad; Rodenburg, Brandon; Boyd, Robert W.
2014-05-01
We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.
NASA Astrophysics Data System (ADS)
Ziauddin; Qamar, Sajid
2014-05-01
Control of the longitudinal shifts, i.e., spatial and angular Goos-Hänchen (GH) shifts, is revisited to study the effect of width of incident Gaussian beam on the shifts and distortion in the reflected beam. The beam is incident on a cavity consisted of atomic medium where each four-level atom follows N-type atom-field configuration. The atom-field interaction leads to Raman gain process which has been used earlier to observe a significant enhancement of the negative group index, i.e., in the range -103 to -104 for 23Na condensate [G.S. Agarwal, S. Dasgupta, Phys. Rev. A 70 (2004) 023802]. The negative and positive longitudinal shifts could be observed in the reflected light corresponding to the anomalous and normal dispersions of the intracavity medium, respectively. It is observed that the shifts are relatively large for small range of beam width and these became small for large width of the incident beam. It is also noticed that the magnitudes of spatial and angular GH shifts behave differently when the beam width increases. Further, distortion in the reflected beam decreases with an increase in beam width.
Off-axis targets maximize bearing Fisher Information in broadband active sonar.
Kloepper, Laura N; Buck, John R; Liu, Yang; Nachtigall, Paul E
2018-01-01
Broadband active sonar systems estimate range from time delay and velocity from Doppler shift. Relatively little attention has been paid to how the received echo spectrum encodes information about the bearing of an object. This letter derives the bearing Fisher Information encoded in the frequency dependent transmitter beampattern. This leads to a counter-intuitive result: directing the sonar beam so that a target of interest is slightly off-axis maximizes the bearing information about the target. Beam aim data from a dolphin biosonar experiment agree closely with the angle predicted to maximize bearing information.
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolas
2015-04-01
Recent work shows that rotating incompressible stars with anisotropic matter in the weak-field limit become prolate, which is rather counter-intuitive. We construct slowly-rotating, incompressible and anisotropic stellar solutions in full General Relativity valid to quadratic order in spin and show that the stellar shape shifts from prolate to oblate as one increases the relativistic effect. Anisotropic stars are also interesting because they can be more compact than isotropic stars, and can even be as compact as black holes. We present how stellar multipole moments approach the black hole limit as one increases the compactness, suggesting that they reach the black hole limit continuously.
Helicon modes in uniform plasmas. III. Angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B{sub 0}. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excitedmore » in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B{sub 0}. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B{sub 0} are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work will be contrasted to the research on helicon plasma sources.« less
Effects of ultrashort laser pulses on angular distributions of photoionization spectra.
Ooi, C H Raymond; Ho, W L; Bandrauk, A D
2017-07-27
We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.
NASA Astrophysics Data System (ADS)
Shivananju, B. N.; Yamdagni, S.; Vasu, R. M.; Asokan, S.
2012-12-01
Objects viewed through transparent sheets with residual non-parallelism and irregularity appear shifted and distorted. This distortion is measured in terms of angular and binocular deviation of an object viewed through the transparent sheet. The angular and binocular deviations introduced are particularly important in the context of aircraft windscreens and canopies as they can interfere with decision making of pilots especially while landing, leading to accidents. In this work, we have developed an instrument to measure both the angular and binocular deviations introduced by transparent sheets. This instrument is especially useful in the qualification of aircraft windscreens and canopies. It measures the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by the distorted light beam from the transparent test specimen compared to the reference pattern. Accurate quantification of the shift in the pattern is obtained by cross-correlating the reference shadow pattern with the specimen shadow pattern and measuring the location of the correlation peak. The developed instrument is handy to use and computes both angular and binocular deviation with an accuracy of less than ±0.1 mrad (≈0.036 mrad) and has an excellent repeatability with an error of less than 2%.
Achromatic vector vortex beams from a glass cone
Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.
2016-01-01
The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191
Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)
NASA Astrophysics Data System (ADS)
Britton, T. B.; Hickey, J. L. R.
2018-01-01
High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.
Achromatic vector vortex beams from a glass cone
NASA Astrophysics Data System (ADS)
Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.
2016-02-01
The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.
Helicons in uniform fields. II. Poynting vector and angular momenta
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.
2018-03-01
The orbital and spin angular momenta of helicon modes have been determined quantitatively from laboratory experiments. The current density is obtained unambiguously from three dimensional magnetic field measurements. The only approximation made is to obtain the electric field from Hall Ohm's law which is usually the case for low frequency whistler modes. This allows the evaluation of the Poynting vector from which the angular momentum is obtained. Comparing two helicon modes (m = 0 and m = 1), one can separate the contribution of angular momentum of a rotating and non-rotating wave field. The orbital angular momentum is important to assess the wave-particle interaction by the transverse Doppler shift of rotating waves which has not been considered so far.
Communication: Reactivity borrowing in the mode selective chemistry of H + CHD3 → H2 + CD3
NASA Astrophysics Data System (ADS)
Ellerbrock, Roman; Manthe, Uwe
2017-12-01
Quantum state-resolved reaction probabilities for the H + CHD3 → H2 + CD3 reaction are calculated by accurate full-dimensional quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree approach and the quantum transition state concept. Reaction probabilities of various ro-vibrational states of the CHD3 reactant are investigated for vanishing total angular momentum. While the reactivity of the different vibrational states of CHD3 mostly follows intuitive patterns, an unusually large reaction probability is found for CHD3 molecules triply excited in the CD3 umbrella-bending vibration. This surprising reactivity can be explained by a Fermi resonance-type mixing of the single CH-stretch excited and the triple CD3 umbrella-bend excited vibrational states of CHD3. These findings show that resonant energy transfer can significantly affect the mode-selective chemistry of CHD3 and result in counter-intuitive reactivity patterns.
Banerjee, Konika; Haque, Omar S.; Spelke, Elizabeth S.
2013-01-01
Previous research with adults suggests that a catalog of minimally counterintuitive concepts, which underlies supernatural or religious concepts, may constitute a cognitive optimum, and is therefore cognitively encoded and culturally transmitted more successfully than either entirely intuitive concepts or maximally counterintuitive concepts. The current study examines whether children's concept recall similarly is sensitive to the degree of conceptual counterintuitiveness (operationalized as a concept's number of ontological domain violations) for items presented in the context of a fictional narrative. Seven-to-nine-year old children who listened to a story including both intuitive and counterintuitive concepts recalled the counterintuitive concepts containing one (Experiment 1) or two (Experiment 2) but not three (Experiment 3) violations of intuitive ontological expectations significantly more and in greater detail than the intuitive concepts, both immediately after hearing the story and one week later. We conclude that one or two violations of expectation may be a cognitive optimum for children: they are more inferentially rich and therefore more memorable, whereas three or more violations diminish memorability for target concepts. These results suggest that the cognitive bias for minimally counterintuitive ideas is present and active early in human development, near the start of formal religious instruction. This finding supports a growing literature suggesting that diverse, early- emerging, evolved psychological biases predispose humans to hold and perform religious beliefs and practices whose primary form and content is not derived from arbitrary custom or the social environment alone. PMID:23631765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrović, V. M.; Miladinović, T. B., E-mail: tanja.miladinovic@gmail.com
2016-05-15
Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.
Fondevila, Sabela; Martín-Loeches, Manuel; Jiménez-Ortega, Laura; Casado, Pilar; Sel, Alejandra; Fernández-Hernández, Anabel; Sommer, Werner
2012-01-01
Religious beliefs are both catchy and durable: they exhibit a high degree of adherence to our cognitive system, given their success of transmission and spreading throughout history. A prominent explanation for religion's cultural success comes from the "MCI hypothesis," according to which religious beliefs are both easy to recall and desirable to transmit because they are minimally counterintuitive (MCI). This hypothesis has been empirically tested at concept and narrative levels by recall measures. However, the neural correlates of MCI concepts remain poorly understood. We used the N400 component of the event-related brain potential as a measure of counterintuitiveness of violations comparing religious and non-religious sentences, both counterintuitive, when presented in isolation. Around 80% in either condition were core-knowledge violations. We found smaller N400 amplitudes for religious as compared to non-religious counterintuitive ideas, suggesting that religious ideas are less semantically anomalous. Moreover, behavioral measures revealed that religious ideas are not readily detected as unacceptable. Finally, systematic analyses of our materials, according to conceptual features proposed in cognitive models of religion, did not reveal any outstanding variable significantly contributing to these differences. Refinements of cognitive models of religion should elucidate which combination of factors renders an anomaly less counterintuitive and thus more suitable for recall and transmission.
Kümmel, Stephan; Perdew, John P
2003-01-31
For exchange-correlation functionals that depend explicitly on the Kohn-Sham orbitals, the potential V(xcsigma)(r) must be obtained as the solution of the optimized effective potential (OEP) integral equation. This is very demanding and has limited the use of orbital functionals. We demonstrate that instead the OEP can be obtained iteratively by solving the partial differential equations for the orbital shifts that exactify the Krieger-Li-Iafrate approximation. Unoccupied orbitals do not need to be calculated. Accuracy and efficiency of the method are shown for atoms and clusters using the exact-exchange energy. Counterintuitive asymptotic limits of the exact OEP are presented.
NASA Astrophysics Data System (ADS)
Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R. G.; Reichl, C.; Wegscheider, W.
2016-12-01
We examine the microwave frequency (f ) variation of the angular phase shift, θ0, observed in the polarization-angle dependence of microwave-induced magnetoresistance oscillations in a high-mobility GaAs/AlGaAs two-dimensional electron system. By fitting the diagonal resistance Rx x versus θ plots to an empirical cosine square law, we extract θ0 and trace its quasicontinuous variation with f . The results suggest that the overall average of θ0 extracted from Hall bar device sections with length-to-width ratios of L /W =1 and 2 is the same. We compare the observations with expectations arising from the "ponderomotive force" theory for microwave radiation-induced transport phenomena.
RIS3: A program for relativistic isotope shift calculations
NASA Astrophysics Data System (ADS)
Nazé, C.; Gaidamauskas, E.; Gaigalas, G.; Godefroid, M.; Jönsson, P.
2013-09-01
An atomic spectral line is characteristic of the element producing the spectrum. The line also depends on the isotope. The program RIS3 (Relativistic Isotope Shift) calculates the electron density at the origin and the normal and specific mass shift parameters. Combining these electronic quantities with available nuclear data, isotope-dependent energy level shifts are determined. Program summaryProgram title:RIS3 Catalogue identifier: ADEK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEK_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5147 No. of bytes in distributed program, including test data, etc.: 32869 Distribution format: tar.gz Programming language: Fortran 77. Computer: HP ProLiant BL465c G7 CTO. Operating system: Centos 5.5, which is a Linux distribution compatible with Red Hat Enterprise Advanced Server. Classification: 2.1. Catalogue identifier of previous version: ADEK_v1_0 Journal reference of previous version: Comput. Phys. Comm. 100 (1997) 81 Subprograms used: Cat Id Title Reference ADZL_v1_1 GRASP2K VERSION 1_1 to be published. Does the new version supersede the previous version?: Yes Nature of problem: Prediction of level and transition isotope shifts in atoms using four-component relativistic wave functions. Solution method: The nuclear motion and volume effects are treated in first order perturbation theory. Taking the zero-order wave function in terms of a configuration state expansion |Ψ>=∑μcμ|Φ(γμPJMj)>, where P, J and MJ are, respectively, the parity and angular quantum numbers, the electron density at the nucleus and the normal and specific mass shift parameters may generally be expressed as ∑cμcν<γμPJMj|V|γνPJMj> where V is the relevant operator. The matrix elements, in turn, can be expressed as sums over radial integrals multiplied by angular coefficients. All the angular coefficients are calculated using routines from the GRASP2K version 1_1 package [1]. Reasons for new version: This new version takes the nuclear recoil corrections into account within the (m2/M approximation [2] and also allows storage of the angular coefficients for a series of calculations within a given isoelectronic sequence. Furthermore, the program JJ2LSJ, a module of the GRASP2K version 1_1 toolkit that allows a transformation of ASFs from a jj-coupled CSF basis into an LSJ-coupled CSF basis, has been especially adapted to present RIS3 results using LSJ labels of the states. This additional tool is called RIS3_LSJ. Summary of revisions: This version is compatible with the new angular approach of the GRASP2K version 1_1 package [1] and can store necessary angular coefficients. According to the formalism of the relativistic nuclear recoil, the "uncorrected" expression of the normal mass shift has been fundamentally modified compared with its expression in [3]. Restrictions: The complexity of the cases that can be handled is entirely determined by the GRASP2K package [1] used for the generation of the electronic wave functions. Unusual features: Angular data is stored on disk and can be reused. LSJ labels are used for the states. Running time: As an example, we evaluated the isotope shift parameters and the electron density at the origin using the wave functions of Be-like system. We used the MCDHF wave function built on a complete active space (CAS) with n=8 (296 626 CSFs-62 orbitals) that contains 3 non-interacting blocks of given parity and J values involving 6 different eigenvalues in total. Calculations take around 10 h on one AMD Opteron 6100 @ 2.3 GHz CPU with 8 cores (64 GB DDR3 RAM 1.333 GHz). If angular files are available the time is reduced to 20 min. The storage of the angular data takes 139 MB and 7.2 GB for the one-body and the two-body elements, respectively. References: [1] P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, I.P. Grant, New version: GRASP2K relativistic atomic structure package, Comput. Phys. Commun. 184 (9) (2013) 2197-2203. [2] E. Gaidamauskas, C. Nazé, P. Rynkun, G. Gaigalas, P. Jönsson, M. Godefroid, J. Phys. B: At. Mol. Opt. Phys. 44 (17) (2011) 175003. [3] P. Jönsson, C. Froese Fischer, Comput. Phys. Commun. 100 (1997) 81-92.
Multiframe super resolution reconstruction method based on light field angular images
NASA Astrophysics Data System (ADS)
Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao
2017-12-01
The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.
Goos-Hänchen and Imbert-Fedorov shifts for astigmatic Gaussian beams
NASA Astrophysics Data System (ADS)
Ornigotti, Marco; Aiello, Andrea
2015-06-01
In this work we investigate the role of the beam astigmatism in the Goos-Hänchen and Imbert-Fedorov shift. As a case study, we consider a Gaussian beam focused by an astigmatic lens and we calculate explicitly the corrections to the standard formulas for beam shifts due to the astigmatism induced by the lens. Our results show that the different focusing in the longitudinal and transverse direction introduced by an astigmatic lens may enhance the angular part of the shift.
2016-03-01
acceleration of the shifting masses experiences a Coriolis Effect due to the angular velocity of the spacecraft. However, the perpendicular component of...angular velocity. If we neglect the Coriolis Effect in absolute acceleration, both terms become zero. Then, Equation 4.22 becomes ( )0 0 0 0 0...METHOD ......................................................83 C. EXPLORATION OF THE ALTITUDE AND INCLINATION EFFECTS ON THE CONTROL
Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B
2012-04-23
We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Kumar, David Devraj; Dunn, Jessica
2018-03-01
Analysis of self-reflections of undergraduate education students in a project involving web-supported counterintuitive science demonstrations is reported in this paper. Participating students (N = 19) taught science with counterintuitive demonstrations in local elementary school classrooms and used web-based resources accessed via wireless USB adapters. Student reflections to seven questions were analyzed qualitatively using four components of reflection (meeting objectives/perception of learning, dynamics of pedagogy, special needs accommodations, improving teaching) deriving 27 initial data categories and 12 emergent themes. Overall the undergraduates reported meeting objectives, engaging students in pedagogically relevant learning tasks including, providing accommodations to students with special needs, and gaining practice and insight to improve their own teaching. Additional research is needed to arrive at generalizable findings concerning teaching with web-supported counterintuitive science demonstrations in elementary classrooms.
Asteroid orbit fitting with radar and angular observations
NASA Astrophysics Data System (ADS)
Baturin, A. P.
2013-12-01
The asteroid orbit fitting problem using their radar and angular observations has been considered. The problem was solved in a standanrd way by means of minimization of weighted sum of squares of residuals. In the orbit fitting both kinds of radar observa-tions have been used: the observations of time delays and of Doppler frequency shifts. The weight for angular observations has been set the same for all of them and has been determined as inverse mean-square residual obtained in the orbit fitting using just angular observations. The weights of radar observations have been set as inverse squared errors of these observations published together with them in the Minor Planet Center electronical circulars (MPECs). For the orbit fitting some five asteroids have been taken from these circulars. The asteroids have been chosen fulfilling the requirement of more than six radar observations of them to be available. The asteroids are 1950 DA, 1999 RQ36, 2002 NY40, 2004 DC and 2005 EU2. Several orbit fittings for these aster-oids have been done: with just angular observations; with just radar observations; with both angular and radar observations. The obtained results are quite acceptable because in the last case the mean-square angular residuals are approximately equal to the same ones obtained in the fitting with just angular observations. As to radar observations mean-square residuals, the time delay residuals for three asteroids do not exceed 1 μs, for two others ˜ 10 μs and the Doppler shift residuals for three asteroids do not exceed 1 Hz, for two others ˜ 10 Hz. The motion equations included perturbations from 9 planets and the Moon using their ephemerides DE422. The numerical integration has been performed with Everhart 27-order method with variable step. All calculations have been exe-cuted to a 34-digit decimal precision (i.e. using 128-bit floating-point numbers). Further, the sizes of confidence ellipsoids of im-proved orbit parameters have been compared. It has been accepted that an indicator of ellipsoid size is a geometric mean of its six semi-axes. A comparison of sizes has shown that confidence ellipsoids obtained in orbit fitting with both angular and radar obser-vations are several times less than ellipsoids obtained with just angular observations.
Orbital angular momentum (OAM) spectrum correction in free space optical communication.
Liu, Yi-Dong; Gao, Chunqing; Qi, Xiaoqing; Weber, Horst
2008-05-12
Orbital angular momentum (OAM) of laser beams has potential application in free space optical communication, but it is sensitive against pointing instabilities of the beam, i.e. shift (lateral displacement) and tilt (deflection of the beam). This work proposes a method to correct the distorted OAM spectrum by using the mean square value of the orbital angular momentum as an indicator. Qualitative analysis is given, and the numerical simulation is carried out for demonstration. The results show that the mean square value can be used to determine the beam axis of the superimposed helical beams. The initial OAM spectrum can be recovered.
SCATTERING OF NEUTRONS BY $alpha$-PARTICLES AT 14.1 Mev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasoli, U.; Zago, G.
1963-12-01
The angular distribution of 14.1-Mev neutrons elastically scattered by alpha particles was measured by observing the alpha recoils in a helium-filled cloud chamber. The results are in satisfactory agreement with those previously obtained by others. Inspection of the small-angle region of the measured distribution shows that phase shifts of orbital angular momentum higher than L = 1 are not negligible, although, according to the present experiment, quantitative information on D-waves turns out to be somewhat elusive. The azimuthal angular distribution agrees well with the value P = 0.02 of the neutron beam polarization, as measured by Perkins. (auth)
Biodiversity in a changing climate: a synthesis of current and projected trends in the US
Staudinger, Michelle D.; Carter, Shawn L.; Cross, Molly S.; Dubois, Natalie S.; Duffy, J. Emmett; Enquist, Carolyn; Griffis, Roger; Hellmann, Jessica J.; Lawler, Joshua J.; O’Leary, John; Morrison, Scott A.; Sneddon, Lesley; Stein, Bruce A.; Thompson, Laura M.; Turner, Woody
2013-01-01
This paper provides a synthesis of the recent literature describing how global biodiversity is being affected by climate change and is projected to respond in the future. Current studies reinforce earlier findings of major climate-change-related impacts on biological systems and document new, more subtle after-effects. For example, many species are shifting their distributions and phenologies at faster rates than were recorded just a few years ago; however, responses are not uniform across species. Shifts have been idiosyncratic and in some cases counterintuitive, promoting new community compositions and altering biotic interactions. Although genetic diversity enhances species' potential to respond to variable conditions, climate change may outpace intrinsic adaptive capacities and increase the relative vulnerabilities of many organisms. Developing effective adaptation strategies for biodiversity conservation will not only require flexible decision-making and management approaches that account for uncertainties in climate projections and ecological responses but will also necessitate coordinated monitoring efforts.
Effects of strong laser fields on hadronic helium atoms
NASA Astrophysics Data System (ADS)
Lee, Han-Chieh; Jiang, Tsin-Fu
2015-12-01
The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.
Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling
Levy, Miguel; Karki, Dolendra
2017-01-01
We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals. PMID:28059120
Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene
2013-01-01
Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has overcome our natural emotional aversion to harming others. Recent studies, however, suggest that such utilitarian judgments might also result from a decreased aversion to harming others, due to a deficit in empathic concern and social emotion. The present study investigated the neural basis of such indifference to harming using functional neuroimaging during engagement in moral dilemmas. A tendency to counterintuitive utilitarian judgment was associated both with ‘psychoticism’, a trait associated with a lack of empathic concern and antisocial tendencies, and with ‘need for cognition’, a trait reflecting preference for effortful cognition. Importantly, only psychoticism was also negatively correlated with activation in the subgenual cingulate cortex (SCC), a brain area implicated in empathic concern and social emotions such as guilt, during counterintuitive utilitarian judgments. Our findings suggest that when individuals reach highly counterintuitive utilitarian conclusions, this need not reflect greater engagement in explicit moral deliberation. It may rather reflect a lack of empathic concern, and diminished aversion to harming others. PMID:23280149
Lipton-Dibner, Wendy
2015-01-01
How do you raise revenues in a practice that is defined by insurance regulations, operating expenses, and an ever-shifting economy? The most effective strategy is completely counterintuitive: to grow your revenues, take your focus off of money and focus every aspect of your practice on making a measurable impact in people's lives. This article presents a proven, step-by-step model to thrive in the new economy by maximizing and capitalizing on your impact so you can reap the rewards of your efforts and recapture the passion that first drove you to serve as a healthcare professional.
Conditioned taste aversions: From poisons to pain to drugs of abuse.
Lin, Jian-You; Arthurs, Joe; Reilly, Steve
2017-04-01
Learning what to eat and what not to eat is fundamental to our well-being, quality of life, and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations in which we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent nonhuman animal research, analyzing palatability shifts, has indicated that a wider range of stimuli than has been traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA and presents a novel conceptual analysis that is broader and more comprehensive than previous accounts of CTA learning.
Conditioned taste aversions: From poisons to pain to drugs of abuse
Lin, Jian-You; Arthurs, Joe; Reilly, Steve
2018-01-01
Learning what to eat and what not to eat is fundamental to our well-being, quality of life and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations where we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent non-human animal research, analyzing palatability shifts, indicates that a wider range of stimuli than traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA, and presents a novel conceptual analysis that is broader and more comprehensive than other accounts of CTA learning. PMID:27301407
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-08-01
In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser tweezers, tractor beams, optical spanners, arbitrary scattering, radiation force, angular momentum, and torque in particle manipulation, and other related topics.
Goos-Hänchen effect on Si thin films with spherical and cylindrical pores
NASA Astrophysics Data System (ADS)
Olaya, Cherrie May; Garcia, Wilson O.; Hermosa, Nathaniel
2018-02-01
We examine the effects on the spatial and angular Goos-Hanchen (GH) beam shifts of spherical and cylindrical pores in a thin film. In our calculations, a p-polarized light is incident on a 1-μm thick porous silicon (Si) thin film on a Si substrate. The beam shifts are within the measurement range of usual optical detectors. Our results show that a technique based on GH shift can be used to determine the porosity and pore structure of thin films at a given thickness.
Interferometric rotation sensor
NASA Technical Reports Server (NTRS)
Walsh, T. M.
1972-01-01
Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability.
ERIC Educational Resources Information Center
Feinberg, William E.
1988-01-01
This article describes a monte carlo computer simulation of affirmative action employment policies. The counterintuitive results of the model are explained through a thought device involving urns and marbles. States that such model simulations have implications for social policy. (BSR)
The Emergence of the Empirical Stance: Children's Testing of Counterintuitive Claims
ERIC Educational Resources Information Center
Ronfard, Samuel; Chen, Eva E.; Harris, Paul L.
2018-01-01
Although children often believe an adult's claims, they may have opportunities to check these claims by gathering relevant empirical evidence themselves. Here, we examine whether children seize such opportunities, especially when the claim is counterintuitive. Chinese preschool and elementary schoolchildren were presented with five different-sized…
That Can't Be Right! Using Counterintuitive Math Problems.
ERIC Educational Resources Information Center
Maylone, Nelson John
This book is designed to provide middle-grade mathematics teachers with ideas for enlivening instruction to help students acquire a sense about numbers. Guided classroom discussions for writing opportunities centered on the theme of problem solving are provided. Following an introduction, chapters include the following: Counterintuitive Problems;…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovin, B.M.; Dzhelepov, V.P.; Zulkarneev, R.Ya.
1963-01-01
ABS>Experiments on triple scattering of protons are described, and the results of measurement of the spin correlation coefficients C/sub nn/ for 640-Mev protons elastically scattered by protons are presented for a number of angles in the cms which differ from 90 deg . On basis of the experimental data obtained in the presert work and available in the literature, the moduli of the pp-scattering amplitudes are qualitatively determined in a broad angular range 50 deg < yields < 130 deg and their relative contributions are given. The values of the singlet and triplet cross sections for some angles are alsomore » determined. The phase shifts for a pp-system at the indicated energy in singlet states are estimated. (auth)« less
2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.
Wang, Xuanye; Christopher, Jason W; Swan, Anna K
2017-10-19
Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.
Forster, G.A.
1963-09-24
between master and slave synchros is described. A threephase a-c power source is connected to the stators of the synchros and an error detector is connected to the rotors of the synchros to measure the phasor difference therebetween. A phase shift network shifts the phase of one of the rotors 90 degrees and a demodulator responsive thereto causes the phasor difference signal of the rotors to shift phase 180 degrees whenever the 90 degree phase shifted signal goes negative. The phase shifted difference signal has a waveform which, with the addition of small values of resistance and capacitance, gives a substantially pure d-c output whose amplitude and polarity is proportional to the magnitude and direction of the difference in the angular positions of the synchro's rotors. (AEC)
ERIC Educational Resources Information Center
Berlin, Gordon L.
2007-01-01
Gordon Berlin discusses the nation's long struggle to reduce poverty in families with children, and proposes a counterintuitive solution--rewarding the work of individuals. He notes that policymakers' difficulty in reducing family poverty since 1973 is attributable to two intertwined problems--falling wages among low-skilled workers and the…
Let's Turn Things on Their Head--Teaching Counterintuitive Science
ERIC Educational Resources Information Center
Kumar, David
2017-01-01
Teaching science through counterintuitive events is an effective way of engaging students in exploring science; such events motivate and involve students in solving problems with a high degree of creativity and critical thinking. This can push students into a seeking explanation mode, setting the stage for discovery. In this article, the author…
NASA Astrophysics Data System (ADS)
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2013-01-01
The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Challinor, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Mennella, A.; Migliaccio, M.; Millea, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Narimani, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Pettorino, V.; Piacentini, F.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Stanco, L.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; White, M.; Zacchei, A.; Zonca, A.
2017-11-01
The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium τ, the baryon density ωb, the matter density ωm, the angular size of the sound horizon θ∗, the spectral index of the primordial power spectrum, ns, and Ase- 2τ (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment ℓ < 800 in the Planck temperature power spectrum) and an all angular-scale data set (ℓ < 2500Planck temperature power spectrum), each with a prior on τ of 0.07 ± 0.02. We find that the shifts, in units of the 1σ expected dispersion for each parameter, are { Δτ,ΔAse- 2τ,Δns,Δωm,Δωb,Δθ∗ } = { -1.7,-2.2,1.2,-2.0,1.1,0.9 }, with a χ2 value of 8.0. We find that this χ2 value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2σ in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing ℓ < 800 instead to ℓ> 800, or splitting at a different multipole, yields similar results. We examined the ℓ < 800 model residuals in the ℓ> 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is τ, which, at fixed Ase- 2τ, affects the ℓ> 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, "what is it about the power spectrum at ℓ < 800 that leads to somewhat different best-fit parameters than come from the full ℓ range?" We find that if we discard the data at ℓ < 30, where there is a roughly 2σ downward fluctuation in power relative to the model that best fits the full ℓ range, the ℓ < 800 best-fit parameters shift significantly towards the ℓ < 2500 best-fit parameters. In contrast, including ℓ < 30, this previously noted "low-ℓ deficit" drives ns up and impacts parameters correlated with ns, such as ωm and H0. As expected, the ℓ < 30 data have a much greater impact on the ℓ < 800 best fit than on the ℓ < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-ℓ residuals and the deficit in low-ℓ power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between PlanckTT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model.
ERIC Educational Resources Information Center
Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene
2013-01-01
Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has…
Lensing corrections to features in the angular two-point correlation function and power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027; Hui, Lam
2008-01-15
It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, themore » galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.« less
NASA Astrophysics Data System (ADS)
Marsman, Alain; Horbatsch, Marko; Hessels, Eric A.
2014-05-01
Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23 S -to- 23 P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20 000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector and the intensity and size of laser beams. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23 P fine structure. The work represents the first study of such interference shifts for saturated fluorescence spectroscopy and follows up on our previous study of similar shifts for laser spectroscopy. This work is supported by NSERC, CRC, ORF, CFI, NIST and SHARCNET.
Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin
2015-12-15
We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions
NASA Technical Reports Server (NTRS)
Dill, D.; Starace, A. F.; Manson, S. T.
1974-01-01
The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.
Latitudinal Transport of Angular Momentum by Cellular Flows Observed with MDI
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Gilman, Peter A.; Beck, John G.; Rose, M. Franklin (Technical Monitor)
2001-01-01
We have analyzed Doppler velocity images from the MDI instrument on SOHO to determine the latitudinal transport of angular momentum by the cellular photospheric flows. Doppler velocity images from 60-days in May to July of 1996 were processed to remove the p-mode oscillations, the convective blue shift, the axisymmetric flows, and any instrumental artifacts. The remaining cellular flows were examined for evidence of latitudinal angular momentum transport. Small cells show no evidence of any such transport. Cells the size of supergranules (30,000 km in diameter) show strong evidence for a poleward transport of angular momentum. This would be expected if supergranules are influenced by the Coriolis force, and if the cells are elongated in an east-west direction. We find good evidence for just such an east-west elongation of the supergranules. This elongation may be the result of differential rotation shearing the cellular structures. Data simulations of this effect support the conclusion that elongated supergranules transport angular momentum from the equator toward the poles, Cells somewhat larger than supergranules do not show evidence for this poleward transport. Further analysis of the data is planned to determine if the direction of angular momentum transport reverses for even larger cellular structures. The Sun's rapidly rotating equator must be maintained by such transport somewhere within the convection zone.
NASA Astrophysics Data System (ADS)
Marsman, A.; Hessels, E. A.; Horbatsch, M.
2014-04-01
Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23S-to-23P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector, the intensity and size of laser beams, and the properties of the atomic beam. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23P fine structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harston, M.R.; Hara, S.; Kino, Y.
1997-10-01
The energy shift due to the finite size of the pseudonucleus (dd{mu}){sub 11}{sup +} in the molecules (dd{mu}){sub 11}e and (dd{mu}){sub 11}dee, the subscripts indicating the first excited state with total angular momentum of one unit, is of importance in the theoretical estimation of the rate of d-d fusion catalyzed by negative muons. The energy shift in the molecule (dd{mu}){sub 11}e is calculated using perturbation theory up to second order. The finite-size shift is found to be 1.46 meV. This is significantly larger than the value of 0.7 meV for this energy shift calculated by Bakalov [Muon Catalyzed Fusion {boldmore » 3}, 321 (1988)] by a method similar to the present method; recently found excellent agreement of theory with experimental results for the formation rate of the molecule (dd{mu}){sub 11}dee was based on Bakalov{close_quote}s value with some modifications. The results of a direct calculation of the finite-size energy shifts in (dd{mu}){sub 11}dee using first-order perturbation theory are presented. The contribution from the quadrupole component of the (dd{mu}){sub 11} charge distribution, which is not taken into account in the conventional scaling procedure based on the finite-size energy shifts of (dd{mu}){sub 11}e, is found to be of the order of 1 meV and to depend on the angular-momentum states of (dd{mu}){sub 11}dee. Sources of uncertainty in the current theoretical estimates are also discussed. {copyright} {ital 1997} {ital The American Physical Society}« less
ERIC Educational Resources Information Center
Lee, Gyoungho; Byun, Taejin
2012-01-01
Bringing successful teaching approaches for stimulating conceptual change to normal classrooms has been a major challenge not only for teachers but also for researchers. In this study, we focused on the relationship between cognitive conflict and responses to anomalous data when students are confronted with a counterintuitive demonstration in the…
The neural basis of intuitive and counterintuitive moral judgment.
Kahane, Guy; Wiech, Katja; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene
2012-04-01
Neuroimaging studies on moral decision-making have thus far largely focused on differences between moral judgments with opposing utilitarian (well-being maximizing) and deontological (duty-based) content. However, these studies have investigated moral dilemmas involving extreme situations, and did not control for two distinct dimensions of moral judgment: whether or not it is intuitive (immediately compelling to most people) and whether it is utilitarian or deontological in content. By contrasting dilemmas where utilitarian judgments are counterintuitive with dilemmas in which they are intuitive, we were able to use functional magnetic resonance imaging to identify the neural correlates of intuitive and counterintuitive judgments across a range of moral situations. Irrespective of content (utilitarian/deontological), counterintuitive moral judgments were associated with greater difficulty and with activation in the rostral anterior cingulate cortex, suggesting that such judgments may involve emotional conflict; intuitive judgments were linked to activation in the visual and premotor cortex. In addition, we obtained evidence that neural differences in moral judgment in such dilemmas are largely due to whether they are intuitive and not, as previously assumed, to differences between utilitarian and deontological judgments. Our findings therefore do not support theories that have generally associated utilitarian and deontological judgments with distinct neural systems.
False confessions: How can psychology so basic be so counterintuitive?
Kassin, Saul M
2017-12-01
Recent advances in DNA technology have shined a spotlight on thousands of innocent people wrongfully convicted for crimes they did not commit-many of whom had been induced to confess. The scientific study of false confessions, which helps to explain this phenomenon, has proved highly paradoxical. On the one hand, it is rooted in reliable core principles of psychology (e.g., research on reinforcement and decision-making, obedience to authority, and confirmation biases). On the other hand, false confessions are highly counterintuitive if not inconceivable to most people (e.g., as seen in actual trial outcomes as well as studies of jury decision making). This article describes both the psychology underlying false confessions and the psychology that predicts the counterintuitive nature of this same phenomenon. It then notes that precisely because they are so counterintuitive, false confessions are often "invisible," resulting in a form of inattentional blindness, and are slow to change in the face of contradiction, illustrating belief perseverance. This article concludes by suggesting ways in which psychologists can help to prevent future miscarriages of justice by advocating for reforms to policy and practice and helping to raise public awareness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The neural basis of intuitive and counterintuitive moral judgment
Wiech, Katja; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene
2012-01-01
Neuroimaging studies on moral decision-making have thus far largely focused on differences between moral judgments with opposing utilitarian (well-being maximizing) and deontological (duty-based) content. However, these studies have investigated moral dilemmas involving extreme situations, and did not control for two distinct dimensions of moral judgment: whether or not it is intuitive (immediately compelling to most people) and whether it is utilitarian or deontological in content. By contrasting dilemmas where utilitarian judgments are counterintuitive with dilemmas in which they are intuitive, we were able to use functional magnetic resonance imaging to identify the neural correlates of intuitive and counterintuitive judgments across a range of moral situations. Irrespective of content (utilitarian/deontological), counterintuitive moral judgments were associated with greater difficulty and with activation in the rostral anterior cingulate cortex, suggesting that such judgments may involve emotional conflict; intuitive judgments were linked to activation in the visual and premotor cortex. In addition, we obtained evidence that neural differences in moral judgment in such dilemmas are largely due to whether they are intuitive and not, as previously assumed, to differences between utilitarian and deontological judgments. Our findings therefore do not support theories that have generally associated utilitarian and deontological judgments with distinct neural systems. PMID:21421730
Origin of the Counterintuitive Dynamic Charge in the Transition-Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Pike, Nicholas; van Troeye, Benoit; Dewandre, Antoine; Gonze, Xavier; Verstraete, Matthieu
Our recent first-principles calculations of the electronic and vibrational properties of the hexagonal transition-metal dichalcogenides reveal that their Born effective charges display a counterintuitive sign when compared to most other materials or transition-metal dichalcogenides with trigonal symmetry. We determine the origin of this counterintuitive sign by calculating the electronic, vibrational, and optical properties of these systems. We show that the sign of the Born effective charge is directly related to the electric field response of the electronic density, and, in turn, to the bonding characteristics of the material.There is a filled anti-bonding molecular orbital at the Fermi level, which is localized on the transition-metal atom and corresponds to a form of solid state π back-bonding in these material. We propose a method of determining if other materials display a similar counterintuitive sign, based on their bonding characteristics, and propose experiments which could measure the sign of the Born effective charge using different spectroscopies. The authors acknowledge the Belgian Fonds National de la Recherche Scientifique FNRS under PDR T.1077.15-1/7, a FRIA Grant, ULg, and from the Communauté Française de Belgique (ARC AIMED 15/19-09).
Interpersonal Coordination of Head Motion in Distressed Couples
Hammal, Zakia; Cohn, Jeffrey F.; George, David T.
2015-01-01
In automatic emotional expression analysis, head motion has been considered mostly a nuisance variable, something to control when extracting features for action unit or expression detection. As an initial step toward understanding the contribution of head motion to emotion communication, we investigated the interpersonal coordination of rigid head motion in intimate couples with a history of interpersonal violence. Episodes of conflict and non-conflict were elicited in dyadic interaction tasks and validated using linguistic criteria. Head motion parameters were analyzed using Student’s paired t-tests; actor-partner analyses to model mutual influence within couples; and windowed cross-correlation to reveal dynamics of change in direction of influence over time. Partners’ RMS angular displacement for yaw and RMS angular velocity for pitch and yaw each demonstrated strong mutual influence between partners. Partners’ RMS angular displacement for pitch was higher during conflict. In both conflict and non-conflict, head angular displacement and angular velocity for pitch and yaw were strongly correlated, with frequent shifts in lead-lag relationships. The overall amount of coordination between partners’ head movement was more highly correlated during non-conflict compared with conflict interaction. While conflict increased head motion, it served to attenuate interpersonal coordination. PMID:26167256
NASA Astrophysics Data System (ADS)
Cameron, Robert P.; Cotter, J. P.
2018-05-01
We give an explicit and general description of the energy, linear momentum, angular momentum and boost momentum of a molecule to order 1/c 2, where it necessary to take account of kinetic contributions made by the electrons and nuclei as well as electromagnetic contributions made by the intramolecular field. A wealth of interesting subtleties are encountered that are not seen at order 1/c 0, including relativistic Hall shifts, anomalous velocities and hidden momenta. Some of these have well known analogues in solid state physics.
New Possibilities of Positron-Emission Tomography
NASA Astrophysics Data System (ADS)
Volobuev, A. N.
2018-01-01
The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.
NASA Astrophysics Data System (ADS)
Khosropour, B.
2016-07-01
In this work, we consider a D-dimensional ( β, β^' -two-parameters deformed Heisenberg algebra, which was introduced by Kempf et al. The angular-momentum operator in the presence of a minimal length scale based on the Kempf-Mann-Mangano algebra is obtained in the special case of β^' = 2β up to the first order over the deformation parameter β . It is shown that each of the components of the modified angular-momentum operator, commutes with the modified operator {L}2 . We find the magnetostatic field in the presence of a minimal length. The Zeeman effect in the deformed space is studied and also Lande's formula for the energy shift in the presence of a minimal length is obtained. We estimate an upper bound on the isotropic minimal length.
Microwave imaging of spinning object using orbital angular momentum
NASA Astrophysics Data System (ADS)
Liu, Kang; Li, Xiang; Gao, Yue; Wang, Hongqiang; Cheng, Yongqiang
2017-09-01
The linear Doppler shift used for the detection of a spinning object becomes significantly weakened when the line of sight (LOS) is perpendicular to the object, which will result in the failure of detection. In this paper, a new detection and imaging technique for spinning objects is developed. The rotational Doppler phenomenon is observed by using the microwave carrying orbital angular momentum (OAM). To converge the radiation energy on the area where objects might exist, the generation method of OAM beams is proposed based on the frequency diversity principle, and the imaging model is derived accordingly. The detection method of the rotational Doppler shift and the imaging approach of the azimuthal profiles are proposed, which are verified by proof-of-concept experiments. Simulation and experimental results demonstrate that OAM beams can still be used to obtain the azimuthal profiles of spinning objects even when the LOS is perpendicular to the object. This work remedies the insufficiency in existing microwave sensing technology and offers a new solution to the object identification problem.
Rovibrational bound states of SO2 isotopologues. II: Total angular momentum J = 11-20
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Poirier, Bill
2015-11-01
In a two-part series, the rovibrational bound states of SO2 are investigated in comprehensive detail, for all four stable sulfur isotopes 32-34,36S. All low-lying rovibrational energy levels-both permutation-symmetry-allowed and not allowed-are computed, for all values of total angular momentum in the range J = 0-20. The calculations have carried out using the ScalIT suite of parallel codes. The present study (Paper II) examines the J = 11-20 rovibrational levels, providing symmetry and rovibrational labels for every computed state, relying on a new lambda-doublet splitting technique to make completely unambiguous assignments. Isotope shifts are analyzed, as is the validity of ;J-shifting; as a predictor of rotational fine structure. Among other ramifications, this work will facilitate understanding of mass-independent fractionation of sulfur isotopes (S-MIF) observed in the Archean rock record-particularly as this may have arisen from self shielding. S-MIF, in turn is highly relevant in the broader context of understanding the ;oxygen revolution;.
The origin of transverse anisotropy in axially symmetric single molecule magnets.
Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo
2007-09-05
Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.
Disk-Anchored Magnetic Propellers - A Cure for the SW Sex Syndrome
NASA Astrophysics Data System (ADS)
Horne, Keith
In AE Aqr, magnetic fields transfer energy and angular momentum from a rapidly-spinning white dwarf to material in the gas stream from the companion star, with the effect of spinning down the white dwarf while flinging the gas stream material out of the binary system. This magnetic propeller produces a host of observable signatures, chief among which are broad, single-peaked, flaring emission lines with phase-shifted orbital kinematics. SW Sex stars have accretion disks, but also broad, single-peaked, phase-shifted emission lines similar to those seen in AE Aqr. We propose that a magnetic propeller similar to that which operates in AE Aqr is also at work in SW Sex stars - and to some extent in all nova-like systems. The propeller is anchored in the inner accretion disk, rather than, or in addition to, the white dwarf. Energy and angular momentum are thereby extracted from the inner disk and transferred to gas-stream material flowing above the disk, which is consequently pitched out of the system. This provides a non-local, dissipationless angular-momentum-extraction mechanism, which should result in cool inner disks with temperature profiles flatter than T propto R^{-3/4}, as observed in eclipse mapping studies of nova-like variables. The disk-anchored magnetic propeller model appears to explain qualitatively most if not all of the peculiar features of the SW Sex syndrome.
Statistical Aspects of Coherent States of the Higgs Algebra
NASA Astrophysics Data System (ADS)
Shreecharan, T.; Kumar, M. Naveen
2018-04-01
We construct and study various aspects of coherent states of a polynomial angular momentum algebra. The coherent states are constructed using a new unitary representation of the nonlinear algebra. The new representation involves a parameter γ that shifts the eigenvalues of the diagonal operator J 0.
Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...
2017-05-16
This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less
A Novel Optical/digital Processing System for Pattern Recognition
NASA Technical Reports Server (NTRS)
Boone, Bradley G.; Shukla, Oodaye B.
1993-01-01
This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.
Proximal metatarsal osteotomies: a comparative geometric analysis conducted on sawbone models.
Nyska, Meir; Trnka, Hans-Jörg; Parks, Brent G; Myerson, Mark S
2002-10-01
We evaluated the change in position of the first metatarsal head using a three-dimensional digitizer on sawbone models. Crescentic, closing wedge, oblique shaft (Ludloff 8 degrees and 16 degrees), reverse oblique shaft (Mau 8 degrees and 16 degrees), rotational "Z" (Scarf), and proximal chevron osteotomies were performed and secured using 3-mm screws. The 16 degrees Ludloff provided the most lateral shift (9.5 mm) and angular correction (14.5 degrees) but also produced the most elevation (1.4 mm) and shortening (2.9 mm). The 8 degrees Ludloff provided lateral and angular corrections similar to those of the crescentic and closing wedge osteotomies with less elevation and shortening. Because the displacement osteotomies (Scarf, proximal chevron) provided less angular correction, the same lateral displacement, and less shortening than the basilar angular osteotomies, based upon this model they can be more reliably used for a patient with a mild to moderate deformity, a short first metatarsal, or an intermediate deformity with a large distal metatarsal articular angle. These results can serve as recommendations for selecting the optimal osteotomy with which to correct a deformation.
Angular coherence in ultrasound imaging: Theory and applications
Li, You Leo; Dahl, Jeremy J.
2017-01-01
The popularity of plane-wave transmits at multiple transmit angles for synthetic transmit aperture (or coherent compounding) has spawned a number of adaptations and new developments of ultrasonic imaging. However, the coherence properties of backscattered signals with plane-wave transmits at different angles are unknown and may impact a subset of these techniques. To provide a framework for the analysis of the coherence properties of such signals, this article introduces the angular coherence theory in medical ultrasound imaging. The theory indicates that the correlation function of such signals forms a Fourier transform pair with autocorrelation function of the receive aperture function. This conclusion can be considered as an extended form of the van Cittert Zernike theorem. The theory is validated with simulation and experimental results obtained on speckle targets. On the basis of the angular coherence of the backscattered wave, a new short-lag angular coherence beamformer is proposed and compared with an existing spatial-coherence-based beamformer. An application of the theory in phase shift estimation and speed of sound estimation is also presented. PMID:28372139
Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar
2014-08-01
Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.
Angular velocity integration in a fly heading circuit.
Turner-Evans, Daniel; Wegener, Stephanie; Rouault, Hervé; Franconville, Romain; Wolff, Tanya; Seelig, Johannes D; Druckmann, Shaul; Jayaraman, Vivek
2017-05-22
Many animals maintain an internal representation of their heading as they move through their surroundings. Such a compass representation was recently discovered in a neural population in the Drosophila melanogaster central complex, a brain region implicated in spatial navigation. Here, we use two-photon calcium imaging and electrophysiology in head-fixed walking flies to identify a different neural population that conjunctively encodes heading and angular velocity, and is excited selectively by turns in either the clockwise or counterclockwise direction. We show how these mirror-symmetric turn responses combine with the neurons' connectivity to the compass neurons to create an elegant mechanism for updating the fly's heading representation when the animal turns in darkness. This mechanism, which employs recurrent loops with an angular shift, bears a resemblance to those proposed in theoretical models for rodent head direction cells. Our results provide a striking example of structure matching function for a broadly relevant computation.
A New Kind of Shift Operators for Infinite Circular and Spherical Wells
Sun, Guo-Hua; Launey, K. D.; Dytrych, T.; ...
2014-01-01
A new kind of smore » hift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P ± = P x ± i P y play the role of shift operators. The P x and P y operators, the third projection of the orbital angular momentum operator L z , and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψ l m ( r ) and ψ ( l ± 1 ) ( m ± 1 ) ( r ) .« less
Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B
2014-01-13
We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wang, Xiaorui; Zhe Zhang, Yun
2018-07-01
By employing the different topological charges of a Laguerre–Gaussian beam as a qubit, we experimentally demonstrate a controlled-NOT (CNOT) gate with light beams carrying orbital angular momentum via a photonic band gap structure in a hot atomic ensemble. Through a degenerate four-wave mixing process, the spatial distribution of the CNOT gate including splitting and spatial shift can be affected by the Kerr nonlinear effect in multilevel atomic systems. Moreover, the intensity variations of the CNOT gate can be controlled by the relative phase modulation. This research can be useful for applications in quantum information processing.
Transport in a magnetic field modulated graphene superlattice.
Li, Yu-Xian
2010-01-13
Using the transfer matrix method, we study the transport properties through a magnetic field modulated graphene superlattice. It is found that the electrostatic barrier, the magnetic vector potential, and the number of wells in a superlattice modify the transmission remarkably. The angular dependent transmission is blocked by the magnetic vector potential because of the appearance of the evanescent states at certain incident angles, and the region of Klein tunneling shifts to the left. The angularly averaged conductivities exhibit oscillatory behavior. The magnitude and period of oscillation depend sensitively on the height of the electrostatic barrier, the number of wells, and the strength of the modulated magnetic field.
Enlivening Physics, a Local Video Disc Project.
ERIC Educational Resources Information Center
McInerney, M.
1989-01-01
Describes how to make and use an inexpensive video disc of physics demonstrations. Discusses the background, production of the disc, subject of the disc including angular momentum, "monkey and the hunter" experiment, Doppler shift, pressure of a constant volume of gas thermometer, and wave effects, and using the disc in classroom. (YP)
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
Experimental interferograms, schlieren, and shadowgraphs are used for quantitative and qualitative flow-field studies. These images are created by passing light through a flow field, and the recorded intensity patterns are functions of the phase shift and angular deflection of the light. As part of the grant NCC2-583, techniques and software have been developed for obtaining phase shifts from finite-fringe interferograms and for constructing optical images from Computational Fluid Dynamics (CFD) solutions. During the period from 1 Nov. 1992 - 30 Jun. 1993, research efforts have been concentrated in improving these techniques.
NASA Astrophysics Data System (ADS)
Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu
2018-05-01
Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.
Frequency-chirp rates of harmonics driven by a few-cycle pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, M.; Mauritsson, J.; Gaarde, M.B.
2005-08-15
We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. Wemore » also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.« less
Reflections on social activism in otolaryngology.
Kopelovich, Jonathan C
2014-03-01
What is "social activism" to you? For older otolaryngologists, the term is likely to signify the tumult of the 1960s. For incoming generations, this connotation is outdated. Rather, it more broadly reflects concerted efforts to improve the public good. Some ally with existing institutions to work toward incremental progress. Some start new organizations, using technological tools to build networks, marshal resources, and leapfrog hurdles. Countering these efforts are the ever-changing challenges of practicing otolaryngology today: electronic health records, shifting incentives, and changes in the practice model. Employment by large conglomerates is more common, decreasing our visibility as community leaders. Burnout is a recognized "hazard," and budding otolaryngologists are particularly susceptible. Adding one more thing, like social activism, to a full plate seems counterintuitive. But it shouldn't be. You don't need a "bigger" plate to get involved in social causes. Start simple. Find a partner. Scale up. You'll find it rewarding.
Grain-Boundary Roughening in Colloidal Crystals
NASA Astrophysics Data System (ADS)
Liao, Maijia; Xiao, Xiao; Chui, Siu Tat; Han, Yilong
2018-04-01
In polycrystals, faceted grains may become round and rough at high temperatures. Such a roughening phenomenon remains poorly understood, partly because of the lack of experimental observations. Here, we directly visualize the roughening dynamics of grain boundaries inside thin-film colloidal crystals at the single-particle level using video microscopy. The thermal fluctuations of grain boundaries appear to exhibit both static and dynamic critical-like behaviors, in contrast to the Kosterlitz-Thouless transition in typical free surface roughening. The roughening point shifts towards the melting point as the grain boundary's mismatch angle θ decreases and is preempted by melting when θ <18 ° . Counterintuitively, the amplitude of grain-boundary fluctuations decreases above the roughening point. This could be attributed to the observed widening of the grain boundary. The roughening strongly affects the mobility of the grain boundary but not the stiffness. These results provide new guidance for the control of microstructures in polycrystals and further development of roughening theory.
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang
2015-10-27
Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.
Comparative analysis of autofocus functions in digital in-line phase-shifting holography.
Fonseca, Elsa S R; Fiadeiro, Paulo T; Pereira, Manuela; Pinheiro, António
2016-09-20
Numerical reconstruction of digital holograms relies on a precise knowledge of the original object position. However, there are a number of relevant applications where this parameter is not known in advance and an efficient autofocusing method is required. This paper addresses the problem of finding optimal focusing methods for use in reconstruction of digital holograms of macroscopic amplitude and phase objects, using digital in-line phase-shifting holography in transmission mode. Fifteen autofocus measures, including spatial-, spectral-, and sparsity-based methods, were evaluated for both synthetic and experimental holograms. The Fresnel transform and the angular spectrum reconstruction methods were compared. Evaluation criteria included unimodality, accuracy, resolution, and computational cost. Autofocusing under angular spectrum propagation tends to perform better with respect to accuracy and unimodality criteria. Phase objects are, generally, more difficult to focus than amplitude objects. The normalized variance, the standard correlation, and the Tenenbaum gradient are the most reliable spatial-based metrics, combining computational efficiency with good accuracy and resolution. A good trade-off between focus performance and computational cost was found for the Fresnelet sparsity method.
Mondal, Rajarshi; Lozada, Issiah B; Davis, Rebecca L; Williams, J A Gareth; Herbert, David E
2018-05-07
Benzannulated bidentate pyridine/phosphine ( P^N) ligands bearing quinoline or phenanthridine (3,4-benzoquinoline) units have been prepared, along with their halide-bridged, dimeric Cu(I) complexes of the form [( P^N)Cu] 2 (μ-X) 2 . The copper complexes are phosphorescent in the orange-red region of the spectrum in the solid-state under ambient conditions. Structural characterization in solution and the solid-state reveals a flexible conformational landscape, with both diamond-like and butterfly motifs available to the Cu 2 X 2 cores. Comparing the photophysical properties of complexes of (quinolinyl)phosphine ligands with those of π-extended (phenanthridinyl)phosphines has revealed a counterintuitive impact of site-selective benzannulation. Contrary to conventional assumptions regarding π-extension and a bathochromic shift in the lowest energy absorption maxima, a blue shift of nearly 40 nm in the emission wavelength is observed for the complexes with larger ligand π-systems, which is assigned as phosphorescence on the basis of emission energies and lifetimes. Comparison of the ground-state and triplet excited state structures optimized from DFT and TD-DFT calculations allows attribution of this effect to a greater rigidity for the benzannulated complexes resulting in a higher energy emissive triplet state, rather than significant perturbation of orbital energies. This study reveals that ligand structure can impact photophysical properties for emissive molecules by influencing their structural rigidity, in addition to their electronic structure.
Murase, Atsunori; Nozaki, Masahiro; Kobayashi, Masaaki; Goto, Hideyuki; Yoshida, Masahito; Yasuma, Sanshiro; Takenaga, Tetsuya; Nagaya, Yuko; Mizutani, Jun; Okamoto, Hideki; Iguchi, Hirotaka; Otsuka, Takanobu
2017-09-01
Recently several authors have reported on the quantitative evaluation of the pivot-shift test using cutaneous fixation of inertial sensors. Before utilizing this sensor for clinical studies, it is necessary to evaluate the accuracy of cutaneous sensor in assessing rotational knee instability. To evaluate the accuracy of inertial sensors, we compared cutaneous and transosseous sensors in the quantitative assessment of rotational knee instability in a cadaveric setting, in order to demonstrate their clinical applicability. Eight freshly frozen human cadaveric knees were used in this study. Inertial sensors were fixed on the tibial tuberosity and directly fixed to the distal tibia bone. A single examiner performed the pivot shift test from flexion to extension on the intact knees and ACL deficient knees. The peak overall magnitude of acceleration and the maximum rotational angular velocity in the tibial superoinferior axis was repeatedly measured with the inertial sensor during the pivot shift test. Correlations between cutaneous and transosseous inertial sensors were evaluated, as well as statistical analysis for differences between ACL intact and ACL deficient knees. Acceleration and angular velocity measured with the cutaneous sensor demonstrated a strong positive correlation with the transosseous sensor (r = 0.86 and r = 0.83). Comparison between cutaneous and transosseous sensor indicated significant difference for the peak overall magnitude of acceleration (cutaneous: 10.3 ± 5.2 m/s 2 , transosseous: 14.3 ± 7.6 m/s 2 , P < 0.01) and for the maximum internal rotation angular velocity (cutaneous: 189.5 ± 99.6 deg/s, transosseous: 225.1 ± 103.3 deg/s, P < 0.05), but no significant difference for the maximum external rotation angular velocity (cutaneous: 176.1 ± 87.3 deg/s, transosseous: 195.9 ± 106.2 deg/s, N.S). There is a positive correlation between cutaneous and transosseous inertial sensors. Therefore, this study indicated that the cutaneous inertial sensors could be used clinically for quantifying rotational knee instability, irrespective of the location of utilization. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Li, Zhipeng; Lin, Songsheng
2015-10-15
The basic issue related to radial crack in ceramic thin films has received considerable attention due to the fact that the radial crack plays an important role in evaluating the toughness properties of ceramic materials. In this work, an atomic-scale new experimental evidence is clearly presented to reveal the counter-intuitive initiation, the nucleation and the propagation mechanism of the radial crack in Al-Cr-N ceramic thin films.
NASA Technical Reports Server (NTRS)
Straton, Jack C.
1989-01-01
The Fourier transform of the multicenter product of N 1s hydrogenic orbitals and M Coulomb or Yukawa potentials is given as an (M+N-1)-dimensional Feynman integral with external momenta and shifted coordinates. This is accomplished through the introduction of an integral transformation, in addition to the standard Feynman transformation for the denominators of the momentum representation of the terms in the product, which moves the resulting denominator into an exponential. This allows the angular dependence of the denominator to be combined with the angular dependence in the plane waves.
NASA Astrophysics Data System (ADS)
Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan
2016-03-01
In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.
NASA Astrophysics Data System (ADS)
Kang, N.; Liu, H.; Lin, Z.; Lei, A.; Zhou, S.; Fang, Z.; An, H.; Li, K.; Fan, W.
2017-10-01
Spectra of three-halves harmonic emissions (3{ω }0/2) from laser-produced plasmas were measured at different angles, including both forward and backward sides, from the direction of incident laser beams. The 3{ω }0/2 emitted from carbon-hydrogen (CH) targets was observed to be larger than that from aluminum (Al) targets with the same incident laser intensity, which supports the argument that the two-plasmon decay (TPD) instability could be inhibited by using medium-Z ablator instead of CH ablator in direct-drive inertial confinement fusion. Besides, the measured 3{ω }0/2-incident intensity curves for both materials suggest relatively lower threshold of TPD than the calculated values. In experiments with thin Al targets, the angular distribution of the blue- and red-shifted peaks of 3{ω }0/2 spectra were obtained, which shows that the most intense blue- and red-shifted peaks may not be produced in paired plasmons, but the spectra produced by their ‘twin’ plasmons were not observed. Because 3{ω }0/2 may have been influenced by other physical processes during their propagation from their birth places to the detectors, the mismatches on emission angle, wavelength shift, and threshold may be qualitatively explained through the assumption that small-scale light filaments widely existed in the corona of laser-produced plasmas.
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Paloski, W. H. (Principal Investigator)
1996-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.
Merfeld, D M
1996-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E
2016-03-01
We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P. J.; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J.; Ashrafi, Solyman; Molisch, Andreas F.; Tur, Moshe; Willner, Alan E.
2016-01-01
We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively. PMID:26926068
On the role of surface friction in tropical cyclone intensification
NASA Astrophysics Data System (ADS)
Wang, Yuqing
2017-04-01
Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.
Using Doppler Shifts of GPS Signals To Measure Angular Speed
NASA Technical Reports Server (NTRS)
Campbell, Charles E., Jr.
2006-01-01
A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.
Memory and Belief in the Transmission of Counterintuitive Content.
Willard, Aiyana K; Henrich, Joseph; Norenzayan, Ara
2016-09-01
Cognitive scientists have increasingly turned to cultural transmission to explain the widespread nature of religion. One key hypothesis focuses on memory, proposing that that minimally counterintuitive (MCI) content facilitates the transmission of supernatural beliefs. We propose two caveats to this hypothesis. (1) Memory effects decrease as MCI concepts become commonly used, and (2) people do not believe counterintuitive content readily; therefore additional mechanisms are required to get from memory to belief. In experiments 1-3 (n = 283), we examined the relationship between MCI, belief, and memory. We found that increased tendencies to anthropomorphize predicted poorer memory for anthropomorphic-MCI content. MCI content was found less believable than intuitive content, suggesting different mechanisms are required to explain belief. In experiment 4 (n = 70), we examined the non-content-based cultural learning mechanism of credibility-enhancing displays (CREDs) and found that it increased participants' belief in MCI content, suggesting this type of learning can better explain the transmission of belief.
Lane, Jonathan D; Harris, Paul L
2014-03-01
Recent research shows that even preschoolers are skeptical; they frequently reject claims from other people when the claims conflict with their own perceptions and concepts. Yet, despite their skepticism, both children and adults come to believe in a variety of phenomena that defy their first-hand perceptions and intuitive conceptions of the world. In this review, we explore how children and adults acquire such concepts. We describe how a similar developmental process underlies mental representation of both the natural and the supernatural world, and we detail this process for two prominent supernatural counterintuitive ideas-God and the afterlife. In doing so, we highlight the fact that conceptual development does not always move in the direction of greater empirical truth, as described within naturalistic domains. We consider factors that likely help overcome skepticism and, in doing so, promote belief in counterintuitive phenomena. These factors include qualities of the learners, aspects of the context, qualities of the informants, and qualities of the information. © The Author(s) 2014.
Lane, Jonathan D.; Harris, Paul. L.
2014-01-01
Recent research shows that even preschoolers are skeptical; they frequently reject claims from other people when the claims conflict with their own perceptions and concepts. Yet, despite their skepticism, both children and adults come to believe in a variety of phenomena that defy their first-hand perceptions and intuitive conceptions of the world. In this review, we explore how children and adults acquire such concepts. We describe how a similar developmental process underlies mental representation of both the natural and the supernatural world, and we detail this process for two prominent supernatural counterintuitive ideas—God and the afterlife. In doing so, we highlight the fact that conceptual development does not always move in the direction of greater empirical truth, as described within naturalistic domains. We consider factors that likely help overcome skepticism, and in doing so promote belief in counterintuitive phenomena. These factors include qualities of the learners, aspects of the context, qualities of the informants, and qualities of the information. PMID:24683418
Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; ...
2018-02-14
Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.
Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanke, Monika, E-mail: monika@fizyka.umk.pl; Palikot, Ewa, E-mail: epalikot@doktorant.umk.pl; Adamowicz, Ludwik, E-mail: ludwik@email.arizona.edu
2016-05-07
Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H{sub 2} and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.
2018-05-01
Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.
Angular velocity integration in a fly heading circuit
Turner-Evans, Daniel; Wegener, Stephanie; Rouault, Hervé; Franconville, Romain; Wolff, Tanya; Seelig, Johannes D; Druckmann, Shaul; Jayaraman, Vivek
2017-01-01
Many animals maintain an internal representation of their heading as they move through their surroundings. Such a compass representation was recently discovered in a neural population in the Drosophila melanogaster central complex, a brain region implicated in spatial navigation. Here, we use two-photon calcium imaging and electrophysiology in head-fixed walking flies to identify a different neural population that conjunctively encodes heading and angular velocity, and is excited selectively by turns in either the clockwise or counterclockwise direction. We show how these mirror-symmetric turn responses combine with the neurons’ connectivity to the compass neurons to create an elegant mechanism for updating the fly’s heading representation when the animal turns in darkness. This mechanism, which employs recurrent loops with an angular shift, bears a resemblance to those proposed in theoretical models for rodent head direction cells. Our results provide a striking example of structure matching function for a broadly relevant computation. DOI: http://dx.doi.org/10.7554/eLife.23496.001 PMID:28530551
Spatial filter with volume gratings for high-peak-power multistage laser amplifiers
NASA Astrophysics Data System (ADS)
Tan, Yi-zhou; Yang, Yi-sheng; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Liu, Li
2010-08-01
The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermorefractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed.
Top predators suppress rather than facilitate plants in a trait-mediated tri-trophic cascade.
Griffin, John N; Butler, Jack; Soomdat, Nicole N; Brun, Karen E; Chejanovski, Zachary A; Silliman, Brian R
2011-10-23
Classical ecological theory states that in tri-trophic systems, predators indirectly facilitate plants by reducing herbivore densities through consumption, while more recent work has revealed that predators can generate the same positive effect on plants non-consumptively by inducing changes in herbivore traits (e.g. feeding rates). Based on observations in US salt marshes dominated by vast monocultures of cordgrass, we hypothesized that sit-and-wait substrate-dwelling predators (crabs) could actually strengthen per capita impacts of potent grazers (snails), by non-consumptively inducing a vertical habitat shift of snails to their predation refuge high on canopy leaves that are vulnerable to grazing. A two-month field experiment supported this hypothesis, revealing that predators non-consumptively increased the mean climbing height of snails on grasses, increased grazing damage per leaf and ultimately suppressed cordgrass biomass, relative to controls. While seemingly counterintuitive, our results can be explained by (i) the vulnerability of refuge resources to grazing, and (ii) universal traits that drove the vertical habitat shift--i.e. relative habitat domains of predator and prey, and the hunting mode of the top predator. These results underline the fact that not only should we continue to incorporate non-consumptive effects into our understanding of top-down predator impacts, but we should do so in a spatially explicit manner.
Measurement of the n-p elastic scattering angular distribution at E{sub n}=14.9 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boukharouba, N.; Bateman, F. B.; Carlson, A. D.
2010-07-15
The relative differential cross section for the elastic scattering of neutrons by protons was measured at an incident neutron energy E{sub n}=14.9 MeV and for center-of-mass scattering angles ranging from about 60 deg. to 180 deg. Angular distribution values were obtained from the normalization of the integrated data to the n-p total elastic scattering cross section. Comparisons of the normalized data to the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and with the ENDF/B-VII.0 evaluation are sensitive to the value of the total elastic scattering cross section used to normalize the data. The resultsmore » of a fit to a first-order Legendre polynomial expansion are in good agreement in the backward scattering hemisphere with the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and to a lesser extent, with the ENDF/B-VII.0 evaluation. A fit to a second-order expansion is in better agreement with the ENDF/B-VII.0 evaluation than with the other predictions, in particular when the total elastic scattering cross section given by Arndt et al. and the Nijmegen group is used to normalize the data. A Legendre polynomial fit to the existing n-p scattering data in the 14 MeV energy region, excluding the present measurement, showed that a best fit is obtained for a second-order expansion. Furthermore, the Kolmogorov-Smirnov test confirms the general agreement in the backward scattering hemisphere and shows that significant differences between the database and the predictions occur in the angular range between 60 deg. and 120 deg. and below 20 deg. Although there is good overall agreement in the backward scattering hemisphere, more precision small-angle scattering data and a better definition of the total elastic cross section are needed for an accurate determination of the shape and magnitude of the angular distribution.« less
The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation.
Ritschl, Ludwig; Kuntz, Jan; Fleischmann, Christof; Kachelrieß, Marc
2016-05-01
In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.
The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan, E-mail: j.kuntz@dkfz.de
Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled datamore » set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.« less
NASA Astrophysics Data System (ADS)
Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Shi, Yan
2016-06-01
In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.
Anaylyzing powers for the reaction π-p-->-->π0n at T-π=161 MeV
NASA Astrophysics Data System (ADS)
Görgen, J. J.; Comfort, J. R.; Averett, T.; Dekorse, J.; Franklin, B.; Ritchie, B. G.; Tinsley, J.; Kyle, G.; Berman, B.; Burleson, G.; Cranston, K.; Klein, A.; Faucett, J. A.; Jarmer, J. J.; Knudson, J. N.; Penttilä, S.; Tanaka, N.; Brinkmöller, B.; Dehnhard, D.; Yen, Y. F.; Høibrråten, S.; Breuer, H.; Flanders, B. S.; Khandaker, M. A.; Naples, D. L.; Zhang, D.; Barlett, M. L.; Hoffmann, G. W.; Purcell, M.
1990-10-01
Analyzing powers for the reaction π-p-->-->π0n were measured at an incident pion energy of T-π=161 MeV with a transversely polarized proton target over the angular range of about 20°-60°. The results are well described by calculations based on current sets of πN phase shifts.
NASA Astrophysics Data System (ADS)
Firdous, S.; Anwar, S.; Rafya, R.
2018-06-01
Surface plasmon resonance (SPR) has become an important optical biosensing technology due to its real-time, label-free, and noninvasive nature. These techniques allow for rapid and ultra-sensitive detection of biological analytes, with applications in medical diagnostics, environmental monitoring, and agriculture. SPR is widely used in the detection of biomolecular interactions, and improvements are required for both sensitivity and in vivo uses for practical applications. In this study, we developed an SPR biosensor to provide a highly sensitive and specific approach to early-stage detection of viral and malignant diseases, such as cancer tumors, for which biomarker detection is very important. A cancer cell line (HeLa cells) with biomarker Rodamine 6G was experimentally analyzed in vitro with our constructed SPR biosensor. It was observed that the biosensor can offer a potentially powerful solution for tumor screening with dominant angular shift. The angular shift for both regents is dominant with a time curve at a wavelength of 632.8 nm of a He–Ne laser. We have successfully captured and detected a biomarker in vitro for cancer diagnostics using the developed instrument.
NASA Astrophysics Data System (ADS)
Koksbang, S. M.
2017-03-01
Light propagation in two Swiss-cheese models based on anisotropic Szekeres structures is studied and compared with light propagation in Swiss-cheese models based on the Szekeres models' underlying Lemaitre-Tolman-Bondi models. The study shows that the anisotropy of the Szekeres models has only a small effect on quantities such as redshift-distance relations, projected shear and expansion rate along individual light rays. The average angular diameter distance to the last scattering surface is computed for each model. Contrary to earlier studies, the results obtained here are (mostly) in agreement with perturbative results. In particular, a small negative shift, δ DA≔D/A-DA ,b g DA ,b g , in the angular diameter distance is obtained upon line-of-sight averaging in three of the four models. The results are, however, not statistically significant. In the fourth model, there is a small positive shift which has an especially small statistical significance. The line-of-sight averaged inverse magnification at z =1100 is consistent with 1 to a high level of confidence for all models, indicating that the area of the surface corresponding to z =1100 is close to that of the background.
Evidence Combination From an Evolutionary Game Theory Perspective.
Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu
2016-09-01
Dempster-Shafer evidence theory is a primary methodology for multisource information fusion because it is good at dealing with uncertain information. This theory provides a Dempster's rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multievidence system. Within the proposed ECR, we develop a Jaccard matrix game to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution's stability and convergence, have been mathematically proved as well.
Radiometric Spacecraft Tracking for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Lanyi, Gabor E.; Border, James S.; Shin, Dong K.
2008-01-01
Interplanetary spacecraft navigation relies on three types of terrestrial tracking observables.1) Ranging measures the distance between the observing site and the probe. 2) The line-of-sight velocity of the probe is inferred from Doppler-shift by measuring the frequency shift of the received signal with respect to the unshifted frequency. 3) Differential angular coordinates of the probe with respect to natural radio sources are nominally obtained via a differential delay technique of (Delta) DOR (Delta Differential One-way Ranging). The accuracy of spacecraft coordinate determination depends on the measurement uncertainties associated with each of these three techniques. We evaluate the corresponding sources of error and present a detailed error budget.
Ko, Hyun-Kyung; Berk, Michael; Chung, Yoon-Mi; Willard, Belinda; Bareja, Rohan; Rubin, Mark; Sboner, Andrea; Sharifi, Nima
2018-01-16
Castration-resistant prostate cancer (CRPC) requires tumors to engage metabolic mechanisms that allow sustained testosterone and/or dihydrotestosterone to stimulate progression. 17β-Hydroxysteroid dehydrogenase type 4 (17βHSD4), encoded by HSD17B4, is thought to inactivate testosterone and dihydrotestosterone by converting them to their respective inert 17-keto steroids. Counterintuitively, HSD17B4 expression increases in CRPC and predicts poor prognosis. Here, we show that, of five alternative splice forms, only isoform 2 encodes an enzyme capable of testosterone and dihydrotestosterone inactivation. In contrast with other transcripts, functional expression of isoform 2 is specifically suppressed in development of CRPC in patients. Genetically silencing isoform 2 shifts the metabolic balance toward 17β-OH androgens (testosterone and dihydrotestosterone), stimulating androgen receptor (AR) and CRPC development. Our studies specifically implicate HSD17B4 isoform 2 loss in lethal prostate cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Localizing gravitational wave sources with single-baseline atom interferometers
NASA Astrophysics Data System (ADS)
Graham, Peter W.; Jung, Sunghoon
2018-02-01
Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. We show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization. The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.
Limitations to THz generation by optical rectification using tilted pulse fronts.
Ravi, Koustuban; Huang, W Ronny; Carbajo, Sergio; Wu, Xiaojun; Kärtner, Franz
2014-08-25
Terahertz (THz) generation by optical rectification (OR) using tilted-pulse-fronts is studied. A one-dimensional (1-D) model which simultaneously accounts for (i) the nonlinear coupled interaction of the THz and optical radiation, (ii) angular and material dispersion, (iii) absorption, iv) self-phase modulation and (v) stimulated Raman scattering is presented. We numerically show that the large experimentally observed cascaded frequency down-shift and spectral broadening (cascading effects) of the optical pump pulse is a direct consequence of THz generation. In the presence of this large spectral broadening, the large angular dispersion associated with tilted-pulse-fronts which is ~15-times larger than material dispersion, accentuates phase mismatch and degrades THz generation. Consequently, this cascading effect in conjunction with angular dispersion is shown to be the strongest limitation to THz generation in lithium niobate for pumping at 1 µm. It is seen that the exclusion of these cascading effects in modeling OR, leads to a significant overestimation of the optical-to-THz conversion efficiency. The results are verified with calculations based on a 2-D spatial model. The simulation results are supported by experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumming, J.B.; Haustein, P.E.; Stoenner, R.W.
1986-03-01
Angular distributions are reported for /sup 37/Ar and /sup 127/Xe produced by the interaction of 8-GeV /sup 20/Ne and 25-GeV /sup 12/C ions with Au. A shift from a forward to a sideward peaked distribution is observed for /sup 37/Ar, similar to that known to occur for incident protons over the same energy interval. Analysis of these data and those for Z = 8 fragments indicate that reactions leading to heavy fragment emission become more peripheral as bombarding energies increase. A mechanistic analysis is presented which explores the ranges of applicability of several models and the reliability of their predictionsmore » to fragmentation reactions induced by both energetic heavy ions and protons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shixing; Li, Long, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Shi, Guangming, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn
In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effectivemore » way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.« less
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Deluca, Marco; Yamamoto, Shinsuke; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-06-01
The stress dependence of the Raman spectrum of polycrystalline barium titanate (BaTiO3, BT) ceramics has been examined with microprobe polarized Raman spectroscopy. The angular dependence of the Raman spectrum of the tetragonal BT crystal has been theoretically established, enabling us to assess the stress dependence of selected spectral modes without the influence of crystallographic domain orientation. Upon considering the frequency shift of selected Raman modes as a function of orientation between the crystallographic axis and the polarization vector of incident and scattered light, a suitable instrumental configuration has been selected, which allowed a direct residual stress measurement according to a modified piezospectroscopic procedure. The analysis is based on the selection of mixed photostimulated spectral modes in two perpendicular angular orientations.
Secular Evolution of Spiral Galaxies
2003-01-01
recombination (z=1000). Furthermore, the BigBang nucleosynthesis model also requires a signi cantamount of non- baryonic dark matter (Primack 1999) ifthe universe...momentum (as well as energy) outward. Associ-ated with this outward angular momentum transport isan expected secular redistribution of disk matter , co...mode, a secular transfer of energy andangular momentum between the disk matter and thedensity wave. The existence of the phase shift betweenthe
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2016-11-01
When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.
Ionization and dissociation of molecular ion beams by intense ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Ben-Itzhak, Itzik
2007-06-01
Laser-induced dissociation and ionization of a diatomic molecular-ion beam were simultaneously measured using coincidence 3D momentum imaging, with direct separation of the two processes even where the fragment kinetic energy is the same for both processes. We mainly focus on the fundamental H2^+ molecule in 7-135 fs laser pulses having 10^13-10^15 W/cm^2 peak intensity. At high intensities the kinetic energy release (KER) distribution following ionization of H2^+ was measured to be broad and structureless. Its centroid shifts toward higher energies as the laser intensity is increased indicating that ionization shifts to smaller internuclear distances. In contrast, a surprising structure is observed near the ionization threshold, which we call above threshold Coulomb explosion (ATCE) [1]. The angular distributions of the two H^+ fragments are strongly peaked along the laser polarization, and the angular distribution is described well by [cos^2θ]^n, where n is the number of photons predicted by our ATCE model [1]. Our data indicates that n varies with the laser wavelength as predicted by the model. The KER and angular distributions of H2^+ dissociation change dramatically with decreasing pulse width over the 7-135 fs range in contrast to the reported trend for longer pulses. Others contributing to this work: A.M. Sayler, P.Q. Wang, J. McKenna, B. Gaire, Nora G. Johnson, E. Parke, K.D. Carnes, and B.D. Esry. Thank are due to Professor Zenghu Chang for providing the intense laser beams and Dr. Charles Fehrenbach for his help with the ion beams. [1] B.D. Esry, A.M. Sayler, P.Q. Wang, K.D. Carnes, and I. Ben-Itzhak, Phys. Rev. Lett. 97, 013003 (2006).
Tilt-effect of holograms and images displayed on a spatial light modulator.
Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika
2015-11-16
We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.
Local adaptation and the evolution of species' ranges under climate change.
Atkins, K E; Travis, J M J
2010-10-07
The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species' equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention. 2010 Elsevier Ltd. All rights reserved.
BAO from Angular Clustering: Optimization and Mitigation of Theoretical Systematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocce, M.; et al.
We study the theoretical systematics and optimize the methodology in Baryon Acoustic Oscillations (BAO) detections using the angular correlation function with tomographic bins. We calibrate and optimize the pipeline for the Dark Energy Survey Year 1 dataset using 1800 mocks. We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The MLE method yields the least bias in the fit results (bias/spreadmore » $$\\sim 0.02$$) and the error bar derived is the closest to the Gaussian results (1% from 68% Gaussian expectation). When there is mismatch between the template and the data either due to incorrect fiducial cosmology or photo-$z$ error, the MLE again gives the least-biased results. The BAO angular shift that is estimated based on the sound horizon and the angular diameter distance agree with the numerical fit. Various analysis choices are further tested: the number of redshift bins, cross-correlations, and angular binning. We propose two methods to correct the mock covariance when the final sample properties are slightly different from those used to create the mock. We show that the sample changes can be accommodated with the help of the Gaussian covariance matrix or more effectively using the eigenmode expansion of the mock covariance. The eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the direct measurements of the covariance matrix because the number of free parameters is substantially reduced [$p$ parameters versus $p(p+1)/2$ from direct measurement].« less
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Li, Cheng-Bin; Sahoo, B. K.
2018-03-01
Dependencies of electron correlation effects with the rank and radial behavior of spectroscopic properties are analyzed in the singly charged calcium ion (Ca+). To demonstrate these trends, we have determined field shift constants, magnetic dipole and electric quadrupole hyperfine structure constants, Landé g J factors, and electric quadrupole moments that are described by electronic operators with different radial and angular factors. Radial dependencies are investigated by comparing correlation trends among the properties that have similar angular factors and vice versa. To highlight these observations, we present results from the mean-field approach to all-orders along with intermediate contributions. Contributions from higher relativistic corrections are also given. These findings suggest that sometime lower-order approximations can give results agreeing with the experimental results, but inclusion of some of higher-order correlation effects can cause large disagreement with the experimental values. Therefore, validity of a method for accurate evaluation of atomic properties can be tested by performing calculations of several properties simultaneously that have diverse dependencies on the angular and radial factors and comparing with the available experimental results. Nevertheless, it is imperative to include full triple and quadrupole excitations in the all-order many-body methods for high-precision calculations that are yet to be developed adopting spherical coordinate system for atomic studies.
Evidence Combination From an Evolutionary Game Theory Perspective
Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu
2017-01-01
Dempster-Shafer evidence theory is a primary methodology for multi-source information fusion because it is good at dealing with uncertain information. This theory provides a Dempster’s rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multi-evidence system. Within the proposed ECR, we develop a Jaccard matrix game (JMG) to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution’s stability and convergence, have been mathematically proved as well. PMID:26285231
Weber, Michael D; Garino, Claudio; Volpi, Giorgio; Casamassa, Enrico; Milanesio, Marco; Barolo, Claudia; Costa, Rubén D
2016-06-07
This work provides the synthesis, structural characterization, electrochemical and photophysical features, as well as the application in light-emitting electrochemical cells (LECs) of a novel heteroleptic copper(i) complex - [Cu(impy)(POP)][PF6], where impy is 3-(2-methoxyphenyl)-1-(pyridine-2-yl)imidazo[1,5-a]pyridine and POP is bis{2-(diphenylphosphanyl)phenyl}ether. This compound shows blue photoluminescence (PL, λ = 450 nm) in solution and solid-state and excellent redox stability. Despite these excellent features, the electroluminescence (EL) response is located at ∼550 nm. Although the EL spectrum of LECs is typically red-shifted compared to the PL of the electroluminescent material, a shift of ca. 100 nm represents the largest one reported in LECs. To date, the large shift phenomena have been attributed to (i) a change in the nature of the lowest emitting state due to a concentration effect of the films, (ii) a reversible substitution of the ligands due to the weak coordination to the Cu(i), and (iii) a change in the distribution of the excited states due to polarization effects. After having discarded these along with others like the irreversible degradation of the emitter during device fabrication and/or under operation conditions, driving conditions, active layer composition, and changes in the excited states under different external electrical stimuli, we attribute the origin of this unexpected shift to a lack of a thermally activated delayed fluorescence (TADF) process due to the solely ligand-centered character of the excited states. As such, the lack of a charge transfer character in the excited states leads to a blue-fluorescence and yellow-phosphorescence photo- and electro-responses, respectively. This corroborates recent studies focused on the design of TADF for heteroleptic copper(i) complexes. Overall, this work is a clear insight into the design of new copper(i) complexes towards the preparation of blue LECs, which are still unexplored.
The Fourth Law of Motion in Classical Mechanics and Electrodynamics
NASA Astrophysics Data System (ADS)
Pinheiro, Mario J.
2010-01-01
Newton's second law has limited scope of application when transient phenomena are at stake. We endeavor here to consider a modification of Newton's second law in order to take into account sudden change (surge) of angular momentum or linear momentum. It is shown that space react back according to a kind of induction law that is related to inertia, but also appears to give evidence of a "fluidic" nature of space itself. The back-reaction is quantified by the time rate of the angular momentum flux threading a surface, mass dependent, and bearing similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects, thus giving evidence of the property of vacuum polarization, a phenomena which is relative to local space. It is formulated a kind of (qualitative) Lenz law that gives an explanation to precession.
Angular-dependent Raman study of a- and s-plane InN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filintoglou, K.; Katsikini, M., E-mail: katsiki@auth.gr; Arvanitidis, J.
2015-02-21
Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane (11{sup ¯}20) and semipolar s-plane (101{sup ¯}1) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup h} on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al{sub 2}O{sub 3}) exhibit good crystalline quality as deduced frommore » the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E{sub 1}(TO) and E{sub 2}{sup h} Raman peaks was used for the estimation of the strain state of the samples.« less
Angular approach combined to mechanical model for tool breakage detection by eddy current sensors
NASA Astrophysics Data System (ADS)
Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.
2014-02-01
The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.
Localizing gravitational wave sources with single-baseline atom interferometers
Graham, Peter W.; Jung, Sunghoon
2018-01-31
Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. Here in this paper, we show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization.more » The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.« less
Localizing gravitational wave sources with single-baseline atom interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Peter W.; Jung, Sunghoon
Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. Here in this paper, we show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization.more » The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.« less
Systems Issues Pertaining to Holographic Optical Data Storage in Thick Bacteriorhodopsin Films
NASA Technical Reports Server (NTRS)
Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Oezcan, Meric; Smithey, Daniel T.; Crew, Marshall; Lau, Sonie (Technical Monitor)
1998-01-01
The optical data storage capacity and raw bit-error-rate achievable with thick photochromic bacteriorhodopsin (BR) films are investigated for sequential recording and read- out of angularly- and shift-multiplexed digital holograms inside a thick blue-membrane D85N BR film. We address the determination of an exposure schedule that produces equal diffraction efficiencies among each of the multiplexed holograms. This exposure schedule is determined by numerical simulations of the holographic recording process within the BR material, and maximizes the total grating strength. We also experimentally measure the shift selectivity and compare the results to theoretical predictions. Finally, we evaluate the bit-error-rate of a single hologram, and of multiple holograms stored within the film.
Molecular jet of IRAS 04166+2706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang-Yao; Shang, Hsien; Su, Yu-Nung
2014-01-01
The molecular outflow from IRAS 04166+2706 was mapped with the Submillimeter Array at a 350 GHz continuum and CO J = 3-2 at an angular resolution of ∼1''. The field of view covers the central arcminute, which contains the inner four pairs of knots of the molecular jet. On the channel map, conical structures are clearly present in the low-velocity range (|V – V {sub 0}| < 10 km s{sup –1}), and the highly collimated knots appear in the extremely high velocity range (50 >|V – V {sub 0}| > 30 km s{sup –1}). The higher angular resolution of ∼1''more » reveals the first blue-shifted knot (B1) that was missing in previous Plateau de Bure Interferometer observation of Santiago-García et al. at an offset of ∼6'' to the northeast of the central source. This identification completes the symmetric sequence of knots in both the blue- and red-shifted lobes of the outflow. The innermost knots R1 and B1 have the highest velocities within the sequence. Although the general features appear to be similar to previous CO J = 2-1 images in Santiago-García et al., the emission in CO J = 3-2 almost always peaks further away from the central source than that of CO J = 2-1 in the red-shifted lobe of the channel maps. This gives rise to a gradient in the line-ratio map of CO J = 3-2/J = 2-1 from head to tail within a knot. A large velocity gradient analysis suggests that the differences may reflect a higher gas kinetic temperature at the head. We also explore possible constraints imposed by the nondetection of SiO J = 8-7.« less
Heath, Joel P.; Gilchrist, H. Grant; Ydenberg, Ronald C.
2010-01-01
To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of diving for benthic invertebrates, digestive processing rate and a nonlinear decrease in profitability of diving as currents increase over the tidal cycle. Using a multi-scale dynamic modelling approach and continuous field observations of individuals, we demonstrate that the strategy that maximizes long-term energy gain involves resting during the most profitable foraging period (slack currents). These counterintuitive foraging patterns are an adaptive trade-off between multiple overlapping rate processes and cannot be explained by classical rate-maximizing optimization theory, which only considers a single timescale and predicts a constant rate of foraging. By reducing foraging and instead digesting during slack currents, eiders structure their activity in order to maximize long-term energetic gain over an entire tide cycle. This study reveals how counterintuitive patterns and a complex functional response can result from a simple trade-off among several overlapping rate processes, emphasizing the necessity of a multi-scale approach for understanding adaptive routines in the wild and evaluating mechanisms in ecological time series. PMID:20504814
In-line phase shift tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.
2013-08-15
Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS withmore » a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.« less
Tip/tilt optimizations for polynomial apodized vortex coronagraphs on obscured telescope pupils
NASA Astrophysics Data System (ADS)
Fogarty, Kevin; Pueyo, Laurent; Mazoyer, Johan; N'Diaye, Mamadou
2017-09-01
Obstructions due to large secondary mirrors, primary mirror segmentation, and secondary mirror support struts all introduce diffraction artifacts that limit the performance offered by coronagraphs. However, just as vortex coronagraphs provides theoretically ideal cancellation of on-axis starlight for clear apertures, the Polynomial Apodized Vortex Coronagraph (PAVC) completely blocks on-axis light for apertures with central obscurations, and delivers off-axis throughput that improves as the topological charge of the vortex increases. We examine the sensitivity of PAVC designs to tip/tilt aberrations and stellar angular size, and discuss methods for mitigating these effects. By imposing additional constraints on the pupil plane apodization, we decrease the sensitivity of the PAVC to the small positional shifts of the on-axis source induced by either tip/tilt or stellar angular size; providing a route to overcoming an important hurdle facing the performance of vortex coronagraphs on telescopes with complicated pupils.
NASA Astrophysics Data System (ADS)
Bicudo, Pedro; Cardoso, Marco; Peters, Antje; Pflaumer, Martin; Wagner, Marc
2017-09-01
We study tetraquark resonances with lattice QCD potentials computed for a static b ¯b ¯ pair in the presence of two lighter quarks u d , the Born-Oppenheimer approximation and the emergent wave method. As a proof of concept we focus on the system with isospin I =0 , but consider different relative angular momenta l of the heavy quarks b ¯b ¯. For l =0 a bound state has already been predicted with quantum numbers I (JP)=0 (1+). Exploring various angular momenta we now compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a tetraquark resonance for l =1 , decaying into two B mesons, with quantum numbers I (JP)=0 (1-) , mass m =10 57 6-4+4 MeV and decay width Γ =11 2-103+90 MeV .
Catenary optics for achromatic generation of perfect optical angular momentum
Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang
2015-01-01
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283
Chen, Shi; Liu, Jun; Zhao, Yifan; Zhu, Long; Wang, Andong; Li, Shuhui; Du, Jing; Du, Cheng; Mo, Qi; Wang, Jian
2016-01-01
We present a full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum (OAM) fiber. OAM+1 and OAM−1 modes carrying 20-Gbit/s quadrature phase-shift keying (QPSK) signals are employed in the downlink and uplink transmission experiments. The observed mode crosstalks are less than −15.2 dB, and the full-duplex crosstalks are less than −12.7 dB. The measured full-duplex optical signal-to-noise ratio (OSNR) penalties at a bit-error rate (BER) of 2 × 10−3 are ~2.4 dB in the downlink transmission and ~2.3 dB in the uplink transmission. The obtained results show favorable full-duplex twisted lights multiplexing data transmission performance in a km-scale OAM fiber link. PMID:27901082
Catenary optics for achromatic generation of perfect optical angular momentum.
Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang
2015-10-01
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.
Predatory beetles facilitate plant growth by driving earthworms to lower soil layers.
Zhao, Chuan; Griffin, John N; Wu, Xinwei; Sun, Shucun
2013-07-01
Theory suggests that predators of soil-improving, plant-facilitating detritivores (e.g. earthworms) should suppress plant growth via a negative tri-trophic cascade, but the empirical evidence is still largely lacking. We tested this prediction in an alpine meadow on the Tibetan Plateau by manipulating predatory beetles (presence/absence) and quantifying (i) direct effects on the density and behaviour of earthworms; and (ii) indirect effects on soil properties and above-ground plant biomass. In the absence of predators, earthworms improved soil properties, but did not significantly affect plant biomass. Surprisingly, the presence of predators strengthened the positive effect of earthworms on soil properties leading to the emergence of a positive indirect effect of predators on plant biomass. We attribute this counterintuitive result to: (i) the inability of predators to suppress overall earthworm density; and (ii) the predator-induced earthworm habitat shift from the upper to lower soil layer that enhanced their soil-modifying, plant-facilitating, effects. Our results reveal that plant-level consequences of predators as transmitted through detritivores can hinge on behaviour-mediated indirect interactions that have the potential to overturn predictions based solely on trophic interactions. This work calls for a closer examination of the effects of predators in detritus food webs and the development of spatially explicit theory capable of predicting the occurrence and consequences of predator-induced detritivore behavioural shifts. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
NASA Astrophysics Data System (ADS)
Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.
2018-01-01
We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.
Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas
NASA Astrophysics Data System (ADS)
Kim, Ji-Hee; , G. Timothy Noe, II; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro
2013-11-01
Nonequilibrium can be a source of order. This rather counterintuitive statement has been proven to be true through a variety of fluctuation-driven, self-organization behaviors exhibited by out-of-equilibrium, many-body systems in nature (physical, chemical, and biological), resulting in the spontaneous appearance of macroscopic coherence. Here, we report on the observation of spontaneous bursts of coherent radiation from a quantum-degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical spontaneous emission from semiconductors, which occurs at the band edge, the observed emission occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by recombination, the quasi-Fermi energy goes down toward the band edge, and we observe a continuously red-shifting streak. We interpret this emission as cooperative spontaneous recombination of electron-hole pairs, or superfluorescence (SF), which is enhanced by Coulomb interactions near the Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously developed macroscopic polarization to exceed the maximum value for ordinary SF, making electron-hole SF even more ``super'' than atomic SF.
Optimal viscous damping of vibrating porous cylinders
NASA Astrophysics Data System (ADS)
Jafari Kang, Saeed; Masoud, Hassan
2017-11-01
We theoretically study small-amplitude oscillations of permeable cylinders immersed in an unbounded fluid. Specifically, we examine the effects of permeability and oscillation frequency on the damping coefficient, which is proportional to the power required to sustain the vibrations. Cylinders of both circular and non-circular cross-sections undergoing transverse and rotational vibrations are considered. Our calculations indicate that the damping coefficient often varies non-monotonically with the permeability. Depending on the oscillation period, the maximum damping of a permeable cylinder can be many times greater than that of an otherwise impermeable one. This might seem counter-intuitive at first since generally the power it takes to steadily drag a permeable object through the fluid is less than the power needed to drive the steady motion of the same but impermeable object. However, the driving power (or damping coefficient) for oscillating bodies is determined by not only the amplitude of the cyclic fluid force experienced by them but also by the phase shift between the force and their periodic motion. An increase in the latter is responsible for excess damping coefficient of vibrating porous cylinders.
Bren, Anat; Park, Junyoung O.; Towbin, Benjamin D.; Dekel, Erez; Rabinowitz, Joshua D.; Alon, Uri
2016-01-01
In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition. PMID:27109914
Carbon Fiber TOW Angle Determination Using Microwave Reflectometry
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.
NASA Astrophysics Data System (ADS)
Alam, Sabir Ul; Rao, A. Srinivasa; Ghosh, Anirban; Vaity, Pravin; Samanta, G. K.
2018-04-01
We report on a simple experimental scheme to generate and control the orbital angular momentum (OAM) spectrum of the asymmetric vortex beams in a nonlinear frequency conversion process. Using a spiral phase plate (SPP) and adjusting the transverse shift of the SPP with respect to the incident Gaussian beam axis, we have transformed the symmetric (intensity distribution) optical vortex of order l into an asymmetric vortex beam of measured broad spectrum of OAM modes of orders l, l - 1, l - 2, …, 0 (Gaussian mode). While the position of the SPP determines the distribution of the OAM modes, we have also observed that the modal distribution of the vortex beam changes with the shift of the SPP of all orders and finally results in a Gaussian beam (l = 0). Using single-pass frequency doubling of the asymmetric vortices, we have transferred the pump OAM spectra, l, l - 1, l - 2, …, 0, into the broad spectra of higher order OAM modes, 2l, 2l - 1, 2l - 2, …, 0 at green wavelength, owing to OAM conservation in nonlinear processes. We also observed an increase in single-pass conversion efficiency with the increase in asymmetry of the pump vortices producing a higher power vortex beam of mixed OAM modes at a new wavelength than that of the pure OAM mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavinto, Mikko; Räsänen, Syksy, E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi
We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius r{sub b}=50 h{sup −1} Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude belowmore » the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ D{sub A}/ D-bar {sub A}|∼< 10{sup −4}. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.« less
CMB seen through random Swiss Cheese
NASA Astrophysics Data System (ADS)
Lavinto, Mikko; Räsänen, Syksy
2015-10-01
We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius rb=50 h-1 Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ DA/bar DA|lesssim 10-4. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.
Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements
Swithers, Susan E.
2013-01-01
The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements. PMID:23850261
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter
1998-01-01
The focal shift of an optical filter used in non-collimated light depends directly on substrate thickness and index of refraction. The HST Advanced Camera for Surveys (ACS) requires a set of filters whose focal shifts are tightly matched. Knowing the index of refraction for substrate glasses allows precise substrate thicknesses to be specified. Two refractometers have been developed at the Goddard Space Flight Center (GSFC) to determine the indices of refraction of materials from which ACS filters are made. Modem imaging detectors for the near infrared, visible, and far ultraviolet spectral regions make these simple yet sophisticated refractometers possible. A new technology, high accuracy, angular encoder also developed at GSFC makes high precision index measurement possible in the vacuum ultraviolet.
Fiber Bragg grating ring resonators under rotation for angular velocity sensing.
Campanella, C E; De Leonardis, F; Passaro, V M N
2015-05-20
In this paper we investigate the possibility of using hybrid resonators based on fiber Bragg grating ring resonators (FBGRRs) and π-shifted FBGRRs (i.e., defective FBGRRs) as rotation sensitive elements for gyroscope applications. In particular, we model the conventional fiber Bragg grating (FBG) with the coupled mode theory by taking into account how the Sagnac effect, induced by the rotation, modifies the eigenvalues, the photonic band gap, and the spectral response of the FBG. Then, on the basis of the FBG model under rotation conditions, the spectral responses of the FBGRR and π-FBGRR have been evaluated, confirming that the Sagnac effect manifests itself with a spectral shift of the eigensolutions. This physical investigation can be exploited for opening new ways in the optical gyroscope platforms.
Mechanical Signature of Heat Generated in a Current-Driven Ferromagnetic Resonance System
NASA Astrophysics Data System (ADS)
Cho, Sung Un; Jo, Myunglae; Park, Seondo; Lee, Jae-Hyun; Yang, Chanuk; Kang, Seokwon; Park, Yun Daniel
2017-07-01
In a current-driven ferromagnetic resonance (FMR) system, heat generated by time-dependent magnetoresistance effects, caused by magnetization precession, cannot be overlooked. Here, we describe the generated heat by magnetization motion under electric current in a freestanding nanoelectromechanical resonator fashioned from a permalloy (Py )/Pt bilayer. By piezoresistive transduction of Pt, the mechanical mode is electrically detected at room temperature and the internal heat in Py excluding thermoelectric effects is quantified as a shift of the mechanical resonance. We find that the measured spectral shifts correspond to the FMR, which is further verified from the spin-torque FMR measurement. Furthermore, the angular dependence of the mechanical reaction on an applied magnetic field reveals that the full accounting of FMR heat dissipation requires the time-dependent magnetoresistance effect.
D autoionization states of He and ionic H
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
1972-01-01
Positions of the lowest 1,3De autoionization states of He and H(-) below the n = 2 level of the He(+) and H were calculated variationally, using Feshbach's Q-operator formalism. The trial wave function is of the Hylleraas-type with appropriate angular momentum factors. The widths and the shifts of the states have also been calculated. The shifts are found to be positive for all the states calculated here. The results with 112 terms for most states are lower than any previously calculated. The calculated lowest autoionization states of the He and H(-) (relative to the ground states of He and H respectively) are 59.902 eV and 10.1185 eV, in good agreement with the observed values of 59.9 eV and 10.13 + or 0.015 eV.
Coffman, R.T.
1962-11-27
The patent covers a remote-control manipulator in which a tool is carried on a tube at an end thereof angularly related to the main portion of the tube and joined thereto by a curved section. The main portion of the tube is mounted for rotation and axial shifting in a wall separating safe and dangerous areas. The tool is actuated to grasp and release an object in the dangerous area by means of a compound shaft extending through the tube, the shaft having a flexible section extending through the curved section of the tube. The tool is moved about in the dangerous area by rotation and axial movement of the main portion of the tube. Additional movement of the tool is obtained through axial shifting of the shaft with respect to the tube through which it extends. (AEC)
NASA Astrophysics Data System (ADS)
Arimondo, Ennio
2004-07-01
For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on particles and atoms, the rotational frequency shift, the angular momentum in nonlinear optics, and the entanglement of angular momentum. An introductory part contains the historic paper by Poynting mentioned above, and another one by Beth in 1936 where the angular momentum of light was measured through a mechanical detection. It also includes a paper by Allen written in 2002 as a long foreword to a Special Issue of Journal of Optics B: Quantum and Semiclassical Optics where more recent major developments within this field were illustrated. Both experimental and theoretical aspects of orbital angular momentum are covered, the editors themselves having, in fact, contributed to developments in both aspects. A newcomer to the field will immediately realize the most important issues connected to the generation, propagation and application of laser beams with orbital angular momentum. A reader already acquainted with the main features of the topic may skip the first papers of all the sections listed above, and focus his or her attention to those papers devoted to the more recent developments. This is therefore a book to be considered with great attention by a large community. My only, minor, remark on the choice of the papers reproduced within this book is that applications to solid state physics, such as liquid crystals, are not mentioned. The field keeps expanding. For instance, very recently optical beams bearing optical angular momentum have been recognized as potential systems for doing quantum computation. Optical tweezers have defined a revolution in optical manipulation for research in the fields of biology, physical chemistry and soft condensed matter physics. The angular momentum of light also has applications in atom optics. Good textbooks are essential in establishing and expanding any field; they help broaden the interest in the field and ensure that the next generation of physicists can learn it. The present book satisfies those requirements because it provides to graduate students, to newcomers to the field, and also to experienced researchers an easy access to the basic contributions.
Vogt, L; Brettmann, K; Pfeifer, K; Banzer, W
2003-04-08
This study examined the angular gait kinematics of the trunk and the pelvis in the frontal plane and their amount of side-to-side asymmetry in patients after total hip replacement arthroplasty. The angular gait kinematics of 12 male hip arthroplasty patients (53-70 years) were compared to ten age-matched and ten young (24-35 years) male control subjects. Average step times and medio-lateral oscillation amplitudes of the pelvic and thoracic recordings were calculated for each step. Between successive steps the asymmetry ratio was computed and the mean angle around which the side-to-side oscillations occurred was compared to the angle in a symmetrical standing trial. ANOVA indicated no significant side differences in relative step cycle durations. Patients and senior controls had significantly (p<0.01) less pelvis side-to-side displacements than the younger controls. No significant between-group differences could be detected for the average asymmetry ratio. However, during walking the patients showed a significantly (p<0.01) increased lateral thorax and pelvis deviation. Hip replacement patients' thoracic and pelvic position is characterized by a lateral shift throughout the gait cycle, while left and right symmetry of angular movements amplitudes remain at about the same value of unimpaired subjects.
2014-10-07
aligned at 45° so that the two radiation detectors view the DU plate at near normal incidence. Delayed neutrons were measured using a single He-3...bremsstrahlung converter. TLDs and an x-ray pinhole camera are used to measure the angular and radial x-ray dose distributions, 43 , 45 and He-3 detectors are...explanation is supported by x-ray pinhole images which show that the radial distribution of bremsstrahlung from the converter shifts to larger
Titan's rotation reveals an internal ocean and changing zonal winds
Lorenz, R.D.; Stiles, B.W.; Kirk, R.L.; Allison, M.D.; Del Marmo, P.P.; Iess, L.; Lunine, J.I.; Ostro, S.J.; Hensley, S.
2008-01-01
Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of ???0.36?? per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.
NASA Astrophysics Data System (ADS)
Luhar, Mitul
2018-04-01
Turbulence in pipe flows causes substantial friction and economic losses. The solution to appease the flow through pipelines might be, counterintuitively, to initially enhance turbulent mixing and get laminar flow in return.
Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.
Swithers, Susan E
2013-09-01
The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M.; Kubeček, V.
2017-07-01
Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.
The Character and Variability of the Eta Carinae Wind Lines
NASA Technical Reports Server (NTRS)
Nielsen, K. E.; Corcoran, M. F.; Gull, T. R.; Ivarsson, S.; Hillier, J. D.
2006-01-01
The binarity of Eta Carinae has been debated for a long time. We have searched for more evidence for a companion star in a spectroscopic investigation of the Eta Carinae stellar wind lines, using moderate spectral and high angular resolution HST/STIS data. Over Eta Carinae's 5.54 year spectroscopic period many of the observable wind lines in the NUV/Optical spectral region exhibit peculiar line profiles with unusual velocity shifts relative to the system velocity. Some of the lines are exclusively blue-shifted over the entire cycle. Their ionization/excitation imply formation not in the stellar wind but rather in the interface between the two massive stars. We have analyzed velocity and intensity variations over the spectroscopic period and interpreted what the variations tell us about the geometry of the nebular structure close to Eta Carinae.
Third-order-harmonic generation in coherently spinning molecules
NASA Astrophysics Data System (ADS)
Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.
2017-10-01
The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.
Long-term patterns in fish phenology in the western Dutch Wadden Sea in relation to climate change
NASA Astrophysics Data System (ADS)
van Walraven, Lodewijk; Dapper, Rob; Nauw, Janine J.; Tulp, Ingrid; Witte, Johannes IJ.; van der Veer, Henk W.
2017-09-01
Long-term patterns in fish phenology in the western Dutch Wadden Sea were studied using a 53 year (1960-2013) high resolution time series of daily kom-fyke catches in spring and autumn. Trends in first appearance, last occurrence and peak abundance were analysed for the most common species in relation to mode of life (pelagic, demersal, benthopelagic) and biogeographic guild (northern or southern distribution). Climate change in the western Wadden Sea involved an increase in water temperature from 1980 onwards. The main pattern in first day of occurrence, peak occurrence and last day of occurrence was similar: a positive trend over time and a correlation with spring and summer water temperature. This is counterintuitive; with increasing temperature, an advanced immigration of fish species would be expected. An explanation might be that water temperatures have increased offshore as well and hence fish remain longer there, delaying their immigration to the Wadden Sea. The main trend towards later date of peak occurrence and last day of occurrence was in line with our expectations: a forward shift in immigration into the Wadden Sea implies also that peak abundance is delayed. As a consequence of the increased water temperature, autumn water temperature remains favourable longer than before. For most of the species present, the Wadden Sea is not near the edge of their distributional range. The most striking phenological shifts occurred in those individual species for which the Wadden Sea is near the southern or northern edge of their distribution.
NASA Astrophysics Data System (ADS)
Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.
2016-05-01
We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm ), the blueshift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures
Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure andmore » micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.« less
Wavefront shaping with disorder-engineered metasurfaces
NASA Astrophysics Data System (ADS)
Jang, Mooseok; Horie, Yu; Shibukawa, Atsushi; Brake, Joshua; Liu, Yan; Kamali, Seyedeh Mahsa; Arbabi, Amir; Ruan, Haowen; Faraon, Andrei; Yang, Changhuei
2018-02-01
Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input-output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input-output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated 2.2 × 108 addressable points in an 8 mm field of view.
Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan
2018-04-17
Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P J; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Djordjevic, Ivan B; Neifeld, Mark A; Willner, Alan E
2016-02-01
We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3.8×10(-3) for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.
Analytical investigation of adaptive control of radiated inlet noise from turbofan engines
NASA Technical Reports Server (NTRS)
Risi, John D.; Burdisso, Ricardo A.
1994-01-01
An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.
NASA Astrophysics Data System (ADS)
Braukmann, D.; Popov, V. P.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.
2018-03-01
We study the linear polarization properties of the photoluminescence of ensembles of neutral and negatively charged nitrogen vacancies and neutral vacancies in diamond crystals as a function of their symmetry and their response to strong external magnetic fields. The linear polarization degree, which exceeds 10% at room temperature, and rotation of the polarization plane of their zero-phonon lines significantly depend on the crystal rotation around specific axes demonstrating anisotropic angular evolutions. The sign of the polarization plane rotation is changed periodically through the crystal rotation, which indicates a switching between electron excited states of orthogonal linear polarizations. At external magnetic fields of up to 10 T, the angular dependencies of the linear polarization degree experience a remarkable phase shift. Moreover, the rotation of the linear polarization plane increases linearly with rising magnetic field at 6 K and room temperature, for the negatively charged nitrogen vacancies, which is attributed to magneto-optical Faraday rotation.
Cognitive mechanisms for the evolution of religious thought.
Fondevila, Sabela; Martín-Loeches, Manuel
2013-09-01
The reasons behind the cultural persistence of religious beliefs throughout human history and prehistory still generate unanswered questions requiring scientific explanations. Within the framework of the cognitive science of religion, this article reviews experimental evidence supporting human predisposition for religious thinking and focuses on the hypothesis that a reason why religious beliefs are successful is their minimal counterintuitiveness. According to this hypothesis, religious concepts or stories would be characterized by containing only a small number of world-knowledge violations, which attracts attention while improving memorizability. We conclude this review by summarizing recent findings from our group using brain electrical activity and delving further into these questions. Our research suggests parallels between the natural tendency of the human cognitive system to use metaphors and the minimal counterintuitiveness of religious beliefs. © 2013 New York Academy of Sciences.
The Roles of Intuition and Informants' Expertise in Children's Epistemic Trust.
Lane, Jonathan D; Harris, Paul L
2015-01-01
This study examined how children's intuitions and informants' expertise influence children's trust in informants' claims. Three- to 8-year-olds (N = 192) watched videos in which experts (animal/biology experts or artifact/physics experts) made either intuitively plausible or counterintuitive claims about obscure animals or artifacts. Claims fell either within or beyond experts' domains of expertise. Children of all ages were more trusting of claims made by informants with relevant, as opposed to irrelevant, expertise. Children also showed greater acceptance of intuitive rather than counterintuitive claims, a differentiation that increased with age as they developed firmer intuitions about what can ordinarily happen. In summary, children's trust in testimony depends on whether informants have the relevant expertise as well as on children's own developing intuitions. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Electron spin resonance for the detection of long-range spin nematic order
NASA Astrophysics Data System (ADS)
Furuya, Shunsuke C.; Momoi, Tsutomu
2018-03-01
Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low-magnetization regime of SrCu2(BO3)2.
NASA Astrophysics Data System (ADS)
Li, F.; Wu, Y. P.; Nie, Z.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Gu, Y. Q.
2018-01-01
Low emittance (sub-100 nm rad) measurement of electron beams in plasma accelerators has been a challenging issue for a while. Among various measurement schemes, measurements based on single-shot quad-scan using permanent magnetic quadrupoles (PMQs) has been recently reported with emittance as low as ˜200 nm Weingartner (2012 Phys. Rev. Spec. Top. Accel. Beams 15 111302). However, the accuracy and reliability of this method have not been systematically analyzed. Such analysis is critical for evaluating the potential of sub-100 nm rad emittance measurement using any scheme. In this paper, we analyze the effects of various nonideal physical factors on the accuracy and reliability using the PMQ method. These factors include aberration induced by a high order field, PMQ misalignment and angular fluctuation of incoming beams. Our conclusions are as follows: (i) the aberrations caused by high order fields of PMQs are relatively weak for low emittance measurement as long as the PMQs are properly constructed. A series of PMQs were manufactured and measured at Tsinghua University, and using numerical simulations their high order field effects were found to be negligible . (ii) The largest measurement error of emittance is caused by the angular misalignment between PMQs. For low emittance measurement of ˜100 MeV beams, an angular alignment accuracy of 0.1° is necessary. This requirement can be eased for beams with higher energies. (iii) The transverse position misalignment of PMQs and angular fluctuation of incoming beams only cause a translational and rotational shift of measured signals, respectively, therefore, there is no effect on the measured value of emittance. (iv) The spatial resolution and efficiency of the detection system need to be properly designed to guarantee the accuracy of sub-100 nm rad emittance measurement.
Fukuchi, Claudiane A; Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J
2016-11-01
Wedged insoles have been used to treat knee pathologies and to prevent injuries. Although they have received much attention for the study of knee injury, the effects of wedges on ankle joint biomechanics are not well understood. This study sought to evaluate the immediate effects of lateral and medial wedges on knee and ankle internal joint loading and center of pressure (CoP) in men during walking. Twenty-one healthy men walked at 1.4 m/sec in five footwear conditions: neutral, 6° (LW6) and 9° (LW9) lateral wedges, and 6° (MW6) and 9° (MW9) medial wedges. Peak internal knee abduction moments and angular impulses, internal ankle inversion moments and angular impulses, and mediolateral CoP were analyzed. Analysis of variance with post hoc analysis and Pearson correlations were performed to detect differences between conditions. No differences in internal knee joint loading were found between neutral and any of the wedge conditions. However, as the wedge angle increased from medial to lateral, the internal ankle inversion moment (LW6: P = .020; LW9: P < .001; MW6: P = .046; MW9: P < .001) and angular impulse (LW9: P = .012) increased, and the CoP shifted laterally (LW9: P < .001) and medially (MW9: P < .001) compared with the neutral condition. Neither lateral nor medial wedges were effective in altering internal knee joint loading during walking. However, the greater internal ankle inversion moment and angular impulse observed with lateral wedges could lead to a higher risk of ankle injury. Thus, caution should be taken when lateral wedges need to be prescribed.
Geometric somersaults of a polymer chain through cyclic twisting motions
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Hino, Taiko
2017-01-01
This study explores the significance of geometric angle shifts, which we call geometric somersaults, arising from cyclic twisting motions of a polymer chain. A five-bead polymer chain serves as a concise and minimal model of a molecular shaft throughout this study. We first show that this polymer chain can change its orientation about its longitudinal axis largely, e.g., 120∘, under conditions of zero total angular momentum by changing the two dihedral angles in a cyclic manner. This phenomenon is an example of the so-called "falling cat" phenomenon, where a falling cat undergoes a geometric somersault by changing its body shape under conditions of zero total angular momentum. We then extend the geometric somersault of the polymer chain to a noisy and viscous environment, where the polymer chain is steered by external driving forces. This extension shows that the polymer chain can achieve an orientation change keeping its total angular momentum and total external torque fluctuating around zero in a noisy and viscous environment. As an application, we argue that the geometric somersault of the polymer chain by 120∘ may serve as a prototypical and coarse-grained model for the rotary motion of the central shaft of ATP synthase (FOF1 -ATPase). This geometric somersault is in clear contrast to the standard picture for the rotary motion of the central shaft as a rigid body, which generally incurs nonzero total angular momentum and nonzero total external torque. The power profile of the geometric somersault implies a preliminary mechanism for elastic power transmission. The results of this study may be of fundamental interest in twisting and rotary motions of biomolecules.
Rodríguez-Ruiz, A; Castillo, M; Garayoa, J; Chevalier, M
2016-06-01
The aim of this work was to research and evaluate the performance of three different digital breast tomosynthesis (DBT) systems in the clinical environment (Siemens Mammomat Inspiration, Hologic Selenia Dimensions, and Fujifilm Amulet Innovality). The characterization included the study of the detector, the automatic exposure control, and the resolution of DBT projections and reconstructed planes. The modulation transfer function (MTF) of the DBT projections was measured with a 1mm thick steel edge, showing a strong anisotropy (30-40% lower MTF0.5 frequencies in the tube travel direction). The in-plane MTF0.5, measured with a 25μm tungsten wire, ranges from 1.3 to 1.8lp/mm in the tube-travel direction and between 2.4 and 3.7lp/mm in the chest wall-nipple. In the latter direction, the MTF peak shift is more emphasized for large angular range systems (2.0 versus 1.0lp/mm). In-depth resolution of the planes, via the full width at half maximum (FWHM) from the point spread function of a 25μm tungsten wire, is not only influenced by angular range and yields 1.3-4.6mm among systems. The artifact spread function from 1mm diameter tungsten beads depends mainly on angular range, yielding two tendencies whether large (FWHM is 4.5mm) or small (FWHM is 10mm) angular range is used. DBT delivers per scan a mean glandular dose between 1.4 and 2.7mGy for a 45mm thick polymethyl methacrylate (PMMA) block. In conclusion, we have identified and analysed specific metrics that can be used for quality assurance of DBT systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Dynamics of Oscillating and Rotating Liquid Drop using Electrostatic Levitator
NASA Astrophysics Data System (ADS)
Matsumoto, Satoshi; Awazu, Shigeru; Abe, Yutaka; Watanabe, Tadashi; Nishinari, Katsuhiro; Yoda, Shinichi
2006-11-01
In order to understand the nonlinear behavior of liquid drop with oscillatory and/or rotational motions, an experimental study was performed. The electrostatic levitator was employed to achieve liquid drop formation on ground. A liquid drop with about 3 mm in diameter was levitated. The oscillation of mode n=2 along the vertical axis was induced by an external electrostatic force. The oscillatory motions were observed to clarify the nonlinearities of oscillatory behavior. A relationship between amplitude and frequency shift was made clear and the effect of frequency shift on amplitude agreed well with the theory. The frequency shift became larger with increasing the amplitude of oscillation. To confirm the nonlinear effects, we modeled the oscillation by employing the mass-spring-damper system included the nonlinear term. The result indicates that the large-amplitude oscillation includes the effect of nonlinear oscillation. The sound pressure was imposed to rotate the liquid drop along a vertical axis by using a pair of acoustic transducers. The drop transited to the two lobed shape due to centrifugal force when nondimensional angular velocity exceeded to 0.58.
Cyclotron line resonant transfer through neutron star atmospheres
NASA Technical Reports Server (NTRS)
Wang, John C. L.; Wasserman, Ira M.; Salpeter, Edwin E.
1988-01-01
Monte Carlo methods are used to study in detail the resonant radiative transfer of cyclotron line photons with recoil through a purely scattering neutron star atmosphere for both the polarized and unpolarized cases. For each case, the number of scatters, the path length traveled, the escape frequency shift, the escape direction cosine, the emergent frequency spectra, and the angular distribution of escaping photons are investigated. In the polarized case, transfer is calculated using both the cold plasma e- and o-modes and the magnetic vacuum perpendicular and parallel modes.
Shuck, A.B.; Shaw, W.C.
1961-06-20
A plutonium-rolling apparatus is patented that has two sets of feed rolls, shaping rolls between the feed rolls, and grippers beyond the feed rolls, which ready a workpiece for a new pass through the shaping rolls by angularly shifting the workpiece about its axis or transversely moving it on a line parallel to the axes of the shaping rolls. Actuation of each gripper for gripping or releasing the workpiece is produced by the relative positions assumed by the feed rolls adjacent to the gripper as the workpiece enters or leaves the feed rolls.
NASA Astrophysics Data System (ADS)
Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue
2016-02-01
Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.
NASA Astrophysics Data System (ADS)
Czakó, Gábor
2014-06-01
Motivated by a recent experiment [H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014)], we report a quasiclassical trajectory study of the O(3P) + CH4(vk = 0, 1) → OH + CH3 [k = 1 and 3] reactions on an ab initio potential energy surface. The computed angular distributions and cross sections correlated to the OH(v = 0, 1) + CH3(v = 0) coincident product states can be directly compared to experiment for O + CH4(v3 = 0, 1). Both theory and experiment show that the ground-state reaction is backward scattered, whereas the angular distributions shift toward sideways and forward directions upon antisymmetric stretching (v3) excitation of the reactant. Theory predicts similar behavior for the O + CH4(v1 = 1) reaction. The simulations show that stretching excitation enhances the reaction up to about 15 kcal/mol collision energy, whereas the O + CH4(vk = 1) reactions produce smaller cross sections for OH(v = 1) + CH3(v = 0) than those of O + CH4(v = 0) → OH(v = 0) + CH3(v = 0). The former finding agrees with experiment and the latter awaits for confirmation. The computed cold OH rotational distributions of O + CH4(v = 0) are in good agreement with experiment.
Particle field diagnose using angular multiplexing volume holography
NASA Astrophysics Data System (ADS)
Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua
2017-08-01
The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.
Czakó, Gábor
2014-06-21
Motivated by a recent experiment [H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014)], we report a quasiclassical trajectory study of the O((3)P) + CH4(vk = 0, 1) → OH + CH3 [k = 1 and 3] reactions on an ab initio potential energy surface. The computed angular distributions and cross sections correlated to the OH(v = 0, 1) + CH3(v = 0) coincident product states can be directly compared to experiment for O + CH4(v3 = 0, 1). Both theory and experiment show that the ground-state reaction is backward scattered, whereas the angular distributions shift toward sideways and forward directions upon antisymmetric stretching (v3) excitation of the reactant. Theory predicts similar behavior for the O + CH4(v1 = 1) reaction. The simulations show that stretching excitation enhances the reaction up to about 15 kcal/mol collision energy, whereas the O + CH4(vk = 1) reactions produce smaller cross sections for OH(v = 1) + CH3(v = 0) than those of O + CH4(v = 0) → OH(v = 0) + CH3(v = 0). The former finding agrees with experiment and the latter awaits for confirmation. The computed cold OH rotational distributions of O + CH4(v = 0) are in good agreement with experiment.
The chronology of reindeer hunting on Norway's highest ice patches
Pilø, Lars; Finstad, Espen; Ramsey, Christopher Bronk; Martinsen, Julian Robert Post; Nesje, Atle; Solli, Brit; Wangen, Vivian; Callanan, Martin
2018-01-01
The melting of perennial ice patches globally is uncovering a fragile record of alpine activity, especially hunting and the use of mountain passes. When rescued by systematic fieldwork (glacial archaeology), this evidence opens an unprecedented window on the chronology of high-elevation activity. Recent research in Jotunheimen and surrounding mountain areas of Norway has recovered over 2000 finds—many associated with reindeer hunting (e.g. arrows). We report the radiocarbon dates of 153 objects and use a kernel density estimation (KDE) method to determine the distribution of dated events from ca 4000 BCE to the present. Interpreted in light of shifting environmental, preservation and socio-economic factors, these new data show counterintuitive trends in the intensity of reindeer hunting and other high-elevation activity. Cold temperatures may sometimes have kept humans from Norway's highest elevations, as expected based on accessibility, exposure and reindeer distributions. In times of increasing demand for mountain resources, however, activity probably continued in the face of adverse or variable climatic conditions. The use of KDE modelling makes it possible to observe this patterning without the spurious effects of noise introduced by the discrete nature of the finds and the radiocarbon calibration process. PMID:29410869
Tunable heat conduction through coupled Fermi-Pasta-Ulam chains
NASA Astrophysics Data System (ADS)
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2015-01-01
We conduct a study on heat conduction through coupled Fermi-Pasta-Ulam (FPU) chains by using classical molecular dynamics simulations. Our attention is dedicated to showing how the phonon transport is affected by the interchain coupling. It has been well accepted that the heat conduction could be impeded by the interchain interaction due to the interface phonon scattering. However, recent theoretical and experimental studies suggest that the thermal conductivity of nanoscale materials can be counterintuitively enhanced by the interaction with the substrate. In the present paper, by consecutively varying the interchain coupling intensity, we observed both enhancement and suppression of thermal transport through the coupled FPU chains. For weak interchain couplings, it is found that the heat flux increases with the coupling intensity, whereas in the case of strong interchain couplings, the energy transport is found to be suppressed by the interchain interaction. Based on the phonon spectral energy density method, we attribute the enhancement of the energy transport to the excited phonon modes (in addition to the intrinsic phonon modes), while the upward shift of the high-frequency phonon branch and the interface phonon-phonon scattering account for the suppressed heat conduction.
NASA Technical Reports Server (NTRS)
Koay, J. Y.; Macquart, J.- P.; Rickett, B. J.; Bignall, H. E.; Lovell, J. E. J.; Reynolds, C.; Jauncey, D. L.; Pursimo, T.; Kedziora-Chudczer, L.; Ojha, R.
2012-01-01
The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at red shifts z > or approx. 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM) , in excess of the expected (1+z)1/2 angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, fiat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H(alpha) intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at alpha < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored further in a follow-up paper.
Simulation of ultrasonic focus aberration and correction through human tissue.
Tabei, Makoto; Mast, T Douglas; Waag, Robert C
2003-02-01
Ultrasonic focusing in two dimensions has been investigated by calculating the propagation of ultrasonic pulses through cross-sectional models of human abdominal wall and breast. Propagation calculations used a full-wave k-space method that accounts for spatial variations in density, sound speed, and frequency-dependent absorption and includes perfectly matched layer absorbing boundary conditions. To obtain a distorted receive wavefront, propagation from a point source through the tissue path was computed. Receive focusing used an angular spectrum method. Transmit focusing was accomplished by propagating a pressure wavefront from a virtual array through the tissue path. As well as uncompensated focusing, focusing that employed time-shift compensation and time-shift compensation after backpropagation was investigated in both transmit and receive and time reversal was investigated for transmit focusing in addition. The results indicate, consistent with measurements, that breast causes greater focus degradation than abdominal wall. The investigated compensation methods corrected the receive focus better than the transmit focus. Time-shift compensation after backpropagation improved the focus from that obtained using time-shift compensation alone but the improvement was less in transmit focusing than in receive focusing. Transmit focusing by time reversal resulted in lower sidelobes but larger mainlobes than the other investigated transmit focus compensation methods.
NASA Astrophysics Data System (ADS)
Song, C. X.; Liu, F.; Hao, Y. H.; Hu, X. H.; Zhang, Y. F.; Liu, X. H.
2014-10-01
We report that the intraspecific structural colouration variation of the beetle Torynorrhina flammea is a result of diffraction shifting manipulated by a multilayer sub-structure contained in a three-dimensional (3D) photonic architecture. With a perpendicularly 2D quasiperiodic diffraction grating inserted into the multilayer, the 3D photonic structure gives rise to anticrossing bandgaps of diffraction from the coupling of grating and multilayer bands. The angular dispersion of diffraction induced by the multilayer band shift behaves normally, in contrast to the ‘ultranegative’ behaviour controlled by the quasiperiodic grating. In addition, the diffraction wavelength is more sensitive to the multilayer periodicity than the diffraction grating constant, which explains the ‘smart’ biological selection of T. flammea in its intraspecific colouration variation from red to green to blue. The elucidated mechanism could be advantageous for the potential exploration of novel dispersive optical elements.
ERIC Educational Resources Information Center
Lamb, William G.
1985-01-01
Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)
Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids.
Dey, Indranuj; Jana, Kamalesh; Fedorov, Vladimir Yu; Koulouklidis, Anastasios D; Mondal, Angana; Shaikh, Moniruzzaman; Sarkar, Deep; Lad, Amit D; Tzortzakis, Stelios; Couairon, Arnaud; Kumar, G Ravindra
2017-10-30
Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm -1 , which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.
NASA Astrophysics Data System (ADS)
Kuzovkov, V. N.
2011-12-01
The goal of this paper is twofold. First, based on the interpretation of a quantum tight-binding model in terms of a classical Hamiltonian map, we consider the Anderson localization (AL) problem as the Fermi-Pasta-Ulam (FPU) effect in a modified dynamical system containing both stable and unstable (inverted) modes. Delocalized states in the AL are analogous to the stable quasi-periodic motion in FPU, whereas localized states are analogous to thermalization, respectively. The second aim is to use the classical Hamilton map for a simplified derivation of exact equations for the localization operator H(z). The latter was presented earlier (Kuzovkov et al 2002 J. Phys.: Condens. Matter 14 13777) treating the AL as a generalized diffusion in a dynamical system. We demonstrate that counter-intuitive results of our studies of the AL are similar to the FPU counter-intuitivity.
Eccentricity evolution during planet-disc interaction
NASA Astrophysics Data System (ADS)
Ragusa, Enrico; Rosotti, Giovanni; Teyssandier, Jean; Booth, Richard; Clarke, Cathie J.; Lodato, Giuseppe
2018-03-01
During the process of planet formation, the planet-disc interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long (t ˜ 3 × 105 orbits) numerical simulations: (a) one (with a relatively light disc, Md/Mp = 0.2), where the eccentricity initially stalls before growing at later times and (b) one (with a more massive disc, Md/Mp = 0.65) with fast growth and a late decrease of the eccentricity. We recover the well-known result that a more massive disc promotes a faster initial growth of the planet eccentricity. However, at late times the planet eccentricity decreases in the massive disc case, but increases in the light disc case. Both simulations show periodic eccentricity oscillations superimposed on a growing/decreasing trend and a rapid transition between fast and slow pericentre precession. The peculiar and contrasting evolution of the eccentricity of both planet and disc in the two simulations can be understood by invoking a simple toy model where the disc is treated as a second point-like gravitating body, subject to secular planet-planet interaction and eccentricity pumping/damping provided by the disc. We show how the counterintuitive result that the more massive simulation produces a lower planet eccentricity at late times can be understood in terms of the different ratios of the disc-to-planet angular momentum in the two simulations. In our interpretation, at late times the planet eccentricity can increase more in low-mass discs rather than in high-mass discs, contrary to previous claims in the literature.
Spinning optical resonator sensor for torsional vibrational applications measurements
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.
2016-03-01
Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.
Recognising the forest, but not the trees: an effect of colour on scene perception and recognition.
Nijboer, Tanja C W; Kanai, Ryota; de Haan, Edward H F; van der Smagt, Maarten J
2008-09-01
Colour has been shown to facilitate the recognition of scene images, but only when these images contain natural scenes, for which colour is 'diagnostic'. Here we investigate whether colour can also facilitate memory for scene images, and whether this would hold for natural scenes in particular. In the first experiment participants first studied a set of colour and greyscale natural and man-made scene images. Next, the same images were presented, randomly mixed with a different set. Participants were asked to indicate whether they had seen the images during the study phase. Surprisingly, performance was better for greyscale than for coloured images, and this difference is due to the higher false alarm rate for both natural and man-made coloured scenes. We hypothesized that this increase in false alarm rate was due to a shift from scrutinizing details of the image to recognition of the gist of the (coloured) image. A second experiment, utilizing images without a nameable gist, confirmed this hypothesis as participants now performed equally on greyscale and coloured images. In the final experiment we specifically targeted the more detail-based perception and recognition for greyscale images versus the more gist-based perception and recognition for coloured images with a change detection paradigm. The results show that changes to images are detected faster when image-pairs were presented in greyscale than in colour. This counterintuitive result held for both natural and man-made scenes (but not for scenes without nameable gist) and thus corroborates the shift from more detailed processing of images in greyscale to more gist-based processing of coloured images.
NASA Astrophysics Data System (ADS)
Zhu, Likai; Meng, Jijun; Li, Feng; You, Nanshan
2017-10-01
Spring onset has generally shifted earlier in China over the past several decades in response to the warming climate. However, future changes in spring onset and false springs, which will have profound effects on ecosystems, are still not well understood. Here, we used the extended form of the Spring Indices model (SI-x) to project changes in the first leaf and first bloom dates, and predicted false springs for the historical (1950-2005) and future (2006-2100) periods based on the downscaled daily maximum/minimum temperatures under two emission scenarios from 21 General Circulation Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5). On average, first leaf and first bloom in China were projected to occur 21 and 23 days earlier, respectively, by the end of the twenty-first century in the Representative Concentration Pathway (RCP) 8.5 scenario. Areas with greater earlier shifts in spring onset were in the warm temperate zone, as well as the north and middle subtropical zones of China. Early false spring risk increased rapidly in the warm temperate and north subtropical zones, while that declined in the cold temperate zone. Relative to early false spring risk, late false spring risk showed a common increase with smaller magnitude in the RCP 8.5 scenario but might cause greater damage to ecosystems because plants tend to become more vulnerable to the later occurrence of a freeze event. We conclude that future climate warming will continue to cause earlier occurrence of spring onset in general, but might counterintuitively increase plant damage risk in natural and agricultural systems of the warm temperate and subtropical China.
[Paradigmatic shifts in clinical practice in the the last generation].
Benbassat, J
1996-05-01
Physicians have always used theoretical models (paradigms) to interpret clinical reality, and have changed the prevailing model only when it could no longer satisfy clinical needs. The purpose of this essay is to review some of the paradigmatic changes in clinical reasoning that have occurred since my undergraduate medial education. My training in the 50's was along the bio-medical model that reduced all diseases to structural or biochemical dysfunctions. Within this framework, causes were perceived as leading inevitably rather than probabilistically to their consequences, and chance and ambiguity had a very small role in explication of pathophysiologic mechanisms and in diagnostic reasoning. The doctor-patient relationship was paternalistic and the orientation to extending survival rejected notions of quality of life and involved parsimonious utilization of health care resources. Today however, clinical reasoning has shifted from deductive and deterministic to inductive (evidence-based) and probabilistic. Disease is believed to result from multiple factors rather than from single causes, and there is increasing acceptance of psycho-social factors of disease. Awareness of the confounding effects of false-positive and false-negative tests has changed the attitude to diagnostic evaluation. Terms, such as risk indicators of disease, predictive value of tests and risk-benefit ratio are increasingly used in discussing clinical decisions. We respect the patient's autonomy more than we did in the past, and consider his/her preferences and quality of life in clinical decision-making. Fair distribution of medical resources is considered as an ethical principle. Finally, clinical guidelines are no longer viewed as counter-intuitive, but rather as effective means to reduce the disturbingly high rates of medical error.
Zhu, Likai; Meng, Jijun; Li, Feng; You, Nanshan
2017-10-28
Spring onset has generally shifted earlier in China over the past several decades in response to the warming climate. However, future changes in spring onset and false springs, which will have profound effects on ecosystems, are still not well understood. Here, we used the extended form of the Spring Indices model (SI-x) to project changes in the first leaf and first bloom dates, and predicted false springs for the historical (1950-2005) and future (2006-2100) periods based on the downscaled daily maximum/minimum temperatures under two emission scenarios from 21 General Circulation Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5). On average, first leaf and first bloom in China were projected to occur 21 and 23 days earlier, respectively, by the end of the twenty-first century in the Representative Concentration Pathway (RCP) 8.5 scenario. Areas with greater earlier shifts in spring onset were in the warm temperate zone, as well as the north and middle subtropical zones of China. Early false spring risk increased rapidly in the warm temperate and north subtropical zones, while that declined in the cold temperate zone. Relative to early false spring risk, late false spring risk showed a common increase with smaller magnitude in the RCP 8.5 scenario but might cause greater damage to ecosystems because plants tend to become more vulnerable to the later occurrence of a freeze event. We conclude that future climate warming will continue to cause earlier occurrence of spring onset in general, but might counterintuitively increase plant damage risk in natural and agricultural systems of the warm temperate and subtropical China.
2014-11-17
Enabling Nanophotonics, Data Storage and Energy Conversion with New Plasmonic Materials and Metasurfaces Vladimir M. Shalaev, Purdue University... Metasurfaces Stefano Maci, University of Siena...8 1620-1700 Nonlocal homogenization of metamaterials and metasurfaces Viktor Podolskiy, University of Massachusetts Lowell
Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation
NASA Astrophysics Data System (ADS)
Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke
2018-06-01
We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryabov, E.G.; Adeev, G.D.
A macroscopic temperature-dependent model that takes into account nuclear forces of finite range is used to calculate the static and statistical properties of hot rotating compound nuclei. The level-density parameter is approximated by an expression of the leptodermous type. The resulting expansion coefficients are in good agreement with their counterparts proposed previously by A.V. Ignatyuk and his colleagues. The effect of taking simultaneously into account the temperature of a nucleus and its angular momentum on the quantities under study, such as the heights and positions of fission barriers and the effective moments of inertia of nuclei at the barrier, ismore » considered, and the importance of doing this is demonstrated. The fissility parameter (Z{sup 2}/A){sub crit} and the position of the Businaro-Gallone point are studied versus temperature. It is found that, with increasing temperature, both parameters are shifted to the region of lighter nuclei. It is shown that the inclusion of temperature leads to qualitatively the same effects as the inclusion of the angular momentum of a nucleus, but, quantitatively, thermal excitation leads to smaller effects than rotational excitation.« less
NASA Astrophysics Data System (ADS)
Ruždjak, Domagoj; Sudar, Davor; Brajša, Roman; Skokić, Ivica; Poljančić Beljan, Ivana; Jurdana-Šepić, Rajka; Hanslmeier, Arnold; Veronig, Astrid; Pötzi, Werner
2018-04-01
Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Hung-Yi; Asada, Keiichi; Akiyama, Kazunori
A radiatively inefficient accretion flow (RIAF), which is commonly characterized by its sub-Keplerian nature, is a favored accretion model for the supermassive black hole at the Galactic center, Sagittarius A*. To investigate the observable features of an RIAF, we compare the modeled shadow images, visibilities, and spectra of three flow models with dynamics characterized by (i) a Keplerian shell that is rigidly rotating outside the innermost stable circular orbit (ISCO) and infalling with a constant angular momentum inside ISCO, (ii) a sub-Keplerian motion, and (iii) a free-falling motion with zero angular momentum at infinity. At near-millimeter wavelengths, the emission ismore » dominated by the flow within several Schwarzschild radii. The energy shift due to these flow dynamics becomes important and distinguishable, suggesting that the flow dynamics are an important model parameter for interpreting the millimeter/sub-millimeter very long baseline interferometric observations with the forthcoming, fully assembled Event Horizon Telescope (EHT). As an example, we demonstrate that structural variations of Sagittarius A* on event horizon-scales detected in previous EHT observations can be explained by the non-stationary dynamics of an RIAF.« less
NASA Astrophysics Data System (ADS)
Choi, Hyeok-Cheol; You, Chun-Yeol; Kim, Ki-Yeon; Lee, Jeong-Soo; Shim, Je-Ho; Kim, Dong-Hyun
2010-06-01
We have investigated the dependence of magnetic anisotropies of the exchange-biased NiFe/FeMn/CoFe trilayers on the antiferromagnetic (AF) layer thickness (tAF) by measuring in-plane angular-dependent ferromagnetic resonance fields. The resonance fields of NiFe and CoFe sublayers are shifted to lower and higher values compared to those of single unbiased ferromagnetic (F) layers, respectively, due to the interfacial exchange coupling when tAF≥2nm . In-plane angular dependence of resonance field reveals that uniaxial and unidirectional anisotropies coexist in the film plane, however, they are not collinear with each other. It is found that these peculiar noncollinear anisotropies significantly depend on tAF . The angle of misalignment displays a maximum around tAF=5nm and converges to zero when tAF is thicker than 10 nm. Contributions from thickness-dependent AF anisotropy and spin frustrations at both F/AF interfaces due to the structural imperfections should be accounted in order to understand the AF-layer thickness dependence of noncollinear magnetic anisotropies.
Black hole spin from wobbling and rotation of the M87 jet and a sign of a magnetically arrested disc
NASA Astrophysics Data System (ADS)
Sob'yanin, Denis Nikolaevich
2018-06-01
New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8-10 yr quasi-periodicity. Such jet wobbling can be indicative of a relativistic Lense-Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is J/Mc = (2.7 ± 1.5) × 1014 cm, implying moderate dimensionless spin parameters a = 0.5 ± 0.3 and 0.31 ± 0.17 for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, 0.15 ± 0.05. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87.
Effect of Aerogel Anisotropy in Superfluid 3He-A
NASA Astrophysics Data System (ADS)
Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.
2014-03-01
Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.
NASA Astrophysics Data System (ADS)
Piron, P.; Delacroix, C.; Huby, E.; Mawet, D.; Karlsson, M.; Ruane, G.; Habraken, S.; Absil, O.; Surdej, J.
2015-09-01
The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed.
Cephalometric Evaluation of the Hyoid Bone Position in Lebanese Healthy Young Adults.
Daraze, Antoine
2018-05-01
The objectives of this study are to assess hyoid sagittal and vertical position, and potential correlations with gender, skeletal class, and anthropometrics. Twenty-seven cephalometric linear, angular, and ratio measurements for the hyoid were recorded on lateral cephalograms obtained from 117 healthy young Lebanese adults. Anthropometric parameters including height, weight, body mass index (BMI), and neck circumference (NC) were measured. Statistically significant gender differences were demonstrated for 21 out of 27 parameters considered. All linear and two out of three angular measurements defining the vertical hyoid position were larger in males compared with females. Five linear, one angular, and two ratio measurements showed differences in the sagittal dimension. Skeletal classes did not influence the sagittal and vertical hyoid position. Anthropometric variables as height were strongly correlated to the vertical hyoid position, while weight correlated more sagittally. Cephalometric norms for hyoid position were established, sexual dimorphism and ethnic differences were demonstrated. Skeletal patterns did not influence the sagittal and vertical hyoid bone position. Anthropometric parameters, such as BMI correlated the least to both vertical and sagittal hyoid position measurements, while the impact of height and weight as separate entities made a paradigm shift providing accurate and strong correlation of the vertical hyoid position to the height, and the sagittal hyoid position to the weight of individuals. The cephalometric norms for the hyoid bone position in the Lebanese population established in the present study are of paramount clinical importance and should be considered in planning combined orthodontic and breathing disorders treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Huijun; Gordon, J. James; Siebers, Jeffrey V.
2011-02-15
Purpose: A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D{sub v} exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structuresmore » meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Methods: Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals {omega} (e.g., {omega}=1 deg., 2 deg., 5 deg., 10 deg., 20 deg.). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment {omega}{sub eff}. In each direction, the DM was calculated by moving the structure in radial steps of size {delta}(=0.1,0.2,0.5,1 mm) until the specified isodose was crossed. Coverage estimation accuracy {Delta}Q was quantified as a function of the sampling parameters {omega} or {omega}{sub eff} and {delta}. Results: The accuracy of coverage estimates depends on angular and radial DMD sampling parameters {omega} or {omega}{sub eff} and {delta}, as well as the employed sampling technique. Target |{Delta}Q|<1% and OAR |{Delta}Q|<3% can be achieved with sampling parameters {omega} or {omega}{sub eff}=20 deg., {delta}=1 mm. Better accuracy (target |{Delta}Q|<0.5% and OAR |{Delta}Q|<{approx}1%) can be achieved with {omega} or {omega}{sub eff}=10 deg., {delta}=0.5 mm. As the number of sampling points decreases, the isotropic sampling method maintains better accuracy than fixed angular sampling. Conclusions: Coverage estimates for post-planning evaluation are essential since coverage values of targets and OARs often differ from the values implied by the static margin-based plans. Finer sampling of the DMD enables more accurate assessment of the effect of geometric uncertainties on coverage estimates prior to treatment. DMD sampling with {omega} or {omega}{sub eff}=10 deg. and {delta}=0.5 mm should be adequate for planning purposes.« less
Xu, Huijun; Gordon, J James; Siebers, Jeffrey V
2011-02-01
A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D, exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structures meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals w (e.g., w = 1 degree, 2 degrees, 5 degrees, 10 degrees, 20 degrees). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment omega eff. In each direction, the DM was calculated by moving the structure in radial steps of size delta (=0.1, 0.2, 0.5, 1 mm) until the specified isodose was crossed. Coverage estimation accuracy deltaQ was quantified as a function of the sampling parameters omega or omega eff and delta. The accuracy of coverage estimates depends on angular and radial DMD sampling parameters omega or omega eff and delta, as well as the employed sampling technique. Target deltaQ/ < l% and OAR /deltaQ/ < 3% can be achieved with sampling parameters omega or omega eef = 20 degrees, delta =1 mm. Better accuracy (target /deltaQ < 0.5% and OAR /deltaQ < approximately 1%) can be achieved with omega or omega eff = 10 degrees, delta = 0.5 mm. As the number of sampling points decreases, the isotropic sampling method maintains better accuracy than fixed angular sampling. Coverage estimates for post-planning evaluation are essential since coverage values of targets and OARs often differ from the values implied by the static margin-based plans. Finer sampling of the DMD enables more accurate assessment of the effect of geometric uncertainties on coverage estimates prior to treatment. DMD sampling with omega or omega eff = 10 degrees and delta = 0.5 mm should be adequate for planning purposes.
Shift-phase code multiplexing technique for holographic memories and optical interconnection
NASA Astrophysics Data System (ADS)
Honma, Satoshi; Muto, Shinzo; Okamoto, Atsushi
2008-03-01
Holographic technologies for optical memories and interconnection devices have been studied actively because of high storage capacity, many wiring patterns and high transmission rate. Among multiplexing techniques such as angular, phase code and wavelength-multiplexing, speckle multiplexing technique have gotten attention due to the simple optical setup having an adjustable random phase filter in only one direction. To keep simple construction and to suppress crosstalk among adjacent page data or wiring patterns for efficient holographic memories and interconnection, we have to consider about optimum randomness of the phase filter. The high randomness causes expanding an illumination area of reference beam on holographic media. On the other hands, the small randomness causes the crosstalk between adjacent hologram data. We have proposed the method of holographic multiplexing, shift-phase code multiplexing with a two-dimensional orthogonal matrix phase filter. A lot of orthogonal phase codes can be produced by shifting the phase filter in one direction. It is able to read and record the individual holograms with low crosstalk. We give the basic experimental result on holographic data multiplexing and consider the phase pattern of the filter to suppress the crosstalk between adjacent holograms sufficiently.
Extraordinary Oscillations of an Ordinary Forced Pendulum
ERIC Educational Resources Information Center
Butikov, Eugene I.
2008-01-01
Several well-known and newly discovered counterintuitive regular and chaotic modes of the sinusoidally driven rigid planar pendulum are discussed and illustrated by computer simulations. The software supporting the investigation offers many interesting predefined examples that demonstrate various peculiarities of this famous physical model.…
On the Foundation of Evaluation.
ERIC Educational Resources Information Center
Shaw, W. M., Jr.
1986-01-01
The derivation of a general retrieval effectiveness measure is investigated. Inconsistencies in the definition of relative importance are resolved, and it is shown that the influence of the assigned weight on the effectiveness measure can produce counterintuitive results. An alternative effectiveness measure provided by the Marczewski-Steinhaus…
Analyzing Subsidies in Microsoft Excel
ERIC Educational Resources Information Center
Mixon, J. Wilson, Jr.
2005-01-01
Applying the budget line/indifference curve apparatus to policy issues reveals important and sometimes counterintuitive policy implications. Also, it provides practice in using the apparatus. The author applies these tools to subsidies. The analysis follows textbook treatments but is extended at some points. In particular, the present analysis…
The Intriguing Physics Inside an Igloo.
ERIC Educational Resources Information Center
Gonzalez-Espada, Wilson J.; Bryan, Lynn A.; Kang, Nam-Hwa
2001-01-01
Discuses the counterintuitive fact that ice is a good insulator and creates a 'teachable moment' for describing the use of discrepant events as a strategy for science instruction and exploring a possible solution to the question, "How warm can the interior of an igloo get?" (Author/ASK)
Complexity in Language Learning and Treatment
ERIC Educational Resources Information Center
Thompson, Cynthia K.
2007-01-01
Purpose: To introduce a Clinical Forum focused on the Complexity Account of Treatment Efficacy (C. K. Thompson, L. P. Shapiro, S. Kiran, & J. Sobecks, 2003), a counterintuitive but effective approach for treating language disorders. This approach espouses training "complex" structures to promote generalized improvement of simpler, linguistically…
Bomble, L; Lavorel, B; Remacle, F; Desouter-Lecomte, M
2008-05-21
Following the scheme recently proposed by Remacle and Levine [Phys. Rev. A 73, 033820 (2006)], we investigate the concrete implementation of a classical full adder on two electronic states (X 1A1 and C 1B2) of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive (stimulated Raman adiabatic passage) excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neighboring rovibrational states and a finite rotational temperature that leads to a mixture for the initial state. It is shown that the logic processing of a full addition cycle can be realistically experimentally implemented on a picosecond time scale while the readout takes a few nanoseconds.
Dreaming and the default network: A review, synthesis, and counterintuitive research proposal.
Domhoff, G William; Fox, Kieran C R
2015-05-01
This article argues that the default network, augmented by secondary visual and sensorimotor cortices, is the likely neural correlate of dreaming. This hypothesis is based on a synthesis of work on dream content, the findings on the contents and neural correlates of mind-wandering, and the results from EEG and neuroimaging studies of REM sleep. Relying on studies in the 1970s that serendipitously discovered episodes of dreaming during waking mind-wandering, this article presents the seemingly counterintuitive hypothesis that the neural correlates for dreaming could be further specified in the process of carrying out EEG/fMRI studies of mind-wandering and default network activity. This hypothesis could be tested by asking participants for experiential reports during moments of differentially high levels of default network activation, as indicated by mixed EEG/fMRI criteria. Evidence from earlier EEG/fMRI studies of mind-wandering and from laboratory studies of dreaming during the sleep-onset process is used to support the argument. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.
2017-07-01
We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.
[Integration design and diffraction characteristics analysis of prism-grating-prism].
He, Tian-Bo; Bayanheshig; Li, Wen-Hao; Kong, Peng; Tang, Yu-Guo
2014-01-01
Prism-grating-prism (PGP) module is the important dispersing component in the hyper spectral imager. In order to effectively predict the distribution of diffraction efficiency of the whole PGP component and its diffraction characteristics before fabrication, a method of the PGP integration design is proposed. From the point of view of the volume phase holographic grating (VPHG) design, combined with the restrictive correlation between the various parameters of prisms and grating, we compiled the analysis software for calculating the whole PGP's diffraction efficiency. Furthermore, the effects of the structure parameters of prisms and grating on the PGP's diffraction characteristics were researched in detail. In particular we discussed the Bragg wavelength shift behaviour of the grating and a broadband PGP spectral component with high diffraction efficiency was designed for the imaging spectrometers. The result of simulation indicated that the spectral bandwidth of the PGP becomes narrower with the dispersion coefficient of prism 1 material decreasing; Bragg wavelength shift characteristics broaden the bandwidth of VPHG both spectrally and angularly, higher angular selectivity is desirable for selection requirements of the prism 1 material, and it can be easily tuned to achieve spectral bandwidth suitable for imaging PGP spectrograph; the vertex angle of prism 1, the film thickness and relative permittivity modulation of the grating have a significant impact on the distribution of PGP's diffraction efficiency, so precision control is necessary when fabrication. The diffraction efficiency of the whole PGP component designed by this method is no less than 50% in the wavelength range from 400 to 1000 nm, the specific design parameters have been given in this paper that have a certain reference value for PGP fabrication.
Schatzer, Reinhold; Vermeire, Katrien; Visser, Daniel; Krenmayr, Andreas; Kals, Mathias; Voormolen, Maurits; Van de Heyning, Paul; Zierhofer, Clemens
2014-03-01
Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEX(SOFT) electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of physical aging on long-term creep of polymers and polymer matrix composites
NASA Technical Reports Server (NTRS)
Brinson, L. Catherine; Gates, Thomas S.
1994-01-01
For many polymeric materials in use below the glass transition temperature, the long term viscoelastic behavior is greatly affected by physical aging. To use polymer matrix composites as critical structural components in existing and novel technological applications, this long term behavior of the material system must be understood. Towards that end, this study applied the concepts governing the mechanics of physical aging in a consistent manner to the study of laminated composite systems. Even in fiber-dominated lay-ups the effects of physical aging are found to be important in the long-term behavior of the composite. The basic concepts describing physical aging of polymers are discussed. Several aspects of physical aging which have not been previously documented are also explored in this study, namely the effects of aging into equilibrium and a relationship to the time-temperature shift factor. The physical aging theory is then extended to develop the long-term compliance/modulus of a single lamina with varying fiber orientation. The latter is then built into classical lamination theory to predict long-time response of general oriented lamina and laminates. It is illustrated that the long term response can be counterintuitive, stressing the need for consistent modeling efforts to make long term predictions of laminates to be used in structural situations.
Dielectric micro-resonator-based opto-mechanical systems for sensing applications
NASA Astrophysics Data System (ADS)
Ali, Amir Roushdy
In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of angular speed detection photonic sensors. In previous applications, the WGM shifts induced by the external effects were monitored by identifying and tracking individual resonance dip in the optical transmission spectrum. The success of the WGM sensors is strongly dependent on the precise and speeds tracking of the shifts of the resonant wavelengths. In this dissertation, we demonstrate the application of WGM micro-resonators for high-speed transient sensing (wide-bandwidth). To facilitate the use of the sensors for high-speed transient applications, we tune the interrogation laser using a harmonic rather than a ramp waveform and calibrate the laser response at various input frequencies and amplitudes using a Fabry-Perot interferometer. WGM shifts are tracked using a fast cross-correlation algorithm on the transmission spectra. We demonstrate dynamic force measurements up to 10 kHz using this approach. We also present a simple lumped-heat capacity thermal model to predict the laser's tuning response.
Angular and Intensity Dependent Spectral Modulations in High Harmonics from N2
NASA Astrophysics Data System (ADS)
McFarland, Brian; Farrell, Joseph; Bucksbaum, Philip; Guehr, Markus
2009-05-01
The spectral amplitude and phase modulation of high harmonics (HHG) in molecules provides important clues to molecular structure and dynamics in strong laser fields. We have studied these effects in aligned N2. Earlier results of HHG experiments claimed that the spectral amplitude modulation was predominantly due to geometrical interference between the recombining electron and the highest occupied molecular orbital (HOMO) [1]. We report evidence that contradicts this simple view. We observe a phase jump accompanied by a spectral minimum for HHG in aligned N2. The minimum shifts to lower harmonics as the angle between the molecular axis and harmonic generation polarization increases, and shifts to higher harmonics with increasing harmonic generation intensity. The features observed cannot be fully explained by a geometrical model. We discuss alternative explanations involving multi orbital effects [2]. [0pt] [1] Lein et al., Phys. Rev. A, 66, 023805 (2002) [2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)
Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect
NASA Astrophysics Data System (ADS)
Chen, Xinlin; Xiao, Guangzong; Xiong, Wei; Yang, Kaiyong; Luo, Hui; Yao, Baoli
2018-03-01
The angular velocity of a vaterite microsphere spinning in the optical trap is measured using rotational Doppler effect. The perfectly spherical vaterite microspheres are synthesized via coprecipitation in the presence of silk fibroin nanospheres. When trapped by a circularly polarized beam, the vaterite microsphere is uniformly rotated in the trap center. The probe beams containing two Laguerre-Gaussian beams of opposite topological charge l = ± 7, l = ± 8, and l = ± 9 are illuminated on the spinning vaterite. By analyzing the backscattered light, a frequency shift is observed scaling with the rotation rate of the vaterite microsphere. The multiplicative enhancement of the frequency shift proportion to the topological charge has greatly improved the measurement precision. The reliability and practicability of this approach are verified through varying the topological charge of the probe beam and the trapping laser power. In consideration of the excellent measurement precision of the rotation frequency, this technique might be generally applicable in studying the torsional properties of micro-objects.
Orientation in birds. The sun compass.
Schmidt-Koenig, K; Ganzhorn, J U; Ranvaud, R
1991-01-01
The sun compass was discovered by G. Kramer in caged birds showing migratory restlessness. Subsequent experiments with caged birds employing directional training and clock shifts, carried out by Hoffman and Schmidt-Koenig, showed that the sun azimuth is used, and the sun altitude ignored. In the laboratory, McDonald found the accuracy to be +/- 3 degrees(-)+/- 5 degrees. According to Hoffmann and Schmidt-Koenig, caged birds trained at medium northern latitudes were able to allow for the sun's apparent movement north of the arctic circle, but not in equatorial and trans-equatorial latitudes. In homing experiments, and employing clock shifts, Schmidt-Koenig demonstrated that the sun compass is used by homing pigeons during initial orientation. This finding is the principal evidence for the existence of a map-and-compass navigational system. Pigeons living in equatorial latitudes utilize the sun compass even under the extreme solar conditions of equinox, achieving angular resolution of about 3 degrees in homing experiments. According to preliminary analyses, the homing pigeons' ephemerides are retarded by several weeks (Ranvaud, Schmidt-Koenig, Ganzhorn et al.).
Mathematical Model of the One-stage Magneto-optical Sensor Based on Faraday Effect
NASA Astrophysics Data System (ADS)
Babaev, O. G.; Paranin, V. D.; Sinitsin, L. I.
2018-01-01
The aim of this work is to refine a model of magneto-optical sensors based on Faraday’s longitudinal magneto-optical effect. The tasks of the study include computer modeling and analysis of the transfer characteristic of a single-stage magneto-optical sensor for various polarization of the input beam and non-ideal optical components. The proposed mathematical model and software make it possible to take into account the non-ideal characteristics of film polaroids observed in operation in the near infrared region and at increased temperatures. On the basis of the results of the model analysis it was found that the dependence of normalized transmission T(γ2) has periodic nature. Choosing the angle (γ 2-γ 1) makes it possible to shift the initial operation point and change the sensitivity dT/dγ 2. The influence of the input beam polarization increases with the increase of polaroid parameter deviation from ideal and shows itself as reduction of modulation depth and angular shift of the sensor conversion response.
A Test of the Discrimination Account in Equivalence Class Formation
ERIC Educational Resources Information Center
Wang, Ting; McHugh, Louise A.; Whelan, Robert
2012-01-01
An equivalence class is typically established when a subject is taught a set of interrelated conditional discriminations with physically unrelated stimuli and additional, untaught, conditional discriminations are then demonstrated. Interestingly, and perhaps counter-intuitively, the relations among the stimuli within such a class are not…
Understanding and Altering the Longitudinal Course of Marriage
ERIC Educational Resources Information Center
Bradbury, Thomas N.; Karney, Benjamin R.
2004-01-01
Weak and counterintuitive findings linking couples' interactional processes to marital outcomes have prompted new lines of research on how marriages change. Recent findings reviewed here highlight the value of (a) expanding conceptions of marital interaction by considering how social support and positive affect moderate the effects of…
ERIC Educational Resources Information Center
Royer, Melvin
2012-01-01
Gabriel's Horn is a solid of revolution commonly featured in calculus textbooks as a counter-intuitive example of a solid having finite volume but infinite surface area. Other examples of solids with surprising geometrical finitude relationships have also appeared in the literature. This article cites several intriguing examples (some of fractal…
Zhao, Huijie; Wang, Ziye; Jia, Guorui; Zhang, Ying; Xu, Zefu
2017-10-02
The acousto-optic tunable filter (AOTF) with wide wavelength range and high spectral resolution has long crystal and two transducers. A longer crystal length leads to a bigger chromatic focal shift and the double-transducer arrangement induces angular mutation in diffracted beam, which increase difficulty in longitudinal and lateral chromatic aberration correction respectively. In this study, the two chromatic aberrations are analyzed quantitatively based on an AOTF optical model and a novel catadioptric dual-path configuration is proposed to correct both the chromatic aberrations. The test results exhibit effectiveness of the optical configuration for this type of AOTF-based imaging spectrometer.
A Time-Dependent Quantum Dynamics Study of the H2 + CH3 yields H + CH4 Reaction
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Kwak, Dochan (Technical Monitor)
2002-01-01
We present a time-dependent wave-packet propagation calculation for the H2 + CH3 yields H + CH4 reaction in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probability for different initial rotational-vibrational states are presented in this study. The cumulative reaction probability (CRP) is obtained by summing over initial-state-selected reaction probability. The energy-shift approximation to account for the contribution of degrees of freedom missing in the 6D calculation is employed to obtain an approximate full-dimensional CRP. Thermal rate constant is compared with different experiment results.
Experimental demonstration of an optical phased array antenna for laser space communications.
Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L
1994-06-20
The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.
NASA Astrophysics Data System (ADS)
Helmers, H.; Greco, Pierre; Benech, Pierre; Rustad, Rolf; Kherrat, Rochdi; Bouvier, Gérard
1996-02-01
We describe a hybrid evanescent-wave sensor component that we fabricated by using an integrated optical interferometer with a specially adapted photodetector array. The design of the interferometer is based on the use of tapered waveguides to obtain two intersecting collimated beams. Phase shifts can be measured with an angular precision of better than 10-3 rad, which corresponds to a superstrate index change inferior of 10-6 with our structure. The interest in the device as a chemical sensor is experimentally demonstrated. The same optical component could be used in a variety of other sensor applications, e.g., biological and immunological sensors.
Check for chirality in {sup 102}Rh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonev, D.; Goutev, N.; Yavahchova, M. S.
2012-10-20
Excited states in {sup 102}Rh, populated by the fusion-evaporation reaction {sup 94}Zr({sup 11}B,3n){sup 102}Rh at a beam energy of 36 MeV, were studied using the INGA spectrometer at IUAC, New Delhi. The angular correlations and the electromagnetic character of some of the gamma-ray transitions observed were investigated in details. A new chiral candidate sister band was found in the level-scheme of {sup 102}Rh. Lifetimes of exited states in {sup 102}Rh were measured by means of the Doppler-shift attenuation technique. The experimental results do not support the presence of static chirality in {sup 102}Rh.
Concealed d -wave pairs in the s ± condensate of iron-based superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Tzen; Coleman, Piers; Schmalian, Jörg
A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s ±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. In this paper, we propose a new class of s ± statemore » containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I =2 of the iron orbitals to make a singlet (J =L+I =0), an s ± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba 1$-$xK XFe 2As 2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J =L+I =4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. Finally, the formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.« less
Concealed d -wave pairs in the s ± condensate of iron-based superconductors
Ong, Tzen; Coleman, Piers; Schmalian, Jörg
2016-05-02
A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s ±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. In this paper, we propose a new class of s ± statemore » containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I =2 of the iron orbitals to make a singlet (J =L+I =0), an s ± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba 1$-$xK XFe 2As 2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J =L+I =4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. Finally, the formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.« less
Global and regional axial ocean angular momentum signals and length-of-day variations (1985-1996)
NASA Astrophysics Data System (ADS)
Ponte, Rui M.; Stammer, Detlef
2000-07-01
Changes in ocean angular momentum M about the polar axis are related to fluctuations in zonal currents (relative component Mr) and latitudinal shifts in mass (planetary component MΩ). Output from a 1° ocean model is used to calculate global Mr, MΩ, and M time series at 5 day intervals for the period January 1985 to April 1996. The annual cycle in Mr, MΩ, and M is larger than the semiannual cycle, and MΩ amplitudes are nearly twice those of Mr. Year-to-year modulation of the seasonal cycle is present, but interannual variability is weak. The spectrum of M is red (background slope between ω-1 and ω-2) at subseasonal periods, implying a white or blue spectrum for the external torque on the ocean. Comparisons with previous studies indicate the importance of direct atmospheric forcing in inducing subseasonal M signals, relative to instabilities and other internal sources of rapid oceanic signals. Regional angular momentum estimates show that seasonal variability tends to be larger at low latitudes, but many local maxima exist because of the spatial structure of zonal current and mass variability. At seasonal timescales, latitudes ~20°S-10°N contribute substantial variability to MΩ, while signals in Mr can be traced to Antarctic Circumpolar Current transports and associated circulation. Variability in M is found to be small when compared with similar time series for the atmosphere and the solid Earth, but ocean signals are significantly coherent with atmosphere-solid Earth residuals, implying a measurable oceanic impact on length-of-day variations.
Concealed d-wave pairs in the s± condensate of iron-based superconductors.
Ong, Tzen; Coleman, Piers; Schmalian, Jörg
2016-05-17
A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave ([Formula: see text]) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. Here, we propose a new class of [Formula: see text] state containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave ([Formula: see text]) motion of the pairs with the internal angular momenta [Formula: see text] of the iron orbitals to make a singlet ([Formula: see text]), an [Formula: see text] superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba1-x KXFe2As2 as a reconfiguration of the orbital and internal angular momentum into a high spin ([Formula: see text]) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. The formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.
NASA Astrophysics Data System (ADS)
Harrington, Kathleen; CLASS Collaboration
2018-01-01
The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.
Ultrasonic superlensing jets and acoustic-fork sheets
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-05-01
Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on ;hyper; or ;super; lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical 'snail-fork' shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices.
Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts
NASA Astrophysics Data System (ADS)
McGee, David; Moreno-Chamarro, Eduardo; Green, Brian; Marshall, John; Galbraith, Eric; Bradtmiller, Louisa
2018-01-01
The atmospheric Hadley cells, which meet at the Intertropical Convergence Zone (ITCZ), play critical roles in transporting heat, driving ocean circulation and supplying precipitation to the most heavily populated regions of the globe. Paleo-reconstructions can provide concrete evidence of how these major features of the atmospheric circulation can change in response to climate perturbations. While most such reconstructions have focused on ITCZ-related rainfall, here we show that trade wind proxies can document dynamical aspects of meridional ITCZ shifts. Theoretical expectations based on angular momentum constraints and results from freshwater hosing simulations with two different climate models predict that ITCZ shifts due to anomalous cooling of one hemisphere would be accompanied by a strengthening of the Hadley cell and trade winds in the colder hemisphere, with an opposite response in the warmer hemisphere. This expectation of hemispherically asymmetric trade wind changes is confirmed by proxy data of coastal upwelling and windblown dust from the Atlantic basin during Heinrich stadials, showing trade wind strengthening in the Northern Hemisphere and weakening in the Southern Hemisphere subtropics in concert with southward ITCZ shifts. Data from other basins show broadly similar patterns, though improved constraints on past trade wind changes are needed outside the Atlantic Basin. The asymmetric trade wind changes identified here suggest that ITCZ shifts are also marked by intensification of the ocean's wind-driven subtropical cells in the cooler hemisphere and a weakening in the warmer hemisphere, which induces cross-equatorial oceanic heat transport into the colder hemisphere. This response would be expected to prevent extreme meridional ITCZ shifts in response to asymmetric heating or cooling. Understanding trade wind changes and their coupling to cross-equatorial ocean cells is key to better constraining ITCZ shifts and ocean and atmosphere dynamical changes in the past, especially for regions and time periods for which few paleodata exist, and also improves our understanding of what changes may occur in the future.
Understanding Developmental Reversals in False Memory: Reply to Ghetti (2008) and Howe (2008)
ERIC Educational Resources Information Center
Brainerd, C. J.; Reyna, V. F.; Ceci, S. J.; Holliday, R. E.
2008-01-01
S. Ghetti (2008) and M. L. Howe (2008) presented probative ideas for future research that will deepen scientific understanding of developmental reversals on false memory and establish boundary conditions for these counterintuitive patterns. Ghetti extended the purview of current theoretical principles by formulating hypotheses about how…
Developmental Reversals in False Memory: A Review of Data and Theory
ERIC Educational Resources Information Center
Brainerd, C. J.; Reyna V. F.; Ceci, S. J.
2008-01-01
Can susceptibility to false memory and suggestion increase dramatically with age? The authors review the theoretical and empirical literatures on this counterintuitive possibility. Until recently, the well-documented pattern was that susceptibility to memory distortion had been found to decline between early childhood and young adulthood. That…
Development of the False-Memory Illusion
ERIC Educational Resources Information Center
Brainerd, C. J.; Forrest, T. J.; Karibian, D.; Reyna, V. F.
2006-01-01
The counterintuitive developmental trend in the Deese-Roediger-McDermott (DRM) illusion (that false-memory responses increase with age) was investigated in learning-disabled and nondisabled children from the 6- to 14-year-old age range. Fuzzy-trace theory predicts that because there are qualitative differences in how younger versus older children…
Farmer Brown v. Rancher Wyatt: Teaching the Coase Theorem
ERIC Educational Resources Information Center
Gourley, Patrick
2018-01-01
The Coase Theorem is a fundamental tenet of environmental economics and is taught to thousands of principles of microeconomics students each year. Its counterintuitive conclusion, that a Pareto optimal solution can result between private parties regardless of the initial allocation of property rights over a scarce resource, is difficult for…
A "Hyper- and Pessimistic Activism" in a Curriculum Master's Course
ERIC Educational Resources Information Center
Brass, Jory
2012-01-01
In this article the author explores Foucault's counter-intuitive views on intellectuals and political activism--a stance he once described as "a hyper- and pessimistic activism" (Foucault, 1983). After contrasting the activist stance of critical pedagogy with Foucault's writing on political activism, the author outlines early attempts to…
Systems Thinking, Lean Production and Action Learning
ERIC Educational Resources Information Center
Seddon, John; Caulkin, Simon
2007-01-01
Systems thinking underpins "lean" management and is best understood through action-learning as the ideas are counter-intuitive. The Toyota Production System is just that--a system; the failure to appreciate that starting-place and the advocacy of "tools" leads many to fail to grasp what is, without doubt, a significant…
ERIC Educational Resources Information Center
Thomas, Ayanna K.; Bulevich, John B.; Chan, Jason C. K.
2010-01-01
Numerous studies have demonstrated that repeated retrieval boosts later retention. However, recent research has shown that testing can increase eyewitness susceptibility to misleading post-event information (e.g., Chan, Thomas, & Bulevich, 2009). The present study examines the effects of warning on this counterintuitive finding. In two…
Part-Set Cuing Facilitation for Spatial Information
ERIC Educational Resources Information Center
Cole, Sydni M.; Reysen, Matthew B.; Kelley, Matthew R.
2013-01-01
Part-set cuing "inhibition" refers to the counterintuitive finding that hints--specifically, part of the set of to-be-remembered information--often impair memory performance in free recall tasks. Although inhibition is the most commonly reported result, part-set cuing "facilitation" has been shown with serial order tasks. The…
Optimal Placement of Non-Intrusive Waste Heat Recovery Devices in Exhaust Ducts
2015-06-01
Reynolds Number and Local Reynolds Number Depression Mixing .............................................................................40 3...57 viii 1. Counterintuitive Findings Due to Local Reynolds Number Depression ... depression in the secondary recirculation zone enhances heat transfer, and device placement is the dominant factor for maximizing heat transfer in a
ERIC Educational Resources Information Center
Berry, Thomas
2008-01-01
Pre-tests are a non-graded assessment tool used to determine pre-existing subject knowledge. Typically pre-tests are administered prior to a course to determine knowledge baseline, but here they are used to test students prior to topical material coverage throughout the course. While counterintuitive, the pre-tests cover material the student is…
Two Propositions on the Application of Point Elasticities to Finite Price Changes.
ERIC Educational Resources Information Center
Daskin, Alan J.
1992-01-01
Considers counterintuitive propositions about using point elasticities to estimate quantity changes in response to price changes. Suggests that elasticity increases with price along a linear demand curve, but falling quantity demand offsets it. Argues that point elasticity with finite percentage change in price only approximates percentage change…
The Search for a Profile of Aptitudes That Characterize Dentists.
ERIC Educational Resources Information Center
Simon, James F.; Chambers, David W.
1992-01-01
An unsuccessful attempt to develop a standard battery of aptitude measures to distinguish practicing dentists is reinterpreted. A sample of 116 dentists showed few differences from the norm group on 22 potential predictors, with some differences counterintuitive. It is concluded that broad conceptualization of characteristics required to complete…
Are All Infinities Created Equal?
ERIC Educational Resources Information Center
Paoletti, Teo J.
2013-01-01
Can one infinity be more than another infinity? Ask students this question, and many will be puzzled; others will insist that "infinity is infinity." The question seems to pique their interest and provides an opportunity to present the beautifully simple but counterintuitive proofs concerning the size of infinity first constructed by…
Higher Education Tuition for Optimal Educational Returns.
ERIC Educational Resources Information Center
Correa, Hector
1998-01-01
An elementary mathematical model is used to analyze tuition and privatization policies for higher education institutions. One finding is that an appropriate tuition can increase the social income of alumni. Another salient finding is that some of the model's results are counterintuitive, suggesting its utility in decision making. Methodological…
Student Learning about Biomolecular Self-Assembly Using Two Different External Representations
ERIC Educational Resources Information Center
Host, Gunnar E.; Larsson, Caroline; Olson, Arthur; Tibell, Lena A. E.
2013-01-01
Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning…
The Four-Ball Gyro and Motorcycle Countersteering
ERIC Educational Resources Information Center
Galli, J. Ronald; Carroll, Bradley W.
2017-01-01
Most two-wheel motorcycle riders know that, at highway speeds, if you want to turn left you push on the "left" handlebar and pull on the "right" handlebar. This is called "countersteering." Countersteering is counterintuitive since pushing left and pulling right when the front wheel is not spinning would turn the…
ERIC Educational Resources Information Center
Emery, Clifton R.; Jolley, Jennifer; Wu, Shali
2010-01-01
This study examined the relationship between intimate partner violence (IPV) relationship dissolution and neighborhood concentrated disadvantage, ethnic heterogeneity, residential instability, collective efficacy, and legal cynicism. Data from the Project on Human Development in Chicago Neighborhoods (PHDCN) Longitudinal survey were used to…
ERIC Educational Resources Information Center
Ferguson, Gail M.
2013-01-01
The current study tests a prediction of Relational Discrepancy Theory (RDT; i.e., emotional distress will not accompany discrepancies in hierarchical relationships) for family obligations discrepancies among adolescent-parent dyads in Jamaica, a moderately collectivistic and hierarchical society. Ninety-five dyads reported psychological adjustment…
Once a Nightmare, Always a Nightmare?
ERIC Educational Resources Information Center
Picchioni, Dante; DeBrule, Daniel S.
2005-01-01
While counterintuitive, there is evidence that some nightmares may serve a beneficial function. The theory behind this idea is presented within the context of a continuity hypothesis of dreaming where the negative emotions presented in a nightmare can lead to psychosocial development, just as some negative experiences do so during wake. The…
Learning Portals: Analyzing Threshold Concept Theory for LIS Education
ERIC Educational Resources Information Center
Tucker, Virginia M.; Weedman, Judith; Bruce, Christine S.; Edwards, Sylvia L.
2014-01-01
This paper explores the theoretical framework of threshold concepts and its potential for LIS education. Threshold concepts are key ideas, often troublesome and counterintuitive, that are critical to profound understanding of a domain. Once understood, they allow mastery of significant aspects of the domain, opening up new, previously inaccessible…
NASA Astrophysics Data System (ADS)
Waggoner, William Tracy
1990-01-01
Experimental capture cross sections d sigma / dtheta versus theta , are presented for various ions incident on neutral targets. First, distributions are presented for Ar ^{rm 8+} ions incident on H_{rm 2}, D _{rm 2}, and Ar targets. Energy gain studies indicate that capture occurs to primarily a 5d,f final state of Ar^{rm 7+} with some contributions from transfer ionization (T.I.) channels. Angular distribution spectra for all three targets are similar, with spectra having a main peak located at forward angles which is attributed to single capture events, and a secondary structure occurring at large angles which is attributed to T.I. contributions. A series of Ar^{rm 8+} on Ar spectra were collected using a retarding grid system as a low resolution energy spectrometer to resolve single capture events from T.I. events. The resulting single capture and T.I. angular distributions are presented. Results are discussed in terms of a classical deflection function employing a simple two state curve crossing model. Angular distributions for electron capture from He by C, N, O, F, and Ne ions with charge states from 5 ^+-8^+ are presented for projectile energies between 1.2 and 2.0 kV. Distributions for the same charge state but different ion species are simlar, but not identical with distributions for the 5 ^+ and 7^+ ions being strongly forward peaked, the 6^+ distributions are much less forward peaked with the O^{6+} distributions showing structure, the Ne^{8+} ion distribution appears to be an intermediate case between forward peaking and large angle scattering. These results are discussed in terms of classical deflection functions which utilize two state Coulomb diabatic curve crossing models. Finally, angular distributions are presented for electron capture from He by Ar^{rm 6+} ions at energies between 1287 eV and 296 eV. At large projectile energies the distribution is broad. As the energy decreases below 523 eV, distributions shift to forward angles with a second peak appearing outside the Coulomb angle, theta_{c} = Q/2E, which continues to grow in magnitude as the projectile energy decreases further. Results are compared with a model calculation employing a two state diabatic Coulomb curve crossing model and the classical deflection function.
The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.
1995-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in six male squirrel monkeys during eccentric rotation. Monkeys were rotated in the dark at a constant velocity of 200 degrees/s (centrally or 79 cm off axis) with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's orientation (facing-motion or back-to-motion) had a dramatic influence on the VOR. These experiments show that: (a) the axis of eye rotation always shifted toward alignment with gravito-inertial force; (b) the peak value of horizontal slow phase eye velocity was greater with the monkey facing-motion than with back-to-motion; and (c) the time constant of horizontal eye movement decay was smaller with the monkey facing-motion than with back-to-motion. All of these findings were statistically significant and consistent across monkeys. In another set of tests, the same monkeys were rapidly tilted about their naso-occipital (roll) axis. Tilted orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the angular rotation, no consistent eye velocity response was observed during or following the tilt for any of the six monkeys. The absence of any eye movement response following tilt weighs against the possibility that translational linear VOR responses are due to simple high-pass filtering of the otolith signals. The VOR response during eccentric rotation was divided into the more familiar angular VOR and linear VOR components. The angular component is known to depend upon semicircular canal dynamics and central influences. The linear component of the response decays rapidly with a mean duration of only 6.6 s, while the axis of eye rotation rapidly aligns (< 10 s) with gravito-inertial force. These results are consistent with the hypothesis that the measurement of gravito-inertial force by the otolith organs is resolved into central estimates of linear acceleration and gravity, such that the central estimate of gravitational force minus the central estimate of linear acceleration approximately equals the otolith measurement of gravito-inertial force.
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.
2018-03-01
Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.
Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.
Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong
2017-09-19
Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.
NASA Astrophysics Data System (ADS)
Stoecklin, Thierry; Halvick, Philippe; Yu, Hua-Gen; Nyman, Gunnar; Ellinger, Yves
2018-04-01
We present the first quantum study of the radiative association of H and CO to form the HCO molecule within a time-independent approach. We use a recently published 3D potential energy surface of spectroscopic accuracy and two 3D dipole moment surfaces, which were calculated for this study. We discuss the variation of the radiative association cross-section as a function of both the rotational angular momentum of CO and the total angular momentum and use the uniform J-shifting approach to obtain the global radiative association rate coefficient. The effect of the saddle point separating the HCO molecule from the H+CO reactants and the main features of the radiative association cross-sections are analysed and discussed. The calculated rate coefficient is below 10-23 cm3 molecule-1 s-1 for temperatures lower than 30 K, and increases up to 5 × 10-20 cm3 molecule-1 s-1 at T = 300 K. These results demonstrate that the gas-phase H+CO radiative association cannot be the process at the origin of the sequence leading to the formation of methanol in a cold interstellar medium.
NASA Technical Reports Server (NTRS)
Smoot, G. F.; Aymon, J.; Bennett, C. L.; Kogut, A.; Backus, C.
1991-01-01
Preliminary but precise micowave maps are presented of the sky, and thus of the early universe, derived as the first results from the Differential Microwave Radiometers experiment aboard COBE. The dipole anisotropy attributed to the motion of the solar system with respect to the CMB reference frame shows strongly in all six sky maps and is consistent with a Doppler-shifted thermal spectrum. The best-fitted dipole has amplitude 3.3 + or - 0.2 mK in the direction (alpha, delta) = 11.2 h + or - 0.2 h, -7 deg + or - 2 deg (J2000) or (l,b) = 265 deg + or - 2 deg, 48 deg + or - 2 deg. There is no clear evidence in the maps for any other large angular-scale feature. Limits on Delta T/T0 of 3 x 10 to the -5th (T0 = 2.735 K), 4 x 10 to the -5th, and 4 x 10 to the -5th are found for the rms quadrupole amplitude, monochromatic fluctuations, and Gaussian fluctuations, respectively. These measurements place the most severe constraints to date on many potential physical processes in the early universe.
Angert, Amy L; Sheth, Seema N; Paul, John R
2011-11-01
Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
Properties of solar ephemeral regions at the emergence stage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Zhang, Jun, E-mail: shuhongyang@nao.cas.cn, E-mail: zjun@nao.cas.cn
2014-01-20
For the first time, we statistically study the properties of ephemeral regions (ERs) and quantitatively determine their parameters at the emergence stage based on a sample of 2988 ERs observed by the Solar Dynamics Observatory. During the emergence process, there are three kinds of kinematic performances, i.e., separation of dipolar patches, shift of the ER's magnetic centroid, and rotation of the ER's axis. The average emergence duration, flux emergence rate, separation velocity, shift velocity, and angular speed are 49.3 minutes, 2.6 × 10{sup 15} Mx s{sup –1}, 1.1 km s{sup –1}, 0.9 km s{sup –1}, and 0.°6 minute{sup –1}, respectively.more » At the end of emergence, the mean magnetic flux, separation distance, shift distance, and rotation angle are 9.3 × 10{sup 18} Mx, 4.7 Mm, 1.1 Mm, and 12.°9, respectively. We also find that the higher the ER magnetic flux is, (1) the longer the emergence lasts, (2) the higher the flux emergence rate is, (3) the further the two polarities separate, (4) the lower the separation velocity is, (5) the larger the shift distance is, (6) the slower the ER shifts, and (7) the lower the rotation speed is. However, the rotation angle seems not to depend on the magnetic flux. Not only at the start time, but also at the end time, the ERs are randomly oriented in both the northern and the southern hemispheres. Finally, neither the anti-clockwise-rotated ERs nor the clockwise rotated ones dominate the northern or the southern hemisphere.« less
Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal
ERIC Educational Resources Information Center
Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.
2010-01-01
Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…
Connectionist Modelling of Short-Term Memory.
ERIC Educational Resources Information Center
Norris, Dennis; And Others
1995-01-01
Presents the first stage in a research effort developing a detailed computational model of working memory. The central feature of the model is counterintuitive. It is assumed that there is a primacy gradient of activation across successive list items. A second stage of the model is influenced by the combined effects of the primacy gradient and…
The Relative Success of Recognition-Based Inference in Multichoice Decisions
ERIC Educational Resources Information Center
McCloy, Rachel; Beaman, C. Philip; Smith, Philip T.
2008-01-01
The utility of an "ecologically rational" recognition-based decision rule in multichoice decision problems is analyzed, varying the type of judgment required (greater or lesser). The maximum size and range of a counterintuitive advantage associated with recognition-based judgment (the "less-is-more effect") is identified for a range of cue…
Inhibitory Control in a Notorious Brain Teaser: The Monty Hall Dilemma
ERIC Educational Resources Information Center
Saenen, Lore; Heyvaert, Mieke; Van Dooren, Wim; Onghena, Patrick
2015-01-01
The Monty Hall dilemma (MHD) is a counterintuitive probability problem in which participants often use misleading heuristics, such as the equiprobability bias. Finding the optimal solution to the MHD requires inhibition of these heuristics. In the current study, we investigated the relation between participants' equiprobability bias and their MHD…
Simple Predictions Fueled by Capacity Limitations: When Are They Successful?
ERIC Educational Resources Information Center
Gaissmaier, Wolfgang; Schooler, Lael J.; Rieskamp, Jorg
2006-01-01
Counterintuitively, Y. Kareev, I. Lieberman, and M. Lev (1997) found that a lower short-term memory capacity benefits performance on a correlation detection task. They assumed that people with low short-term memory capacity (low spans) perceived the correlations as more extreme because they relied on smaller samples, which are known to exaggerate…
A Simple Derivation of Time Dilation and Length Contraction in Special Relativity
ERIC Educational Resources Information Center
Behroozi, Fred
2014-01-01
Undergraduate physics majors typically begin their study of modern physics with special relativity. It is here that physics students first encounter the counterintuitive concepts of time dilation and length contraction. Unfortunately, the derivations of these results are often cloaked in several layers of analysis that render them rather…
ERIC Educational Resources Information Center
Murphy, Amanda; Terrizzi, Marissa; Cormas, Peter
2012-01-01
"Probability is a difficult concept to teach, because children and adults find it counterintuitive." This is impetus to consider the detailed planning of a set of lessons with a "mixed", in many senses, group of fourth graders. Can the use of prior experience, and the knowledge associated with that experience, make probability a concept that is…
ERIC Educational Resources Information Center
Dial, Katrina; Riddley, Diana; Williams, Kiesha; Sampson, Victor
2009-01-01
The law of conservation of mass can be counterintuitive for most students because they often think the mass of a substance is related to its physical state. As a result, students may hold a number of alternative conceptions related to this concept, including, for example, the believe that gas has no mass, that solids have greater mass than fluids,…
NASA Technical Reports Server (NTRS)
Lynnes, Chris
2014-01-01
Three current search engines are queried for ozone data at the GES DISC. The results range from sub-optimal to counter-intuitive. We propose a method to fix dataset search by implementing a robust relevancy ranking scheme. The relevancy ranking scheme is based on several heuristics culled from more than 20 years of helping users select datasets.
Conceptualizing Rolling Motion through an Extreme Case Reasoning Approach
ERIC Educational Resources Information Center
Hasovic, Elvedin; Mešic, Vanes; Erceg, Nataša
2017-01-01
In this paper we are going to show how learning about some counterintuitive aspects of rolling motion can be facilitated by combining the use of analogies with extreme case reasoning. Specifically, the intuitively comprehensible examples of "rolling" polygonal prisms are used as an analogical anchor that is supposed to help the students…
Framing Affects Scale Usage for Judgments of Learning, Not Confidence in Memory
ERIC Educational Resources Information Center
England, Benjamin D.; Ortegren, Francesca R.; Serra, Michael J.
2017-01-01
Framing metacognitive judgments of learning (JOLs) in terms of the likelihood of forgetting rather than remembering consistently yields a counterintuitive outcome: The mean of participants' forget-framed JOLs is often higher (after reverse-scoring) than the mean of their remember-framed JOLs, suggesting greater confidence in memory. In the present…
Participation Patterns in Higher Education: A Comparative Welfare and Production Regime Perspective
ERIC Educational Resources Information Center
Andres, Lesley; Pechar, Hans
2013-01-01
This article considers the counter-intuitive observation that some of the wealthiest nations can feature low tertiary graduation rates (e.g. Austria, Germany, and Switzerland). It also considers the observation that many countries with high tertiary graduation rates show low levels of social equity, while many countries with low tertiary…
Risk Taking under the Influence: A Fuzzy-Trace Theory of Emotion in Adolescence
ERIC Educational Resources Information Center
Rivers, Susan E.; Reyna, Valerie F.; Mills, Britain
2008-01-01
Fuzzy-trace theory explains risky decision making in children, adolescents, and adults, incorporating social and cultural factors as well as differences in impulsivity. Here, we provide an overview of the theory, including support for counterintuitive predictions (e.g., when adolescents "rationally" weigh costs and benefits, risk taking increases,…
Undoing Bad Upbringing through Contemplation: An Aristotelian Reconstruction
ERIC Educational Resources Information Center
Kristjánsson, Kristján
2014-01-01
The aim of this article is to reconstruct two counter-intuitive Aristotelian theses--about contemplation as the culmination of the good life and about the impossibility of undoing bad upbringing--to bring them into line with current empirical research, as well as with the essentials of an overall Aristotelian approach to moral education. I start…
Database Cancellation: The "Hows" and "Whys"
ERIC Educational Resources Information Center
Shapiro, Steven
2012-01-01
Database cancellation is one of the most difficult tasks performed by a librarian. This may seem counter-intuitive but, psychologically, it is certainly true. When a librarian or a team of librarians has invested a great deal of time doing research, talking to potential users, and conducting trials before deciding to subscribe to a database, they…
75 FR 58328 - Nebraska: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
... commenter's arguments relate specifically to EPA's promulgation of the Zinc Fertilizer Rule on July 24, 2002...)--which is more stringent than the Zinc Fertilizer Rule--resulted from an ``affirmative finding of safety'' when zinc-containing hazardous wastes were disposed in Subtitle C landfills, so it is counterintuitive...
New World Mystery. Lesson Plan.
ERIC Educational Resources Information Center
Glaser, Tom W.
To better understand the issues behind the colonization of the New World and to see why some colonies and empires failed while others flourished, students analyze the motivations and resources of the colonial powers. Noting that the results of the colonial era are counter-intuitive (the Spanish, who colonized areas rich in gold, silver, and…
The Body Politic: Childhood Obesity as a Symbol of an Unbalanced Economy
ERIC Educational Resources Information Center
Kroner, Crystal
2011-01-01
As society's novices, children are becoming more susceptible to advertisers who target them as a profitable demographic. This creates an alarming trend of obesity and exacts a considerable financial, physical and ethical toll on the community. To view obesity as concurrent with malnourishment seems counter-intuitive, this study uses Butler's…
Synchronous Office Hours in an Asynchronous Course: Making the Connection
ERIC Educational Resources Information Center
Gibbons-Kunka, Beatrice
2017-01-01
The notion of synchronous office hours in an asynchronous course seems counterintuitive. After all, one of the tenets of asynchronous education is to not require students to be online and participating at any time during the course. Having taught higher education online asynchronous courses for twenty years, the researcher experimented with online…
ERIC Educational Resources Information Center
Kalyuga, Slava; Rikers, Remy; Paas, Fred
2012-01-01
There have been several rather counterintuitive phenomena observed in different fields of research that compared the performance of experts and novices. For example, studies of medical expertise demonstrated that less experienced medical students may in some situations outperform seasoned medical practitioners on recall of specific cases. Studies…
The Counter-Intuitive Non-Informative Prior for the Bernoulli Family
ERIC Educational Resources Information Center
Zhu, Mu; Lu, Arthur Y.
2004-01-01
In Bayesian statistics, the choice of the prior distribution is often controversial. Different rules for selecting priors have been suggested in the literature, which, sometimes, produce priors that are difficult for the students to understand intuitively. In this article, we use a simple heuristic to illustrate to the students the rather…
Pausing, Pondering, and Partnering: Communicating in Financially Challenging Times
ERIC Educational Resources Information Center
Gross, Karen
2009-01-01
In times of financial distress, the communication strategies of leaders of institutions of higher education are often flawed. This is because the best approaches to helping a campus deal with financial woes are counter-intuitive and require an understanding of money as a language. But bankruptcy law, financial counseling, psychology, and…
ERIC Educational Resources Information Center
Reiling, Denise M.
2002-01-01
Analyzed the counterintuitive affective response Old Order Amish youth make to unique cultural prescriptions for adolescent deviance (constructed by adult Amish culture). Interview data supported the basic principles of Terror Management Theory in an unexpected, indirect fashion. Rather than functioning as a specialized cultural-anxiety buffer…
Integrating Statistical Visualization Research into the Political Science Classroom
ERIC Educational Resources Information Center
Draper, Geoffrey M.; Liu, Baodong; Riesenfeld, Richard F.
2011-01-01
The use of computer software to facilitate learning in political science courses is well established. However, the statistical software packages used in many political science courses can be difficult to use and counter-intuitive. We describe the results of a preliminary user study suggesting that visually-oriented analysis software can help…
NASA Astrophysics Data System (ADS)
Lee, Gyoungho; Byun, Taejin
2012-10-01
Bringing successful teaching approaches for stimulating conceptual change to normal classrooms has been a major challenge not only for teachers but also for researchers. In this study, we focused on the relationship between cognitive conflict and responses to anomalous data when students are confronted with a counterintuitive demonstration in the form of a discrepant event. The participants in this study were 96 secondary school students (9th grade) from S. Korea. We investigated students' preconceptions of motion by administering a written test. After the exam, we presented a demonstration that may have conflicted with the ideas held by students. We then investigated the relationship between students' cognitive conflict and responses to anomalous data by using a Cognitive Conflict Level Test (CCLT). Results showed that cognitive conflict initiated the first step in the process of conceptual change. Anxiety was an especially crucial component of cognitive conflict, affecting the relationship between cognitive conflict and students' responses. In addition, superficial conceptual change was found to be the most common response.
Hu, S. X.
2018-01-18
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Stephen G., E-mail: sdale@ucmerced.edu; Johnson, Erin R., E-mail: erin.johnson@dal.ca
2015-11-14
Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minimamore » thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.« less
Electron Impact Excitation of the Electronic States of Water
NASA Astrophysics Data System (ADS)
Thorn, Penny; Diakomichalis, N.; Brunger, M. J.; Campbell, L.; Teubner, P. J. O.; Kato, H.; Makochekanwa, C.; Hoshino, M.; Tanaka, H.
2006-10-01
We report differential and integral cross sections for excitation of the lowest lying ^3B1, ^1B1, ^3A1 and ^1A1 electronic states of water. The energy range of these measurements is 15-50eV and the angular range of the DCS measurements is 10-90^o. From these DCS the corresponding ICS is calculated using a molecular phase shift analysis technique. Where possible, comparison is made to the results of available theory. One of the main objectives of this study is to perform statistical equilibrium calculations to determine if the origin of the OH Meinel bands in our atmosphere are due to electron driven processes.
Asymmetric molecular-orbital tomography by manipulating electron trajectories
NASA Astrophysics Data System (ADS)
Wang, Bincheng; Zhang, Qingbin; Zhu, Xiaosong; Lan, Pengfei; Rezvani, Seyed Ali; Lu, Peixiang
2017-11-01
We present a scheme for tomographic imaging of asymmetric molecular orbital based on high-order harmonic generation with a two-color orthogonally polarized multicycle laser field. With the two-dimensional manipulation of the electron trajectories, the electrons can recollide with the target molecule from two noncollinear directions, and then the dipole moment generated from the single direction can be obtained to reconstructed the asymmetric molecular orbital. The recollision is independent from the molecular structure and the angular dependence of the ionization rate in the external field. For this reason, this scheme can avoid the negative effects arising from the modification of the angle-dependent ionization rate induced by Stark shift and be applied to various molecules.
Tetraquark resonances computed with static lattice QCD potentials and scattering theory
NASA Astrophysics Data System (ADS)
Bicudo, Pedro; Cardoso, Marco; Peters, Antje; Pflaumer, Martin; Wagner, Marc
2018-03-01
We study tetraquark resonances with lattice QCD potentials computed for two static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the emergent wave method of scattering theory. As a proof of concept we focus on systems with isospin I = 0, but consider different relative angular momenta l of the heavy b quarks. We compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B mesons, with quantum numbers I(JP) = 0(1-), mass m = 10576-4+4 MeV and decay width Γ = 112-103+90 MeV.
Choice of phase in the CS and IOS approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, R.F.
1982-04-01
With the recognition that the angular momentum representations of unit position and momentum directional states must have different but uniquely related phases, the previously presented expression of scattering amplitude in terms of IOS angle dependent phase shifts must be modified. This resolves a major disagreement between IOS and close coupled degeneracy averaged differential cross sections. It is found that the phase factors appearing in the differential cross section have nothing to do with any particular choice of decoupling parameter. As a consequence, the differential cross section is relatively insensitive to the choice of CS decoupling parameter. The phase relations obtainedmore » are also in agreement with those deduced from the Born approximation.« less
Evidence of nontermination of collective rotation near the maximum angular momentum in Rb75
NASA Astrophysics Data System (ADS)
Davies, P. J.; Afanasjev, A. V.; Wadsworth, R.; Andreoiu, C.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Görgen, A.; Greene, J.; Grinyer, G. F.; Hyland, B.; Jenkins, D. G.; Johnston-Theasby, F. L.; Joshi, P.; Macchiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Ward, D.
2010-12-01
Two of the four known rotational bands in Rb75 were studied via the Ca40(Ca40,αp)Rb75 reaction at a beam energy of 165 MeV. Transitions were observed up to the maximum spin Imax of the assigned configuration in one case and one-transition short of Imax in the other. Lifetimes were determined using the residual Doppler shift attenuation method. The deduced transition quadrupole moments show a small decrease with increasing spin, but remain large at the highest spins. The results obtained are in good agreement with cranked Nilsson-Strutinsky calculations, which indicate that these rotational bands do not terminate, but remain collective at Imax.
Lifetimes in Te 124 : Examining critical-point symmetry in the Te nuclei
Hicks, S. F.; Vanhoy, J. R.; Burkett, P. G.; ...
2017-03-27
The Doppler-shift attenuation method following inelastic neutron scattering was used to determine the lifetimes of nuclear levels to 3.3-MeV excitation in 124Te. Level energies and spins, γ -ray energies and branching ratios, and multipole-mixing ratios were deduced from measured γ-ray angular distributions at incident neutron energies of 2.40 and 3.30 MeV, γ-ray excitation functions, and γγ coincidence measurements. The newly obtained reduced transition probabilities and level energies for 124Te were compared to critical-point symmetry model predictions. The E(5) and β 4 potential critical-point symmetries were also investigated in 122Te and 126Te.
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
Detecting Patchy Reionization in the Cosmic Microwave Background.
Smith, Kendrick M; Ferraro, Simone
2017-07-14
Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.
NASA Astrophysics Data System (ADS)
van Uitert, Edo; Joachimi, Benjamin; Joudaki, Shahab; Amon, Alexandra; Heymans, Catherine; Köhlinger, Fabian; Asgari, Marika; Blake, Chris; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Harnois-Déraps, Joachim; Hildebrandt, Hendrik; Hoekstra, Henk; Kitching, Thomas D.; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Miller, Lance; Nakajima, Reiko; Schneider, Peter; Valentijn, Edwin; Viola, Massimo
2018-06-01
We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in ˜450 deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S_8≡ σ _8 √{Ω _m/0.3}=0.800_{-0.027}^{+0.029}, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8 with an increase of 28 {per cent} in the error. The combination of probes results in a 26 per cent reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of 2 better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.
Allen, Paul D.; Ison, James R.
2010-01-01
Auditory spatial acuity was measured in mice using prepulse inhibition (PPI) of the acoustic startle reflex (ASR) as the indicator response for stimulus detection. The prepulse was a “speaker swap” (SSwap), shifting a noise between two speakers located along the azimuth. Their angular separation, and the spectral composition and sound level of the noise were varied, as was the interstimulus interval (ISI) between SSwap and ASR elicitation. In Experiment 1 a 180° SSwap of wide band noise (WBN) was compared with WBN Onset and Offset. SSwap and WBN Onset had near equal effects, but less than Offset. In Experiment 2 WBN SSwap was measured with speaker separations of 15°, 22.5°, 45°, and 90°. Asymptotic level and the growth rate of PPI increased with increased separation from 15° to 90°, but even the 15° SSwap provided significant PPI for the mean performance of the group. SSwap in Experiment 3 used octave band noise (2–4, 4–8, 8–16, or 16–32 kHz) and separations of 7.5° to 180°. SSwap was most effective for the highest frequencies, with no significant PPI for SSwap below 8–16 kHz, or for separations of 7.5°. In Experiment 4 SSwap had WBN sound levels from 40 to 78 dB SPL, and separations of 22.5°, 45°, 90° and 180°: PPI increased with level, this effect varying with ISI and angular separation. These experiments extend the prior findings on sound localization in mice, and the dependence of PPI on ISI adds a reaction-time-like dimension to this behavioral analysis. PMID:20364886
Voltage linear transformation circuit design
NASA Astrophysics Data System (ADS)
Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael
2017-09-01
Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.
Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo; Nakao, Akiko; Yamagishi, Masakazu; Takeya, Jun; Takimiya, Kazuo
2011-04-06
A straightforward synthetic approach that exploits linear- and angular-shaped naphthodithiophenes (NDTs) being potential as new core structures for organic semiconductors is described. The newly established synthetic procedure involves two important steps; one is the chemoselective Sonogashira coupling reaction on the trifluoromethanesulfonyloxy site over the bromine site enabling selective formation of o-bromoethynylbenzene substructures on the naphthalene core, and the other is a facile ring closing reaction of fused-thiophene rings from the o-bromoethynylbenzene substructures. As a result, three isomeric NDTs, naphtho[2,3-b:6,7-b']dithiophene, naphtho[2,3-b:7,6-b']dithiophenes, and naphtho[2,1-b:6,5-b']dithiophene, are selectively synthesized. Electrochemical and optical measurements of the parent NDTs indicated that the shape of the molecules plays an important role in determining the electronic structure of the compounds; the linear-shaped NDTs formally isoelectronic with naphthacene have lower oxidation potentials and more red-shifted absorption bands than those of the angular-shaped NDTs isoelectronic with chrysene. On the contrary, the performance of the thin-film-based field-effect transistors (FETs) using the dioctyl or diphenyl derivatives were much influenced by the symmetry of the molecules; centrosymmetric derivatives tend to give higher mobility (up to 1.5 cm(2) V(-1) s(-1)) than axisymmetric ones (∼0.06 cm(2) V(-1) s(-1)), implying that the intermolecular orbital overlap in the solid state is influenced by the symmetry of the molecules. These results indicate that the present NDT cores, in particular the linear-shaped, centrosymmetric naphtho[2,3-b:6,7-b']dithiophene, are promising building blocks for the development of organic semiconducting materials. © 2011 American Chemical Society
Global and Regional Axial Ocean Angular Momentum Signals and Length-of-day Variations (1985-1996)
NASA Technical Reports Server (NTRS)
Ponte, Rui M.; Stammer, Detlef
2000-01-01
Changes in ocean angular momentum M about the polar axis are related to fluctuations in zonal currents (relative component M(sub tau) and latitudinal shifts in mass (planetary component M(sub Omega). Output from a 1 deg. ocean model is used to calculate global M(sub tau), (sub Omega), and M time series at 5 day intervals for the period January 1985 to April 1996. The annual cycle in M(sub tau), M(sub Omega), and M is larger than the semiannual cycle, and M(sub Omega) amplitudes are nearly twice those of M(sub tau). Year-to-year modulation of the seasonal cycle is present, but interannual variability is weak. The spectrum of M is red (background slope between omega(sup -1) and omega(sup -2) at sub-seasonal periods, implying a white or blue spectrum for the external torque on the ocean. Comparisons with previous studies indicate the importance of direct atmospheric forcing in inducing sub-seasonal M signals, relative to instabilities and other internal sources of rapid oceanic signals. Regional angular momentum estimates show that seasonal variability tends to be larger at low latitudes, but many local maxima exist because of the spatial structure of zonal current and mass variability. At seasonal timescales, latitudes approx. 20 deg. S - 10 deg. N contribute substantial variability to M(sub Omega), while signals in M(sub tau) can be traced to Antarctic Circumpolar Current transports and associated circulation. Variability in M is found to be small when compared with similar time series for the atmosphere and the solid Earth, but ocean signals are significantly coherent with atmosphere-solid Earth residuals, implying a measurable oceanic impact on length-of-day variations.
Global and Regional Axial Ocean Angular Momentum Signals and Length-of-Day Variations (1985-1996)
NASA Technical Reports Server (NTRS)
Ponte, Rui M.; Stammer, Detlef
1999-01-01
Changes in ocean angular momentum about the polar axis (M) are related to fluctuations in zonal currents (relative component M(sub r)) and latitudinal shifts in mass (planetary component M(sub Omega)). Output from a 1 deg ocean model is used to calculate global M(sub r), M(sub Omega), and M time series at 5-day intervals for the period January 1985-April 1996. The annual cycle in M(sub r), M(sub Omega), and M is larger than the semiannual cycle, and M(sub Omega) amplitudes are nearly twice those of M(sub r). Year-to-year modulation of the seasonal cycle is present, but interannual variability is weak. The spectrum of M is red (background slope between omega(sup (-1) and omega(sup -2)) at subseasonal periods, implying a white or blue spectrum for the external torque on the ocean. Comparisons with previous studies indicate the importance of direct atmospheric forcing in inducing subseasonal M signals, relative to instabilities and other internal sources of rapid oceanic signals. Regional angular momentum estimates show that seasonal variability tends to be larger at low latitudes but there are many local maxima due to the spatial structure of zonal current and mass variability. At seasonal timescales, latitudes approximately 20 S - 10 N contribute substantial variability to M(sub Omega), while signals in M(sub r) can be traced to Antarctic Circumpolar Current transports and associated circulation. Variability in M is found to be small when compared with similar time series for the atmosphere and the solid Earth, but ocean signals are significantly coherent with atmosphere-solid Earth residuals, implying a measurable oceanic impact on length-of-day variations.
Vestibular adaptation to space in monkeys.
Dai, M; Raphan, T; Kozlovskaya, I; Cohen, B
1998-07-01
Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.
Solving the Orientation Specific Constraints in Transcranial Magnetic Stimulation by Rotating Fields
Neef, Nicole E.; Agudelo-Toro, Andres; Rakhmilevitch, David; Paulus, Walter; Moses, Elisha
2014-01-01
Transcranial Magnetic Stimulation (TMS) is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS) efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback) and will enable stimulation in brain regions where a preferred axonal orientation does not exist. PMID:24505266
Vestibular adaptation to space in monkeys
NASA Technical Reports Server (NTRS)
Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.
1998-01-01
Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.
Periastron shifts of stellar orbits near the Galactic Center
NASA Astrophysics Data System (ADS)
Rubilar, G. F.; Eckart, A.
2001-07-01
The presence of a 2.9+/-0.4 million solar mass object in the central stellar cluster of the Milky Way has recently been demonstrated via measurements of the stellar proper motions and radial velocities. This mass is located at the position of the compact radio source Sagittarius A* (Sgr A*) at a distance of Ro=8.0 kpc and is most likely present in the form of a massive black hole (BH). Some of the stars have a projected distance to Sgr A* of <=0.005 pc and have proper motion velocities of up to 1400 km s-1. Recent measurements indicate that their orbits show significant curvatures indicating that the stars indeed orbit the central compact object. Detailed measurements of the stellar orbits close to Sgr A* will allow us to precisely determine the distribution of this mass. With an increased point source sensitivity due to the combination of large telescope apertures, adaptive optics, and - in the very near future - NIR interferometry it is likely that stars with orbital time scales of the order of one year will be detected. Theses sources, however, will most likely not be on simple Keplerian orbits. The effects of measurable prograde relativistic and retrograde Newtonian periastron shifts will result in rosetta shaped orbits. A substantial Newtonian periastron rotation can already be expected if only a few percent of the central mass are extended. We discuss the conditions under which an extended mass can (over-) compensate the relativistic periastron shift. We also demonstrate that measuring a single periastron shift is not sufficient to determine the distribution of an extended mass component. A periastron shift will allow us to determine the inclination of the stellar orbits and to derive inclination corrected shift values. These have to be acquired for three stars on orbits with different energy or angular momentum in order to unambiguously solve for the compactness, extent and shape of any extended mass contribution.
Reliability of the one-crossing approximation in describing the Mott transition
NASA Astrophysics Data System (ADS)
Vildosola, V.; Pourovskii, L. V.; Manuel, L. O.; Roura-Bas, P.
2015-12-01
We assess the reliability of the one-crossing approximation (OCA) approach in a quantitative description of the Mott transition in the framework of the dynamical mean field theory (DMFT). The OCA approach has been applied in conjunction with DMFT to a number of heavy-fermion, actinide, transition metal compounds and nanoscale systems. However, several recent studies in the framework of impurity models pointed out serious deficiencies of OCA and raised questions regarding its reliability. Here we consider a single band Hubbard model on the Bethe lattice at finite temperatures and compare the results of OCA to those of a numerically exact quantum Monte Carlo (QMC) method. The temperature-local repulsion U phase diagram for the particle-hole symmetric case obtained by OCA is in good agreement with that of QMC, with the metal-insulator transition captured very well. We find, however, that the insulator to metal transition is shifted to higher values of U and, simultaneously, correlations in the metallic phase are significantly overestimated. This counter-intuitive behaviour is due to simultaneous underestimations of the Kondo scale in the metallic phase and the size of the insulating gap. We trace the underestimation of the insulating gap to that of the second moment of the high-frequency expansion of the impurity spectral density. Calculations of the system away from the particle-hole symmetric case are also presented and discussed.
Mummert, Amanda; Esche, Emily; Robinson, Joshua; Armelagos, George J
2011-07-01
The population explosion that followed the Neolithic revolution was initially explained by improved health experiences for agriculturalists. However, empirical studies of societies shifting subsistence from foraging to primary food production have found evidence for deteriorating health from an increase in infectious and dental disease and a rise in nutritional deficiencies. In Paleopathology at the Origins of Agriculture (Cohen and Armelagos, 1984), this trend towards declining health was observed for 19 of 21 societies undergoing the agricultural transformation. The counterintuitive increase in nutritional diseases resulted from seasonal hunger, reliance on single crops deficient in essential nutrients, crop blights, social inequalities, and trade. In this study, we examined the evidence of stature reduction in studies since 1984 to evaluate if the trend towards decreased health after agricultural transitions remains. The trend towards a decrease in adult height and a general reduction of overall health during times of subsistence change remains valid, with the majority of studies finding stature to decline as the reliance on agriculture increased. The impact of agriculture, accompanied by increasing population density and a rise in infectious disease, was observed to decrease stature in populations from across the entire globe and regardless of the temporal period during which agriculture was adopted, including Europe, Africa, the Middle East, Asia, South America, and North America. Copyright © 2011 Elsevier B.V. All rights reserved.
Transient radiative transfer in a scattering slab considering polarization.
Yi, Hongliang; Ben, Xun; Tan, Heping
2013-11-04
The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.
Super-resolved refocusing with a plenoptic camera
NASA Astrophysics Data System (ADS)
Zhou, Zhiliang; Yuan, Yan; Bin, Xiangli; Qian, Lulu
2011-03-01
This paper presents an approach to enhance the resolution of refocused images by super resolution methods. In plenoptic imaging, we demonstrate that the raw sensor image can be divided to a number of low-resolution angular images with sub-pixel shifts between each other. The sub-pixel shift, which defines the super-resolving ability, is mathematically derived by considering the plenoptic camera as equivalent camera arrays. We implement simulation to demonstrate the imaging process of a plenoptic camera. A high-resolution image is then reconstructed using maximum a posteriori (MAP) super resolution algorithms. Without other degradation effects in simulation, the super resolved image achieves a resolution as high as predicted by the proposed model. We also build an experimental setup to acquire light fields. With traditional refocusing methods, the image is rendered at a rather low resolution. In contrast, we implement the super-resolved refocusing methods and recover an image with more spatial details. To evaluate the performance of the proposed method, we finally compare the reconstructed images using image quality metrics like peak signal to noise ratio (PSNR).
Partial wave analysis for folded differential cross sections
NASA Astrophysics Data System (ADS)
Machacek, J. R.; McEachran, R. P.
2018-03-01
The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.
Multitask SVM learning for remote sensing data classification
NASA Astrophysics Data System (ADS)
Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo
2010-10-01
Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.
NASA Astrophysics Data System (ADS)
Munshi, Soumika; Datta, A. K.
2003-03-01
A technique of optically detecting the edge and skeleton of an image by defining shift operations for morphological transformation is described. A (2 × 2) source array, which acts as the structuring element of morphological operations, casts four angularly shifted optical projections of the input image. The resulting dilated image, when superimposed with the complementary input image, produces the edge image. For skeletonization, the source array casts four partially overlapped output images of the inverted input image, which is negated, and the resultant image is recorded in a CCD camera. This overlapped eroded image is again eroded and then dilated, producing an opened image. The difference between the eroded and opened image is then computed, resulting in a thinner image. This procedure of obtaining a thinned image is iterated until the difference image becomes zero, maintaining the connectivity conditions. The technique has been optically implemented using a single spatial modulator and has the advantage of single-instruction parallel processing of the image. The techniques have been tested both for binary and grey images.
Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants.
Lee, Byunghun; Ahn, Dukju; Ghovanloo, Maysam
2016-03-01
A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90° angular misalignment, compared with 1.4% by the conventional Tx.
Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, P. E.; Lehmann, H.; Jolie, J.
2001-08-01
Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is mademore » with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.« less
5D-Tracking of a nanorod in a focused laser beam--a theoretical concept.
Griesshammer, Markus; Rohrbach, Alexander
2014-03-10
Back-focal plane (BFP) interferometry is a very fast and precise method to track the 3D position of a sphere within a focused laser beam using a simple quadrant photo diode (QPD). Here we present a concept of how to track and recover the 5D state of a cylindrical nanorod (3D position and 2 tilt angles) in a laser focus by analyzing the interference of unscattered light and light scattered at the cylinder. The analytical theoretical approach is based on Rayleigh-Gans scattering together with a local field approximation for an infinitely thin cylinder. The approximated BFP intensities compare well with those from a more rigorous numerical approach. It turns out that a displacement of the cylinder results in a modulation of the BFP intensity pattern, whereas a tilt of the cylinder results in a shift of this pattern. We therefore propose the concept of a local QPD in the BFP of a detection lens, where the QPD center is shifted by the angular coordinates of the cylinder tilt.
Attention to Global Gist Processing Eliminates Age Effects in False Memories
ERIC Educational Resources Information Center
Odegard, Timothy N.; Holliday, Robyn E.; Brainerd, Charles J.; Reyna, Valerie F.
2008-01-01
Counterintuitive age increases have been reported for the Deese-Roediger-McDermott (DRM) false memory illusion. The current theoretical explanation of this effect assumes that it is due to age increases in spontaneous interconnection of DRM list words' meanings. To test this explanation, 11-year-olds and young adults studied DRM lists under…
Educators as Serving Leaders in the Classroom and on Campus
ERIC Educational Resources Information Center
Bowman, Richard
2014-01-01
Counterintuitively, the more one develops as a leader, the less of a leader one becomes. What do great leaders do? Great leaders are ambitious first and foremost for the cause, the mission, the work--not themselves. Educators as "serving leaders" sense that every action they take, together with every decision that they make, either…
ERIC Educational Resources Information Center
Congleton, Adam R.; Rajaram, Suparna
2011-01-01
Research on collaborative memory has unveiled the counterintuitive yet robust phenomenon that collaboration impairs group recall. A candidate explanation for this "collaborative inhibition" effect is the disruption of people's idiosyncratic retrieval strategies during collaboration, and it is hypothesized that employing methods that improve one's…
ERIC Educational Resources Information Center
Blackmore, Jill
2004-01-01
This paper explores, through a case study of educational restructuring in Victoria, Australia, how school leaders in a public education system in Australia mediate reform discourses emphasizing managerial and market accountability and the emotional and messy work of teaching and leading. These accountability exercises were often seen by teachers…
ERIC Educational Resources Information Center
Körhasan, Nilüfer Didis
2015-01-01
Quantum theory is one of the most successful theories in physics. Because of its abstract, mathematical, and counter-intuitive nature, many students have problems learning the theory, just as teachers experience difficulty in teaching it. Pedagogical research on quantum theory has mainly focused on cognitive issues. However, affective issues about…
The Attraction (and Fear) of a Counterintuitive World
ERIC Educational Resources Information Center
DeBuvitz, William
2014-01-01
I had a solid geometry teacher in high school who, when looking at a particular theorem, liked to say, "It's intuitively obvious." In college I heard that same phrase from a professor teaching electrodynamics. And when I taught in college a colleague of mine liked to tell his students that the laws of physics were "intuitively…
A Counterintuitive Toy: The Bird That Never Falls Down.
ERIC Educational Resources Information Center
Fort, J.; Llebot, J. E.; Saurina, J.; Sunol, J. J.
1998-01-01
Describes a toy shaped like a bird that has an intuitively astonishing property: no matter how far away from equilibrium it is moved, it oscillates back to equilibrium. The behavior of this physical system is explained and is used to illustrate the concept of mechanical stability and the usefulness of making simple, idealized models for describing…
ERIC Educational Resources Information Center
Shtulman, Andrew
2008-01-01
The cognitive study of religion has been highly influenced by P. Boyer's (2001, 2003) claim that supernatural beings are conceptualized as persons with counterintuitive properties. The present study tests the generality of this claim by exploring how different supernatural beings are conceptualized by the same individual and how different…
ERIC Educational Resources Information Center
DiBiase, Warren
2009-01-01
In this investigation, students make predictions and observations of a counterintuitive phenomenon. Given the scenario of a boat filled with a set of large rocks placed in a swimming pool, the students investigate what happens to both the water level in the pool and the level at which the boat floats when the rocks are taken out of the boat and…
ERIC Educational Resources Information Center
Olivers, Christian N. L.; Nieuwenhuis, Sander
2006-01-01
The attentional blink reflects the impaired ability to identify the 2nd of 2 targets presented in close succession--a phenomenon that is generally thought to reflect a fundamental cognitive limitation. However, the fundamental nature of this impairment has recently been called into question by the counterintuitive finding that task-irrelevant…
Evaluation of Mathematical Self-Explanations with LSA in a Counterintuitive Problem of Probabilities
ERIC Educational Resources Information Center
Guiu, Jordi Maja
2012-01-01
In this paper different type of mathematical explanations are presented in relation to the mathematical problem of probabilities Monty Hall (card version) and the computational tool Latent Semantic Analyses (LSA) is used. At the moment the results in the literature about this computational tool to study texts show that this technique is…
A Counter-Intuitive Strategy: Reduce Student Stress by Teaching Current Events
ERIC Educational Resources Information Center
Passe, Jeff
2008-01-01
Should elementary school students be introduced to disturbing current events topics? A common response would be to protect the innocence of young children, allowing them to live their lives relatively free of the troubles that beset the world. But closer examination reveals that the study of current events actually helps to reduce fear and worry.…
The Dodo-Bird Debate, Empirically Supported Relationships and Functional Analytic Psychotherapy
ERIC Educational Resources Information Center
Vandenberghe, Luc; de Sousa, Ana Carolina Aquino
2005-01-01
The dodo-bird verdict has haunted the literature on psychotherapy outcome since its early beginnings. It is based on the counter-intuitive finding that often highly diverging treatments do not differ much in effectiveness. There is evidence that much of the common effect of different treatments can be related to unspecific factors as opposed to…
Kazakh Symphonic Kuy--The Counterintuitive Convergence of Traditions
ERIC Educational Resources Information Center
Kokisheva, Marlena T.; Mahmood, Diana Y.; Begalinova, Gulnar A.; Begembetova, Galiya Z.; Nedlina, Valeriya E.
2016-01-01
The research is devoted to a particular genre of Kazakh classical music--Symphonic kuy. This article is the first attempt to understand not the phenomenon of kuy itself, but its belonging to a certain historical era and culture, therefore reflecting their characteristic properties. The area of Kazakh ethnic music is little studied yet, as is the…
ERIC Educational Resources Information Center
Miller, Roxanne Greitz; Hurlock, Ashley J.
2017-01-01
Non research-intensive institutions of higher education are effective at narrowing STEM gender gaps in major selection and persistence to degree completion, yet the decision to attend such a setting is likely seen as counterintuitive when such institutions typically have lower levels of research, financial resources, and total student enrollments…
On the Use of a Virtual Mach-Zehnder Interferometer in the Teaching of Quantum Mechanics
ERIC Educational Resources Information Center
Pereira, Alexsandro; Ostermann, Fernanda; Cavalcanti, Claudio
2009-01-01
For many students, the conceptual learning of quantum mechanics can be rather painful owing to the counter-intuitive nature of quantum phenomena. In order to enhance students' understanding of the odd behaviour of photons and electrons, we introduce a computational simulation of the Mach-Zehnder interferometer, developed by our research group. An…
I Upload Audio, therefore I Teach
ERIC Educational Resources Information Center
Fernandez, Luke
2007-01-01
Recording lectures and making it available as MP3's might seem counterintuitive for a course that denies students the use of paper and pencil. The author speculated that online technology might help students get away from writing and allow them to think and learn in new (or perhaps older) ways. As with any other technological invention, it is…
More noise does not mean more precision: A review of Aldenberg and Rorije (2013).
Fox, David R
2015-09-01
This paper provides a critical review of recently published work that suggests that the precision of hazardous concentration estimates from Species Sensitivity Distributions (SSDs) is improved when the uncertainty in the input data is taken into account. Our review confirms that this counter-intuitive result is indeed incorrect. 2015 FRAME.
Counterintuitive and Alternative Moves Choice in the Water Jug Task
ERIC Educational Resources Information Center
Carder, Hassina P.; Handley, Simon J.; Perfect, Timothy J.
2008-01-01
MOVE problems, like the Tower of London (TOL) or the Water Jug (WJ) task, are planning tasks that appear structurally similar and are assumed to involve similar cognitive processes. Carder et al. [Carder, H.P., Handley, S.J., & Perfect, T.J. ( 2004). Deconstructing the Tower of London: Alternative moves and conflict resolution as predictors of…
Counterintuitive effects of large-scale predator removal on a midlatitude rodent community
John L Maron; Dean E. Pearson; Robert J. Fletcher
2010-01-01
Historically, small mammals have been focal organisms for studying predator-prey dynamics, principally because of interest in explaining the drivers of the cyclical dynamics exhibited by northern vole, lemming, and hare populations. However, many small-mammal species occur at relatively low and fairly stable densities at temperate latitudes, and our understanding of...
ERIC Educational Resources Information Center
Gollan, Tamar H.; Salmon, David P.; Montoya, Rosa I.; da Pena, Eileen
2010-01-01
The current study tested the assumption that bilinguals with dementia regress to using primarily the dominant language. Spanish-English bilinguals with probable Alzheimer's disease (AD; n = 29), and matched bilingual controls (n = 42) named Boston Naming Test pictures in their dominant and nondominant languages. Surprisingly, differences between…
Counterintuitive Behavior in Mechanical Networks
ERIC Educational Resources Information Center
Peters, Sarah; Vondracek, Mark
2012-01-01
Almost all introductory physics classes will, at some point, include springs and elastic forces. When studying such topics, it is interesting to consider the spring system shown in Fig. 1. In this system, two identical springs are arranged with the top of one spring anchored to the ceiling and the bottom of the second spring attached to a hanging…
Evaluation of a Digital Learning Object for the Monty Hall Dilemma
ERIC Educational Resources Information Center
DiBattista, David
2011-01-01
The Monty Hall dilemma (MHD) is a remarkably difficult probability problem with a counterintuitive solution. Undergraduate students used an interactive digital learning object that provided a set-based, animated explanation of the solution to the MHD and let them play games designed to increase understanding of the solution. More than 60% of users…
Directionality of Flare-Accelerated Particles from γ -ray Lines
NASA Astrophysics Data System (ADS)
Share, G. H.; Murphy, R. J.
2000-05-01
The energies and widths of γ -ray lines emitted by ambient nuclei excited by flare-accelerated protons and α -particles provide information on their directionality, spectra, and on the uniformity of the interaction region. For example, the γ -rays observed from a downward beam of particles impacting at 0o heliocentric angle would exhibit a clear Doppler red-shift and some broadening, dependent on the spectrum of the particles. In contrast, γ -rays observed from the same beam of particles impacting at 90o would be neither observably shifted nor broadened. We have studied the energies and widths of strong lines from de-excitations of 20Ne, 12C, and 16O in solar flares as a function of heliocentric angle. We use spectra from 21 flares observed with NASA's Solar Maximum Mission/GRS and Compton Observatory/OSSE experiments. The line energies of all three nuclei exhibit ~0.9% red-shifts from their laboratory values for flares observed at heliocentric angles <40o. In contrast, the energies are not significantly shifted for flares observed at angles >80o. The lines at all heliocentric angles are broadened between ~2.5% to 4%. These results are suggestive of a broad downward distribution of accelerated particles in flares or an isotropic distribution in a medium that has a significant density gradient. Detailed comparisons of these data with results from the gamma-ray production code (Ramaty, et al. 1979, ApJS, 40, 487; Murphy, et al. 1991, ApJ, 371, 793) are required in order to place constraints on the angular distributions of particles. This research has been supported by NASA grant W-18995.
Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Lam; LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027
2007-11-15
It has long been known that gravitational lensing, primarily via magnification bias, modifies the observed galaxy (or quasar) clustering. Such discussions have largely focused on the 2D angular correlation function. Here and in paper II [L. Hui, E. Gaztanaga, and M. LoVerde, arXiv:0710.4191] we explore how magnification bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara [Astrophys. J. Lett. 537, L77 (2000).]. The interesting point is that the distortion is anisotropic. Magnification bias in general preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For instance, at a LOS separationmore » of {approx}100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z{approx}0.35. This effect presents an interesting opportunity as well as a challenge. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification, and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well-known distortion due to peculiar motions, as will be discussed in paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the {approx}100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to {approx}3% in the LOS orientation, and up to {approx}0.6% in the monopole, depending on the galaxy bias, redshift, and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well-known excess correlations seen in pencil beam surveys.« less
Aylor, K.; Hou, Z.; Knox, L.; ...
2017-11-20
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less
Primordial power spectrum from Planck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun, E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in
2014-11-01
Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters andmore » the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, K.; Hou, Z.; Knox, L.
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, K.; Hou, Z.; Knox, L.
The Planck cosmic microwave background temperature data are best fit with a Lambda CDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg(2) SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 <= l <= 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing Lambda CDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipolemore » range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n(s) and A(s)e(-2 tau). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of Lambda CDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at l > 2000.« less
NASA Astrophysics Data System (ADS)
Aylor, K.; Hou, Z.; Knox, L.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.
2017-11-01
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 {\\deg }2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650≤slant {\\ell }≤slant 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and {A}s{e}-2τ . We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at {\\ell }> 2000.
NASA Technical Reports Server (NTRS)
Solomon, D.; Cohen, B.
1992-01-01
1. A rhesus and cynomolgus monkey were trained to run around the perimeter of a circular platform in light. We call this "circular locomotion" because forward motion had an angular component. Head and body velocity in space were recorded with angular rate sensors and eye movements with electrooculography (EOG). From these measurements we derived signals related to the angular velocity of the eyes in the head (Eh), of the head on the body (Hb), of gaze on the body (Gb), of the body in space (Bs), of gaze in space (Gs), and of the gain of gaze (Gb/Bs). 2. The monkeys had continuous compensatory nystagmus of the head and eyes while running, which stabilized Gs during the slow phases. The eyes established and maintained compensatory gaze velocities at the beginning and end of the slow phases. The head contributed to gaze velocity during the middle of the slow phases. Slow phase Gb was as high as 250 degrees/s, and targets were fixed for gaze angles as large as 90-140 degrees. 3. Properties of the visual surround affected both the gain and strategy of gaze compensation in the one monkey tested. Gains of Eh ranged from 0.3 to 1.1 during compensatory gaze nystagmus. Gains of Hb varied around 0.3 (0.2-0.7), building to a maximum as Eh dropped while running past sectors of interest. Consistent with predictions, gaze gains varied from below to above unity, when translational and angular body movements with regard to the target were in opposite or the same directions, respectively. 4. Gaze moved in saccadic shifts in the direction of running during quick phases. Most head quick phases were small, and at times the head only paused during an eye quick phase. Eye quick phases were larger, ranging up to 60 degrees. This is larger than quick phases during passive rotation or saccades made with the head fixed. 5. These data indicate that head and eye nystagmus are natural phenomena that support gaze compensation during locomotion. Despite differential utilization of the head and eyes in various conditions, Gb compensated for Bs. There are various frames of reference in which an estimate of angular velocity that drives the head and eyes could be based. We infer that body in space velocity (Bs) is likely to be represented centrally to provide this signal.
Results from EDDAatCOSY: Spin Observables in Proton-Proton Elastic Scattering
NASA Astrophysics Data System (ADS)
Rohdjeß, Heiko
2003-07-01
Elastic proton-proton scattering as one of the fundamental hadronic reactions has been studied with the internal target experiment EDDA at the Cooler-Synchrotron COSY/Jülich. A precise measurement of differential cross section, analyzing power and three spin-correlation parameters over a large angular (θc.m. ≈ 35° - 90°) and energy (Tp ≈ 0.5 - 2.5 GeV) range has been carried out in the past years. By taking scattering data during the acceleration of the COSY beam, excitation functions were measured in small energy steps and consistent normalization with respect to luminosity and polarization. The experiment uses internal fiber targets and a polarized hydrogen atomic-beam target in conjunction with a double-layered, cylindrical scintillator hodoscope for particle detection. The results on differential cross sections and analyzing powers have been published and helped to improve phase shift solutions. Recently data taking with polarized beam and target has been completed. Preliminary results for the spin-correlation parameters A NN, ASS, and ASL are presented. The observable ASS has been measured the first time above 800 MeV and our results are in sharp contrast to phase-shift predictions at higher energies. Our analysis shows that some of the ambiguities in the direct reconstruction of scattering amplitudes which also show up as differences between available phase-shift solutions, will be reduced by these new measurements.
High-speed acoustic communication by multiplexing orbital angular momentum
Shi, Chengzhi; Dubois, Marc; Wang, Yuan
2017-01-01
Long-range acoustic communication is crucial to underwater applications such as collection of scientific data from benthic stations, ocean geology, and remote control of off-shore industrial activities. However, the transmission rate of acoustic communication is always limited by the narrow-frequency bandwidth of the acoustic waves because of the large attenuation for high-frequency sound in water. Here, we demonstrate a high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency. The topological charges of OAM provide intrinsically orthogonal channels, offering a unique ability to multiplex data transmission within a single acoustic beam generated by a transducer array, drastically increasing the information channels and capacity of acoustic communication. A high spectral efficiency of 8.0 ± 0.4 (bit/s)/Hz in acoustic communication has been achieved using topological charges between −4 and +4 without applying other communication modulation techniques. Such OAM is a completely independent degree of freedom which can be readily integrated with other state-of-the-art communication modulation techniques like quadrature amplitude modulation (QAM) and phase-shift keying (PSK). Information multiplexing through OAM opens a dimension for acoustic communication, providing a data transmission rate that is critical for underwater applications. PMID:28652341
Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.P.; Thorne, K.S.
1989-04-15
The renormalized expectation value of the stress-energy tensor /sup ren/ of a quantum field in an arbitrary quantum state near the future horizon of a rotating (Kerr) black hole is derived in two very different ways: One derivation (restricted for simplicity to a massless scalar field) makes use of traditional techniques of quantum field theory in curved spacetime, augmented by a variant of the ''eta formalism'' for handling superradiant modes. The other derivation (valid for any quantum field) uses the equivalence principle to infer, from /sup ren/ in flat spacetime, what must be /sup ren/ near the hole's horizon. Themore » two derivations give the same result: a result in accord with a previous conjecture by Zurek and Thorne: /sup ren/, in any quantum state, is equal to that, /sup ZAMO/, which zero-angular-momentum observers (ZAMO's) would compute from their own physical measurements near the horizon, plus a vacuum-polarization contribution T/sub ..mu..//sub ..nu..//sup vac pol/, which is the negative of the stress-energy of a rigidly rotating thermal reservoir with angular velocity equal to that of the horizon ..cap omega../sub H/, and (red-shifted) temperature equal to that of the Hawking temperature T/sub H/.« less
The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Miller, A.; Beach, J.; Bradley, S.; Caldwell, R.; Chapman, H.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Jones, D.; Monnelly, G.; Netterfield, C. B.; Nolta, M.; Page, L. A.; Puchalla, J.; Robertson, T.; Torbet, E.; Tran, H. T.; Vinje, W. E.
2002-06-01
We describe two related experiments that measured the anisotropy in the cosmic microwave background (CMB). QMAP was a balloon-borne telescope that flew twice in 1996, collecting data on degree angular scales with an array of six high electron mobility transistor-based amplifiers (HEMTs). QMAP used an interlocking scan strategy to directly produce high signal-to-noise ratio CMB maps over a limited region of sky. The QMAP gondola was then refitted for ground-based work as the MAT/TOCO experiment. Observations were made from 5200 m on Cerro Toco in Northern Chile in 1997 and 1998 using time domain beam synthesis. MAT/TOCO measured the rise and fall of the CMB angular spectrum, thereby localizing the position of the first peak to lpeak=216+/-14. In addition to describing the instruments, we discuss the data selection methods, check for systematic errors, and compare the MAT/TOCO results to those from recent experiments. The previously reported data are updated to account for a small calibration shift and corrected to account for a small contribution from known sources of foreground emission. The resulting amplitude of the first peak for 160
pp Elastic Scattering: New results from EDDA (COSY)
NASA Astrophysics Data System (ADS)
Scobel, W.
2000-06-01
In the EDDA experiment excitation functions of proton-proton elastic scattering are studied with narrow steps in the projectile momentum range from 0.8 to 3.4 GeV/c and the angular range 35°⩽Θcm⩽90° with a detector providing ΔΘcm≈1.4° resolution and 85% solid angle coverage. Measurements are performed continuously during projectile acceleration in the Cooler Synchrotron COSY. In phase 1 of the experiment spin-averaged differential cross sections dσ/dΩ have been measured with an internal CH2 fiber target; background corrections were derived from measurements with a carbon fiber target and from Monte Carlo simulations of inelastic pp contributions. The results provide excitation functions and angular distributions of high precision and internal consistency. In phase 2 of the experiment excitation functions of the analyzing power AN have been measured using a polarized (P⩾75%) atomic beam target, and those of the polarization correlation parameters ANN, ASS and ASL will be measured lateron with the polarized COSY beam. The measured excitation functions are compared to recent phase shift analyses, and their impact on them is discussed. So far evidence for narrow structures was neither found in the spin averaged cross sections nor in the analyzing powers.
ALMA detection of a disk wind from HD 163296
NASA Astrophysics Data System (ADS)
Klaassen, Pamela; Juhasz, Attila; Mathews, Geoffrey; Mottram, Joseph; De Gregorio-Monsalvo, Itziar; van Dishoeck, Ewine; Takahashi, Satoko; Akiyama, Eiji; Chapillon, Edwige; Espada, Daniel; Hales, Antonio; Hogerheijde, Michiel; Rawlings, Mark; Schmalzl, Markus; Testi, Leonardo
2013-07-01
Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA Science Verification data of CO J=2-1 and J=3-2 emission which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km/s. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet which is moving at much higher velocities. We show that the J=3-2 emission is likely heavily filtered by the interferometer, but the J=2-1 emission suffers less due to the larger beam and measurable angular scales. Excitation analysis suggests temperatures exceeding 900 K in these compact features. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star, signaling the end of the main accretion phase.
Improved depth estimation with the light field camera
NASA Astrophysics Data System (ADS)
Wang, Huachun; Sang, Xinzhu; Chen, Duo; Guo, Nan; Wang, Peng; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu
2017-10-01
Light-field cameras are used in consumer and industrial applications. An array of micro-lenses captures enough information that one can refocus images after acquisition, as well as shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. Thus, depth estimation from both defocus and correspondence are now available in a single capture. And Lytro.Inc also provides a depth estimation from a single-shot capture with light field camera, like Lytro Illum. This Lytro depth estimation containing many correct depth information can be used for higher quality estimation. In this paper, we present a novel simple and principled algorithm that computes dense depth estimation by combining defocus, correspondence and Lytro depth estimations. We analyze 2D epipolar image (EPI) to get defocus and correspondence depth maps. Defocus depth is obtained by computing the spatial gradient after angular integration and correspondence depth by computing the angular variance from EPIs. Lytro depth can be extracted from Lyrto Illum with software. We then show how to combine the three cues into a high quality depth map. Our method for depth estimation is suitable for computer vision applications such as matting, full control of depth-of-field, and surface reconstruction, as well as light filed display
Developmental Reversals in False Memory: Now You See Them, Now You Don't!
ERIC Educational Resources Information Center
Holliday, Robyn E.; Brainerd, Charles J.; Reyna, Valerie F.
2011-01-01
A developmental reversal in false memory is the counterintuitive phenomenon of higher levels of false memory in older children, adolescents, and adults than in younger children. The ability of verbatim memory to suppress this age trend in false memory was evaluated using the Deese-Roediger-McDermott (DRM) paradigm. Seven and 11-year-old children…
ERIC Educational Resources Information Center
McGuire, Patrick; Tu, Shihfen; Logue, Mary Ellin; Mason, Craig A.; Ostrow, Korinn
2017-01-01
This study compared the effects of three different feedback formats provided to sixth grade mathematics students within a web-based online learning platform, ASSISTments. A sample of 196 students were randomly assigned to one of three conditions: (1) text-based feedback; (2) image-based feedback; and (3) correctness only feedback. Regardless of…
ERIC Educational Resources Information Center
Potvin, Patrice; Masson, Steve; Lafortune, Stéphanie; Cyr, Guillaume
2015-01-01
Recent research efforts have argued for the "persistence" of some of students' frequent scientific misconceptions, even after correct answers are produced. Some of these studies, based on the analysis of reaction times, have recorded latencies for counter-intuitive or incongruent stimuli compared to intuitive or congruent ones. The…
ERIC Educational Resources Information Center
Kaur, Gurjeet
2017-01-01
Despite its familiarity and the fact that it becomes a formal area of study in early upper primary grades, optics remains a cognitive challenge for young as well as advanced learners, not only because much of it is counter-intuitive but also because its conceptual comprehension involves negotiating the vocabulary and graphical symbolism involved…
ERIC Educational Resources Information Center
Aheadi, Afshin; Dixon, Peter; Glover, Scott
2010-01-01
The "Mozart effect" occurs when performance on spatial cognitive tasks improves following exposure to Mozart. It is hypothesized that the Mozart effect arises because listening to complex music activates similar regions of the right cerebral hemisphere as are involved in spatial cognition. A counter-intuitive prediction of this hypothesis (and one…
Counterintuitive Behaviour of a Particle under the Action of an Oscillating Force
ERIC Educational Resources Information Center
Mohazzabi, Pirooz; Greenebaum, Ben
2011-01-01
When a free particle initially at rest is acted on by an oscillating force, it is intuitively expected to oscillate in place with the frequency of the force. However, careful solution of the classical equation of motion shows that this is only true for particular initial phases of the force; otherwise a steady drift is superimposed on the…
ERIC Educational Resources Information Center
Dzikovska, Myroslava; Steinhauser, Natalie; Farrow, Elaine; Moore, Johanna; Campbell, Gwendolyn
2014-01-01
Within STEM domains, physics is considered to be one of the most difficult topics to master, in part because many of the underlying principles are counter-intuitive. Effective teaching methods rely on engaging the student in active experimentation and encouraging deep reasoning, often through the use of self-explanation. Supporting such…
ERIC Educational Resources Information Center
Grotzer, Tina A.
2011-01-01
This article considers the appeal of cognitive neuroscience research to the general public within the context of the deep puzzles involved in using our minds to understand how our minds work. It offers a few promising examples of findings that illuminate the ways of the mind and reveal these workings to be counter-intuitive with our subjective…
ERIC Educational Resources Information Center
Brelsford, Theodore
2007-01-01
This article proposes a concept of "mythical realism" as a way of understanding important characteristics of religion and orienting religious education. The focus is on beliefs as one central aspect of religion. The author draws on recent cognitive studies in religion to illumine the "counterintuitive" and "mythic" character of religious belief,…
ERIC Educational Resources Information Center
Balota, David A.; Aschenbrenner, Andrew J.; Yap, Melvin J.
2013-01-01
A counterintuitive and theoretically important pattern of results in the visual word recognition literature is that both word frequency and stimulus quality produce large but additive effects in lexical decision performance. The additive nature of these effects has recently been called into question by Masson and Kliegl (in press), who used linear…
ERIC Educational Resources Information Center
Fugate, C. Matthew; Zentall, Sydney S.; Gentry, Marcia
2013-01-01
There have been some behavioral indicators and some types of task performance that suggest greater creativity in students with attention deficit hyperactive disorder (ADHD). This evidence would appear counterintuitive given that lower working memory (i.e., holding information in mind for novel recombinations) has often been documented in students…
Coupled Brownian motors: Anomalous hysteresis and zero-bias negative conductance
NASA Astrophysics Data System (ADS)
Reimann, P.; Kawai, R.; Van den Broeck, C.; Hänggi, P.
1999-03-01
We introduce a model of interacting Brownian particles in a symmetric, periodic potential that undergoes a noise-induced non-equilibrium phase transition. The associated spontaneous symmetry breaking entails a ratchet-like transport mechanism. In response to an external force we identify several novel features; among the most prominent being a zero-bias negative conductance and a prima facie counterintuitive, anomalous hysteresis.
A New Pedagogy Employs an Old Friend: Beauty and the Quality of Ideas
ERIC Educational Resources Information Center
Shoaf, Robb W.
2012-01-01
The thesis of the present paper is that collaboration is not only critical to the work of education at large but may function more effectively when it is conceived as an aesthetic enterprise. The counterintuitive claim of this paper is that an aesthetic perspective will both broaden one's perspective and sharpen one's focus in addressing both the…
ERIC Educational Resources Information Center
Héraud, Jean-Loup; Lautesse, Philippe; Ferlin, Fabrice; Chabot, Hugues
2017-01-01
Our work extends a previous study of epistemological presuppositions in teaching quantum physics in upper scientific secondary school in France. Here, the problematic reference of quantum theory's concepts is treated at the ontological level (the counterintuitive nature of quantum objects). We consider the approach of using narratives describing…
Increasing Boiling Heat Transfer using Low Conductivity Materials
Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew
2015-01-01
We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890
The significance of the quadratic Doppler effect for space travel and astrophysics
NASA Astrophysics Data System (ADS)
Boehm, M.
1985-09-01
It is shown that a distinct frame of reference exists for light for which the Kennedy-Thorndike experiment provides unequivocal evidence. This leads to the postulate of a rotating instead of an expanding universe. It is shown that the cosmic red shift can be understood as the result of a Coriolis acceleration of the light propagating between two arbitrary points of different gravitational potential. Methods for determining the angular velocity of the rotating universe are given, and it is discussed whether the speed of light and the gravitational constant are universal constants or whether they are functions of distance from the center of the universe. Suggestions are made for further experimental studies and for practical application of the quadratic Doppler effect.
Coriolis effect in optics: unified geometric phase and spin-Hall effect.
Bliokh, Konstantin Y; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez
2008-07-18
We examine the spin-orbit coupling effects that appear when a wave carrying intrinsic angular momentum interacts with a medium. The Berry phase is shown to be a manifestation of the Coriolis effect in a noninertial reference frame attached to the wave. In the most general case, when both the direction of propagation and the state of the wave are varied, the phase is given by a simple expression that unifies the spin redirection Berry phase and the Pancharatnam-Berry phase. The theory is supported by the experiment demonstrating the spin-orbit coupling of electromagnetic waves via a surface plasmon nanostructure. The measurements verify the unified geometric phase, demonstrated by the observed polarization-dependent shift (spin-Hall effect) of the waves.
NASA Astrophysics Data System (ADS)
Lin, Xin; Pan, Hui; Xu, Huai-Zhe
2010-12-01
We have theoretically analyzed the quasibound states in a graphene quantum dot (GQD) with a magnetic flux Φ in the centre. It is shown that the two-fold time reversal degeneracy is broken and the quasibound states of GQD with positive/negative angular momentum shifted upwards / downwards with increasing the magnetic flux. The variation of the quasibound energy depends linearly on the magnetic flux, which is quite different from the parabolic relationship for Schrödinger electrons. The GQD's quasibound states spectrum shows an obvious Aharonov—Bohm (AB) oscillations with the magnetic flux. It is also shown that the quasibound state with energy equal to the barrier height becomes a bound state completely confined in GQD.
Ferromagnetic resonance and spin-wave resonances in GaMnAsP films
NASA Astrophysics Data System (ADS)
Liu, Xinyu; Li, Xiang; Bac, Seul-Ki; Zhang, Xucheng; Dong, Sining; Lee, Sanghoon; Dobrowolska, Margaret; Furdyna, Jacek K.
2018-05-01
A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy.
Proton-proton elastic scattering excitation functions at intermediate energies
NASA Astrophysics Data System (ADS)
Rohdjess, H.
1998-05-01
Polarized and unpolarized proton-proton elastic scattering is investigated with the EDDA-experiment at the Cooler Synchrotron COSY at Jülich to significantly improve the world data base in the beam energy range 500-2500 MeV. Measurements during beam acceleration with thin internal targets and a large acceptance detector provide excitation functions over a broad angular and energy range with unprecedented internal consistency. Data taking with an unpolarized CH2 fiber target and an unpolarized beam have been completed and the derived differential cross sections are presented and compared to a recent phase shift analysis. With a polarized atomic beam target newly installed in COSY and a polarized COSY beam—currently under development—the measurements will be extended to analyzing powers and spin correlation parameters.
Probing the structure of the stable Xe isotopes with inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Peters, Erin E.; Ross, Timothy J.; Crider, Benjamin P.; Yates, Steven W.
2018-05-01
The stable isotopes of xenon, which have attracted interest for a number of reasons, span a transitional region that evolves from γ-soft structures for the lighter mass isotopes to nearly spherical 136Xe with a closed neutron shell. The nature of this transition, which is gradual, is not well understood. To provide detailed spectroscopic information on the Xe isotopes, we have studied 130,132,134,136Xe at the University of Kentucky Accelerator Laboratory using inelastic neutron scattering and γ-ray detection. These measurements yielded γ-ray angular distributions, branching ratios, multipole mixing ratios, and level lifetimes (from the Doppler-shift attenuation method), which allowed the determination of reduced transition probabilities and provided insight into the structure of these nuclei.
Multidimensional photoemission spectroscopy—the space-charge limit
NASA Astrophysics Data System (ADS)
Schönhense, B.; Medjanik, K.; Fedchenko, O.; Chernov, S.; Ellguth, M.; Vasilyev, D.; Oelsner, A.; Viefhaus, J.; Kutnyakhov, D.; Wurth, W.; Elmers, H. J.; Schönhense, G.
2018-03-01
Photoelectron spectroscopy, especially at pulsed sources, is ultimately limited by the Coulomb interaction in the electron cloud, changing energy and angular distribution of the photoelectrons. A detailed understanding of this phenomenon is crucial for future pump-probe photoemission studies at (x-ray) free electron lasers and high-harmonic photon sources. Measurements have been performed for Ir(111) at hν = 1000 eV with photon flux densities between ˜102 and 104 photons per pulse and μm2 (beamline P04/PETRA III, DESY Hamburg), revealing space-charge induced energy shifts of up to 10 eV. In order to correct the essential part of the energy shift and restore the electron distributions close to the Fermi energy, we developed a semi-analytical theory for the space-charge effect in cathode-lens instruments (momentum microscopes, photoemission electron microscopes). The theory predicts a Lorentzian profile of energy isosurfaces and allows us to quantify the charge cloud from measured energy profiles. The correction is essential for the determination of the Fermi surface, as we demonstrate by means of ‘k-space movies’ for the prototypical high-Z material tungsten. In an energy interval of about 1 eV below the Fermi edge, the bandstructure can be restored up to substantial shifts of ˜7 eV. Scattered photoelectrons strongly enhance the inelastic background in the region several eV below E F, proving that the majority of scattering events involves a slow electron. The correction yields a gain of two orders of magnitude in usable intensity compared with the uncorrected case (assuming a tolerable shift of 250 meV). The results are particularly important for future experiments at SASE-type free electron lasers, since the correction also works for strongly fluctuating (but known) pulse intensities.
Tennent, J.M.; Stanley, J.-D.; Hart, P.E.; Bernasconi, M.P.
2009-01-01
A geophysical survey provides new information on marine features located seaward of Locri-Epizefiri (Locri), an ancient Greek settlement on the Ionian coastal margin in southern Italy. The study supplements previous work by archaeologists who long searched for the site's harbor and recently identified what was once a marine basin that is now on land next to the city walls of Locri. Profiles obtained offshore, between the present coast and outer shelf, made with a high-resolution, seismic subbottom-profiling system, record spatial and temporal variations of buried Holocene deposits. Two of these submerged features are part of a probable now-submerged ship landing facility. The offshore features can be linked to coastline displacements that occurred off Locri: a sea-to-land shift before Greek settlement, followed by a shoreline reversal from the archaeological site back to sea, and more recently, a return landward. The seaward directed coastal shift that occurred after Locri's occupation by Greeks was likely caused by land uplift near the coastal margin and tectonic seaward shift of the coast, as documented along this geologically active sector of the Calabrian Arc. The seismic survey records an angular, hook-shaped, low rise that extends from the present shore and is now buried on the inner shelf. The rise, enclosing a core lens of poorly stratified to transparent acoustic layers, bounds a broad, low-elevation zone positioned immediately seaward of the shoreline. Close proximity of the raised feature to the low-elevation area suggests it may have been a fabricated structure that functioned as a wave-break for a ship-landing site. The study indicates that the basin extended offshore as a function of the coastline's seaward migration during and/or after Greek occupation of Locri.
ERIC Educational Resources Information Center
Woodley, Michael A.
2010-01-01
A controversial hypothesis [Charlton (2009). "Clever sillies: Why high-IQ people tend to be deficient in common sense." "Medical Hypotheses," 73, 867-870] has recently been proposed to account for why individuals of high-IQ and high social status tend to hold counter-intuitive views on social phenomena. It is claimed that these "clever sillies"…
Beller Lectureship: Stochasticity and robustness in growth and morphogenesis
NASA Astrophysics Data System (ADS)
Boudaoud, Arezki
How do organisms cope with natural variability to achieve well-defined morphologies and architectures? We addressed this question by combining experiments with live plants and analyses of stochastic models that integrate cell-cell communication and tissue mechanics. This led us to counterintuitive results on the role of noise in development, whereby noise is either filtered or enhanced according to the level at which it is acting.
Improving Accuracy Is Not the Only Reason for Writing, and Even If It Were...
ERIC Educational Resources Information Center
Bruton, Anthony
2009-01-01
For research into language development in L2 writing to have any relevance, it has to be situated within a framework of decisions in writing pedagogy. Furthermore, a perspective on L2 language development cannot be limited only to accuracy levels. Even if this is the case, it is counter-intuitive that further input may be detrimental to language…
No Time for Timidity: A "Buffett" Approach to Weathering the Economic Crisis and Coming out Ahead
ERIC Educational Resources Information Center
Hesel, Richard A.; Strauss, David W.; Edwards, Benjamin G.
2009-01-01
The counterintuitive approach of the world's greatest value investor, Warren Buffett, may be the best hope for colleges and universities during this recession. Buffett's time-tested philosophy of seeking value and investing for the long term remains a sound approach, even if his short-term returns have declined along with those of the rest of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashinaka, Takahiro; Department of Physics, Graduate School of Science,The University of Tokyo, Bunkyo, Tokyo, 113-0033; Yokoyama, Jun’ichi
The covariant and gauge invariant calculation of the current expectation value in the homogeneous electric field in 1+3 dimensional de Sitter spacetime is shown. The result accords with previous work obtained by using adiabatic subtraction scheme. We therefore conclude the counterintuitive behaviors of the current in the infrared (IR) regime such as IR hyperconductivity and negative current are not artifacts of the renormalization scheme, but are real IR effects of the spacetime.
Vertical electronic transport in van de waals heterostructures
NASA Astrophysics Data System (ADS)
Qiao, Zhenhua; Zhenhua Qiao's Group Team
In this work, we will introduce the theoretical investigation of the vertical electronic transport in various heterostructrues by using both tight-binding method and first-principles calculations. Counterintuitively, we find that the maximum electronic transport is achieved at very limited scattering regions but not at large overlapped catering regions. Based on this finding, we design a special setup to measure the tunneling effect in rotated bilayer systems.
More than Meets the Eye: Young Children's Trust in Claims That Defy Their Perceptions
ERIC Educational Resources Information Center
Lane, Jonathan D.; Harris, Paul L.; Gelman, Susan A.; Wellman, Henry M.
2014-01-01
Children and adults often encounter counterintuitive claims that defy their perceptions. We examined factors that influence children's acceptance of such claims. Children ages 3-6 years were shown familiar objects (e.g., a rock), were asked to identify the objects, and were then told that each object was something else (e.g., that the rock…
A Social Network Approach to Understanding an Insurgency
2007-07-01
and a framework for testing theories regarding struc- tured social relationships.6 Equally relevant is the understanding of a social network approach...A Social Network Approach to Understanding an Insurgency BRIAN REED The study of networks, interactions, and relationships has a long history...characteristics of social network analysis is often counter-intuitive to traditional military thinking, rooted in the efficiency of a hierarchy that
I love my baffling, backward, counterintuitive, overly complicated magnitudes
NASA Astrophysics Data System (ADS)
Sirola, Christopher
2017-02-01
All professions have their jargon. But astronomy goes the extra parsec. Here's an example. Vega, one of the brighter stars in the night sky, has an apparent magnitude (i.e., an apparent brightness) of approximately zero. Polaris, the North Star, has an apparent magnitude of about +2. Despite this, Vega appears brighter than Polaris, and not by two, but by a factor of about six times.
ERIC Educational Resources Information Center
Dilnot, Catherine
2018-01-01
English students from less privileged backgrounds and state, rather than private, schools remain significantly under-represented at high-status universities. There has been little work to date on the role of A-level subject choice, as opposed to attainment, in access to university. Using linked administrative data for three recent cohorts of…
Principal component analysis on a torus: Theory and application to protein dynamics.
Sittel, Florian; Filk, Thomas; Stock, Gerhard
2017-12-28
A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib 9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.
Potential scattering on a spherical surface
NASA Astrophysics Data System (ADS)
Zhang, Jian; Ho, Tin-Lun
2018-06-01
The advances in cold atom experiments have allowed construction of confining traps in the form of curved surfaces. This opens up the possibility of studying quantum gases in curved manifolds. On closed surfaces, many fundamental processes are affected by the local and global properties, i.e. the curvature and the topology of the surface. In this paper, we study the problem of potential scattering on a spherical surface and discuss its difference with that on a 2D plane. For bound states with angular momentum m, their energies (E m ) on a sphere are related to those on a 2D plane (-| {E}m,o| ) as {E}m=-| {E}m,o| +{E}R≤ft[\\tfrac{{m}2-1}{3}+O≤ft(\\tfrac{{r}o2}{{R}2}\\right)\\right], where {E}R={{{\\hslash }}}2/(2{{MR}}2), and R is the radius of the sphere. Due to the finite extent of the manifold, the phase shifts on a sphere at energies E∼ {E}R differ significantly from those on a 2D plane. As energy E approaches zero, the phase shift in the planar case approaches 0, whereas in the spherical case it reaches a constant that connects the microscopic length scale to the largest length scale R.
Ship heading and velocity analysis by wake detection in SAR images
NASA Astrophysics Data System (ADS)
Graziano, Maria Daniela; D'Errico, Marco; Rufino, Giancarlo
2016-11-01
With the aim of ship-route estimation, a wake detection method is developed and applied to COSMO/SkyMed and TerraSAR-X Stripmap SAR images over the Gulf of Naples, Italy. In order to mitigate the intrinsic limitations of the threshold logic, the algorithm identifies the wake features according to the hydrodynamic theory. A post-detection validation phase is performed to classify the features as real wake structures by means of merit indexes defined in the intensity domain. After wake reconstruction, ship heading is evaluated on the basis of turbulent wake direction and ship velocity is estimated by both techniques of azimuth shift and Kelvin pattern wavelength. The method is tested over 34 ship wakes identified by visual inspection in both HH and VV images at different incidence angles. For all wakes, no missed detections are reported and at least the turbulent and one narrow-V wakes are correctly identified, with ship heading successfully estimated. Also, the azimuth shift method is applied to estimate velocity for the 10 ships having route with sufficient angular separation from the satellite ground track. In one case ship velocity is successfully estimated with both methods, showing agreement within 14%.
Principal component analysis on a torus: Theory and application to protein dynamics
NASA Astrophysics Data System (ADS)
Sittel, Florian; Filk, Thomas; Stock, Gerhard
2017-12-01
A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.
C 1 s ionization in C sub 2 H sub 2 studied by asymmetric ( e ,2 e ) experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avaldi, L.; Camilloni, R.; Stefani, G.
1990-01-01
The dynamics of core ionization by electron impact is investigated through the measurement of the triply differential cross section of the C {sigma}1{ital s} orbital in the molecule C{sub 2}H{sub 2}. The ({ital e},2{ital e}) experiments have been performed under asymmetric conditions and at small scattering angles, with a scattered electron energy of 1500 eV and low energies of the ejected electrons (9.6 and 41.0 eV). The measured angular distributions are characterized by large-size recoil lobes, breaking of the symmetry around the momentum-transfer direction, and unusual deviations of the maxima of the recoil peaks towards smaller deflection angles. In themore » ({ital e},2{ital e}) energy spectrum a shift is observed in the position of the C {sigma}1{ital s} peak with respect to the expected value as measured by x-ray photoelectron spectroscopy. The amplitude of the shift amounts to 0.46{plus minus}0.23 eV at 9.6 eV excess energy, and it is too large to be explained only in terms of postcollision interactions.« less
Spiral structure of M51: Streaming motions across the spiral arms
NASA Technical Reports Server (NTRS)
Tilanus, R. P. J.; Allen, R. J.
1990-01-01
The atomic hydrogen (HI) and the H alpha emission line in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the Taurus Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity gradients are detected in the H alpha emission after subtraction of the axi-symmetric component of the velocity field. The shift is positive on the inside and negative on the outside of the northern arm. Across the southern arm this situation is reversed. The direction of the shifts is such that the material is moving inward and faster compared to circular rotation in both arms, consistent with the velocity perturbations predicted by spiral density wave models for gas downstream of a spiral shock. The observed shifts amount to 20 to 30 km (s-1), corresponding to streaming motions of 60 to 90 km (s-1) in the plane of the disk (inclination angle 20 degrees). Comparable velocity gradients have also been observed by Vogel et al. in the CO emission from the inner northern arm of M51. The streaming motions in M51 are about 2 to 3 times as large as the ones found in HI by Rots in M81, and successfully modelled by Visser with a self-consistent density wave model. Researchers have not been able to detect conclusively streaming motions in the HI emission from the arms, perhaps due to the relatively poor angular resolution (approx. 15 seconds) of the HI observations.
Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate
Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang
2011-01-01
A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg−1 s at angular rates of up to 1,000 deg s−1 and good linearity are observed. PMID:22346678
Development of a new surface acoustic wave based gyroscope on a X-112°Y LiTaO3 substrate.
Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang
2011-01-01
A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg(-1) s at angular rates of up to 1,000 deg s(-1) and good linearity are observed.
Detection of CI line emission towards the oxygen-rich AGB star omi Ceti
NASA Astrophysics Data System (ADS)
Saberi, M.; Vlemmings, W. H. T.; De Beck, E.; Montez, R.; Ramstedt, S.
2018-05-01
We present the detection of neutral atomic carbon CI(3P1-3P0) line emission towards omi Cet. This is the first time that CI is detected in the envelope around an oxygen-rich M-type asymptotic giant branch (AGB) star. We also confirm the previously tentative CI detection around V Hya, a carbon-rich AGB star. As one of the main photodissociation products of parent species in the circumstellar envelope (CSE) around evolved stars, CI can be used to trace sources of ultraviolet (UV) radiation in CSEs. The observed flux density towards omi Cet can be reproduced by a shell with a peak atomic fractional abundance of 2.4 × 10-5 predicted based on a simple chemical model where CO is dissociated by the interstellar radiation field. However, the CI emission is shifted by 4 km s-1 from the stellar velocity. Based on this velocity shift, we suggest that the detected CI emission towards omi Cet potentially arises from a compact region near its hot binary companion. The velocity shift could, therefore, be the result of the orbital velocity of the binary companion around omi Cet. In this case, the CI column density is estimated to be 1.1 × 1019 cm-2. This would imply that strong UV radiation from the companion and/or accretion of matter between two stars is most likely the origin of the CI enhancement. However, this hypothesis can be confirmed by high-angular resolution observations.
Stern-Gerlach-like approach to electron orbital angular momentum measurement
Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.
2017-02-28
Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less
Stern-Gerlach-like approach to electron orbital angular momentum measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.
Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA
NASA Astrophysics Data System (ADS)
Dziewiecki, M.; Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.
2015-02-01
ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czakó, Gábor, E-mail: czako@chem.elte.hu
Motivated by a recent experiment [H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014)], we report a quasiclassical trajectory study of the O({sup 3}P) + CH{sub 4}(v{sub k} = 0, 1) → OH + CH{sub 3} [k = 1 and 3] reactions on an ab initio potential energy surface. The computed angular distributions and cross sections correlated to the OH(v = 0, 1) + CH{sub 3}(v = 0) coincident product states can be directly compared to experiment for O + CH{sub 4}(v{sub 3} = 0, 1). Both theory and experiment show that the ground-state reaction is backward scattered,more » whereas the angular distributions shift toward sideways and forward directions upon antisymmetric stretching (v{sub 3}) excitation of the reactant. Theory predicts similar behavior for the O + CH{sub 4}(v{sub 1} = 1) reaction. The simulations show that stretching excitation enhances the reaction up to about 15 kcal/mol collision energy, whereas the O + CH{sub 4}(v{sub k} = 1) reactions produce smaller cross sections for OH(v = 1) + CH{sub 3}(v = 0) than those of O + CH{sub 4}(v = 0) → OH(v = 0) + CH{sub 3}(v = 0). The former finding agrees with experiment and the latter awaits for confirmation. The computed cold OH rotational distributions of O + CH{sub 4}(v = 0) are in good agreement with experiment.« less
Qu, Zhen; Djordjevic, Ivan B
2017-08-15
We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation. The 5-QAM and 9-QAM formats are based on the Huffman coding technique, which can potentially achieve great cross-talk tolerance by combining them with corresponding nonbinary LDPC codes. We demonstrate that cross talk can be reduced by 1.6 dB and 1 dB via spatial offset for OAM states ±2 and ±6, respectively. Compared to quadrature phase shift keying and 8-QAM formats, the LDPC-coded 5-QAM and 9-QAM are able to bring 1.1 dB and 5.4 dB performance improvements in the presence of atmospheric turbulence, respectively.
Kikuchi ultrafast nanodiffraction in four-dimensional electron microscopy
Yurtsever, Aycan; Zewail, Ahmed H.
2011-01-01
Coherent atomic motions in materials can be revealed using time-resolved X-ray and electron Bragg diffraction. Because of the size of the beam used, typically on the micron scale, the detection of nanoscale propagating waves in extended structures hitherto has not been reported. For elastic waves of complex motions, Bragg intensities contain all polarizations and they are not straightforward to disentangle. Here, we introduce Kikuchi diffraction dynamics, using convergent-beam geometry in an ultrafast electron microscope, to selectively probe propagating transverse elastic waves with nanoscale resolution. It is shown that Kikuchi band shifts, which are sensitive only to the tilting of atomic planes, reveal the resonance oscillations, unit cell angular amplitudes, and the polarization directions. For silicon, the observed wave packet temporal envelope (resonance frequency of 33 GHz), the out-of-phase temporal behavior of Kikuchi’s edges, and the magnitude of angular amplitude (0.3 mrad) and polarization elucidate the nature of the motion: one that preserves the mass density (i.e., no compression or expansion) but leads to sliding of planes in the antisymmetric shear eigenmode of the elastic waveguide. As such, the method of Kikuchi diffraction dynamics, which is unique to electron imaging, can be used to characterize the atomic motions of propagating waves and their interactions with interfaces, defects, and grain boundaries at the nanoscale. PMID:21245348
Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.
2015-01-01
Mode division multiplexing (MDM)– using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams – has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM−1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10−3. PMID:26450398
Huang, Hao; Milione, Giovanni; Lavery, Martin P J; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R; Willner, Alan E
2015-10-09
Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).
Wang, Andong; Zhu, Long; Chen, Shi; Du, Cheng; Mo, Qi; Wang, Jian
2016-05-30
Mode-division multiplexing over fibers has attracted increasing attention over the last few years as a potential solution to further increase fiber transmission capacity. In this paper, we demonstrate the viability of orbital angular momentum (OAM) modes transmission over a 50-km few-mode fiber (FMF). By analyzing mode properties of eigen modes in an FMF, we study the inner mode group differential modal delay (DMD) in FMF, which may influence the transmission capacity in long-distance OAM modes transmission and multiplexing. To mitigate the impact of large inner mode group DMD in long-distance fiber-based OAM modes transmission, we use low-density parity-check (LDPC) codes to increase the system reliability. By evaluating the performance of LDPC-coded single OAM mode transmission over 50-km fiber, significant coding gains of >4 dB, 8 dB and 14 dB are demonstrated for 1-Gbaud, 2-Gbaud and 5-Gbaud quadrature phase-shift keying (QPSK) signals, respectively. Furthermore, in order to verify and compare the influence of DMD in long-distance fiber transmission, single OAM mode transmission over 10-km FMF is also demonstrated in the experiment. Finally, we experimentally demonstrate OAM multiplexing and transmission over a 50-km FMF using LDPC-coded 1-Gbaud QPSK signals to compensate the influence of mode crosstalk and DMD in the 50 km FMF.
NASA Astrophysics Data System (ADS)
Huang, Hao; Milione, Giovanni; Lavery, Martin P. J.; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A.; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R.; Willner, Alan E.
2015-10-01
Mode division multiplexing (MDM)- using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10-3.
Li, Long; Zhang, Runzhou; Zhao, Zhe; Xie, Guodong; Liao, Peicheng; Pang, Kai; Song, Haoqian; Liu, Cong; Ren, Yongxiong; Labroille, Guillaume; Jian, Pu; Starodubov, Dmitry; Lynn, Brittany; Bock, Robert; Tur, Moshe; Willner, Alan E
2017-12-12
We explore the use of orbital-angular-momentum (OAM)-multiplexing to increase the capacity of free-space data transmission to moving platforms, with an added potential benefit of decreasing the probability of data intercept. Specifically, we experimentally demonstrate and characterize the performance of an OAM-multiplexed, free-space optical (FSO) communications link between a ground transmitter and a ground receiver via a moving unmanned-aerial-vehicle (UAV). We achieve a total capacity of 80 Gbit/s up to 100-m-roundtrip link by multiplexing 2 OAM beams, each carrying a 40-Gbit/s quadrature-phase-shift-keying (QPSK) signal. Moreover, we investigate for static, hovering, and moving conditions the effects of channel impairments, including: misalignments, propeller-induced airflows, power loss, intermodal crosstalk, and system bit error rate (BER). We find the following: (a) when the UAV hovers in the air, the power on the desired mode fluctuates by 2.1 dB, while the crosstalk to the other mode is -19 dB below the power on the desired mode; and (b) when the UAV moves in the air, the power fluctuation on the desired mode increases to 4.3 dB and the crosstalk to the other mode increases to -10 dB. Furthermore, the channel crosstalk decreases with an increase in OAM mode spacing.
Performance Evaluation of 98 CZT Sensors for Their Use in Gamma-Ray Imaging
NASA Astrophysics Data System (ADS)
Dedek, Nicolas; Speller, Robert D.; Spendley, Paul; Horrocks, Julie A.
2008-10-01
98 SPEAR sensors from eV Products have been evaluated for their use in a portable Compton camera. The sensors have a 5 mm times 5 mm times 5 mm CdZnTe crystal and are provided together with a preamplifier. The energy resolution was studied in detail for all sensors and was found to be 6% on average at 59.5 keV and 3% on average at 662 keV. The standard deviations of the corresponding energy resolution distributions are remarkably small (0.6% at 59.5 keV, 0.7% at 662 keV) and reflect the uniformity of the sensor characteristics. For a possible outside use the temperature dependence of the sensor performances was investigated for temperatures between 15 and 45 deg Celsius. A linear shift in calibration with temperature was observed. The energy resolution at low energies (81 keV) was found to deteriorate exponentially with temperature, while it stayed constant at higher energies (356 keV). A Compton camera built of these sensors was simulated. To obtain realistic energy spectra a suitable detector response function was implemented. To investigate the angular resolution of the camera a 137Cs point source was simulated. Reconstructed images of the point source were compared for perfect and realistic energy and position resolutions. The angular resolution of the camera was found to be better than 10 deg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, M., E-mail: masami-h@sophia.ac.jp; Suga, A.; Kato, H.
2015-07-14
Absolute differential cross sections (DCSs) for electron interaction with BF{sub 3} molecules have been measured in the impact energy range of 1.5–200 eV and recorded over a scattering angle range of 15°–150°. These angular distributions have been normalized by reference to the elastic DCSs of the He atom and integrated by employing a modified phase shift analysis procedure to generate integral cross sections (ICSs) and momentum transfer cross sections (MTCSs). The calculations of DCSs and ICSs have been carried out using an independent atom model under the screening corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found tomore » agree well with the results of IAM-SCAR calculation above 20 eV, and also with a recent Schwinger multichannel calculation below 30 eV. Furthermore, in the comparison with the XF{sub 3} (X = B, C, N, and CH) molecules, the elastic DCSs reveal a similar angular distribution which are approximately equal in magnitude from 30 to 200 eV. This feature suggests that the elastic scattering is dominated virtually by the 3-outer fluorine atoms surrounding the XF{sub 3} molecules. The vibrational DCSs have also been obtained in the energy range of 1.5–15 eV and vibrational analysis based on the angular correlation theory has been carried out to explain the nature of the shape resonances. Limited experiments on vibrational inelastic scattering confirmed the existence of a shape resonance with a peak at 3.8 eV, which is also observed in the vibrational ICS. Finally, the estimated elastic ICSs, MTCSs, as well as total cross sections are compared with the previous cross section data available.« less
NASA Astrophysics Data System (ADS)
Akolkar, A.; Petrasch, J.; Finck, S.; Rahmatian, N.
2018-02-01
An inverse analysis of the phosphor layer of a commercially available, conformally coated, white LED is done based on tomographic and spectrometric measurements. The aim is to determine the radiative transfer coefficients of the phosphor layer from the measurements of the finished device, with minimal assumptions regarding the composition of the phosphor layer. These results can be used for subsequent opto-thermal modelling and optimization of the device. For this purpose, multiple integrating sphere and gonioradiometric measurements are done to obtain statistical bounds on spectral radiometric values and angular color distributions for ten LEDs belonging to the same color bin of the product series. Tomographic measurements of the LED package are used to generate a tetrahedral grid of the 3D LED geometry. A radiative transfer model using Monte Carlo Ray Tracing in the tetrahedral grid is developed. Using a two-wavelength model consisting of a blue emission wavelength and a yellow, Stokes-shifted re-emission wavelength, the angular color distribution of the LED is simulated over wide ranges of the absorption and scattering coefficients of the phosphor layer, for the blue and yellow wavelengths. Using a two-step, iterative space search, combinations of the radiative transfer coefficients are obtained for which the simulations are consistent with the integrating sphere and gonioradiometric measurements. The results show an inverse relationship between the scattering and absorption coefficients of the phosphor layer for blue light. Scattering of yellow light acts as a distribution and loss mechanism for yellow light and affects the shape of the angular color distribution significantly, especially at larger viewing angles. The spread of feasible coefficients indicates that measured optical behavior of the LEDs may be reproduced using a range of combinations of radiative coefficients. Given that coefficients predicted by the Mie theory usually must be corrected in order to reproduce experimental results, these results indicate that a more complete model of radiative transfer in phosphor layers is required.
NASA Astrophysics Data System (ADS)
Hishiyama, N.; Hoshino, M.; Blanco, F.; García, G.; Tanaka, H.
2017-12-01
We report absolute elastic differential cross sections (DCSs) for electron collisions with phosphorus trifluoride, PF3, molecules (e- + PF3) in the impact energy range of 2.0-200 eV and over a scattering angle range of 10°-150°. Measured angular distributions of scattered electron intensities were normalized by reference to the elastic DCSs of He. Corresponding integral and momentum-transfer cross sections were derived by extrapolating the angular range from 0° to 180° with the help of a modified phase-shift analysis. In addition, due to the large dipole moment of the considered molecule, the dipole-Born correction for the forward scattering angles has also been applied. As a part of this study, independent atom model calculations in combination with screening corrected additivity rule were also performed for elastic and inelastic (electronic excitation plus ionization) scattering using a complex optical potential method. Rotational excitation cross sections have been estimated with a dipole-Born approximation procedure. Vibrational excitations are not considered in this calculation. Theoretical data, at the differential and integral levels, were found to reasonably agree with the present experimental results. Furthermore, we explore the systematics of the elastic DCSs for the four-atomic trifluoride molecules of XF3 (X = B, N, and P) and central P-atom in PF3, showing that, owing to the comparatively small effect of the F-atoms, the present angular distributions of elastic DCSs are essentially dominated by the characteristic of the central P-atom at lower impact energies. Finally, these quantitative results for e- - PF3 collisions were compiled together with the previous data available in the literature in order to obtain a cross section dataset for modeling purposes. To comprehensively describe such a considerable amount of data, we proceed by first discussing, in this paper, the vibrationally elastic scattering processes whereas vibrational and electronic excitation shall be the subject of our following paper devoted to inelastic collisions.
Optimal Network Modularity for Information Diffusion
NASA Astrophysics Data System (ADS)
Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol
2014-08-01
We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.
ERIC Educational Resources Information Center
Murray, Frank
2013-01-01
This article is a report of the findings from a sample of approximately 2,700 students and 1,000 faculty in the first 50 Teacher Education Accreditation\tCouncil (TEAC)-accredited programs for which the online surveys were used. The sample represents nearly all the full-time faculty members surveyed and approximately 30% of the students. On the…
ERIC Educational Resources Information Center
Pogrow, Stanley
2015-01-01
There is little discussion in the Design-Based Research (DBR) literature on how to design an intervention that has the potential to be highly effective. The act of designing is usually viewed as engineering something from theory or research on best practices. This paper challenges that universal belief and presents successful design as an…
Why Can’t You Go Faster than Light?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
One of the most counterintuitive facts of our universe is that you can’t go faster than the speed of light. From this single observation arise all of the mind-bending behaviors of special relativity. But why is this so? In this in-depth video, Fermilab’s Dr. Don Lincoln explains the real reason that you can’t go faster than the speed of light. It will blow your mind.
The Efficacy of ’Don’t Ask, Don’t Tell’
2009-01-01
psychologists explored the concepts, experimental and cor- relation evidence supported dividing cohesion into two distinct types: social cohesion and task...cohesion. Social cohesion is the nature and quality of the emotional bonds within a group—the degree to which members spend time together, like...along (that is, has high social cohesion ) would perform better. Almost counterintuitively, it has been shown that in some situations, high social
Rotation Detection Using the Precession of Molecular Electric Dipole Moment
NASA Astrophysics Data System (ADS)
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2017-11-01
We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.
A centennial gift from Einstein
NASA Astrophysics Data System (ADS)
Oswalt, T. D.
2017-06-01
The 1919 detection of the apparent displacement of background stars near the edge of the eclipsed Sun's disk provided one of the first convincing proofs of Einstein's theory of general relativity (1, 2). Almost 100 years later, Sahu et al. report on page 1046 of this issue the first measurement of the gravitational deflection of starlight by a star other than the Sun (3). Using the superior angular resolution of the Hubble Space Telescope (HST), they measured shifts in the apparent position of a distant background star as a nearby dense stellar remnant called a white dwarf passed almost in front of it in 2014. Because of the relative distances involved, the deflections they observed were about 1000 times smaller than those seen in 1919, but also in agreement with general relativity theory.
High sensitivity rotation sensing based on tunable asymmetrical double-ring structure
NASA Astrophysics Data System (ADS)
Gu, Hong; Liu, Xiaoqing
2017-05-01
A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.
Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.
Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A
2017-10-01
We present a phase-resolved optical coherence tomography (OCT) method to extend Doppler OCT for the accurate measurement of the red blood cell (RBC) velocity in cerebral capillaries. OCT data were acquired with an M-mode scanning strategy (repeated A-scans) to account for the single-file passage of RBCs in a capillary, which were then high-pass filtered to remove the stationary component of the signal to ensure an accurate measurement of phase shift of flowing RBCs. The angular frequency of the signal from flowing RBCs was then quantified from the dynamic component of the signal and used to calculate the axial speed of flowing RBCs in capillaries. We validated our measurement by RBC passage velocimetry using the signal magnitude of the same OCT time series data.
Pattern manipulation via on-chip phase modulation between orbital angular momentum beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huanlu; School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP; Strain, Michael J.
2015-08-03
An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications.more » It can be intentionally implemented with other modulation elements to achieve more complicated applications.« less
Double-slit experiment in momentum space
NASA Astrophysics Data System (ADS)
Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.
2016-08-01
Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.
The Time-Dependent Wavelet Spectrum of HH 1 and 2
NASA Astrophysics Data System (ADS)
Raga, A. C.; Reipurth, B.; Esquivel, A.; González-Gómez, D.; Riera, A.
2018-04-01
We have calculated the wavelet spectra of four epochs (spanning ≍20 yr) of Hα and [S II] HST images of HH 1 and 2. From these spectra we calculated the distribution functions of the (angular) radii of the emission structures. We found that the size distributions have maxima (corresponding to the characteristic sizes of the observed structures) with radii that are logarithmically spaced with factors of ≍2→3 between the successive peaks. The positions of these peaks generally showed small shifts towards larger sizes as a function of time. This result indicates that the structures of HH 1 and 2 have a general expansion (seen at all scales), and/or are the result of a sequence of merging events resulting in the formation of knots with larger characteristic sizes.
NASA Astrophysics Data System (ADS)
Li, Ye; Yuan, Bing; Yang, Kai; Zhang, Xianren; Yan, Bing; Cao, Dapeng
2017-02-01
The nanoparticles (NPs) functionalized with charged ligands are of particular significance due to their potential drug/gene delivery and biomedical applications. However, the molecular mechanism of endocytosis of the charged NPs by cells, especially the effect of the NP-NP and NP-biomembrane interactions on the internalization pathways is still poorly understood. In this work, we systematically investigate the internalization behaviors of the positively charged NPs by combining experiment technology and dissipative particle dynamics (DPD) simulation. We experimentally find an interesting but highly counterintuitive phenomenon, i.e. the multiple positively charged NPs prefer to enter cells cooperatively although the like-charged NPs have obvious electrostatic repulsion. Furthermore, we adopt the DPD simulation to confirm the experimental findings, and reveal that the mechanism of the cooperative endocytosis between like-charged NPs is definitely caused by the interplay of particle size, the charged ligand density on particle surface and local concentration of NPs. Importantly, we not only observe the normal cooperative endocytosis of like-charged NPs in cell biomembrane like neutral NP case, but also predict the ‘bud’ cooperative endocytosis of like-charged NPs which is absence in the neutral NP case. The results indicate that electrostatic repulsion between the positively charged nanoparticles plays an important role in the ‘bud’ cooperative endocytosis of like-charged NPs.
Whole-body angular momentum during stair ascent and descent.
Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M
2014-04-01
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leader, Elliot
2018-04-01
The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.
ERIC Educational Resources Information Center
Hay, James G.; Wilson, Barry D.
The angular momentum of a human body derived from both the angular velocity and angular displacement, utilizing cinematographic records has not been adequately assessed, prior to this study. Miller (1970) obtained the angular momentum but only during the airborne phase of activity. The method used by Ramey (1973) involved a force platform, but…
Difference in perception of angular displacement according to applied waveforms.
Kushiro, Keisuke; Goto, Fumiyuki
2013-05-01
This study shows that the differences in the waveforms of angular rotation affect the perception and memory of angular displacement. During daily life, when we turn our head during various activities, our brain calculates how much angular displacement our head has undergone. However, how we obtain an accurate estimation of this angular displacement remains unclarified. This study aims to clarify this issue by investigating the perception and memory of passive rotation for three different waveforms of angular velocity rotation (sinusoidal (sine), triangle, and step). Thirteen healthy young subjects sitting on a servo-controlled chair were passively rotated at 60° or 120° about the earth-vertical axis by using one of these three angular velocity waveforms. They then attempted to reproduce the rotation angle by rotating the chair in the same direction in which they had been passively rotated using a handheld controller. The gain (reproduced angle/passively rotated angle) was calculated and used for the evaluation of the perception and memory of angular rotation. The gain for step rotation was larger than that for sine and triangle rotations, with statistical significance. This confirms that the difference in the waveforms of angular rotation affects the perception and memory of angular displacement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus
The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticummore » Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo and shows a significant scatter.« less
Optical angular momentum and atoms
2017-01-01
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766
Vibration signal correction of unbalanced rotor due to angular speed fluctuation
NASA Astrophysics Data System (ADS)
Cao, Hongrui; He, Dong; Xi, Songtao; Chen, Xuefeng
2018-07-01
The rotating speed of a rotor is hardly constant in practice due to angular speed fluctuation, which affects the balancing accuracy of the rotor. In this paper, the effect of angular speed fluctuation on vibration responses of the unbalanced rotor is analyzed quantitatively. Then, a vibration signal correction method based on zoom synchrosqueezing transform (ZST) and tacholess order tracking is proposed. The instantaneous angular speed (IAS) of the rotor is extracted by the ZST firstly and then used to calculate the instantaneous phase. The vibration signal is further resampled in angular domain to reduce the effect of angular speed fluctuation. The signal obtained in angular domain is transformed into order domain using discrete Fourier transform (DFT) to estimate the amplitude and phase of the vibration signal. Simulated and experimental results show that the proposed method can successfully correct the amplitude and phase of the vibration signal due to angular speed fluctuation.
NASA Astrophysics Data System (ADS)
Wang, Jing-Rong; Liu, Guo-Zhu; Zhang, Chang-Jin
2016-07-01
Angle-resolved upper critical field Hc 2 provides an efficient tool to probe the gap symmetry of unconventional superconductors. We revisit the behavior of in-plane Hc 2 in d -wave superconductors by considering both the orbital effect and Pauli paramagnetic effect. After carrying out systematic analysis, we show that the maxima of Hc 2 could be along either nodal or antinodal directions of a d -wave superconducting gap, depending on the specific values of a number of tuning parameters. This behavior is in contrast to the common belief that the maxima of in-plane Hc 2 are along the direction where the superconducting gap takes its maximal value. Therefore, identifying the precise d -wave gap symmetry through fitting experiments results of angle-resolved Hc 2 with model calculations at a fixed temperature, as widely used in previous studies, is difficult and practically unreliable. However, our extensive analysis of angle-resolved Hc 2 show that there is a critical temperature T*: in-plane Hc 2 exhibits its maxima along nodal directions at T
Krick, Christoph M.; Argstatter, Heike; Grapp, Miriam; Plinkert, Peter K.; Reith, Wolfgang
2017-01-01
Background: Tinnitus is the perception of a phantom sound without external acoustic stimulation. Recent tinnitus research suggests a relationship between attention processes and tinnitus-related distress. It has been found that too much focus on tinnitus comes at the expense of the visual domain. The angular gyrus (AG) seems to play a crucial role in switching attention to the most salient stimulus. This study aims to evaluate the involvement of the AG during visual attention tasks in tinnitus sufferers treated with Heidelberg Neuro-Music Therapy (HNMT), an intervention that has been shown to reduce tinnitus-related distress. Methods: Thirty-three patients with chronic tinnitus, 45 patients with recent-onset tinnitus, and 35 healthy controls were tested. A fraction of these (21/21/22) were treated with the “compact” version of the HNMT lasting 1 week with intense treatments, while non-treated participants were included as passive controls. Visual attention was evaluated during functional Magnet-Resonance Imaging (fMRI) by a visual Continous Performance Task (CPT) using letter-based alarm cues (“O” and “X”) appearing in a sequence of neutral letters, “A” through “H.” Participants were instructed to respond via button press only if the letter “O” was followed by the letter “X” (GO condition), but not to respond if a neutral letter appeared instead (NOGO condition). All participants underwent two fMRI sessions, before and after a 1-week study period. Results: The CPT results revealed a relationship between error rates and tinnitus duration at baseline whereby the occurrence of erroneous “GO omissions” and the reaction time increased with tinnitus duration. Patients with chronic tinnitus who were treated with HNMT had decreasing error rates (fewer GO omissions) compared to treated recent-onset patients. fMRI analyses confirmed greater activation of the AG during CPT in chronic patients after HNMT treatment compared to treated recent-onset patients. Conclusions: Our findings suggest that HNMT treatment helps shift the attention from the auditory phantom percept toward visual cues in chronic tinnitus patients and that this shift in attention may involve the AG. PMID:28775679
Not Just Guess Work: Tips for Observation, Brainstorming, and Prototyping.
Krone, Ryan
2017-06-01
Much has been written about brainstorming and prototyping in medical devices. These 2 topics are the crucial ingredients to innovation; which, if well seeded by organized and structured forays into each, will net much higher quality and more valuable results. Structure and process, although slightly counterintuitive as applied to brainstorming and prototyping, can greatly improve the value proposition of the innovation itself. Copyright © 2017 Elsevier Inc. All rights reserved.
Angular-Rate Estimation Using Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.
1998-01-01
In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.
Cross, David; Eide, May L; Kotinas, Anastasios
2010-06-01
To report the prevalence and clinical features of angular cheilitis occurring in patients undergoing orthodontic treatment. Cross-sectional, observational study. Three centres were involved; Glasgow Dental Hospital and two specialist orthodontic practices, one in Scotland and one in Greece. Six hundred and sixty consecutive patients undergoing orthodontic treatment were examined over a 9 month period. The presence and absence of angular cheilitis was recorded. A six-point clinical scale was used to describe the clinical features of angular cheilitis when present. Chi-squared tests were used to investigate the association between the presence of angular cheilitis and oral hygiene level/appliance type. Eleven per cent of orthodontic patients in this Western European population, showed signs of angular cheilitis. No correlation was found between the presence of angular cheilitis and gender. Good oral hygiene was associated with a reduced prevalence (P<0.01). Angular cheilitis is a multifactorial condition that can occur in a small percentage of patients during orthodontic treatment. Good oral hygiene may be associated with a reduced risk. A new clinical grade of angular cheilitis is suggested that may help future research. Further studies are required to investigate the microbiological features associated with angular cheilitis occurring in orthodontic patients, as well as associations with medical conditions, such as asthma.
SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Watkins, W; Kim, T
2015-06-15
Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less
Isotope shift, nonlinearity of King plots, and the search for new particles
NASA Astrophysics Data System (ADS)
Flambaum, V. V.; Geddes, A. J.; Viatkina, A. V.
2018-03-01
We derive a mean-field relativistic formula for the isotope shift of an electronic energy level for arbitrary angular momentum; we then use it to predict the spectra of superheavy metastable neutron-rich isotopes belonging to the hypothetical island of stability. Our results may be applied to the search for superheavy atoms in astrophysical spectra using the known values of the transition frequencies for the neutron-deficient isotopes produced in the laboratory. An example of a relevant astrophysical system may be the spectra of the Przybylski's star where superheavy elements up to Z =99 have been possibly identified. In addition, it has been recently suggested to use the measurements of King plot nonlinearity in a search for hypothetical new light bosons. On the other hand, one can find the nonlinear corrections to the King plot arising already in the standard model framework. We investigate contributions to the nonlinearity arising from relativistic effects in the isotope field shift, the nuclear polarizability, and many-body effects. It is found that the nuclear polarizability contribution can lead to the significant deviation of the King plot from linearity. Therefore, the measurements of the nonlinearity of King plots may be applied to obtain the nuclear polarizability change between individual isotopes. We then proceed with providing a rough analytical estimate of the nonlinearity arising solely from the effect of a hypothetical scalar boson. Our predictions give theoretical limitations on the sensitivity of the search for new interactions and should help to identify the most suitable atoms for corresponding experiments.
Twisted molecular excitons as mediators for changing the angular momentum of light
NASA Astrophysics Data System (ADS)
Zang, Xiaoning; Lusk, Mark T.
2017-07-01
Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.
Factors influencing perceived angular velocity.
Kaiser, M K; Calderone, J B
1991-11-01
The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Quadratic Finite Element Method for 1D Deterministic Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolar, Jr., D R; Ferguson, J M
2004-01-06
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.
NASA Astrophysics Data System (ADS)
Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji
2016-12-01
To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.
Break-technique handheld dynamometry: relation between angular velocity and strength measurements.
Burns, Stephen P; Spanier, David E
2005-07-01
To determine whether the muscle strength, as measured with break-technique handheld dynamometry (HHD), is dependent on the angular velocity achieved during testing and to compare reliability at different angular velocities. Repeated-measures study. Participants underwent HHD by using make-technique (isometric) and break-technique (eccentric) dynamometry at 3 prespecified angular velocities. Elbow movement was recorded with an electrogoniometer. Inpatient spinal cord injury unit. Convenience sample of 20 persons with tetraplegia with weakness of elbow flexors or extensors. Not applicable. Elbow angular velocity and muscle strength recorded during HHD. With the break technique, angular velocities averaging 15 degrees , 33 degrees , and 55 degrees /s produced 16%, 30%, and 51% greater strength measurements, respectively, than velocities recorded by using the make technique (all P < .006 for comparisons between successive techniques). The intraclass correlation coefficient for intrarater reliability was .89 or greater for all testing techniques. Greater strength is recorded with faster angular velocities during HHD. Differences in angular velocity may explain the wide range previously reported for break- versus make-technique strength measurements. Variation in angular velocity is a potential source of variability in serial HHD strength measurements, and for this reason the make technique may be preferable.
Compact multilayer film structure for angle insensitive color filtering.
Yang, Chenying; Shen, Weidong; Zhang, Yueguang; Li, Kan; Fang, Xu; Zhang, Xing; Liu, Xu
2015-03-19
Here we report a compact multilayer film structure for angle robust color filtering, which is verified by theoretical calculations and experiment results. The introduction of the amorphous silicon in the proposed unsymmetrical resonant cavity greatly reduces the angular sensitivity of the filters, which is confirmed by the analysis of the phase shift within the structure. The temperature of the substrate during the deposition is expressly investigated to obtain the best optical performance with high peak reflectance and good angle insensitive color filtering by compromising the refractive index of dielectric layer and the surface roughness of the multilayer film. And the outlayer of the structure, worked as the anti-reflection layer, have an enormous impact on the filtering performance. This method, described in this paper, can have enormous potential for diverse applications in display, colorful decoration, anti-counterfeiting and so forth.
Lambertian white top-emitting organic light emitting device with carbon nanotube cathode
NASA Astrophysics Data System (ADS)
Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.
2012-12-01
We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.
NASA Astrophysics Data System (ADS)
Hinterberger, F.; Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Büßer, K.; Busch, M.; Colberg, T.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jonas, E.; Krause, H.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Meinerzhagen, A.; Nähle, O.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.
2000-01-01
The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power AN and the polarization correlation parameters ANN, ASS and ASL are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent dσ/dΩ and AN data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.
NASA Astrophysics Data System (ADS)
Xie, Tiao; Bowman, Joel M.; Peterson, K. A.; Ramachandran, B.
2003-11-01
We report the thermal rate constant of the O(3P)+HCl→OH+Cl reaction calculated from 200 to 3200 K, using new fits to extensive ab initio calculations [B. Ramachandran and K. A. Peterson, J. Chem. Phys. 119, 9590 (2003), preceding paper]. The rate constants are obtained for both the 3A″ and 3A' surfaces using exact quantum reactive scattering calculations for selected values of the total angular momentum and the J-shifting approximation for both the 3A″ and 3A' surfaces. The results are compared with the ICVT/μOMT rate constants calculated by the POLYRATE program and all available experimental data. Other related high-energy reaction channels are also studied qualitatively for their contribution to the total thermal rate constant at high temperature.